WO2018198913A1 - 金属基複合材 - Google Patents
金属基複合材 Download PDFInfo
- Publication number
- WO2018198913A1 WO2018198913A1 PCT/JP2018/016058 JP2018016058W WO2018198913A1 WO 2018198913 A1 WO2018198913 A1 WO 2018198913A1 JP 2018016058 W JP2018016058 W JP 2018016058W WO 2018198913 A1 WO2018198913 A1 WO 2018198913A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- metal matrix
- mass
- matrix composite
- sample
- powder
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C14/00—Alloys based on titanium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/24—After-treatment of workpieces or articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F5/00—Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
- B22F5/10—Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of articles with cavities or holes, not otherwise provided for in the preceding subgroups
- B22F5/106—Tube or ring forms
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/045—Alloys based on refractory metals
- C22C1/0458—Alloys based on titanium, zirconium or hafnium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/05—Mixtures of metal powder with non-metallic powder
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C32/00—Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
- C22C32/0047—Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C32/00—Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
- C22C32/0047—Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
- C22C32/0052—Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only carbides
- C22C32/0063—Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only carbides based on SiC
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/24—After-treatment of workpieces or articles
- B22F2003/241—Chemical after-treatment on the surface
- B22F2003/242—Coating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2998/00—Supplementary information concerning processes or compositions relating to powder metallurgy
- B22F2998/10—Processes characterised by the sequence of their steps
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2999/00—Aspects linked to processes or compositions used in powder metallurgy
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/10—Alloys containing non-metals
Definitions
- the present invention relates to metal matrix composites.
- nonferrous metals such as aluminum
- many nonferrous metals such as aluminum alloys are cast with high precision and high speed using die casting technology (ie, die casting machine).
- a metal matrix composite may be used for an injection sleeve of a die casting machine.
- the metal matrix composite is placed in a portion in contact with the molten metal by shrink fitting or casting.
- the present invention has been made in view of the above situation, and an object thereof is to provide a metal matrix composite having high hardness.
- the metal matrix composite material of the present invention for solving the above problems is at least one selected from Ti raw material powder containing Ti, Mo raw material powder containing Mo, Ni raw material powder containing Ni, SiC, TiC, TiB 2 , MoB It is characterized in that it is made of a sintered body obtained from one kind of ceramic powder, and contains 0.1 to 9 parts by mass of Ni when the whole is 100 parts by mass. According to the metal matrix composite of the present invention, the hardness (and the strength and the abrasion resistance) are improved by forming a dense structure.
- FIG. 6 is a cross-sectional view taken along the line VI-VI in FIG. 5;
- the metal matrix composite according to the present embodiment is at least one ceramic powder selected from Ti raw material powder containing Ti, Mo raw material powder containing Mo, Ni raw material powder containing Ni, SiC, TiC, TiB 2 , MoB. And a sintered body obtained from And, when the entire metal matrix composite is 100 parts by mass, Ni is contained in 0.1 to 9 parts by mass.
- the metal matrix composite of this embodiment is made of a sintered body.
- the sintered body is obtained by sintering the raw material powder.
- the configuration can not be generally defined. That is, the sintered body of this embodiment is at least one ceramic selected from Ti raw material powder containing Ti, Mo raw material powder containing Mo, Ni raw material powder containing Ni, SiC, TiC, TiB 2 , MoB If it consists of a sintered compact obtained from powder, the micro structure and the characteristic can not be decided indiscriminately.
- the metal matrix composite of the present embodiment is made of a sintered body obtained from Ti raw material powder, Mo raw material powder, Ni raw material powder, and ceramic powder.
- a sintered body composed of these powders contains Ti and Mo, ceramics and Ni.
- the Ti raw material powder is a powder of a compound containing Ti in its composition (aggregate of compound particles).
- the Ti raw material powder is preferably a powder consisting of (particles of) a compound containing Ti as the largest component, and is preferably a powder consisting of (particles of) a compound containing 50 mass% or more of Ti, and 90 mass of Ti. More preferably, it is a powder composed of (the particles of) the compound contained in% or more, and most preferably it is a powder composed of (the particles of) Ti.
- the content rate in these compounds is a content rate when mass of the whole Ti raw material powder is 100 mass%.
- the Ti raw material powder may be formed by combining (particles of) compounds different in the content ratio of Ti.
- the Mo raw material powder is a powder of a compound containing Mo in its composition (aggregate of compound particles).
- the Mo raw material powder is preferably a powder consisting of (particles of) a compound containing Mo as the most component, preferably a powder consisting of (particles of) a compound containing 50 mass% or more of Mo, and 90 mass of Mo More preferably, it is a powder composed of (the particles of) the compound contained in% or more, and most preferably a powder composed of (the particles of) Mo.
- the content rate in these compounds is a content rate when mass of the whole Mo raw material powder is 100 mass%.
- the Mo raw material powder may be formed by combining (particles of) compounds different in the content ratio of Mo.
- the ceramic powder is a powder made of at least one ceramic selected from SiC, TiC, TiB 2 and MoB.
- the ceramic powder may be a powder of one type of ceramic selected from these, or a mixed powder of two or more types of ceramic powder.
- the ceramic powder may be a powder formed by combining two or more types of ceramics selected from these. The ratio in the case where the ceramic powder is composed of two or more selected from these is not limited.
- the Ni raw material powder is a powder of a compound containing Ni in its composition (aggregation of compound particles).
- the Ni raw material powder is preferably a powder composed of (particles of) a compound containing Ni as the largest component, and is preferably a powder composed of (particles of) a compound containing 50 mass% or more of Ni, 90 mass Ni More preferably, it is a powder composed of (the particles of) the compound contained in% or more, and most preferably it is a powder composed of (the particles of) Ni.
- the content rate in these compounds is a content rate when mass of the whole Ni raw material powder is 100 mass%.
- the Ni raw material powder may be formed by combining (particles of) compounds different in the content ratio of Ni.
- the Ti raw material powder, the Mo raw material powder, and the Ni raw material powder may form an alloy with other elements of Ti, Mo, and Ni.
- Ti-Mo alloy can be mentioned.
- the metal matrix composite of this embodiment contains Ni in an amount of 0.1 to 9 parts by mass, based on 100 parts by mass of the whole.
- the mass part of Ni corresponds to the proportion of the total mass of Ni contained in the metal matrix composite. That is, it is convertible to mass% (mass%).
- Ni densifies the structure of the metal matrix composite. Densification of the tissue increases the overall hardness and strength. That is, by containing Ni, the wear resistance of the metal matrix composite can be improved.
- Ni in an amount of 0.1 to 9 parts by mass, the effect of improving the wear resistance is surely exhibited. If the amount is less than 0.1 parts by mass, the amount of Ni is too small to sufficiently exert the effect of the addition. If it exceeds 9 parts by mass, the metal matrix composite becomes brittle. That is, the bending resistance is reduced.
- the preferable content ratio of Ni is 0.1 to 5 parts by mass, based on 100 parts by mass of the entire metal matrix composite. A more preferable content is 0.5 to 3 parts by mass.
- the metal matrix composite of this embodiment contains Ti contained in the Ti raw material powder and Mo contained in the Mo raw material powder. Moreover, the ceramic contained in ceramic powder is contained. Ti forms a matrix in the metal matrix composite of this embodiment. In the metal matrix composite of this embodiment, the Ti matrix has excellent erosion resistance to the nonferrous metal melt. Furthermore, due to the low thermal conductivity, the temperature holding capacity is also excellent.
- Mo improves the erosion resistance.
- the corrosion resistance to non-ferrous metals is improved. That is, the inclusion of Mo improves the corrosion resistance of the metal matrix composite to non-ferrous metals.
- Mo is distributed in a state of being rich in Ti.
- the state in which Ti is rich is a state in which there is a large amount of Ti when the masses of Ti and Mo are compared.
- the preferred ratio is 10 to 50 parts by mass of Mo based on 100 parts by mass of Ti.
- a more preferable content ratio is 20 to 40 parts by mass.
- Ceramics are excellent in strength and hardness.
- the ceramic has a configuration in which particles derived from a raw material powder are dispersed in a matrix in a sintered body of a metal matrix composite. This ceramic enhances the strength and hardness of the metal matrix composite.
- the ceramics further contribute to the enhancement of the strength and the hardness of the metal matrix composite by enhancing the sinterability.
- the effects of the high strength and the high hardness are exhibited. If the amount is less than 1 part by mass, the amount of the ceramic compounded is too small, and the effect of the compounding can not be sufficiently exhibited. That is, the hardness and the abrasion resistance of the metal matrix composite are lowered. If it exceeds 15 parts by mass, the metal matrix composite becomes brittle and the impact resistance is lowered. The reduction in impact resistance makes the metal matrix composite more susceptible to cracking.
- the preferable compounding ratio of the ceramic is 1 to 15 parts by mass of the ceramic when the total mass of Ti and Mo is 100 parts by mass. More preferably, it is 3 to 10 parts by mass.
- the metal matrix composite of this embodiment preferably has a porosity of 0.5% or less.
- the metal matrix composite of this embodiment is a sintered body having a dense structure as described above. And when the porosity is 0.5% or less, it becomes denser and is excellent in hardness and strength.
- the porosity is more preferably 0.3% or less, and still more preferably 0.15% or less.
- the metal matrix composite of the present embodiment is preferably subjected to a nitriding treatment. That is, it is preferable to have a nitrided film on the surface.
- the nitrided film formed by the nitriding treatment has high hardness.
- the surface hardness as the metal matrix composite of the present embodiment is increased.
- the structure itself has high hardness as described above.
- the surface has a nitrided film. That is, by subjecting to the nitriding treatment, the metal matrix composite material has higher hardness than that to which the nitriding treatment is not applied.
- the metal matrix composite of this embodiment is less effective in improving hardness by nitriding as compared to the case where the conventional sintered body is nitrided. This is because, in the metal matrix composite of the present embodiment, since the structure is densified by containing Ni, the progress of the nitriding reaction from the surface of the raw material powder particles to the inside becomes difficult to progress. However, in the metal matrix composite of this embodiment, since the sintered body itself has high hardness due to densification, high hardness is obtained even if the surface nitrided film is lost or the effect of nitriding is low.
- the manufacturing method of the metal matrix composite of this embodiment is not limited. For example, it can manufacture by giving the process of mixing each raw material powder, and the process of heating and sintering mixed powder. A step of forming the mixed powder into a predetermined shape, and a step of heating the sintered body in a nitrogen atmosphere may be further performed. Before the nitriding treatment, after the nitriding treatment, the shaping step may be performed at least one of the timings.
- the metal matrix composite of the present invention is specifically produced.
- Test pieces of the metal matrix composites of Samples 1 to 13 were manufactured as Examples and Comparative Examples.
- Each test piece is a sintered body obtained from Ti powder as Ti raw material powder, SiC powder as ceramic raw material powder, Mo powder as Mo raw material powder, and Ni powder as Ni raw material powder.
- Each sample contains Ti, Mo, SiC, and Ni in parts by mass (mass ratio) shown in Table 1.
- the porosity of each sample was measured and shown in Table 1. The porosity was measured using the measurement method described in JIS R 2205.
- FIG. 1 to FIG. 1 shows the cross section of sample 1
- FIG. 2 shows the cross section of sample 4
- FIG. 3 shows the cross section of sample 8
- FIG. 4 shows the cross section of sample 12.
- the hardness was measured as evaluation of each sample. The measurement results are shown in Table 1 together.
- Rockwell hardness was measured by a Rockwell hardness tester (manufactured by Akashi Seisakusho Co., Ltd.).
- the wear width is measured using the Ohgoshi type wear tester. The measurement results are shown in Table 1. The wear width was measured by a Riken-Okoshi type rapid wear tester (manufactured by Tokyo Test Machine Co., Ltd.).
- the sample 1 not containing Ni has many pores.
- the samples 4, 8 and 12 containing Ni at a predetermined ratio have a minute structure with few pores.
- the sample 1 not containing Ni has a low hardness of about 35 HRC.
- the samples 2 to 13 containing Ni have hardness higher than that of the sample 1.
- the samples 7 to 11 having a content of Ni of 3 to 8 parts by mass show high values of hardness of 45 HRC or more.
- samples 8 to 9 in which the content of Ni is 4 to 6 parts by mass show the highest value of hardness of 47 HRC or more. That is, the metal matrix composites of Samples 2 to 12 containing Ni at a predetermined ratio have high HRC hardness.
- the HRC hardness is increased as compared with the state without the nitriding treatment.
- the characteristics of the HRC hardness after the nitriding treatment are the same as the characteristics of the HRC hardness in the state where the nitriding treatment is not performed. That is, by performing nitriding treatment (that is, having a nitrided film), a metal matrix composite material having a higher HRC hardness is obtained.
- the bending strength is as low as 271 MPa.
- the bending strength is 300 MPa or more, which is a value higher than that of sample 13.
- samples 2 to 6 in which the content of Ni is 0.1 to 3 parts by mass show high values of bending strength of 700 MPa or more.
- samples 4 to 5 with a content of Ni of 0.5 to 2 parts by mass show bending strength of 800 MPa or more. That is, the metal matrix composites of Samples 2 to 12 containing Ni at a predetermined ratio have high strength (bending strength).
- the sample 1 containing no Ni has a large wear width of 1.33 mm. That is, the wear resistance is low.
- the wear width is equal to or smaller than that of the sample 1. That is, it is excellent in abrasion resistance.
- samples 8 to 10 having a content of Ni of 4 to 7.5 parts by mass show a very small wear width of 1.2 mm or less.
- sample 9 having a content of Ni of 5.41 parts by mass shows the smallest wear width of 1.1 mm. That is, the metal matrix composites of Samples 2 to 12 containing Ni at a predetermined ratio have high wear resistance.
- the wear width is equal to or less than that in the state without the nitriding treatment. That is, the samples 2 to 12 containing Ni have excellent wear resistance. And, the sample 9 with the content of Ni of 5.41 parts by mass shows the smallest wear value of 1.08 mm. From this, by performing the nitriding treatment (that is, having the nitrided film), a metal matrix composite material having more excellent wear resistance can be obtained.
- the porosity is a dense structure with few pores of 0.5% or less.
- the metal matrix composite is excellent in hardness (HRC hardness), strength (bending strength) and wear resistance.
- HRC hardness hardness
- strength bending strength
- wear resistance wear resistance
- corrosion resistance to the aluminum alloy is excellent.
- a minute structure with few pores with a porosity of 0.5% or less results in a metal matrix composite excellent in hardness and wear resistance.
- Ni which contributes to the improvement of hardness and wear resistance, tends to cause embrittlement as its content increases.
- FIG. 5 is a cross-sectional view of the injection sleeve 1 in the axial direction. 6 is a cross-sectional view taken along the line VI-VI in FIG.
- the metal matrix composite material 2 of each sample is formed in a substantially cylindrical shape having a thickness of 5 mm, as shown in FIGS. 5 to 6, and is disposed to form the inner peripheral surface of the injection sleeve 1.
- the injection sleeve 1 is disposed along the horizontal direction in the axial direction, and molten metal is poured into the injection sleeve 10 from a pouring port 10 opened at the upper portion on the proximal end side.
- the injected molten metal is ejected in the axial tip direction by the plunger tip 3 (in FIG. 5, it is ejected from the right to the left).
- the tip end side of the injection sleeve 1 is in communication with a mold cavity (not shown), and the molten metal injected by the plunger tip 3 is injected and filled in the cavity.
- Molten metal ADC 12
- melt holding temperature melt temperature injected from the pouring port 10
- pouring amount 0.8 kg
- material of the plunger tip 3 SKD 61 (defined in JIS G 4404)
- tip lubricant Graphite type
- injection speed of plunger tip 3 The die casting machine was operated under the condition of about 0.15 m / s. About 26000 shots were performed for sample 1 and 46,500 shots were performed for sample 2.
- similar sliding marks sliding marks of the metal-based composite 2 and the plunger tip 3 were confirmed on the inner peripheral surface of any injection sleeve 1 .
- the expansion amount of the inner diameter of the metal matrix composite 2 of the sample 2 is smaller than the expansion amount of the sample 1 at any position of A1 and A2.
- the expansion of the inner diameter is caused by the sliding of the metal matrix composite 2 and the plunger tip 3 and wear.
- sample 2 has a much higher number of shots than sample 1. That is, it can be confirmed that the metal matrix composite 2 of sample 2 is far superior to the metal matrix composite of sample 1 in the wear resistance.
- the metal matrix composite of the embodiment is excellent in wear resistance and exerts the effect of prolonging the life particularly when used for the injection sleeve 1 of a die casting machine.
- the metal matrix composite of each example is a composite excellent in hardness and strength. It also has high wear resistance due to its excellent hardness and strength. For this reason, it is more effective when applied to a member that requires high wear resistance, such as an injection sleeve of a die casting machine. In particular, it is particularly excellent in corrosion resistance to aluminum alloys and is also excellent in temperature holding ability because of low thermal conductivity, and it is more effective to apply it to the injection sleeve of a die casting machine used for die casting of aluminum alloys. It is.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Manufacture Of Alloys Or Alloy Compounds (AREA)
- Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
- Powder Metallurgy (AREA)
Abstract
高い硬度を有する金属基材料を提供すること。 本発明の金属基複合材は、Ti原料粉末、Mo原料粉末、Ni原料粉末、セラミックス粉末から得られる焼結体よりなり、全体を100質量部としたときに、Niを0.1~9質量部で含有することを特徴とする。
Description
本発明は、金属基複合材に関する。
近年、自動車、産業機械及び家電機器等の分野において、アルミニウム等の軽量の非鉄金属の使用機会が増加している。アルミニウム合金等の一部の非鉄金属の多くは、ダイカスト技術(すなわち、ダイカストマシン)を用いて、高精度かつ高速度で鋳造される。
ダイカストマシンの射出スリーブには、特許文献1に記載のように、金属基複合材が使用される場合がある。金属基複合材は、焼きばめ又は鋳ぐるみにより、溶湯と接触する部分に配置される。
ダイカストマシンにおいて、金属基複合材を用いた射出スリーブには、更なる耐用向上が求められている。特に、金属基複合材の高硬度化が求められている。
本発明は上記実情に鑑みてなされたものであり、高い硬度を有する金属基複合材を提供することを課題とする。
本発明は上記実情に鑑みてなされたものであり、高い硬度を有する金属基複合材を提供することを課題とする。
上記課題を解決する本発明の金属基複合材は、Tiを含有するTi原料粉末、Moを含有するMo原料粉末、Niを含有するNi原料粉末、SiC,TiC,TiB2,MoBより選ばれる少なくとも1種のセラミックス粉末から得られる焼結体よりなり、全体を100質量部としたときに、Niを0.1~9質量部で含有することを特徴とする。
本発明の金属基複合材によると、緻密な組織となることで、硬度(及び強度、耐摩耗性)が向上する。
本発明の金属基複合材によると、緻密な組織となることで、硬度(及び強度、耐摩耗性)が向上する。
以下、実施の形態を用いて本発明を具体的に説明する。
[金属基複合材]
本形態の金属基複合材は、Tiを含有するTi原料粉末、Moを含有するMo原料粉末、Niを含有するNi原料粉末、SiC,TiC,TiB2,MoBより選ばれる少なくとも1種のセラミックス粉末から得られる焼結体よりなる。そして、金属基複合材全体を100質量部としたときに、Niを0.1~9質量部で含有する。
本形態の金属基複合材は、Tiを含有するTi原料粉末、Moを含有するMo原料粉末、Niを含有するNi原料粉末、SiC,TiC,TiB2,MoBより選ばれる少なくとも1種のセラミックス粉末から得られる焼結体よりなる。そして、金属基複合材全体を100質量部としたときに、Niを0.1~9質量部で含有する。
本形態の金属基複合材は、焼結体よりなる。焼結体は、原料粉末を焼結して得られる。焼結体は、原料の原子が拡散しているため、その構成が一概に規定できるものではない。すなわち、本形態の焼結体は、Tiを含有するTi原料粉末、Moを含有するMo原料粉末、Niを含有するNi原料粉末、SiC,TiC,TiB2,MoBより選ばれる少なくとも1種のセラミックス粉末から得られる焼結体よりなるものであれば、そのミクロな構成や特性が一概に決定できるものではない。
本形態の金属基複合材は、Ti原料粉末、Mo原料粉末、Ni原料粉末、セラミックス粉末から得られる焼結体よりなる。これらの粉末からなる焼結体は、Ti及びMo、セラミックス及びNiを含有するものとなる。
Ti原料粉末は、その組成中にTiを含有する化合物の粉末(化合物粒子の集合体)である。Ti原料粉末は、Tiを最も多い成分として含む化合物(の粒子)よりなる粉末であることが好ましく、Tiを50mass%以上で含む化合物(の粒子)よりなる粉末であることが好ましく、Tiを90mass%以上で含む化合物(の粒子)よりなる粉末であることがより好ましく、Ti(の粒子)よりなる粉末であることが最も好ましい。なお、これらの化合物における含有割合は、Ti原料粉末全体の質量を100mass%とした場合の含有割合である。Ti原料粉末は、Tiの含有割合の異なる化合物(の粒子)を組み合わせて形成しても良い。
Mo原料粉末は、その組成中にMoを含有する化合物の粉末(化合物粒子の集合体)である。Mo原料粉末は、Moを最も多い成分として含む化合物(の粒子)よりなる粉末であることが好ましく、Moを50mass%以上で含む化合物(の粒子)よりなる粉末であることが好ましく、Moを90mass%以上で含む化合物(の粒子)よりなる粉末であることがより好ましく、Mo(の粒子)よりなる粉末であることが最も好ましい。なお、これらの化合物における含有割合は、Mo原料粉末全体の質量を100mass%とした場合の含有割合である。Mo原料粉末は、Moの含有割合の異なる化合物(の粒子)を組み合わせて形成しても良い。
セラミックス粉末は、SiC,TiC,TiB2,MoBより選ばれる少なくとも1種のセラミックスよりなる粉末である。セラミックス粉末は、これらから選ばれる1種のセラミックスの粉末であっても、2種以上のセラミックスの粉末の混合粉末であってもよい。さらに、セラミックス粉末は、これらから選ばれる2種以上のセラミックスが複合化して形成された粉末であってもよい。セラミックス粉末がこれらから選ばれる2種以上よりなる場合の比率は、限定されるものではない。
Ni原料粉末は、その組成中にNiを含有する化合物の粉末(化合物粒子の集合体)である。Ni原料粉末は、Niを最も多い成分として含む化合物(の粒子)よりなる粉末であることが好ましく、Niを50mass%以上で含む化合物(の粒子)よりなる粉末であることが好ましく、Niを90mass%以上で含む化合物(の粒子)よりなる粉末であることがより好ましく、Ni(の粒子)よりなる粉末であることが最も好ましい。なお、これらの化合物における含有割合は、Ni原料粉末全体の質量を100mass%とした場合の含有割合である。Ni原料粉末は、Niの含有割合の異なる化合物(の粒子)を組み合わせて形成しても良い。
なお、Ti原料粉末、Mo原料粉末、Ni原料粉末は、Ti,Mo,Niの他の元素と合金を形成していても良い。例えば、Ti-Mo合金を挙げることができる。
本形態の金属基複合材は、全体を100質量部としたときに、Niを0.1~9質量部で含有する。ここで、Niの質量部は、金属基複合材に含まれるNiの総質量が占める割合に相当する。すなわち、質量%(mass%)に変換可能である。
Niは、金属基複合材の組織を緻密化する。組織が緻密化すると、全体の硬度及び強度が増加する。すなわち、Niを含有することで、金属基複合材の耐摩耗性を向上させることができる。
Niを0.1~9質量部で含有することで、この耐摩耗性を向上させる効果が確実に発揮する。0.1質量部未満ではNiの配合量が少なすぎ、配合の効果が十分に発揮できない。9質量部を超えて大きくなると、金属基複合材が脆くなる。すなわち、耐曲げ性が低下する。
好ましいNiの含有割合は、金属基複合材全体を100質量部としたときに、0.1~5質量部である。より好ましい含有量は、0.5~3質量部である。
本形態の金属基複合材は、Ti原料粉末に含まれるTi及びMo原料粉末に含まれるMoを含有する。また、セラミックス粉末に含まれるセラミックスを含有する。
Tiは、本形態の金属基複合材において、マトリックスを形成する。本形態の金属基複合材において、Tiマトリックスは、非鉄金属の溶湯に対して優れた耐溶損性を有する。さらに、低熱伝導性のために温度保持能力にも優れる。
Tiは、本形態の金属基複合材において、マトリックスを形成する。本形態の金属基複合材において、Tiマトリックスは、非鉄金属の溶湯に対して優れた耐溶損性を有する。さらに、低熱伝導性のために温度保持能力にも優れる。
Moは、耐溶損性を向上する。特に、非鉄金属に対する耐溶損性を向上する。すなわち、Moを含有することで、金属基複合材の非鉄金属に対する耐溶損性が向上する。
Moは、Tiがリッチな状態で配される。Tiがリッチな状態とは、TiとMoの質量を比較したときに、Tiが多い状態である。好ましい比は、Tiを100質量部としたときに、Moの質量が10~50質量部である。より好ましい含有比は、20~40質量部である。
セラミックスは、強度及び硬度に優れる。セラミックスは、金属基複合材の焼結体において、原料粉末に由来する粒子がマトリックスに分散した構成となる。このセラミックスは、金属基複合材の強度及び硬度を高める。セラミックスは、さらに、焼結性を高めることから、金属基複合材の強度及び硬度を高めることに寄与する。
セラミックスを1~15質量部で含有することで、この高強度、高硬度の効果を発揮する。1質量部未満となると、セラミックスの配合量が少なすぎ、配合の効果が十分に発揮できない。すなわち、金属基複合材の硬度及び耐摩耗性が低くなる。15質量部を超えて大きくなると、金属基複合材が脆性化し、耐衝撃性の低下を招く。耐衝撃性の低下により、金属基複合材が割れやすくなる。
好ましいセラミックスの配合比は、TiとMoの合計質量を100質量部としたときに、セラミックスの質量が1~15質量部である。より好ましくは、3~10質量部である。
本形態の金属基複合材は、気孔率が0.5%以下であることが好ましい。本形態の金属基複合材は、上記のように緻密な組織を有する焼結体である。そして、気孔率が0.5%以下となることで、より緻密で硬度及び強度に優れたものとなる。気孔率は、0.3%以下であることがより好ましく、0.15%以下であることが更に好ましい。
本形態の金属基複合材は、窒化処理が施されていることが好ましい。すなわち、表面に窒化処理被膜を有することが好ましい。窒化処理により形成される窒化処理被膜は、高い硬度を有している。この結果、本形態の金属基複合材としての表面硬度が増加する。
さらに、本形態の金属基複合材は、上記のようにその組織自体が高い硬度を有する。その上で、表面に窒化処理被膜を有するものとなる。すなわち、窒化処理を施すことで、金属基複合材は、窒化処理が施されていないものに対して、より高い硬度を備えるものとなる。
さらに、本形態の金属基複合材は、上記のようにその組織自体が高い硬度を有する。その上で、表面に窒化処理被膜を有するものとなる。すなわち、窒化処理を施すことで、金属基複合材は、窒化処理が施されていないものに対して、より高い硬度を備えるものとなる。
なお、本形態の金属基複合材は、従来の焼結体に窒化処理を施した場合と比較すると、窒化処理による硬度向上効果が低い。このことは、本形態の金属基複合材は、Niを含有することで組織が緻密化しているため、窒化反応が原料粉末粒子の表面から内部への進行が進みにくくなったためである。しかしながら、本形態の金属基複合材は、緻密化により焼結体自身が高い硬度を有するため、表面の窒化処理被膜が失われても、また窒化の効果が低くても、高い硬度となる。
本形態の金属基複合材は、その製造方法が限定されるものではない。例えば、各原料粉末を混合する工程、混合粉末を加熱して焼結する工程、を施すことで製造できる。混合粉末を所定の形状に成形する工程、焼結体を窒素雰囲気下で加熱する工程である窒化処理を施す工程、をさらに施してもよい。窒化処理を施す前、窒化処理を施した後、の少なくとも一方のタイミングで整形工程を施してもよい。
以下、実施例を用いて本発明を説明する。
本発明の金属基複合材を具体的に製造する。
本発明の金属基複合材を具体的に製造する。
[実施例及び比較例]
実施例及び比較例として、試料1~13の金属基複合材の試験片を製造した。各試験片は、Ti原料粉末としてTi粉末、セラミックス原料粉末としてSiC粉末、Mo原料粉末としてMo粉末、Ni原料粉末としてNi粉末から得られた焼結体である。
各試料は、Ti,Mo,SiC,Niを表1に合わせて示した質量部(質量比)で含有する。
各試料の気孔率を測定し、表1に合わせて示した。気孔率の測定は、JIS R 2205に記載の測定方法を用いて測定した。
実施例及び比較例として、試料1~13の金属基複合材の試験片を製造した。各試験片は、Ti原料粉末としてTi粉末、セラミックス原料粉末としてSiC粉末、Mo原料粉末としてMo粉末、Ni原料粉末としてNi粉末から得られた焼結体である。
各試料は、Ti,Mo,SiC,Niを表1に合わせて示した質量部(質量比)で含有する。
各試料の気孔率を測定し、表1に合わせて示した。気孔率の測定は、JIS R 2205に記載の測定方法を用いて測定した。
[評価]
各試料(窒化処理が施されていない状態)の評価として、下記の評価を行う。なお、下記の評価のうちHRC硬度及び摩耗幅については、窒化処理を施した各試料についても測定を行った。窒化処理後の測定結果を表1に合わせて示した。
各試料(窒化処理が施されていない状態)の評価として、下記の評価を行う。なお、下記の評価のうちHRC硬度及び摩耗幅については、窒化処理を施した各試料についても測定を行った。窒化処理後の測定結果を表1に合わせて示した。
(拡大写真)
各試料の評価として、断面の顕微鏡写真を撮影した。撮影された写真を図1~図4に示した。図1には試料1の断面を、図2には試料4の断面を、図3には試料8の断面を、図4には試料12の断面を、それぞれ示した。
(硬度)
各試料の評価として、硬度(ロックウェル硬度、HRC)を測定した。測定結果を表1に合わせて示した。
ロックウェル硬度は、ロックウェル硬度計(明石製作所製)により測定した。
各試料の評価として、断面の顕微鏡写真を撮影した。撮影された写真を図1~図4に示した。図1には試料1の断面を、図2には試料4の断面を、図3には試料8の断面を、図4には試料12の断面を、それぞれ示した。
(硬度)
各試料の評価として、硬度(ロックウェル硬度、HRC)を測定した。測定結果を表1に合わせて示した。
ロックウェル硬度は、ロックウェル硬度計(明石製作所製)により測定した。
(強度)
各試料の評価として、強度(曲げ強度)を測定した。測定結果を表1に合わせて示した。
曲げ強度は、電子式万能材料試験機(株式会社米倉製作所製)により測定した。
各試料の評価として、強度(曲げ強度)を測定した。測定結果を表1に合わせて示した。
曲げ強度は、電子式万能材料試験機(株式会社米倉製作所製)により測定した。
(耐溶損性)
各試料を用いてφ10mm、長さ100mmの円柱状の試験片を製造する。そして、円柱状の先端から50mmをアルミニウム合金溶湯に浸漬する。アルミニウム合金溶湯は、JIS H 5302に規定のADC12材を、黒鉛ルツボで溶解して用いた。680℃に保持したアルミニウム合金溶湯へ、試験片を24時間浸漬した(静的浸漬)。
各試料を用いてφ10mm、長さ100mmの円柱状の試験片を製造する。そして、円柱状の先端から50mmをアルミニウム合金溶湯に浸漬する。アルミニウム合金溶湯は、JIS H 5302に規定のADC12材を、黒鉛ルツボで溶解して用いた。680℃に保持したアルミニウム合金溶湯へ、試験片を24時間浸漬した(静的浸漬)。
浸漬後、試験片を引き上げ、放冷する。その後、浸漬深さ50mmの中央部(先端から25mm)における外径を測定し、外径の減少量(溶損量)を求める。試料1の溶損量を100%としたときの各試料の溶損量の比率を算出した。得られた結果を表1に合わせて示した。
(耐摩耗性)
大越式摩耗試験機を用いて摩耗幅を測定する。測定結果を表1に示した。
摩耗幅は、理研-大越式迅速摩耗試験機(東京試験機製作所製)により測定した。
大越式摩耗試験機を用いて摩耗幅を測定する。測定結果を表1に示した。
摩耗幅は、理研-大越式迅速摩耗試験機(東京試験機製作所製)により測定した。
(評価結果)
(気孔率及び拡大写真)
表1によると、Niを含有しない試料1は、気孔率が0.67%と大きな気孔率を備えている。一方、Niを含有する試料2~13は、0.5%以下の小さな気孔率となっている。この気孔率の低下は、図1~図4の拡大写真からも、明らかである。
(気孔率及び拡大写真)
表1によると、Niを含有しない試料1は、気孔率が0.67%と大きな気孔率を備えている。一方、Niを含有する試料2~13は、0.5%以下の小さな気孔率となっている。この気孔率の低下は、図1~図4の拡大写真からも、明らかである。
図1~図4に示した拡大写真によると、Niを含有しない試料1は、多くの気孔を備えている。一方、所定の割合でNiを含有する試料4,8,12では、気孔が少ない緻密な組織を備えている。
(HRC硬度)
表1によると、Niを含有しない試料1は、硬度が35HRC程度の低い硬度となっている。そして、Niを含有する試料2~13は、試料1よりも高い硬度を有している。そして、Niの含有量が3~8質量部の試料7~11は、硬度が45HRC以上と高い値を示す。さらに、Niの含有量が4~6質量部の試料8~9は、硬度が47HRC以上と最も高い値を示す。すなわち、所定の割合でNiを含有する試料2~12の金属基複合材は、高いHRC硬度を備える。
表1によると、Niを含有しない試料1は、硬度が35HRC程度の低い硬度となっている。そして、Niを含有する試料2~13は、試料1よりも高い硬度を有している。そして、Niの含有量が3~8質量部の試料7~11は、硬度が45HRC以上と高い値を示す。さらに、Niの含有量が4~6質量部の試料8~9は、硬度が47HRC以上と最も高い値を示す。すなわち、所定の割合でNiを含有する試料2~12の金属基複合材は、高いHRC硬度を備える。
さらに、各試料は、窒化処理を施すと、窒化処理なしの状態と比較して、HRC硬度が高くなっている。窒化処理を施した後のHRC硬度の特性は、窒化処理を施していない状態のHRC硬度の特性と同様である。すなわち、窒化処理を施すこと(すなわち、窒化処理被膜を有すること)で、よりHRC硬度が高い金属基複合材となる。
(曲げ強度)
表1によると、Niを過剰に含有する試料13では、曲げ強度が271MPaと低い強度となっている。一方、所定の割合(9質量部以下)でNiを含有する試料2~12では、曲げ強度が300MPa以上と、試料13よりも高い値となっている。特に、Niの含有量が0.1~3質量部の試料2~6は、曲げ強度が700MPa以上と高い値を示す。さらに、Niの含有量が0.5~2質量部の試料4~5は、800MPa以上の曲げ強度を示す。すなわち、所定の割合でNiを含有する試料2~12の金属基複合材は、高い強度(曲げ強度)を備える。
表1によると、Niを過剰に含有する試料13では、曲げ強度が271MPaと低い強度となっている。一方、所定の割合(9質量部以下)でNiを含有する試料2~12では、曲げ強度が300MPa以上と、試料13よりも高い値となっている。特に、Niの含有量が0.1~3質量部の試料2~6は、曲げ強度が700MPa以上と高い値を示す。さらに、Niの含有量が0.5~2質量部の試料4~5は、800MPa以上の曲げ強度を示す。すなわち、所定の割合でNiを含有する試料2~12の金属基複合材は、高い強度(曲げ強度)を備える。
(耐摩耗性)
表1によると、Niを含有しない試料1では、1.33mmと大きな摩耗幅となっている。すなわち、耐摩耗性が低い。一方、所定の割合でNiを含有する試料2~12では、摩耗幅が、試料1と同等あるいはそれより小さな値となっている。すなわち、耐摩耗性に優れている。そして、特に、Niの含有量が4~7.5質量部の試料8~10は、摩耗幅が1.2mm以下とかなり小さな値を示す。さらに、Niの含有量が5.41質量部の試料9は、摩耗幅が1.1mmと最も小さな値を示す。
すなわち、所定の割合でNiを含有する試料2~12の金属基複合材は、高い耐摩耗性を備える。
表1によると、Niを含有しない試料1では、1.33mmと大きな摩耗幅となっている。すなわち、耐摩耗性が低い。一方、所定の割合でNiを含有する試料2~12では、摩耗幅が、試料1と同等あるいはそれより小さな値となっている。すなわち、耐摩耗性に優れている。そして、特に、Niの含有量が4~7.5質量部の試料8~10は、摩耗幅が1.2mm以下とかなり小さな値を示す。さらに、Niの含有量が5.41質量部の試料9は、摩耗幅が1.1mmと最も小さな値を示す。
すなわち、所定の割合でNiを含有する試料2~12の金属基複合材は、高い耐摩耗性を備える。
さらに、各試料は、窒化処理を施すと、窒化処理なしの状態と比較して、摩耗幅が同等以下となっている。すなわち、Niを含有する試料2~12は、優れた耐摩耗性を有している。そして、Niの含有量が5.41質量部の試料9は、摩耗幅が1.08mmと最も小さな値を示す。
このことから、窒化処理を施すこと(すなわち、窒化処理被膜を有すること)で、より耐摩耗性に優れた金属基複合材となる。
このことから、窒化処理を施すこと(すなわち、窒化処理被膜を有すること)で、より耐摩耗性に優れた金属基複合材となる。
(耐溶損性)
表1によると、各試料の溶損量は、ほぼ同等となっている。なお、試料12~13では、溶損率が110%を超えており、溶損量が大きい傾向がある。すなわち、各試料は同等の耐溶損性を備えている。その上で、Niの含有量が2~6質量部の試料6~9は、溶損率が小さな値を示し、Niの含有量が4.55質量部の試料8は、溶損率が92%と最も小さな値を示す。すなわち、Niを4.55質量部で含有する試料8では、耐溶損性が最も向上していることが確認できる。
表1によると、各試料の溶損量は、ほぼ同等となっている。なお、試料12~13では、溶損率が110%を超えており、溶損量が大きい傾向がある。すなわち、各試料は同等の耐溶損性を備えている。その上で、Niの含有量が2~6質量部の試料6~9は、溶損率が小さな値を示し、Niの含有量が4.55質量部の試料8は、溶損率が92%と最も小さな値を示す。すなわち、Niを4.55質量部で含有する試料8では、耐溶損性が最も向上していることが確認できる。
以上に示したように、所定の割合でNiを含有する試料2~12では、気孔率が0.5%以下と気孔の少ない緻密な組織となっている。この結果、硬度(HRC硬度)、強度(曲げ強度)及び耐摩耗性に優れた金属基複合材となっていることが確認できる。
さらに、アルミニウム合金に対する耐溶損性に優れていることも確認できる。
なお、所定の割合でNiを含有する試料2~12では、気孔率が0.5%以下と気孔の少ない緻密な組織となる結果、硬度及び耐摩耗性に優れた金属基複合材となっている。硬度及び耐摩耗性の向上に寄与するNiは、その含有量が増加すると脆化を引き起こす傾向がある。このことは、4.55質量部でNiを含有する試料8の曲げ強度の試験結果からも明らかである。更にNiが9.48質量部以上になると、気孔率は0.5%以下であるが、素材が脆化し、摩耗幅が増加する傾向となる。また、曲げ強度も、300MPaより小さくなる傾向となる。
さらに、アルミニウム合金に対する耐溶損性に優れていることも確認できる。
なお、所定の割合でNiを含有する試料2~12では、気孔率が0.5%以下と気孔の少ない緻密な組織となる結果、硬度及び耐摩耗性に優れた金属基複合材となっている。硬度及び耐摩耗性の向上に寄与するNiは、その含有量が増加すると脆化を引き起こす傾向がある。このことは、4.55質量部でNiを含有する試料8の曲げ強度の試験結果からも明らかである。更にNiが9.48質量部以上になると、気孔率は0.5%以下であるが、素材が脆化し、摩耗幅が増加する傾向となる。また、曲げ強度も、300MPaより小さくなる傾向となる。
[実機試験]
試料1及び試料2を、ダイカストマシンの射出スリーブに適用し、ショットを繰り返した後の寸法の拡大量を測定した。
ダイカストマシンには、125ton横型マシン(東洋機械金属製、商品名:BD-125V4T)を用いた。このダイカストマシンは、図5~図6に示したように、φ50mmの内径の射出スリーブ1を有する。図5は、射出スリーブ1の軸長方向での断面図である。図6は図5中のVI-VI線での断面図である。
試料1及び試料2を、ダイカストマシンの射出スリーブに適用し、ショットを繰り返した後の寸法の拡大量を測定した。
ダイカストマシンには、125ton横型マシン(東洋機械金属製、商品名:BD-125V4T)を用いた。このダイカストマシンは、図5~図6に示したように、φ50mmの内径の射出スリーブ1を有する。図5は、射出スリーブ1の軸長方向での断面図である。図6は図5中のVI-VI線での断面図である。
各試料の金属基複合材2は、図5~図6に示したように、厚さ5mmの略円筒状に形成され、射出スリーブ1の内周面を形成するように配される。射出スリーブ1は、軸方向が水平方向に沿って配置され、基端側の上部に開口した注湯口10から溶融金属がその内部に注入される。注入された溶融金属は、プランジャーチップ3により軸方向先端方向に射出される(図5では右から左方向に射出される)。射出スリーブ1の先端側は成形型のキャビティ(図示せず)と連通し、プランジャーチップ3によって射出される溶融金属は、キャビティに注入、充填される。
溶融金属:ADC12、溶湯保持温度(注湯口10から注入される溶湯温度):690℃、注湯量:0.8kg、プランジャーチップ3の材質:SKD61(JIS G 4404に規定)、チップ潤滑剤:黒鉛系、プランジャーチップ3の射出速度:約0.15m/sの条件でダイカストマシンを稼働した。試料1に対しては約26000ショット、試料2に対しては46500ショットを行った。
試験後の射出スリーブ1の内周面を確認したところ、いずれの射出スリーブ1の内周面も同様の摺動痕(金属基複合材2とプランジャーチップ3の摺動痕)が確認された。
試験後の射出スリーブ1の内周面を確認したところ、いずれの射出スリーブ1の内周面も同様の摺動痕(金属基複合材2とプランジャーチップ3の摺動痕)が確認された。
また、図5のA1で示した位置(注湯口10の軸方向先端側の端部)と、A2で示した位置(A1の位置と射出スリーブ1の先端部との中央の位置)での上下方向の内径の拡大量(図6のLで示した内径の拡大量)を測定した。測定結果を表2に示す。
表2に示したように、A1、A2のいずれの位置においても、試料2の金属基複合材2の内径の拡大量は、試料1の拡大量より小さい。内径の拡大は、金属基複合材2とプランジャーチップ3とが摺動して摩耗することにより生じる。また、試料2は、試料1よりもショット回数がはるかに多い。すなわち、試料2の金属基複合材2は、試料1の金属基複合材と比較して、耐摩耗性がはるかに優れていることが確認できる。
実施例の金属基複合材は、特にダイカストマシンの射出スリーブ1に用いた場合に、耐摩耗性に優れ、長寿命化の効果を発揮する。
実施例の金属基複合材は、特にダイカストマシンの射出スリーブ1に用いた場合に、耐摩耗性に優れ、長寿命化の効果を発揮する。
各実施例の金属基複合材は、硬度及び強度に優れた複合材である。硬度及び強度に優れたことから、高い耐摩耗性も有する。このため、ダイカストマシンの射出スリーブのように、高い耐摩耗性が必要な部材へ適用するとより効果的である。
特に、アルミニウム合金に対する耐溶損性に特に優れているとともに、低熱伝導性のために温度保持能力にも優れており、アルミニウム合金のダイカストに用いられるダイカストマシンの射出スリーブに適用することがより効果的である。
特に、アルミニウム合金に対する耐溶損性に特に優れているとともに、低熱伝導性のために温度保持能力にも優れており、アルミニウム合金のダイカストに用いられるダイカストマシンの射出スリーブに適用することがより効果的である。
1:射出スリーブ
2:金属基複合材
3:プランジャーチップ
2:金属基複合材
3:プランジャーチップ
Claims (3)
- Tiを含有するTi原料粉末、Moを含有するMo原料粉末、Niを含有するNi原料粉末、SiC,TiC,TiB2,MoBより選ばれる少なくとも1種のセラミックス粉末から得られる焼結体よりなり、
全体を100質量部としたときに、Niを0.1~9質量部で含有することを特徴とする金属基複合材。 - 気孔率が0.5%以下である請求項1記載の金属基複合材。
- 窒化処理が施されている請求項1記載の金属基複合材。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/607,632 US11028467B2 (en) | 2017-04-28 | 2018-04-19 | Metal-based composite material |
DE112018002199.8T DE112018002199T5 (de) | 2017-04-28 | 2018-04-19 | Metallbasiertes Kompositmaterial |
CN201880027635.7A CN110573634A (zh) | 2017-04-28 | 2018-04-19 | 金属基复合材料 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017090766A JP6745754B2 (ja) | 2017-04-28 | 2017-04-28 | 金属基複合材 |
JP2017-090766 | 2017-04-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018198913A1 true WO2018198913A1 (ja) | 2018-11-01 |
Family
ID=63919086
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/016058 WO2018198913A1 (ja) | 2017-04-28 | 2018-04-19 | 金属基複合材 |
Country Status (5)
Country | Link |
---|---|
US (1) | US11028467B2 (ja) |
JP (1) | JP6745754B2 (ja) |
CN (1) | CN110573634A (ja) |
DE (1) | DE112018002199T5 (ja) |
WO (1) | WO2018198913A1 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7289728B2 (ja) * | 2019-05-31 | 2023-06-12 | 東京窯業株式会社 | 窒化材料の製造方法及び窒化材料 |
KR102673789B1 (ko) * | 2019-08-26 | 2024-06-07 | 주식회사 엘지화학 | 실리콘카바이드 단결정의 제조 방법 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08170140A (ja) * | 1994-10-20 | 1996-07-02 | Mitsubishi Materials Corp | 靭性および耐摩耗性のすぐれた耐食性サーメット材 |
JPH1072648A (ja) * | 1996-08-30 | 1998-03-17 | Mitsubishi Materials Corp | 耐摩耗性に優れた高強度鉄基焼結合金およびその製造方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0784601B2 (ja) | 1991-01-24 | 1995-09-13 | 東京窯業株式会社 | ダイカストマシン用射出部品 |
CN102925737B (zh) | 2012-10-25 | 2014-11-26 | 北京航空航天大学 | 一种纳米TiB2颗粒增强金属基复合材料及其制备方法 |
JP2015048488A (ja) | 2013-08-30 | 2015-03-16 | 昭和電工株式会社 | Ti/TiC複合材およびその製造方法ならびに用途 |
CN103526074A (zh) | 2013-09-25 | 2014-01-22 | 中南大学 | 一种TiC颗粒增强Ti-Mo-Hf复合材料及制备方法 |
CN108149053A (zh) | 2018-01-24 | 2018-06-12 | 山东建筑大学 | 一种碳化钛-碳化硅-硼化钛粒子增强钛合金的制备方法 |
-
2017
- 2017-04-28 JP JP2017090766A patent/JP6745754B2/ja active Active
-
2018
- 2018-04-19 WO PCT/JP2018/016058 patent/WO2018198913A1/ja active Application Filing
- 2018-04-19 CN CN201880027635.7A patent/CN110573634A/zh active Pending
- 2018-04-19 DE DE112018002199.8T patent/DE112018002199T5/de active Pending
- 2018-04-19 US US16/607,632 patent/US11028467B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08170140A (ja) * | 1994-10-20 | 1996-07-02 | Mitsubishi Materials Corp | 靭性および耐摩耗性のすぐれた耐食性サーメット材 |
JPH1072648A (ja) * | 1996-08-30 | 1998-03-17 | Mitsubishi Materials Corp | 耐摩耗性に優れた高強度鉄基焼結合金およびその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
CN110573634A (zh) | 2019-12-13 |
US11028467B2 (en) | 2021-06-08 |
DE112018002199T5 (de) | 2020-01-09 |
JP2018188692A (ja) | 2018-11-29 |
US20200095654A1 (en) | 2020-03-26 |
JP6745754B2 (ja) | 2020-08-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4029000A (en) | Injection pump for injecting molten metal | |
JP4857206B2 (ja) | 溶浸用粉末 | |
WO2018198913A1 (ja) | 金属基複合材 | |
JP5213326B2 (ja) | サーメット | |
JP3916465B2 (ja) | 溶融金属に対して優れた耐食性、耐摩耗性を有する焼結合金からなる溶融金属用部材、その製造方法、およびそれらを用いた機械構造部材 | |
CN111788025B (zh) | 烧结气门导管及其制造方法 | |
JP4193958B2 (ja) | 溶融金属に対する耐食性に優れた溶融金属用部材およびその製造方法 | |
JP2010105022A (ja) | 表面改質鋼材及び改質表面を有する鋳物の精密鋳造法 | |
JP2009108338A (ja) | サーメットおよびその製造方法 | |
JP2002307222A (ja) | オイルホール近傍の空孔率の少ないオイルホールドリル用素材の製造方法及びオイルホールドリルの製造方法 | |
JP2001181776A (ja) | 超硬合金焼結体及びその製造方法 | |
JP4976626B2 (ja) | 焼結合金材料、その製造方法、およびそれらを用いた機械構造部材 | |
JP3368178B2 (ja) | 非鉄金属溶湯用複合焼結合金の製造方法 | |
JP6970652B2 (ja) | 窒化材料の製造方法 | |
JP4265853B2 (ja) | 溶融金属に対する耐食性および耐熱衝撃性に優れた硬質焼結合金、およびその合金を用いた溶融金属用部材 | |
JP7305584B2 (ja) | 複合材料の焼結体の製造方法 | |
JP3978116B2 (ja) | ダイカストマシン用部材及びその製造方法 | |
JP7289728B2 (ja) | 窒化材料の製造方法及び窒化材料 | |
JPS6260461B2 (ja) | ||
JP2019077930A (ja) | 硬質相分散ニッケル基金属間化合物複合焼結材料、その製造方法およびその材料を用いた耐食耐摩耗部品 | |
JPH10263783A (ja) | 耐磨耗性部品とその製造方法、鋳造機用部品、およびそれを用いたダイカスト機 | |
TWI673724B (zh) | 石墨-銅複合電極材料及使用該材料之放電加工用電極 | |
JPH11303847A (ja) | 疲労強度および靱性に優れたコンロッドおよびその製造方法 | |
KR101779439B1 (ko) | 다이캐스팅용 알루미늄 합금 및 이를 이용한 알루미늄 합금 주조품의 제조방법 | |
JPH02299740A (ja) | 高温溶湯用成形型 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18791142 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18791142 Country of ref document: EP Kind code of ref document: A1 |