WO2022030639A1 - 鋼板 - Google Patents
鋼板 Download PDFInfo
- Publication number
- WO2022030639A1 WO2022030639A1 PCT/JP2021/029436 JP2021029436W WO2022030639A1 WO 2022030639 A1 WO2022030639 A1 WO 2022030639A1 JP 2021029436 W JP2021029436 W JP 2021029436W WO 2022030639 A1 WO2022030639 A1 WO 2022030639A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- surface layer
- plate thickness
- layer portion
- less
- hardness
- Prior art date
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 158
- 239000010959 steel Substances 0.000 title claims abstract description 158
- 239000002344 surface layer Substances 0.000 claims abstract description 313
- 239000000203 mixture Substances 0.000 claims description 40
- 239000000126 substance Substances 0.000 claims description 39
- 239000012535 impurity Substances 0.000 claims description 7
- 229910052684 Cerium Inorganic materials 0.000 claims description 4
- 230000001186 cumulative effect Effects 0.000 abstract 2
- 239000000463 material Substances 0.000 description 43
- 229910052759 nickel Inorganic materials 0.000 description 28
- 229910052802 copper Inorganic materials 0.000 description 27
- 238000010008 shearing Methods 0.000 description 27
- 239000010410 layer Substances 0.000 description 26
- 238000000034 method Methods 0.000 description 23
- 229910052804 chromium Inorganic materials 0.000 description 20
- 229910052750 molybdenum Inorganic materials 0.000 description 20
- 229910052748 manganese Inorganic materials 0.000 description 18
- 238000005259 measurement Methods 0.000 description 16
- 230000008569 process Effects 0.000 description 16
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 15
- 230000000694 effects Effects 0.000 description 15
- 229910052739 hydrogen Inorganic materials 0.000 description 15
- 239000001257 hydrogen Substances 0.000 description 15
- 230000006872 improvement Effects 0.000 description 13
- 238000007747 plating Methods 0.000 description 12
- 238000005498 polishing Methods 0.000 description 12
- 238000004519 manufacturing process Methods 0.000 description 11
- 229910052758 niobium Inorganic materials 0.000 description 10
- 229910052720 vanadium Inorganic materials 0.000 description 10
- 239000010960 cold rolled steel Substances 0.000 description 9
- 238000005098 hot rolling Methods 0.000 description 9
- 238000005096 rolling process Methods 0.000 description 9
- 229910052719 titanium Inorganic materials 0.000 description 9
- 238000005520 cutting process Methods 0.000 description 8
- 238000007373 indentation Methods 0.000 description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 8
- 238000012545 processing Methods 0.000 description 8
- 238000007665 sagging Methods 0.000 description 8
- 238000005336 cracking Methods 0.000 description 7
- 229910003460 diamond Inorganic materials 0.000 description 6
- 239000010432 diamond Substances 0.000 description 6
- 230000000644 propagated effect Effects 0.000 description 6
- 239000006061 abrasive grain Substances 0.000 description 5
- 229910045601 alloy Inorganic materials 0.000 description 5
- 239000000956 alloy Substances 0.000 description 5
- 238000005452 bending Methods 0.000 description 5
- 230000010354 integration Effects 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 238000005554 pickling Methods 0.000 description 4
- 238000009864 tensile test Methods 0.000 description 4
- 238000003466 welding Methods 0.000 description 4
- 238000004804 winding Methods 0.000 description 4
- 238000005275 alloying Methods 0.000 description 3
- 229910052796 boron Inorganic materials 0.000 description 3
- 238000005304 joining Methods 0.000 description 3
- 238000010030 laminating Methods 0.000 description 3
- 150000001247 metal acetylides Chemical class 0.000 description 3
- -1 0.050% Chemical class 0.000 description 2
- 229910052785 arsenic Inorganic materials 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000009713 electroplating Methods 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 229910052746 lanthanum Inorganic materials 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 229910052761 rare earth metal Inorganic materials 0.000 description 2
- 150000002910 rare earth metals Chemical class 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 229910052727 yttrium Inorganic materials 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- 229910018134 Al-Mg Inorganic materials 0.000 description 1
- 229910018467 Al—Mg Inorganic materials 0.000 description 1
- 229910018464 Al—Mg—Si Inorganic materials 0.000 description 1
- 238000012935 Averaging Methods 0.000 description 1
- 229910007570 Zn-Al Inorganic materials 0.000 description 1
- 229910007567 Zn-Ni Inorganic materials 0.000 description 1
- 229910007614 Zn—Ni Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 238000000889 atomisation Methods 0.000 description 1
- 229910001563 bainite Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000005097 cold rolling Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000007730 finishing process Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 229910000734 martensite Inorganic materials 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 239000002436 steel type Substances 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B1/00—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
- B21B1/22—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B30—PRESSES
- B30B—PRESSES IN GENERAL
- B30B15/00—Details of, or accessories for, presses; Auxiliary measures in connection with pressing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B30—PRESSES
- B30B—PRESSES IN GENERAL
- B30B3/00—Presses characterised by the use of rotary pressing members, e.g. rollers, rings, discs
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/01—Layered products comprising a layer of metal all layers being exclusively metallic
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/01—Layered products comprising a layer of metal all layers being exclusively metallic
- B32B15/011—Layered products comprising a layer of metal all layers being exclusively metallic all layers being formed of iron alloys or steels
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/005—Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/008—Ferrous alloys, e.g. steel alloys containing tin
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/08—Ferrous alloys, e.g. steel alloys containing nickel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/10—Ferrous alloys, e.g. steel alloys containing cobalt
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/14—Ferrous alloys, e.g. steel alloys containing titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/16—Ferrous alloys, e.g. steel alloys containing copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/22—Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/32—Ferrous alloys, e.g. steel alloys containing chromium with boron
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/34—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/38—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/42—Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/46—Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/48—Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/50—Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/58—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/60—Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/04—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
- C23C2/06—Zinc or cadmium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/04—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
- C23C2/12—Aluminium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/26—After-treatment
- C23C2/28—Thermal after-treatment, e.g. treatment in oil bath
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/34—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
- C23C2/36—Elongated material
- C23C2/40—Plates; Strips
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D28/00—Shaping by press-cutting; Perforating
- B21D28/02—Punching blanks or articles with or without obtaining scrap; Notching
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/01—Layered products comprising a layer of metal all layers being exclusively metallic
- B32B15/013—Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/50—Properties of the layers or laminate having particular mechanical properties
- B32B2307/536—Hardness
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/50—Properties of the layers or laminate having particular mechanical properties
- B32B2307/54—Yield strength; Tensile strength
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2311/00—Metals, their alloys or their compounds
- B32B2311/30—Iron, e.g. steel
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2251/00—Treating composite or clad material
- C21D2251/02—Clad material
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/005—Heat treatment of ferrous alloys containing Mn
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0205—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
Definitions
- the present invention relates to a steel sheet.
- Steel sheets are generally assembled into various structures through processing processes such as cutting and bending, joining processes such as welding, and finishing processes such as painting, and are used for each purpose.
- processing processes such as cutting and bending, joining processes such as welding, and finishing processes such as painting, and are used for each purpose.
- various stresses may be applied to the steel sheet or the material of the steel sheet may change depending on the processing operation, which may cause cracking or embrittlement. Therefore, it is generally required that the steel sheet has good properties for the specific machining operation to be applied.
- Patent Document 1 is a high-strength steel plate having a tensile strength of 800 MPa or more including a central portion of the plate thickness and surface softened portions arranged on one side or both sides of the central portion of the plate thickness, and each surface softened portion exceeds 10 ⁇ m. It has a thickness of 30% or less of the plate thickness, the average Vickers hardness of the surface softened portion is 0.60 times or less of the average Vickers hardness at the plate thickness 1/2 position, and the nano of the surface softened portion. High-strength steel plates characterized in that the standard deviation of hardness is 0.8 or less are described. Further, Patent Document 1 teaches that bending workability is improved by providing a surface softening portion on one side or both sides of a steel sheet and suppressing micro-hardness variation in the surface softening portion.
- the processing of steel sheets includes cutting processing and the like in addition to bending processing as described in Patent Document 1, and shearing processing is typically known as a specific example of the cutting processing.
- shearing processing is typically known as a specific example of the cutting processing.
- a steel sheet which is a work material
- a shearing force is applied to the steel sheet to cut the steel sheet.
- tensile residual stress may occur on the sheared end face of the steel sheet, and if the tensile residual stress becomes large, there is a risk of hydrogen embrittlement cracking due to hydrogen that has entered the steel from the external environment. There is a problem of increasing.
- the present invention has been made in view of such circumstances, and an object of the present invention is to provide a steel sheet capable of reducing the tensile residual stress generated on the sheared end face during shearing by a novel configuration. It is in.
- the present inventors have studied the composition of a steel sheet capable of reducing the tensile residual stress generated on the sheared end face during shearing.
- the present inventors provide surface layer portions having a hardness different from that of the center of the thickness of the steel sheet on both sides of the steel sheet, and further provide a difference in hardness on both sides of the steel sheet, thereby forming on the sheared end face.
- We have found that the tensile residual stress can be reduced and completed the present invention.
- the steel sheets that have achieved the above objectives are as follows.
- [1] Includes a plate thickness center portion and a first surface layer portion and a second surface layer portion arranged on both sides of the plate thickness center portion, respectively.
- the first surface layer portion and the second surface layer portion each independently have a thickness of more than 10 ⁇ m to 30% or less of the plate thickness.
- the first surface layer portion and the second surface layer portion have an average Vickers hardness different from the average Vickers hardness at the plate thickness 1/2 position.
- the first hardness integrated value in the region from the surface on the first surface layer side to 30% of the plate thickness is the second hardness in the region from the surface on the second surface layer side to 30% of the plate thickness.
- the central portion of the plate thickness is by mass%.
- the chemical composition is mass%. Cr: 0.001 to 3.000%, Mo: 0.001 to 1.000%, B: 0.0001 to 0.0100%, Ti: 0.001 to 0.500%, Nb: 0.001 to 0.500%, V: 0.001 to 0.500%, Cu: 0.001 to 0.500%, Ni: 0.001 to 0.500%, O: 0.0001 to 0.0200%, W: 0.001 to 0.100%, Ta: 0.001 to 0.100%, Co: 0.001 to 0.500%, Sn: 0.001 to 0.050%, Sb: 0.001 to 0.050%, As: 0.001 to 0.050%, Mg: 0.0001-0.0500%, Ca: 0.001 to 0.050%, Y: 0.001 to 0.050%, Zr: 0.001 to 0.050%, La: 0.001 to 0.050%, and Ce: 0.001 to 0.050%
- the steel sheet according to the above [8] which contains at least one selected from the group consisting of.
- FIG. 2A It is a schematic diagram for demonstrating an example of the formation mechanism of a sheared end face at the time of shearing a steel sheet. It is a schematic diagram for explaining the new findings obtained by the present inventors, and when (A) develops a crack from the first blade, (B) is from both the first blade and the second blade. When the crack is advanced, (C) shows the case where the crack is developed from the second blade. It is a schematic enlarged view which shows an example of the sheared end face part of the processed material corresponding to FIG. 2A.
- the steel plate according to the embodiment of the present invention includes a plate thickness center portion and a first surface layer portion and a second surface layer portion arranged on both sides of the plate thickness center portion, respectively.
- the first surface layer portion and the second surface layer portion each independently have a thickness of more than 10 ⁇ m to 30% or less of the plate thickness.
- the first surface layer portion and the second surface layer portion have an average Vickers hardness different from the average Vickers hardness at the plate thickness 1/2 position.
- the first hardness integrated value in the region from the surface on the first surface layer side to 30% of the plate thickness is the second hardness in the region from the surface on the second surface layer side to 30% of the plate thickness. It is characterized by being 1.05 times or more of the integrated value.
- FIG. 1 is a schematic diagram for explaining an example of a mechanism for forming a sheared end face when a steel sheet is sheared.
- the cutting edge of the first blade 21 for example, a punch
- a sagging 1a is formed on the first surface 10a side in the process until the cutting edge of the first blade 21 bites into the steel plate 5, and then a shearing surface 1e (see FIG. 3) in the process where the cutting edge of the first blade 21 bites into the steel plate 5. Is formed. After the sagging 1a and the sheared surface 1e are formed, as shown in FIG.
- a first crack 1dx is generated from the first blade 21 side toward the second blade 22 (for example, die) side. ..
- the cutting edge of the second blade 22 bites into the second surface 10b of the steel plate 5, so that the second blade 22 moves from the second blade 22 side toward the first blade 21 side.
- a crack of 1 dy occurs.
- each of the first crack 1dx and the second crack 1dy propagates and joins each other to form the fracture surface 1b.
- burrs 1c are generally formed at the corners of the sheared end surface 1 of the processed material 10 on the side of the second blade 22.
- FIG. 2 is a schematic diagram for explaining the new findings obtained by the present inventors.
- “ ⁇ ” means that the tensile residual stress is small
- “ ⁇ ” means that the tensile residual stress is medium
- “ ⁇ ” means that the tensile residual stress is large.
- FIGS. 2A to 2C a case where a part 11 of the steel plate 5 is punched by the first blade 21 and the other part 12 of the steel plate 5 is punched by the second blade 22 will be described.
- FIG. 2A when the crack grows preferentially from the first blade 21 side, the tensile residual stress at the shear end face of the part 11 increases, while the tensile residual stress at the other part 12 increases.
- the tensile residual stress on the sheared end face of the is reduced. That is, while a part 11 is used as scrap 15, the other part 12 can be suitably used as a product (processed material 10). Further, as shown in FIG. 2B, when cracks grow equally from both the first blade 21 side and the second blade 22 side, they are equivalent to the shear end faces of both the partial 11 and the other portion 12. Tensile residual stress can occur. That is, the variation in the characteristics between the part 11 and the other part 12 can be suppressed. Therefore, it can be said that it is suitable when both the part 11 and the other part 12 are adopted as products. Further, as shown in FIG.
- FIG. 3 is a schematic enlarged view showing an example of a sheared end face 1 portion of the processed material 10 (other portion 12) corresponding to FIG. 2 (A).
- the shear end surface 1 is formed with a sagging 1a, a fracture surface 1b, a burr 1c and a shear surface 1e, and the fracture surface 1b includes a first portion 1bx and a second portion 1by.
- the first portion 1bx is formed by the first crack 1dx extending from the sagging 1a side to the burr 1c side
- the second portion 1by is formed by the second crack 1dy extending from the burr 1c side to the sagging 1a side. Will be done.
- the area ratio of the first portion 1bx in the fracture surface 1b is the area ratio of the second portion 1by in the fracture surface 1b in relation to the preferential crack growth from the first blade 21 side. Is bigger than.
- the tensile residual stress generated in the fracture surface 1b of the shear end surface 1 changes depending on the growth direction and length of the cracks 1dx and 1dy forming the fracture surface 1b.
- the longer the crack 1dx extending from the sagging 1a side the smaller the tensile residual stress of the fracture surface 1b of the work material 10, and the larger the tensile residual stress of the fracture surface of the scrap 15.
- the area ratio of the portion derived from the first crack 1dx extending from the sagging 1a side is the portion derived from the second crack 1dy extending from the burr 1c side.
- the area ratio of the part derived from the first crack 1dx extending from the sagging 1a side is smaller than the area ratio of the part derived from the second crack 1dy extending from the burr 1c side. Also, the tensile residual stress of the fracture surface 1b can be relatively reduced.
- the present inventors preferentially propagate cracks from the first surface 10a of the steel sheet 5 corresponding to the first blade 21 (generally punch) side. Further, the configuration of the steel plate 5 capable of reducing the tensile residual stress generated in the sheared end face 1 of the obtained processed material 10, particularly the fracture surface 1b, was further examined. As a result, the present inventors have a first surface layer portion (for example, the first surface 10a side) and a second surface layer portion (for example, a second surface layer portion) having hardness different from that of the plate thickness center portion of the steel plate 5 on both sides of the steel plate 5. (Surface 10b side) is provided, and a difference in hardness is provided on both sides of the steel plate 5.
- the first hardness integrated value in the region from the surface on the first surface layer side to 30% of the plate thickness is set to be 1.05 times or more the integrated value of the second hardness in the region from the surface on the second surface layer side to 30% of the plate thickness.
- Cracks can be preferentially propagated from the side of the first surface layer, which is relatively large, thereby significantly reducing the tensile residual stress generated in the sheared end face 1 of the processed material 10 (steel plate 5), particularly in the fracture surface 1b. I found that I could make it. Therefore, according to the steel sheet of the present invention, it is possible to remarkably improve the hydrogen embrittlement resistance of the sheared end face in the processed material obtained by the shearing process.
- the first surface layer portion and the second surface layer portion each independently have a thickness of more than 10 ⁇ m to 30% or less of the plate thickness, and have an average Vickers hardness at the plate thickness 1/2 position. Have different average Vickers hardness.
- the thickness of the first surface layer portion and the second surface layer portion is more than 10 ⁇ m, respectively.
- the thickness of the first surface layer portion and the second surface layer portion may be independently 15 ⁇ m or more, 30 ⁇ m or more, 50 ⁇ m or more, 100 ⁇ m or more, 150 ⁇ m or more or 200 ⁇ m or more, and / or 25 of the plate thickness. It may be% or less, 20% or less, 15% or less, or 10% or less.
- the thicknesses of the first surface layer portion and the second surface layer portion are independently 1800 ⁇ m or less, 1200 ⁇ m or less, 800 ⁇ m or less, 600 ⁇ m or less, respectively. It may be 500 ⁇ m or less, 470 ⁇ m or less, 450 ⁇ m or less, 430 ⁇ m or less, 400 ⁇ m or less, 350 ⁇ m or less, or 300 ⁇ m or less.
- the absolute value of the difference between the thickness of the first surface layer portion and the thickness of the second surface layer portion is 5 ⁇ m or more, 10 ⁇ m or more, 20 ⁇ m or more, and 30 ⁇ m or more. , 40 ⁇ m or more or 50 ⁇ m or more, and / or 400 ⁇ m or less, 300 ⁇ m or less, 200 ⁇ m or less, 150 ⁇ m or less, or 100 ⁇ m or less.
- the first surface layer portion and the second surface layer portion have the same chemical composition and the same average Vickers hardness, it is relatively easy to make an appropriate difference in their thicknesses to make the first surface layer of the steel sheet.
- the integrated hardness value on the portion side it is possible to control the integrated hardness value on the portion side to be 1.05 times or more the integrated hardness value on the second surface layer portion side. Therefore, from the viewpoint of simplifying the manufacturing process of the steel sheet, it is preferable that the thickness of the first surface layer portion and the thickness of the second surface layer portion are different. For example, in the embodiment in which the average Vickers hardness of the first surface layer portion and the second surface layer portion is lower than the average Vickers hardness at the plate thickness 1/2 position, the strength of the steel plate increases as the first surface layer portion and the second surface layer portion become thicker. Although it tends to decrease, hydrogen embrittlement cracking is generally less likely to occur.
- the thickness of the first surface layer portion and the second surface layer portion is from more than 10 ⁇ m to 30% of the plate thickness in consideration of the relationship with the central portion of the plate thickness and the balance between the strength of the steel sheet and the hydrogen embrittlement resistance. It is preferable to select an appropriate value within the following range.
- the average Vickers hardness of the first surface layer portion and the second surface layer portion is the plate thickness, respectively. It may be any average Vickers hardness different from the average Vickers hardness at the 1/2 position, that is, it may be lower or higher than the average Vickers hardness at the 1/2 position. From the viewpoint of improving the bending workability of the steel sheet, the average Vickers hardness of the first surface layer portion and the second surface layer portion is preferably lower than the average Vickers hardness at the plate thickness 1/2 position.
- the average Vickers hardness of the first surface layer portion and the second surface layer portion is preferably higher than the average Vickers hardness at the plate thickness 1/2 position. .. Further, the average Vickers hardness of the first surface layer portion is higher than the average Vickers hardness of the plate thickness 1/2 position, and the average Vickers hardness of the second surface layer portion is lower than the average Vickers hardness of the plate thickness 1/2 position. May be good.
- the average Vickers hardness of the first surface layer portion and the second surface layer portion is 0.90 times or less, 0.80 times or less, or 0.60 times the average Vickers hardness at the plate thickness 1/2 position, respectively.
- the first surface layer portion may be the same or different.
- the thickness of the first surface layer portion and the second surface layer portion is determined by an optical microscope.
- the sample to be measured is embedded in a cylindrical epoxy resin having a diameter of 30 mm, roughly polished by wet polishing using # 80 to 1000 abrasive paper, and then diamond abrasive grains having an average particle size of 3 ⁇ m and 1 ⁇ m are obtained.
- first surface layer portion and the second surface layer portion defined as described above 10 points of Vickers hardness are randomly measured with a pushing load of 100 g, and the average value thereof is calculated to obtain the first surface layer portion and the first surface layer portion. 2
- the average Vickers hardness of the surface layer is determined. Further, the average Vickers hardness of the first surface layer portion and the second surface layer portion thus determined is similarly pushed into a line perpendicular to the plate thickness and parallel to the rolling direction at the plate thickness 1/2 position. It is compared with the average Vickers hardness at 1/2 position of the plate thickness obtained by measuring the Vickers hardness at a total of 3 points or more, for example, 5 points or 10 points under a load of 100 g.
- the first hardness integrated value is 1.05 times or more the second hardness integrated value
- the first hardness integrated value in the region from the surface on the first surface layer side to 30% of the plate thickness is from the surface on the second surface layer side to 30% of the plate thickness. It is 1.05 times or more the second hardness integrated value in the region.
- a surface softening portion is arranged on one side or both sides of a central portion of a plate thickness in order to improve the bending workability of a high-strength steel sheet.
- the first surface layer portion and the second surface layer portion having hardness different from the thickness center portion of the steel plate are provided on both sides of the steel plate, and the difference in hardness is provided on both sides of the steel plate, more specifically.
- the first hardness integrated value in the region from the surface on the first surface layer side to 30% of the plate thickness is the second hardness integrated value in the region from the surface on the second surface layer portion side to 30% of the plate thickness.
- the range for measuring the first hardness integrated value and the second hardness integrated value is the thickness of the first surface layer portion and the second surface layer portion (any thickness from more than 10 ⁇ m to 30% or less of the plate thickness). Is independent and is calculated in the region from the surface on the first surface layer side and the second surface layer side to 30% of the plate thickness, respectively, regardless of the thickness of the first surface layer portion and the second surface layer portion. It is a thing.
- the integrated hardness value is the plate thickness from the surface of the steel sheet (in the presence of the plating layer, directly under the plating layer or directly under the alloy layer between the plating layer and the base material). It refers to the integrated value of Vickers hardness in the region up to 30% of the above, and is determined as follows.
- an appropriate position within a range of more than 10 ⁇ m to 20 ⁇ m in the plate thickness direction from the surface on the first surface layer side of the steel plate, for example, a 15 ⁇ m position is set as a measurement start point.
- the Vickers hardness is measured with a pushing load of 100g, and then from that position on a line perpendicular to the plate thickness and parallel to the rolling direction, with a pushing load of 100g, a total of 3 points or more, for example, 5 points or 10 points.
- the Vickers hardness is measured, and the average value thereof is taken as the average Vickers hardness at the position in the plate thickness direction.
- the distance between the measurement points arranged in the plate thickness direction and the rolling direction is preferably four times or more the indentation.
- the distance of 4 times or more of the indentation means the distance of 4 times or more of the diagonal length in the rectangular opening of the indentation generated by the diamond indenter in the measurement of Vickers hardness. If it is difficult to make a linear stamp from the surface in the plate thickness direction while keeping the distance between each measurement point at least 4 times the indentation, the surface should be at least 4 times the distance between the indentations. It may be stamped in a zigzag manner in the plate thickness direction. Average Vickers hardness and measurement interval (each measurement point from the surface to 30% of the plate thickness) at each plate thickness direction position obtained by measuring from the surface on the first surface layer side to 30% of the plate thickness as described above. It refers to the distance parallel to the plate thickness direction between them.
- the measurement start point it corresponds to the distance parallel to the plate thickness direction from the surface to the measurement start point).
- the integrated hardness value (Hv ⁇ mm) of is determined.
- the second hardness integration is performed by multiplying the average Vickers hardness at each plate thickness direction position obtained by measuring from the surface on the second surface layer side to 30% of the plate thickness by the measurement interval. The value (Hv ⁇ mm) is determined.
- the first hardness integrated value is preferably 1.06 times or more or 1.08 times or more, more preferably 1.10 times or more, 1.12 times or more, 1.12 times or more of the second hardness integrated value. 14 times or more, 1.16 times or more or 1.18 times or more, more preferably 1.20 times or more, 1.22 times or more, 1.24 times or more, 1.26 times or more or 1.28 times or more, Most preferably, it is 1.30 times or more.
- the upper limit value is not particularly limited, but in general, the first hardness integrated value may be 5.00 times or less of the second hardness integrated value, and may be, for example, 3.00 times or less. ..
- the method for controlling the first hardness integrated value and the second hardness integrated value in the above-mentioned relationship is not particularly limited, but for example, between the first surface layer portion and the second surface layer portion. It is possible to make a difference in the chemical composition, structure and / or thickness in. More specifically, the content of some elements of the chemical composition between the first surface layer portion and the second surface layer portion (for example, C, Mn, Cr, Mo, B, Cu and particularly related to the strength of the steel plate) and The content of at least one element such as Ni) may be changed so that the average Vickers hardness of the first surface layer portion is higher than the average Vickers hardness of the second surface layer portion.
- some elements of the chemical composition between the first surface layer portion and the second surface layer portion for example, C, Mn, Cr, Mo, B, Cu and particularly related to the strength of the steel plate
- the content of at least one element such as Ni may be changed so that the average Vickers hardness of the first surface layer portion is higher than the average Vickers hardness of the second surface layer portion
- the first hardness integrated value and the second hardness integrated value are desired by increasing the ratio of the hard structure (for example, bainite, martensite, etc.) in the first surface layer portion as compared with the second surface layer portion. It is also possible to control the relationship. In place of or in addition to them, a difference is provided between the thickness of the first surface layer and the thickness of the second surface layer, for example, the first surface layer when the surface layer portion is softer than the central portion of the plate thickness. Similarly, the thickness of the portion is made thinner than the thickness of the second surface layer portion, and when the surface layer portion is harder than the plate thickness center portion, the thickness of the first surface layer portion is made thicker than the thickness of the second surface layer portion.
- the hardness integrated value on the first surface layer portion side of the finally obtained steel sheet may be 1.05 times or more the hardness integrated value on the second surface layer portion side.
- the ratio P (H high / H low ) to the integrated hardness value H low in is satisfied with the following equation 1.
- the minimum value of X corresponds to the ratio of the minimum value (more than 10 ⁇ m) of the surface layer thickness to the plate thickness, but since the ratio changes according to the value of the plate thickness, the minimum value of X is set to more than 0. It is a thing.
- the first surface layer portion and the first surface layer portion and the first surface layer portion are controlled. 2 Since the ratio P is about 1.36 or larger in the portion close to the surface of the surface layer portion, the difference between the first hardness integrated value and the second hardness integrated value is large, and the first surface layer It is possible to make it easier for cracks to enter from the part side.
- the ratio P so as to satisfy Equation 1, the hardness integration value on the first surface layer side is always integrated on the hardness integration on the second surface layer side at the same depth position in the plate thickness direction on both sides of the steel sheet.
- the value can be 1.05 times or more, that is, the ratio P can always be 1.05 or more at the same depth position in the plate thickness direction on both sides of the steel sheet. Therefore, in this case, it is possible to stably propagate the cracks that have entered on the surface of the first surface layer portion, and to more reliably promote the preferential crack growth from the first surface layer portion side.
- the method for controlling the ratio P so as to satisfy the equation 1 is not particularly limited, but for example, the first surface layer portion and the first surface layer portion having the same thickness in which the ratio of the average Vickers hardness is about 1.36 or larger is not particularly limited. 2 Place the surface layer on both sides of the center of plate thickness, or similarly place the first and second surface layers with an average Vickers hardness ratio of about 1.36 or higher on both sides of the center of plate thickness.
- the thickness of the first surface layer portion and the second surface layer portion may be changed within a range satisfying the formula 1.
- the ratio of the integrated hardness values at each plate thickness direction position in the region up to 30% of the plate thickness on the first surface layer side and the second surface layer side can be calculated relatively easily and is calculated.
- the curve obtained by plotting the ratio of each integrated value with the curve of Equation 1 it is possible to determine whether or not the ratio P satisfies the above equation 1.
- the central portion of the plate thickness is made of any material whose average Vickers hardness at the position corresponding to the plate thickness 1/2 position is different from the average Vickers hardness of the first surface layer portion and the second surface layer portion. It may be there. Therefore, the chemical composition of the central portion of the plate thickness is not particularly limited and may be any suitable chemical composition. More specifically, as described above, the present invention aims to provide a steel plate capable of reducing the tensile residual stress generated on the sheared end face during shearing, and the plates of the steel plate are on both sides of the steel plate.
- a first surface layer portion and a second surface layer portion having a hardness different from that of the central portion are provided, and a difference in hardness is provided on both sides of the steel plate, more specifically, the plate thickness is provided from the surface on the first surface layer portion side.
- the first hardness integrated value in the region up to 30% of the sheet thickness is controlled to be 1.05 times or more the second hardness integrated value in the region from the surface on the second surface layer side to 30% of the plate thickness.
- the preferable chemical composition of the central portion of the plate thickness applied to the steel sheet according to the embodiment of the present invention will be described in detail, but these explanations are merely intended to be examples, and the present invention is specified in this way. It is not intended to be limited to those using the central portion of the plate thickness having the chemical composition of. Further, in the vicinity of the boundary with the surface layer portion in the central portion of the plate thickness, the chemical composition may differ from the position sufficiently distant from the boundary due to the diffusion of the alloying elements with the surface layer portion. In such a case, the following chemical composition at the center of the plate thickness refers to the chemical composition measured in the vicinity of the plate thickness 1/2 position.
- % which is a unit of the content of each element, means “mass%” unless otherwise specified.
- “-” indicating a numerical range is used to mean that the numerical values described before and after the numerical range are included as the lower limit value and the upper limit value unless otherwise specified.
- C is an element effective for increasing the strength of the steel sheet.
- C is also an effective element for ensuring hardenability.
- the C content is preferably 0.050% or more.
- the C content may be 0.100% or more, 0.200% or more, or 0.300% or more.
- the toughness may decrease. Therefore, the C content is preferably 0.800% or less.
- the C content may be 0.700% or less, 0.600% or less, or 0.500% or less.
- Si is an element effective for ensuring hardenability.
- Si is also an element that suppresses alloying with Al.
- the Si content is preferably 0.01% or more.
- the Si content may be 0.30% or more or 0.50% or more.
- Si is also an effective element for suppressing the coarsening of iron-based carbides in the central portion of the plate thickness and increasing the strength and moldability.
- Si is also an element that contributes to increasing the strength of the steel sheet by strengthening the solid solution. From these viewpoints, the Si content may be 1.00% or more or 1.20% or more.
- the Si content is preferably 3.00%.
- the Si content may be 2.50% or less, 2.20% or less, or 2.00% or less.
- Mn is an element effective for increasing the strength of the steel sheet. Mn is also an effective element for ensuring hardenability. In order to sufficiently obtain these effects, the Mn content is preferably 0.01% or more. The Mn content may be 0.10% or more, 1.00% or more, or 1.50% or more. On the other hand, if Mn is excessively contained, the hardness distribution of the surface layer of the steel sheet may become large due to Mn segregation. Therefore, the Mn content is preferably 10.00% or less. The Mn content may be 8.00% or less, 6.00% or less, or 5.00% or less.
- Al is an element that acts as a deoxidizing agent.
- the Al content is preferably 0.001% or more.
- the Al content may be 0.005% or more, 0.010% or more, or 0.050% or more.
- the Al content is preferably 0.500% or less.
- the Al content may be 0.400% or less, 0.300% or less, or 0.200% or less.
- the P content is preferably 0.100% or less.
- the P content may be 0.080% or less, 0.060% or less, or 0.050% or less.
- the lower limit of the P content is not particularly limited and may be 0%, but the P content may be more than 0%, 0.001% or more, or 0.005% or more from the viewpoint of manufacturing cost.
- S is an element that is mixed in during the manufacturing process to form inclusions. Excessive content of S may deteriorate properties such as toughness. Therefore, the S content is preferably 0.050% or less.
- the S content may be 0.030% or less, 0.010% or less, or 0.005% or less.
- the lower limit of the S content is not particularly limited and may be 0%, but the S content may be more than 0%, 0.0001% or more, or 0.0005% or more from the viewpoint of manufacturing cost.
- the N content is preferably 0.0100% or less.
- N is preferably less because it may cause blowholes during welding. Therefore, the N content may be 0.0080% or less, 0.0060% or less, or 0.0030% or less.
- the lower limit of the N content is not particularly limited and may be 0%, but the N content may be more than 0%, 0.0005% or more, or 0.0010% or more from the viewpoint of manufacturing cost.
- the central portion of the plate thickness may contain at least one of the following optional elements in place of a part of the remaining Fe, if necessary.
- the central portion of the plate thickness may contain at least one selected from the group consisting of Cr: 0 to 3.000%, Mo: 0 to 1.000%, and B: 0 to 0.0100%. ..
- the central portion of the plate thickness may contain at least one selected from the group consisting of Ti: 0 to 0.500%, Nb: 0 to 0.500%, and V: 0 to 0.500%. ..
- the central portion of the plate thickness is Cu: 0 to 0.500%, Ni: 0 to 0.500%, O: 0 to 0.0200%, W: 0 to 0.100%, Ta: 0 to 0. 100%, Co: 0 to 0.500%, Sn: 0 to 0.050%, Sb: 0 to 0.050%, As: 0 to 0.050%, Mg: 0 to 0.0500%, Ca: Selected from the group consisting of 0 to 0.050%, Y: 0 to 0.050%, Zr: 0 to 0.050%, La: 0 to 0.050%, and Ce: 0 to 0.050%. At least one may be contained.
- these optional elements will be described in detail.
- Cr Cr is an element that contributes to the improvement of strength. Cr is also an element that improves hardenability.
- the Cr content may be 0%, but in order to sufficiently obtain these effects, the Cr content is preferably 0.001% or more.
- the Cr content may be 0.005% or more, 0.010% or more, or 0.100% or more.
- the Cr content is preferably 3.000% or less.
- the Cr content may be 2.500% or less, 2.000% or less, or 1.500% or less.
- Mo is an element that contributes to the improvement of strength. Mo is also an element that improves hardenability.
- the Mo content may be 0%, but in order to sufficiently obtain these effects, the Mo content is preferably 0.001% or more.
- the Mo content may be 0.005% or more, 0.010% or more, or 0.100% or more.
- the Mo content is preferably 1.000% or less.
- the Mo content may be 0.800% or less, 0.600% or less, or 0.400% or less.
- B is an element that contributes to the improvement of strength. B is also an element that improves hardenability.
- the B content may be 0%, but in order to sufficiently obtain these effects, the B content is preferably 0.0001% or more.
- the B content may be 0.0010% or more, 0.0020% or more, or 0.0030% or more.
- the B content is preferably 0.0100% or less.
- the B content may be 0.0080% or less, 0.0060% or less, or 0.0050% or less.
- Ti, Nb and V are reinforcing elements and improve their strength by forming carbides. Further, Ti, Nb and V are elements that contribute to atomization due to the pinning effect, and are also elements that reduce the diffusion rate of Fe by being present in a solid solution state.
- the Ti, Nb and V contents may be 0%, but in order to sufficiently obtain these effects, the Ti, Nb and V contents are preferably 0.001% or more.
- the Ti, Nb and V contents may be 0.005% or more, 0.010% or more, or 0.100% or more.
- the Ti, Nb and V contents are preferably 0.500% or less.
- the Ti, Nb and V contents may be 0.400% or less, 0.300% or less, or 0.200% or less.
- Cu and Ni are elements that contribute to the improvement of strength.
- the Cu and Ni contents may be 0%, but in order to sufficiently obtain such an effect, the Cu and Ni contents are preferably 0.001% or more.
- the Cu and Ni contents may be 0.005% or more, 0.010% or more, or 0.100% or more.
- the Cu and Ni contents are preferably 0.500% or less.
- the Cu and Ni contents may be 0.400% or less, 0.300% or less, or 0.200% or less.
- the central portion of the plate thickness may intentionally or inevitably contain the following elements, and the effects of the present invention are not impaired by them.
- These elements are O: 0 to 0.0200%, W: 0 to 0.100%, Ta: 0 to 0.100%, Co: 0 to 0.500%, Sn: 0 to 0.050%, Sb: 0 to 0.050%, As: 0 to 0.050%, Mg: 0 to 0.0500%, Ca: 0 to 0.050%, Zr: 0 to 0.050%, and Y: 0 to REM (rare earth metal) such as 0.050%, La: 0 to 0.050% and Ce: 0 to 0.050%.
- the content of these elements may be 0.0001% or more or 0.001% or more, respectively.
- the balance other than the above elements consists of Fe and impurities.
- Impurities are components and the like that are mixed by various factors in the manufacturing process, including raw materials such as ore and scrap, when the steel sheet or the central portion thereof is industrially manufactured.
- the first surface layer portion and the second surface layer portion have an average Vickers hardness different from that of the central portion of the plate thickness, and the hardness integrated value on the first surface layer portion side described above and the first 2.
- the chemical composition of the first surface layer portion and the second surface layer portion is not particularly limited as long as it satisfies the relationship with the hardness integrated value on the surface layer portion side.
- the chemical composition of the first surface layer portion and the second surface layer portion has an average Vickers hardness in which the first surface layer portion and the second surface layer portion are lower than the average Vickers hardness at the plate thickness 1/2 position.
- the case (Embodiment 1) and the case where the first surface layer portion and the second surface layer portion have an average Vickers hardness higher than the average Vickers hardness at the plate thickness 1/2 position (Embodiment 2) are related to the steel plate strength.
- the content of certain alloying elements can vary. Therefore, in the following, the preferable chemical composition of the first surface layer portion and the second surface layer portion will be described with particular consideration of the cases of the first and second embodiments.
- the C content of the first and second surface layer portions is preferably 0.9 times or less, and 0.7 times or less and 0.5 times or less of the C content of the central portion of the plate thickness. , 0.3 times or less or 0.1 times or less.
- the upper limit of the C content in the preferable chemical composition of the central portion of the plate thickness is 0.800% or less. Therefore, the upper limit of the C content of the first and second surface layers is 0.720% or less.
- the C content of the first and second surface layers may be 0.500% or less, 0.300% or less, 0.100% or less, or 0.010% or less.
- the lower limit is not particularly specified, the C content is generally 0.001% or more, and may be 0.005% or more.
- the total content of Mn, Cr and Mo in the first surface layer and the second surface layer is 0.9 times or less the total content of Mn, Cr and Mo in the center of the plate thickness
- Mn, Cr and Mo are elements that contribute to the improvement of strength. Therefore, in the first embodiment, the total content of Mn, Cr and Mo in the first and second surface layers is preferably 0.9 times or less the total content of Mn, Cr and Mo in the center of the plate thickness. , 0.7 times or less, 0.5 times or less, or 0.3 times or less.
- the lower limit of each element is not particularly specified, but in general, the Mn content is 0.005% or more, and the Cr and Mo contents are 0.0005% or more, respectively, and may be 0.001% or more.
- the B content of the first surface layer portion and the second surface layer portion is 0.9 times or less of the total B content of the plate thickness center portion
- B is an element that contributes to the improvement of strength. Therefore, in the first embodiment, the B content of the first and second surface layer portions is preferably 0.9 times or less, and 0.7 times or less and 0.5 times or less of the B content of the central portion of the plate thickness. Alternatively, it may be 0.3 times or less. Although the lower limit is not particularly specified, the B content is generally 0.0001% or more, and may be 0.0003% or more.
- the total Cu and Ni contents in the first surface layer and the second surface layer is 0.9 times or less the total Cu and Ni content in the center of the plate thickness
- Cu and Ni are elements that contribute to the improvement of strength. Therefore, in the first embodiment, the total Cu and Ni contents of the first and second surface layers are preferably 0.9 times or less the total Cu and Ni contents of the central portion of the plate thickness, and is preferably 0.7. It may be times or less, 0.5 times or less, or 0.3 times or less.
- the lower limit of each element is not particularly specified, but in general, the Cu and Ni contents are 0.0005% or more, and may be 0.001% or more, respectively.
- the chemical composition of the first surface layer portion and the second surface layer portion is the sum of the C content, the Mn, Cr and Mo contents of the first surface layer portion and the second surface layer portion, the B content, and / or. It is sufficient to specify the sum of the Cu and Ni contents with respect to the content of the corresponding element in the center of the plate thickness. Therefore, the content of other elements is not particularly limited, but the content may be preferably the same as in the case of the central portion of the plate thickness. Therefore, an example of a preferable chemical composition of the first surface layer portion and the second surface layer portion is as follows.
- the first surface layer portion and the second surface layer portion are independently in mass%, respectively.
- the total content of Mn, Cr and Mo in the first surface layer and the second surface layer is 0.9 times or less the total content of Mn, Cr and Mo in the center of the plate thickness, or the first surface layer.
- the B content of the portion and the second surface layer portion is 0.9 times or less of the total B content of the plate thickness center portion, and / or the Cu and Ni contents of the first surface layer portion and the second surface layer portion.
- the total sum may be 0.9 times or less the total sum of the Cu and Ni contents in the central portion of the plate thickness.
- the C content of the first surface layer and the second surface layer portion is 1.1 times or more the C content of the central part of the plate thickness
- C is an element that contributes to the improvement of strength. Therefore, in the second embodiment, the C content of the first and second surface layer portions is preferably 1.1 times or more, and 1.2 times or more and 1.3 times or more of the C content of the central portion of the plate thickness. , 1.5 times or more or 1.8 times or more.
- the lower limit of the C content in the preferable chemical composition of the central portion of the plate thickness is 0.050% or more. Therefore, the lower limit of the C content of the first and second surface layers is 0.055% or more.
- the C content of the first and second surface layer portions may be 0.300% or more, 0.500% or more, or 0.880% or more.
- the upper limit is not particularly limited, but the C content is generally 1.000% or less.
- the total content of Mn, Cr and Mo in the first surface layer and the second surface layer is 1.1 times or more the total content of Mn, Cr and Mo in the center of the plate thickness
- Mn, Cr and Mo are elements that contribute to the improvement of strength. Therefore, in the second embodiment, the total content of Mn, Cr and Mo in the first and second surface layers is preferably 1.1 times or more the total content of Mn, Cr and Mo in the central portion of the plate thickness. , 1.2 times or more, 1.3 times or more, or 1.5 times or more.
- the upper limit of each element is not particularly limited, but generally, the Mn content is 11.00% or less, the Cr content is 3.500% or less, and the Mo content is 1.500% or less.
- the B content of the first surface layer portion and the second surface layer portion is 1.1 times or more the total B content of the plate thickness center portion
- B is an element that contributes to the improvement of strength. Therefore, in the second embodiment, the B content of the first and second surface layer portions is preferably 1.1 times or more, and 1.2 times or more and 1.3 times or more of the B content of the central portion of the plate thickness. Alternatively, it may be 1.5 times or more.
- the upper limit is not particularly limited, but the B content is generally 0.0110% or less.
- the total Cu and Ni contents of the first and second surface layers are preferably 1.1 times or more the total Cu and Ni contents of the central portion of the plate thickness, and 1.2. It may be double or more, 1.3 times or more, or 1.5 times or more.
- the upper limit of each element is not particularly limited, but in general, the Cu and Ni contents are each 1.000% or less, and may be 0.700% or less.
- the chemical composition of the first surface layer portion and the second surface layer portion is the sum of the C content, the Mn, Cr and Mo contents of the first surface layer portion and the second surface layer portion, the B content, and / or. It is sufficient to specify the sum of the Cu and Ni contents with respect to the content of the corresponding element in the center of the plate thickness. Therefore, the content of other elements is not particularly limited, but is preferably the same as in the case of the central portion of the plate thickness. Therefore, an example of a preferable chemical composition of the first surface layer portion and the second surface layer portion is as follows.
- the first surface layer portion and the second surface layer portion are independently in mass%, respectively.
- the total content of Mn, Cr and Mo in the first surface layer and the second surface layer is 1.1 times or more the total content of Mn, Cr and Mo in the center of the plate thickness, or the first surface layer.
- the B content of the portion and the second surface layer portion is 1.1 times or less of the total B content of the plate thickness center portion, and / or the Cu and Ni contents of the first surface layer portion and the second surface layer portion.
- the total sum may be 1.1 times or more the total sum of the Cu and Ni contents in the central portion of the plate thickness.
- impurities are various manufacturing processes including raw materials such as ore and scrap when industrially manufacturing a steel sheet or its first and second surface layers. It is a component etc. mixed by the factor of.
- the first surface layer portion and the second surface layer portion have an average Vickers hardness lower than the average Vickers hardness at the plate thickness 1/2 position (Embodiment 1) or at the plate thickness 1/2 position.
- the case where the average Vickers hardness is higher than the average Vickers hardness (Embodiment 2) has been described.
- the first surface layer portion has a chemical composition corresponding to the second embodiment
- the second surface layer portion has the first embodiment. It may have a chemical composition corresponding to.
- the steel sheet according to the embodiment of the present invention can have any appropriate tensile strength, and is not particularly limited, but preferably has a tensile strength of, for example, 980 MPa or more. It is generally known that high-strength steels are particularly sensitive to hydrogen embrittlement. Therefore, when the steel sheet according to the embodiment of the present invention has a high tensile strength of 980 MPa or more, the tensile residual stress generated in the sheared end face is compared with the case where a conventional steel sheet having the same tensile strength is sheared. The effect of reducing hydrogen embrittlement is remarkable, and therefore the improvement of hydrogen embrittlement resistance is particularly remarkable.
- the tensile residual stress generated on the sheared end face is generally larger than that of a steel sheet having a relatively low tensile strength.
- the steel sheet according to the embodiment of the present invention has a tensile strength significantly exceeding 980 MPa, it is possible to sufficiently reduce the tensile residual stress generated on the sheared end face during shearing.
- the tensile strength of the steel sheet may be 1080 MPa or more, 1180 MPa or more, 1250 MPa or more, 1300 MPa or more, or 1470 MPa or more.
- the upper limit is not particularly limited, but for example, the tensile strength of the steel sheet may be 2500 MPa or less, 2200 MPa or less, or 2000 MPa or less.
- the tensile strength is measured by collecting a JIS No. 5 tensile test piece from a direction perpendicular to the rolling direction of the steel sheet and performing a tensile test in accordance with JIS Z2241 (2011).
- the steel sheet according to the embodiment of the present invention is not particularly limited, but generally has a plate thickness of 6.0 mm or less, and more specifically, a plate thickness of 0.5 to 6.0 mm.
- the thickness of the steel sheet may be more suitable for shearing such as 6.0 mm or less, the effect of reducing the tensile residual stress generated on the sheared end face can be made more remarkable.
- the plate thickness may be 1.0 mm or more, 1.2 mm or more or 2.0 mm or more, and / or 5.5 mm or less, 5.0 mm or less, 4.5 mm or less, 4.0 mm or less or 3. It may be 0 mm or less.
- a plating layer may be formed on the surface of at least one of the first surface layer portion and the second surface layer portion of the steel sheet according to the embodiment of the present invention for the purpose of improving corrosion resistance and the like.
- the plating layer may be either an electroplating layer or a hot-dip plating layer.
- the electroplating layer includes, for example, an electrogalvanizing layer, an electric Zn—Ni alloy plating layer, and the like.
- the hot-dip plating layer is, for example, a hot-dip zinc-plated layer, an alloyed hot-dip zinc-plated layer, a hot-dip aluminum plated layer, a hot-dip Zn-Al alloy plated layer, a hot-dip Zn-Al-Mg alloy plated layer, and a hot-dipped Zn-Al-Mg-Si. Includes alloy plating layer and the like.
- the amount of adhesion of the plating layer is not particularly limited and may be a general amount of adhesion.
- the steel sheet according to the embodiment of the present invention can be manufactured by any suitable method known to those skilled in the art. Although not particularly limited, for example, the steel sheet according to the embodiment of the present invention can be manufactured by using the clad method.
- the method for manufacturing the steel plate is to laminate two surface layer steel materials constituting the first surface layer portion and the second surface layer portion on both sides of the base steel material constituting the plate thickness center portion to form a multi-layer steel material. Process, hot rolling process for hot rolling the obtained multi-layer steel material, cooling process for cooling the hot-rolled multi-layer steel material, winding process, cold rolling process, annealing process, plating as necessary. It may further include steps and the like.
- the base steel material constituting the central portion of the plate thickness having the chemical composition described above has the chemical composition similarly described above on both sides of the base material steel material whose surface has been degreased.
- a multi-layer steel material can be formed by laminating two surface layer steel materials constituting the first surface layer portion and the second surface layer portion and joining them by arc welding or the like.
- the content of some elements of the chemical composition between the two surface steel materials for example, at least one element such as C, Mn, Cr, Mo, B, Cu and Ni, which are particularly related to the strength of the steel plate).
- the content may be changed so that the hardness integrated value on the first surface layer portion side of the finally obtained steel plate becomes 1.05 times or more the hardness integrated value on the second surface layer portion side.
- changing the thickness of the two surface steels specifically the average Vickers hardness at which the first and second surface layers are lower than the average Vickers hardness at the plate thickness 1/2 position.
- the multi-layer steel material is generally heated to a temperature of 1100 to 1350 ° C., and then hot rolling is performed under conditions such that the completion temperature of hot rolling is 800 ° C. or higher. This is because if the completion temperature of hot rolling is too low, the rolling reaction force increases, and it becomes difficult to stably obtain a desired plate thickness.
- the specific conditions of each step are not particularly limited, and appropriate conditions may be appropriately selected according to the steel type, the use of the steel sheet, the desired characteristics, and the like.
- the winding temperature in the winding process is set to a relatively low temperature, more specifically 600 ° C or lower, particularly 400 ° C or lower. good.
- the steel sheet according to the embodiment of the present invention is excellent in the effect of reducing the tensile residual stress generated on the sheared end face during shearing, and is therefore applied in shearing (that is, used as a steel sheet for shearing). Is suitable for).
- shearing it is generally preferable to arrange the first surface layer portion of the steel sheet on the punch side and the second surface layer portion of the steel sheet on the die side for cutting.
- cracks can be propagated from the first surface layer on the punch side to reduce the tensile residual stress generated on the shear end face of the target work material, and as a result, hydrogen embrittlement resistance of the shear end face of the work material can be reduced.
- the sex can be significantly improved.
- the surface of a continuously cast slab (base steel material) having a plate thickness of 20 mm having the chemical composition shown in Table 1 is degreased, and then the surface layer having the chemical composition shown in Table 1 on both sides thereof has a predetermined thickness.
- a multi-layer steel material was obtained by laminating steel materials and joining them by arc welding.
- this multi-layer steel material is heated to a predetermined temperature in the range of 1100 to 1350 ° C., hot rolling is carried out under conditions such that the completion temperature of hot rolling is 800 ° C. or higher, and hot rolling is carried out at 600 ° C. or lower.
- a hot-rolled steel sheet having a plate thickness of 2.4 mm was obtained by winding at the temperature of.
- the hot-rolled steel sheet was pickled, then cold-rolled to the thickness shown in Table 2, and finally annealed by holding it at an appropriate temperature of 600 ° C. or higher for a predetermined time.
- a cold-rolled steel sheet was obtained.
- the portion corresponding to the central portion of the plate thickness, the first surface layer portion and the second surface layer portion (each at the position of 1/2 of the plate thickness, and the position of 2% of the plate thickness from one surface).
- the chemical composition at 2% of the plate thickness from the other surface
- the characteristics of the obtained cold-rolled steel sheet were measured and evaluated by the following methods.
- the thickness of the first surface layer portion and the second surface layer portion was determined by an optical microscope.
- the sample to be measured is embedded in a cylindrical epoxy resin having a diameter of 30 mm, roughly polished by wet polishing using # 80 to 1000 abrasive paper, and then diamond abrasive grains having an average particle size of 3 ⁇ m and 1 ⁇ m are obtained. It was used for mirror-finish polishing. Polishing using diamond abrasive grains having an average particle size of 1 ⁇ m was carried out under the condition that a load of 1 N to 10 N was applied and the polishing table was held at a speed of 30 to 120 mmp for 30 to 600 seconds.
- the boundary between the central portion of the plate thickness and the surface layer portion is determined, and the thickness of the first surface layer portion and the second surface layer portion ( %, Percentage of plate thickness) was determined.
- the Vickers hardness at the position in the plate thickness direction is measured with a load of 100 g at intervals of 50 ⁇ m in the plate thickness direction, with the measurement start point at the position 15 ⁇ m in the plate thickness direction from the surface on the first surface layer side of the steel plate. Then, the Vickers hardness of a total of 5 points was measured from that position on a line perpendicular to the plate thickness and parallel to the rolling direction with a pushing load of 100 g, and the average value was measured at the plate thickness direction position. The average Vickers hardness of. The distance between the measurement points lined up in the plate thickness direction and the rolling direction was set to be at least four times the indentation.
- the surface should be at least 4 times the distance between the indentations. It was stamped in a zigzag manner in the thickness direction.
- the first hardness is obtained by multiplying the average Vickers hardness at each plate thickness direction position obtained by measuring from the surface on the first surface layer side to 30% of the plate thickness as described above by the measurement interval.
- the integrated value (Hv ⁇ mm) was determined.
- the second hardness integration is performed by multiplying the average Vickers hardness at each plate thickness direction position obtained by measuring from the surface on the second surface layer side to 30% of the plate thickness by the measurement interval. The value (Hv ⁇ mm) was determined.
- the tensile strength was measured by collecting JIS No. 5 tensile test pieces from a direction perpendicular to the rolling direction of the cold-rolled steel sheet and performing a tensile test in accordance with JIS Z2241 (2011).
- the cold-rolled steel sheet was sheared, and the tensile residual stress generated on the sheared end face of the cold-rolled steel sheet was measured. Specifically, the first surface layer portion of the cold-rolled steel sheet is arranged on the punch side and the second surface layer portion of the cold-rolled steel sheet is arranged on the die side, and the cold-rolled steel sheet is punched by punching by moving the punch and the die relatively. , A processed material having a sheared end face on the die was obtained. Next, at the center position (corresponding to the fracture surface) of the processed material in the plate thickness direction, residual stress measurement was performed by X-ray with a spot diameter of ⁇ 500 ⁇ m (three points different in the plate width direction).
- the residual stress was measured in three directions: the plate thickness direction, the plate width direction, and the plate thickness to the 45 degree direction, and the sin 2 ⁇ method was used to calculate the residual stress. Assuming that the residual stress in the normal direction of the end face is zero, the maximum principal stress was calculated from the calculated residual stress in the three directions. The tensile residual stress of each processed material was determined by averaging the values of the maximum principal stress calculated at three points. When the ratio of the tensile residual stress to the tensile strength (tensile residual stress / tensile strength) was 0.90 or less, it was evaluated as a steel plate capable of reducing the tensile residual stress generated on the sheared end face during shearing. The results obtained are shown in Table 2.
- the same steel grade is used in Table 2, some have different average Vickers hardness (Hv) values (for example, the plate thickness 1/2 position of Invention Example 1 using the steel grade a).
- the average Vickers hardness of the above is 461 Hv
- the average Vickers hardness of the plate thickness 1/2 position of Invention Example 2 using the same steel grade is 451 Hv), which are caused by manufacturing error and / or measurement error. It is something to do.
- the first hardness integrated value in the region from the surface on the first surface layer side to 30% of the plate thickness is the plate thickness from the surface on the second surface layer side.
- the first integrated hardness value is 1.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
- Laminated Bodies (AREA)
Abstract
Description
[1]板厚中心部と、該板厚中心部の両側にそれぞれ配置された第1表層部及び第2表層部とを含み、
前記第1表層部及び第2表層部がそれぞれ独立して10μm超から板厚の30%以下の厚さを有し、
前記第1表層部及び第2表層部が板厚1/2位置の平均ビッカース硬さとは異なる平均ビッカース硬さを有し、
前記第1表層部側の表面から板厚の30%までの領域における第1の硬さ積算値が、前記第2表層部側の表面から板厚の30%までの領域における第2の硬さ積算値の1.05倍以上である、鋼板。
[2]前記第1表層部側の表面から板厚のX%までの領域における硬さ積算値Hhighと前記第2表層部側の表面から板厚のX%までの領域における硬さ積算値Hlowとの比P(Hhigh/Hlow)が下記式1を満たす、上記[1]に記載の鋼板。
P≧0.00035(X-30)2+1.05 ・・・式1
ここで、0<X≦30である。
[3]前記第1の硬さ積算値が前記第2の硬さ積算値の1.20倍以上である、上記[1]又は[2]に記載の鋼板。
[4]前記第1表層部及び第2表層部が板厚1/2位置の平均ビッカース硬さよりも低い平均ビッカース硬さを有する、上記[1]~[3]のいずれか1項に記載の鋼板。
[5]前記第1表層部及び第2表層部が板厚1/2位置の平均ビッカース硬さよりも高い平均ビッカース硬さを有する、上記[1]~[3]のいずれか1項に記載の鋼板。
[6]引張強さが980MPa以上である、上記[1]~[5]のいずれか1項に記載の鋼板。
[7]引張強さが1470MPa以上である、上記[6]に記載の鋼板。
[8]前記板厚中心部が、質量%で、
C:0.050~0.800%、
Si:0.01~3.00%、
Mn:0.01~10.00%、
Al:0.001~0.500%、
P:0.100%以下、
S:0.050%以下、
N:0.0100%以下、
Cr:0~3.000%、
Mo:0~1.000%、
B:0~0.0100%、
Ti:0~0.500%、
Nb:0~0.500%、
V:0~0.500%、
Cu:0~0.500%、
Ni:0~0.500%、
O:0~0.0200%、
W:0~0.100%、
Ta:0~0.100%、
Co:0~0.500%、
Sn:0~0.050%、
Sb:0~0.050%、
As:0~0.050%、
Mg:0~0.0500%、
Ca:0~0.050%、
Y:0~0.050%、
Zr:0~0.050%、
La:0~0.050%、
Ce:0~0.050%、並びに
残部:Fe及び不純物
からなる化学組成を有する、上記[1]~[7]のいずれか1項に記載の鋼板。
[9]前記化学組成が、質量%で、
Cr:0.001~3.000%、
Mo:0.001~1.000%、
B:0.0001~0.0100%、
Ti:0.001~0.500%、
Nb:0.001~0.500%、
V:0.001~0.500%、
Cu:0.001~0.500%、
Ni:0.001~0.500%、
O:0.0001~0.0200%、
W:0.001~0.100%、
Ta:0.001~0.100%、
Co:0.001~0.500%、
Sn:0.001~0.050%、
Sb:0.001~0.050%、
As:0.001~0.050%、
Mg:0.0001~0.0500%、
Ca:0.001~0.050%、
Y:0.001~0.050%、
Zr:0.001~0.050%、
La:0.001~0.050%、及び
Ce:0.001~0.050%
からなる群より選択される少なくとも一種を含有する、上記[8]に記載の鋼板。
本発明の実施形態に係る鋼板は、板厚中心部と、該板厚中心部の両側にそれぞれ配置された第1表層部及び第2表層部とを含み、
前記第1表層部及び第2表層部がそれぞれ独立して10μm超から板厚の30%以下の厚さを有し、
前記第1表層部及び第2表層部が板厚1/2位置の平均ビッカース硬さとは異なる平均ビッカース硬さを有し、
前記第1表層部側の表面から板厚の30%までの領域における第1の硬さ積算値が、前記第2表層部側の表面から板厚の30%までの領域における第2の硬さ積算値の1.05倍以上であることを特徴としている。
(1)せん断端面1のうち破断面1bに生じる引張残留応力は、破断面1bを形成するき裂1dx、1dyの進展方向や長さに依存して変化する。
(2)破断面1bにおいて、ダレ1a側から進展したき裂1dxが長くなるほど、加工材10の破断面1bの引張残留応力が小さくなり、スクラップ15の破断面の引張残留応力が大きくなる。
(3)すなわち、加工材10の破断面1bにおいて、ダレ1a側から進展した第1き裂1dxに由来する部分の面積率が、バリ1c側から進展した第2き裂1dyに由来する部分の面積率よりも大きい場合、ダレ1a側から進展した第1き裂1dxに由来する部分の面積率が、バリ1c側から進展した第2き裂1dyに由来する部分の面積率よりも小さい場合よりも、破断面1bの引張残留応力を相対的に低減することができる。
本発明の実施形態によれば、第1表層部及び第2表層部はそれぞれ独立して10μm超から板厚の30%以下の厚さを有し、板厚1/2位置の平均ビッカース硬さとは異なる平均ビッカース硬さを有する。10μm超から板厚の30%以下の厚さを有することで鋼板の両側に表層部を設けた効果を十分に発揮することができる。後で詳しく説明する第1の硬さ積算値が第2の硬さ積算値の1.05倍以上という要件を満足する限り、第1表層部と第2表層部の厚さは、それぞれ10μm超から板厚の30%以下の範囲内の任意の値であってよく、両者の値は同じであってもよいし又は異なっていてもよい。例えば、第1表層部及び第2表層部の厚さは、それぞれ独立して15μm以上、30μm以上、50μm以上、100μm以上、150μm以上若しくは200μm以上であってもよく、及び/又は板厚の25%以下、20%以下、15%以下若しくは10%以下であってもよい。上限を板厚に対する割合ではなく、具体的な厚さで例示すると、例えば、第1表層部及び第2表層部の厚さは、それぞれ独立して1800μm以下、1200μm以下、800μm以下、600μm以下、500μm以下、470μm以下、450μm以下、430μm以下、400μm以下、350μm以下、又は300μm以下であってもよい。第1表層部の厚さと第2表層部の厚さが異なる場合、第1表層部の厚さと第2表層部の厚さの差の絶対値は、5μm以上、10μm以上、20μm以上、30μm以上、40μm以上若しくは50μm以上であってもよく、及び/又は400μm以下、300μm以下、200μm以下、150μm以下若しくは100μm以下であってもよい。例えば、第1表層部と第2表層部が同じ化学組成及び同じ平均ビッカース硬さを有する場合であっても、それらの厚さに適切な差異を設けることで比較的容易に鋼板の第1表層部側の硬さ積算値が第2表層部側の硬さ積算値の1.05倍以上となるよう制御することが可能である。したがって、鋼板の製造プロセスを簡略化するという観点からは、第1表層部と第2表層部の厚さは異なっていることが好ましい。例えば、第1表層部及び第2表層部の平均ビッカース硬さが板厚1/2位置の平均ビッカース硬さよりも低い実施形態では、第1表層部及び第2表層部が厚くなるほど鋼板の強度は低下する傾向となるものの、水素脆化割れは一般に起きにくくなる。したがって、第1表層部及び第2表層部の厚さは、板厚中心部との関係や、鋼板の強度と耐水素脆化性のバランスなどを考慮して、10μm超から板厚の30%以下の範囲内で適切な値を選択することが好ましい。
本発明の実施形態によれば、第1表層部側の表面から板厚の30%までの領域における第1の硬さ積算値は、第2表層部側の表面から板厚の30%までの領域における第2の硬さ積算値の1.05倍以上である。このような構成を有する鋼板をせん断加工において使用することで、せん断加工の際に硬さが比較的大きい第1表層部側から優先的にき裂を進展させることができ、その結果としてせん断端面に生じる引張残留応力を低減することが可能となる。例えば、先に述べた国際公開第2018/151331号では、高強度鋼板の曲げ加工性を向上させるために、板厚中心部の片側又は両側に表層軟化部を配置することが教示されている。しかしながら、鋼板の両側に当該鋼板の板厚中心部とは異なる硬さを有する第1表層部と第2表層部を設け、さらに鋼板の両側で硬さの差を設けること、より具体的には第1表層部側の表面から板厚の30%までの領域における第1の硬さ積算値が、第2表層部側の表面から板厚の30%までの領域における第2の硬さ積算値の1.05倍以上となるようにすることで、せん断加工の際に硬さが比較的大きい第1表層部側から優先的にき裂を進展させてせん断端面に生じる引張残留応力を低減するという技術思想はこれまでにないものであり、今回、本発明者らによって初めて見出されたものである。第1の硬さ積算値及び第2の硬さ積算値を測定する範囲は、第1表層部及び第2表層部の厚さ(10μm超から板厚の30%以下の任意の厚さ)とは独立したものであり、当該第1表層部及び第2表層部の厚さにかかわらず、それぞれ第1表層部側及び第2表層部側の表面から板厚の30%までの領域において算出されるものである。
本発明の好ましい実施形態によれば、第1表層部側の表面から板厚のX%までの領域における硬さ積算値Hhighと第2表層部側の表面から板厚のX%までの領域における硬さ積算値Hlowとの比P(Hhigh/Hlow)は下記式1を満たす。
P≧0.00035(X-30)2+1.05 ・・・式1
ここで、0<X≦30である。Xの最小値は、板厚に対する表層部厚さの最小値(10μm超)の割合に相当するが、その割合は板厚の値に応じて変化するため、Xの最小値は0超とするものである。
本発明の実施形態においては、板厚中心部は、板厚1/2位置に対応する位置の平均ビッカース硬さが第1表層部及び第2表層部の平均ビッカース硬さとは異なる任意の材料であってよい。したがって、板厚中心部の化学組成は、特に限定されず、任意の適切な化学組成であってよい。より詳しくは、本発明は、上記のとおり、せん断加工の際にせん断端面に生じる引張残留応力を低減可能な鋼板を提供することを目的とするものであって、鋼板の両側に当該鋼板の板厚中心部とは異なる硬さを有する第1表層部及び第2表層部を設け、さらに鋼板の両側で硬さの差を設けること、より具体的には第1表層部側の表面から板厚の30%までの領域における第1の硬さ積算値が、第2表層部側の表面から板厚の30%までの領域における第2の硬さ積算値の1.05倍以上となるよう制御することによって当該目的を達成するものである。したがって、鋼板の化学組成、特に板厚中心部の化学組成並びに後で詳しく説明する第1表層部及び第2表層部の化学組成は、本発明の目的を達成する上で必須の技術的特徴でないことは明らかである。以下、本発明の実施形態に係る鋼板に適用される板厚中心部の好ましい化学組成について詳しく説明するが、これらの説明は、単なる例示を意図するものであって、本発明をこのような特定の化学組成を有する板厚中心部を用いたものに限定することを意図するものではない。また、板厚中心部において表層部との境界付近では表層部との合金元素の拡散により化学組成が境界から十分に離れた位置と異なる場合がある。そのような場合、以下の板厚中心部の化学組成は、板厚1/2位置付近で測定される化学組成をいうものである。また、以下の説明において、各元素の含有量の単位である「%」は、特に断りがない限り「質量%」を意味するものである。さらに、本明細書において、数値範囲を示す「~」とは、特に断りがない場合、その前後に記載される数値を下限値及び上限値として含む意味で使用される。
Cは、鋼板の強度を高めるのに有効な元素である。また、Cは、焼入れ性を確保するのに有効な元素でもある。これらの効果を十分に得るために、C含有量は0.050%以上であることが好ましい。C含有量は0.100%以上、0.200%以上又は0.300%以上であってもよい。一方で、Cを過度に含有すると、靭性が低下する場合がある。したがって、C含有量は0.800%以下であることが好ましい。C含有量は0.700%以下、0.600%以下又は0.500%以下であってもよい。
Siは、焼入れ性を確保するのに有効な元素である。また、Siは、Alとの合金化を抑制する元素でもある。これらの効果を十分に得るために、Si含有量は0.01%以上であることが好ましい。また、延性確保の観点から、Si含有量は0.30%以上又は0.50%以上であってもよい。加えて、Siは、板厚中心部における鉄系炭化物の粗大化を抑制し、強度と成形性を高めるのに有効な元素でもある。また、Siは、固溶強化により鋼板の高強度化に寄与する元素でもある。これらの観点から、Si含有量は1.00%以上又は1.20%以上であってもよい。しかしながら、Siを過度に含有すると、板厚中心部が脆化し、延性が劣化する場合がある。このため、Si含有量は3.00%であることが好ましい。Si含有量は2.50%以下、2.20%以下又は2.00%以下であってもよい。
Mnは、鋼板の強度を高めるのに有効な元素である。また、Mnは、焼入れ性を確保するのに有効な元素でもある。これらの効果を十分に得るために、Mn含有量は0.01%以上であることが好ましい。Mn含有量は0.10%以上、1.00%以上又は1.50%以上であってもよい。一方で、Mnを過度に含有すると、Mn偏析に起因して鋼板表層の硬度分布が大きくなる場合がある。したがって、Mn含有量は10.00%以下であることが好ましい。Mn含有量は8.00%以下、6.00%以下又は5.00%以下であってもよい。
Alは、脱酸剤として作用する元素である。このような効果を十分に得るために、Al含有量は0.001%以上であることが好ましい。Al含有量は0.005%以上、0.010%以上又は0.050%以上であってもよい。一方で、Alを過度に含有すると、粗大な酸化物が形成し、加工性などの特性を劣化させる虞がある。したがって、Al含有量は0.500%以下であることが好ましい。Al含有量は0.400%以下、0.300%以下又は0.200%以下であってもよい。
Pは、鋼板の板厚中心部に偏析する傾向があり、過度に含有すると溶接部を脆化させる場合がある。したがって、P含有量は0.100%以下であることが好ましい。P含有量は0.080%以下、0.060%以下又は0.050%以下であってもよい。P含有量の下限は特に限定されず0%であってもよいが、製造コストの観点からP含有量は0%超、0.001%以上又は0.005%以上であってもよい。
Sは、製造工程で混入し、介在物を形成する元素である。Sを過度に含有すると、靭性などの特性を劣化させる虞がある。したがって、S含有量は0.050%以下であることが好ましい。S含有量は0.030%以下、0.010%以下又は0.005%以下であってもよい。S含有量の下限は特に限定されず0%であってもよいが、製造コストの観点からS含有量は0%超、0.0001%以上又は0.0005%以上であってもよい。
Nは、過度に含有すると粗大な窒化物を形成し、曲げ性を劣化させる場合がある。したがって、N含有量は0.0100%以下であることが好ましい。加えて、Nは、溶接時のブローホール発生の原因となる場合があることから少ない方が好ましい。このため、N含有量は0.0080%以下、0.0060%以下又は0.0030%以下であってもよい。N含有量の下限は特に限定されず0%であってもよいが、製造コストの観点からN含有量は0%超、0.0005%以上又は0.0010%以上であってもよい。
Crは、強度の向上に寄与する元素である。また、Crは、焼入れ性を向上させる元素でもある。Cr含有量は0%であってもよいが、これらの効果を十分に得るためには、Cr含有量は0.001%以上であることが好ましい。Cr含有量は0.005%以上、0.010%以上又は0.100%以上であってもよい。一方で、Crを過度に含有すると、酸洗性、溶接性及び/又は熱間加工性などが劣化することがある。このため、Cr含有量は3.000%以下であることが好ましい。Cr含有量は2.500%以下、2.000%以下又は1.500%以下であってもよい。
Moは、強度の向上に寄与する元素である。また、Moは、焼入れ性を向上させる元素でもある。Mo含有量は0%であってもよいが、これらの効果を十分に得るためには、Mo含有量は0.001%以上であることが好ましい。Mo含有量は0.005%以上、0.010%以上又は0.100%以上であってもよい。一方で、Moを過度に含有すると、酸洗性、溶接性及び/又は熱間加工性などが劣化することがある。このため、Mo含有量は1.000%以下であることが好ましい。Mo含有量は0.800%以下、0.600%以下又は0.400%以下であってもよい。
Bは、強度の向上に寄与する元素である。また、Bは、焼入れ性を向上させる元素でもある。B含有量は0%であってもよいが、これらの効果を十分に得るためには、B含有量は0.0001%以上であることが好ましい。B含有量は0.0010%以上、0.0020%以上又は0.0030%以上であってもよい。一方で、Bを過度に含有すると、酸洗性、溶接性及び/又は熱間加工性などが劣化することがある。このため、B含有量は0.0100%以下であることが好ましい。B含有量は0.0080%以下、0.0060%以下又は0.0050%以下であってもよい。
Ti、Nb及びVは、強化元素であり、炭化物の形成により強度を向上させる。また、Ti、Nb及びVは、ピン止め効果による細粒化に寄与する元素であり、固溶状態で存在することによりFeの拡散速度を低下させる元素でもある。Ti、Nb及びV含有量は0%であってもよいが、これらの効果を十分に得るためには、Ti、Nb及びV含有量は0.001%以上であることが好ましい。Ti、Nb及びV含有量は0.005%以上、0.010%以上又は0.100%以上であってもよい。一方で、Ti、Nb及びVを過度に含有すると、炭化物が粗大化して成形性等の特性を劣化させる場合がある。したがって、Ti、Nb及びV含有量は0.500%以下であることが好ましい。Ti、Nb及びV含有量は0.400%以下、0.300%以下又は0.200%以下であってもよい。
Cu及びNiは、強度の向上に寄与する元素である。Cu及びNi含有量は0%であってもよいが、このような効果を十分に得るためには、Cu及びNi含有量は0.001%以上であることが好ましい。Cu及びNi含有量は0.005%以上、0.010%以上又は0.100%以上であってもよい。一方で、Cu及びNiを過度に含有すると、酸洗性、溶接性及び/又は熱間加工性などが劣化することがある。このため、Cu及びNi含有量は0.500%以下であることが好ましい。Cu及びNi含有量は0.400%以下、0.300%以下又は0.200%以下であってもよい。
さらに、板厚中心部は、以下の元素を意図的又は不可避的に含有してもよく、それらによって本発明の効果が阻害されることはない。これらの元素は、O:0~0.0200%、W:0~0.100%、Ta:0~0.100%、Co:0~0.500%、Sn:0~0.050%、Sb:0~0.050%、As:0~0.050%、Mg:0~0.0500%、Ca:0~0.050%、Zr:0~0.050%、並びにY:0~0.050%、La:0~0.050%及びCe:0~0.050%等のREM(希土類金属)である。これらの元素の含有量はそれぞれ0.0001%以上又は0.001%以上であってもよい。
本発明の実施形態においては、第1表層部及び第2表層部は、板厚中心部とは異なる平均ビッカース硬さを有し、先に説明した第1表層部側の硬さ積算値と第2表層部側の硬さ積算値との関係を満足させるものであればよく、それゆえ第1表層部及び第2表層部の化学組成は特に限定されない。しかしながら、一般的には、第1表層部及び第2表層部の化学組成は、第1表層部及び第2表層部が板厚1/2位置の平均ビッカース硬さよりも低い平均ビッカース硬さを有する場合(実施形態1)と、第1表層部及び第2表層部が板厚1/2位置の平均ビッカース硬さよりも高い平均ビッカース硬さを有する場合(実施形態2)とで、鋼板強度に関連する特定の合金元素の含有量が変化し得る。そこで、以下では、特に実施形態1及び2の場合を考慮して、第1表層部及び第2表層部の好ましい化学組成について説明する。
(第1表層部及び第2表層部のC含有量が板厚中心部のC含有量の0.9倍以下)
Cは、強度の向上に寄与する元素である。したがって、実施形態1では、第1及び第2表層部のC含有量は板厚中心部のC含有量の0.9倍以下であることが好ましく、0.7倍以下、0.5倍以下、0.3倍以下又は0.1倍以下であってもよい。第1及び第2表層部のC含有量が板厚中心部のC含有量の0.9倍である場合、板厚中心部の好ましい化学組成におけるC含有量の上限が0.800%以下であるため、第1及び第2表層部のC含有量の上限は0.720%以下となる。第1及び第2表層部のC含有量は0.500%以下、0.300%以下、0.100%以下又は0.010%以下であってもよい。下限は特に規定しないが、一般的にはC含有量は0.001%以上であり、0.005%以上であってもよい。
同様に、Mn、Cr及びMoは、強度の向上に寄与する元素である。したがって、実施形態1では、第1及び第2表層部のMn、Cr及びMo含有量の総和は板厚中心部のMn、Cr及びMo含有量の総和の0.9倍以下であることが好ましく、0.7倍以下、0.5倍以下又は0.3倍以下であってもよい。各元素の下限は特に規定しないが、一般的にはMn含有量は0.005%以上、Cr及びMo含有量はそれぞれ0.0005%以上であり、0.001%以上であってもよい。
同様に、Bは、強度の向上に寄与する元素である。したがって、実施形態1では、第1及び第2表層部のB含有量は板厚中心部のB含有量の0.9倍以下であることが好ましく、0.7倍以下、0.5倍以下又は0.3倍以下であってもよい。下限は特に規定しないが、一般的にはB含有量は0.0001%以上であり、0.0003%以上であってもよい。
同様に、Cu及びNiは、強度の向上に寄与する元素である。したがって、実施形態1では、第1及び第2表層部のCu及びNi含有量の総和は板厚中心部のCu及びNi含有量の総和の0.9倍以下であることが好ましく、0.7倍以下、0.5倍以下又は0.3倍以下であってもよい。各元素の下限は特に規定しないが、一般的にはCu及びNi含有量はそれぞれ0.0005%以上であり、0.001%以上であってもよい。
C:0.720%以下、
Si:0.01~3.00%、
Mn:10.00%以下、又は0.01~10.00%、
Al:0~0.500%、又は0.001~0.500%、
P:0.100%以下、
S:0.050%以下、
N:0.0100%以下、
Cr:0~3.000%、
Mo:0~1.000%、
B:0~0.0100%、
Ti:0~0.500%、
Nb:0~0.500%、
V:0~0.500%、
Cu:0~0.500%、
Ni:0~0.500%、
O:0~0.0200%、
W:0~0.100%、
Ta:0~0.100%、
Co:0~0.500%、
Sn:0~0.050%、
Sb:0~0.050%、
As:0~0.050%、
Mg:0~0.0500%、
Ca:0~0.050%、
Y:0~0.050%、
Zr:0~0.050%、
La:0~0.050%、
Ce:0~0.050%、並びに
残部:Fe及び不純物
からなり、第1表層部及び第2表層部のC含有量が板厚中心部のC含有量の0.9倍以下である化学組成を有する。加えて、第1表層部及び第2表層部のMn、Cr及びMo含有量の総和は板厚中心部のMn、Cr及びMo含有量の総和の0.9倍以下であるか、第1表層部及び第2表層部のB含有量は板厚中心部のB含有量の総和の0.9倍以下であるか、及び/又は第1表層部及び第2表層部のCu及びNi含有量の総和は板厚中心部のCu及びNi含有量の総和の0.9倍以下であってもよい。
(第1表層部及び第2表層部のC含有量が板厚中心部のC含有量の1.1倍以上)
Cは、強度の向上に寄与する元素である。したがって、実施形態2では、第1及び第2表層部のC含有量は板厚中心部のC含有量の1.1倍以上であることが好ましく、1.2倍以上、1.3倍以上、1.5倍以上又は1.8倍以上であってもよい。第1及び第2表層部のC含有量が板厚中心部のC含有量の1.1倍である場合、板厚中心部の好ましい化学組成におけるC含有量の下限が0.050%以上であるため、第1及び第2表層部のC含有量の下限は0.055%以上となる。第1及び第2表層部のC含有量は0.300%以上、0.500%以上又は0.880%以上であってもよい。上限は特に限定されないが、一般的にはC含有量は1.000%以下である。
同様に、Mn、Cr及びMoは、強度の向上に寄与する元素である。したがって、実施形態2では、第1及び第2表層部のMn、Cr及びMo含有量の総和は板厚中心部のMn、Cr及びMo含有量の総和の1.1倍以上であることが好ましく、1.2倍以上、1.3倍以上又は1.5倍以上であってもよい。各元素の上限は特に限定されないが、一般的にはMn含有量は11.00%以下、Cr含有量は3.500%以下、Mo含有量は1.500%以下である。
同様に、Bは、強度の向上に寄与する元素である。したがって、実施形態2では、第1及び第2表層部のB含有量は板厚中心部のB含有量の1.1倍以上であることが好ましく、1.2倍以上、1.3倍以上又は1.5倍以上であってもよい。上限は特に限定されないが、一般的にはB含有量は0.0110%以下である。
同様に、Cu及びNiは、強度の向上に寄与する元素である。したがって、実施形態2では、第1及び第2表層部のCu及びNi含有量の総和は板厚中心部のCu及びNi含有量の総和の1.1倍以上であることが好ましく、1.2倍以上、1.3倍以上又は1.5倍以上であってもよい。各元素の上限は特に限定されないが、一般的にはCu及びNi含有量はそれぞれ1.000%以下であり、0.700%以下であってもよい。
C:0.055~1.000%、
Si:0.01~3.00%、
Mn:0.01~11.00%、
Al:0~0.500%、又は0.001~0.500%、
P:0.100%以下、
S:0.050%以下、
N:0.0100%以下、
Cr:0~3.500%、
Mo:0~1.500%、
B:0~0.0110%、
Ti:0~0.500%、
Nb:0~0.500%、
V:0~0.500%、
Cu:0~1.000%、
Ni:0~1.000%、
O:0~0.0200%、
W:0~0.100%、
Ta:0~0.100%、
Co:0~0.500%、
Sn:0~0.050%、
Sb:0~0.050%、
As:0~0.050%、
Mg:0~0.0500%、
Ca:0~0.050%、
Y:0~0.050%、
Zr:0~0.050%、
La:0~0.050%、
Ce:0~0.050%、並びに
残部:Fe及び不純物
からなり、第1表層部及び第2表層部のC含有量が板厚中心部のC含有量の1.1倍以上である化学組成を有する。加えて、第1表層部及び第2表層部のMn、Cr及びMo含有量の総和は板厚中心部のMn、Cr及びMo含有量の総和の1.1倍以上であるか、第1表層部及び第2表層部のB含有量は板厚中心部のB含有量の総和の1.1倍以下であるか、及び/又は第1表層部及び第2表層部のCu及びNi含有量の総和は板厚中心部のCu及びNi含有量の総和の1.1倍以上であってもよい。
本発明の実施形態に係る鋼板は、任意の適切な引張強さを有することができ、特に限定されないが、例えば980MPa以上の引張強さを有することが好ましい。高強度鋼は水素脆化に対して特に敏感であることが一般に知られている。したがって、本発明の実施形態に係る鋼板が980MPa以上の高い引張強さを有する場合には、同じ引張強さを有する従来の鋼板をせん断加工した場合と比較して、せん断端面に生じる引張残留応力の低減効果が顕著であり、よって耐水素脆化性の向上が特に顕著なものとなる。また、高強度鋼板をせん断加工した場合には、比較的低い引張強さを有する鋼板の場合と比較して、せん断端面に生じる引張残留応力は一般に大きくなる。しかしながら、本発明の実施形態に係る鋼板は、980MPaを大きく超える引張強さを有する場合であっても、せん断加工の際にせん断端面に生じる引張残留応力を十分に低減することが可能である。例えば、本発明の実施形態においては、鋼板の引張強さは1080MPa以上、1180MPa以上、1250MPa以上、1300MPa以上、又は1470MPa以上であってもよい。上限は特に限定されないが、例えば、鋼板の引張強さは2500MPa以下、2200MPa以下又は2000MPa以下であってもよい。引張強さは、鋼板の圧延方向に直角な方向からJIS5号引張試験片を採取し、JIS Z2241(2011)に準拠して引張試験を行うことで測定される。
本発明の実施形態に係る鋼板は、特に限定されないが、一般的には6.0mm以下、より具体的には0.5~6.0mmの板厚を有する。鋼板の板厚を6.0mm以下などのせん断加工により適した板厚とすることで、せん断端面に生じる引張残留応力の低減効果をより顕著なものとすることができる。例えば、板厚は1.0mm以上、1.2mm以上若しくは2.0mm以上であってもよく、及び/又は5.5mm以下、5.0mm以下、4.5mm以下、4.0mm以下若しくは3.0mm以下であってもよい。
本発明の実施形態に係る鋼板の第1表層部及び第2表層部の少なくとも一方の表面に耐食性の向上等を目的として、めっき層を形成してもよい。めっき層は、電気めっき層及び溶融めっき層のいずれでもよい。電気めっき層は、例えば、電気亜鉛めっき層、電気Zn-Ni合金めっき層等を含む。溶融めっき層は、例えば、溶融亜鉛めっき層、合金化溶融亜鉛めっき層、溶融アルミニウムめっき層、溶融Zn-Al合金めっき層、溶融Zn-Al-Mg合金めっき層、溶融Zn-Al-Mg-Si合金めっき層等を含む。めっき層の付着量は、特に制限されず一般的な付着量でよい。
本発明の実施形態に係る鋼板は、当業者に公知の任意の適切な方法によって製造することが可能である。特に限定されないが、例えば、本発明の実施形態に係る鋼板は、クラッド法を利用して製造することができる。この場合、鋼板の製造方法は、板厚中心部を構成する母材鋼材の両側に第1表層部及び第2表層部を構成する2つの表層用鋼材を積層して複層鋼材を形成する積層工程、得られた複層鋼材を熱間圧延する熱間圧延工程、及び熱間圧延された複層鋼材を冷却する冷却工程、必要に応じて巻き取り工程、冷間圧延工程、焼鈍工程、めっき工程等をさらに含んでいてもよい。
第1表層部と第2表層部の厚さは光学顕微鏡によって決定した。測定対象とするサンプルを直径30mmの円筒状のエポキシ樹脂中に埋め込み、#80~1000の研磨紙を用いて湿式研磨により粗研磨を行い、次いで3μm及び1μmの平均粒径を有するダイヤモンド砥粒を用いて鏡面状に仕上げ研磨を行った。1μmの平均粒径を有するダイヤモンド砥粒を用いた研磨は1N~10Nの荷重を加え、30~120mpmの速度で回転する研磨台の上で30~600秒保持する条件で実施した。当該研磨において板厚中心部と表層部の境界に生じる段差を光学顕微鏡で観察することにより、板厚中心部と表層部の境界を決定し、第1表層部及び第2表層部の厚さ(%、板厚に占める割合)を決定した。
上記のようにして画定された第1表層部及び第2表層部内でランダムに10点のビッカース硬さを押し込み荷重100g重で測定し、それらの平均値を算出することによって第1表層部及び第2表層部の平均ビッカース硬さを決定した。同様に板厚1/2位置で板厚に垂直な方向でかつ圧延方向に平行な線上に押し込み荷重100g重で合計5点のビッカース硬さを測定し、それらの平均値を算出することによって板厚1/2位置の平均ビッカース硬さを決定した。
まず、鋼板の第1表層部側の表面から板厚方向に15μm位置を測定開始点として、板厚方向に50μmの間隔で、その板厚方向位置でのビッカース硬さを押し込み荷重100g重で測定し、次いでその位置から板厚に垂直な方向でかつ圧延方向に平行な線上に同様に押し込み荷重100g重で合計5点のビッカース硬さを測定し、それらの平均値をその板厚方向位置での平均ビッカース硬さとする。板厚方向及び圧延方向に並ぶ各測定点の間隔は圧痕の4倍以上の距離とした。各測定点の間隔を圧痕の4倍以上の距離としつつ表面から板厚方向に直線的に打刻することが難しい場合には、各測定点の間隔を圧痕の4倍以上の距離としつつ表面から板厚方向にジグザグに打刻した。上記のようにして第1表層部側の表面から板厚の30%まで測定して得られた各板厚方向位置における平均ビッカース硬さと測定間隔を乗算したものを合計することにより第1の硬さ積算値(Hv×mm)を決定した。同様に、第2表層部側の表面から板厚の30%まで測定して得られた各板厚方向位置における平均ビッカース硬さと測定間隔を乗算したものを合計することにより第2の硬さ積算値(Hv×mm)を決定した。
先に説明した第1の硬さ積算値と第2の硬さ積算値を決定する過程で、第1表層部側及び第2表層部側の板厚の30%までの各板厚方向位置での硬さ積算値の比P(Hhigh/Hlow)を算出し、算出された各積算値の比をプロットした曲線を下記式1の曲線と対比することで当該比Pが上記式1を満たすか否かを判別し、式1を満たす場合をOK、式1を満たさない場合をNGと判定した。
P≧0.00035(X-30)2+1.05 ・・・式1
ここで、0<X≦30である。
引張強さは、冷延鋼板の圧延方向に直角な方向からJIS5号引張試験片を採取し、JIS Z2241(2011)に準拠して引張試験を行うことで測定した。
冷延鋼板をせん断加工し、冷延鋼板のせん断端面に生じる引張残留応力を測定した。具体的には、パンチ側に冷延鋼板の第1表層部そしてダイ側に冷延鋼板の第2表層部を配置し、パンチとダイを相対的に移動させることで冷延鋼板をパンチで打ち抜き、ダイ上にせん断端面を有する加工材を得た。次いで、当該加工材の板厚方向の中心位置(破断面に対応)において、スポット径φ500μmでX線による残留応力測定を実施した(板幅方向に異なる3箇所)。残留応力の測定方向は、板厚方向、板幅方向、板厚から45度方向の3方向とし、残留応力の算出にはsin2ψ法を用いた。端面法線方向の残留応力をゼロと仮定し、算出した3方向の残留応力から最大主応力を算出した。3箇所で算出した最大主応力の値を平均することにより各加工材の引張残留応力を決定した。引張残留応力と引張強さの比(引張残留応力/引張強さ)が0.90以下である場合を、せん断加工の際にせん断端面に生じる引張残留応力を低減可能な鋼板として評価した。得られた結果を表2に示す。
1a ダレ
1b 破断面
1bx 第1部分
1by 第2部分
1c バリ
1dx 第1き裂
1dy 第2き裂
1e せん断面
5 鋼板
10 加工材
10a 第1面
10b 第2面
11 鋼板の一部
12 鋼板の他部
15 スクラップ
21 第1刃
22 第2刃
Claims (9)
- 板厚中心部と、該板厚中心部の両側にそれぞれ配置された第1表層部及び第2表層部とを含み、
前記第1表層部及び第2表層部がそれぞれ独立して10μm超から板厚の30%以下の厚さを有し、
前記第1表層部及び第2表層部が板厚1/2位置の平均ビッカース硬さとは異なる平均ビッカース硬さを有し、
前記第1表層部側の表面から板厚の30%までの領域における第1の硬さ積算値が、前記第2表層部側の表面から板厚の30%までの領域における第2の硬さ積算値の1.05倍以上である、鋼板。 - 前記第1表層部側の表面から板厚のX%までの領域における硬さ積算値Hhighと前記第2表層部側の表面から板厚のX%までの領域における硬さ積算値Hlowとの比P(Hhigh/Hlow)が下記式1を満たす、請求項1に記載の鋼板。
P≧0.00035(X-30)2+1.05 ・・・式1
ここで、0<X≦30である。 - 前記第1の硬さ積算値が前記第2の硬さ積算値の1.20倍以上である、請求項1又は2に記載の鋼板。
- 前記第1表層部及び第2表層部が板厚1/2位置の平均ビッカース硬さよりも低い平均ビッカース硬さを有する、請求項1~3のいずれか1項に記載の鋼板。
- 前記第1表層部及び第2表層部が板厚1/2位置の平均ビッカース硬さよりも高い平均ビッカース硬さを有する、請求項1~3のいずれか1項に記載の鋼板。
- 引張強さが980MPa以上である、請求項1~5のいずれか1項に記載の鋼板。
- 引張強さが1470MPa以上である、請求項6に記載の鋼板。
- 前記板厚中心部が、質量%で、
C:0.050~0.800%、
Si:0.01~3.00%、
Mn:0.01~10.00%、
Al:0.001~0.500%、
P:0.100%以下、
S:0.050%以下、
N:0.0100%以下、
Cr:0~3.000%、
Mo:0~1.000%、
B:0~0.0100%、
Ti:0~0.500%、
Nb:0~0.500%、
V:0~0.500%、
Cu:0~0.500%、
Ni:0~0.500%、
O:0~0.0200%、
W:0~0.100%、
Ta:0~0.100%、
Co:0~0.500%、
Sn:0~0.050%、
Sb:0~0.050%、
As:0~0.050%、
Mg:0~0.0500%、
Ca:0~0.050%、
Y:0~0.050%、
Zr:0~0.050%、
La:0~0.050%、
Ce:0~0.050%、並びに
残部:Fe及び不純物
からなる化学組成を有する、請求項1~7のいずれか1項に記載の鋼板。 - 前記化学組成が、質量%で、
Cr:0.001~3.000%、
Mo:0.001~1.000%、
B:0.0001~0.0100%、
Ti:0.001~0.500%、
Nb:0.001~0.500%、
V:0.001~0.500%、
Cu:0.001~0.500%、
Ni:0.001~0.500%、
O:0.0001~0.0200%、
W:0.001~0.100%、
Ta:0.001~0.100%、
Co:0.001~0.500%、
Sn:0.001~0.050%、
Sb:0.001~0.050%、
As:0.001~0.050%、
Mg:0.0001~0.0500%、
Ca:0.001~0.050%、
Y:0.001~0.050%、
Zr:0.001~0.050%、
La:0.001~0.050%、及び
Ce:0.001~0.050%
からなる群より選択される少なくとも一種を含有する、請求項8に記載の鋼板。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022541762A JP7425372B2 (ja) | 2020-08-07 | 2021-08-06 | 鋼板 |
KR1020227038400A KR20220156962A (ko) | 2020-08-07 | 2021-08-06 | 강판 |
US18/008,639 US12123080B2 (en) | 2020-08-07 | 2021-08-06 | Steel sheet |
CN202180031646.4A CN115461484B (zh) | 2020-08-07 | 2021-08-06 | 钢板 |
EP21852852.9A EP4194191A4 (en) | 2020-08-07 | 2021-08-06 | GALVANISED STEEL |
MX2022015634A MX2022015634A (es) | 2020-08-07 | 2021-08-06 | Lamina de acero. |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020-134502 | 2020-08-07 | ||
JP2020134502 | 2020-08-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022030639A1 true WO2022030639A1 (ja) | 2022-02-10 |
Family
ID=80117502
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/029436 WO2022030639A1 (ja) | 2020-08-07 | 2021-08-06 | 鋼板 |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP4194191A4 (ja) |
JP (1) | JP7425372B2 (ja) |
KR (1) | KR20220156962A (ja) |
CN (1) | CN115461484B (ja) |
MX (1) | MX2022015634A (ja) |
WO (1) | WO2022030639A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7425373B2 (ja) * | 2020-08-07 | 2024-01-31 | 日本製鉄株式会社 | 鋼板 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09306439A (ja) * | 1996-05-21 | 1997-11-28 | Katayama Tokushu Kogyo Kk | 電池缶形成材料、電池缶形成方法および電池缶 |
JP2006104489A (ja) * | 2004-09-30 | 2006-04-20 | Jfe Steel Kk | 曲げ加工性に優れた耐摩耗鋼およびその製造方法 |
WO2018151331A1 (ja) | 2017-02-20 | 2018-08-23 | 新日鐵住金株式会社 | 高強度鋼板 |
WO2018151330A1 (ja) * | 2017-02-20 | 2018-08-23 | 新日鐵住金株式会社 | ホットスタンプ成形体 |
WO2018151322A1 (ja) * | 2017-02-20 | 2018-08-23 | 新日鐵住金株式会社 | 高強度鋼板 |
WO2018199328A1 (ja) * | 2017-04-28 | 2018-11-01 | 新日鐵住金株式会社 | 高強度鋼板およびその製造方法 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0639655B2 (ja) * | 1990-01-30 | 1994-05-25 | 新日本製鐵株式会社 | プレス成形時の耐バリ性の優れた良加工性複合鋼板およびその製造方法 |
JP3790087B2 (ja) * | 2000-03-31 | 2006-06-28 | 株式会社神戸製鋼所 | 加工性に優れる高強度熱延鋼板 |
JP4423755B2 (ja) * | 2000-06-26 | 2010-03-03 | Jfeスチール株式会社 | 拡管加工性に優れた鋼管 |
US20160067760A1 (en) * | 2010-12-22 | 2016-03-10 | Nippon Steel & Sumitomo Metal Corporation | Surface layer grain refining hot-shearing method and workpiece obtained by surface layer grain refining hot-shearing |
CN110325656B (zh) * | 2017-02-20 | 2021-06-15 | 日本制铁株式会社 | 钢板 |
KR102228292B1 (ko) * | 2017-02-20 | 2021-03-16 | 닛폰세이테츠 가부시키가이샤 | 강판 |
WO2020129402A1 (ja) * | 2018-12-21 | 2020-06-25 | Jfeスチール株式会社 | 鋼板、部材およびこれらの製造方法 |
JP7425373B2 (ja) * | 2020-08-07 | 2024-01-31 | 日本製鉄株式会社 | 鋼板 |
-
2021
- 2021-08-06 CN CN202180031646.4A patent/CN115461484B/zh active Active
- 2021-08-06 MX MX2022015634A patent/MX2022015634A/es unknown
- 2021-08-06 JP JP2022541762A patent/JP7425372B2/ja active Active
- 2021-08-06 KR KR1020227038400A patent/KR20220156962A/ko unknown
- 2021-08-06 EP EP21852852.9A patent/EP4194191A4/en active Pending
- 2021-08-06 WO PCT/JP2021/029436 patent/WO2022030639A1/ja active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09306439A (ja) * | 1996-05-21 | 1997-11-28 | Katayama Tokushu Kogyo Kk | 電池缶形成材料、電池缶形成方法および電池缶 |
JP2006104489A (ja) * | 2004-09-30 | 2006-04-20 | Jfe Steel Kk | 曲げ加工性に優れた耐摩耗鋼およびその製造方法 |
WO2018151331A1 (ja) | 2017-02-20 | 2018-08-23 | 新日鐵住金株式会社 | 高強度鋼板 |
WO2018151330A1 (ja) * | 2017-02-20 | 2018-08-23 | 新日鐵住金株式会社 | ホットスタンプ成形体 |
WO2018151322A1 (ja) * | 2017-02-20 | 2018-08-23 | 新日鐵住金株式会社 | 高強度鋼板 |
WO2018199328A1 (ja) * | 2017-04-28 | 2018-11-01 | 新日鐵住金株式会社 | 高強度鋼板およびその製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP4194191A4 |
Also Published As
Publication number | Publication date |
---|---|
KR20220156962A (ko) | 2022-11-28 |
CN115461484B (zh) | 2023-12-01 |
EP4194191A1 (en) | 2023-06-14 |
EP4194191A4 (en) | 2024-01-17 |
JPWO2022030639A1 (ja) | 2022-02-10 |
CN115461484A (zh) | 2022-12-09 |
US20230250521A1 (en) | 2023-08-10 |
MX2022015634A (es) | 2023-01-11 |
JP7425372B2 (ja) | 2024-01-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2762585B1 (en) | High-strength hot-dip galvanized steel sheet with excellent mechanical cutting characteristics, high-strength alloyed hot-dip galvanized steel sheet, and method for producing said sheets | |
EP3415653B1 (en) | High-strength galvanized steel sheet and method for producing same | |
US7842142B1 (en) | High strength part and method for producing the same | |
JPWO2019116531A1 (ja) | 鋼板、溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板 | |
EP3754043B1 (en) | High-strength galvanized steel sheet, high-strength member, and method for manufacturing the same | |
JP2020045568A (ja) | 高強度亜鉛めっき鋼板の製造方法、及び高強度部材の製造方法 | |
WO2021200580A1 (ja) | 鋼板、部材及びそれらの製造方法 | |
CN115362277B (zh) | 钢板、部件及其制造方法 | |
KR20190026854A (ko) | 저항 용접부를 갖는 자동차용 부재 | |
US20210108282A1 (en) | High-strength steel sheet and production method thereof | |
WO2021200579A1 (ja) | 鋼板、部材及びそれらの製造方法 | |
EP2527483A1 (en) | High-strength hot-dip galvanized steel sheet reduced in burr formation and process for producing same | |
WO2021117878A1 (ja) | アルミニウムめっき鋼板の溶接用ソリッドワイヤ、及び溶接継手の製造方法 | |
CN115735015A (zh) | 凸焊接头和凸焊方法 | |
WO2022249650A1 (ja) | 自動車用部材およびその抵抗スポット溶接方法 | |
JP2003201547A (ja) | 深絞り性、耐二次加工脆性および耐食性に優れるフェライト系ステンレス鋼板及びその製造方法 | |
WO2022181761A1 (ja) | 鋼板 | |
WO2020075394A1 (ja) | 高強度鋼板およびその製造方法 | |
WO2022030641A1 (ja) | 鋼板 | |
WO2022030639A1 (ja) | 鋼板 | |
KR20220144404A (ko) | 강판, 부재 및 그들의 제조 방법 | |
JP5070866B2 (ja) | 熱延鋼板およびスポット溶接部材 | |
US12123080B2 (en) | Steel sheet | |
JP4171296B2 (ja) | 深絞り性に優れた鋼板およびその製造方法と加工性に優れた鋼管の製造方法 | |
JP2022038084A (ja) | クラッド鋼板およびその製造方法ならびに溶接構造物 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21852852 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20227038400 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2022541762 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202217074309 Country of ref document: IN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2021852852 Country of ref document: EP Effective date: 20230307 |