WO2018199328A1 - 高強度鋼板およびその製造方法 - Google Patents

高強度鋼板およびその製造方法 Download PDF

Info

Publication number
WO2018199328A1
WO2018199328A1 PCT/JP2018/017311 JP2018017311W WO2018199328A1 WO 2018199328 A1 WO2018199328 A1 WO 2018199328A1 JP 2018017311 W JP2018017311 W JP 2018017311W WO 2018199328 A1 WO2018199328 A1 WO 2018199328A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel sheet
plate thickness
strength steel
temperature
Prior art date
Application number
PCT/JP2018/017311
Other languages
English (en)
French (fr)
Inventor
翔平 藪
林 宏太郎
玄紀 虻川
上西 朗弘
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to CN201880007440.6A priority Critical patent/CN110199045B/zh
Priority to KR1020197023211A priority patent/KR102217100B1/ko
Priority to US16/490,465 priority patent/US20200071801A1/en
Priority to JP2018544364A priority patent/JP6477988B1/ja
Priority to BR112019018215-2A priority patent/BR112019018215A2/pt
Priority to MX2019012110A priority patent/MX2019012110A/es
Priority to EP18789839.0A priority patent/EP3617336A4/en
Publication of WO2018199328A1 publication Critical patent/WO2018199328A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/011Layered products comprising a layer of metal all layers being exclusively metallic all layers being formed of iron alloys or steels
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur

Definitions

  • the present invention relates to a high-strength steel sheet having excellent bendability and a high Mn concentration, and a method for producing the same.
  • Patent Document 2 As shown in the Examples, using a steel sheet containing a martensite fraction of 20% or more, the steel sheet after cold rolling and pickling is once heated to a temperature range of 750 ° C. or more to form a band shape.
  • a steel sheet having excellent formability is disclosed by dispersing Mn concentrated in the structure and thinly and finely dispersing the band-like structure.
  • Patent Document 3 discloses a method for producing a clad steel plate made of a base steel, stainless steel, Ni, and a Ni alloy while reducing warpage.
  • Patent Document 4 discloses a cold-rolled steel sheet having a substrate portion containing Mn and a deposited layer (surface layer) having a low Mn concentration formed on at least one side of the substrate portion by a cold spray method.
  • the inventors made a clad steel sheet in which the average Mn concentration in the surface layer was reduced from the average Mn concentration in the center layer, and investigated the bendability of the steel sheet obtained by cold rolling and annealing the clad steel sheet.
  • a substrate portion having a high average Mn concentration is hot-rolled before forming a deposition layer (surface layer), and the hot-rolled substrate portion is cold-rolled.
  • a deposited layer (surface layer) having a low average Mn concentration was formed by a spray method, and the bendability of the cold-rolled and annealed steel sheet was investigated.
  • a cold-rolled plate having a high average Mn concentration is used as a substrate portion, and a deposited layer (surface layer) having a low average Mn concentration by a cold spray method on the cold-rolled plate. The bendability of the steel sheet formed and annealed was also investigated.
  • the mechanism of this effect is that the Mn concentration in the surface layer of the multilayer steel sheet is reduced, Mn segregation is suppressed, and sufficient recrystallization prevents local deformation of the bending surface, and the surface layer This is thought to be because cracking was suppressed by improving ductility. Furthermore, since the recrystallized grain size (ferrite grain size) of the surface layer becomes fine, the bendability may be further improved.
  • the gist of the present invention thus obtained is as follows. (1) thickness center, A high-strength steel sheet comprising a surface layer softened part formed on one or both sides of the center part of the plate thickness, The average Mn concentration at the center of the plate thickness is more than 4.0% by mass and less than 10.0% by mass, Each surface layer softened portion has a thickness of 0.1% to 30% of the plate thickness, The average Mn concentration of the surface layer softened part is 2.5% by mass or less, The recrystallization rate of the surface layer of the surface layer softened portion is 90% or more, The average crystal grain size of the recrystallized structure of the surface softened portion is 0.1 ⁇ m or more and 40 ⁇ m or less, High strength steel plate.
  • the plate thickness center portion is further mass%, Cr: 0.01% or more and 2.00% or less, Mo: 0.01% or more and 2.00% or less, It contains at least one selected from the group consisting of Cu: 0.01% to 2.00% and Ni: 0.01% to 2.00%, as described in (2) above High strength steel plate.
  • the plate thickness center portion is further mass%, Ti: 0.005% or more and 0.30% or less, Nb: 0.005% or more and 0.30% or less, V: 0.005% or more and 0.30% or less, and W: 0.005% or more and 0.30% or less, containing at least one selected from the group consisting of the above (2) or ( The high-strength steel plate described in 3).
  • the plate thickness center portion is further mass%, B: 0.0001% to 0.010%, Ca: 0.0001% or more and 0.010% or less, Mg: 0.0001% or more and 0.010% or less, Zr: 0.0001% or more and 0.010% or less, and REM: 0.0001% or more and 0.010% or less, containing at least one selected from the group consisting of the above (2) to ( The high-strength steel plate according to any one of 4).
  • the high-strength steel plate according to any one of items 1). (9) The above (3) to (8), wherein the total amount of Cu and Ni in the surface softened portion is 0.9 times or less of the total amount of Cu and Ni in the central portion of the plate thickness.
  • the high-strength steel plate according to any one of items 1). (10) The above (4) to (9) are characterized in that the total amount of Ti and Nb in the surface softened portion is 0.9 times or less of the total amount of Ti and Nb in the central portion of the plate thickness.
  • the manufacturing method of the high strength steel plate characterized by including.
  • the average Mn concentration of the surface softened portion having a thickness of 0.1% to 30% of the plate thickness is 2.5% by mass or less and the recrystallization rate is 90% or more. is there.
  • the thickness of the surface softened part is 0.1% or more and 30% or less.
  • the thickness of the surface layer softened portion is more preferably 20% or less of the plate thickness, and further preferably 10% or less.
  • the surface softening part is determined as follows. First, the cross-sectional structure of the steel sheet is revealed by nital corrosion, and the total thickness of the steel sheet is calculated based on the structure image obtained by observation with an optical microscope or a scanning electron microscope. At the center in the plate thickness direction of the steel plate, the Vickers hardness is measured at an indentation load of 100 g at five stamping intervals at which the indentations do not interfere with each other in the direction perpendicular to the plate thickness direction. The average Vickers hardness at the center position.
  • a 5-point Vickers hardness test is performed in the same manner as described above at each position in the plate thickness direction, with the stamping interval set at a constant interval of 5% of the total thickness of the steel plate from the center in the plate thickness direction toward the surface.
  • the surface side is defined as the surface layer softened portion.
  • the surface softening part could not be defined without obtaining a value of 0.6 times or less of the average Vickers hardness at 5% intervals, the first embossing was performed between the two engraving points on the surface.
  • the surface softening part is defined by stamping at an arbitrary fixed interval shorter than the interval.
  • Mn is an element that promotes the formation of a band-like structure.
  • the average Mn concentration in the surface softened part is more than 2.5% by mass, a band-like structure is formed in the surface softened part, and good bendability cannot be obtained. Therefore, the average Mn concentration of the surface layer softened portion is 2.5% by mass or less, preferably 2.0% by mass or less, more preferably 1.5% by mass or less. The lower the Mn content, the more difficult it is to form a band-like structure, so the lower limit of the average Mn concentration is not particularly specified.
  • the “average Mn concentration in the surface softened portion” is the average value of 20 Mn concentrations at intervals of 50 ⁇ m along the line in the direction perpendicular to the plate thickness direction at the center of the cross section in the plate thickness direction. It is requested from.
  • the recrystallization rate of the surface softened part is 90% or more If the recrystallization of the surface layer is insufficient and an unrecrystallized structure is present, the unrecrystallized structure is poor in ductility and thus becomes a starting point of cracking during bending deformation.
  • the recrystallization rate of the surface layer softened portion is less than 90%, good bendability cannot be obtained, so the recrystallization rate of the surface layer softened portion is 90% or more. Preferably, it is 95% or more.
  • the average crystal grain size of the surface softening part is 0.1 ⁇ m or more and 40 ⁇ m or less
  • the average crystal grain size of the recrystallized structure (ferrite) of the surface layer becomes coarse, it promotes non-uniform deformation at the time of bending deformation, which causes deterioration of bendability. Therefore, the average crystal grain size of the surface softened portion is set to 40 ⁇ m or less.
  • the average crystal grain size of the surface layer softened portion is more preferably 30 ⁇ m or less, and further preferably 25 ⁇ m or less.
  • the average crystal grain size of the surface softened portion is 0.1 ⁇ m or more.
  • the average crystal grain size of the surface layer softened portion is more preferably 0.5 ⁇ m or more, and further preferably 1 ⁇ m or more.
  • Recrystallization rate is determined as follows.
  • the surface softening portion defined by the above method is subjected to mirror polishing and colloidal polishing so that the central position in the thickness direction becomes the measurement surface, and the field emission type
  • FE-SEM scanning electron microscope
  • OIM crystal orientation analyzer crystal orientation data groups were acquired at intervals of 0.2 ⁇ m with respect to a 100 ⁇ m square area of the measurement surface.
  • the obtained crystal orientation data group is analyzed by analysis software (TSL OIM Analysis), and the region where Kernel Average Misorientation (KAM value) between the first proximity measurement points is 1.0 ° or less is defined as the recrystallized structure.
  • TSL OIM Analysis analysis software
  • KAM value Kernel Average Misorientation
  • the average crystal grain size of the surface softened part is determined as follows. In the average grain size measurement test by the SEM / EBSD method, the crystal orientation data group obtained by the above-mentioned method is analyzed by analysis software (TSL OIM Analysis), and the grain boundary having an orientation difference of 15 ° or more The particle size when the region surrounded by is defined as one crystal grain is calculated by the Area Fraction method, and the average particle size of the entire observation region is calculated.
  • C is an extremely important element for increasing the strength of the steel and securing retained austenite.
  • a C content of more than 0.05% is required.
  • the upper limit of the C content is less than 0.80%.
  • the C content is preferably in the range of 0.60% or less, and more preferably in the range of 0.50% or less.
  • Si is an element effective for strengthening tempered martensite, homogenizing the structure, and improving workability. Si also has the effect of suppressing the precipitation of cementite and promoting the retention of austenite. In order to acquire the said effect, 0.001% or more of Si content is required. On the other hand, if Si is excessively contained, the low temperature toughness of the steel sheet is impaired, so the upper limit of the Si content is set to less than 3.50%.
  • the lower limit of Si is preferably 0.01%, more preferably 0.30%, and still more preferably 0.50%. By setting the lower limit value of the Si content within the above range, the uniform elongation characteristic of the steel sheet can be further improved.
  • the upper limit of the Si content is preferably 3.00%, more preferably 2.50%.
  • Mn is an element that stabilizes austenite and improves hardenability. Moreover, in the steel plate of this invention, Mn is distributed in austenite and austenite is stabilized more. In order to stabilize austenite at room temperature, more than 4.00% Mn is required. On the other hand, if the steel sheet contains excessive Mn, the low temperature toughness is impaired, so the upper limit of the Mn content is less than 10.0%.
  • the lower limit of the Mn content is preferably 4.30%, more preferably 4.80%.
  • the upper limit of the Mn content is preferably 8.00%, more preferably 7.50%.
  • the “average Mn concentration at the center of the plate thickness” refers to the 20 point Mn concentration at intervals of 50 ⁇ m along the line in the direction perpendicular to the plate thickness direction at the center in the plate thickness direction of the plate thickness center of the cross section of the tissue. Measured and determined from the average value.
  • Al is a deoxidizer and should be contained by 0.001% or more.
  • Al has the effect of increasing the stability of the material in order to widen the two-phase temperature range during annealing. The effect increases as the Al content increases. However, excessive addition of Al leads to deterioration of surface properties, paintability, weldability, and the like.
  • the upper limit of Al was made less than 3.00%. sol.
  • the lower limit of the Al content is preferably 0.005%, more preferably 0.01%, and still more preferably 0.02%. sol.
  • the upper limit of the Al content is preferably 2.50%, more preferably 1.80%. sol.
  • the upper limit of the P content is 0.10% or less.
  • the upper limit of the P content is preferably 0.050%, more preferably 0.030%, and still more preferably 0.020%. Since the steel plate according to the present embodiment does not require P, the lower limit value of the P content is 0.000%.
  • the lower limit of the P content may be more than 0.000% or 0.001%, but the lower the P content, the better.
  • S (S: 0.010% or less) S is an impurity, and if the steel sheet contains S excessively, MnS stretched by hot rolling is generated, which causes deterioration of formability such as bendability and hole expandability. Therefore, the upper limit of the S content is 0.010% or less.
  • the upper limit of the S content is preferably 0.007%, more preferably 0.003%. Since the steel plate according to the present embodiment does not require S, the lower limit value of the S content is 0.000%.
  • the lower limit of the S content may be over 0.000% or 0.0001%, but the lower the S content, the better.
  • N is an impurity, and if the steel sheet contains 0.050% or more of N, the toughness is deteriorated. Therefore, the upper limit of the N content is less than 0.050%.
  • the upper limit of the N content is preferably 0.010%, more preferably 0.006%. Since the steel plate according to this embodiment does not require N, the lower limit of the N content is 0.000%.
  • the lower limit of the N content may be more than 0.000% or 0.0003%, but the lower the N content, the better.
  • Cr, Mo, Cu, and Ni are not essential elements for the steel sheet according to this embodiment. However, since Cr, Mo, Cu, and Ni are elements that improve the strength of the steel sheet, they may be contained. In order to obtain the effect of improving the strength of the steel sheet, the steel sheet may contain 0.01% or more of each of one or more elements selected from the group consisting of Cr, Mo, Cu, and Ni.
  • the upper limit of the content of each of one or more elements selected from the group consisting of Cr, Mo, Cu, and Ni is set to 2.00%.
  • Ti, Nb, V, and W are not essential elements for the steel sheet according to the present embodiment.
  • Ti, Nb, V, and W are elements that generate fine carbides, nitrides, or carbonitrides, and thus are effective in improving the strength of the steel sheet. Therefore, the steel sheet may contain one or more elements selected from the group consisting of Ti, Nb, V, and W.
  • the lower limit value of the content of each of one or more elements selected from the group consisting of Ti, Nb, V and W is preferably 0.005%.
  • the upper limit of the content of each of one or more elements selected from the group consisting of Ti, Nb, V and W is set to 0.30%.
  • B, Ca, Mg, Zr, and REM are not essential elements.
  • B, Ca, Mg, Zr, and REM improve the local ductility and hole expandability of the steel sheet.
  • the lower limit value of each of one or more elements selected from the group consisting of B, Ca, Mg, Zr, and REM is preferably 0.0001%, more preferably 0.00. 001%.
  • the upper limit of the content of each of these elements is 0.010%, and is selected from the group consisting of B, Ca, Mg, Zr, and REM.
  • the total content of one or more elements is preferably 0.030% or less.
  • Sb, Sn, and Bi are not essential elements.
  • Sb, Sn, and Bi suppress oxidizable elements such as Mn, Si, and / or Al in the steel sheet from diffusing to the steel sheet surface to form oxides, Increase plating ability.
  • the lower limit of the content of each of one or more elements selected from the group consisting of Sb, Sn, and Bi is preferably 0.0005%, more preferably 0.001%.
  • the content of each of these elements exceeds 0.050%, the effect is saturated, so the upper limit of the content of each of these elements is set to 0.050%.
  • the steel plate in the present invention may have different chemical compositions in the surface layer softened part and the center part of the plate thickness for elements other than Mn.
  • the preferable chemical composition in the surface softened part is as follows.
  • C 0.9 times the amount of C at the center of the plate thickness
  • the amount of C in the surface softened portion is preferably 0.9 times or less of the amount of C in the central portion of the plate thickness. This is because the hardness of the surface softened portion is made lower than the hardness of the center portion of the plate thickness. If it is larger than 0.9 times, excellent bendability may not be obtained. More preferably, the C amount in the surface softened portion is 0.7 times or less, even more preferably 0.5 times or less, and most preferably 0.3 times or less, the C amount in the central portion of the plate thickness.
  • the preferable C content in the central portion of the plate thickness is less than 0.80%, the preferable C content in the surface softened portion is less than 0.72%. Preferably it is less than 0.5%, more preferably less than 0.3%, most preferably less than 0.1%.
  • the lower limit of the C amount is not particularly specified. In the case of using industrial ultra-low C steel, about 0.001% is a practical lower limit, but from the viewpoint of the amount of solute C, solute C was completely eliminated using Ti, Nb, etc. Interstitial Free steel may be used.
  • Si 0.001% or more and less than 3.50% Since Si is a ferrite stabilizing element and increases the Ac3 transformation point, it is possible to form a large amount of ferrite at a wide annealing temperature, and is added from the viewpoint of improving the structure controllability. In order to obtain such an effect, the Si amount needs to be 0.001% or more. However, addition of 3.50% or more degrades the surface properties of the steel sheet, so it is less than 3.50%.
  • P 0.10% or less
  • P causes the weld to become brittle. If it exceeds 0.10%, the welded portion becomes brittle, so the appropriate range is limited to 0.10% or less.
  • the lower limit of the P content is not specified, it is economically disadvantageous to be less than 0.001%.
  • the upper limit value is set to 0.010% or less.
  • the lower limit of the S content is not specified, it is economically disadvantageous to be less than 0.0001%.
  • Al acts as a deoxidizer and is preferably added in the deoxidation step.
  • the Al content needs to be 0.001% or more.
  • sol. If the Al content is 3.00% or more, the risk of slab cracking during continuous casting increases, so the content is made less than 3.00%.
  • N (N: 0.050% or less) N forms coarse nitrides and degrades the bendability, so the addition amount needs to be suppressed. Since this tendency becomes remarkable when N exceeds 0.050%, the range of N content is set to 0.050% or less. In addition, N is better because it causes blowholes during welding.
  • the lower limit of the N content is not particularly defined, and the effects of the present invention are exhibited. However, when the N content is less than 0.0005%, the manufacturing cost is significantly increased.
  • the surface softening part is preferably in mass%, C: less than 0.72%, Si: 0.001% or more and less than 3.50%, Mn: 2.5% or less P: 0.10% or less, S: 0.010% or less, sol. Al: 0.001% or more and less than 3.00%, and N: less than 0.050%, The balance is composed of iron and inevitable impurities.
  • the surface layer softening part may further contain the following components.
  • Cr 0.01% or more and 2.00% or less, Mo: 0.01% or more and 2.00% or less, Cu: 0.01% or more and 2.00% or less, and Ni: 0.01% or more and 2. 00% or less
  • the steel plate may contain 0.01% or more of each of one or more elements selected from the group consisting of Cr, Mo, Cu, and Ni.
  • the upper limit of the content of each of one or more elements selected from the group consisting of Cr, Mo, Cu, and Ni is set to 2.00%.
  • the total amount of Cr and Mo in the surface softened portion is 0.9 times or less of the total amount of Cr and Mo in the central portion of the plate thickness. If the total amount of Cr and Mo for stabilizing the carbide is larger than 0.9 times the amount of Cr and Mo at the center of the plate thickness, coarse carbides are likely to remain, causing deterioration of the surface properties. More preferably, it is 0.7 times or less, still more preferably 0.5 times or less, and most preferably 0.3 times or less.
  • the total amount of Cu and Ni in the surface softened portion is 0.9 times or less of the total amount of Cu and Ni in the central portion of the plate thickness. If the total amount of Cu and Ni to improve hardenability is greater than 0.9 times the amount of Cu and Ni at the center of the plate thickness, a low-temperature transformation structure is likely to occur, causing deterioration of bendability. More preferably, it is 0.7 times or less, still more preferably 0.5 times or less, and most preferably 0.3 times or less.
  • Ti, Nb, V, and W are elements that generate fine carbides, nitrides, or carbonitrides, and thus are effective in improving the strength of the steel sheet. Therefore, the steel sheet may contain one or more elements selected from the group consisting of Ti, Nb, V, and W. In order to obtain the strength improvement effect of the steel sheet, the lower limit value of the content of each of one or more elements selected from the group consisting of Ti, Nb, V, and W may be 0.005%. preferable.
  • the upper limit of the content of each of one or more elements selected from the group consisting of Ti, Nb, V, and W is set to 0.30%.
  • the total amount of Ti and Nb in the surface softened portion is 0.9 times or less of the total amount of Ti and Nb in the central portion of the plate thickness. If the total amount of Ti and Nb is greater than 0.9 times the amount of Ti and Nb at the center of the plate thickness, the surface layer tends to harden and cause deterioration of bendability. More preferably, it is 0.7 times or less, still more preferably 0.5 times or less, and most preferably 0.3 times or less.
  • the total sum of the W amount and the V amount in the surface layer softened portion is 0.9 times or less of the total sum of the W amount and the V amount in the central portion of the plate thickness. Since W and V are elements that easily form carbides, if the sum of the amount of W and the amount of V is larger than 0.9 times the amount of W and the amount of V at the center of the plate thickness, coarse carbides are formed on the surface layer. It becomes a factor of bendability deterioration. More preferably, it is 0.7 times or less, still more preferably 0.5 times or less, and most preferably 0.3 times or less.
  • B 0.0001% to 0.010%, Ca: 0.0001% to 0.010%, Mg: 0.0001% to 0.010%, Zr: 0.0001% to 0.010 % Or less, and REM: 0.0001% or more and 0.010% or less
  • B, Ca, Mg, Zr, and REM improve the local ductility and hole expandability of the steel sheet.
  • the lower limit value of each of one or more elements selected from the group consisting of B, Ca, Mg, Zr, and REM is preferably 0.0001%, more preferably 0.00. 001%.
  • the upper limit value of one or more elements selected from the group consisting of B, Ca, Mg, Zr, and REM is set to 0.009%, preferably 0.006% or less.
  • the B amount in the surface softened portion is 0.9 times or less than the B amount in the central portion of the plate thickness. Since B is an element that easily forms a low-temperature transformation phase, if it is larger than 0.9 times the amount of B at the center of the plate thickness, the surface layer becomes hard, and excellent bendability cannot be obtained. More preferably, it is 0.7 times or less, still more preferably 0.5 times or less, and most preferably 0.3 times or less. Each lower limit is not specified.
  • the structure at the center of the plate thickness preferably has a structure consisting of ferrite, martensite or bainite, and retained austenite, more preferably ferrite, tempered martensite or bainite, as-quenched martensite, and retained austenite.
  • a structure consisting of ferrite, martensite or bainite, and retained austenite more preferably ferrite, tempered martensite or bainite, as-quenched martensite, and retained austenite.
  • the structure of the surface softening part preferably has a structure substantially consisting of ferrite.
  • the surface layer softened portion has a low porosity and is preferably 1% or less in area ratio, more preferably substantially 0%.
  • the tensile strength of the steel sheet according to this embodiment is preferably 780 MPa or more, more preferably 1180 MPa. This is because when a steel plate is used as an automobile material, the plate thickness is reduced by increasing the strength, thereby contributing to weight reduction. Moreover, in order to use the steel plate which concerns on this embodiment for press forming, it is desirable that uniform elongation (uEL) is excellent.
  • TS ⁇ uEL is preferably 12000 MPa ⁇ % or more, more preferably 14000 MPa ⁇ % or more.
  • the limit bending radius R is 1.0 mm or less. It is preferable that the thickness is 0.8 mm or less.
  • the critical bending radius of the V-bending test is preferably 2.0 mm or less, and more preferably 1.5 mm or less.
  • the manufacturing method of the steel plate concerning this embodiment is explained.
  • the following description is intended only as an example of a production method for obtaining the high-strength steel plate of the present invention, and the high-strength steel plate of the present invention is a multilayer steel plate in which two steel plates as described below are laminated. It is not intended to be limited to.
  • the surface softened portion may be formed on the base steel plate by a cold spray method.
  • the steel sheet according to the present embodiment has an average Mn concentration of 2.5% by mass or less and a steel sheet for a surface softening part, which is laminated on one or both surfaces of a base steel sheet constituting the thickness center part having the above chemical composition.
  • a steel plate satisfying the chemical composition of the surface softening portion is laminated on one or both surfaces of a base steel plate having a degreased surface constituting the thickness center portion, and the periphery thereof is welded.
  • a multilayer steel plate is formed by laminating a steel plate satisfying the chemical composition of the surface softening portion on the surface of the base steel plate satisfying the chemical composition of the center portion of the plate thickness and welding the periphery.
  • Heating temperature of multilayer steel plate 1080 ° C. or higher and 1300 ° C. or lower
  • the heating temperature before hot rolling is less than 1080 ° C.
  • deformation resistance during hot working becomes high, and operation becomes difficult.
  • the heating temperature exceeds 1300 ° C.
  • the yield decreases due to scale loss. Therefore, the heating temperature is set to 1080 ° C. or more and 1300 ° C. or less.
  • the time for holding in the temperature range of 1080 ° C. or higher and 1300 ° C. or lower before hot rolling is not particularly limited. However, in order to improve the hole expansion property, it is preferably 30 minutes or longer, and is preferably 1 hour or longer. Further preferred.
  • the temperature is a temperature measured at a central position on the surface of the steel sheet.
  • the finish rolling start temperature is preferably 800 ° C. or higher and 1000 ° C. or lower.
  • the finish rolling start temperature is preferably 800 ° C. or higher and 1000 ° C. or lower.
  • the time from finishing finish rolling to cooling to 500 ° C. or higher and 700 ° C. or lower exceeds 2 seconds, the prior austenite grain size becomes coarse, and the surface softened portion is not sufficiently recrystallized in the subsequent annealing step. . Therefore, the time from finishing finish rolling to cooling to 500 ° C. or higher and 700 ° C. or lower is set to be within 2 seconds. Preferably it is within 1.8 seconds, more preferably within 1.5 seconds. The shorter the time to cooling, the finer the old ⁇ grain size and the easier it is to recrystallize. Therefore, there is no lower limit, but 0.1 seconds is a practical lower limit due to manufacturing process constraints.
  • the cooling rate may be any rate as long as the above conditions are satisfied, but the faster the cooling rate, the easier the effect of refining the old ⁇ particle size is obtained. Therefore, the cooling rate is preferably 20 ° C./s or more, and more preferably 50 ° C./s or more.
  • the cooling stop temperature after rolling is less than 500 ° C.
  • a part of the surface softened portion becomes a low-temperature transformation structure.
  • the cooling stop temperature is 700 ° C. or higher, ferrite transformation of the surface softened portion is delayed, and sufficient strain cannot be accumulated in the surface softened portion in the subsequent cold rolling process. Therefore, the cooling stop temperature is set to 500 ° C. or more and 700 ° C. or less.
  • the holding time at a temperature of 500 ° C. or higher and 700 ° C. or lower is less than 3 seconds, ferrite in the surface softened portion is not sufficiently formed.
  • the holding time is 5 seconds or more, more preferably 10 seconds or more.
  • the winding is performed at a winding temperature of 600 ° C. or less.
  • a winding temperature of 600 ° C. or less By winding at a coiling temperature of 600 ° C. or less, a low temperature transformation phase is easily formed at the center of the plate thickness, and the amount of strain distribution to the surface layer is increased in the cold rolling process after winding. The portion is easily recrystallized and the crystal grain size is more easily reduced.
  • the winding temperature is more preferably 500 ° C. or lower, and further preferably 400 ° C. or lower.
  • the hot-rolled sheet may be tempered at 300 ° C. to 600 ° C. after being cooled to room temperature.
  • Cold rolling reduction 20% to 70%
  • the hot-rolled steel sheet is pickled by a conventional method and then cold-rolled.
  • the rolling reduction of cold rolling is less than 20%, sufficient strain is not introduced into the surface softened portion, and the surface softened portion is not sufficiently recrystallized in the subsequent annealing step.
  • the rolling reduction in cold rolling is more than 70%, the steel sheet may break during rolling, so the rolling reduction in cold rolling is 20% or more and 70% or less.
  • the rolled multilayer steel sheet is held at a temperature of 600 ° C. or higher and 750 ° C. or lower for 5 seconds or more and then cooled to room temperature
  • the cold rolled multilayer steel sheet is annealed by heating to a temperature of 600 ° C. or higher and 750 ° C. or lower.
  • the heating and holding temperature is less than 600 ° C., the surface softened portion is not sufficiently recrystallized, and the cementite at the center of the plate thickness is not sufficiently dissolved, and a stable residual ⁇ fraction cannot be obtained. If it exceeds 750 ° C., it becomes difficult to generate ferrite at the center of the plate thickness. Therefore, the heating holding temperature is set to 600 ° C. or higher and 750 ° C. or lower.
  • the annealing time is preferably 10 seconds or more, more preferably 15 seconds or more. From the viewpoint of productivity, the annealing time is preferably 3600 seconds or less.
  • the cooling stop temperature after the heating and holding is preferably 550 ° C. or lower, more preferably 300 ° C. or lower, most preferably 100 ° C. or lower in order to generate a low temperature transformation structure at the center of the plate thickness. .
  • tempering at a temperature of 300 ° C. or more and 550 ° C. or less may be performed in order to soften the low temperature transformation structure and stabilize the retained austenite.
  • hot dip galvanized steel sheet In the case of producing a hot dip galvanized steel sheet by subjecting the surface of the steel sheet to hot dip galvanization, cooling after annealing at a temperature of 600 ° C. or higher and 750 ° C. or lower is stopped in a temperature range of 430 to 500 ° C., and then cooled.
  • the steel sheet is immersed in a hot dip galvanizing bath and hot dip galvanized.
  • the conditions for the plating bath may be within the normal range. What is necessary is just to cool to room temperature after a plating process.
  • the steel plate according to this embodiment can be obtained.
  • the steel sheet of the present invention will be described more specifically with reference to examples.
  • the following example is an example of the steel plate of the present invention, and the steel plate of the present invention is not limited to the mode of the following example.
  • Heating, holding after heating, hot rolling at the heating temperature, holding time before hot rolling, finish rolling start temperature, cooling completion time, cooling stop temperature, holding time after cooling, and winding temperature shown in Table 2 The laminated hot rolled steel sheet was obtained by cooling, holding after cooling, and winding the coil. Thereafter, pickling was performed by a conventional method, and tempering, cold rolling, and annealing were performed at the tempering temperature, the cold rolling rate, the annealing temperature, and the annealing time shown in Table 2, and the mixture was cooled to room temperature.
  • the sample whose manufacturing method of the multilayer steel plate of Table 2 is a cold spray method was produced in accordance with the following method.
  • the heating temperature shown in Table 2 and the holding time before hot rolling are used for a continuous cast slab having a chemical composition shown in Table 1 and having a thickness of 20 mm (steel plate for the center of plate thickness). Finishing rolling start temperature, cooling completion time, cooling stop temperature, holding time after cooling, and winding temperature, heating, holding after heating, hot rolling, cooling, holding after cooling, and winding the coil, After producing a hot-rolled sheet and grinding the surface to remove the surface oxide, a steel sheet having a deposited layer (surface layer) formed on the surface layer by a cold spray method on one side or both sides thereof was produced. Then, tempering, cold rolling, and annealing were performed at the tempering temperature, the cold rolling rate, the annealing temperature, and the annealing time shown in Table 2, and cooled to room temperature.
  • the hot-rolled plate produced by the above method is pickled by a conventional method, and tempered and cold-rolled at the tempering temperature and cold rolling rate shown in Table 2.
  • a cold-rolled plate was prepared, and then a deposited layer (surface layer) was formed on at least one surface of the cold-rolled plate using a cold spray method, and annealing was performed at the annealing temperature and annealing time shown in Table 2 and cooled to room temperature.
  • the iron-based particles used in the cold spray method had the components and particle sizes shown in Table 4.
  • the particles used in the cold spray method were those adjusted to have a predetermined particle diameter by repeating classification by pulverization and sieving according to the prior art.
  • nitrogen gas was used as the working gas.
  • the working gas was heated to 700 ° C. with a heater, iron-based particles were supplied from a particle supply device and mixed, and sprayed onto the substrate with a spray nozzle to obtain a multilayer steel plate.
  • the working gas pressure was constant at 3 MPa.
  • the nozzle scanning speed was adjusted by machine control.
  • Plating treatment was performed.
  • the conditions of the plating bath are the same as the conventional one.
  • the alloying treatment described later was not performed, after the temperature was maintained at 460 ° C., it was cooled to room temperature at an average cooling rate of 10 ° C./second.
  • Some of the annealed cold-rolled steel sheets were hot-dip galvanized and then subjected to alloying without cooling to room temperature. It heated to 520 degreeC, it hold
  • the annealed cold-rolled steel sheet thus obtained was temper-rolled at an elongation of 0.1% to prepare various evaluation steel sheets.
  • the method for observing the structure at the center of the plate thickness was as follows.
  • the surface of the steel sheet is mirror-polished and colloidally polished so that the central portion of the plate thickness becomes the measurement surface, and a field area of 100 ⁇ m square is measured using a field emission scanning electron microscope (FE-SEM) and an OIM crystal orientation analyzer.
  • a crystal orientation data group was acquired at intervals of 2 ⁇ m.
  • the obtained crystal orientation data group was analyzed with analysis software (TSL OIM Analysis) to classify the structure.
  • TSL OIM Analysis analysis software
  • Phase-MAP Phase-MAP, the region determined to be an austenite phase was determined to be retained austenite.
  • the structure was observed by the above method, and the structure at the center of the plate thickness was classified into ferrite, tempered martensite or bainite, as-quenched martensite, and retained austenite.
  • the structure observation of the surface layer softened part was performed in the same manner as the structure observation of the central part of the plate thickness except that the surface softened part was the measurement surface.
  • the structure of the surface softened part was substantially ferrite.
  • the porosity of the surface softened portion was calculated as an area ratio by identifying the pore portion of the polished surface and performing image processing.
  • the porosity of the surface softened part was observed with a scanning electron microscope at a magnification of 1000 times, and pores having a diameter of 0.01 ⁇ m or more were detected by image processing, and the total area ratio was calculated.
  • the Vickers hardness test is performed to define the surface softened part as described above.
  • the cross-sectional structure of the steel sheet is revealed by nital corrosion, and the total thickness of the steel sheet is calculated based on the structure image obtained by observation with an optical microscope or a scanning electron microscope.
  • the Vickers hardness is measured at an indentation load of 100 g at five stamping intervals at which the indentations do not interfere with each other in the direction perpendicular to the plate thickness direction. The average Vickers hardness at the center position.
  • a 5-point Vickers hardness test was performed in the same manner as described above at each position in the plate thickness direction, with the stamping interval set at a constant interval of 5% of the total thickness of the steel plate from the center in the plate thickness direction toward the surface.
  • the surface side from the position was defined as a surface softened portion.
  • the surface softening part could not be defined without obtaining a value of 0.6 times or less of the average Vickers hardness at 5% intervals, the first embossing was performed between the two engraving points on the surface.
  • the surface layer softened part was defined by stamping at an arbitrary fixed interval shorter than the interval.
  • the ratio of the thickness of the steel sheet for the surface layer softening part to the thickness of the steel sheet for the center part of the plate thickness is as shown in “Ratio (%) of the surface layer softening part (one side)” in Table 3.
  • the surface of the steel layer defined by the above method is mirror-polished and colloidally polished so that the center position of the surface softened portion becomes the measurement surface, and a field emission scanning electron microscope ( Using a FE-SEM) and OIM crystal orientation analyzer, crystal orientation data groups were obtained at intervals of 0.2 ⁇ m in the 100 ⁇ m square area of the measurement surface.
  • the obtained crystal orientation data group is analyzed by analysis software (TSL OIM Analysis), and the region where Kernel Average Misorientation (KAM value) between the first proximity measurement points is 1.0 ° or less is defined as the recrystallized structure.
  • TSL OIM Analysis analysis software
  • KAM value Kernel Average Misorientation
  • the average crystal grain size of the surface softened part was measured as follows. In the average grain size measurement test by the SEM / EBSD method, the crystal orientation data group obtained by the above-mentioned method is analyzed by analysis software (TSL OIM Analysis), and the grain boundary having an orientation difference of 15 ° or more The particle size when the region surrounded by 1 was defined as one crystal grain was calculated by the Area Fraction method, and the average particle size of the entire observation region was calculated.
  • JIS No. 5 test piece was taken with the long axis perpendicular to the rolling direction of the steel sheet, and the tensile strength (TS) and uniform elongation (uEL) were measured.
  • the tensile test was performed by the method prescribed in JIS Z 2241 using a JIS No. 5 tensile test piece.
  • the uniform elongation test was performed by a method defined in JIS-Z2201 using a JIS No. 5 test piece having a parallel part length of 50 mm.
  • the critical bending radius R the first test piece described in JIS Z2204 was prepared so that the direction perpendicular to the rolling direction was the longitudinal direction (the bending ridge line coincided with the rolling direction), and V bending was performed according to JIS Z2248. A test was conducted. For the sample having the surface softened portion only on one side, the sample was bent so that the surface having the surface softened portion was on the outer side. The angle between the die and the punch was 60 °, the tip radius of the punch was changed in units of 0.1 mm, a bending test was performed, and the radius of the tip of the punch that can be bent without cracking was determined as the limit bending radius R.
  • the chemical composition at the center position in the thickness direction of the surface softening part and the chemical composition at the center position in the thickness direction of the surface softening part defined above were measured. And the chemical composition of the base steel plate was almost the same.
  • the average Mn concentration was measured by EPMA at 20 Mn concentrations at intervals of 50 ⁇ m along the line in the direction perpendicular to the thickness direction in the thickness direction center of each of the thickness center portion and the surface softened portion of the cross section of the structure. It calculated
  • the average Mn concentration at the center of the plate thickness and the average Mn concentration at the surface layer softened portion were substantially the same as the Mn concentrations of the base steel plate and the surface softened portion steel plate shown in Table 1, respectively.
  • Evaluation results Table 3 shows the results of the above evaluations.
  • the average Mn concentration at the center of the plate thickness is more than 4.0% by mass and less than 10.0% by mass, and the surface softening portion has a thickness of 0.1% to 30% of the steel plate.
  • the average Mn concentration is 2.5% or less, the recrystallization rate of the surface layer softened portion is 90% or more, and has an excellent TS ⁇ uEL balance. It has excellent bendability.
  • the recrystallization rate of the surface softened portion is outside the range defined in the present invention, and excellent bendability is obtained. It is not done.
  • Specimen No. No. 14 has a low average Mn concentration at the center of the plate thickness, and an excellent TS ⁇ uEL balance is not obtained.
  • Specimen No. No. 32 has a high annealing temperature, and an excellent TS ⁇ uEL balance is not obtained.
  • Specimen No. No. 33 has a high average Mn concentration in the surface softened part, and excellent bendability is not obtained.
  • Specimen No. No. 38 has a small thickness of the surface softened portion and an excellent bendability is not obtained.
  • Specimen No. No. 39 has a large thickness of the surface softened portion and a low strength.
  • Specimen No. 46, 49, 50, and 52 are multilayer steel plates produced by cold spraying using hot-rolled sheets as substrates, but the recrystallization rate of the deposited layer (surface layer) is low, and excellent bendability is obtained. Absent.
  • Specimen No. Nos. 47, 48 and 51 are multilayer steel plates produced by cold spraying using cold-rolled plates as substrates, but pores are generated in the deposited layer (surface layer), and good bendability is not obtained. Moreover, the average crystal grain size of the recrystallized structure of the surface softened portion is large, and excellent bendability cannot be obtained.
  • a high-strength steel sheet having a high Mn content and excellent bending workability suitable as an automobile material can be obtained with high production efficiency, and the industrial advantage is great.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

自動車部品用素材として好適な、曲げ加工性を有する多量のMnを含有する高強度鋼板およびその製造方法を提供する。板厚中心部と、該板厚中心部の片面または両面に形成された表層軟化部とを含む曲げ性に優れた高強度鋼板であって、前記板厚中心部の平均Mn濃度が4.0質量%超10.0質量%未満であり、各表層軟化部が板厚の0.1%から30%の厚さを有し、前記表層軟化部のMn濃度が2.5質量%以下であり、前記表層軟化部の再結晶率が90%以上であることであることを特徴とする、曲げ性に優れた高強度鋼板。

Description

高強度鋼板およびその製造方法
 本発明は、曲げ性に優れた含有Mn濃度の高い高強度鋼板およびその製造方法に関するものである。
 自動車の車体および部品等の、軽量化と安全性との両方を達成するために、これらの素材である鋼板の高強度化が進められている。一般に、鋼板を高強度化すると、伸びが低下し、鋼板の成形性が損なわれる。したがって、自動車用の部材として高強度鋼板を使用するためには、相反する特性である強度と成形性との両方を高める必要がある。
 伸びを向上させるために、これまでに、残留オーステナイト(残留γ)の変態誘起塑性を利用した、いわゆるTRIP鋼が提案されている(例えば、特許文献1)。
 また、残留オーステナイト量が上記TRIP鋼よりも多く、延性が上記TRIP鋼を超える鋼板として、4.0%超のMnを添加した鋼が提案されている(例えば、非特許文献1)。上記鋼は多量のMnを含有するので、その使用部材に対する軽量化効果も顕著である。
 しかしながら、上記鋼は多量のMnを含有するために、凝固時のMn偏析が顕在化する。Mn偏析が顕著な組織では、Mn濃化域に硬質な組織が編在したバンド状組織を形成する。
 バンド状組織が形成すると、曲げ加工のような局所変形を伴う成形において、変形の局在化が起きやすく、これら変形集中部が割れの起点となるため、成形性が著しく劣化することが知られている。
 そのため、曲げ加工性が優れた多量のMnを含有する鋼を実現するためには、Mn偏析を低減することが重要となる。
 たとえば特許文献2では、実施例に示すように、マルテンサイト分率が20%以上含まれる鋼板を用いて、冷延、酸洗後の鋼板を一旦750℃以上の温度域に加熱し、バンド状組織に濃化しているMnを分散させ、バンド状組織の厚みを薄く、細かく分散することによって、成形性に優れる鋼板が開示されている。
 ところで、鋼板の曲げ加工においては、曲げ外周表層部の円周方向に大きな引張応力がかかり、一方で、曲げ内周表層部には大きな圧縮応力がかかるため、超高強度冷延鋼板の曲げ性には、表層部の状態が大きく影響する。
 そこで、表層のMn偏析を改善することで、曲げ加工時に鋼板表面に生じる引張応力、圧縮応力を緩和し、曲げ性を改善できるとの仮説を立てた。
 ここで、表層を改質する手段として、クラッド鋼板の利用が考えられる。
 特許文献3には、反りを低減しながら、母材鋼と、ステンレス鋼、NiおよびNi合金のうち一種からなるクラッド鋼板の製造方法が開示されている。
 また、表層を改質する手段として、コールドスプレー法の利用も提案されている。特許文献4には、Mnを含む基板部と、基板部の少なくとも一方側にコールドスプレー法により形成されたMn濃度が低い堆積層(表層)とを有する冷延鋼板が開示されている。
 発明者らは、上記仮説に基づき、表層の平均Mn濃度を中心層の平均Mn濃度より低減させたクラッド鋼板を作製し、クラッド鋼板を冷延、焼鈍した鋼板の曲げ性を調査した。
 また、特許文献4のいくつかの実施例に記載されるように、堆積層(表層)を形成する前に平均Mn濃度が高い基板部を熱間圧延し、熱間圧延した基板部上にコールドスプレー法により平均Mn濃度が低い堆積層(表層)を形成し、冷延、焼鈍した鋼板の曲げ性を調査した。また、特許文献4の他の実施例に記載されるように、基板部として平均Mn濃度が高い冷延板を用い、冷延板上にコールドスプレー法により平均Mn濃度が低い堆積層(表層)を形成し、焼鈍した鋼板の曲げ性も調査した。
 しかしながら、表層のMn偏析を緩和したにも関わらず、曲げ性が改善されないことが明らかとなった。
特開平5-59429号公報 特開2002-88447号公報 特開平1-192404号公報 特開2015-193892号公報
古川敬、松村理著、「単純な熱処理を施した低炭素鋼における残留オーステナイトの形成と機械的性質」("熱処理"、日本熱処理協会、平成9年、第37号巻、第4号)、p.204
 本発明は、上記した従来技術が抱える問題を有利に解決し、自動車部品用素材として好適な、曲げ加工性を有する多量のMnを含有する鋼板およびその製造方法を提供することを目的とする。
 本発明者らは、超高強度鋼板の曲げ性に関連する問題を解決するため、鋭意検討を行った。まず、本発明者らは表層の平均Mn濃度を中心層の平均Mn濃度より低減させたクラッド鋼板を用いたにもかかわらず、曲げ性が改善しない要因について調査した。
 その結果、多量のMnを含有する中心層の延性を高めるためには、冷延後の焼鈍温度を低温にする必要があるが、一方で、低温での焼鈍では、表層の再結晶が十分に行われず、硬質な未再結晶組織が割れの起点となることが、曲げ性劣化の要因であることを見出した。
 本発明者らはまた、コールドスプレー法により形成した堆積層(表層)の平均Mn濃度を基板部の平均Mn濃度より低減させた冷延鋼板を用いたにもかかわらず、曲げ性が改善しない要因についても調査した。
 その結果、堆積層(表層)を形成する前に平均Mn濃度が高い基板部を熱間圧延し、熱間圧延した基板部上にコールドスプレー法により平均Mn濃度が低い堆積層(表層)を形成し、冷延、焼鈍して鋼板を得る場合、堆積層(表層)の再結晶率が悪いために曲げ性が向上しないことが分かった。
 また、基板部として平均Mn濃度が高い冷延板を用い、冷延板上にコールドスプレー法により平均Mn濃度が低い堆積層(表層)を形成し、焼鈍して鋼板を得る場合、堆積層(表層)中に気孔が生じるために、曲げ性が向上しないことが分かった。さらには、堆積層(表層)の結晶粒径が粗大化するため、十分な曲げ性が確保できないことも明らかになった。
 そこで、本発明者らはさらに詳細な検討を行った。その結果、ある特徴を持つ鋼板を母材の両面に溶接し、特定の条件で熱間圧延および冷間圧延した冷延板を、特定の条件で焼鈍することで、中心層の延性を保持しつつ、最も曲げ性を改善できることがわかった。
 この効果のメカニズムは、複層鋼板の表層のMn濃度が低減してMn偏析が抑制されるとともに、かつ十分に再結晶したことにより、曲げ表面での変形の局所化が抑制されるとともに、表層延性の向上によって割れの発生が抑制されたためと考えられる。さらには、表層の再結晶粒径(フェライト粒径)が微細になるため、曲げ性がさらに向上したことも考えられる。
 このようにして得られた本発明の要旨は以下のとおりである。
(1)板厚中心部と、
 該板厚中心部の片面または両面に形成された表層軟化部とを含む高強度鋼板であって、
 前記板厚中心部の平均Mn濃度が4.0質量%超10.0質量%未満であり、
 各表層軟化部が板厚の0.1%から30%の厚さを有し、
 前記表層軟化部の平均Mn濃度が2.5質量%以下であり、
 前記表層軟化部の表層の再結晶率が90%以上であり、
 前記表層軟化部の再結晶組織の平均結晶粒径が0.1μm以上40μm以下である
 ことを特徴とする、
 高強度鋼板。
(2)前記板厚中心部が、質量%で、
  C :0.05%超0.80%未満、
  Si:0.001%以上3.50%未満、
  Mn:4.0%超10.0%未満、
  P :0.10%以下、
  S :0.010%以下、
  sol.Al:0.001%以上3.00%未満、および
  N :0.050%未満を含有し、
 残部が鉄および不可避不純物からなることを特徴とする、上記(1)に記載の高強度鋼板。
(3)前記板厚中心部が、更に、質量%で、
  Cr:0.01%以上2.00%以下、
  Mo:0.01%以上2.00%以下、
  Cu:0.01%以上2.00%以下、および
  Ni:0.01%以上2.00%以下
 よりなる群から選択される少なくとも一種を含有することを特徴とする、上記(2)に記載の高強度鋼板。
(4)前記板厚中心部が、更に、質量%で、
  Ti:0.005%以上0.30%以下、
  Nb:0.005%以上0.30%以下、
  V :0.005%以上0.30%以下、および
  W :0.005%以上0.30%以下
 よりなる群から選択される少なくとも一種を含有することを特徴とする、上記(2)又は(3)に記載の高強度鋼板。
(5)前記板厚中心部が、更に、質量%で、
  B :0.0001%以上0.010%以下、
  Ca:0.0001%以上0.010%以下、
  Mg:0.0001%以上0.010%以下、
  Zr:0.0001%以上0.010%以下、および
  REM:0.0001%以上0.010%以下
 よりなる群から選択される少なくとも一種を含有することを特徴とする、上記(2)~(4)のいずれか1項に記載の高強度鋼板。
(6)前記板厚中心部が、更に、質量%で、
  Sb:0.0005%以上0.050%以下、
  Sn:0.0005%以上0.050%以下、および
  Bi:0.0005%以上0.050%以下
 よりなる群から選択される少なくとも一種を含有することを特徴とする、上記(2)~(5)のいずれか1項に記載の高強度鋼板。
(7)前記表層軟化部のC量が前記板厚中心部のC量の0.9倍以下であることを特徴とする、上記(2)~(6)のいずれか1項に記載の高強度鋼板。
(8)前記表層軟化部のCr量およびMo量の総和が前記板厚中心部のCr量およびMo量の総和の0.9倍以下であることを特徴とする、上記(3)~(7)のいずれか1項に記載の高強度鋼板。
(9)前記表層軟化部のCu量およびNi量の総和が前記板厚中心部のCu量およびNi量の総和の0.9倍以下であることを特徴とする、上記(3)~(8)のいずれか1項に記載の高強度鋼板。
(10)前記表層軟化部のTi量およびNb量の総和が前記板厚中心部のTi量およびNb量の総和の0.9倍以下であることを特徴とする、上記(4)~(9)のいずれか1項に記載の高強度鋼板。
(11)前記表層軟化部のV量およびW量の総和が前記板厚中心部のV量およびW量の総和の0.9倍以下であることを特徴とする、上記(4)~(10)のいずれか1項に記載の高強度鋼板。
(12)前記表層軟化部のB量が前記板厚中心部のB量の0.9倍以下であることを特徴とする、上記(5)~(11)のいずれか1項に記載の高強度鋼板。
(13)前記表層軟化部の表面に、溶融亜鉛めっき層、合金化溶融亜鉛めっき層、または電気亜鉛めっき層を更に含むことを特徴とする、上記(1)~(12)のいずれか1項に記載の高強度鋼板。
(14)上記(1)~(13)のいずれか1項に記載の高強度鋼板を製造する方法であって、
 前記板厚中心部を構成する母材鋼板の片面または両面に前記表層軟化部を構成する表層軟化部用鋼板を積層して複層鋼板を形成すること、
 前記複層鋼板を加熱温度1080℃以上1300℃以下に加熱すること、及び仕上圧延開始温度800℃以上1000℃以下の条件下で熱間圧延すること、
 前記熱間圧延した複層鋼板を、前記仕上圧延の終了後2秒以内に500℃以上700℃以下まで冷却すること、
 前記500℃以上700℃以下の温度まで前記複層鋼板を冷却した後、3秒以上保持すること、
 前記500℃以上700℃以下の温度で3秒以上保持した複層鋼板を酸洗し、次いで20%以上70%以下の圧下率で冷間圧延すること、
 前記冷間圧延された複層鋼板を、600℃以上750℃以下の温度で5秒以上保持し、次いで冷却すること、
 を含むことを特徴とする、高強度鋼板の製造方法。
(15)前記500℃以上700℃以下の温度で3秒以上保持した複層鋼板を600℃以下の巻取り温度で巻き取ることを特徴とする、上記(14)に記載の高強度鋼板の製造方法。
(16)前記巻取りした複層鋼板を、前記冷間圧延前に、300℃以上550℃以下の温度で保持して焼き戻しを行うことを特徴とする、上記(15)に記載の高強度鋼板の製造方法。
 本発明によれば、優れた強度・延性バランスを有すると共に、優れた曲げ特性を有する含有Mn濃度の高い高強度鋼板を提供することができる。
 以下、本発明の実施形態について説明する。なお、本発明は以下の実施形態に限定されない。
 1.表層軟化部の構成
 本発明の鋼板の構成を上述のように規定した理由を説明する。以下の説明において、各元素の含有量を表す「%」は特に断りがない限り質量%を意味する。
 本発明の鋼板は、板厚の0.1%から30%の厚さを有する表層軟化部の平均Mn濃度が2.5質量%以下であり、かつ再結晶率が90%以上である必要がある。
 (表層軟化部の厚さが0.1%以上30%以下)
 表層軟化部の厚さが板厚の0.1%未満では十分な曲げ性の改善が得られず、30%より大きいと引張強さの劣化が顕著となる。表層軟化部の厚さは、より好ましくは板厚の20%以下、さらに好ましくは10%以下である。
 「表層軟化部」は、次のようにして決定される。まず、鋼板の断面組織をナイタール腐食により現出し、光学顕微鏡または走査型電子顕微鏡観察から得られた組織像に基づき、鋼板の全厚を算出する。鋼板の板厚方向の中心において、板厚方向に対して垂直方向に圧痕が互いに干渉しない打刻間隔で5点について押し込み荷重100g重でビッカース硬さを測定し、それらの平均値を板厚方向の中心位置での平均ビッカース硬さとする。次いで、板厚方向の中心から表面に向かって、打刻間隔を鋼板の全厚5%の一定間隔として、それぞれの板厚方向位置において上記同様に5点のビッカース硬さ試験を行う。ある板厚方向位置での平均ビッカース硬さが、板厚方向の中心位置での平均ビッカース硬さの0.6倍以下となったとき、その位置より表面側を表層軟化部と定義する。5%間隔の打刻で平均ビッカース硬さの0.6倍以下の値が得られずに表層軟化部を定義出来なかった場合には、表層の2打刻点間を、初めに打刻した間隔より短くした任意の一定間隔で打刻することにより、表層軟化部を定義する。
 (表層軟化部の平均Mn濃度が2.5質量%以下)
 Mnは、バンド状組織の形成を助長する元素である。表層軟化部の平均Mn濃度が2.5質量%超であると、表層軟化部にバンド状組織が形成してしまい、良好な曲げ性を得ることができない。そのため、表層軟化部の平均Mn濃度は2.5質量%以下とし、好ましくは2.0質量%以下、より好ましくは1.5質量%以下とする。Mn量は少ない程バンド状組織が形成し難くなるため、平均Mn濃度の下限は特に規定しない。なお、「表層軟化部の平均Mn濃度」は、組織断面の板厚方向中心における、板厚方向と垂直方法の線上に沿って、50μm間隔で20点のMn濃度をEPMA測定し、その平均値から求められる。
 (表層軟化部の再結晶率が90%以上)
 表層の再結晶が不十分で、未再結晶組織が存在すると、未再結晶組織は延性に乏しいため曲げ変形時に割れの起点となる。表層軟化部の再結晶率が90%未満であると、良好な曲げ性を得ることができないため、表層軟化部の再結晶率は90%以上とする。好ましくは、95%以上である。
 (表層軟化部の平均結晶粒径が0.1μm以上40μm以下)
 表層の再結晶組織(フェライト)の平均結晶粒径が粗大化すると、曲げ変形の際に変形の不均一化を助長するため、曲げ性劣化の要因となる。したがって、表層軟化部の平均結晶粒径は、40μm以下とする。表層軟化部の平均結晶粒径は、より好ましくは、30μm以下、さらに好ましくは、25μm以下である。一方、平均結晶粒径が0.1μm以下になると、表層軟化部の延性が著しく劣化するため、表層軟化部の平均結晶粒径は、0.1μm以上とする。表層軟化部の平均結晶粒径は、より好ましくは、0.5μm以上であり、さらに好ましくは1μm以上である。
 「再結晶率」は次のようにして決定される。SEM/EBSD法による再結晶率測定試験において、上述の方法によって定義した表層軟化部の、厚み方向における中央位置が測定面となるように、鋼板表面に鏡面研磨およびコロイダル研磨を施し、電界放出形走査電子顕微鏡(FE-SEM)およびOIM結晶方位解析装置を用いて、測定面100μm平方領域について0.2μm間隔で結晶方位データ群を取得した。得られた結晶方位データ群を解析ソフト(TSL OIM Analysis)で解析し、第一近接測定点間のKernel Average Misorientation(KAM値)が1.0°以下の領域を再結晶組織として定義し、その領域の全領域に対する面積率を算出する。
 表層軟化部の平均結晶粒径は次のようにして決定される。SEM/EBSD法による平均結晶粒径測定試験において、上述の方法で得られた結晶方位データ群を解析ソフト(TSL OIM Analysis)で解析し、結晶方位差15°以上の方位差を持つ結晶粒界に囲まれる領域を一つの結晶粒と定義したときの粒径をArea Fraction法で算出し、観察領域全体の平均粒径を算出する。
 2.板厚中心部の化学組成
 続いて、本発明の効果を得るために望ましい板厚中心部(中心層)の化学組成について述べる。なお、元素の含有量に関する「%」は、特に断りがない限り「質量%」を意味する。
 (C:0.05%超0.80%未満)
 Cは、鋼の強度を高め、残留オーステナイトを確保するために、極めて重要な元素である。十分な強度を保持しながら、残留オーステナイト量を得るためには、0.05%超以上のC含有量が必要となる。一方、Cを過剰に含有すると鋼板の溶接性を損なうので、C含有量の上限を0.80%未満とする。Cの含有量は、0.60%以下の範囲であることが好ましく、0.50%以下の範囲であることがより好ましい。
 (Si:0.001%以上3.50%未満)
 Siは、焼き戻しマルテンサイトを強化し、組織を均一化し、加工性を改善するのに有効な元素である。また、Siは、セメンタイトの析出を抑制し、オーステナイトの残留を促進する作用も有する。上記効果を得るために、0.001%以上のSi含有量が必要となる。一方、Siを過剰に含有すると鋼板の低温靭性を損なうので、Si含有量の上限値を3.50%未満とする。Siの下限値は好ましくは0.01%、より好ましくは0.30%、さらに好ましくは0.50%である。Si含有量の下限値を上記範囲にすることによって、鋼板の均一伸び特性をさらに向上することができる。Si含有量の上限値は、好ましくは3.00%、より好ましくは2.50%である。
 (Mn:4.00%超10.0%未満)
 Mnは、オーステナイトを安定化させ、焼入れ性を高める元素である。また、本発明の鋼板においては、Mnをオーステナイト中に分配させ、よりオーステナイトを安定化させる。室温でオーステナイトを安定化させるためには、4.00%超のMnが必要である。一方、鋼板がMnを過剰に含有すると低温靭性を損なうので、Mn含有量の上限を10.0%未満とする。Mn含有量の下限値は、好ましくは4.30%、より好ましくは4.80%である。Mn含有量の上限値は、好ましくは8.00%、より好ましくは7.50%である。Mn含有量の下限値および上限値を上記範囲にすることによって、さらに延性を安定して得ることができる。なお、「板厚中心部の平均Mn濃度」は、組織断面の板厚中心部の板厚方向中心における、板厚方向と垂直方法の線上に沿って、50μm間隔で20点のMn濃度をEPMA測定し、その平均値から求められる。
 (sol.Al:0.001%以上3.00%未満)
 Alは、脱酸剤であり、0.001%以上含有させる必要がある。また、Alは、焼鈍時の二相温度域を広げるため、材質の安定性を高める作用も有する。Alの含有量が多いほどその効果は大きくなるが、Alを過剰に含有させると、表面性状、塗装性、および溶接性などの劣化を招くので、sol.Alの上限を3.00%未満とした。sol.Al含有量の下限値は、好ましくは0.005%、より好ましくは0.01%、さらに好ましくは0.02%である。sol.Al含有量の上限値は、好ましくは2.50%、より好ましくは1.80%である。sol.Al含有量の下限値および上限値を上記範囲にすることによって、脱酸効果および材質安定向上効果と、表面性状、塗装性、および溶接性とのバランスがより良好になる。
 (P:0.10%以下)
 Pは不純物であり、鋼板がPを過剰に含有すると靭性や溶接性を損なう。したがって、P含有量の上限を0.10%以下とする。P含有量の上限値は、好ましくは0.050%、より好ましくは0.030%、さらに好ましくは0.020%である。本実施形態に係る鋼板はPを必要としないので、P含有量の下限値は0.000%である。P含有量の下限値は0.000%超または0.001%でもよいが、P含有量は少ないほど好ましい。
 (S:0.010%以下)
 Sは不純物であり、鋼板がSを過剰に含有すると、熱間圧延によって伸張したMnSが生成し、曲げ性および穴広げ性などの成形性の劣化を招く。したがって、S含有量の上限を0.010%以下とする。S含有量の上限値は、好ましくは0.007%、より好ましくは0.003%である。本実施形態に係る鋼板はSを必要としないので、S含有量の下限値は0.000%である。S含有量の下限値を0.000%超または0.0001%としてもよいが、S含有量は少ないほど好ましい。
 (N:0.050%未満)
 Nは不純物であり、鋼板が0.050%以上のNを含有すると靭性の劣化を招く。したがって、N含有量の上限を0.050%未満とする。N含有量の上限値は、好ましくは0.010%、より好ましくは0.006%である。本実施形態に係る鋼板はNを必要としないので、N含有量の下限値は0.000%である。N含有量の下限値を0.000%超または0.0003%としてもよいが、N含有量は少ないほど好ましい。
 (Cr:0.01%以上2.00%以下、Mo:0.01%以上2.00%以下、Cu:0.01%以上2.00%以下、およびNi:0.01%以上2.00%以下)
 Cr、Mo、Cu、およびNiはそれぞれ、本実施形態に係る鋼板に必須の元素ではない。しかしながら、Cr、Mo、Cu、およびNiは、鋼板の強度を向上させる元素であるので、含有されてもよい。鋼板の強度向上効果を得るために、鋼板は、Cr、Mo、Cu、およびNiからなる群から選択された1種又は2種以上の元素それぞれを0.01%以上含有してもよい。しかしながら、鋼板がこれらの元素を過剰に含有させると、熱延時の表面傷が生成しやすくなり、さらには、熱延鋼板の強度が高くなりすぎて、冷間圧延性が低下する場合がある。したがって、Cr、Mo、Cu、およびNiからなる群から選択された1種又は2種以上の元素それぞれの含有量の上限値を2.00%とする。
 (Ti:0.005%以上0.30%以下、Nb:0.005%以上0.30%以下、V:0.005%以上0.30%以下、およびW:0.005%以上0.30%以下)
 Ti、Nb、V、およびWは、本実施形態に係る鋼板に必須の元素ではない。しかし、Ti、Nb、VおよびWは、微細な炭化物、窒化物または炭窒化物を生成する元素であるので、鋼板の強度向上に有効である。したがって、鋼板は、Ti、Nb、V、およびWからなる群から選択される1種または2種以上の元素を含有してもよい。鋼板の強度向上効果を得るためには、Ti、Nb、VおよびWからなる群から選択される1種または2種以上の元素それぞれの含有量の下限値を0.005%とすることが好ましい。一方で、これらの元素を過剰に含有させると、熱延鋼板の強度が上昇しすぎて、冷間圧延性が低下する場合がある。したがって、Ti、Nb、VおよびWからなる群から選択される1種または2種以上の元素それぞれの含有量の上限値を0.30%とする。
 (B:0.0001%以上0.010%以下、Ca:0.0001%以上0.010%以下、Mg:0.0001%以上0.010%以下、Zr:0.0001%以上0.010%以下、およびREM:0.0001%以上0.010%以下)
 B、Ca、Mg、Zr、およびREMは、必須の元素ではない。しかしながら、B、Ca、Mg、Zr、およびREMは、鋼板の局部延性および穴広げ性を向上させる。この効果を得るためには、B、Ca、Mg、Zr、およびREMからなる群から選択される1種または2種以上の元素それぞれの下限値を好ましくは0.0001%、より好ましくは0.001%とする。しかし、過剰量のこれら元素は、鋼板の加工性を劣化させるので、これら元素それぞれの含有量の上限を0.010%とし、B、Ca、Mg、Zr、およびREMからなる群から選択される1種または2種以上の元素の含有量の合計を0.030%以下とすることが好ましい。
 (Sb:0.0005%以上0.050%以下、Sn:0.0005%以上0.050%以下、およびBi:0.0005%以上0.050%以下)
 Sb、Sn、およびBiは、必須の元素ではない。しかしながら、Sb、Sn、およびBiは、鋼板中のMn、Si、および/又はAl等の易酸化性元素が、鋼板表面に拡散されて、酸化物を形成することを抑え、鋼板の表面性状やめっき性を高める。この効果を得るために、Sb、Sn、およびBiからなる群から選択される1種又は2種以上の元素それぞれの含有量の下限値を好ましくは0.0005%、より好ましくは0.001%とする。一方、これら元素それぞれの含有量が0.050%を超えると、その効果が飽和するので、これら元素それぞれの含有量の上限値を0.050%とした。
 3.表層軟化部の化学組成
 本発明における鋼板は、Mn以外の元素についても、表層軟化部と板厚中心部で化学組成が異なる場合がある。このような場合、表層軟化部における好ましい化学組成は以下の通りである。
 (C:板厚中心部のC量の0.9倍以下)
 Cは、鋼板の強度を高めるものであり、高強度鋼板の強度を高めるために添加される。表層軟化部のC量が板厚中心部のC量の0.9倍以下が好ましい。表層軟化部の硬さを板厚中心部の硬さより低くするためである。0.9倍より大きいと、優れた曲げ性が得られない場合がある。より好ましくは、表層軟化部のC量は板厚中心部のC量の0.7倍以下、さらにより好ましくは0.5倍以下、最も好ましくは0.3倍以下である。板厚中心部の好ましいCの含有量は0.80%未満であるため、表層軟化部の好ましいCの含有量は0.72%未満となる。好ましくは0.5%未満、さらに好ましくは0.3%未満、最も好ましくは0.1%未満である。C量の下限は特に規定しない。工業用の極低C鋼を用いる場合、0.001%程度が実質的な下限であるが、固溶C量という観点からは、TiやNbなどを用いて固溶Cを完全に排除した、Interstitial Free鋼を用いてもよい。
 (Si:0.001%以上3.50%未満)
 Siは、フェライト安定化元素であり、Ac3変態点を増加させることから、広い焼鈍温度にて多量のフェライトを形成させることが可能であり、組織制御性向上の観点から添加される。こうした効果を得るには、Si量を0.001%以上にする必要がある。しかし、3.50%以上の添加は鋼板の表面性状を劣化させるため、3.50%未満とする。
 (P:0.10%以下)
 Pは溶接部を脆化させる。0.10%を超えると溶接部の脆化が顕著になるため、その適正範囲を0.10%以下に限定した。Pの含有量の下限は規定しないが、0.001%未満とすることは、経済的に不利である。
 (S:0.010%以下)
 Sは、溶接性ならびに鋳造時および熱延時の製造性に悪影響を及ぼす。このことから、その上限値を0.010%以下とした。Sの含有量の下限は規定しないが、0.0001%未満とすることは、経済的に不利である。
 (sol.Al:0.001%以上3.00%未満)
 Alは、脱酸剤として作用し、脱酸工程で添加することが好ましい。こうした効果を得るには、sol.Al含有量を0.001%以上にする必要がある。一方、sol.Al含有量が3.00%以上であると、連続鋳造時のスラブ割れの危険性が高まるため、3.00%未満とする。
 (N:0.050%以下)
 Nは、粗大な窒化物を形成し、曲げ性を劣化させることから、添加量を抑える必要がある。これは、Nが0.050%を超えると、この傾向が顕著となることから、N含有量の範囲を0.050%以下とした。加えて、Nは、溶接時のブローホール発生の原因になることから少ない方が良い。Nの含有量の下限値は、特に定めることなく本発明の効果は発揮されるが、Nの含有量を0.0005%未満とすることは、製造コストの大幅な増加を招く。
 表層軟化部は好ましくは、質量%で、
  C :0.72%未満、
  Si:0.001%以上3.50%未満、
  Mn:2.5%以下
  P :0.10%以下、
  S :0.010%以下、
  sol.Al:0.001%以上3.00%未満、および
  N :0.050%未満を含有し、
 残部が鉄および不可避不純物からなる組成を有する。表層軟化部はさらに下記の成分を含み得る。
 (Cr:0.01%以上2.00%以下、Mo:0.01%以上2.00%以下、Cu:0.01%以上2.00%以下、およびNi:0.01%以上2.00%以下)
 Cr、Mo、Cu、およびNiは、鋼板の強度を向上させる元素であるので、含有されてもよい。鋼板は、Cr、Mo、Cu、およびNiからなる群から選択された1種又は2種以上の元素それぞれを0.01%以上含有してもよい。しかしながら、鋼板がこれらの元素を過剰に含有させると、鋼板の強度が高くなりすぎて、圧延時の表面傷が生成しやすくなる場合がある。したがって、Cr、Mo、Cu、およびNiからなる群から選択された1種又は2種以上の元素それぞれの含有量の上限値を2.00%とする。
 また、表層軟化部のCr量およびMo量の総和が板厚中心部のCr量およびMo量の総和の0.9倍以下とすることが好ましい。炭化物を安定化させるCr量とMo量の総和が、板厚中心部のCr量およびMo量の0.9倍よりも大きいと粗大炭化物が残存しやすく、表面性状の劣化の原因となる。より好ましくは、0.7倍以下、さらにより好ましくは0.5倍以下、最も好ましくは0.3倍以下である。
 また、表層軟化部のCu量およびNi量の総和が、板厚中心部のCu量およびNi量の総和の0.9倍以下とすることが好ましい。焼き入れ性を向上させるCu量、およびNi量の総和が板厚中心部のCu量およびNi量の0.9倍よりも大きいと、低温変態組織が生じやすく、曲げ性劣化の原因となる。より好ましくは0.7倍以下、さらにより好ましくは0.5倍以下、最も好ましくは0.3倍以下である。
 (Ti:0.005%以上0.30%以下、Nb:0.005%以上0.30%以下、V:0.005%以上0.30%以下、およびW:0.005%以上0.30%以下)
 Ti、Nb、V、およびWは、微細な炭化物、窒化物または炭窒化物を生成する元素であるので、鋼板の強度向上に有効である。したがって、鋼板は、Ti、Nb、V、およびWからなる群から選択される1種または2種以上の元素を含有してもよい。鋼板の強度向上効果を得るためには、Ti、Nb、V、およびWからなる群から選択される1種または2種以上の元素それぞれの含有量の下限値を0.005%とすることが好ましい。一方で、これらの元素を過剰に含有させると、熱延鋼板の強度が上昇しすぎて、冷間圧延時に割れる可能性がある。したがって、Ti、Nb、V、およびWからなる群から選択される1種または2種以上の元素それぞれの含有量の上限値を0.30%とする。
 また、表層軟化部のTi量およびNb量の総和が、板厚中心部のTi量およびNb量の総和の0.9倍以下とすることが好ましい。Ti量とNb量の総和が、板厚中心部のTi量およびNb量の0.9倍よりも大きいと表層が硬質化しやすく、曲げ性劣化の原因となる。より好ましくは、0.7倍以下、さらにより好ましくは0.5倍以下、最も好ましくは0.3倍以下である。
 また、表層軟化部のW量およびV量の総和が、板厚中心部のW量およびV量の総和の0.9倍以下とすることが好ましい。WとVは炭化物を形成しやすい元素であるため、W量とV量の総和が、板厚中心部のW量およびV量の0.9倍よりも大きいと、表層に粗大炭化物が形成し、曲げ性劣化の要因となる。より好ましくは、0.7倍以下、さらにより好ましくは0.5倍以下、最も好ましくは0.3倍以下である。
 (B:0.0001%以上0.010%以下、Ca:0.0001%以上0.010%以下、Mg:0.0001%以上0.010%以下、Zr:0.0001%以上0.010%以下、およびREM:0.0001%以上0.010%以下)
 B、Ca、Mg、Zr、およびREMは、鋼板の局部延性および穴広げ性を向上させる。この効果を得るためには、B、Ca、Mg、Zr、およびREMからなる群から選択される1種または2種以上の元素それぞれの下限値を好ましくは0.0001%、より好ましくは0.001%とする。一方、B、Ca、Mg、Zr、およびREM量が、板厚中心部の0.9倍より大きいと表層が硬質化しすぎて、表面性状を劣化させる場合がある。したがって、B、Ca、Mg、Zr、およびREMからなる群から選択される1種または2種以上の元素の上限値を0.009%、好ましくは、0.006%以下とする。
 また、表層軟化部のB量が、前記板厚中心部のB量の0.9倍以下とすることが好ましい。Bは低温変態相を形成しやすい元素であるため、板厚中心部のB量の0.9倍よりも大きいと表層が硬質になり、優れた曲げ性が得られない原因となる。より好ましくは0.7倍以下、さらにより好ましくは0.5倍以下、最も好ましくは0.3倍以下である。それぞれの下限値は規定しない。
 4.鋼板の組織
 本実施形態に係る鋼板の組織について説明する。
 板厚中心部の組織は、好ましくは、フェライト、マルテンサイトまたはベイナイト、及び残留オーステナイトからなる組織を有し、より好ましくは、フェライト、焼き戻しマルテンサイトまたはベイナイト、焼き入れままマルテンサイト、および残留オーステナイトからなる組織を有している。
 表層軟化部の組織は、好ましくは、実質的にフェライトからなる組織有している。
 表層軟化部は、気孔率が少なく、面積率で好ましくは1%以下、より好ましくは実質的に0%である。
 5.鋼板の機械特性
 本実施形態に係る鋼板の機械特性について説明する。
 本実施形態に係る鋼板の引張強度は、好ましくは780MPa以上、より好ましくは1180MPaである。これは、鋼板を自動車の素材として使用する際、高強度化によって板厚を減少させ、軽量化に寄与するためである。また、本実施形態に係る鋼板をプレス成形に供するためには、均一伸び(uEL)が優れることが望ましい。TS×uELは、好ましくは12000MPa・%以上、より好ましくは14000MPa・%以上である。
 また、曲げ性に関して、強度が780MPa以上1180MPa未満の鋼種ついては、
圧延方向に対して垂直な方向が、長手方向(曲げ稜線が圧延方向と一致)となるようにJIS Z2248に準じてV曲げ試験を行った際の、限界曲げ半径Rが1.0mm以下となることが好ましく、0.8mm以下となることがより好ましい。強度が1180MPa以上の鋼種については、上記V曲げ試験の限界曲げ半径が、2.0mm以下となることが好ましく、1.5mm以下となることがより好ましい。
 6.製造方法
 次に、本実施形態に係る鋼板の製造方法について説明する。以下の説明は、本発明の高強度鋼板を得るための製法の単なる例示を意図するものであって、本発明の高強度鋼板を、以下に説明するような2つの鋼板を積層した複層鋼板に限定することを意図するものではない。例えば、下記に記載の積層法に代えて、母材鋼板上にコールドスプレー法により表層軟化部を形成してもよい。
 本実施形態に係る鋼板は、上記の化学組成を有する板厚中心部を構成する母材鋼板の片面または両面に、平均Mn濃度2.5質量%以下、かつ上記表層軟化部用鋼板を積層して複層鋼板を形成し、その周囲を溶接した複層鋼板を、熱間圧延し、圧延後、即時冷却して高温で保持後、冷却した熱延鋼板を、酸洗した後、冷間圧延と焼鈍を施して製造する。
 (複層鋼板の形成:板厚中心部を構成する表面を脱脂した母材鋼板の片面または両面に、表層軟化部の化学組成を満足する鋼板を積層し、その周囲を溶接する。)
 上記の板厚中心部の化学組成を満足する母材鋼板に、表層軟化部の化学組成を満足する鋼板を表面に積層し、周囲を溶接することで複層鋼板を形成する。これら鋼板は、上記化学組成を満たしていれば、どのような製法で製造されたものでも良い。
 (複層鋼板の加熱温度:1080℃以上1300℃以下)
 熱間圧延前の加熱温度が1080℃未満では、熱間加工時の変形抵抗が高くなり、操業が困難になる。一方、加熱温度が1300℃超になると、スケールロスによって、歩留まりが低下する。したがって、加熱温度は1080℃以上1300℃以下とする。熱間圧延前に1080℃以上1300℃以下の温度域に保持する時間は特に限定されないが、穴広げ性を向上させるためには、30分以上とすることが好ましく、1時間以上とすることがさらに好ましい。また、過度のスケールロスを抑制するために、10時間以下とすることが好ましく、5時間以下とすることがさらに好ましい。なお、直送圧延または直接圧延を行う場合にあっては、上記温度範囲に保ちながら熱間圧延に供してもよい。本明細書において、温度は、鋼板表面の中央位置で測定される温度である。
 (仕上圧延開始温度:800℃以上1000℃以下)
 仕上圧延開始温度は800℃以上1000℃以下とすることが好ましい。仕上圧延開始温度を800℃以上とすることにより、圧延時の変形抵抗を小さくすることができる。一方、仕上圧延開始温度を1000℃以下にすることにより、粒界酸化による鋼板の表面性状の劣化を抑制することができる。
 (圧延後の冷却:2秒以内に500℃以上700℃以下まで冷却)
 仕上圧延の終了後2秒以内に、500℃以上700℃以下まで冷却する。これは、本発明において重要な条件であり、表層軟化部の旧γ粒を微細にし、冷却時に生成するフェライト粒を均一微細に生成させることで、後の焼鈍工程で、表層軟化部を十分に再結晶させることができる。
 仕上圧延の終了後から、500℃以上700℃以下に冷却するまでの時間が2秒を超えると、旧オーステナイト粒径が粗大になり、後の焼鈍工程において、表層軟化部が十分に再結晶しない。そのため、仕上圧延の終了後から、500℃以上700℃以下に冷却するまでの時間は2秒以内とする。好ましくは1.8秒以内、より好ましくは1.5秒以内である。冷却までの時間は短ければ短い程、旧γ粒径が細粒化し、再結晶しやすくなるため、下限は設けないが、製造工程の制約から0.1秒が実質的な下限となる。
 冷却速度は上記条件を満たせば、いずれの速度でも良いが、冷却速度が速い程、旧γ粒径の細粒化効果が得られやすい。そのため、冷却速度が20℃/s以上であることが好ましく、さらに好ましくは50℃/s以上である。
 圧延後の冷却停止温度が500℃未満であると、表層軟化部の一部が低温変態組織となる。フェライトと低温変態組織の複数の組織を有すると、冷延時に不均一に変形が導入されるため、均一に再結晶が起こらず、未再結晶組織が残存しやすくなる。冷却停止温度が700℃以上では表層軟化部のフェライト変態が遅延するため、後の冷間圧延工程で表層軟化部に十分なひずみを蓄積させることができない。したがって、冷却停止温度は500℃以上700℃以下とする。
 (500℃以上700℃以下の温度まで冷却後の保持時間:3秒以上)
 500℃以上700℃以下の温度での保持時間が3秒未満であると、表層軟化部のフェライトが十分に生成しない。好ましくは、保持時間は5秒以上であり、より好ましくは10秒以上である。
 (巻取り温度:600℃以下)
 好ましくは、600℃以下の巻取り温度で巻き取りを行う。巻取り温度を600℃以下として巻き取りを行うことにより、板厚中心部に低温変態相が形成しやすくなり、巻取り後の冷延工程で表層へのひずみ分配量が増加するため、表層軟化部が再結晶しやすく、且つ結晶粒径をより細粒化しやすくなる。また、巻取り温度を600℃以下とすることにより、巻取り後の酸洗において、スケールを除去することがより容易になる。巻取り温度は、より好ましくは500℃以下、さらに好ましくは400℃以下である。
 冷間圧延時の破断を抑制するために、室温まで冷却された後、300℃以上600℃以下で熱延板を焼き戻してもよい。
 (冷間圧延の圧下率:20%以上70%以下)
 熱延鋼板は、常法により酸洗を施された後、冷間圧延が行われる。冷間圧延の圧下率が20%未満であると、表層軟化部に十分なひずみが導入されず、後の焼鈍工程で、表層軟化部が十分に再結晶しない。一方、冷間圧延の圧下率が70%超であると、圧延中に鋼板が破断する場合があることから、冷間圧延の圧下率は20%以上70%以下とする。
 (冷間圧延後の焼鈍熱処理:圧延された複層鋼板を600℃以上750℃以下の温度で5秒以上保持後、室温まで冷却)
 冷間圧延された複層鋼板を、600℃以上750℃以下の温度に加熱して焼鈍を行う。加熱保持温度が600℃未満であると、表層軟化部が十分に再結晶しない上、板厚中心部のセメンタイトが十分に溶解せず、安定な残留γ分率が得られない。750℃超であると、板厚中心部にフェライトを生成させることが難しくなる。したがって、加熱保持温度は600℃以上750℃以下とする。
 保持時間が5秒未満であると、表層軟化部の未再結晶組織が十分に再結晶しない。未再結晶組織を完全に除去するには、焼鈍時間を10秒以上とすることが好ましく、より好ましくは15秒以上とする。生産性の観点からは、焼鈍時間を3600秒以下とすることが好ましい。
 上記加熱保持の後の冷却停止温度は、板厚中心部において、低温変態組織を生成させる為に、550℃以下であることが好ましく、より好ましくは300℃以下、最も好ましくは100℃以下である。
 上記冷却の後、低温変態組織の軟質化および残留オーステナイトの安定化の為に、300℃以上550℃以下の温度で焼き戻しても良い。
 鋼板の表面に溶融亜鉛めっきを施して溶融亜鉛めっき鋼板を製造する場合には、上記600℃以上750℃以下の温度での焼鈍後の冷却を430~500℃の温度範囲で停止し、次いで冷延鋼板を溶融亜鉛のめっき浴に浸漬して溶融亜鉛めっき処理を行う。めっき浴の条件は通常の範囲内とすればよい。めっき処理後は室温まで冷却すればよい。
 鋼板の表面に合金化溶融亜鉛めっきを施して、合金化溶融亜鉛めっき鋼板を製造する場合には、鋼板に溶融亜鉛めっき処理を施した後、鋼板を室温まで冷却する前に、鋼板に450~620℃の温度で溶融亜鉛めっきの合金化処理を行う。合金化処理条件は、通常の範囲内とすればよい。
 以上のように鋼板を製造することによって、本実施形態に係る鋼板を得ることができる。
 本発明の鋼板を、例を参照しながらより具体的に説明する。ただし、以下の例は本発明の鋼板の例であり、本発明の鋼板は以下の例の態様に限定されるものではない。
 1.評価用鋼板の製造
 表2に記載の複層鋼板の製造方法がクラッド法である試料は、下記の方法にしたがって作製した。表1に示す化学組成を持つ板厚20mmの連続鋳造スラブ(板厚中心部用鋼板)について、表面を研削して表面酸化物を除去した後、その片面または両面に、表1に示す化学組成を有する表層用鋼板(表層軟化部)をアーク溶接で積層した。これを表2に示す加熱温度、熱間圧延前の保持時間、仕上圧延開始温度、冷却完了時間、冷却停止温度、冷却後保持時間、及び巻取り温度で、加熱、加熱後保持、熱間圧延、冷却、冷却後保持、及びコイルに巻取りを行って積層熱延鋼板を得た。その後、常法により酸洗し、表2に示す焼戻し温度、冷間圧延率、焼鈍温度、及び焼鈍時間で、焼戻し、冷間圧延、及び焼鈍を行い、室温まで冷却した。
 表2に記載の複層鋼板の製造方法がコールドスプレー法である試料は、下記の方法にしたがって作製した。
 基板を熱延板とする場合には、表1に示す化学組成を持つ板厚20mmの連続鋳造スラブ(板厚中心部用鋼板)について、表2に示す加熱温度、熱間圧延前の保持時間、仕上圧延開始温度、冷却完了時間、冷却停止温度、冷却後保持時間、及び巻取り温度で、加熱、加熱後保持、熱間圧延、冷却、冷却後保持、及びコイルに巻取りを行って、熱延板を作製し、表面を研削して表面酸化物を除去した後、その片面または両面にコールドスプレー法で表層に堆積層(表層)を形成した鋼板を作製した。その後、表2に示す焼戻し温度、冷間圧延率、焼鈍温度、及び焼鈍時間で、焼戻し、冷間圧延、及び焼鈍を行い、室温まで冷却した。
 一方、基板を冷延板とする場合には、上記方法で作製した熱延板を、常法により酸洗し、表2に示す焼戻し温度及び冷間圧延率で焼戻し及び冷間圧延を行って冷延板を作製し、次いで、コールドスプレー法を用いて冷延板の少なくとも片面に堆積層(表層)を形成し、表2に示す焼鈍温度及び焼鈍時間で焼鈍を行い、室温まで冷却した。
 コールドスプレー法で使用した鉄基粒子は、表4に示す成分および粒径のものを用いた。コールドスプレー法に用いた粒子は、先行技術にしたがって、粉砕、篩いによる分級を繰返して、所定の粒子径となるように調整したものを使用した。さらに、作動ガスとして窒素ガスを用いた。ヒータで作動ガスを700℃に加熱し、粒子供給装置から鉄基粒子を供給して混合し、スプレーノズルで、基板に吹き付け、複層鋼板を得た。なお、作動ガス圧は3MPa一定とした。また、ノズルの走査速度は、機械制御で調整した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 一部の焼鈍冷延鋼板については、最終の焼鈍を行った後、焼鈍後の冷却を460℃で停止し、冷延鋼板を460℃の溶融亜鉛のめっき浴に2時間浸漬して、溶融亜鉛めっき処理を行った。めっき浴の条件は従来のものと同じである。後述する合金化処理を施さない場合、460℃の保持後に、平均冷却速度10℃/秒で室温まで冷却した。
 一部の焼鈍冷延鋼板については、溶融亜鉛めっき処理を行った後に、室温に冷却せずに、続いて合金化処理を施した。520℃まで加熱し、520℃で5秒間保持して合金化処理を行い、その後、平均冷却速度10℃/秒で室温まで冷却した。
 このようにして得られた焼鈍冷延鋼板を伸び率0.1%で調質圧延し、各種評価用鋼板を準備した。
 2.評価方法
 得られた焼鈍冷延鋼板について、板厚測定、組織観察、表層軟化部の気孔率測定、ビッカース硬さ試験、SEM/EBSD法による再結晶率測定試験、表層軟化部の平均結晶粒径測定、引張試験、均一伸び試験、およびV曲げ試験を実施した。
 板厚中心部の組織の観察方法は次のようにして行った。板厚中心部が測定面となるように鋼板表面に鏡面研磨およびコロイダル研磨を施し、電界放出形走査電子顕微鏡(FE-SEM)およびOIM結晶方位解析装置を用いて、測定面100μm平方領域を0.2μm間隔で結晶方位データ群を取得した。得られた結晶方位データ群を解析ソフト(TSL OIM Analysis)で解析し、組織を分類した。Phase-MAPにおいて、オーステナイト相と判別された領域を残留オーステナイトと判別した。Phase-MAPで、オーステナイト相以外の焼き戻しマルテンサイト、ベイナイト、焼き入れままマルテンサイト、及びフェライトを含むフェライト相と判別された領域の組織について、3000倍の倍率で観察した二次電子像に基づき、さらに次のように判別した。フェライト相において、粒内に下部組織を有するものの内、内部にセメンタイトを含む組織は焼き戻しマルテンサイトまたはベイナイトと判別した。フェライト相において、粒内に下部組織を有するものの内、内部にセメンタイトを含まない組織は焼き入れままマルテンサイトと判別した。フェライト相において、粒内に下部組織を含まない領域をフェライトと判別した。
 上記方法で組織観察を行い、板厚中心部の組織は、フェライト、焼き戻しマルテンサイトまたはベイナイト、焼き入れままマルテンサイト、および残留オーステナイトに分類された。
 表層軟化部の組織観察については、表層軟化部が測定面となるようにしたこと以外は、板厚中心部の組織観察と同じ方法で行った。表層軟化部の組織は、実質的にフェライトであった。
 表層軟化部の気孔率は、上記の研磨面の気孔部を同定し、画像処理で面積率として算出した。表層軟化部の気孔率は、走査電子顕微鏡で1000倍の倍率で観察し、画像処理により直径が0.01μm以上の気孔を検出して、その合計の面積率を算出した。
 ビッカース硬さ試験は、上述したとおり、表層軟化部を定義するために行う。まず、鋼板の断面組織をナイタール腐食により現出し、光学顕微鏡または走査型電子顕微鏡観察から得られた組織像に基づき、鋼板の全厚を算出する。鋼板の板厚方向の中心において、板厚方向に対して垂直方向に圧痕が互いに干渉しない打刻間隔で5点について押し込み荷重100g重でビッカース硬さを測定し、それらの平均値を板厚方向の中心位置での平均ビッカース硬さとした。次いで、板厚方向の中心から表面に向かって、打刻間隔を鋼板の全厚5%の一定間隔として、それぞれの板厚方向位置において上記同様に5点のビッカース硬さ試験を行った。ある板厚方向位置での平均ビッカース硬さが、板厚方向の中心位置での平均ビッカース硬さの0.6倍以下となったとき、その位置より表面側を表層軟化部と定義した。5%間隔の打刻で平均ビッカース硬さの0.6倍以下の値が得られずに表層軟化部を定義出来なかった場合には、表層の2打刻点間を、初めに打刻した間隔より短くした任意の一定間隔で打刻することにより、表層軟化部を定義した。板厚中心部用鋼板の板厚に対する表層軟化部用鋼板の厚さの割合は、表3の「表層軟化部(片側)の割合(%)」に示す通りである。
 SEM/EBSD法による再結晶率測定試験では、上述の方法によって定義した表層軟化部の中央位置が、測定面となるように鋼板表面に鏡面研磨およびコロイダル研磨を施し、電界放出形走査電子顕微鏡(FE-SEM)およびOIM結晶方位解析装置を用いて、測定面100μm平方領域を0.2μm間隔で結晶方位データ群を取得した。得られた結晶方位データ群を解析ソフト(TSL OIM Analysis)で解析し、第一近接測定点間のKernel Average Misorientation(KAM値)が1.0°以下の領域を再結晶組織として定義し、その領域の全領域に対する面積率を算出した。
 表層軟化部の平均結晶粒径は次のようにして測定した。SEM/EBSD法による平均結晶粒径測定試験において、上述の方法で得られた結晶方位データ群を解析ソフト(TSL OIM Analysis)で解析し、結晶方位差15°以上の方位差を持つ結晶粒界に囲まれる領域を一つの結晶粒と定義したときの粒径をArea Fraction法で算出し、観察領域全体の平均粒径を算出した。
 鋼板の圧延方向と直角方向に長軸をとってJIS5号5号試験片を採取し、引張強度(TS)及び均一伸び(uEL)を測定した。引張試験は、JIS5号引張試験片を用いたJIS Z 2241に規定される方法で行った。均一伸び試験は、平行部長さ50mmのJIS5号試験片を用いたJIS-Z2201に規定される方法で行った。
 限界曲げ半径Rは、圧延方向に対して垂直な方向が長手方向(曲げ稜線が圧延方向と一致)となるようにJIS Z2204に記載の1号試験片を作成し、JIS Z2248に準じてV曲げ試験を行った。表層軟化部を片面のみに持つサンプルに対しては、表層軟化部を持つ面が曲げ外側になるように曲げた。ダイとパンチの角度は60°とし、パンチの先端半径を0.1mm単位で変えて曲げ試験を行い、亀裂が発生せずに曲げることができるパンチ先端半径を限界曲げ半径Rとして求めた。強度が780MPa以上1180MPa未満の鋼種ついては、限界曲げ半径Rが1.0mm超のものを曲げ性不可(符号×)、1.0mm以下のものを曲げ性良(符号○)、0.8mm以下のものを曲げ性優(◎)とした。強度が1180MPa以上の鋼種については、限界曲げ半径Rが2.0mm超のものを曲げ性不可(符号×)、2.0mm以下のものを曲げ性良好(符号○)、1.5mm以下のものを曲げ性優(◎)として評価した。
 得られた鋼板に対し、上記で定義した表層軟化部の板厚方向の中央位置の化学組成と、板厚方向の中心位置の化学組成を実測したところ、それぞれ表1に示す表層軟化部用鋼板および母材鋼板の化学組成とほぼ同じであった。
 平均Mn濃度は、組織断面の板厚中心部および表層軟化部の各々の板厚方向中心における、板厚方向と垂直方法の線上に沿って、50μm間隔で20点のMn濃度をEPMA測定し、その平均値から求めた。その結果、板厚中心部の平均Mn濃度、および表層軟化部の平均Mn濃度は、それぞれ表1に示す母材鋼板、および表層軟化部用鋼板のMn濃度とほぼ同じであった。
 3.評価結果
 上記の評価の結果を表3に示す。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 表1~3において下線を付された数値は、その数値により示される含有量、条件、または機械特性が望ましい範囲外にあることを示している。
 表2及び3における実施例の鋼板は、板厚中心部の平均Mn濃度が4.0質量%超10.0質量%未満であり、表層軟化部が鋼板の0.1%から30%の厚さを有し、平均Mn濃度が2.5%以下であり、前記表層軟化部の再結晶率が90%以上であり、優れたTS×uELバランスを有するという、含有Mn濃度の高い鋼板の特徴を有しながらも、優れた曲げ性を有している。
 一方で、表2及び3における供試材No.2、3、6、16、18、22、24、46、49、50、及び52は、表層軟化部の再結晶率が、本発明で規定する範囲から外れており、優れた曲げ性を得られていない。
 供試材No.14は、板厚中心部の平均Mn濃度が低く、優れたTS×uELバランスが得られていない。
 供試材No.32は、焼鈍温度が高く、優れたTS×uELバランスが得られていない。
 供試材No.33は、表層軟化部の平均Mn濃度が高く、優れた曲げ性が得られていない。
 供試材No.38は、表層軟化部の厚さが小さく、優れた曲げ性が得られていない。
 供試材No.39は、表層軟化部の厚さが大きく、強度が低い。
 供試材No.46、49、50、及び52は、熱延板を基板として、コールドスプレー法によって作製した複層鋼板であるが、堆積層(表層)の再結晶率が低く、優れた曲げ性を得られていない。
 供試材No.47、48、及び51は、冷延板を基板として、コールドスプレー法によって作製した複層鋼板だが、堆積層(表層)に気孔が発生し、良好な曲げ性を得られていない。また、表層軟化部の再結晶組織の平均結晶粒径が大きく、優れた曲げ性を得られていない。
 本発明によれば、自動車用素材として好適な曲げ加工性に優れた高Mn含有量の高強度鋼板を、生産効率よく得ることができ、産業上の利点は大である。

Claims (16)

  1.  板厚中心部と、
     該板厚中心部の片面または両面に形成された表層軟化部とを含む高強度鋼板であって、
     前記板厚中心部の平均Mn濃度が4.0質量%超10.0質量%未満であり、
     各表層軟化部が板厚の0.1%から30%の厚さを有し、
     前記表層軟化部の平均Mn濃度が2.5質量%以下であり、
     前記表層軟化部の再結晶率が90%以上であり、
     前記表層軟化部の再結晶組織の平均結晶粒径が0.1μm以上40μm以下である
     ことを特徴とする、
     高強度鋼板。
  2.  前記板厚中心部が、質量%で、
      C :0.05%超0.80%未満、
      Si:0.001%以上3.50%未満、
      Mn:4.0%超10.0%未満、
      P :0.10%以下、
      S :0.010%以下、
      sol.Al:0.001%以上3.00%未満、および
      N :0.050%未満を含有し、
     残部が鉄および不可避不純物からなることを特徴とする、請求項1に記載の高強度鋼板。
  3.  前記板厚中心部が、更に、質量%で、
      Cr:0.01%以上2.00%以下、
      Mo:0.01%以上2.00%以下、
      Cu:0.01%以上2.00%以下、および
      Ni:0.01%以上2.00%以下
     よりなる群から選択される少なくとも一種を含有することを特徴とする、請求項2に記載の高強度鋼板。
  4.  前記板厚中心部が、更に、質量%で、
      Ti:0.005%以上0.30%以下、
      Nb:0.005%以上0.30%以下、
      V :0.005%以上0.30%以下、および
      W :0.005%以上0.30%以下
     よりなる群から選択される少なくとも一種を含有することを特徴とする、請求項2又は3に記載の高強度鋼板。
  5.  前記板厚中心部が、更に、質量%で、
      B :0.0001%以上0.010%以下、
      Ca:0.0001%以上0.010%以下、
      Mg:0.0001%以上0.010%以下、
      Zr:0.0001%以上0.010%以下、および
      REM:0.0001%以上0.010%以下
     よりなる群から選択される少なくとも一種を含有することを特徴とする、請求項2~4のいずれか1項に記載の高強度鋼板。
  6.  前記板厚中心部が、更に、質量%で、
      Sb:0.0005%以上0.050%以下、
      Sn:0.0005%以上0.050%以下、および
      Bi:0.0005%以上0.050%以下
     よりなる群から選択される少なくとも一種を含有することを特徴とする、請求項2~5のいずれか1項に記載の高強度鋼板。
  7.  前記表層軟化部のC量が前記板厚中心部のC量の0.9倍以下であることを特徴とする、請求項2~6のいずれか1項に記載の高強度鋼板。
  8.  前記表層軟化部のCr量およびMo量の総和が前記板厚中心部のCr量およびMo量の総和の0.9倍以下であることを特徴とする、請求項3~7のいずれか1項に記載の高強度鋼板。
  9.  前記表層軟化部のCu量およびNi量の総和が前記板厚中心部のCu量およびNi量の総和の0.9倍以下であることを特徴とする、請求項3~8のいずれか1項に記載の高強度鋼板。
  10.  前記表層軟化部のTi量およびNb量の総和が前記板厚中心部のTi量およびNb量の総和の0.9倍以下であることを特徴とする、請求項4~9のいずれか1項に記載の高強度鋼板。
  11.  前記表層軟化部のV量およびW量の総和が前記板厚中心部のV量およびW量の総和の0.9倍以下であることを特徴とする、請求項4~10のいずれか1項に記載の高強度鋼板。
  12.  前記表層軟化部のB量が前記板厚中心部のB量の0.9倍以下であることを特徴とする、請求項5~11のいずれか1項に記載の高強度鋼板。
  13.  前記表層軟化部の表面に、溶融亜鉛めっき層、合金化溶融亜鉛めっき層、または電気亜鉛めっき層を更に含むことを特徴とする、請求項1~12のいずれか1項に記載の高強度鋼板。
  14.  請求項1~13のいずれか1項に記載の高強度鋼板を製造する方法であって、
     前記板厚中心部を構成する母材鋼板の片面または両面に前記表層軟化部を構成する表層軟化部用鋼板を積層して複層鋼板を形成すること、
     前記複層鋼板を1080℃以上1300℃以下に加熱すること、及び仕上圧延開始温度800℃以上1000℃以下の条件下で熱間圧延すること、
     前記熱間圧延した複層鋼板を、前記仕上圧延の終了後2秒以内に500℃以上700℃以下まで冷却すること、
     前記500℃以上700℃以下の温度まで前記複層鋼板を冷却した後、3秒以上保持すること、
     前記500℃以上700℃以下の温度で3秒以上保持した複層鋼板を酸洗し、次いで20%以上70%以下の圧下率で冷間圧延すること、
     前記冷間圧延された複層鋼板を、600℃以上750℃以下の温度で5秒以上保持し、次いで冷却すること、
     を含むことを特徴とする、高強度鋼板の製造方法。
  15.  前記500℃以上700℃以下の温度で3秒以上保持した複層鋼板を600℃以下の巻取り温度で巻き取ることを特徴とする、請求項14に記載の高強度鋼板の製造方法。
  16.  前記巻取りした複層鋼板を、前記冷間圧延前に、300℃以上550℃以下の温度で保持して焼き戻しを行うことを特徴とする、請求項15に記載の高強度鋼板の製造方法。
PCT/JP2018/017311 2017-04-28 2018-04-27 高強度鋼板およびその製造方法 WO2018199328A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201880007440.6A CN110199045B (zh) 2017-04-28 2018-04-27 高强度钢板及其制造方法
KR1020197023211A KR102217100B1 (ko) 2017-04-28 2018-04-27 고강도 강판 및 그 제조 방법
US16/490,465 US20200071801A1 (en) 2017-04-28 2018-04-27 High strength steel sheet and method of producing same
JP2018544364A JP6477988B1 (ja) 2017-04-28 2018-04-27 高強度鋼板およびその製造方法
BR112019018215-2A BR112019018215A2 (pt) 2017-04-28 2018-04-27 Chapa de aço de alta resistência e método de produção da mesma
MX2019012110A MX2019012110A (es) 2017-04-28 2018-04-27 Lamina de acero de alta resistencia y metodo de produccion de la misma.
EP18789839.0A EP3617336A4 (en) 2017-04-28 2018-04-27 HIGH STRENGTH STEEL SHEET AND ITS MANUFACTURING PROCESS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017090031 2017-04-28
JP2017-090031 2017-04-28

Publications (1)

Publication Number Publication Date
WO2018199328A1 true WO2018199328A1 (ja) 2018-11-01

Family

ID=63920237

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/017311 WO2018199328A1 (ja) 2017-04-28 2018-04-27 高強度鋼板およびその製造方法

Country Status (9)

Country Link
US (1) US20200071801A1 (ja)
EP (1) EP3617336A4 (ja)
JP (1) JP6477988B1 (ja)
KR (1) KR102217100B1 (ja)
CN (1) CN110199045B (ja)
BR (1) BR112019018215A2 (ja)
MX (1) MX2019012110A (ja)
TW (1) TWI655299B (ja)
WO (1) WO2018199328A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022030639A1 (ja) * 2020-08-07 2022-02-10 日本製鉄株式会社 鋼板
WO2022030641A1 (ja) * 2020-08-07 2022-02-10 日本製鉄株式会社 鋼板

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102245227B1 (ko) * 2019-11-25 2021-04-28 주식회사 포스코 강도, 성형성 및 도금성이 우수한 클래드 강판 및 그 제조방법
CN112195402B (zh) * 2020-09-28 2022-08-05 首钢集团有限公司 一种析出强化型高强韧中锰钢板及其制备方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01192404A (ja) 1988-01-26 1989-08-02 Kobe Steel Ltd クラッド鋼板の製造方法
JPH0559429A (ja) 1991-09-03 1993-03-09 Nippon Steel Corp 加工性に優れた高強度複合組織冷延鋼板の製造方法
JPH06264180A (ja) * 1993-03-09 1994-09-20 Nippon Steel Corp 耐デント性と耐面歪性及び加工性に優れた冷延鋼板とその製造方法
JP2002088447A (ja) 1999-10-22 2002-03-27 Kawasaki Steel Corp 加工性およびめっき性に優れた高強度溶融亜鉛めっき鋼板ならびにその製造方法
JP2005273002A (ja) * 2004-02-27 2005-10-06 Jfe Steel Kk 曲げ性および伸びフランジ性に優れた超高強度冷延鋼板およびその製造方法
JP2008156734A (ja) * 2006-12-26 2008-07-10 Jfe Steel Kk 高強度溶融亜鉛めっき鋼板およびその製造方法
WO2011025042A1 (ja) * 2009-08-31 2011-03-03 新日本製鐵株式会社 高強度溶融亜鉛めっき鋼板及びその製造方法
JP2011179030A (ja) * 2010-02-26 2011-09-15 Jfe Steel Corp 曲げ性に優れた超高強度冷延鋼板
JP2013163827A (ja) * 2012-02-09 2013-08-22 Nippon Steel & Sumitomo Metal Corp 曲げ性に優れた高強度冷延鋼板、高強度亜鉛めっき鋼板及び高強度合金化溶融亜鉛めっき鋼板とその製造方法
WO2014181728A1 (ja) * 2013-05-08 2014-11-13 株式会社神戸製鋼所 引張強度が1180MPa以上の強度-曲げ性バランスに優れた溶融亜鉛めっき鋼板もしくは合金化溶融亜鉛めっき鋼板
JP2015193891A (ja) * 2014-03-31 2015-11-05 Jfeスチール株式会社 成形性に優れた高強度薄鋼板およびその製造方法
JP2015193892A (ja) 2014-03-31 2015-11-05 Jfeスチール株式会社 成形性に優れた高強度冷延薄鋼板およびその製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2857980B1 (fr) * 2003-07-22 2006-01-13 Usinor Procede de fabrication de toles d'acier austenitique fer-carbone-manganese, a haute resistance, excellente tenacite et aptitude a la mise en forme a froid, et toles ainsi produites
JP4317499B2 (ja) * 2003-10-03 2009-08-19 新日本製鐵株式会社 音響異方性が小さく溶接性に優れる引張強さ570MPa級以上の高張力鋼板およびその製造方法
JP4226626B2 (ja) * 2005-11-09 2009-02-18 新日本製鐵株式会社 音響異方性が小さく溶接性に優れる、板厚中心部も含めて降伏応力450MPa以上かつ引張強さ570MPa以上の高張力鋼板およびその製造方法
ES2709433T3 (es) * 2008-05-07 2019-04-16 Thyssenkrupp Steel Europe Ag Material compuesto con efecto de protección balística
CA2850195C (en) * 2011-09-30 2016-10-25 Nippon Steel & Sumitomo Metal Corporation High-strength hot-dip galvanized steel sheet excellent in impact resistance property and manufacturing method thereof, and high-strength alloyed hot-dip galvanized steel sheet and manufacturing method thereof
WO2014041802A1 (ja) * 2012-09-13 2014-03-20 Jfeスチール株式会社 熱延鋼板およびその製造方法
KR20140083781A (ko) * 2012-12-26 2014-07-04 주식회사 포스코 고강도 경량 라미네이트 강판 및 그 제조방법
WO2015001367A1 (en) * 2013-07-04 2015-01-08 Arcelormittal Investigación Y Desarrollo Sl Cold rolled steel sheet, method of manufacturing and vehicle
KR101569509B1 (ko) * 2014-12-24 2015-11-17 주식회사 포스코 프레스성형시 내파우더링성이 우수한 hpf 성형부재 및 이의 제조방법
JP6010144B2 (ja) * 2015-01-09 2016-10-19 株式会社神戸製鋼所 めっき性、加工性、および耐遅れ破壊特性に優れた高強度めっき鋼板、並びにその製造方法
CN110168125B (zh) * 2017-02-20 2021-11-26 日本制铁株式会社 高强度钢板

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01192404A (ja) 1988-01-26 1989-08-02 Kobe Steel Ltd クラッド鋼板の製造方法
JPH0559429A (ja) 1991-09-03 1993-03-09 Nippon Steel Corp 加工性に優れた高強度複合組織冷延鋼板の製造方法
JPH06264180A (ja) * 1993-03-09 1994-09-20 Nippon Steel Corp 耐デント性と耐面歪性及び加工性に優れた冷延鋼板とその製造方法
JP2002088447A (ja) 1999-10-22 2002-03-27 Kawasaki Steel Corp 加工性およびめっき性に優れた高強度溶融亜鉛めっき鋼板ならびにその製造方法
JP2005273002A (ja) * 2004-02-27 2005-10-06 Jfe Steel Kk 曲げ性および伸びフランジ性に優れた超高強度冷延鋼板およびその製造方法
JP2008156734A (ja) * 2006-12-26 2008-07-10 Jfe Steel Kk 高強度溶融亜鉛めっき鋼板およびその製造方法
WO2011025042A1 (ja) * 2009-08-31 2011-03-03 新日本製鐵株式会社 高強度溶融亜鉛めっき鋼板及びその製造方法
JP2011179030A (ja) * 2010-02-26 2011-09-15 Jfe Steel Corp 曲げ性に優れた超高強度冷延鋼板
JP2013163827A (ja) * 2012-02-09 2013-08-22 Nippon Steel & Sumitomo Metal Corp 曲げ性に優れた高強度冷延鋼板、高強度亜鉛めっき鋼板及び高強度合金化溶融亜鉛めっき鋼板とその製造方法
WO2014181728A1 (ja) * 2013-05-08 2014-11-13 株式会社神戸製鋼所 引張強度が1180MPa以上の強度-曲げ性バランスに優れた溶融亜鉛めっき鋼板もしくは合金化溶融亜鉛めっき鋼板
JP2015193891A (ja) * 2014-03-31 2015-11-05 Jfeスチール株式会社 成形性に優れた高強度薄鋼板およびその製造方法
JP2015193892A (ja) 2014-03-31 2015-11-05 Jfeスチール株式会社 成形性に優れた高強度冷延薄鋼板およびその製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FURUKAWA TAKASHIMATSUMURA OSAMU: "Formation of Retained Austenite and Mechanical Properties in Low-Carbon Steels Treated with Simple Heat Treatment'' (''Netsu Shori", THE JAPAN SOCIETY FOR HEAT TREATMENT, vol. 37, no. 4, 1997, pages 204
See also references of EP3617336A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022030639A1 (ja) * 2020-08-07 2022-02-10 日本製鉄株式会社 鋼板
WO2022030641A1 (ja) * 2020-08-07 2022-02-10 日本製鉄株式会社 鋼板
CN115461484A (zh) * 2020-08-07 2022-12-09 日本制铁株式会社 钢板
CN115461484B (zh) * 2020-08-07 2023-12-01 日本制铁株式会社 钢板
JP7425372B2 (ja) 2020-08-07 2024-01-31 日本製鉄株式会社 鋼板
JP7425373B2 (ja) 2020-08-07 2024-01-31 日本製鉄株式会社 鋼板

Also Published As

Publication number Publication date
EP3617336A4 (en) 2020-09-16
JPWO2018199328A1 (ja) 2019-06-27
BR112019018215A2 (pt) 2020-06-23
KR102217100B1 (ko) 2021-02-18
CN110199045A (zh) 2019-09-03
EP3617336A1 (en) 2020-03-04
KR20190105048A (ko) 2019-09-11
US20200071801A1 (en) 2020-03-05
TW201842207A (zh) 2018-12-01
TWI655299B (zh) 2019-04-01
MX2019012110A (es) 2019-11-28
JP6477988B1 (ja) 2019-03-06
CN110199045B (zh) 2021-12-24

Similar Documents

Publication Publication Date Title
JP6635236B1 (ja) 高強度冷延鋼板およびその製造方法
JP5943156B1 (ja) 高強度鋼板およびその製造方法、ならびに高強度亜鉛めっき鋼板の製造方法
JP5983895B2 (ja) 高強度鋼板およびその製造方法、ならびに高強度亜鉛めっき鋼板の製造方法
JP5943157B1 (ja) 高強度鋼板およびその製造方法、ならびに高強度亜鉛めっき鋼板の製造方法
JP4449795B2 (ja) 熱間プレス用熱延鋼板およびその製造方法ならびに熱間プレス成形部材の製造方法
JP5983896B2 (ja) 高強度鋼板およびその製造方法、ならびに高強度亜鉛めっき鋼板の製造方法
KR102345533B1 (ko) 용융 아연 도금 강판
JP5971434B2 (ja) 伸びフランジ性、伸びフランジ性の面内安定性および曲げ性に優れた高強度溶融亜鉛めっき鋼板ならびにその製造方法
EP2757169A1 (en) High-strength steel sheet having excellent workability and method for producing same
US11732341B2 (en) Metal coated steel sheet, manufacturing method of hot-dip galvanized steel sheet, and manufacturing method of alloyed galvannealed steel sheet
JP5967318B1 (ja) 高強度溶融亜鉛めっき鋼板およびその製造方法
JP6477988B1 (ja) 高強度鋼板およびその製造方法
KR102375340B1 (ko) 고강도 강판 및 그 제조 방법
KR20200123473A (ko) 고강도 강판 및 그 제조 방법
JP7120461B2 (ja) 鋼板
WO2017131054A1 (ja) 高強度亜鉛めっき鋼板、高強度部材及び高強度亜鉛めっき鋼板の製造方法
JPWO2019130713A1 (ja) 高強度鋼板およびその製造方法
JP7270042B2 (ja) 曲げ加工性に優れた高強度冷延鋼板及びその製造方法
JP5499984B2 (ja) 溶融めっき熱延鋼板およびその製造方法
KR20210118442A (ko) 고강도 강판 및 그 제조 방법
WO2020017607A1 (ja) 鋼板
JP7468815B1 (ja) 高強度めっき鋼板およびその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018544364

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18789839

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197023211

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019018215

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018789839

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018789839

Country of ref document: EP

Effective date: 20191128

ENP Entry into the national phase

Ref document number: 112019018215

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190902