WO2018198995A1 - Copper alloy sheet and method for manufacturing same - Google Patents

Copper alloy sheet and method for manufacturing same Download PDF

Info

Publication number
WO2018198995A1
WO2018198995A1 PCT/JP2018/016389 JP2018016389W WO2018198995A1 WO 2018198995 A1 WO2018198995 A1 WO 2018198995A1 JP 2018016389 W JP2018016389 W JP 2018016389W WO 2018198995 A1 WO2018198995 A1 WO 2018198995A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
copper alloy
grain boundary
alloy sheet
heat treatment
Prior art date
Application number
PCT/JP2018/016389
Other languages
French (fr)
Japanese (ja)
Inventor
岳己 磯松
翔一 檀上
樋口 優
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Priority to CN201880028035.2A priority Critical patent/CN110573635B/en
Priority to JP2019514474A priority patent/JP7145847B2/en
Priority to KR1020197016834A priority patent/KR102499442B1/en
Publication of WO2018198995A1 publication Critical patent/WO2018198995A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/05Alloys based on copper with manganese as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/10Alloys based on copper with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working

Definitions

  • the present invention relates to a copper alloy sheet material applied to, for example, lead frames, connectors, terminal materials, relays, switches, sockets and the like for in-vehicle components and electrical / electronic devices, and a manufacturing method thereof.
  • Copper alloy sheet materials are widely used in applications such as lead frames, connectors, terminal materials, relays, switches, sockets, etc. for in-vehicle components and electrical / electronic devices.
  • the characteristic items required for the copper alloy sheet used for such applications include tensile strength, yield strength (yield stress), bending workability, conductivity, fatigue characteristics, and the like.
  • the plate material since electric / electronic parts are generally formed by pressing or bending a plate material, the plate material must have excellent press punching workability.
  • the press punching process if the press punching process is inferior, the shape of the cut surface when the press punching process is performed becomes unstable.
  • the arrangement intervals between the terminals formed in a row cannot be made uniform, and variations occur, and variations in size and shape tend to occur among the terminals. Since this is not desirable in manufacturing on-vehicle components and electrical / electronic components, the copper alloy sheet material must also have excellent press punching workability.
  • terminals used for high current applications are required to be formed of a copper alloy material having high conductivity.
  • Cu-Ni-Si alloys which are high-strength copper alloys strengthened mainly by precipitation strengthening and work hardening, have been widely used as copper alloy materials for electrical and electronic equipment and automobiles. Has been.
  • the Cu—Ni—Si alloy has a conductivity of about 50% IACS at the maximum, and when it is energized with a large current, the amount of heat generated by resistance increases, and heat reduces the spring property of the contact portion and fixes the terminal. Since the function of the terminal may be remarkably lowered due to deterioration of the mold or the like, it is not suitable for use as a terminal material for large current.
  • Patent Document 1 a Cu—Co—Si alloy is used instead of a Cu—Ni—Si alloy, and the frequency of equiaxed grains and twin grain boundaries is controlled in the recrystallized structure. It is disclosed that bending workability and conductivity can be improved. However, Patent Document 1 does not discuss any press punching workability.
  • An object of the present invention is to provide a copper alloy sheet using a Cu—Co—Si based alloy, having high strength and high electrical conductivity, and having excellent press punching workability.
  • a method for producing the copper alloy sheet according to any one of (1) to (4) above A copper alloy material having the above alloy composition is cast into a casting step [Step 1], a first face grinding step [Step 2], a homogenization heat treatment step [Step 3], a hot rolling step [Step 4], and a water cooling step [Step 5]. ], Second face milling step [step 6], first cold rolling step [step 7], solution heat treatment step [step 8], aging heat treatment step [step 9], second cold rolling step [step 10]. And an annealing step [Step 11] are sequentially performed.
  • a method for producing the copper alloy sheet according to any one of (1) to (4) above A copper alloy material having the above alloy composition is cast into a casting step [Step 1], a first face grinding step [Step 2], a homogenization heat treatment step [Step 3], a hot rolling step [Step 4], and a water cooling step [Step 5]. ], Second face milling step [step 6], first cold rolling step [step 7], solution heat treatment step [step 8], second cold rolling step [step 10], aging heat treatment [step 9], A method for producing a copper alloy sheet material, comprising sequentially performing a third cold rolling step [Step 12] and an annealing step [Step 11].
  • a method for producing the copper alloy sheet according to any one of (1) to (4) above A copper alloy material having the above alloy composition is cast into a casting step [Step 1], a first face grinding step [Step 2], a homogenization heat treatment step [Step 3], a hot rolling step [Step 4], and a water cooling step [Step 5]. ], A second face milling step [Step 6], a first cold rolling step [Step 7], an aging heat treatment step [Step 9], and a second cold rolling step [Step 10]. A method for producing an alloy sheet.
  • a copper alloy sheet material that uses a Cu—Co—Si based alloy, has high strength and high conductivity, and is excellent in press punching workability.
  • FIG. 1 is a typical crystal orientation distribution diagram of a copper alloy sheet material measured by EBSD and obtained from ODF (orientation distribution function) analysis.
  • it is indicated by Euler angles in three directions, ie, a direction RD parallel to the rolling direction and a sheet width direction TD, which are orthogonal to the two axes in the rolling surface, and a normal direction ND of the rolling surface.
  • the azimuth rotation is denoted as ⁇ , the ND axis azimuth rotation as ⁇ 1 , and the TD axis azimuth rotation as ⁇ 2 .
  • FIG. 2 is a partial perspective view schematically showing the copper alloy sheet according to the embodiment of the present invention in a state where a cut surface after press punching is visible.
  • the copper alloy sheet according to the present invention has an alloy composition containing 0.3 to 1.9% by mass of Co and 0.1 to 0.5% by mass of Si, with the balance being Cu and inevitable impurities.
  • the total of the special grain boundary ⁇ 7 grain boundary and ⁇ 9 grain boundary with respect to all crystal grain boundaries obtained from the results measured by the method is 1.5% or more, ⁇ 9 / ⁇ 7 is 1.0 to 5.0,
  • the “copper alloy sheet” is obtained by processing a copper alloy material (before processing and having a predetermined alloy composition) into a plate shape, having a specific thickness and being stable in shape. This means something with a spread in the direction of the cage plane, and in the broad sense includes strips.
  • the thickness of the plate material is not particularly limited, but is preferably 0.05 to 1.0 mm, more preferably 0.06 to 0.8 mm.
  • the copper alloy sheet according to the present invention contains Co and Si as essential components.
  • Co 0.3 to 1.9% by mass
  • Co is finely precipitated in the Cu matrix (matrix) as a second phase particle precipitate made of a single substance or a compound with Si, for example, with a size of about 50 to 500 nm.
  • This precipitate is an important component that acts to precipitate and harden by suppressing dislocation movement, and further suppresses grain growth and raises the material strength by refining crystal grains, and also improves bending workability. is there.
  • the Co content needs to be 0.3% by mass or more.
  • Co has a lower rate of decrease in conductivity when dissolved than Ni, but when the Co content exceeds 1.9% by mass, the decrease in conductivity becomes significant, exceeding 50% IACS. Since the conductivity cannot be obtained, the Co content needs to be 1.9% by mass or less.
  • the conductivity is about 38% IACS, but the Co content is 0.3%.
  • the copper alloy sheet material of the present invention in the range of ⁇ 1.9 mass% has a high value of 60% IACS or higher in electrical conductivity.
  • the tensile strength of the copper alloy sheet of the present invention depends on the production conditions, but by adopting specific production conditions, a copper alloy made of a Cu-Ni-Si alloy can be obtained at about 600 MPa after aging precipitation. High strength equivalent to that of plate material can be obtained.
  • the Co content is preferably in the range of 0.8 to 1.6% by mass.
  • Si 0.1-0.5% by mass
  • Si is finely precipitated in the Cu matrix (matrix) as precipitates of second phase particles made of a compound together with Co, Cr, and the like.
  • This precipitate is an important component having the effect of precipitating and hardening by suppressing dislocation movement, and further suppressing the grain growth and increasing the material strength by refining crystal grains.
  • it is necessary to make the Si content 0.1% by mass or more.
  • the Si content exceeds 0.5% by mass, the decrease in conductivity becomes remarkable, and the conductivity exceeding 50% IACS cannot be obtained. Therefore, the Si content is reduced to 0.5% by mass or less.
  • the Si content is preferably in the range of 0.2 to 0.5% by mass.
  • the copper alloy sheet material of the present invention further includes, as optional components, 0.05 to 1.0% by mass of Cr and 0.05 to 0.7% by mass of Ni. %, Fe 0.02 to 0.5 mass%, Mg 0.01 to 0.3 mass%, Mn 0.01 to 0.5 mass%, Zn 0.01 to 0.15 mass%, and Zr may contain at least one component selected from the group consisting of 0.01 to 0.15% by mass.
  • Cr 0.05 to 1.0% by mass
  • Cr is finely precipitated in the Cu matrix (matrix) as a compound or simple substance, for example, in the form of a precipitate having a size of about 50 to 500 nm.
  • This precipitate is a component having an action of precipitating and hardening by suppressing dislocation movement, and further suppressing the grain growth and increasing the material strength by refining the crystal grains and improving the bending workability.
  • the Cr content is preferably 0.05% by mass or more.
  • Cr content is set to 0.05 to 1.0% by mass.
  • Ni is finely precipitated in the matrix (matrix) of Cu as a compound or simple substance, for example, in the form of a precipitate having a size of about 50 to 500 nm.
  • This precipitate is a component having an action of precipitating and hardening by suppressing dislocation movement, and further suppressing the grain growth and increasing the material strength by refining the crystal grains and improving the bending workability.
  • the Ni content is preferably 0.05% by mass or more. Moreover, if Ni content is 0.7 mass% or less, the fall of electrical conductivity will not be remarkable and there will be no tendency for the electrical conductivity exceeding 50% IACS not to be obtained. Therefore, the Ni content is 0.05 to 0.7% by mass.
  • Fe 0.02-0.5% by mass
  • Fe is a component having an effect of improving product characteristics such as conductivity, strength, stress relaxation characteristics, and plating properties.
  • the Fe content is preferably 0.02% by mass or more.
  • the Fe content is set to 0.02 to 0.5% by mass.
  • Mg 0.01 to 0.3% by mass
  • Mg is a component having an effect of improving the stress relaxation resistance.
  • the Mg content is preferably 0.01% by mass or more. Further, if the Mg content is 0.3% by mass or less, the conductivity does not tend to decrease. Therefore, the Mg content is set to 0.01 to 0.3% by mass.
  • Mn dissolves in the matrix phase to improve wire drawing workability, suppresses rapid development of grain boundary reactive precipitation, and enables control of discontinuous precipitation cell structure caused by grain boundary reactive precipitation. It is a component having the action of In order to exert such an effect, the Mn content is preferably 0.01% by mass or more. Moreover, if content of Mn is 0.5 mass% or less, there exists no possibility that the fall of electrical conductivity or the deterioration of bending workability may arise. Therefore, the Mn content is set to 0.01 to 0.5% by mass.
  • Zn 0.01 to 0.15% by mass
  • Zn is a component that has an effect of improving bending workability and improving adhesion and migration characteristics of Sn plating and solder plating.
  • the Zn content is preferably 0.01% by mass or more.
  • Zn content is set to 0.01 to 0.15% by mass.
  • Zr 0.01 to 0.15 mass%
  • Zr is a component having an effect of mainly refining crystal grains and improving strength and bending workability.
  • the Zr content is preferably set to 0.01 mass or more.
  • Zr content is set to 0.01 to 0.15% by mass.
  • Total content when containing at least two optional additional components In the case where at least two optional additive components selected from the group consisting of Cr, Ni, Fe, Mg, Mn, Zn and Zr are contained, the total content is preferably 1.5% by mass or less. This is because if the total content is 1.5% by mass or less, press punching workability and electrical conductivity are not greatly reduced. For this reason, the said total content shall be 1.5 mass% or less.
  • the balance consists of Cu and inevitable impurities other than the essential components and optional components described above.
  • the “inevitable impurities” referred to here are mostly metal products that are present in raw materials or inevitably mixed in the manufacturing process, and are essentially unnecessary, but are trace amounts, It is an acceptable impurity because it does not affect the product characteristics.
  • the “orientation density” here is also expressed as a crystal orientation distribution function (ODF), where the random crystal orientation distribution is set to 1, and the number of times of accumulation is greater than that. It is used to quantitatively analyze the abundance ratio of the crystal orientation of the texture and the dispersion state.
  • the orientation density is based on the EBSD and X-ray diffraction measurement results, and the crystal orientation distribution analysis by the series expansion method based on three or more kinds of positive point map measurement data such as (100), (110), (112) positive point map Calculated by the method.
  • the special grain boundaries ⁇ 7 and ⁇ 9 are called special grain boundaries and are crystal grain boundaries that form a corresponding lattice. When there is no simple orientation relationship between crystal grains, ⁇ is large and a grain boundary that does not have special properties is called a random grain boundary.
  • ⁇ -fiber refers to the fact that the crystal orientation group that develops when pure copper is rolled and recrystallized is connected like a fiber when shown on the ODF map. The orientation density of ⁇ -fiber changes depending on the frequency of rolling and recrystallization.
  • the present inventors have intensively studied the relationship with the rolling texture.
  • the alloy composition is limited to the above range, the ratio of the total amount of the special grain boundary ⁇ 7 grain boundary and ⁇ 9 grain boundary in the total grain boundary is 1.5% or more, and ⁇ 9 / ⁇ 7 is 1.0 to
  • ⁇ 7 and ⁇ 9 of the special grain boundaries have relatively low grain boundary energy compared to other special grain boundaries, and the ratio of the total amount of the special grain boundaries ⁇ 7 grain boundary and ⁇ 9 grain boundary in the total crystal grain boundary is This is because, if it is 1.5% or more, even in the case of processing that is locally heavily loaded such as press processing, it is easy to deform against external force, and excellent press punching workability can be obtained stably.
  • the ⁇ 9 grain boundary has a greater contribution to press punching workability than the ⁇ 7 grain boundary.
  • the ⁇ 7 grain boundary is superior to other special grain boundaries, although it contributes less to press punching workability than the ⁇ 9 grain boundary.
  • each of the ⁇ 7 and ⁇ 9 grain boundaries has a lower grain boundary energy than the other special grain boundaries, and is considered to contribute to press punchability during processing. For this reason, by limiting ⁇ 9 / ⁇ 7 to 1.0 to 5.0, excellent press punchability can be exhibited.
  • high strength can be obtained in addition to press punchability. It is possible to obtain excellent strength by manufacturing with the manufacturing method described later.
  • FIG. 1 is a typical crystal orientation distribution diagram of a copper alloy sheet measured by EBSD and obtained from an ODF (orientation distribution function) analysis, which is a biaxial orthogonal direction in a rolling plane, The Euler angles in the three directions of the parallel direction RD and the sheet width direction TD and the normal direction ND of the rolled surface are shown, that is, the RD axis orientation rotation is ⁇ , the ND axis orientation rotation is ⁇ 1 , and the TD axis orientation shows the rotating [Phi 2.
  • the EBSD method was used for the analysis of the rolling texture in the present invention.
  • the EBSD method is an abbreviation for Electron Backscatter Diffraction, and is a crystal orientation analysis technique using reflected electron Kikuchi line diffraction that occurs when a sample is irradiated with an electron beam in a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • a sample area of 800 ⁇ m ⁇ 1600 ⁇ m containing 200 or more crystal grains was scanned and measured in 0.1 ⁇ m steps.
  • the measurement area and the scanning step may be determined according to the size of crystal grains of the sample.
  • the orientation difference the orientation difference between adjacent measurement points of 10 ° or more is regarded as a crystal grain boundary.
  • analysis software OIM Analysis (trade name) manufactured by TSL Solutions was used.
  • Information obtained in the analysis of crystal grains by EBSD includes information up to a depth of several tens of nm at which the electron beam penetrates the sample. Further, the measurement location in the plate thickness direction is preferably near the position of 1/8 to 1/2 times the plate thickness t from the sample surface.
  • the crystal orientation display method includes a crystal plane index (h k l) perpendicular to the Z axis (parallel to the rolling plane (XY plane)) and a vertical axis (parallel to the YZ plane) to the X axis.
  • index [u v w] of the crystal direction it is expressed in the form of (h k l) [u v w].
  • equivalent orientation under the cubic symmetry of the copper alloy such as (1 3 2) [6 -4 3] and (2 3 1) [3 -4 6]
  • a parenthesis representing the generic name is used, and ⁇ h k l ⁇ ⁇ u v w> is used.
  • Typical crystal orientations include Brass orientation ⁇ 011 ⁇ ⁇ 211>, S orientation ⁇ 123 ⁇ ⁇ 634>, Copper orientation ⁇ 112 ⁇ ⁇ 111>, Goss orientation ⁇ 110 ⁇ ⁇ 001>, RDW orientation ⁇ 012 ⁇ ⁇ 100. >, BR orientation ⁇ 236 ⁇ ⁇ 385> and the like.
  • the component is an alloy-type texture, which is a structure obtained by controlling the additive elements Co and Si within a specified range. The presence of ⁇ -fiber within a specified range can significantly improve press punching workability.
  • the tensile strength in the rolling parallel direction is preferably 500 MPa or more. If the tensile strength in the rolling parallel direction is 500 MPa or more, there is no tendency for the strength of the plate material to be insufficient when the terminal is formed from a thin plate or narrowed plate material, and sufficient contact pressure at the leaf spring portion of the terminal This is because there is no possibility that it cannot be secured.
  • the electrical conductivity exceeds 50% IACS. If the electrical conductivity exceeds 50% IACS, the resistance heating value will not be large even when energized with a large current, and the function of the terminal will be reduced due to a decrease in the spring property of the contact part due to heat or deterioration of the mold for fixing the terminal. This is because there is no risk of significant decrease.
  • the shear plane and the fractured surface specified by observing the cut surface by press punching with a scanning electron microscope (SEM) are the difference between the maximum value tmax and the minimum value tmin of the total dimension measured in the plate thickness direction.
  • ⁇ t is preferably 30% or less of the plate thickness T.
  • FIG. 2 is a partial perspective view of a copper alloy sheet according to a representative embodiment.
  • the copper alloy sheet 1 shown in FIG. 2 shows a state in which a press punching process is performed by lowering an upper die (punch) while being fixed on a lower die (die) (not shown), A surface (cut) 2 is provided. Further, the cut surface 2 is configured in the order of the sag 3, the sheared surface 4 and the fracture surface 5 from the upper surface 1 a side of the pressed copper alloy sheet material 1.
  • a so-called burr 6 is also formed, which is a thin fin-like portion protruding outward from the regular cross-sectional shape.
  • the present inventors pay particular attention to the fluctuation height ⁇ t of the boundary line 7 between the sag (surface) 3 and the shearing face 4, and this fluctuation height ⁇ t, that is, a predetermined thickness with respect to the plate thickness T of the copper alloy sheet material 1. More specifically, the cut surface 2 formed by press punching was observed with a scanning electron microscope (SEM). As a result, the present inventors control the difference ⁇ t between the maximum value tmax and the minimum value tmin of the total dimension obtained by measuring the specified shear surface 4 and fracture surface 5 in the plate thickness direction to 30% or less of the plate thickness T. As a result, it has been found that the press punching processability is remarkably improved.
  • the fluctuation height ⁇ t exceeds 30% of the plate thickness T, the press punching processability is inferior, and there is a tendency that the distance between the terminals formed continuously and the variation in the size and shape of the terminals increase.
  • the cut surface 2 formed by the press punching process has generation
  • the hot rolling step (step 4) was performed under the conditions of ⁇ 1100 ° C., rolling number of 4 times or more, and total processing rate of 60% or more, followed by rapid cooling by the water cooling step (step 5). Thereafter, in order to remove the oxide film on the surface, a second chamfering step (step 6) is performed in which both the front and back surfaces of the hot-rolled material are each cut to a thickness of 0.5 mm or more.
  • step 7) After performing the first cold rolling step (step 7) under the conditions of the rolling number of times of 2 times or more and the total processing rate of 50% or more, the heating rate is 1 to 150 ° C./second, the ultimate temperature is 800 to 1000 ° C., A solution heat treatment step (step 8) is performed at a holding time of 1 to 300 seconds and a cooling rate of 1 to 200 ° C./second, and then an aging heat treatment step at an ultimate temperature of 300 to 650 ° C. and a holding time of 0.2 to 15 hours (Step 9) is performed.
  • step 10 After performing the second cold rolling step (step 10) under the condition that the number of rolling is 2 times or more and the total processing rate is 5% or more, annealing is performed at an ultimate temperature of 200 to 600 ° C. and a holding time of 1 to 3600 seconds. A process (process 11) is performed. In this way, the copper alloy sheet material of the present invention is produced.
  • the aging heat treatment process (process 9) is performed after the second cold rolling process (process 10) is performed, and then further
  • the number of times of rolling is two times or more
  • the third cold rolling step (step 12) may be performed under conditions of a total processing rate of 10% or more, and then the annealing step (step 11) may be performed. It is possible to produce the copper alloy sheet of the present invention.
  • the aging heat treatment step (step 9) is performed without performing the solution heat treatment step (step 8), and then the second A cold rolling step (step 10) may be performed, and the copper alloy sheet material of the present invention can also be produced by such a method.
  • the copper alloy material contains 0.3 to 1.9% by mass of Co and 0.1 to 0.5% by mass of Si. Further, if necessary, 0.05 to 1.0% by mass of Cr and Ni 0.05 to 0.7 mass%, Fe 0.02 to 0.5 mass%, Mg 0.01 to 0.3 mass%, Mn 0.01 to 0.5 mass%, Zn 0. It contains at least one component selected from the group consisting of 01 to 0.15% by mass and Zr from 0.01 to 0.15% by mass, and the balance has an alloy composition consisting of Cu and inevitable impurities.
  • a homogenization heat treatment step (step 3), a hot rolling step (step 4), and an aging heat treatment step (step 9), which are particularly common steps among the structures constituting the manufacturing methods A to C described above. It is important to control. That is, the temperature increase rate in the homogenization heat treatment step is 10 to 110 ° C./second, the holding temperature is 950 to 1250 ° C., the cooling start temperature in the hot rolling step (step 4) is 680 to 850 ° C., and the cooling rate is 20 to It is necessary to set the temperature to 130 ° C./second, the temperature reached in the aging heat treatment step (step 9) to 450 to 650 ° C., and the holding time to 500 to 20000 seconds. Further, in order to sufficiently develop the rolling texture and control the orientation density of ⁇ -fiber within an appropriate range, the aging heat treatment step (step 9) needs to be heat-treated within the above range.
  • the heating rate in the homogenization heat treatment step (step 3) is 10 ° C./second or more or 110 ° C./second or less, or the holding temperature is 950 ° C. or more, the crystallization product produced during casting is sufficiently dissolved and produced. In a copper alloy sheet, a satisfactory level of strength and electrical conductivity can be obtained.
  • the holding temperature in the homogenization heat treatment step (step 3) is 1250 ° C. or lower, the vicinity of the crystal grain boundary partially becomes a liquid phase and cracks during hot rolling are likely to occur, and there is no case where it cannot be produced. Because.
  • the cooling start temperature in the hot rolling step (step 4) is 680 ° C.
  • the cooling start temperature in the hot rolling step (step 4) is 850 ° C. or lower or the cooling rate is 130 ° C./second or lower, the formation of the rolled structure becomes sufficient, which adversely affects the press punchability after the final step. There is no.
  • the temperature reached in the aging heat treatment step (step 9) is 450 ° C. or higher or the holding time is 500 seconds or longer, the amount of aging precipitation is insufficient and the strength and conductivity do not tend to be insufficient.
  • the temperature reached in the aging heat treatment step (step 9) is 650 ° C. or less or 20000 seconds or less, the strength of the precipitate does not tend to be insufficient due to coarsening of the precipitate.
  • the target structure and characteristics are obtained by appropriately controlling the conditions of the homogenization heat treatment step (step 3), the hot rolling step (step 4) and the aging heat treatment step (step 9). Is obtained.
  • Inventive Examples 1 to 16 and Comparative Examples 1 to 9 each contain Co and Si, and optional additional components to be added as necessary, so that the compositions shown in Table 1 are obtained, with the balance being Cu and inevitable impurities.
  • the resulting copper alloy material was melted in a high-frequency melting furnace and cast (step 1) to obtain an ingot.
  • the heating rate and holding shown in Table 2 are performed.
  • a homogenization heat treatment step (step 3) is performed under temperature conditions, and then a hot rolling step (step 4) is performed under the conditions of the cooling start temperature and cooling rate shown in Table 2, followed by a water cooling step (step 5). ). Thereafter, in order to remove the oxide film on the surface, a second chamfering step (step 6) is performed in which both the front and back surfaces of the hot-rolled material are each cut to a thickness of 0.5 mm. Thereafter, after performing the first cold rolling step (step 7) so that the total processing rate becomes 50% or more, each step according to any one of the manufacturing methods A to C shown in Table 2 is sequentially performed, An alloy sheet was produced. Table 2 shows the ultimate temperature and holding time in the aging heat treatment step (step 9).
  • Table 2 also shows the ratio of fluctuation height ⁇ t / plate thickness T.
  • Each copper alloy sheet produced was evaluated for the following characteristics. (Measurement and analysis of crystal orientation by EBSD measurement) The measurement was performed under the conditions of a measurement area of 64 ⁇ 10 4 ⁇ m 2 (800 ⁇ m ⁇ 800 ⁇ m) and a scan step of 0.1 ⁇ m by the EBSD method. The scan step was performed in 0.1 ⁇ m steps to measure fine crystal grains. In the analysis, an inverse pole figure IPF (Inverse Pole Figure) was confirmed from the EBSD measurement result of 64 ⁇ 10 4 ⁇ m 2 in the analysis. The electron beam was generated from thermionic electrons from the W filament of the scanning electron microscope. The probe diameter at the time of measurement is about 0.015 ⁇ m.
  • OIM5.0 (trade name) manufactured by TSL Solutions was used as the measuring device for the EBSD method.
  • the ⁇ 9 / ⁇ 7 ratio the ⁇ 7 grain boundary and the ⁇ 9 grain boundary were calculated from the CBSD (Coincidence Site Lattice) on the measurement surface using the analysis software (OIM Analysis).
  • ODF Orientation Distribution Functions
  • Each prepared copper alloy sheet is adjusted so that the clearance between the upper mold (punch) and the lower mold (die) is 5.0% of the sheet thickness T, punched, and length dimension: 3.0 mm. , Width dimension: 1.0 mm, and the length dimension is punched so as to be perpendicular to the rolling direction to prepare a sample.
  • the length dimension Observe an orthogonal cut surface (a surface parallel to the width dimension).
  • the sample after pressing is fixed and observed with a SEM at 100 to 500 times. For SEM observation, SEMEDX TypeM manufactured by Hitachi, Ltd. was used.
  • the difference ⁇ t between the maximum value tmax and the minimum value tmin of the total dimension measured in the plate thickness direction was measured. .
  • the measured ⁇ t is 30% or less of the plate thickness T, “ ⁇ ” is assumed that the press punching workability is at an acceptable level, and the press punching workability is at an acceptable level when it exceeds 30% of the plate thickness T. It is shown in Table 2 as “x” as being unacceptable.
  • a copper alloy sheet material that uses a Cu—Co—Si based alloy, has high strength and high conductivity, and is excellent in press punching workability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Conductive Materials (AREA)

Abstract

Provided is a copper alloy sheet that is manufactured using a Cu-Co-Si-based alloy and has excellent press punching processability while having high strength and high conductivity. The copper alloy sheet has an alloy composition including 0.3-1.9 mass% of Co, 0.1-0.5 mass% of Si, and the balance Cu and inevitable impurities, wherein the proportion, in the total crystal grain boundary, of the total quantity of Σ7 grain boundary and Σ9 grain boundary, which are special grain boundaries, is 1.5% or more, the proportion being obtained from the result of measurement by an EBSD method, the ratio Σ9/Σ7 is 1.0-5.0, and the orientation density of an α-fiber (Φ1 = 0°-45°) is within the range of 3.0-25.0.

Description

銅合金板材およびその製造方法Copper alloy sheet and manufacturing method thereof
 本発明は、例えば車載部品用や電気・電子機器用のリードフレーム、コネクタ、端子材、リレー、スイッチ、ソケットなどに適用される銅合金板材およびその製造方法に関する。 The present invention relates to a copper alloy sheet material applied to, for example, lead frames, connectors, terminal materials, relays, switches, sockets and the like for in-vehicle components and electrical / electronic devices, and a manufacturing method thereof.
 銅合金板材は、例えば車載部品用や電気・電子機器用のリードフレーム、コネクタ、端子材、リレー、スイッチ、ソケットなどの用途に広く使用されている。このような用途に使用される銅合金板材に要求される特性項目としては、引張強度、耐力(降伏応力)、曲げ加工性、導電率、疲労特性などが挙げられる。 Copper alloy sheet materials are widely used in applications such as lead frames, connectors, terminal materials, relays, switches, sockets, etc. for in-vehicle components and electrical / electronic devices. The characteristic items required for the copper alloy sheet used for such applications include tensile strength, yield strength (yield stress), bending workability, conductivity, fatigue characteristics, and the like.
 近年、電気・電子機器や車載部品の高機能化、高密度実装化に伴って、銅合金材料に対する要求特性もより一層厳しくなってきている。特に、端子用の銅合金板材は、材料の薄板化や狭幅化によって軽量化や材料使用量の低減が検討されている。このように薄板化された板材で構成された板バネ部において接圧を確保するには、材料強度を高めることが必要である。 In recent years, the required characteristics for copper alloy materials have become more severe as electrical and electronic devices and in-vehicle parts become more functional and denser. In particular, for copper alloy plate materials for terminals, reduction in weight and reduction in material usage are being studied by thinning and narrowing the material. In order to ensure the contact pressure in the leaf spring portion formed of the thin plate material as described above, it is necessary to increase the material strength.
 また、電気・電子部品は、一般に板材にプレス加工や曲げ加工を施すことにより成形されることから、板材として、優れたプレス打ち抜き加工性を有していなければならない。特に、端子用の銅合金板材の場合、プレス打ち抜き加工性が劣ると、プレス打ち抜き加工を行った際の切断面の形状が不安定になる。それに伴って、連設形成される端子同士の配設間隔を一定に揃えることができずにばらつきが生じるとともに、端子ごとで寸法や形状にばらつきが生じやすくなるという問題がある。これは、車載部品や電気・電子部品を製造する上で望ましくないことから、銅合金板材としては、優れたプレス打ち抜き加工性を具備することも必要である。 In addition, since electric / electronic parts are generally formed by pressing or bending a plate material, the plate material must have excellent press punching workability. In particular, in the case of a copper alloy sheet for a terminal, if the press punching process is inferior, the shape of the cut surface when the press punching process is performed becomes unstable. Along with this, there is a problem in that the arrangement intervals between the terminals formed in a row cannot be made uniform, and variations occur, and variations in size and shape tend to occur among the terminals. Since this is not desirable in manufacturing on-vehicle components and electrical / electronic components, the copper alloy sheet material must also have excellent press punching workability.
 さらに、大電流用途に使用される端子では、高導電率を有する銅合金材料で形成されていることが求められている。 Furthermore, terminals used for high current applications are required to be formed of a copper alloy material having high conductivity.
 近年における電子機器のバッテリー容量の大型化や、液晶ディスプレイの大型化に伴って、端末内の端子および充電端子に流れる電流値が高くなってきている。 In recent years, with the increase in the battery capacity of electronic devices and the increase in the size of liquid crystal displays, the value of current flowing through terminals in terminals and charging terminals has increased.
 電気・電子機器、自動車車載用の銅合金材としては、従来は、主に析出強化や加工硬化によって強化された高強度銅合金であるCu-Ni-Si系合金(コルソン系合金)が広く用いられてきた。 Conventionally, Cu-Ni-Si alloys (Corson alloys), which are high-strength copper alloys strengthened mainly by precipitation strengthening and work hardening, have been widely used as copper alloy materials for electrical and electronic equipment and automobiles. Has been.
 しかしながら、Cu-Ni-Si系合金は、導電率は最大でも50%IACS程度であり、大電流で通電すると抵抗発熱量が多くなり、熱によって接点部のばね性の低下や、端子を固定するモールドの劣化などにより、端子の機能が著しく低下するおそれがあることから、大電流用の端子材料として用いるには適さない。 However, the Cu—Ni—Si alloy has a conductivity of about 50% IACS at the maximum, and when it is energized with a large current, the amount of heat generated by resistance increases, and heat reduces the spring property of the contact portion and fixes the terminal. Since the function of the terminal may be remarkably lowered due to deterioration of the mold or the like, it is not suitable for use as a terminal material for large current.
 このため、Cu-Ni-Si系合金に代わる端子材料を開発することが求められている。例えば特許文献1には、Cu-Ni-Si系合金に代えて、Cu-Co-Si系合金を用い、再結晶組織において等軸粒と双晶粒界の頻度を制御することで、板材の曲げ加工性と導電性を改善できることが開示されている。しかしながら、特許文献1では、プレス打ち抜き加工性については何ら検討がなされていない。 Therefore, it is required to develop a terminal material that can replace the Cu—Ni—Si alloy. For example, in Patent Document 1, a Cu—Co—Si alloy is used instead of a Cu—Ni—Si alloy, and the frequency of equiaxed grains and twin grain boundaries is controlled in the recrystallized structure. It is disclosed that bending workability and conductivity can be improved. However, Patent Document 1 does not discuss any press punching workability.
特許第5534610号公報Japanese Patent No. 5534610
 本発明の目的は、Cu-Co-Si系合金を用い、高強度および高導電率を具備しつつ、プレス打ち抜き加工性にも優れた銅合金板材を提供することにある。 An object of the present invention is to provide a copper alloy sheet using a Cu—Co—Si based alloy, having high strength and high electrical conductivity, and having excellent press punching workability.
 本発明の銅合金板材は、全結晶粒界に対し、Σ7粒界とΣ9粒界を制御するとともに、圧延集合組織と再結晶集合組織を示すα-fiber(Φ1=0°~45°)を発達させることで、プレス加工時の材料と金型が接する面の荷重集中が抑制され、プレス打ち抜き加工により生じる切断面から特定したダレ(面)と剪断面との境界線の変動高さが小さくなる。この結果、本発明者らは、プレス打ち抜き加工性が格段に向上し、連設形成される端子同士の間隔ならびに端子の寸法および形状のばらつきが軽減されることを見出し、本発明を完成させるに至った。 The copper alloy sheet material of the present invention controls the Σ7 grain boundary and the Σ9 grain boundary with respect to all the grain boundaries, and exhibits α-fiber (Φ1 = 0 ° to 45 °) indicating a rolling texture and a recrystallization texture. By developing it, the load concentration on the surface where the material and the die come into contact during press processing is suppressed, and the fluctuation height of the boundary line between the sag (surface) and the shear surface specified from the cut surface generated by press punching is small. Become. As a result, the inventors have found that the press punching processability is remarkably improved, and the gap between the terminals formed continuously and the variation in the size and shape of the terminals are reduced, and the present invention is completed. It came.
 すなわち、本発明の要旨構成は、以下のとおりである。
(1)Coを0.3~1.9質量%およびSiを0.1~0.5質量%含有し、残部がCuおよび不可避不純物からなる合金組成を有し、EBSD法により測定した結果から得られた、全結晶粒界に占める特殊粒界Σ7粒界とΣ9粒界の合計量の割合が1.5%以上であり、Σ9/Σ7が1.0~5.0であり、α-fiber(Φ1=0°~45°)の方位密度が、3.0以上25.0以下の範囲内を満たすことを特徴とする銅合金板材。
(2)Coを0.3~1.9質量%およびSiを0.1~0.5質量%含有し、さらにCrを0.05~1.0質量%、Niを0.05~0.7質量%、Feを0.02~0.5質量%、Mgを0.01~0.3質量%、Mnを0.01~0.5質量%、Znを0.01~0.15質量%およびZrを0.01~0.15質量%からなる群から選ばれる少なくとも1成分を含有し、残部がCuおよび不可避不純物からなる合金組成を有し、EBSD法により測定した結果から得られた、全結晶粒界に占める特殊粒界Σ7粒界とΣ9粒界の合計量の割合が1.5%以上であり、Σ9/Σ7が1.0~5.0であり、α-fiber(Φ1=0°~45°)の方位密度が、3.0以上25.0以下の範囲内を満たすことを特徴とする銅合金板材。
(3)前記Cr、Ni、Fe、Mg、Mn、ZnおよびZrからなる群から選ばれる少なくとも2成分を、合計で1.5質量%以下含有する上記(2)に記載の銅合金板材。
(4)圧延平行方向の引張強度が500MPa以上であり、導電率が50%IACS超えであり、かつ、プレス打ち抜き加工による切断面を走査型電子顕微鏡(SEM)で観察することにより特定した剪断面および破断面は、板厚方向に測定した合計寸法の最大値tmaxと最小値tminの差Δtが、板厚Tの30%以下である上記(1)~(3)のいずれか1項に記載の銅合金板材。
(5)上記(1)~(4)のいずれか1項に記載の銅合金板材を製造する方法であって、
前記合金組成からなる銅合金素材に、鋳造工程[工程1]、第1面削工程[工程2]、均質化熱処理工程[工程3]、熱間圧延工程[工程4]、水冷工程[工程5]、第2面削工程[工程6]、第1冷間圧延工程[工程7]、溶体化熱処理工程[工程8]、時効熱処理工程[工程9]、第2冷間圧延工程[工程10]および焼鈍工程[工程11]を順次行うことを特徴とする銅合金板材の製造方法。
(6)上記(1)~(4)のいずれか1項に記載の銅合金板材を製造する方法であって、
前記合金組成からなる銅合金素材に、鋳造工程[工程1]、第1面削工程[工程2]、均質化熱処理工程[工程3]、熱間圧延工程[工程4]、水冷工程[工程5]、第2面削工程[工程6]、第1冷間圧延工程[工程7]、溶体化熱処理工程[工程8]、第2冷間圧延工程[工程10]、時効熱処理[工程9]、第3冷間圧延工程[工程12]および焼鈍工程[工程11]を順次行うことを特徴とする銅合金板材の製造方法。
(7)上記(1)~(4)のいずれか1項に記載の銅合金板材を製造する方法であって、
前記合金組成からなる銅合金素材に、鋳造工程[工程1]、第1面削工程[工程2]、均質化熱処理工程[工程3]、熱間圧延工程[工程4]、水冷工程[工程5]、第2面削工程[工程6]、第1冷間圧延工程[工程7]、時効熱処理工程[工程9]および第2冷間圧延工程[工程10]を順次行うことを特徴とする銅合金板材の製造方法。
That is, the gist configuration of the present invention is as follows.
(1) From the result of having an alloy composition containing 0.3 to 1.9% by mass of Co and 0.1 to 0.5% by mass of Si, with the balance being Cu and inevitable impurities, measured by the EBSD method. The ratio of the total amount of the special grain boundary Σ7 grain boundary and Σ9 grain boundary in the total crystal grain boundary obtained is 1.5% or more, Σ9 / Σ7 is 1.0 to 5.0, α− A copper alloy sheet characterized in that the orientation density of fiber (Φ1 = 0 ° to 45 °) satisfies a range of 3.0 to 25.0.
(2) Containing 0.3 to 1.9% by mass of Co and 0.1 to 0.5% by mass of Si, 0.05 to 1.0% by mass of Cr, and 0.05 to 0. 7 mass%, Fe 0.02-0.5 mass%, Mg 0.01-0.3 mass%, Mn 0.01-0.5 mass%, Zn 0.01-0.15 mass % And Zr containing at least one component selected from the group consisting of 0.01 to 0.15% by mass, the balance having an alloy composition consisting of Cu and inevitable impurities, obtained from the results of measurement by the EBSD method The ratio of the total amount of the special grain boundary Σ7 grain boundary and Σ9 grain boundary in all the grain boundaries is 1.5% or more, Σ9 / Σ7 is 1.0 to 5.0, α-fiber (Φ1 = 0 ° to 45 °), a copper alloy sheet characterized by satisfying a range of 3.0 to 25.0.
(3) The copper alloy sheet according to (2) above, containing a total of 1.5% by mass or less of at least two components selected from the group consisting of Cr, Ni, Fe, Mg, Mn, Zn and Zr.
(4) The shear plane specified by observing the cut surface by press punching with a scanning electron microscope (SEM), wherein the tensile strength in the rolling parallel direction is 500 MPa or more, the electrical conductivity exceeds 50% IACS. As for the fracture surface, the difference Δt between the maximum value tmax and the minimum value tmin of the total dimension measured in the sheet thickness direction is 30% or less of the sheet thickness T, as described in any one of (1) to (3) above. Copper alloy sheet material.
(5) A method for producing the copper alloy sheet according to any one of (1) to (4) above,
A copper alloy material having the above alloy composition is cast into a casting step [Step 1], a first face grinding step [Step 2], a homogenization heat treatment step [Step 3], a hot rolling step [Step 4], and a water cooling step [Step 5]. ], Second face milling step [step 6], first cold rolling step [step 7], solution heat treatment step [step 8], aging heat treatment step [step 9], second cold rolling step [step 10]. And an annealing step [Step 11] are sequentially performed.
(6) A method for producing the copper alloy sheet according to any one of (1) to (4) above,
A copper alloy material having the above alloy composition is cast into a casting step [Step 1], a first face grinding step [Step 2], a homogenization heat treatment step [Step 3], a hot rolling step [Step 4], and a water cooling step [Step 5]. ], Second face milling step [step 6], first cold rolling step [step 7], solution heat treatment step [step 8], second cold rolling step [step 10], aging heat treatment [step 9], A method for producing a copper alloy sheet material, comprising sequentially performing a third cold rolling step [Step 12] and an annealing step [Step 11].
(7) A method for producing the copper alloy sheet according to any one of (1) to (4) above,
A copper alloy material having the above alloy composition is cast into a casting step [Step 1], a first face grinding step [Step 2], a homogenization heat treatment step [Step 3], a hot rolling step [Step 4], and a water cooling step [Step 5]. ], A second face milling step [Step 6], a first cold rolling step [Step 7], an aging heat treatment step [Step 9], and a second cold rolling step [Step 10]. A method for producing an alloy sheet.
 本発明によれば、Cu-Co-Si系合金を用い、高強度および高導電率を具備しつつ、プレス打ち抜き加工性にも優れた銅合金板材の提供が可能になった。 According to the present invention, it has become possible to provide a copper alloy sheet material that uses a Cu—Co—Si based alloy, has high strength and high conductivity, and is excellent in press punching workability.
図1は、EBSDにより測定し、ODF(方位分布関数)解析から得られた、銅合金板材の代表的な結晶方位分布図である。図1では、圧延面内の2軸直交方向である、圧延方向と平行な方向RDおよび板幅方向TDと、圧延面の法線方向NDの3方向のオイラー角で示し、すなわち、RD軸の方位回転をΦ、ND軸の方位回転をΦ、TD軸の方位回転をΦとして示す。FIG. 1 is a typical crystal orientation distribution diagram of a copper alloy sheet material measured by EBSD and obtained from ODF (orientation distribution function) analysis. In FIG. 1, it is indicated by Euler angles in three directions, ie, a direction RD parallel to the rolling direction and a sheet width direction TD, which are orthogonal to the two axes in the rolling surface, and a normal direction ND of the rolling surface. The azimuth rotation is denoted as Φ, the ND axis azimuth rotation as Φ 1 , and the TD axis azimuth rotation as Φ 2 . 図2は、本発明の実施形態の銅合金板材を示したものであって、プレス打ち抜き加工後の切断面が見える状態で模式的に示した部分斜視図である。FIG. 2 is a partial perspective view schematically showing the copper alloy sheet according to the embodiment of the present invention in a state where a cut surface after press punching is visible.
 以下、本発明に係る銅合金板材の好ましい実施形態について、以下で詳細に説明する。
 本発明に係る銅合金板材は、Coを0.3~1.9質量%およびSiを0.1~0.5質量%含有し、残部がCuおよび不可避不純物からなる合金組成を有し、EBSD法により測定した結果から得られた、全結晶粒界に対する特殊粒界Σ7粒界とΣ9粒界の合計が1.5%以上であり、Σ9/Σ7が1.0~5.0であり、α-fiber(Φ1=0°~45°)の方位密度が、3.0以上25.0以下の範囲内を満たすことを特徴とする。
Hereinafter, preferred embodiments of the copper alloy sheet according to the present invention will be described in detail below.
The copper alloy sheet according to the present invention has an alloy composition containing 0.3 to 1.9% by mass of Co and 0.1 to 0.5% by mass of Si, with the balance being Cu and inevitable impurities. The total of the special grain boundary Σ7 grain boundary and Σ9 grain boundary with respect to all crystal grain boundaries obtained from the results measured by the method is 1.5% or more, Σ9 / Σ7 is 1.0 to 5.0, The orientation density of α-fiber (Φ1 = 0 ° to 45 °) satisfies the range of 3.0 to 25.0.
 ここで、「銅合金板材」は、(加工前であって所定の合金組成を有する)銅合金素材が板状に加工されたものであって、特定の厚みを有し形状的に安定しており面方向に広がりをもつものを意味し、広義には条材も含まれる。本発明において、板材の厚さは、特に限定されるものではないが、好ましくは0.05~1.0mm、さらに好ましくは0.06~0.8mmである。 Here, the “copper alloy sheet” is obtained by processing a copper alloy material (before processing and having a predetermined alloy composition) into a plate shape, having a specific thickness and being stable in shape. This means something with a spread in the direction of the cage plane, and in the broad sense includes strips. In the present invention, the thickness of the plate material is not particularly limited, but is preferably 0.05 to 1.0 mm, more preferably 0.06 to 0.8 mm.
[成分組成]
 まず、本発明に係る銅合金板材の成分組成とその作用について説明する。
[Ingredient composition]
First, the component composition and action of the copper alloy sheet according to the present invention will be described.
<必須含有成分>
 本発明に係る銅合金板材は、CoおよびSiを必須の含有成分とする。
(Co:0.3~1.9質量%)
 Coは、Cuの母相(マトリクス)中に、単体またはSiとの化合物からなる第二相粒子の析出物として、例えば50~500nm程度の大きさで微細析出する。この析出物が転位移動を抑制することにより析出硬化させ、さらに、粒成長が抑制されて結晶粒の微細化によって材料強度を上昇させるとともに、曲げ加工性をも向上させる作用を有する重要な成分である。かかる作用を発揮するには、Co含有量を0.3質量%以上とすることが必要である。また、CoはNiに比べて固溶した際の導電率の低下割合が小さいが、Co含有量が1.9質量%を超えると、導電率の低下が顕著になって、50%IACS超えの導電率が得られなくなることから、Co含有量は1.9質量%以下にする必要がある。例えば、一般的なCu-Ni-Si系合金(Cu-2.3質量%Ni-0.65質量%Si)の場合、導電率は38%IACS程度であるが、Co含有量を0.3~1.9質量%の範囲とする本発明の銅合金板材は、導電率が60%IACS以上と高い数値が得られる。また、本発明の銅合金板材の引張強度は、製造条件にもよるが、特定の製造条件を採用することによって、時効析出後に600MPa程度が得られ、Cu-Ni-Si系合金からなる銅合金板材と同等レベルの高強度が得られる。なお、引張強度と導電率の両特性をバランスよく満足させるには、Co含有量は、0.8~1.6質量%の範囲であることが好ましい。
<Essential component>
The copper alloy sheet according to the present invention contains Co and Si as essential components.
(Co: 0.3 to 1.9% by mass)
Co is finely precipitated in the Cu matrix (matrix) as a second phase particle precipitate made of a single substance or a compound with Si, for example, with a size of about 50 to 500 nm. This precipitate is an important component that acts to precipitate and harden by suppressing dislocation movement, and further suppresses grain growth and raises the material strength by refining crystal grains, and also improves bending workability. is there. In order to exhibit such an effect, the Co content needs to be 0.3% by mass or more. In addition, Co has a lower rate of decrease in conductivity when dissolved than Ni, but when the Co content exceeds 1.9% by mass, the decrease in conductivity becomes significant, exceeding 50% IACS. Since the conductivity cannot be obtained, the Co content needs to be 1.9% by mass or less. For example, in the case of a general Cu—Ni—Si based alloy (Cu-2.3 mass% Ni—0.65 mass% Si), the conductivity is about 38% IACS, but the Co content is 0.3%. The copper alloy sheet material of the present invention in the range of ˜1.9 mass% has a high value of 60% IACS or higher in electrical conductivity. Further, the tensile strength of the copper alloy sheet of the present invention depends on the production conditions, but by adopting specific production conditions, a copper alloy made of a Cu-Ni-Si alloy can be obtained at about 600 MPa after aging precipitation. High strength equivalent to that of plate material can be obtained. In order to satisfy both properties of tensile strength and conductivity in a balanced manner, the Co content is preferably in the range of 0.8 to 1.6% by mass.
(Si:0.1~0.5質量%)
 Siは、Cuの母相(マトリクス)中に、CoやCrなどとともに化合物からなる第二相粒子の析出物として微細析出する。この析出物が転位移動を抑制することにより析出硬化させ、さらに、粒成長が抑制されて結晶粒の微細化によって材料強度を上昇させる作用を有する重要な成分である。かかる作用を発揮するには、Si含有量を0.1質量%以上とすることが必要である。また、Si含有量が0.5質量%を超えると、導電率の低下が顕著になって、50%IACS超えの導電率が得られなくなることから、Si含有量は0.5質量%以下にする必要がある。なお、引張強度と導電率の両特性をバランスよく満足させるには、Si含有量は、0.2~0.5質量%の範囲であることが好ましい。
(Si: 0.1-0.5% by mass)
Si is finely precipitated in the Cu matrix (matrix) as precipitates of second phase particles made of a compound together with Co, Cr, and the like. This precipitate is an important component having the effect of precipitating and hardening by suppressing dislocation movement, and further suppressing the grain growth and increasing the material strength by refining crystal grains. In order to exert such an effect, it is necessary to make the Si content 0.1% by mass or more. Further, if the Si content exceeds 0.5% by mass, the decrease in conductivity becomes remarkable, and the conductivity exceeding 50% IACS cannot be obtained. Therefore, the Si content is reduced to 0.5% by mass or less. There is a need to. In order to satisfy both properties of tensile strength and electrical conductivity in a well-balanced manner, the Si content is preferably in the range of 0.2 to 0.5% by mass.
<任意添加成分>
 本発明の銅合金板材は、上記CoおよびSiの必須の含有成分に加えて、さらに、任意含有成分として、Crを0.05~1.0質量%、Niを0.05~0.7質量%、Feを0.02~0.5質量%、Mgを0.01~0.3質量%、Mnを0.01~0.5質量%、Znを0.01~0.15質量%およびZrを0.01~0.15質量%からなる群から選ばれる少なくとも1成分を含有してもよい。
<Optional components>
In addition to the essential components of Co and Si, the copper alloy sheet material of the present invention further includes, as optional components, 0.05 to 1.0% by mass of Cr and 0.05 to 0.7% by mass of Ni. %, Fe 0.02 to 0.5 mass%, Mg 0.01 to 0.3 mass%, Mn 0.01 to 0.5 mass%, Zn 0.01 to 0.15 mass%, and Zr may contain at least one component selected from the group consisting of 0.01 to 0.15% by mass.
(Cr:0.05~1.0質量%)
 Crは、Cuの母相(マトリクス)中に、化合物や単体として、例えば50~500nm程度の大きさの析出物の形で微細析出する。この析出物が転位移動を抑制することにより析出硬化させ、さらに、粒成長が抑制されて結晶粒の微細化によって材料強度を上昇させるとともに、曲げ加工性をも向上させる作用を有する成分である。この作用を発揮するには、Cr含有量を0.05質量%以上とすることが好ましい。また、Cr含有量が1.0質量%以下であれば、導電率の低下が顕著でなくなり、50%IACS超えの導電率が得られなくなる傾向がない。このため、Cr含有量は、0.05~1.0質量%とする。
(Cr: 0.05 to 1.0% by mass)
Cr is finely precipitated in the Cu matrix (matrix) as a compound or simple substance, for example, in the form of a precipitate having a size of about 50 to 500 nm. This precipitate is a component having an action of precipitating and hardening by suppressing dislocation movement, and further suppressing the grain growth and increasing the material strength by refining the crystal grains and improving the bending workability. In order to exhibit this effect, the Cr content is preferably 0.05% by mass or more. Moreover, if Cr content is 1.0 mass% or less, the fall of electrical conductivity will not become remarkable and there will be no tendency for the electrical conductivity exceeding 50% IACS not to be obtained. Therefore, the Cr content is set to 0.05 to 1.0% by mass.
(Ni:0.05~0.7質量%)
 Niは、Cuの母相(マトリクス)中に、化合物や単体として、例えば50~500nm程度の大きさの析出物の形で微細析出する。この析出物が転位移動を抑制することにより析出硬化させ、さらに、粒成長が抑制されて結晶粒の微細化によって材料強度を上昇させるとともに、曲げ加工性をも向上させる作用を有する成分である。この作用を発揮するには、Ni含有量を0.05質量%以上とすることが好ましい。また、Ni含有量が0.7質量%以下であれば、導電率の低下が顕著でなく、50%IACS超えの導電率が得られなくなる傾向がない。このため、Ni含有量は、0.05~0.7質量%とする。
(Ni: 0.05 to 0.7% by mass)
Ni is finely precipitated in the matrix (matrix) of Cu as a compound or simple substance, for example, in the form of a precipitate having a size of about 50 to 500 nm. This precipitate is a component having an action of precipitating and hardening by suppressing dislocation movement, and further suppressing the grain growth and increasing the material strength by refining the crystal grains and improving the bending workability. In order to exert this effect, the Ni content is preferably 0.05% by mass or more. Moreover, if Ni content is 0.7 mass% or less, the fall of electrical conductivity will not be remarkable and there will be no tendency for the electrical conductivity exceeding 50% IACS not to be obtained. Therefore, the Ni content is 0.05 to 0.7% by mass.
(Fe:0.02~0.5質量%)
 Feは、導電率、強度、応力緩和特性、めっき性等の製品特性を改善する作用を有する成分である。かかる作用を発揮させる場合には、Fe含有量を0.02質量%以上とすることが好ましい。また、Feを0.5質量%以下であれば、導電率が低下する傾向がない。このため、Fe含有量は、0.02~0.5質量%とする。
(Fe: 0.02-0.5% by mass)
Fe is a component having an effect of improving product characteristics such as conductivity, strength, stress relaxation characteristics, and plating properties. In order to exert such an effect, the Fe content is preferably 0.02% by mass or more. Moreover, if Fe is 0.5 mass% or less, there is no tendency for electrical conductivity to fall. Therefore, the Fe content is set to 0.02 to 0.5% by mass.
(Mg:0.01~0.3質量%)
 Mgは、耐応力緩和特性を向上させる作用を有する成分である。かかる作用を発揮させる場合には、Mg含有量を0.01質量%以上とすることが好ましい。また、Mg含有量が0.3質量%以下であれば、導電性が低下する傾向がないこのため、Mg含有量は、0.01~0.3質量%とする。
(Mg: 0.01 to 0.3% by mass)
Mg is a component having an effect of improving the stress relaxation resistance. In order to exert such an effect, the Mg content is preferably 0.01% by mass or more. Further, if the Mg content is 0.3% by mass or less, the conductivity does not tend to decrease. Therefore, the Mg content is set to 0.01 to 0.3% by mass.
(Mn:0.01~0.5質量%)
 Mnは、母相に固溶して伸線加工性を向上させるとともに、粒界反応型析出の急激な発達を抑制し、粒界反応型析出によって生じる不連続性析出セル組織の制御を可能にする作用を有する成分である。かかる作用を発揮させる場合には、Mn含有量を0.01質量%以上とすることが好ましい。また、Mnの含有量が0.5質量%以下であれば、導電率の低下や曲げ加工性の劣化が生じるおそれがない。このため、Mn含有量は0.01~0.5質量%とする。
(Mn: 0.01 to 0.5% by mass)
Mn dissolves in the matrix phase to improve wire drawing workability, suppresses rapid development of grain boundary reactive precipitation, and enables control of discontinuous precipitation cell structure caused by grain boundary reactive precipitation. It is a component having the action of In order to exert such an effect, the Mn content is preferably 0.01% by mass or more. Moreover, if content of Mn is 0.5 mass% or less, there exists no possibility that the fall of electrical conductivity or the deterioration of bending workability may arise. Therefore, the Mn content is set to 0.01 to 0.5% by mass.
(Zn:0.01~0.15質量%)
 Znは、曲げ加工性を改善するとともに、Snめっきやはんだめっきの密着性やマイグレーション特性を改善する作用を有する成分である。かかる作用を発揮させる場合には、Zn含有量を0.01質量%以上とすることが好ましい。また、Zn含有量が0.15質量%以下であれば、導電性が低下する傾向がない。このため、Zn含有量は、0.01~0.15質量%とする。
(Zn: 0.01 to 0.15% by mass)
Zn is a component that has an effect of improving bending workability and improving adhesion and migration characteristics of Sn plating and solder plating. In order to exert such an effect, the Zn content is preferably 0.01% by mass or more. Moreover, if Zn content is 0.15 mass% or less, there is no tendency for electroconductivity to fall. Therefore, the Zn content is set to 0.01 to 0.15% by mass.
(Zr:0.01~0.15質量%)
 Zrは、主に結晶粒を微細化させて、強度や曲げ加工性を向上させる作用を有する成分である。かかる作用を発揮させる場合には、Zr含有量を0.01質量以上とすることが好ましい。また、Zr含有量が0.15質量%以下であれば、化合物を形成し、導電率およびプレス打ち抜き加工性が著しく低下する傾向がない。このため、Zr含有量は、0.01~0.15質量%とする。
(Zr: 0.01 to 0.15 mass%)
Zr is a component having an effect of mainly refining crystal grains and improving strength and bending workability. In order to exert such an effect, the Zr content is preferably set to 0.01 mass or more. Moreover, if Zr content is 0.15 mass% or less, a compound will be formed and there will be no tendency for electrical conductivity and press punching workability to fall remarkably. Therefore, the Zr content is set to 0.01 to 0.15% by mass.
(任意添加成分を少なくとも2成分含有する場合の合計含有量)
 上述したCr、Ni、Fe、Mg、Mn、ZnおよびZrからなる群から選ばれる任意添加成分を少なくとも2成分含有する場合には、合計含有量を1.5質量%以下とすることが好ましい。前記合計含有量が1.5質量%以下であれば、プレス打ち抜き加工性や導電率が大きく低下することはないからである。このため、前記合計含有量は、1.5質量%以下とする。
(Total content when containing at least two optional additional components)
In the case where at least two optional additive components selected from the group consisting of Cr, Ni, Fe, Mg, Mn, Zn and Zr are contained, the total content is preferably 1.5% by mass or less. This is because if the total content is 1.5% by mass or less, press punching workability and electrical conductivity are not greatly reduced. For this reason, the said total content shall be 1.5 mass% or less.
<残部>
 上述した必須含有成分および任意添加成分以外は、残部がCuおよび不可避不純物からなる。なお、ここでいう「不可避不純物」とは、おおむね金属製品において、原料中に存在するものや、製造工程において不可避的に混入するもので、本来は不要なものであるが、微量であり、金属製品の特性に影響を及ぼさないため許容されている不純物である。
<Remainder>
The balance consists of Cu and inevitable impurities other than the essential components and optional components described above. The “inevitable impurities” referred to here are mostly metal products that are present in raw materials or inevitably mixed in the manufacturing process, and are essentially unnecessary, but are trace amounts, It is an acceptable impurity because it does not affect the product characteristics.
[圧延集合組織]
 また、本発明では、EBSD法により測定した結果から得られた、全結晶粒界に占める特殊粒界Σ7粒界とΣ9粒界の合計量の割合が1.5%以上であり、Σ9/Σ7が1.0~5.0であり、α-fiber(Φ1=0°~45°)の方位密度が、3.0以上25.0以下の範囲内を満たすことを必須の発明特定事項とする。なお、ここでいう「方位密度」とは、結晶粒方位分布関数(ODF:crystal orientation distribution function)とも表され、ランダムな結晶方位分布の状態を1とし、それに対して何倍の集積となっているかを示すものであり、集合組織の結晶方位の存在比率および分散状態を定量的に解析する際に用いる。方位密度は、EBSDおよびX線回折測定結果より、(100)、(110)、(112)正極点図等3種類以上の正極点図測定データを基にして、級数展開法による結晶方位分布解析法により算出される。また特殊粒界Σ7粒界とΣ9粒界は、特殊粒界と呼ばれ、対応格子を形成する結晶粒界である。結晶粒間に単純な方位関係がない場合はΣが大きく、特別な性質を有しない粒界はランダム粒界と呼ばれる。α-fiberとは純銅を圧延加工および再結晶させた際に発達する結晶方位群がODFマップで示した際に繊維状のようにつながっていることを指している。圧延加工と再結晶の頻度によって、α―fiberの方位密度が変化する。
[Rolling texture]
In the present invention, the ratio of the total amount of the special grain boundary Σ7 grain boundary and Σ9 grain boundary in the total grain boundary obtained from the result of measurement by the EBSD method is 1.5% or more, and Σ9 / Σ7 1.0 to 5.0, and the orientation density of α-fiber (Φ1 = 0 ° to 45 °) must satisfy the range of 3.0 to 25.0. . The “orientation density” here is also expressed as a crystal orientation distribution function (ODF), where the random crystal orientation distribution is set to 1, and the number of times of accumulation is greater than that. It is used to quantitatively analyze the abundance ratio of the crystal orientation of the texture and the dispersion state. The orientation density is based on the EBSD and X-ray diffraction measurement results, and the crystal orientation distribution analysis by the series expansion method based on three or more kinds of positive point map measurement data such as (100), (110), (112) positive point map Calculated by the method. The special grain boundaries Σ7 and Σ9 are called special grain boundaries and are crystal grain boundaries that form a corresponding lattice. When there is no simple orientation relationship between crystal grains, Σ is large and a grain boundary that does not have special properties is called a random grain boundary. α-fiber refers to the fact that the crystal orientation group that develops when pure copper is rolled and recrystallized is connected like a fiber when shown on the ODF map. The orientation density of α-fiber changes depending on the frequency of rolling and recrystallization.
 本発明者らは、銅合金板材のプレス打ち抜き加工性を向上させるために、圧延集合組織との関係について鋭意検討を行った。その結果、合金組成を上記範囲に限定し、全結晶粒界に占める特殊粒界Σ7粒界とΣ9粒界の合計量の割合を1.5%以上とし、かつΣ9/Σ7を1.0~5.0とし、さらにα-fiber(φ1=0°~45°の範囲)の方位密度を3.0以上25.0以下の範囲内に制御することで、プレス打ち抜き加工性が格段に向上することを見出した。 In order to improve the press punching workability of the copper alloy sheet material, the present inventors have intensively studied the relationship with the rolling texture. As a result, the alloy composition is limited to the above range, the ratio of the total amount of the special grain boundary Σ7 grain boundary and Σ9 grain boundary in the total grain boundary is 1.5% or more, and Σ9 / Σ7 is 1.0 to By controlling the orientation density of α-fiber (φ 1 = 0 to 45 °) within the range of 3.0 to 25.0, the punching workability is greatly improved. I found out.
 すなわち、特殊粒界のΣ7およびΣ9は、他の特殊粒界に比べて粒界エネルギーが相対的に低く、全結晶粒界に占める特殊粒界Σ7粒界とΣ9粒界の合計量の割合が1.5%以上であると、プレス加工などの局所的に高負荷のかかる加工の場合でも、外力に対して変形しやすく、優れたプレス打ち抜き加工性が安定して得られるからである。 That is, Σ7 and Σ9 of the special grain boundaries have relatively low grain boundary energy compared to other special grain boundaries, and the ratio of the total amount of the special grain boundaries Σ7 grain boundary and Σ9 grain boundary in the total crystal grain boundary is This is because, if it is 1.5% or more, even in the case of processing that is locally heavily loaded such as press processing, it is easy to deform against external force, and excellent press punching workability can be obtained stably.
 また、Σ7粒界に対して、Σ9粒界の方がプレス打ち抜き加工性への寄与が大きい。一方、Σ7粒界はΣ9粒界に比べてプレス打ち抜き加工性への寄与は小さいものの、他の特殊粒界よりも優れている。なお、Σ7、Σ9粒界のいずれも、他の特殊粒界よりも粒界エネルギーが低く、加工時のプレス打ち抜き性に寄与するとみられる。このため、Σ9/Σ7を1.0~5.0に限定することで、優れたプレス打ち抜き性を発現することができる。 Also, the Σ9 grain boundary has a greater contribution to press punching workability than the Σ7 grain boundary. On the other hand, the Σ7 grain boundary is superior to other special grain boundaries, although it contributes less to press punching workability than the Σ9 grain boundary. Note that each of the Σ7 and Σ9 grain boundaries has a lower grain boundary energy than the other special grain boundaries, and is considered to contribute to press punchability during processing. For this reason, by limiting Σ9 / Σ7 to 1.0 to 5.0, excellent press punchability can be exhibited.
 さらに、α-fiber(φ1=0°~45°の範囲)の方位密度を3.0以上25.0以下の範囲内に限定することにより、プレス打ち抜き性に加え、高い強度を得ることができ、後述する製造方法で製造することで、優れた強度が得られる。 Further, by limiting the orientation density of α-fiber (in the range of φ 1 = 0 ° to 45 °) within the range of 3.0 or more and 25.0 or less, high strength can be obtained in addition to press punchability. It is possible to obtain excellent strength by manufacturing with the manufacturing method described later.
 図1は、EBSDにより測定し、ODF(方位分布関数)解析から得られた、銅合金板材の代表的な結晶方位分布図であって、圧延面内の2軸直交方向である、圧延方向と平行な方向RDおよび板幅方向TDと、圧延面の法線方向NDの3方向のオイラー角で示し、すなわち、RD軸の方位回転をΦ、ND軸の方位回転をΦ、TD軸の方位回転をΦとして示す。ここで、α-fiberはφ1 =0°~45°の範囲に集積している。 FIG. 1 is a typical crystal orientation distribution diagram of a copper alloy sheet measured by EBSD and obtained from an ODF (orientation distribution function) analysis, which is a biaxial orthogonal direction in a rolling plane, The Euler angles in the three directions of the parallel direction RD and the sheet width direction TD and the normal direction ND of the rolled surface are shown, that is, the RD axis orientation rotation is Φ, the ND axis orientation rotation is Φ 1 , and the TD axis orientation shows the rotating [Phi 2. Here, α-fiber is accumulated in a range of φ 1 = 0 ° to 45 °.
 本発明における上記圧延集合組織の解析にはEBSD法を用いた。EBSD法とは、Electron BackScatter Diffractionの略で、走査電子顕微鏡(SEM)内で試料に電子線を照射したときに生じる反射電子菊池線回折を利用した結晶方位解析技術のことである。本発明におけるEBSD測定では、結晶粒を200個以上含む、800μm×1600μmの試料面積に対し、0.1μmステップでスキャンし、測定した。前記測定面積およびスキャンステップは、試料の結晶粒の大きさに応じて決定すればよい。また方位差については、隣り合う測定点の方位差が10°以上のものを結晶粒界とみなす。測定後の結晶粒の解析には、TSLソリューションズ社製の解析ソフトOIM Analysis(商品名)を用いた。EBSDによる結晶粒の解析において得られる情報は、電子線が試料に侵入する数10nmの深さまでの情報を含んでいる。また、板厚方向の測定箇所は、試料表面から板厚tの1/8倍~1/2倍の位置付近とすることが好ましい。 The EBSD method was used for the analysis of the rolling texture in the present invention. The EBSD method is an abbreviation for Electron Backscatter Diffraction, and is a crystal orientation analysis technique using reflected electron Kikuchi line diffraction that occurs when a sample is irradiated with an electron beam in a scanning electron microscope (SEM). In the EBSD measurement in the present invention, a sample area of 800 μm × 1600 μm containing 200 or more crystal grains was scanned and measured in 0.1 μm steps. The measurement area and the scanning step may be determined according to the size of crystal grains of the sample. As for the orientation difference, the orientation difference between adjacent measurement points of 10 ° or more is regarded as a crystal grain boundary. For analysis of the crystal grains after the measurement, analysis software OIM Analysis (trade name) manufactured by TSL Solutions was used. Information obtained in the analysis of crystal grains by EBSD includes information up to a depth of several tens of nm at which the electron beam penetrates the sample. Further, the measurement location in the plate thickness direction is preferably near the position of 1/8 to 1/2 times the plate thickness t from the sample surface.
 本明細書における結晶方位の表示方法は、Z軸に垂直な(圧延面(XY面)に平行な)結晶面の指数(h k l)と、X軸に垂直な(YZ面に平行な)結晶方向の指数[u v w]とを用いて、(h k l)[u v w]の形で表す。また、(1 3 2)[6 -4 3]や(2 3 1)[3 -4 6]などのように、銅合金の立方晶の対称性のもとで等価な方位については、ファミリー(総称)を表すカッコ記号を使用し、{h k l}<u v w>と表す。代表的な結晶方位として、Brass方位{011}<211>、S方位{123}<634>、Copper方位{112}<111>、Goss方位{110}<001>、RDW方位{012}<100>、BR方位{236}<385>などが挙げられる。ここで、α-fiberは、φ1=0°~45°の範囲であり、Goss方位~Brass方位で連続的に変化する合金型のファイバー集合組織として存在し、本発明の銅合金板材の合金成分は、合金型の集合組織であり、これは、添加元素であるCoおよびSiを規定の範囲内で制御することで得られる組織である。α-fiberが規定の範囲内で存在することによって、プレス打ち抜き加工性を格段に向上させることができる。 In this specification, the crystal orientation display method includes a crystal plane index (h k l) perpendicular to the Z axis (parallel to the rolling plane (XY plane)) and a vertical axis (parallel to the YZ plane) to the X axis. Using the index [u v w] of the crystal direction, it is expressed in the form of (h k l) [u v w]. Also, the equivalent orientation under the cubic symmetry of the copper alloy, such as (1 3 2) [6 -4 3] and (2 3 1) [3 -4 6] A parenthesis representing the generic name is used, and {h k l} <u v w> is used. Typical crystal orientations include Brass orientation {011} <211>, S orientation {123} <634>, Copper orientation {112} <111>, Goss orientation {110} <001>, RDW orientation {012} <100. >, BR orientation {236} <385> and the like. Here, α-fiber is in the range of φ 1 = 0 ° to 45 °, and exists as an alloy-type fiber texture that continuously changes from the Goss orientation to the Brass orientation. The alloy of the copper alloy sheet material of the present invention The component is an alloy-type texture, which is a structure obtained by controlling the additive elements Co and Si within a specified range. The presence of α-fiber within a specified range can significantly improve press punching workability.
[引張強度]
 本発明では、圧延平行方向の引張強度が500MPa以上であることが好ましい。圧延平行方向の引張強度が500MPa以上であれば、薄板化や狭幅化された板材で端子を形成した場合に、板材の強度が不足する傾向がなく、端子の板バネ部において十分な接圧を確保することができなくなるおそれがないからである。
[Tensile strength]
In the present invention, the tensile strength in the rolling parallel direction is preferably 500 MPa or more. If the tensile strength in the rolling parallel direction is 500 MPa or more, there is no tendency for the strength of the plate material to be insufficient when the terminal is formed from a thin plate or narrowed plate material, and sufficient contact pressure at the leaf spring portion of the terminal This is because there is no possibility that it cannot be secured.
[導電率]
 本発明では、導電率が50%IACS超えとすることが好ましい。導電率が50%IACS超えであれば、大電流で通電しても抵抗発熱量が多くなく、熱によって接点部のばね性の低下や、端子を固定するモールドの劣化などにより、端子の機能が著しく低下するおそれがないからである。
[conductivity]
In the present invention, it is preferable that the electrical conductivity exceeds 50% IACS. If the electrical conductivity exceeds 50% IACS, the resistance heating value will not be large even when energized with a large current, and the function of the terminal will be reduced due to a decrease in the spring property of the contact part due to heat or deterioration of the mold for fixing the terminal. This is because there is no risk of significant decrease.
[プレス打ち抜き加工による切断面の形状]
 本発明では、プレス打ち抜き加工による切断面を走査型電子顕微鏡(SEM)で観察することにより特定した剪断面および破断面は、板厚方向に測定した合計寸法の最大値tmaxと最小値tminの差Δtが、板厚Tの30%以下であることが好ましい。
[Shape of cut surface by press punching]
In the present invention, the shear plane and the fractured surface specified by observing the cut surface by press punching with a scanning electron microscope (SEM) are the difference between the maximum value tmax and the minimum value tmin of the total dimension measured in the plate thickness direction. Δt is preferably 30% or less of the plate thickness T.
 図2は、代表的な実施形態の銅合金板材の部分斜視図である。図2に示す銅合金板材1は、図示しない下型(ダイ)上に固定された状態で上型(パンチ)を下降させて行うプレス打ち抜き加工を施した状態を示したものであって、切断面(切り口)2を有している。また、切断面2は、プレス加工された銅合金板材1の上面1a側から、ダレ3、剪断面4および破断面5の順で構成され、また、切断面4の下端縁には、通常、正規の断面形状から外へはみ出した薄いひれ状部分である、いわゆるバリ(かえり)6も形成されている。 FIG. 2 is a partial perspective view of a copper alloy sheet according to a representative embodiment. The copper alloy sheet 1 shown in FIG. 2 shows a state in which a press punching process is performed by lowering an upper die (punch) while being fixed on a lower die (die) (not shown), A surface (cut) 2 is provided. Further, the cut surface 2 is configured in the order of the sag 3, the sheared surface 4 and the fracture surface 5 from the upper surface 1 a side of the pressed copper alloy sheet material 1. A so-called burr 6 is also formed, which is a thin fin-like portion protruding outward from the regular cross-sectional shape.
 本発明者らは、特にダレ(面)3と剪断面4との境界線7の変動高さΔtに着目し、この変動高さΔt、すなわち銅合金板材1の板厚Tに対して所定の範囲内、より具体的には、プレス打ち抜き加工による切断面2を走査型電子顕微鏡(SEM)で観察した。その結果、本発明者らは、特定した剪断面4および破断面5を板厚方向に測定した合計寸法の最大値tmaxと最小値tminの差Δtを、板厚Tの30%以下に制御することによって、プレス打ち抜き加工性を格段に向上することを見出した。そして、この変動高さΔtの制御は、上述したとおり、EBSD法により測定した結果から得られた、全結晶粒界に占める特殊粒界Σ7粒界とΣ9粒界の合計量の割合が1.5%以上であり、Σ9/Σ7が1.0~5.0であり、α-fiber(Φ1=0°~45°)の方位密度を3.0以上25.0以下の範囲内とすることによって実現することができる。変動高さΔtが板厚Tの30%超えだと、プレス打ち抜き加工性が劣り、連設形成される端子同士の間隔ならびに端子の寸法および形状のばらつきが大きくなる傾向がある。 The present inventors pay particular attention to the fluctuation height Δt of the boundary line 7 between the sag (surface) 3 and the shearing face 4, and this fluctuation height Δt, that is, a predetermined thickness with respect to the plate thickness T of the copper alloy sheet material 1. More specifically, the cut surface 2 formed by press punching was observed with a scanning electron microscope (SEM). As a result, the present inventors control the difference Δt between the maximum value tmax and the minimum value tmin of the total dimension obtained by measuring the specified shear surface 4 and fracture surface 5 in the plate thickness direction to 30% or less of the plate thickness T. As a result, it has been found that the press punching processability is remarkably improved. And as above-mentioned, control of this fluctuation height (DELTA) t is obtained from the result measured by the EBSD method, and the ratio of the total amount of the special grain boundary (SIGMA) 7 grain boundary and (SIGMA9) grain boundary which occupies for all the crystal grain boundaries is 1. 5% or more, Σ9 / Σ7 is 1.0 to 5.0, and the orientation density of α-fiber (Φ1 = 0 ° to 45 °) is within the range of 3.0 to 25.0. Can be realized. When the fluctuation height Δt exceeds 30% of the plate thickness T, the press punching processability is inferior, and there is a tendency that the distance between the terminals formed continuously and the variation in the size and shape of the terminals increase.
 なお、プレス打ち抜き加工により形成した切断面2は、バリ6の発生等があるため、銅合金板材1の板厚Tと、加工後の切断面2とでは、ダレ3やバリ6が発生しているため、銅合金板材1の板厚Tを正しく測定することができないことから、剪断面4および破断面5の合計寸法の測定は、加工していない銅合金板材1の下面1b位置を基準ラインとし行うこととする。 In addition, since the cut surface 2 formed by the press punching process has generation | occurrence | production of the burr | flash 6, etc., the sagging 3 and the burr | flash 6 generate | occur | produce in the board thickness T of the copper alloy board | plate material 1 and the cut surface 2 after a process. Therefore, since the thickness T of the copper alloy sheet 1 cannot be measured correctly, the total dimension of the shear surface 4 and the fracture surface 5 is measured based on the position of the lower surface 1b of the copper alloy sheet 1 that has not been processed. To do.
<銅合金板材の製造方法>
 次に、本発明の銅合金板材の製造方法の具体例について、以下で説明する。
(製造方法A)
 本発明の銅合金板材の製造方法は、銅合金素材を溶解する鋳造工程(工程1)で得た鋳塊の表面に形成した酸化膜を除去するために表裏の両面をそれぞれ0.5mm以上の厚さで削り取る第1面削工程(工程2)を行った後に、保持温度800~1200℃、保持時間0.1~10時間の均質化熱処理工程(工程3)を行い、次いで、圧延温度600~1100℃、圧延回数4回以上、合計加工率60%以上の条件下で熱間圧延工程(工程4)を行った後、水冷工程(工程5)による急冷を行った。その後、表面の酸化膜の除去のため、熱延材の表裏の両面をそれぞれ0.5mm以上の厚さで削り取る第2面削工程(工程6)を行う。その後、圧延回数2回以上、合計加工率50%以上の条件下で第1冷間圧延工程(工程7)を行った後、昇温速度1~150℃/秒、到達温度800~1000℃、保持時間1~300秒、冷却速度1~200℃/秒にて溶体化熱処理工程(工程8)を行い、次いで、到達温度300~650℃、保持時間0.2~15時間にて時効熱処理工程(工程9)を行う。次に、圧延回数2回以上、合計加工率5%以上の条件下で第2冷間圧延工程(工程10)を行った後、到達温度200~600℃、保持時間1~3600秒にて焼鈍工程(工程11)を行う。このようにして、本発明の銅合金板材を作製する。
<Method for producing copper alloy sheet>
Next, the specific example of the manufacturing method of the copper alloy sheet | seat material of this invention is demonstrated below.
(Production method A)
In the method for producing a copper alloy sheet according to the present invention, in order to remove the oxide film formed on the surface of the ingot obtained in the casting step (step 1) for melting the copper alloy material, both sides of the front and back sides are each 0.5 mm or more. After performing the first chamfering step (step 2) of scraping with a thickness, a homogenization heat treatment step (step 3) is performed at a holding temperature of 800 to 1200 ° C. and a holding time of 0.1 to 10 hours, and then a rolling temperature of 600 The hot rolling step (step 4) was performed under the conditions of ˜1100 ° C., rolling number of 4 times or more, and total processing rate of 60% or more, followed by rapid cooling by the water cooling step (step 5). Thereafter, in order to remove the oxide film on the surface, a second chamfering step (step 6) is performed in which both the front and back surfaces of the hot-rolled material are each cut to a thickness of 0.5 mm or more. Thereafter, after performing the first cold rolling step (step 7) under the conditions of the rolling number of times of 2 times or more and the total processing rate of 50% or more, the heating rate is 1 to 150 ° C./second, the ultimate temperature is 800 to 1000 ° C., A solution heat treatment step (step 8) is performed at a holding time of 1 to 300 seconds and a cooling rate of 1 to 200 ° C./second, and then an aging heat treatment step at an ultimate temperature of 300 to 650 ° C. and a holding time of 0.2 to 15 hours (Step 9) is performed. Next, after performing the second cold rolling step (step 10) under the condition that the number of rolling is 2 times or more and the total processing rate is 5% or more, annealing is performed at an ultimate temperature of 200 to 600 ° C. and a holding time of 1 to 3600 seconds. A process (process 11) is performed. In this way, the copper alloy sheet material of the present invention is produced.
(製造方法B)
 また、銅合金板材の別の製造方法としては、工程1から工程8までを行った後に、第2冷間圧延工程(工程10)を行ってから時効熱処理工程(工程9)を行い、その後さらに、圧延回数2回以上、合計加工率10%以上の条件下で第3冷間圧延工程(工程12)を行い、その後、焼鈍工程(工程11)を行うようにしてもよく、かかる方法でも、本発明の銅合金板材を作製することが可能である。
(Production method B)
Moreover, as another manufacturing method of a copper alloy plate material, after performing the process 1 to the process 8, the aging heat treatment process (process 9) is performed after the second cold rolling process (process 10) is performed, and then further In addition, the number of times of rolling is two times or more, the third cold rolling step (step 12) may be performed under conditions of a total processing rate of 10% or more, and then the annealing step (step 11) may be performed. It is possible to produce the copper alloy sheet of the present invention.
(製造方法C)
 さらに、銅合金材の他の製造方法としては、工程1から工程7まで行った後に、溶体化熱処理工程(工程8)を行わずに、時効熱処理工程(工程9)を行い、その後、第2冷間圧延工程(工程10)を行うようにしてもよく、かかる方法でも、本発明の銅合金板材を作製することが可能である。
(Manufacturing method C)
Furthermore, as another manufacturing method of the copper alloy material, after performing from step 1 to step 7, the aging heat treatment step (step 9) is performed without performing the solution heat treatment step (step 8), and then the second A cold rolling step (step 10) may be performed, and the copper alloy sheet material of the present invention can also be produced by such a method.
 銅合金素材は、Coを0.3~1.9質量%およびSiを0.1~0.5質量%含有し、さらに必要に応じてCrを0.05~1.0質量%、Niを0.05~0.7質量%、Feを0.02~0.5質量%、Mgを0.01~0.3質量%、Mnを0.01~0.5質量%、Znを0.01~0.15質量%およびZrを0.01~0.15質量%からなる群から選ばれる少なくとも1成分を含有し、残部がCuおよび不可避不純物からなる合金組成を有するものである。 The copper alloy material contains 0.3 to 1.9% by mass of Co and 0.1 to 0.5% by mass of Si. Further, if necessary, 0.05 to 1.0% by mass of Cr and Ni 0.05 to 0.7 mass%, Fe 0.02 to 0.5 mass%, Mg 0.01 to 0.3 mass%, Mn 0.01 to 0.5 mass%, Zn 0. It contains at least one component selected from the group consisting of 01 to 0.15% by mass and Zr from 0.01 to 0.15% by mass, and the balance has an alloy composition consisting of Cu and inevitable impurities.
 ここでいう「圧延加工率」とは、圧延前の断面積から圧延後の断面積を引いた値を圧延前の断面積で除して100を乗じ、パーセントで表した値である。すなわち、下記式で表される。
 [圧延加工率]={([圧延前の断面積]-[圧延後の断面積])/[圧延前の断面積]}×100(%)
The “rolling ratio” here is a value expressed as a percentage by dividing the value obtained by subtracting the cross-sectional area after rolling from the cross-sectional area before rolling by the cross-sectional area before rolling and multiplying by 100. That is, it is represented by the following formula.
[Rolling ratio] = {([Cross sectional area before rolling] − [Cross sectional area after rolling]) / [Cross sectional area before rolling]} × 100 (%)
 本発明では、上記製造方法A~Cを構成する構成の中で、特に共通の工程である、均質化熱処理工程(工程3)、熱間圧延工程(工程4)および時効熱処理工程(工程9)を制御することが重要である。すなわち、均質化熱処理工程における昇温速度を10~110℃/秒および保持温度を950~1250℃とし、熱間圧延工程(工程4)における冷却開始温度を680~850℃および冷却速度を20~130℃/秒とし、さらに時効熱処理工程(工程9)における到達温度を450~650℃および保持時間を500~20000秒とすることが必要である。また、圧延集合組織を十分に発達させ、α-fiberの方位密度を適正範囲内に制御するため、時効熱処理工程(工程9)は、上記の範囲で熱処理を施すことが必要である。 In the present invention, a homogenization heat treatment step (step 3), a hot rolling step (step 4), and an aging heat treatment step (step 9), which are particularly common steps among the structures constituting the manufacturing methods A to C described above. It is important to control. That is, the temperature increase rate in the homogenization heat treatment step is 10 to 110 ° C./second, the holding temperature is 950 to 1250 ° C., the cooling start temperature in the hot rolling step (step 4) is 680 to 850 ° C., and the cooling rate is 20 to It is necessary to set the temperature to 130 ° C./second, the temperature reached in the aging heat treatment step (step 9) to 450 to 650 ° C., and the holding time to 500 to 20000 seconds. Further, in order to sufficiently develop the rolling texture and control the orientation density of α-fiber within an appropriate range, the aging heat treatment step (step 9) needs to be heat-treated within the above range.
 均質化熱処理工程(工程3)の昇温速度が10℃/秒以上もしくは110℃/秒以下、または保持温度が950℃以上だと、鋳造時に生じる晶出物の固溶が十分となり、製造された銅合金板材において、満足レベルの強度と導電率が得られる。一方、均質化熱処理工程(工程3)の保持温度が1250℃以下だと、結晶粒界近傍が部分的に液相化し、熱間圧延時の割れが発生しやすくなって、製造できない場合がないからである。また、熱間圧延工程(工程4)の冷却開始温度が680℃以上もしくは冷却速度が20℃/秒以上だと、冷却中に溶質元素の粗大析出が進み、製造された銅合金板材において、満足レベルの強度と導電率が得られなくなるおそれがないからである。一方、熱間圧延工程(工程4)の冷却開始温度が850℃以下もしくは冷却速度が130℃/秒以下だと、圧延組織の形成が十分となり、最終工程後のプレス打ち抜き性に悪影響を及ぼすことがない。さらに、時効熱処理工程(工程9)の到達温度が450℃以上もしくは保持時間が500秒以上の場合、時効析出量が不十分で強度、導電率が不足する傾向がない。一方、時効熱処理工程(工程9)の到達温度が650℃以下もしくは20000秒以下になると、析出物の粗大化で強度が不十分となる傾向がないからである。 If the heating rate in the homogenization heat treatment step (step 3) is 10 ° C./second or more or 110 ° C./second or less, or the holding temperature is 950 ° C. or more, the crystallization product produced during casting is sufficiently dissolved and produced. In a copper alloy sheet, a satisfactory level of strength and electrical conductivity can be obtained. On the other hand, when the holding temperature in the homogenization heat treatment step (step 3) is 1250 ° C. or lower, the vicinity of the crystal grain boundary partially becomes a liquid phase and cracks during hot rolling are likely to occur, and there is no case where it cannot be produced. Because. In addition, when the cooling start temperature in the hot rolling step (step 4) is 680 ° C. or higher or the cooling rate is 20 ° C./second or more, coarse precipitation of solute elements proceeds during cooling, and the produced copper alloy sheet is satisfactory. This is because there is no possibility that the strength and conductivity of the level cannot be obtained. On the other hand, if the cooling start temperature in the hot rolling step (step 4) is 850 ° C. or lower or the cooling rate is 130 ° C./second or lower, the formation of the rolled structure becomes sufficient, which adversely affects the press punchability after the final step. There is no. Furthermore, when the temperature reached in the aging heat treatment step (step 9) is 450 ° C. or higher or the holding time is 500 seconds or longer, the amount of aging precipitation is insufficient and the strength and conductivity do not tend to be insufficient. On the other hand, when the temperature reached in the aging heat treatment step (step 9) is 650 ° C. or less or 20000 seconds or less, the strength of the precipitate does not tend to be insufficient due to coarsening of the precipitate.
 よって、本発明では、均質化熱処理工程(工程3)、熱間圧延工程(工程4)および時効熱処理工程(工程9)の条件を適正に制御して製造することで、目標とする組織および特性が得られる。 Therefore, in the present invention, the target structure and characteristics are obtained by appropriately controlling the conditions of the homogenization heat treatment step (step 3), the hot rolling step (step 4) and the aging heat treatment step (step 9). Is obtained.
 以上、本発明の実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、本発明の概念および請求の範囲に含まれるあらゆる態様を含み、本発明の範囲内で改変することができる。 As mentioned above, although embodiment of this invention was described, this invention is not limited to the said embodiment, All the aspects included in the concept and claim of this invention are included, and it modifies | changes within the scope of the present invention. be able to.
 次に、本発明の効果をさらに明確にするために、以下で実施例について説明するが、本発明はこれらに限定されるものではない。 Next, in order to further clarify the effects of the present invention, examples will be described below, but the present invention is not limited thereto.
(本発明例1~16および比較例1~9)
 本発明例1~16および比較例1~9は、表1に示す組成となるように、それぞれCoおよびSi、ならびに必要に応じて添加する任意添加成分を含有し、残部がCuと不可避不純物からなる銅合金素材を高周波溶解炉により溶解し、これを鋳造(工程1)して鋳塊を得た。鋳塊の表面に形成した酸化膜を除去するために表裏の両面をそれぞれ0.5mmの厚さで削り取る第1面削工程(工程2)を行った後に、表2に示す昇温速度および保持温度の条件下で均質化熱処理工程(工程3)を行い、次いで、表2に示す冷却開始温度および冷却速度の条件下で熱間圧延工程(工程4)を行った後、水冷工程(工程5)による急冷を行った。その後、表面の酸化膜の除去のため、熱延材の表裏の両面をそれぞれ0.5mmの厚さで削り取る第2面削工程(工程6)を行う。その後、合計加工率50%以上となるよう第1冷間圧延工程(工程7)を行った後、表2に示す製造方法A~Cのいずれかの製造方法に従う各工程を順に行い、各銅合金板材を作製した。なお、時効熱処理工程(工程9)における到達温度および保持時間は表2に示す。作製した各銅合板材について、全結晶粒界に占める特殊粒界Σ7粒界とΣ9粒界の合計量の割合、Σ9/Σ7比、α-fiber(Φ1=0°~45°)の方位密度、および変動高さΔt/板厚Tの比についても表2に示す。
(Invention Examples 1 to 16 and Comparative Examples 1 to 9)
Inventive Examples 1 to 16 and Comparative Examples 1 to 9 each contain Co and Si, and optional additional components to be added as necessary, so that the compositions shown in Table 1 are obtained, with the balance being Cu and inevitable impurities. The resulting copper alloy material was melted in a high-frequency melting furnace and cast (step 1) to obtain an ingot. In order to remove the oxide film formed on the surface of the ingot, after performing the first chamfering step (step 2) in which both the front and back surfaces are each cut to a thickness of 0.5 mm, the heating rate and holding shown in Table 2 are performed. A homogenization heat treatment step (step 3) is performed under temperature conditions, and then a hot rolling step (step 4) is performed under the conditions of the cooling start temperature and cooling rate shown in Table 2, followed by a water cooling step (step 5). ). Thereafter, in order to remove the oxide film on the surface, a second chamfering step (step 6) is performed in which both the front and back surfaces of the hot-rolled material are each cut to a thickness of 0.5 mm. Thereafter, after performing the first cold rolling step (step 7) so that the total processing rate becomes 50% or more, each step according to any one of the manufacturing methods A to C shown in Table 2 is sequentially performed, An alloy sheet was produced. Table 2 shows the ultimate temperature and holding time in the aging heat treatment step (step 9). For each produced copper plywood, the ratio of the total amount of special grain boundaries Σ7 grain boundary and Σ9 grain boundary in the total grain boundary, Σ9 / Σ7 ratio, orientation density of α-fiber (Φ1 = 0 ° -45 °) Table 2 also shows the ratio of fluctuation height Δt / plate thickness T.
[評価方法]
 作製した各銅合金板材について下記特性の評価を行った。
(EBSD測定による結晶方位の測定及び解析)
 EBSD法により、測定面積64×10μm(800μm×800μm)、スキャンステップは0.1μmの条件で測定を行った。スキャンステップは微細な結晶粒を測定するため、0.1μmステップで行った。解析では、64×10μmのEBSD測定結果から、解析にて逆極点図 IPF(Inverse Pole Figure)を確認した。電子線は、走査電子顕微鏡のWフィラメントからの熱電子を発生源とした。なお、測定時のプローブ径は、約0.015μmである。EBSD法の測定装置には、TSLソリューションズ社製 OIM5.0(商品名)を用いた。Σ9/Σ7比は、EBSD測定の結果を、解析ソフト(OIM Analysis)にて測定面のCSL(Coincidence Site Lattice)の中から、Σ7粒界とΣ9粒界を算出した。α-fiber(Φ1=0°~45°)の方位密度は、EBSD測定の結果を、解析ソフト(OIM Analysis)にて、方位分布関数:ODF(Oriantation Distribution Functions)の中から、特定の方位密度を抽出した。また方位差については、隣り合う測定点の方位差が10°以上のものを結晶粒界とみなした。
[Evaluation methods]
Each copper alloy sheet produced was evaluated for the following characteristics.
(Measurement and analysis of crystal orientation by EBSD measurement)
The measurement was performed under the conditions of a measurement area of 64 × 10 4 μm 2 (800 μm × 800 μm) and a scan step of 0.1 μm by the EBSD method. The scan step was performed in 0.1 μm steps to measure fine crystal grains. In the analysis, an inverse pole figure IPF (Inverse Pole Figure) was confirmed from the EBSD measurement result of 64 × 10 4 μm 2 in the analysis. The electron beam was generated from thermionic electrons from the W filament of the scanning electron microscope. The probe diameter at the time of measurement is about 0.015 μm. OIM5.0 (trade name) manufactured by TSL Solutions was used as the measuring device for the EBSD method. As for the Σ9 / Σ7 ratio, the Σ7 grain boundary and the Σ9 grain boundary were calculated from the CBSD (Coincidence Site Lattice) on the measurement surface using the analysis software (OIM Analysis). The orientation density of α-fiber (Φ1 = 0 ° to 45 °) can be obtained by analyzing the results of EBSD using an analysis software (OIM Analysis) from a particular orientation function: ODF (Orientation Distribution Functions). Extracted. Regarding the difference in orientation, those having an orientation difference of 10 ° or more between adjacent measurement points were regarded as crystal grain boundaries.
(引張試験)
 JIS Z 2241:2011に準じ、各銅合金板材から圧延平行方向に沿って切り出して3本の試験片を作製して測定し、その平均値(MPa)を表2に示す。なお、本実施例では、引張強度が500MPa以上である場合を合格レベルにあるとして評価した。
(Tensile test)
In accordance with JIS Z 2241: 2011, three test pieces were cut out from each copper alloy sheet along the rolling parallel direction and measured, and the average value (MPa) is shown in Table 2. In this example, the case where the tensile strength was 500 MPa or more was evaluated as being at an acceptable level.
(導電率(EC))
 各銅合金板材の導電率は、20℃(±0.5℃)に保たれた恒温槽中で四端子法により計測した比抵抗の数値から算出した。なお、端子間距離は100mmとした。なお、本実施例では、板材の導電率が50%IACS超えである場合を合格、50%IACS以下の場合を不合格であるとして評価した。
(Conductivity (EC))
The electrical conductivity of each copper alloy sheet was calculated from specific resistance values measured by a four-terminal method in a thermostatic chamber maintained at 20 ° C. (± 0.5 ° C.). In addition, the distance between terminals was 100 mm. In addition, in the present Example, the case where the electrical conductivity of a board | plate material exceeded 50% IACS was evaluated as the pass, and the case below 50% IACS was evaluated as the failure.
(プレス打ち抜き加工性)
 作製した各銅合金板材に、上型(パンチ)と下型(ダイ)のクリアランスが板厚Tの5.0%となるように調整し、打ち抜き加工を施し、長さ寸法: 3.0 mm、幅寸法: 1.0 mmのサイズで、かつ長さ寸法が圧延方向に対して垂直方向になるように打ち抜いてサンプルを作製し、各サンプルに形成された切断面のうち、長さ寸法と直交する切断面(幅寸法と平行な面)を観察する。プレス加工後のサンプルを固定し、SEMにて100~500倍で観察する。SEM観察には、日立製作所社製のSEMEDX TypeMを使用した。プレス打ち抜き加工による切断面を走査型電子顕微鏡(SEM)で観察することにより特定した剪断面および破断面は、板厚方向に測定した合計寸法の最大値tmaxと最小値tminの差Δtを測定した。測定したΔtは、板厚Tの30%以下であるものを、プレス打ち抜き加工性が合格レベルにあるとして「○」、板厚Tの30%超えであるものを、プレス打ち抜き加工性が合格レベルにはなく不合格であるとして「×」として表2に示す。
(Press punching workability)
Each prepared copper alloy sheet is adjusted so that the clearance between the upper mold (punch) and the lower mold (die) is 5.0% of the sheet thickness T, punched, and length dimension: 3.0 mm. , Width dimension: 1.0 mm, and the length dimension is punched so as to be perpendicular to the rolling direction to prepare a sample. Of the cut surfaces formed in each sample, the length dimension Observe an orthogonal cut surface (a surface parallel to the width dimension). The sample after pressing is fixed and observed with a SEM at 100 to 500 times. For SEM observation, SEMEDX TypeM manufactured by Hitachi, Ltd. was used. For the sheared surface and fractured surface identified by observing the cut surface by press punching with a scanning electron microscope (SEM), the difference Δt between the maximum value tmax and the minimum value tmin of the total dimension measured in the plate thickness direction was measured. . The measured Δt is 30% or less of the plate thickness T, “○” is assumed that the press punching workability is at an acceptable level, and the press punching workability is at an acceptable level when it exceeds 30% of the plate thickness T. It is shown in Table 2 as “x” as being unacceptable.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示す評価結果から、本発明例1~16はいずれも、合金組成、全結晶粒界に占める特殊粒界Σ7粒界とΣ9粒界の合計量の割合、Σ9/Σ7比おびα-fiber(Φ1=0°~45°)の方位密度の全てが本発明の適正範囲内であるため、引張強度、導電率およびプレス打ち抜き加工性に優れていた。一方、比較例1~9は、合金組成、全結晶粒界に占める特殊粒界Σ7粒界とΣ9粒界の合計量の割合、Σ9/Σ7比おびα-fiber(Φ1=0°~45°)の方位密度の少なくとも1つが本発明の適正範囲外であるため、いずれもプレス打ち抜き加工性が劣っていた。 From the evaluation results shown in Table 2, in all of inventive examples 1 to 16, the alloy composition, the ratio of the total amount of the special grain boundary Σ7 grain boundary and Σ9 grain boundary in the total grain boundary, Σ9 / Σ7 ratio and α− Since all of the orientation densities of the fibers (Φ1 = 0 ° to 45 °) are within the appropriate range of the present invention, the tensile strength, conductivity and press punching workability were excellent. On the other hand, Comparative Examples 1 to 9 show the alloy composition, the ratio of the total amount of the special grain boundary Σ7 grain boundary and Σ9 grain boundary in the total grain boundary, the Σ9 / Σ7 ratio and α-fiber (Φ1 = 0 ° to 45 °). ) Is outside the proper range of the present invention, and the press punching workability was inferior.
 本発明によれば、Cu-Co-Si系合金を用い、高強度および高導電率を具備しつつ、プレス打ち抜き加工性にも優れた銅合金板材の提供が可能になった。 According to the present invention, it has become possible to provide a copper alloy sheet material that uses a Cu—Co—Si based alloy, has high strength and high conductivity, and is excellent in press punching workability.
 1 銅合金板材
 2 切断面
 3 ダレ(面)
 4 剪断面
 5 破断面
 6 バリ
 7 ダレ(面)3と剪断面4との境界線
 Δt 境界線7の変動高さ
 tmax 剪断面4および破断面5を板厚方向に測定した合計寸法の最大値
 tmin 剪断面4および破断面5を板厚方向に測定した合計寸法の最小値
1 Copper alloy sheet 2 Cut surface 3 Sag (surface)
4 Shear surface 5 Fracture surface 6 Burr 7 Boundary line between sag (surface) 3 and shear surface 4 Δt Fluctuation height of boundary line tmax Maximum value of total dimension of shear surface 4 and fracture surface 5 measured in thickness direction tmin Minimum value of total dimensions of shear plane 4 and fracture surface 5 measured in the thickness direction

Claims (7)

  1.  Coを0.3~1.9質量%およびSiを0.1~0.5質量%含有し、残部がCuおよび不可避不純物からなる合金組成を有し、EBSD法により測定した結果から得られた、全結晶粒界に占める特殊粒界Σ7粒界とΣ9粒界の合計量の割合が1.5%以上であり、Σ9/Σ7が1.0~5.0であり、α-fiber(Φ1=0°~45°)の方位密度が、3.0以上25.0以下の範囲内を満たすことを特徴とする銅合金板材。 Obtained from the result of measurement by the EBSD method having an alloy composition containing 0.3 to 1.9% by mass of Co and 0.1 to 0.5% by mass of Si with the balance being Cu and inevitable impurities The ratio of the total amount of the special grain boundary Σ7 grain boundary and Σ9 grain boundary in all the grain boundaries is 1.5% or more, Σ9 / Σ7 is 1.0 to 5.0, α-fiber (Φ1 = 0 ° to 45 °), a copper alloy sheet characterized by satisfying a range of 3.0 to 25.0.
  2.  Coを0.3~1.9質量%およびSiを0.1~0.5質量%含有し、さらにCrを0.05~1.0質量%、Niを0.05~0.7質量%、Feを0.02~0.5質量%、Mgを0.01~0.3質量%、Mnを0.01~0.5質量%、Znを0.01~0.15質量%およびZrを0.01~0.15質量%からなる群から選ばれる少なくとも1成分を含有し、残部がCuおよび不可避不純物からなる合金組成を有し、EBSD法により測定した結果から得られた、全結晶粒界に占める特殊粒界Σ7粒界とΣ9粒界の合計量の割合が1.5%以上であり、Σ9/Σ7が1.0~5.0であり、α-fiber(Φ1=0°~45°)の方位密度が、3.0以上25.0以下の範囲内を満たすことを特徴とする銅合金板材。 It contains 0.3 to 1.9% by mass of Co and 0.1 to 0.5% by mass of Si, and further 0.05 to 1.0% by mass of Cr and 0.05 to 0.7% by mass of Ni. Fe, 0.02 to 0.5 mass%, Mg 0.01 to 0.3 mass%, Mn 0.01 to 0.5 mass%, Zn 0.01 to 0.15 mass%, and Zr Including at least one component selected from the group consisting of 0.01 to 0.15 mass%, the balance having an alloy composition consisting of Cu and inevitable impurities, and the total crystal obtained from the result of measurement by the EBSD method The ratio of the total amount of the special grain boundary Σ7 grain boundary and Σ9 grain boundary in the grain boundary is 1.5% or more, Σ9 / Σ7 is 1.0 to 5.0, α-fiber (Φ1 = 0 ° A copper alloy sheet characterized by having an orientation density of ˜45 ° satisfying the range of 3.0 to 25.0.
  3.  前記Cr、Ni、Fe、Mg、Mn、ZnおよびZrからなる群から選ばれる少なくとも2成分を、合計で1.5質量%以下含有する請求項2に記載の銅合金板材。 The copper alloy sheet material according to claim 2, comprising a total of 1.5 mass% or less of at least two components selected from the group consisting of Cr, Ni, Fe, Mg, Mn, Zn and Zr.
  4.  圧延平行方向の引張強度が500MPa以上であり、導電率が50%IACS超えであり、かつ、プレス打ち抜き加工による切断面を走査型電子顕微鏡(SEM)で観察することにより特定した剪断面および破断面は、板厚方向に測定した合計寸法の最大値tmaxと最小値tminの差Δtが、板厚Tの30%以下である請求項1~3のいずれか1項に記載の銅合金板材。 Shear surface and fracture surface identified by observing the cut surface by press punching with a scanning electron microscope (SEM), the tensile strength in the rolling parallel direction is 500 MPa or more, the electrical conductivity exceeds 50% IACS The copper alloy sheet according to any one of claims 1 to 3, wherein a difference Δt between the maximum value tmax and the minimum value tmin of the total dimension measured in the sheet thickness direction is 30% or less of the sheet thickness T.
  5.  請求項1~4のいずれか1項に記載の銅合金板材を製造する方法であって、
     前記合金組成からなる銅合金素材に、鋳造工程[工程1]、第1面削工程[工程2]、均質化熱処理工程[工程3]、熱間圧延工程[工程4]、水冷工程[工程5]、第2面削工程[工程6]、第1冷間圧延工程[工程7]、溶体化熱処理工程[工程8]、時効熱処理工程[工程9]、第2冷間圧延工程[工程10]および焼鈍工程[工程11]を順次行うことを特徴とする銅合金板材の製造方法。
    A method for producing a copper alloy sheet according to any one of claims 1 to 4,
    A copper alloy material having the above alloy composition is cast into a casting step [Step 1], a first face grinding step [Step 2], a homogenization heat treatment step [Step 3], a hot rolling step [Step 4], and a water cooling step [Step 5]. ], Second face milling step [step 6], first cold rolling step [step 7], solution heat treatment step [step 8], aging heat treatment step [step 9], second cold rolling step [step 10]. And an annealing step [Step 11] are sequentially performed.
  6.  請求項1~4のいずれか1項に記載の銅合金板材を製造する方法であって、
     前記合金組成からなる銅合金素材に、鋳造工程[工程1]、第1面削工程[工程2]、均質化熱処理工程[工程3]、熱間圧延工程[工程4]、水冷工程[工程5]、第2面削工程[工程6]、第1冷間圧延工程[工程7]、溶体化熱処理工程[工程8]、第2冷間圧延工程[工程10]、時効熱処理[工程9]、第3冷間圧延工程[工程12]および焼鈍工程[工程11]を順次行うことを特徴とする銅合金板材の製造方法。
    A method for producing a copper alloy sheet according to any one of claims 1 to 4,
    A copper alloy material having the above alloy composition is cast into a casting step [Step 1], a first face grinding step [Step 2], a homogenization heat treatment step [Step 3], a hot rolling step [Step 4], and a water cooling step [Step 5]. ], Second face milling step [step 6], first cold rolling step [step 7], solution heat treatment step [step 8], second cold rolling step [step 10], aging heat treatment [step 9], A method for producing a copper alloy sheet material, comprising sequentially performing a third cold rolling step [Step 12] and an annealing step [Step 11].
  7.  請求項1~4のいずれか1項に記載の銅合金板材を製造する方法であって、
     前記合金組成からなる銅合金素材に、鋳造工程[工程1]、第1面削工程[工程2]、均質化熱処理工程[工程3]、熱間圧延工程[工程4]、水冷工程[工程5]、第2面削工程[工程6]、第1冷間圧延工程[工程7]、時効熱処理工程[工程9]および第2冷間圧延工程[工程10]を順次行うことを特徴とする銅合金板材の製造方法。
    A method for producing a copper alloy sheet according to any one of claims 1 to 4,
    A copper alloy material having the above alloy composition is cast into a casting step [Step 1], a first face grinding step [Step 2], a homogenization heat treatment step [Step 3], a hot rolling step [Step 4], and a water cooling step [Step 5]. ], A second face milling step [Step 6], a first cold rolling step [Step 7], an aging heat treatment step [Step 9], and a second cold rolling step [Step 10]. A method for producing an alloy sheet.
PCT/JP2018/016389 2017-04-26 2018-04-23 Copper alloy sheet and method for manufacturing same WO2018198995A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880028035.2A CN110573635B (en) 2017-04-26 2018-04-23 Copper alloy sheet and method for producing same
JP2019514474A JP7145847B2 (en) 2017-04-26 2018-04-23 Copper alloy sheet material and manufacturing method thereof
KR1020197016834A KR102499442B1 (en) 2017-04-26 2018-04-23 Copper alloy sheet and its manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-086790 2017-04-26
JP2017086790 2017-04-26

Publications (1)

Publication Number Publication Date
WO2018198995A1 true WO2018198995A1 (en) 2018-11-01

Family

ID=63919107

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/016389 WO2018198995A1 (en) 2017-04-26 2018-04-23 Copper alloy sheet and method for manufacturing same

Country Status (4)

Country Link
JP (1) JP7145847B2 (en)
KR (1) KR102499442B1 (en)
CN (1) CN110573635B (en)
WO (1) WO2018198995A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020152967A1 (en) * 2019-01-22 2020-07-30 古河電気工業株式会社 Copper alloy plate material and method for manufacturing same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008095185A (en) * 2006-09-12 2008-04-24 Furukawa Electric Co Ltd:The Copper alloy plate material for electrical/electronic equipment and process for producing the same
JP2011252209A (en) * 2010-06-03 2011-12-15 Jx Nippon Mining & Metals Corp Cu-Co-Si BASED COPPER ALLOY ROLLED PLATE AND ELECTRIC COMPONENT USING THE SAME
WO2012106414A1 (en) * 2011-02-01 2012-08-09 Massachusetts Institute Of Technology Thermo-mechanical process to enhance the quality of grain boundary networks in metal alloys
JP2016047945A (en) * 2014-08-27 2016-04-07 三菱マテリアル株式会社 Copper alloy for electronic and electrical device, copper alloy thin sheet for electronic and electrical device and component and terminal for electronic and electrical device
JP2016050326A (en) * 2014-08-29 2016-04-11 三菱マテリアル株式会社 Copper alloy for electronic and electric device, copper alloy thin sheet for electronic and electric device, component and terminal for electronic and electric device
WO2016171054A1 (en) * 2015-04-24 2016-10-27 古河電気工業株式会社 Copper alloy sheet material, and method for producing same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5534610B2 (en) 1974-03-13 1980-09-08
TW200730643A (en) * 2005-08-03 2007-08-16 Nippon Mining Co High-strength copper alloy for electronic component use and electronic component thereof
JP4981748B2 (en) * 2007-05-31 2012-07-25 古河電気工業株式会社 Copper alloy for electrical and electronic equipment
WO2009148101A1 (en) * 2008-06-03 2009-12-10 古河電気工業株式会社 Copper alloy sheet material and manufacturing method thereof
EP2351862B1 (en) * 2008-10-22 2014-11-26 Furukawa Electric Co., Ltd. Copper alloy sheet, electric and electronic parts, and copper alloy sheet manufacturing method
CN102695811B (en) * 2009-12-02 2014-04-02 古河电气工业株式会社 Copper alloy sheet and process for producing same
KR101419149B1 (en) 2009-12-02 2014-07-11 후루카와 덴키 고교 가부시키가이샤 Copper alloy sheet
JP6366298B2 (en) 2014-02-28 2018-08-01 Dowaメタルテック株式会社 High-strength copper alloy sheet material and manufacturing method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008095185A (en) * 2006-09-12 2008-04-24 Furukawa Electric Co Ltd:The Copper alloy plate material for electrical/electronic equipment and process for producing the same
JP2011252209A (en) * 2010-06-03 2011-12-15 Jx Nippon Mining & Metals Corp Cu-Co-Si BASED COPPER ALLOY ROLLED PLATE AND ELECTRIC COMPONENT USING THE SAME
WO2012106414A1 (en) * 2011-02-01 2012-08-09 Massachusetts Institute Of Technology Thermo-mechanical process to enhance the quality of grain boundary networks in metal alloys
JP2016047945A (en) * 2014-08-27 2016-04-07 三菱マテリアル株式会社 Copper alloy for electronic and electrical device, copper alloy thin sheet for electronic and electrical device and component and terminal for electronic and electrical device
JP2016050326A (en) * 2014-08-29 2016-04-11 三菱マテリアル株式会社 Copper alloy for electronic and electric device, copper alloy thin sheet for electronic and electric device, component and terminal for electronic and electric device
WO2016171054A1 (en) * 2015-04-24 2016-10-27 古河電気工業株式会社 Copper alloy sheet material, and method for producing same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020152967A1 (en) * 2019-01-22 2020-07-30 古河電気工業株式会社 Copper alloy plate material and method for manufacturing same
JP6762453B1 (en) * 2019-01-22 2020-09-30 古河電気工業株式会社 Copper alloy plate material and its manufacturing method
CN113166850A (en) * 2019-01-22 2021-07-23 古河电气工业株式会社 Copper alloy sheet and method for producing same
CN113166850B (en) * 2019-01-22 2022-09-06 古河电气工业株式会社 Copper alloy sheet and method for producing same

Also Published As

Publication number Publication date
JP7145847B2 (en) 2022-10-03
JPWO2018198995A1 (en) 2020-03-12
KR20200002779A (en) 2020-01-08
CN110573635B (en) 2021-08-03
CN110573635A (en) 2019-12-13
KR102499442B1 (en) 2023-02-13

Similar Documents

Publication Publication Date Title
JP5170916B2 (en) Copper alloy sheet and manufacturing method thereof
JP4875768B2 (en) Copper alloy sheet and manufacturing method thereof
JP5224415B2 (en) Copper alloy material for electric and electronic parts and manufacturing method thereof
KR101914322B1 (en) Copper alloy material and manufacturing method thereof
JP4913902B2 (en) Method for producing copper alloy material for electric / electronic parts
TWI447239B (en) Copper alloy sheet and method of manufacturing the same
JP6162908B2 (en) Copper alloy sheet and manufacturing method thereof
JP6162910B2 (en) Copper alloy sheet and manufacturing method thereof
JP5619389B2 (en) Copper alloy material
JP6088741B2 (en) Copper alloy material excellent in mold wear resistance during pressing and manufacturing method thereof
JP2007291518A (en) Cu-Fe-P-Mg BASED COPPER ALLOY, ITS PRODUCTION METHOD, AND CONDUCTIVE COMPONENT
EP2623619A1 (en) Cu-Co-Si-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL AND METHOD FOR PRODUCING SAME
JP2013163853A (en) Copper alloy sheet material and method for producing the same
JP6133178B2 (en) Copper alloy sheet and manufacturing method thereof
JP6581755B2 (en) Copper alloy sheet and manufacturing method thereof
JP6799933B2 (en) Manufacturing method of copper alloy plate and connector and copper alloy plate
WO2018198995A1 (en) Copper alloy sheet and method for manufacturing same
JP6339361B2 (en) Copper alloy sheet and manufacturing method thereof
JP6712880B2 (en) Copper alloy sheet and method for producing the same
WO2023140314A1 (en) Copper alloy sheet material and method for manufacturing same
EP3460081B1 (en) Titanium copper for electronic components
WO2020152967A1 (en) Copper alloy plate material and method for manufacturing same
JP2010209379A (en) Copper alloy material for terminal-connector, and method for producing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18792224

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019514474

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197016834

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18792224

Country of ref document: EP

Kind code of ref document: A1