WO2018198391A1 - セメント組成物、その製造方法、及びセメント組成物用フライアッシュの製造方法 - Google Patents

セメント組成物、その製造方法、及びセメント組成物用フライアッシュの製造方法 Download PDF

Info

Publication number
WO2018198391A1
WO2018198391A1 PCT/JP2017/033784 JP2017033784W WO2018198391A1 WO 2018198391 A1 WO2018198391 A1 WO 2018198391A1 JP 2017033784 W JP2017033784 W JP 2017033784W WO 2018198391 A1 WO2018198391 A1 WO 2018198391A1
Authority
WO
WIPO (PCT)
Prior art keywords
fly ash
mass
cement composition
amount
particle size
Prior art date
Application number
PCT/JP2017/033784
Other languages
English (en)
French (fr)
Inventor
金井 謙介
英明 松田
Original Assignee
住友大阪セメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=61558025&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2018198391(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 住友大阪セメント株式会社 filed Critical 住友大阪セメント株式会社
Priority to CN201780043029.XA priority Critical patent/CN109476540B/zh
Priority to KR1020187036002A priority patent/KR102202545B1/ko
Priority to SG11201900491PA priority patent/SG11201900491PA/en
Priority to NZ755772A priority patent/NZ755772A/en
Priority to AU2017411816A priority patent/AU2017411816B2/en
Priority to PH12018500746A priority patent/PH12018500746B1/en
Publication of WO2018198391A1 publication Critical patent/WO2018198391A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/06Combustion residues, e.g. purification products of smoke, fumes or exhaust gases
    • C04B18/08Flue dust, i.e. fly ash
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/0076Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials characterised by the grain distribution
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/24Cements from oil shales, residues or waste other than slag
    • C04B7/26Cements from oil shales, residues or waste other than slag from raw materials containing flue dust, i.e. fly ash
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • the present invention relates to a cement composition using fly ash, a method for producing the cement composition, and a method for producing fly ash for a cement composition.
  • Fly ash is fine particles obtained by collecting fine particles floating in a high-temperature airflow with an electric dust collector among the husks generated when pulverized coal is burned by a boiler of a coal-fired power plant.
  • Pozzolans containing silicon dioxide (SiO 2 ) and aluminum oxide (Al 2 O 3 ) as main components contained in fly ash react with calcium hydroxide (Ca (OH) 2 ) contained in cement.
  • Ca (OH) 2 ) contained in cement Such a reaction is called a pozzolanic reaction.
  • fly ash is used as an admixture of concrete or mortar (for example, Patent Document 1). Further, fly ash containing many true spherical particles is used as an admixture of concrete or mortar to improve workability (for example, Patent Document 2).
  • fly ash pulverized coal burns in the boiler, and the husk suspended in the boiler furnace is melted by exposure to high temperature, and the particles are spheroidized by surface tension in the process of being cooled and relatively coarse. And porous, unburned carbon.
  • the spherical particles in fly ash are vitrified by melting the particle surface.
  • the relatively coarse and porous unburned carbon contained in the fly ash has a large particle size, so it is considered that the combustion of the burning husk does not proceed and the spherical particles are not formed.
  • Coarse and porous unburned carbon in fly ash inhibits the ball bearing effect of spherical particles, lowers fluidity, and causes strength reduction.
  • fly ash used as an admixture of concrete or mortar is defined in JIS A6201: 2015 “Fly ash for concrete”. Fly ash from which coarse and porous unburned carbon is removed by classification so as to satisfy the fineness specified in JIS A6201: 2015 “Fly ash for concrete” is used as an admixture for concrete or mortar.
  • Coarse powder containing classified unburned carbon generated during the production of standardized fly ash is used as industrial waste for landfill disposal or as a substitute for clay as a raw material for cement production.
  • the amount of fly ash generated from the coal-fired power plant increases. Fly ash having an increased production amount is required to effectively use all fly ash generated from a coal-fired power plant without removing a part thereof.
  • the present invention maintains characteristics as an admixture material such as fluidity improvement and strength development, and removes all raw material fly ash obtained from coal-fired power plants without removing coarse powder by classification. It is an object of the present invention to provide a cement composition that can be used as an admixture and can contribute to long-term strength development, a method for producing the cement composition, and a method for producing fly ash for a cement composition.
  • the present inventors have found that when the fly ash satisfies the following formula (I) in the volume-based particle size distribution of the particles contained in the fly ash, the fluidity All raw fly ash obtained from coal-fired power plants, etc. can be used as an admixture without impairing the properties of the admixture, such as strength development, and can contribute to long-term strength development.
  • the present invention was completed. That is, the present invention is as follows.
  • a cement composition comprising cement and fly ash, wherein the fly ash content is 30% by mass or less, and the fly ash satisfies the following formula (I) in a volume-based particle size distribution: object. 0.24 ⁇ (D50 ⁇ D10) / (D90 ⁇ D50) ⁇ 0.5 (I) (In the formula, D10, D50, and D90 represent particle sizes corresponding to a cumulative frequency of 10%, a cumulative frequency of 50%, and a cumulative frequency of 90% from the small diameter side of fly ash, respectively.) [2] The cement composition according to [1], wherein the fly ash content is 12% by mass or more.
  • the amount of the amorphous phase in the fly ash is 55% by mass or more based on the total amount of the crystalline phase and the amorphous phase in the fly ash, according to the above [1] or [2].
  • Cement composition In this specification, the amount of amorphous phase in fly ash (mass%) is obtained by subtracting the amount of unburned carbon (mass%) from the amount of amorphous phase (mass%) determined by Rietveld analysis described later. Value.
  • One embodiment of the present invention includes cement and fly ash, wherein the fly ash content is 30% by mass or less, and the fly ash satisfies the following formula (I) in a volume-based particle size distribution: And a cement composition. 0.24 ⁇ (D50 ⁇ D10) / (D90 ⁇ D50) ⁇ 0.5 (I) (In the formula, D10, D50, and D90 represent particle sizes corresponding to a cumulative frequency of 10%, a cumulative frequency of 50%, and a cumulative frequency of 90% from the small diameter side of fly ash, respectively.)
  • Fly ash generated from coal-fired power plants and the like contains spherical particles that have been spheroidized by surface tension in the process of melting and cooling the burning husk, and unburned carbon having a relatively coarse and porous shape.
  • Ratio (D50-D10) / (D90-D50) in the volume-based particle size distribution The fly ash contained in the cement composition satisfies the above formula (I) in the volume-based particle size distribution.
  • the above formula (I) is based on a value obtained by subtracting a particle diameter D50 (median diameter) corresponding to a cumulative frequency of 50% from a particle diameter D90 corresponding to a cumulative frequency of 90% from the small diameter side in the volume-based particle size distribution of fly ash.
  • the ratio of a numerical value obtained by subtracting the particle diameter D10 corresponding to the cumulative frequency of 10% from the small diameter side from the D50 is shown.
  • the ratio represented by (D50-D10) / (D90-D50) in the volume-based particle size distribution of fly ash is more than 0.24 and not more than 0.5.
  • the volume-based particle size distribution of fly ash shows a distribution close to a normal distribution symmetrical about the particle diameter D50 (median diameter), more specifically, on the right side (the particle side larger than the particle diameter D50). Shows a slightly broader shape distribution.
  • the ratio represented by (D50-D10) / (D90-D50) in the volume-based particle size distribution of fly ash is more than 0.24 and not more than 0.5
  • the volume-based particle size distribution is sharp. Shows the distribution of various shapes.
  • the fly ash contained in the cement composition has a ratio represented by the above formula (I) in the volume-based particle size distribution
  • the amount of coarse powder in the fly ash is reduced, resulting in a coarse and porous unburned flame. It is possible to suppress a decrease in fluidity and strength development caused by containing a large amount of carbon, and to maintain good fluidity and strength development of a cement composition mixed with fly ash.
  • the volume-based particle size distribution of fly ash can be measured using a laser diffraction / scattering particle size distribution measuring apparatus (for example, Microtrac MT2000, manufactured by Nikkiso Co., Ltd.).
  • the fly ash contained in the cement composition is small when the ratio represented by (D50-D10) / (D90-D50) in the formula (I) exceeds 0.5 in the volume-based particle size distribution. There are cases where the proportion of particles increases, the setting time of the cement composition is shortened, and workability is lowered. Further, when the fly ash contained in the cement composition has a volume-based particle size distribution, the ratio represented by (D50-D10) / (D90-D50) in the formula (I) is 0.24 or less. In some cases, the ratio of coarse particles increases, fluidity decreases, and strength development may decrease.
  • the ratio of the value obtained by subtracting the particle size D10 from the particle size D50 to the value obtained by subtracting the particle size D50 from the particle size D90 [(D50-D10) / (D90-D50)] is preferably 0.25 or more and 0.49. It is below, More preferably, it is 0.26 or more and 0.48 or less, More preferably, it is 0.27 or more and 0.47 or less.
  • the particle diameter D50 is preferably 17 to 26 ⁇ m, more preferably 18 to 25 ⁇ m.
  • a fly ash having a particle size D50 in the range of 17 to 26 ⁇ m and a relationship of the particle size D50, the particle size D10 and the particle size D90 in the volume-based particle size distribution satisfying the above formula (I) is a coarse powder in the fly ash. Reduces fluidity and strength development caused by containing a large amount of coarse and porous unburned carbon, and improves flowability and strength development of cement composition mixed with fly ash. Can be maintained.
  • the particle diameter D10 is preferably 4 to 12 ⁇ m, more preferably 5 to 10 ⁇ m.
  • the particle diameter D90 is preferably 50 to 69 ⁇ m, more preferably 52 to 68 ⁇ m.
  • the fly ash having the particle diameter D10 and the particle diameter D90 satisfying the above formula (I) with respect to the particle diameter D50 has a fluidity caused by containing a large amount of coarse and porous unburned carbon. It is possible to suppress the deterioration and the decrease in strength development and maintain the good fluidity and strength development of the cement composition mixed with fly ash.
  • fly ash content in cement composition The fly ash content in the cement composition is 30% by mass or less, preferably 29% by mass or less, more preferably 25% by mass or less, and preferably 5% by mass. % Or more, more preferably 10% by mass or more, and further preferably 12% by mass or more.
  • the fly ash content in the cement composition exceeds 30% by mass, the fly ash content in the cement composition increases, and the cement content in the cement composition relatively decreases.
  • the strength decrease due to the decrease in the cement content is greater than the effect of strength development due to the pozzolanic reaction of fly ash, and the strength of the cured product decreases. There is.
  • fly ash content in the cement composition is 5% by mass or more, by adding fly ash satisfying the above formula (I) to the cement composition, good fluidity and strength development of the cement composition can be obtained. Can be maintained. Moreover, if the fly ash content in the cement composition is 12% by mass or more, the setting time can be lengthened and workability during construction can be improved.
  • the amount of amorphous phase in fly ash The fly ash contained in the cement composition is such that the amount of amorphous phase in fly ash is 55% by mass with respect to the total amount of crystalline phase and amorphous phase in fly ash.
  • the above is preferable.
  • the amorphous phase in fly ash contains a lot of pozzolanic components (SiO 2 , Al 2 O 3 ) that cause a pozzolanic reaction, and the long-term strength development of 28-day age or 91-day age is more enhanced by the pozzolanic reaction. Can be improved.
  • Silicon (Si), aluminum (Al), and iron (Fe) contained in fly ash are amorphous phases containing these elements, crystalline quartz (SiO 2 ), cristobalite (SiO 2 ), mullite (3Al 2 O 3 ⁇ 2SiO 2 , which may be referred to as mullite (3: 2) in this specification), hematite (Fe 2 O 3 ), and magnetite (Fe 3 O 4 ).
  • the crystal phase in fly ash does not react with pozzolanes and does not contribute to long-term strength development.
  • the amount of amorphous phase in fly ash contained in the cement composition is 55% by mass or more based on the total amount of crystalline phase and amorphous phase in fly ash, the amorphous phase in fly ash
  • the pozzolanic component (SiO 2 , Al 2 O 3 ) present in the water reacts with calcium hydroxide (Ca (OH) 2 ) produced by hydration of the cement particles, the calcium silicate hydrate (C -SH) and the long-term strength development can be further improved.
  • the amount of the amorphous phase in the fly ash is more preferably 58% by mass or more, and further preferably 59% by mass or more with respect to the total amount of the crystalline phase and the amorphous phase in the fly ash.
  • fly ash having an amorphous phase amount of 100% by mass there is almost no fly ash having an amorphous phase amount of 100% by mass, and the amount of the amorphous phase in the fly ash is preferably based on the total amount of the crystalline phase and the amorphous phase in the fly ash. It is 98 mass% or less, More preferably, it is 95 mass% or less.
  • the amount of crystalline phase and amorphous phase in fly ash can be measured using a Rietveld analysis with a powder X-ray diffractometer.
  • a powder X-ray diffractometer for example, D8 Advance (manufactured by Bruker AXS) can be used.
  • As basic measurement conditions the measurement conditions described in Examples described later can be applied.
  • TOPAS Ver. 4.2 manufactured by Bruker AXS
  • the conditions described in the examples described later can be applied as the Rietveld analysis conditions.
  • Examples of minerals to be analyzed include quartz, mullite (3: 2), anhydrous gypsum, limestone, magnetite, hematite, and titanium dioxide (only samples added as an internal standard substance).
  • the amount of crystalline phase and amorphous phase by fly ash Rietveld analysis can be measured by the method of the example.
  • the amount of amorphous phase (% by mass) in fly ash is calculated from the amount of amorphous phase (% by mass) by Rietveld analysis from the amount of unburned carbon in fly ash (mass%) by the following formula (1). (% By mass).
  • the loss on ignition measured in accordance with JIS A6201 “Fly Ash for Concrete” was defined as the amount of unburned carbon (mass%) in the fly ash.
  • the amount of Fe in the amorphous phase of fly ash is preferably 3.5% by mass or more and 10% by mass or less.
  • the amount of Fe in the amorphous phase of fly ash is related to the hydration activity after the age of 28 days of the amorphous phase, and the amount of Fe in the amorphous phase of fly ash is 10 to 10% by mass. If it is less than mass%, the hydration reaction after the age of 28 days will tend to proceed gradually over a long period of time, so that the calcium silicate hydrate (CSH) produced by the pozzolanic reaction will become more dense. Therefore, long-term strength development is likely to be further improved.
  • CSH calcium silicate hydrate
  • the amount of Fe in the amorphous phase of fly ash usually does not exceed 10% by mass.
  • the amount of Fe in the amorphous phase of fly ash is more preferably 3.6% by mass or more, and still more preferably 3.7% by mass or more.
  • the main components are SiO 2 (about 60-80% by mass) and Al 2 O 3 (around 20% by mass), which are heated, melted and cooled during combustion in a coal-fired power plant.
  • a SiO 2 —Al 2 O 3 -based amorphous phase (glassy phase) and a crystalline phase (mullite (3: 2), quartz, etc.) are generated.
  • the cooling process it is presumed that the atomic order of the crystal phase in the fly ash is more distorted and the hydration activity of the amorphous phase (glassy phase) becomes more active when cooled more rapidly.
  • the amount of Fe in the amorphous phase of fly ash can be calculated by the following formula (2) by the fluorescent X-ray analysis method and Rietveld analysis. As described above, the amount of amorphous phase (% by mass) of fly ash is calculated from the amount of unburned carbon in fly ash from the amount of amorphous phase (% by mass) according to Rietveld analysis of fly ash according to the above equation (1). It is a value obtained by subtracting (mass%).
  • Fe amount (% by mass) in amorphous phase of fly ash [ ⁇ (a) Total amount of Fe in fly ash (X-ray fluorescence analysis value) ⁇ ((b) in hematite and magnetite obtained from Rietveld analysis Total amount of Fe) ⁇ / ((c) Amorphous amount obtained from Rietveld analysis (mass%) ⁇ (d) Unburnt carbon quantity (mass%))] ⁇ 100 (2)
  • (a) the total amount of Fe in fly ash is the amount of Fe in terms of oxide measured according to JIS R5204 “Method of fluorescent X-ray analysis of cement” (iron (III) oxide: Fe 2
  • the amount of Fe can be calculated from the measured value 1 of O 3 ) by the following formula (3).
  • (A) Fe total amount (mass%) in fly ash measured value 1 ⁇ 2Fe / Fe 2 O 3 (111.6 / 159.7) (3)
  • (b) the amount of Fe in hematite and magnetite obtained from Rietveld analysis is measured as 2 for hematite measured by Rietveld analysis according to the method of Examples described later, and as measured 3 for magnetite. From the following formulas (4) and (5), it is the total amount of Fe in hematite and Fe in magnetite.
  • the amount of unburned carbon in fly ash is preferably 3% by mass or more and 15% by mass or less, more preferably 3% by mass or more and 14.8% by mass or less, and further preferably 3% by mass or more. It is 14.5 mass% or less. If the amount of unburned carbon in the fly ash is 15% by mass or less, the fly ash satisfies the above formula (I) in the volume-based particle size distribution, whereby the good fluidity and strength development of the cement composition. Can be maintained.
  • the amount of unburned carbon in fly ash is preferably small, but fly ash obtained from coal-fired power plants usually has 3% by weight or more of unburned carbon unless some unburned carbon is removed by classification or the like. Carbon is included. As described above, in the present specification, the amount of unburned carbon in fly ash is the ignition loss measured in accordance with JIS A6201 “Fly Ash for Concrete”, and (d) the amount of unburned carbon in fly ash ( Mass%).
  • Blaine specific surface area of the Blaine specific surface area fly ash fly ash preferably less than or equal to 3000 cm 2 / g or more 4500cm 2 / g, more preferably not more than 3100 cm 2 / g or more 4400cm 2 / g, more preferably 3200 cm 2 / G or more and 4300 cm 2 / g or less. If the Blaine specific surface area of fly ash is in the range of 3000 cm 2 / g or more and 4500 cm 2 / g or less, the fly ash having the particle size distribution satisfying the above formula (I) is maintained while maintaining the ball bearing effect that is the characteristic of fly ash. As a result, good fluidity can be maintained and good strength development can be maintained.
  • Mass ratio of unburned carbon exceeding 212 ⁇ m in particle size relative to unburned carbon in fly ash Is preferably 35% or less.
  • the mass ratio of unburned carbon having a particle size of 212 ⁇ m to unburned carbon in fly ash is more preferably 34% or less, still more preferably 33% or less, and even more preferably 32% or less.
  • the mass ratio of unburned carbon exceeding 212 ⁇ m in particle size to unburned carbon in fly ash is 35% or less, the coarse and porous shape contained in the cement composition when fly ash is used in the cement composition
  • the mass ratio of unburned carbon is small, and it is possible to suppress a decrease in fluidity and a decrease in strength.
  • the mass ratio of unburned carbon exceeding 212 ⁇ m in particle size to unburned carbon in fly ash is preferably as small as possible.
  • the mass ratio of unburned carbon exceeding 212 ⁇ m in particle size to unburned carbon in the fly ash is usually 5% or more.
  • the amount of unburned carbon (mass%) exceeding the particle size of 212 ⁇ m in the fly ash is based on the residue on the sieve having a mesh size of 212 ⁇ m according to JIS Z8801-1 “Sieving for testing—Part 1: Metal mesh sieve”.
  • the ignition loss of fly ash can be determined as the amount of unburned carbon (mass%) exceeding the particle size of 212 ⁇ m in the fly ash.
  • Mass ratio of unburned carbon exceeding 212 ⁇ m in particle size in cement composition The amount of unburned carbon exceeding 212 ⁇ m in particle size in the cement composition is preferably 1.5% by mass or less.
  • the amount of unburned carbon exceeding the particle size of 212 ⁇ m in the cement composition is more preferably 1.4% by mass or less, further preferably 1.3% by mass or less, and still more preferably 1.2% by mass or less. If the amount of unburned carbon exceeding the particle size of 212 ⁇ m in the cement composition is 1.5% by mass or less, the coarse and porous unburned carbon in the cement composition is small, and the fluidity is reduced and the strength is exhibited. Can be suppressed.
  • the amount of unburned carbon exceeding the particle size of 212 ⁇ m in the cement composition is preferably as small as possible. However, in the case of fly ash satisfying the formula (I) in the volume-based particle size distribution, the amount of unburned carbon exceeding the particle size of 212 ⁇ m in the cement composition is not sufficient.
  • the amount of fuel carbon is usually 0.05% by mass or more.
  • the amount of unburned carbon exceeding the particle size of 212 ⁇ m in the cement composition is equal to the fly ash content (% by mass) in the cement composition according to the formula (7) described later, and the unburned carbon amount exceeding the particle size of 212 ⁇ m in the fly ash.
  • a value obtained by multiplying the amount of carbon (mass%) and dividing by 100 can be calculated as the amount of unburned carbon (mass%) exceeding the particle size of 212 ⁇ m in the cement composition.
  • the manufacturing method of the fly ash for cement compositions classifies raw material fly ash, and pulverizes the coarse-grained fly ash with a particle size of 45 ⁇ m or more.
  • the raw material fly ash and the crushed fly ash are mixed so as to satisfy the following formula (I) in the volume-based particle size distribution. 0.24 ⁇ (D50 ⁇ D10) / (D90 ⁇ D50) ⁇ 0.5 (I) (In the formula, D10, D50, and D90 represent particle sizes corresponding to a cumulative frequency of 10%, a cumulative frequency of 50%, and a cumulative frequency of 90% from the small diameter side of fly ash, respectively.)
  • Raw material fly ash may satisfy the numerical value of ignition loss of type I, type II, or type IV fly ash described in JIS A6201: 2015 “Fly ash for concrete”.
  • a sieve or an air classifier can be used as a method of classifying coarse powder fly ash having a particle size of 45 ⁇ m or more from raw material fly ash.
  • the classified coarse powder fly ash having a particle size of 45 ⁇ m or more can be pulverized using a pulverizer such as a jet mill, a ball mill, or a bead mill.
  • a pulverizer such as a jet mill, a ball mill, or a bead mill.
  • cement used in the cement composition is not particularly limited, and ordinary Portland cement, early-strength Portland cement, moderately hot Portland cement, low heat Portland cement, and the like can be used.
  • a method for producing a cement composition according to an embodiment of the present invention classifies raw fly ash, crushes coarse pulverized fly ash having a particle size of 45 ⁇ m or more, and volume-based particle size distribution.
  • the raw material fly ash and the crushed fly ash are mixed so as to satisfy the following formula (I) in the mixture, and the mixed fly ash is blended so as to be 30% by mass or less based on the total amount of the cement composition. It is a manufacturing method of a thing.
  • D10, D50, and D90 represent particle sizes corresponding to a cumulative frequency of 10%, a cumulative frequency of 50%, and a cumulative frequency of 90% from the small diameter side of fly ash, respectively.
  • a sieve or an air classifier is used, as in the method for producing fly ash for cement composition.
  • the pulverization of the classified coarse pulverized fly ash having a particle size of 45 ⁇ m or more can be crushed using a pulverizer such as a jet mill, a ball mill, and a bead mill, as in the method for producing a fly ash for cement composition. .
  • the crushed fly ash is mixed with the raw fly ash so as to satisfy the above formula (I) in the volume-based particle size distribution, and the mixed fly ash is 30% by mass or less based on the total amount of the cement composition. It can mix
  • the fly ash obtained by mixing the raw fly ash and the crushed fly ash is preferably blended so as to be 29% by mass or less, more preferably 25% by mass or less, and preferably 5% by mass with respect to the total amount of the cement composition. It mix
  • the fly ash content in the cement composition is 12% by mass or more, it is possible to obtain a cement composition having a long setting time and good workability during construction.
  • the amount of the amorphous phase in the fly ash obtained by mixing the raw fly ash and the crushed fly ash is 55% by mass or more based on the total amount of the crystalline phase and the amorphous phase in the mixed fly ash. preferable. If the amount of the amorphous phase in the mixed fly ash is 55% by mass or more based on the total amount of the crystalline phase and the amorphous phase in the mixed fly ash, the pozzolanic component ( The amount of SiO 2 , Al 2 O 3 ) is large and reacts with calcium hydroxide (Ca (OH) 2 ) generated by hydration of surrounding cement particles by pozzolanic reaction, and calcium silicate hydrate (C— It is possible to obtain a cement composition that can easily generate (SH) and that can further improve long-term strength development.
  • the amount of the amorphous phase in the mixed fly ash is more preferably 58% by mass or more, further preferably 59% by mass or more, preferably with respect to the total amount of the crystalline phase and the amorphous phase in the fly ash. Is 98 mass% or less, More preferably, it is 95 mass% or less. Specifically, the amount of the amorphous phase in the mixed fly ash can be measured by the method used in the examples.
  • the amount of Fe in the amorphous phase of fly ash obtained by mixing raw fly ash and crushed fly ash is preferably 3.5% by mass or more and 10% by mass or less.
  • the amount of Fe in the amorphous phase of fly ash is related to the hydration activity after the age of 28 days of the amorphous phase, and the amount of Fe in the amorphous phase of fly ash is 10 to 10% by mass. If it is less than mass%, the hydration reaction after the age of 28 days will tend to proceed gradually over a long period of time, so that the calcium silicate hydrate (CSH) produced by the pozzolanic reaction will become more dense. Therefore, long-term strength development is likely to be further improved.
  • the amount of Fe in the amorphous phase of fly ash is more preferably 3.6% by mass or more, and still more preferably 3.7% by mass or more.
  • the cement composition may contain an admixture other than fly ash.
  • the admixture include blast furnace slag powder, limestone powder, quartz powder, gypsum and the like.
  • D10, D50 and D90 indicate particle sizes corresponding to a cumulative frequency of 10%, a cumulative frequency of 50% and a cumulative frequency of 90% from the small diameter side of the fly ash, respectively.
  • Table 1 shows D10, D50, and D90 of fly ash of Production Examples 1 to 7, and ignition loss measured by the method described later. The ignition loss was the amount of unburned carbon in fly ash.
  • Table 2 shows ratios represented by (D50-D10) / (D90-D50) in the formula (I). In Table 2, since the fly ash of Production Examples 1 to 7 has no fly ash removed from the raw fly ash and uses all of the fly ash of the raw material, the “use ratio of fly ash to the raw material ( %) "Was expressed as 100%.
  • the raw fly ash was classified into coarse particles of 45 ⁇ m or more using a turbo classifier classifier (TC-15N, manufactured by Nissin Engineering Co., Ltd.).
  • the classified coarse powder fly ash was pulverized using a pin-type pulverizer (free pulverizer, M-2 type, manufactured by Nara Machinery Co., Ltd.) to obtain crushed fly ash.
  • the volume-based particle size distribution measured using a laser diffraction / scattering particle size distribution analyzer (Microtrac MT2000, manufactured by Nikkiso Co., Ltd.) is represented by (D50-D10) / (D90-D50) in the formula (I).
  • Table 2 shows the ratio of fly ash of Comparative Production Examples 2 to 6 represented by (D50-D10) / (D90-D50).
  • the “use ratio of fly ash to the raw material” was 100 ( %).
  • fly ash (sample 1) to which 20% by mass of rutile-type titanium dioxide was added and fly ash (sample 2) to which no internal standard was added were prepared.
  • fly ash (sample 2) to which no internal standard substance was added was measured using a powder X-ray diffractometer, and the powder X-ray diffraction pattern of the obtained fly ash (sample 2) and the target mineral quartz , Mullite (3: 2), anhydrous gypsum, limestone, magnetite, and hematite, the respective theoretical profiles are fitted and quantitative analysis of each mineral to be analyzed in fly ash is performed. The amount (mass%) of was calculated. For magnetite and hematite, the amount of magnetite and hematite in the coal ash (mass%) was calculated only from fly ash (sample 2) to which no internal standard was added.
  • Sample 2 to which no internal standard substance is added is used for quantitative analysis of magnetite and hematite.
  • the diffraction angle 2 ⁇ of magnetite and hematite is about 35.5 ° to 35.6 °, and the diffraction angle 2 ⁇ of rutile titanium dioxide. This is because the peak near 36.1 ° is close.
  • a fly ash (sample 1) to which rutile type titanium dioxide as an internal standard substance was added was measured using a powder X-ray diffractometer, and a powder X-ray diffraction pattern of the obtained fly ash (sample 1) Included in the fly ash (sample 1) to which the theoretical profiles of quartz, mullite (3: 2), anhydrous gypsum, limestone, hematite, magnetite, and titanium dioxide were analyzed and added with internal standard substances
  • Each analysis target mineral was quantitatively analyzed, and the amount (mass%) of each analysis target mineral was calculated by analysis software.
  • G total is the analysis value of the sample 1 and the total amorphous quantitative value (%) obtained from the formula (A).
  • Vi Specifically, by the following formula (1), the unburned carbon content (mass%) in fly ash is subtracted from the total amorphous phase amount G total (mass%) calculated from the formula (A). The value obtained was defined as the amount of amorphous phase G FA (mass%) in fly ash.
  • the amount of unburned carbon was defined as the unburned carbon content (mass%) in fly ash, which was the ignition loss measured according to JIS A6201 “Fly Ash for Concrete”.
  • Amorphous phase amount G FA (mass%) in fly ash total amorphous phase quantity G total (mass%) by Rietveld analysis ⁇ unburned carbon content (mass%) (1)
  • Fe amount (mass%) in amorphous phase of fly ash The amount of Fe in the amorphous phase of fly ash was calculated by the following formula (2) by the fluorescent X-ray analysis method and Rietveld analysis.
  • Fe amount (% by mass) in amorphous phase of fly ash [ ⁇ (a) Total amount of Fe in fly ash (X-ray fluorescence analysis value) ⁇ ((b) in hematite and magnetite obtained from Rietveld analysis Total amount of Fe) ⁇ / ((c) Amorphous amount obtained from Rietveld analysis (mass%) ⁇ (d) Unburnt carbon quantity (mass%))] ⁇ 100
  • (a) the total amount of Fe in fly ash is the amount of Fe in terms of oxide measured according to JIS R5204 “Method of fluorescent X-ray analysis of cement” (iron (III) oxide: Fe 2
  • the amount of Fe can be calculated from the measured value 1 of O 3 ) by the following
  • (A) Fe total amount (mass%) in fly ash measured value 1 ⁇ 2Fe / Fe 2 O 3 (111.6 / 159.69) (3)
  • (b) the amount of Fe in hematite and magnetite obtained from Rietveld analysis is the measured value 2 of hematite and the measured value 3 of magnetite measured by Rietveld analysis according to the method of the example described later. From the following formulas (4) and (5), it is the total amount of Fe in hematite and Fe in magnetite.
  • the amount (% by mass) of unburned carbon in fly ash exceeding the particle size of 212 ⁇ m is the residue on the sieve having a mesh opening of 212 ⁇ m according to JIS Z8801-1 “Sieving for test-Part 1: Metal mesh sieve”. Can be determined as the amount of unburned carbon (mass%) exceeding the particle size of 212 ⁇ m in the fly ash.
  • the obtained cement composition was measured for the mass ratio (%) of unburned carbon exceeding the particle size of 212 ⁇ m, fluidity, mortar compressive strength, and setting time in the cement composition.
  • the measurement method is described below.
  • the measurement results are shown in Table 2.
  • Unburned carbon amount (mass%) exceeding particle size 212 ⁇ m in cement composition content (mass%) of fly ash in cement composition ⁇ unburned carbon amount (mass%) exceeding particle size 212 ⁇ m in fly ash ) ⁇ 100 (7)
  • mortar with a 28-day mortar compressive strength of 50 N / mm 2 or more is evaluated as having high compressive strength
  • mortar with 28-day-old mortar compressive strength of less than 50 N / mm 2 has a compressive strength.
  • Rated low A mortar having a mortar compression strength of 91 N days of age and 75 N / mm 2 or more was evaluated as having a high long-term compression strength.
  • a mortar having a mortar compressive strength of less than 75 N / mm 2 at 91 days of age was evaluated as having a low long-term compressive strength.
  • the cement composition has a good flow value at 20 ° C. of 180 mm or more and a flow value at 30 ° C. of 165 mm or more, and both the initial mortar compressive strength at 3 days of age and the mortar compressive strength at 28 days of age are both. It showed a high number.
  • the cement compositions of Examples 1 to 7 had a long-term mortar compressive strength of 91 days of age as high as 76.3 N / mm 2 or more, and the long-term strength development was further improved.
  • Example 7 Since the cement composition of Example 7 has a low fly ash content of Production Example 4 of 11% by mass in the cement composition, the flowability and compressive strength are good, but the setting time is shortened.
  • the cement composition of Example 8 uses the fly ash of Production Example 5, and the amount of Fe in the amorphous phase of the fly ash of Production Example 5 is as small as 3.3% by mass. The long-term strength development at 91 days of age decreased.
  • the cement composition of Example 9 uses the fly ash of Production Example 6.
  • the fly ash of Production Example 6 has a brain specific surface area of 2800 cm 2 / g, contains a relatively large amount of coarse powder, and is 28 days old. Or the long-term intensity
  • the cement composition of Example 10 uses the fly ash of Production Example 7, and the fly ash of Production Example 7 has a small amount of amorphous phase of 51.5% by mass in the fly ash. Or the long-term intensity
  • the fly ash of Reference Production Example 1 similar to the fly ash type II specified in JIS A6201 “Fly Ash for Concrete” is approximately 30 volumes of raw fly ash in order to satisfy JIS standards. % Of fly ash must be removed, and the use ratio of fly ash to the raw material is 70%, and all of the raw fly ash is not effectively used.
  • the fly ash of Comparative Production Example 3 used in Comparative Example 3 was different from the fly ash used in Production Example 4 in terms of the brain specific surface area and the ratio of (D50-D10) / (D90-D50).
  • the fly ash content in the cement composition is more than 30% by mass and the fluidity is good, the initial compressive strength of the 3-day age is low, and the 28-day age is the same. The mortar compressive strength was also lowered.
  • Comparative Example 5 the ratio of fly ash (D50-D10) / (D90-D50) of Comparative Production Example 5 used in the cement composition was as small as 0.14. Since the amount of unburned carbon exceeding the particle size of 212 ⁇ m is as large as 1.6% by mass, it contains a large amount of coarse and porous unburned carbon, and the fluidity at 20 ° C. and the fluidity at 30 ° C. are also reduced. The mortar compressive strength of the age was also lowered.
  • admixtures such as improvement of fluidity and contribution of strength development without removing a part of fly ash whose generation amount is increased with an increase in power generation amount in a coal-fired power plant.
  • a cement composition that can contribute to long-term strength development, a method for producing the cement composition, and a method for producing fly ash for a cement composition.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Civil Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Processing Of Solid Wastes (AREA)
  • Glass Compositions (AREA)

Abstract

流動性の向上、強度発現性の寄与などの混和材料として特性を維持し、分級によって粗粉を除去することなく、石炭火力発電所などから得られる原料フライアッシュの全てを混和材料として使用することができ、長期の強度発現性の寄与も可能なセメント組成物、その製造方法、及びセメント組成物用フライアッシュの製造方法を提供する。 セメントと、フライアッシュとを含み、該フライアッシュ含有量が30質量%以下であり、該フライアッシュが体積基準の粒度分布において下記式(I)を満たすことを特徴とする、セメント組成物である。 0.24<(D50-D10)/(D90-D50)≦0.5 (I) (式中、D10、D50、D90は、それぞれ、フライアッシュの小径側からの累積頻度10%、累積頻度50%及び累積頻度90%に相当する粒径を示す。)

Description

セメント組成物、その製造方法、及びセメント組成物用フライアッシュの製造方法
 本発明は、フライアッシュを用いたセメント組成物、その製造方法、及びセメント組成物用フライアッシュの製造方法に関する。
 フライアッシュは、石炭火力発電所のボイラーで微粉炭を燃焼させた際に発生する燃え殻のうち、高温気流中に浮遊した微粉粒子を電気集塵機で回収した微粒子である。フライアッシュに含まれている二酸化ケイ素(SiO)と酸化アルミニウム(Al)とを主な成分とするポゾランが、セメントに含まれている水酸化カルシウム(Ca(OH))と反応して水和物を生成し、硬化物の長期強度の発現性に寄与する。このような反応は、ポゾラン反応と呼ばれる。ポゾラン反応は緩やかに進行するため、水和熱を抑制することができ、フライアッシュは、コンクリート又はモルタルの混和材料として用いられる(例えば、特許文献1)。また、真球状の粒子を多く含むフライアッシュは、ワーカビリティを向上するために、コンクリート又はモルタルの混和材料として用いられている(例えば、特許文献2)。
 フライアッシュには、微粉炭がボイラー内で燃焼し、ボイラー炉内で浮遊している燃え殻が高温に晒されて溶融し、冷却される過程で表面張力によって球状化した球形粒子と、比較的粗大でポーラスな形状の未燃カーボンが含まれる。フライアッシュ中の球形粒子は、粒子表面が溶けてガラス化している。フライアッシュ中に含まれる比較的粗大でポーラスな未燃カーボンは、粒径が大きいため、燃え殻の燃焼が進まず、球状粒子にならないと考えられる。フライアッシュ中の粗大でポーラスな未燃カーボンは、球形粒子のボールベアリング効果を阻害し、流動性を低下させ、強度の低下を引き起こす。
 また、フライアッシュ中の粗大でポーラスな未燃カーボンの量が多いと、このフライアッシュを混和材料として用いた場合に、空気量を調整するために添加されたAE剤が未燃カーボンに吸着されてしまい、AE剤の添加量が増加し、製造コストの増大につながる場合もある。
 コンクリート又はモルタルの混和材料として用いるフライアッシュは、JIS A6201:2015「コンクリート用フライアッシュ」に、その品質が規定されている。JIS A6201:2015「コンクリート用フライアッシュ」に規定された粉末度を満たすように、粗大でポーラスな未燃カーボンが分級によって除かれたフライアッシュが、コンクリート又はモルタルの混和材料として用いられている。
特開平2004-292307号公報 特開平2011-132111号公報
 規格化されたフライアッシュの製造時に発生した分級された未燃カーボンを含む粗粉は、産業廃棄物として埋め立て処分や、セメント製造原料の粘土代替材料として用いられる。
 石炭火力発電所における発電量の増加に伴い、石炭火力発電所から生成されるフライアッシュの量も増大する。生成量が増大したフライアッシュは、一部を取り除くことなく、石炭火力発電所から生成されたフライアッシュの全てを有効に利用することが求められている。
 そこで、本発明は、流動性の向上、強度発現性の寄与などの混和材料として特性を維持し、分級によって粗粉を除去することなく、石炭火力発電所などから得られる原料フライアッシュの全てを混和材料として使用することができ、長期の強度発現性の寄与も可能なセメント組成物、その製造方法、及びセメント組成物用フライアッシュの製造方法を提供することを目的とする。
 本発明者等は、前記目的を達成するべく鋭意検討を行った結果、フライアッシュが、フライアッシュに含まれる粒子の体積基準の粒度分布において、下記式(I)を満たす場合には、流動性及び強度発現性などの混和材料としての特性を損なうことなく、石炭火力発電所などから得られる原料フライアッシュの全てを混和材料として使用することができ、長期の強度発現性の寄与も可能なことを見出し、本発明を完成させた。すなわち、本発明は、以下のとおりである。
〔1〕セメントと、フライアッシュとを含み、該フライアッシュ含有量が30質量%以下であり、該フライアッシュが体積基準の粒度分布において下記式(I)を満たすことを特徴とする、セメント組成物。
   0.24<(D50-D10)/(D90-D50)≦0.5   (I)
(式中、D10、D50、D90は、それぞれ、フライアッシュの小径側からの累積頻度10%、累積頻度50%及び累積頻度90%に相当する粒径を示す。)
〔2〕前記フライアッシュ含有量が12質量%以上である、前記〔1〕に記載のセメント組成物。
〔3〕前記フライアッシュ中の非晶質相量が、前記フライアッシュ中の結晶相及び非晶質相の合計量に対して55質量%以上である、前記〔1〕又は〔2〕に記載のセメント組成物。
 なお、本明細書においてフライアッシュ中の非晶質相量(質量%)は、後述するリートベルト解析により求めた非晶質相量(質量%)から未燃カーボンの量(質量%)を差し引いた値をいう。
〔4〕前記フライアッシュの非晶質相中のFe量が3.5質量%以上10質量%以下である、前記〔1〕から〔3〕のいずれかに記載のセメント組成物。
〔5〕前記フライアッシュ中の未燃カーボン量が3質量%以上15質量%以下である、前記〔1〕から〔4〕のいずれかに記載のセメント組成物。
〔6〕前記フライアッシュのブレーン比表面積が3000cm/g以上4500cm/g以下である、前記〔1〕から〔5〕のいずれかに記載のセメント組成物。
〔7〕セメント組成物中の粒径212μmを超える未燃カーボン量が1.5質量%以下である、前記〔1〕から〔6〕のいずれかに記載にセメント組成物。
〔8〕前記フライアッシュ中の未燃カーボンに対する粒径212μmを超える未燃カーボンの質量比率が35%以下である、前記〔1〕から〔7〕のいずれかに記載のセメント組成物。
〔9〕原料フライアッシュを分級し、分級された粒径45μm以上の粗粉フライアッシュを解砕し、体積基準の粒度分布において下記式(I)の粒径比を満たすように、原料フライアッシュと解砕フライアッシュとを混合する、セメント組成物用フライアッシュの製造方法。
   0.24<(D50-D10)/(D90-D50)≦0.5   (I)
(式中、D10、D50、D90は、それぞれ、フライアッシュの小径側からの累積頻度10%、累積頻度50%及び累積頻度90%に相当する粒径を示す。)
〔10〕原料フライアッシュを分級し、分級された粒径45μm以上の粗粉フライアッシュを解砕し、体積基準の粒度分布において下記式(I)を満たすように、原料フライアッシュと解砕フライアッシュとを混合し、混合したフライアッシュをセメント組成物の全量に対して30質量%以下となるように配合する、セメント組成物の製造方法。
   0.24<(D50-D10)/(D90-D50)≦0.5   (I)
(式中、D10、D50、D90は、それぞれ、フライアッシュの小径側からの累積頻度10%、累積頻度50%及び累積頻度90%に相当する粒径を示す。)
〔11〕前記混合したフライアッシュをセメント組成物の全量に対して12質量%以上となるように配合する、前記〔10〕に記載のセメント組成物の製造方法。
〔12〕前記混合したフライアッシュ中の非晶質相量が、前記混合したフライアッシュ中の結晶相及び非晶質相の合計量に対して55質量%以上である、前記〔10〕又は〔11〕に記載のセメント組成物の製造方法。
〔13〕前記混合したフライアッシュの非晶質相中のFe量が3.5質量%以上10質量%以下である、前記〔10〕から〔12〕のいずれかに記載のセメント組成物の製造方法。
 本発明によれば、流動性の向上、強度発現性の寄与などの混和材料として特性を損なうことなく、分級によって粗粉を除去することなく、石炭火力発電所などから得られる原料のフライアッシュの全てを混和材料として使用することができ、長期の強度発現性の寄与も可能なセメント組成物、その製造方法、及びセメント組成物用フライアッシュの製造方法を提供することができる。
 以下、本発明について説明する。
 本発明の一実施形態は、セメントと、フライアッシュとを含み、該フライアッシュ含有量が30質量%以下であり、該フライアッシュが体積基準の粒度分布において下記式(I)を満たすことを特徴とする、セメント組成物である。
   0.24<(D50-D10)/(D90-D50)≦0.5   (I)
(式中、D10、D50、D90は、それぞれ、フライアッシュの小径側からの累積頻度10%、累積頻度50%及び累積頻度90%に相当する粒径を示す。)
フライアッシュ
 石炭火力発電所などから生成されたフライアッシュは、燃え殻が溶融し、冷却される過程で表面張力によって球形化した球形粒子と、比較的粗大でポーラスな形状の未燃カーボンが含まれる。
体積基準の粒度分布における(D50-D10)/(D90-D50)の比
 セメント組成物に含まれるフライアッシュは、体積基準の粒度分布において、前記式(I)を満たすものである。前記式(I)は、フライアッシュの体積基準の粒度分布において、小径側から累積頻度90%に相当する粒径D90から累積頻度50%に相当する粒径D50(メディアン径)を引いた数値に対する、前記D50から小径側から累積頻度10%に相当する粒径D10を引いた数値の割合を示す。
 式(I)に表されるように、フライアッシュの体積基準の粒度分布における(D50-D10)/(D90-D50)で表される比が、0.24を超えて0.5以下であることによって、フライアッシュの体積基準の粒度分布は、粒径D50(メディアン径)を中心として左右対称な正規分布に近い分布を示し、より具体的には右側(粒径D50よりも大きな粒子側)が若干ブロードな形状の分布を示す。また、フライアッシュの体積基準の粒度分布における(D50-D10)/(D90-D50)で表される比が0.24を超えて0.5以下であることによって、体積基準の粒度分布がシャープな形状の分布を示す。セメント組成物に含まれるフライアッシュが、体積基準の粒度分布において、前記式(I)で表される比を有することによって、フライアッシュ中の粗粉の量が少なくなり、粗大でポーラスな未燃カーボンを多く含むことによって生じる流動性の低下や強度発現性の低下を抑制し、フライアッシュを混合したセメント組成物の良好な流動性及び強度発現性を維持することができる。
 本明細書において、フライアッシュの体積基準の粒度分布は、レーザー回折散乱式粒度分布測定装置(例えば、マイクロトラックMT2000、日機装株式会社製)を用いて測定することができる。
 セメント組成物に含まれるフライアッシュが、体積基準の粒度分布において、前記式(I)の(D50-D10)/(D90-D50)で表される比が0.5を超える場合には、小さい粒子が含まれる割合が多くなり、セメント組成物の凝結時間が短くなり、施工性が低下する場合がある。また、セメント組成物に含まれるフライアッシュが、体積基準の粒度分布において、前記式(I)の(D50-D10)/(D90-D50)で表される比が0.24以下となる場合には、粗大な粒子が含まれる割合が多くなり、流動性が低下し、強度発現性が低下する場合がある。
 粒径D90から粒径D50を引いた数値に対する、粒径D50から粒径D10を引いた数値の比〔(D50-D10)/(D90-D50)〕は、好ましくは0.25以上0.49以下であり、より好ましくは0.26以上0.48以下であり、さらに好ましくは0.27以上0.47以下である。
 粒径D50は、好ましくは17~26μmであり、より好ましくは18~25μmである。粒径D50が17~26μmの範囲であり、体積基準の粒度分布において、粒径D50、粒径D10及び粒径D90の関係が前記式(I)を満たすフライアッシュは、フライアッシュ中の粗粉の量が少なくなり、粗大でポーラスな未燃カーボンを多く含むことによって生じる流動性の低下や強度発現性の低下を抑制し、フライアッシュを混合したセメント組成物の良好な流動性及び強度発現性を維持することができる。
 粒径D10は、好ましくは4~12μmであり、より好ましくは5~10μmである。また、粒径D90は、好ましくは50~69μmであり、より好ましくは52~68μmである。体積基準の粒度分布において、粒径D10及び粒径D90が、粒径D50に対して、前記式(I)を満たすフライアッシュは、粗大でポーラスな未燃カーボンを多く含むことによって生じる流動性の低下や強度発現性の低下を抑制し、フライアッシュを混合したセメント組成物の良好な流動性及び強度発現性を維持することができる。
セメント組成物中のフライアッシュ含有量
 セメント組成物中のフライアッシュ含有量は、30質量%以下であり、好ましくは29質量%以下であり、より好ましくは25質量%以下であり、好ましくは5質量%以上であり、より好ましくは10質量%以上であり、さらに好ましくは12質量%以上である。
 セメント組成物中のフライアッシュ含有量が30質量%を超えると、セメント組成物中のフライアッシュ含有量が多くなり、相対的にセメント組成物中のセメント含有量が少なくなる。セメント組成物中のセメント含有量が少ないと、フライアッシュのポゾラン反応による強度発現性の効果よりも、セメントの含有量が少なくなることによる強度の低下が大きくなり、硬化体の強度が低下する場合がある。セメント組成物中のフライアッシュ含有量が5質量%以上であれば、前記式(I)を満たすフライアッシュをセメント組成物に添加することによって、セメント組成物の良好な流動性及び強度発現性を維持することができる。また、セメント組成物中のフライアッシュ含有量が12質量%以上であれば、凝結時間も長くすることができ、施工時の作業性をよくすることができる。
フライアッシュ中の非晶質相量
 セメント組成物に含まれるフライアッシュは、フライアッシュ中の非晶質相量が、フライアッシュ中の結晶相及び非晶質相の合計量に対して55質量%以上であることが好ましい。フライアッシュ中の非晶質相は、ポゾラン反応を生じるポゾラン成分(SiO、Al)が多く含まれ、ポゾラン反応によって28日材齢又は91日材齢の長期の強度発現性をより向上することができる。フライアッシュに含まれるケイ素(Si)、アルミニウム(Al)、鉄(Fe)は、これらの元素を含む非晶質相と、結晶性の石英(SiO)、クリストバライト(SiO)、ムライト(3Al・2SiO、本明細書において、ムライト(3:2)と称する場合がある。)、ヘマタイト(Fe)、マグネタイト(Fe)を構成する。フライアッシュ中の結晶相はポゾラン反応せず、長期の強度発現性に寄与しない。セメント組成物に含まれるフライアッシュ中の非晶質相量が、フライアッシュ中の結晶相及び非晶質相の合計量に対して55質量%以上であると、フライアッシュ中の非晶質相に存在するポゾラン成分(SiO、Al)が、セメント粒子の水和によって生成される水酸化カルシウム(Ca(OH))と反応することによって、十分にカルシウムシリケート水和物(C-S-H)を生成し、長期の強度発現性をより向上することができる。フライアッシュ中の非晶質相量は、フライアッシュ中の結晶相及び非晶質相の合計量に対して、より好ましくは58質量%以上、さらに好ましくは59質量%以上である。非晶質相量が100質量%であるフライアッシュは殆ど存在せず、フライアッシュ中の非晶質相量は、フライアッシュ中の結晶相及び非晶質相の合計量に対して、好ましくは98質量%以下、より好ましくは95質量%以下である。
 フライアッシュ中の結晶相及び非晶質相量の測定は、粉末X線回折装置により、リートベルト(Rietvelt)解析を用いて測定することができる。粉末X線回折装置としては、例えばD8 Advance(Bruker AXS(ブルカー・エイエックス)社製)を使用することができる。基本的な測定条件として、後述する実施例において記載した測定条件を適用することができる。
 また、リートベルト解析には、リートベルト解析ソフトとして、TOPAS Ver.4.2(Bruker AXS(ブルカー・エイエックス)社製)を用いることができ、リートベルト解析条件として、後述する実施例において記載した条件を適用することができる。解析対象鉱物としては、石英、ムライト(3:2)、無水石膏、石灰石、マグネタイト、ヘマタイト、二酸化チタン(内部標準物質として添加した試料のみ)が挙げられる。
 フライアッシュのリートベルト解析による結晶相及び非晶質相量は、具体的には、実施例の方法によって測定することができる。
 本明細書において、フライアッシュ中の非晶質相量(質量%)は、下記式(1)により、リートベルト解析による非晶質相量(質量%)からフライアッシュ中の未燃カーボン量(質量%)を差し引いた値をいう。
フライアッシュ中の非晶質相量(質量%)=リートベルト解析による非晶質相量(質量%)-未燃カーボン量(質量%)   (1)
 未燃カーボン量は、JIS A6201「コンクリート用フライアッシュ」に準拠して測定した強熱減量をフライアッシュ中の未燃カーボン量(質量%)とした。
フライアッシュの非晶質相中のFe量
 セメント組成物に含まれるフライアッシュは、フライアッシュの非晶質相中のFe量が3.5質量%以上10質量%以下であることが好ましい。フライアッシュの非晶質相中のFe量は、非晶質相の28日材齢以降の水和活性と関係し、フライアッシュの非晶質相中のFe量が3.5質量%以上10質量%以下であると、28日材齢以降の水和反応が長期にわたり徐々に進行しやすくなることからポゾラン反応により生成したカルシウムシリケート水和物(C-S-H)がより緻密化しやすくなるため、長期の強度発現性がよりさらに向上しやすい。フライアッシュの非晶質相中のFe量は多いほど好ましいが、通常、フライアッシュの非晶質相中のFe量が10質量%を超えることは少ない。セメント組成物に含まれるフライアッシュは、フライアッシュの非晶質相中のFe量が、より好ましくは3.6質量%以上であり、さらに好ましくは3.7質量%以上である。
 フライアッシュの化学組成のうち、主成分はSiO(約60~80質量%)とAl(20質量%前後)であり、石炭火力発電所における燃焼時に加熱、溶融、冷却の過程で、フライアッシュ中には、SiO-Al系の非晶質相(ガラス質相)と結晶相(ムライト(3:2)、石英等)が生成される。冷却過程において、より急冷されるとフライアッシュ中の結晶相の原子秩序がより歪み、非晶質相(ガラス質相)の水和活性はより活発になる推測される。冷却過程において、徐冷されると、ムライト(3:2)となる液相中に不純物であるFe等が存在した場合、ムライトの組成と同様の組成を有するSiO-Al系の非晶質相(ガラス質相)中にランダムにFeが存在することになり、非晶質相(ガラス質相)の歪みが大きくなる。非晶質相(ガラス質相)の活性が高くなると一般に比較的短期に強度発現性が増大するが、Feの存在によって非晶質相(ガラス質相)の歪みが増大した場合には、長期にわたって徐々に水和活性を持続するようになるため、より長期強度の強度増進に寄与すると推測される。
 フライアッシュの非晶質相中のFe量は、蛍光X線分析方法、リートベルト解析により、下記式(2)により算出することができる。前述のとおり、フライアッシュの非晶質相量(質量%)は、前記式(1)により、フライアッシュのリートベルト解析による非晶質相量(質量%)からフライアッシュ中の未燃カーボン量(質量%)を差し引いた値である。
フライアッシュの非晶質相中のFe量(質量%)=[{(a)フライアッシュ中のFe総量(蛍光X線分析値)-((b)リートベルト解析から求めたヘマタイト及びマグネタイト中のFeの合計量)}/((c)リートベルト解析から求めた非晶質量(質量%)-(d)未燃カーボン量(質量%))]×100   (2)
 前記式(2)において、(a)フライアッシュ中のFe総量は、JIS R5204「セメントの蛍光X線分析方法」に準拠して測定した酸化物換算のFe量(酸化鉄(III):Fe)の測定値1から下記式(3)によりFe量を換算して算出することができる。
(a)フライアッシュ中のFe総量(質量%)=測定値1×2Fe/Fe(111.6/159.7)   (3)
 前記式(2)において、(b)リートベルト解析から求めたヘマタイト及びマグネタイト中のFe量は、後述する実施例の方法によりリートベルト解析によって測定されたヘマタイトの測定値2、マグネタイトの測定値3から下記式(4)、(5)によって算出することができ、ヘマタイト中のFe量及びマグネタイト中のFe量の合計量である。
(c-1)ヘマタイト中のFe量(質量%)=測定値2×2Fe/Fe(111.6/159.7)   (4)
(c-2)マグネタイト中のFe量(質量%)=測定値3×3Fe/Fe(167.4/231.5)   (5)
フライアッシュ中の未燃カーボン量
 フライアッシュ中の未燃カーボン量は、好ましくは3質量%以上15質量%以下、より好ましくは3質量%以上14.8質量%以下、さらに好ましくは3質量%以上14.5質量%以下である。
 フライアッシュ中の未燃カーボン量が、15質量%以下であれば、フライアッシュが、体積基準の粒度分布において前記式(I)を満たすことによって、セメント組成物の良好な流動性及び強度発現性を維持することができる。フライアッシュ中の未燃カーボン量が多すぎると、フライアッシュ中の粗大な未燃カーボンが含まれている割合が少ない場合であっても、ポーラスな形状の未燃カーボンによって、強度発現性が低下する場合がある。フライアッシュ中の未燃カーボン量は少ないほうが好ましいが、石炭火力発電所から得られるフライアッシュには、分級などにより一部の未燃カーボンの除去を行わない限り、通常3質量%以上の未燃カーボンが含まれる。前述のとおり、本明細書において、フライアッシュ中の未燃カーボン量は、JIS A6201「コンクリート用フライアッシュ」に準拠して測定した強熱減量を、(d)フライアッシュ中の未燃カーボン量(質量%)とした。
フライアッシュのブレーン比表面積
 フライアッシュのブレーン比表面積は、好ましくは3000cm/g以上4500cm/g以下であり、より好ましくは3100cm/g以上4400cm/g以下であり、さらに好ましくは3200cm/g以上4300cm/g以下である。
 フライアッシュのブレーン比表面積が3000cm/g以上4500cm/g以下の範囲であれば、フライアッシュの特性であるボールベアリング効果を維持し、さらに前記式(I)を満たす粒度分布を有するフライアッシュの効果によって、良好な流動性を維持し、良好な強度発現性を維持することができる。
フライアッシュ中の未燃カーボンに対する粒径212μm超える未燃カーボンの質量比率
 フライアッシュ中の未燃カーボンに対する粒径212μmを超える未燃カーボンの質量比率(粒径212μmを超える未燃カーボン/未燃カーボン)は35%以下であることが好ましい。フライアッシュ中の未燃カーボンに対する粒径212μmを超える未燃カーボンの質量比率は、より好ましくは34%以下、さらに好ましくは33%以下、よりさらに好ましくは32%以下である。
 フライアッシュ中の未燃カーボンに対する粒径212μmを超える未燃カーボンの質量比率が35%以下であれば、フライアッシュをセメント組成物に用いた際に、セメント組成物に含まれる粗大でポーラスな形状の未燃カーボンの質量比率が少なく、流動性の低下や強度発現性の低下を抑制することができる。フライアッシュ中の未燃カーボンに対する粒径212μmを超える未燃カーボンの質量比率(粒径212μmを超える未燃カーボン/未燃カーボン)は、少ないほど好ましいが、体積基準の粒度分布において、前記式(I)を満たすフライアッシュの場合、フライアッシュ中の未燃カーボンに対する粒径212μmを超える未燃カーボンの質量比率(粒径212μmを超える未燃カーボン/未燃カーボン)は、通常5%以上である。
 フライアッシュ中の粒径212μmを超える未燃カーボン量(質量%)は、JIS Z8801-1「試験用ふるい-第1部:金属製網ふるい」に準拠して、目開き212μmフルイ上残分のフライアッシュの強熱減量を、フライアッシュ中の粒径212μmを超える未燃カーボン量(質量%)として求めることができる。
セメント組成物中の粒径212μmを超える未燃カーボンの質量比率
 セメント組成物中の粒径212μmを超える未燃カーボン量が1.5質量%以下であることが好ましい。セメント組成物中の粒径212μmを超える未燃カーボン量は、より好ましくは1.4質量%以下、さらに好ましくは1.3質量%以下、よりさらに好ましくは1.2質量%以下である。
 セメント組成物中の粒径212μmを超える未燃カーボン量が1.5質量%以下であれば、セメント組成物中の粗大でポーラスな形状の未燃カーボンが少なく、流動性の低下や強度発現性の低下を抑制することができる。セメント組成物中の粒径212μmを超える未燃カーボン量は少ないほど好ましいが、体積基準の粒度分布において、前記式(I)を満たすフライアッシュの場合、セメント組成物中の粒径212μmを超える未燃カーボン量は、通常0.05質量%以上である。
 セメント組成物中の粒径212μmを超える未燃カーボン量は、後述する式(7)により、セメント組成物中のフライアッシュ含有量(質量%)に、フライアッシュ中の粒径212μmを超える未燃カーボン量(質量%)を乗じて100で割った値を、セメント組成物中の粒径212μmを超える未燃カーボン量(質量%)として算出することができる。
セメント組成物用フライアッシュの製造方法
 本発明の一実施形態におけるセメント組成物用フライアッシュの製造方法は、原料フライアッシュを分級し、分級された粒径45μm以上の粗粉フライアッシュを解砕し、体積基準の粒度分布において下記式(I)を満たすように、原料フライアッシュと解砕フライアッシュとを混合する。
   0.24<(D50-D10)/(D90-D50)≦0.5   (I)
(式中、D10、D50、D90は、それぞれ、フライアッシュの小径側からの累積頻度10%、累積頻度50%及び累積頻度90%に相当する粒径を示す。)
 原料フライアッシュは、JIS A6201:2015「コンクリート用フライアッシュ」に記載されているI種、II種、又はIV種のフライアッシュの強熱減量の数値を満たすものであってもよい。
 原料フライアッシュから粒径45μm以上の粗粉フライアッシュを分級する方法としては、例えば篩や風力分級機等を用いることができる。分級された粒径45μm以上の粗粉フライアッシュは、例えばジェットミル、ボールミル、ビーズミルなどの粉砕機を用いて解砕することができる。粒径45μm以上のフライアッシュを解砕した場合には、主に粗大でポーラスな未燃カーボンが解砕される。粒径45μm以上のフライアッシュ中に含まれる粗大でポーラスな未燃カーボンを解砕することができれば、解砕フライアッシュと原料フライアッシュを混合し、混合したフライアッシュをセメント組成物に用いた場合であっても、粗大でポーラスな未燃カーボンが含有されることによって生じる流動性の低下や強度発現性の低下を抑制することができる。
セメント
 セメント組成物に用いられるセメントの種類は特に限定されず、普通ポルトランドセメント、早強ポルトランドセメント、中庸熱ポルトランドセメント、低熱ポルトランドセメント等を用いることができる。
セメント組成物の製造方法
 本発明の一実施態様におけるセメント組成物の製造方法は、原料フライアッシュを分級し、分級された粒径45μm以上の粗粉フライアッシュを解砕し、体積基準の粒度分布において下記式(I)を満たすように、原料フライアッシュと解砕フライアッシュとを混合し、混合したフライアッシュをセメント組成物の全量に対して30質量%以下となるように配合する、セメント組成物の製造方法である。
   0.24<(D50-D10)/(D90-D50)≦0.5   (I)
(式中、D10、D50、D90は、それぞれ、フライアッシュの小径側からの累積頻度10%、累積頻度50%及び累積頻度90%に相当する粒径を示す。)
 セメント組成物の製造方法において、原料フライアッシュから粒径45μm以上の粗粉フライアッシュを分級する方法としては、セメント組成物用フライアッシュの製造方法と同様に、例えば篩や風力分級機等を用いることができる。分級された粒径45μm以上の粗粉フライアッシュの解砕は、セメント組成物用フライアッシュの製造方法と同様に、例えばジェットミル、ボールミル、ビーズミルなどの粉砕機を用いて解砕することができる。解砕したフライアッシュは、体積基準の粒度分布において、前記式(I)を満たすように、原料フライアッシュと混合し、この混合したフライアッシュをセメント組成物の全量に対して、30質量%以下となるように配合して、セメント組成物を製造することができる。
 原料フライアッシュと解砕したフライアッシュとを混合したフライアッシュは、セメント組成物の全量に対して、好ましくは29質量%以下、より好ましくは25質量%以下となるように配合し、好ましくは5質量%以上、より好ましくは10質量%以上、さらに好ましくは12質量%以上となるように配合する。セメント組成物中のフライアッシュ含有量が12質量%以上であれば、凝結時間も長く、施工時の作業性のよいセメント組成物を得ることができる。
 原料フライアッシュと解砕フライアッシュとを混合したフライアッシュ中の非晶質相量は、混合したフライアッシュ中の結晶相及び非晶質相の合計量に対して55質量%以上であることが好ましい。混合したフライアッシュ中の非晶質相量が、混合したフライアッシュ中の結晶相及び非晶質相の合計量に対して55質量%以上であれば、非晶質相に含まれるポゾラン成分(SiO、Al)の量が多く、ポゾラン反応によって周囲のセメント粒子の水和によって生成される水酸化カルシウム(Ca(OH))と反応して、カルシウムシリケート水和物(C-S-H)を生成しやすく、長期の強度発現性をより向上しやすいセメント組成物を得ることができる。混合したフライアッシュ中の非晶質相量は、フライアッシュ中の結晶相及び非晶質相の合計量に対して、より好ましくは58質量%以上、さらに好ましくは59質量%以上であり、好ましくは98質量%以下、より好ましくは95質量%以下である。混合したフライアッシュ中の非晶質相量の測定は、具体的には、実施例において用いた方法により測定をすることができる。
 原料フライアッシュと解砕フライアッシュとを混合したフライアッシュの非晶質相中のFe量は、3.5質量%以上10質量%以下であることが好ましい。フライアッシュの非晶質相中のFe量は、非晶質相の28日材齢以降の水和活性と関係し、フライアッシュの非晶質相中のFe量が3.5質量%以上10質量%以下であると、28日材齢以降の水和反応が長期にわたり徐々に進行しやすくなることからポゾラン反応により生成したカルシウムシリケート水和物(C-S-H)がより緻密化しやすくなるため、長期の強度発現性がよりさらに向上しやすい。セメント組成物に含まれるフライアッシュは、フライアッシュの非晶質相中のFe量が、より好ましくは3.6質量%以上であり、さらに好ましくは3.7質量%以上である。
 セメント組成物には、フライアッシュ以外の混和材を含んでいてもよい。混和材としては、例えば、高炉スラグ粉末、石灰石粉末、石英粉末、石膏等が挙げられる。
 次に、本発明を実施例により、詳細に説明するが、本発明は、これらの実施例によってなんら限定されるものではない。
フライアッシュの作製
 以下のように製造例1~7、参考製造例1、比較製造例2~6のフライアッシュを製造した。
(参考製造例1)
 石炭火力発電所から得られたフライアッシュを原料フライアッシュとして用いた。
 原料フライアッシュ中、原料フライアッシュの全量に対して約30体積%を目開き45μmの網ふるい法によって分級して除去し、JIS A6201のコンクリート用フライアッシュII種に規定される条件を満たすフライアッシュを作製した。表2において、原料フライアッシュに対して使用したフライアッシュの割合を、「原料に対するフライアッシュの使用比率」として表わした。
(製造例1~7)
 原料フライアッシュをターボクラシファイア分級機(TC-15N、日清エンジニアリング株式会社製)を用いて45μm以上の粗粉を分級した。分級された粗粉フライアッシュを、ピン型粉砕機(自由粉砕機、M-2型、株式会社奈良機械製作所製)を用いて解砕して、解砕フライアッシュを得た。レーザー回折散乱式粒度分布測定装置(マイクロトラックMT2000、日機装株式会社製)を用いて、測定した体積基準の粒度分布において、下記式(I)を満たすように、原料フライアッシュと解砕フライアッシュとを混合して、製造例1~7の混合フライアッシュを得た。
   0.24<(D50-D10)/(D90-D50)≦0.5   (I)
 式(I)中、D10、D50及びD90は、それぞれフライアッシュの小径側からの累積頻度10%、累積頻度50%及び累積頻度90%に相当する粒径を示す。
 表1に、製造例1~7のフライアッシュのD10、D50、D90、及び後述する方法によって測定した強熱減量を示す。強熱減量は、フライアッシュ中の未燃カーボン量とした。また、式(I)の(D50-D10)/(D90-D50)で表される比を表2に示す。表2において、製造例1~7のフライアッシュは、原料フライアッシュに対して、除去したフライアッシュはなく、原料のフライアッシュの全てを使用しているため、「原料に対するフライアッシュの使用割合(%)」は100%として表わした。
(比較製造例2~6)
 原料フライアッシュをターボクラシファイア分級機(TC-15N、日清エンジニアリング株式会社製)を用いて45μm以上の粗粉を分級した。分級された粗粉フライアッシュを、ピン型粉砕機(自由粉砕機、M-2型、株式会社奈良機械製作所製)を用いて解砕して、解砕フライアッシュを得た。レーザー回折散乱式粒度分布測定装置(マイクロトラックMT2000、日機装株式会社製)を用いて、測定した体積基準の粒度分布において、式(I)の(D50-D10)/(D90-D50)で表される比が表2に示す値となるように、原料フライアッシュと解砕フライアッシュとを混合して、比較製造例2~6のフライアッシュを得た。
 表1に、比較製造例2~6のフライアッシュのD10、D50、D90及び後述する方法によって測定した強熱減量を示す。また、比較製造例2~6のフライアッシュの(D50-D10)/(D90-D50)で表される比を表2に示す。表2において、比較製造例2~6のフライアッシュは、原料フライアッシュに対して、除去したフライアッシュはなく、原料フライアッシュの全てを使用したため、「原料に対するフライアッシュの使用比率」は100(%)と表わした。
Figure JPOXMLDOC01-appb-T000001
フライアッシュの分析
 製造例1~7、参考例製造例1、比較製造例2~6のフライアッシュについて、以下の測定を行った。結果を表2に示す。
(ブレーン比表面積の測定)
 JIS A6201「コンクリート用フライアッシュ」のブレーン方法(比表面積)の測定方法に準拠して、得られたフライアッシュのブレーン比表面積を測定した。
(フライアッシュ中の結晶相及び非晶質相量(質量%)の測定)
 フライアッシュ中の結晶相及び非晶質相量(質量%)の測定は、粉末X線回折装置により、内部標準物質を用いて、リートベルト解析法により測定した。粉末X線回折装置としては、D8 Advance(Bruker AXS(ブルカー・エイエックス)社製)を用いた。測定条件、内部標準物質、リートベルト解析条件を以下に記載した。
測定条件
 X線管球:Cu
 管電圧:40kV
 管電流:40mA
 回折角2θの測定範囲: 開始角5°,終了角70°/75°
※内部標準物質としてルチル型二酸化チタンを添加した場合、終了角を70°とすると70°付近の二酸化チタンのピーク形状が正しく取得できない。このため二酸化チタンを添加した試料については終了角を75°とした。
 ステップ幅:0.025°/step
 計数時間:60sec./step
内部標準物質:ルチル型二酸化チタン
リートベルト解析条件
 リートベルト解析ソフト:TOPAS Ver.4.2(Bruker AXS(ブルカー・エイエックス)社製)
 ゼロ点補正:無し
 試料面の高さの補正:有り
 解析対象鉱物:石英、ムライト(3:2)、無水石膏、石灰石、マグネタイト、ヘマタイト、二酸化チタン(内部標準物質として添加した試料のみ)
 ヘマタイト相の選択配向関数:ヘマタイト相の選択配向は回折角2θ=35.5°付近の(110)面の回折線に生じるものとし、March Dollase関数を用いて、係数の初期値を1として精密化を行なった。マグネタイト相に関しては、選択配向が生じないものとした。
 フライアッシュ中のマグネタイト、ヘマタイトなどの結晶相及び非晶質の測定手順を以下に記載した。
(i)内部標準物として、ルチル型二酸化チタンを20質量%添加したフライアッシュ(試料1)と、内部標準物質を添加しないフライアッシュ(試料2)を作製した。
(ii)内部標準物質を添加しないフライアッシュ(試料2)を、粉末X線回折装置を用いて測定し、得られたフライアッシュ(試料2)の粉末X線回折パターンと、解析対象鉱物の石英、ムライト(3:2)、無水石膏、石灰石、マグネタイト、ヘマタイトのそれぞれの理論プロファイルのフィッティングを行ない、フライアッシュ中に含まれる各解析対象鉱物の定量分析を行い、解析ソフトによって、各解析対象鉱物の量(質量%)を算出した。マグネタイト、ヘマタイトについては、内部標準物質を添加しないフライアッシュ(試料2)のみから、石炭灰中のマグネタイト、ヘマタイトの量(質量%))を算出した。
 マグネタイトとヘマタイトの定量分析に内部標準物質を添加しない試料2を用いるのは、マグネタイト、ヘマタイトの回折角2θ=35.5°~35.6°付近のピークと、ルチル型二酸化チタンの回折角2θ=36.1°付近のピークとが近接するためである。特に内部標準物質として粒子径が小さく、結晶子サイズが小さいルチル型二酸化チタンを用いた場合、ピークのブロードニングが起こり、ルチル型二酸化チタンの回折角2θ=36.1°付近のピークのボトム付近が、マグネタイト、ヘマタイトのピークと重なり(オーバーラップ)、特にマグネタイトやヘマタイトの含有量が少ない場合に、定量した値に大きく影響を及ぼすからである。
(iii)内部標準物質であるルチル型二酸化チタンを添加したフライアッシュ(試料1)を、粉末X線回折装置を用いて測定し、得られたフライアッシュ(試料1)の粉末X線回折パターンと、解析対象鉱物の石英、ムライト(3:2)、無水石膏、石灰石、ヘマタイト、マグネタイト、二酸化チタンのそれぞれの理論プロファイルのフィッティングを行ない、内部標準物質を添加したフライアッシュ(試料1)に含まれる各解析対象鉱物の定量分析を行い、解析ソフトによって、各解析対象鉱物の量(質量%)を算出した。
(iv)試料1のルチル型二酸化チタンの定量値から、以下の(A)式により、未燃カーボンを含む総非晶質相量Gtotal(質量%)を算出した。
総非晶質相量Gtotal=100×(Y-X)/{Y×(100-X)/100} (A)
 ただし、式(A)中、Xは内部標準物質の添加量(20質量%)、Yはルチル型二酸化のリートベルト解析値(質量%)である。
(v)試料1の解析対象鉱物の結晶相の含有量(質量%)から総非晶質相を定量した後、試料2の解析対象鉱物の含有量(質量%)から、以下の(B)式により、総非晶質相を考慮に入れた結晶相の含有量を算出した
結晶相(総非晶質相量Gtotal考慮)=結晶相(試料2解析値)×(100-Gtotal)/100 (B)
 ただし、式(B)中、Gtotalは試料1の解析値と(A)式より得られた総非晶質定量値(%)である。
(vi)具体的には、下記式(1)により、(A)式より算出した総非晶質相量Gtotal(質量%)からフライアッシュ中の未燃カーボン含有量(質量%)を差し引いた値をフライアッシュ中の非晶質相量GFA(質量%)とした。未燃カーボン量は、JIS A6201「コンクリート用フライアッシュ」に準拠して測定した強熱減量をフライアッシュ中の未燃カーボン含有量(質量%)とした。
フライアッシュ中の非晶質相量GFA(質量%)=リートベルト解析による総非晶質相量Gtotal(質量%)-未燃カーボン含有量(質量%)   (1)
(フライアッシュの非晶質相中のFe量(質量%)の測定)
 フライアッシュの非晶質相中のFe量は、蛍光X線分析方法、リートベルト解析により、下記式(2)により算出した。
フライアッシュの非晶質相中のFe量(質量%)=[{(a)フライアッシュ中のFe総量(蛍光X線分析値)-((b)リートベルト解析から求めたヘマタイト及びマグネタイト中のFeの合計量)}/((c)リートベルト解析から求めた非晶質量(質量%)-(d)未燃カーボン量(質量%))]×100   (2)
 前記式(2)において、(a)フライアッシュ中のFe総量は、JIS R5204「セメントの蛍光X線分析方法」に準拠して測定した酸化物換算のFe量(酸化鉄(III):Fe)の測定値1から下記式(3)によりFe量を換算して算出することができる。
(a)フライアッシュ中のFe総量(質量%)=測定値1×2Fe/Fe(111.6/159.69)   (3)
 前記式(2)において、(b)リートベルト解析から求めたヘマタイト、マグネタイト中のFe量は、後述する実施例の方法によりリートベルト解析によって測定されたヘマタイトの測定値2、マグネタイトの測定値3から下記式(4)、(5)によって算出することができ、ヘマタイト中のFe量及びマグネタイト中のFe量の合計量である。
(c-1)ヘマタイト中のFe量(質量%)=測定値2×2Fe/Fe(111.6/159.69)   (4)
(c-2)マグネタイト中のFe量(質量%)=測定値3×3Fe/Fe(167.4/231.5)   (5)
(フライアッシュ中の未燃カーボン量(質量%))
 フライアッシュ中の未燃カーボン量は、JIS A6201「コンクリート用フライアッシュ」に準拠して測定した強熱減量を、(d)フライアッシュ中の未燃カーボン量(質量%)とした。
(粒径212μmを超える未燃カーボン量(質量%))
 フライアッシュ中の粒径212μmを超える未燃カーボンの量(質量%)は、JIS Z8801-1「試験用ふるい-第1部:金属製網ふるい」に準拠して、目開き212μmふるい上残分のフライアッシュの強熱減量を、フライアッシュ中の粒径212μmを超える未燃カーボン量(質量%)として求めることができる。
(フライアッシュ中の未燃カーボンに対する粒径212μmを超える未燃カーボンの質量比率(%))
 フライアッシュ中の未燃カーボン量に対するフライアッシュ中の粒径212μmを超える未燃カーボンの質量比率(粒径212μmを超える未燃カーボン/未燃カーボン)は、下記式(6)により算出した。
 粒径212μmを超える未燃カーボン/未燃カーボン(%)=フライアッシュ中の粒径212μmを超える未燃カーボン(質量%)÷フライアッシュ中の未燃カーボン(質量%)×100  (6)
セメント組成物
(実施例1~10)
 製造例1~7で製造したフライアッシュを、表2に示す配合割合で普通ポルトランドセメントと混合して、実施例1~10のセメント組成物を製造した。
(比較例1~6)
 参考例製造例1、及び比較製造例2~6で製造したフライアッシュを、表2に示す配合割合で普通ポルトランドセメントと混合して、比較例1~6のセメント組成物を製造した。
 得られたセメント組成物について、セメント組成物中の粒径212μmを超える未燃カーボンの質量比率(%)、流動性、モルタル圧縮強さ、凝結時間の測定を行った。以下に測定方法を記載する。また、測定結果を表2に示す。
(セメント組成物中の粒径212μmを超える未燃カーボン量(質量%))
 セメント組成物中の粒径212μmを超える未燃カーボン量(質量%)は、下記式(7)により算出した。
 セメント組成物中の粒径212μmを超える未燃カーボン量(質量%)=セメント組成物中のフライアッシュの含有量(質量%)×フライアッシュ中の粒径212μmを超える未燃カーボン量(質量%)÷100   (7)
(流動性:モルタルの流動性の評価)
 各実施例及び比較例のフライアッシュを混合したセメント組成物を用いて、JIS R5201「セメントの物理試験」に準拠して、混和剤を用いることなく、環境温度20℃、環境温度30℃のそれぞれの温度で、フロー試験を行い、モルタルのフロー値を測定した。環境温度20℃の場合は、フロー値が180mm以上のモルタルは流動性が良好と評価し、フロー値が180mm未満のモルタルは流動性が低いと評価した。環境温度が30℃の場合は、フロー値が165mm以上のモルタルは流動性が良好と評価し、フロー値が165mm未満のモルタルは流動性が低いと評価した。
(凝結試験)
 各実施例及び比較例のフライアッシュを混合したセメント組成物を用いて、測定用の試料の作製及び試験を行う試験室の温度を30±2℃としたこと以外は、JIS R5201「セメントの物理試験方法」の「付属書A(規定)凝結試験」に準拠して、凝結試験を行った。始発が110分以上であり、凝結が160分以上のモルタルを凝結時間が長いと評価した。始発が110分未満であり、凝結が160分未満のモルタルを凝結時間が短いと評価した。
(3日材齢、28日材齢及び91日材齢のモルタル圧縮強さ)
 各実施例及び比較例のフライアッシュを混合したセメント組成物を用いて、JIS R5201「セメントの物理試験方法」の「11.強さ試験」に準拠して、3日材齢、28日材齢及び91日材齢のモルタル圧縮強さを測定した。3日材齢のモルタル圧縮強さが22N/mm以上のモルタルを初期の圧縮強さが高いと評価し、3日材齢のモルタル圧縮強さが22N/mm未満のモルタルを初期の圧縮強さが低いと評価した。また、28日材料のモルタル圧縮強さが50N/mm以上のモルタルを圧縮強さが高いと評価し、28日材齢のモルタル圧縮強さが50N/mm未満のモルタルを圧縮強さが低いと評価した。91日材齢のモルタル圧縮強さが75N/mm以上のモルタルを長期の圧縮強さが高いと評価した。91日材齢のモルタル圧縮強さが75N/mm未満のモルタルを長期の圧縮強さが低いと評価した。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、(D50-D10)/(D90-D50)の比が0.3を超えて0.5以下である製造例1~5のフライアッシュを用いた実施例1~8のセメント組成物は、20℃におけるフロー値が180mm以上、30℃におけるフロー値が165mm以上と良好であり、3日材齢の初期のモルタル圧縮強さ及び28日材齢のモルタル圧縮強さがともに高い数値を示していた。また、実施例1~7のセメント組成物は、91日材齢の長期のモルタル圧縮強さも76.3N/mm以上と高く、長期の強度発現性がより向上していた。
 実施例7のセメント組成物は、セメント組成物中の製造例4のフライアッシュ含有量が11質量%と少ないため、流動性及び圧縮強さは良好であるものの、凝結時間が短くなった。
 実施例8のセメント組成物は、製造例5のフライアッシュを用いており、製造例5のフライアッシュの非晶質相中のFe量が3.3質量%と小さいため、28日材齢又は91日材齢の長期の強度発現性が低下した。
 実施例9のセメント組成物は、製造例6のフライアッシュを用いており、製造例6のフライアッシュはブレーン比表面積が2800cm/gであり、粗粉を比較的多く含み、28日材齢又は91日材齢の長期の強度発現性が低下した。
 実施例10のセメント組成物は、製造例7のフライアッシュを用いており、製造例7のフライアッシュはフライアッシュ中の非晶質相量が51.5質量%と少ないため、28日材齢又は91日材齢の長期の強度発現性が低下した。
 表2に示すように、JIS A6201「コンクリート用フライアッシュ」に規定されるフライアッシュII種と同様の参考製造例1のフライアッシュは、JISの規格を満たすために、原料フライアッシュの約30体積%のフライアッシュを除去しなければならず、原料に対するフライアッシュの使用比率が70%であり、原料フライアッシュの全てを有効に利用していない。
 表2に示すように、比較例1は、セメント組成物に用いた参考製造例1のフライアッシュの(D50-D10)/(D90-D50)の比が0.17と低く、3日材齢の初期のモルタル圧縮強さ、28日材齢のモルタル圧縮強さ、及び91日材齢の長期のモルタル圧縮強さは、ともに比較的高い数値であるものの、20℃におけるフロー値及び30℃おけるフロー値ともに評価の基準値(20℃:180mm以上、30℃:165mm以上)を満たしておらず、流動性が低下した。
 表2に示すように、比較例2は、セメント組成物に用いた比較製造例2のフライアッシュの(D50-D10)/(D90-D50)の比が0.18と小さく、フライアッシュ中の未燃カーボン量に対する粒径212μmを超える未燃カーボンの質量比率(粒径212μmを超える未燃カーボン/未燃カーボン)が35%を超えて大きく、粗大でポーラスな形状の未燃カーボンが多く、流動性が低下し、28日材齢又は91日材齢の長期の強度発現性が低下した。
 表2に示すように、比較例3に用いた比較製造例3のフライアッシュは、製造例4に用いたフライアッシュと、ブレーン比表面積及び(D50-D10)/(D90-D50)の比は同じであるが、セメント組成物中のフライアッシュ含有量が30質量%を超えており、流動性は良好であるものの、3日材齢の初期の圧縮強さが低くなり、28日材齢のモルタル圧縮強さも低くなった。
 表2に示すように、比較例4は、セメント組成物に用いた比較製造例4のフライアッシュの(D50-D10)/(D90-D50)の比が0.19と小さく、粗大でポーラスな未燃カーボンが比較的多く含まれているため、20℃における流動性及び30℃における流動性が低下し、28日材齢のモルタル圧縮強さも低く、91日材齢のモルタル圧縮強さも低くなった。
 表2に示すように、比較例5は、セメント組成物に用いた比較製造例5のフライアッシュ(D50-D10)/(D90-D50)の比が0.14と小さく、セメント組成物中の粒径212μmを超える未燃カーボン量も1.6質量%と大きいため、粗大でポーラスな未燃カーボンが多く含まれており、20℃における流動性及び30℃における流動性も低下し、28日材齢のモルタル圧縮強さも低くなった。
 表2に示すように、比較例6は、セメント組成物に用いた比較製造例6のフライアッシュ(D50-D10)/(D90-D50)の比が0.51と0.5を超えて大きく、ブレーン比表面積も4650cm/gと大きく、フライアッシュ中に比較的小さな粒子が多く含まれ、20℃における流動性及び30℃における流動性が低下した。さらに、30℃における凝結時間も短くなった。
 本発明によれば、石炭火力発電所における発電量の増加にともない、発生量が増加しているフライアッシュの一部を除去することなく、流動性の向上、強度発現性の寄与などの混和材料として特性を維持したフライアッシュを用いて、長期の強度発現性にも寄与できるセメント組成物、その製造方法及びセメント組成物用フライアッシュの製造方法を提供することができる。

Claims (13)

  1.  セメントと、フライアッシュとを含み、該フライアッシュ含有量が30質量%以下であり、該フライアッシュが体積基準の粒度分布において下記式(I)を満たすことを特徴とする、セメント組成物。
       0.24<(D50-D10)/(D90-D50)≦0.5   (I)
    (式中、D10、D50、D90は、それぞれ、フライアッシュの小径側からの累積頻度10%、累積頻度50%及び累積頻度90%に相当する粒径を示す。)
  2.  前記フライアッシュ含有量が12質量%以上である、請求項1に記載のセメント組成物。
  3.  前記フライアッシュ中の非晶質相量が、前記フライアッシュ中の結晶相及び非晶質相の合計量に対して55質量%以上である、請求項1又は2に記載のセメント組成物。
  4.  前記フライアッシュの非晶質相中のFe量が3.5質量%以上10質量%以下である、請求項1から3のいずれか1項に記載のセメント組成物。
  5.  前記フライアッシュ中の未燃カーボン量が3質量%以上15質量%以下である、請求項1から4のいずれか1項に記載のセメント組成物。
  6.  前記フライアッシュのブレーン比表面積が3000cm/g以上4500cm/g以下である、請求項1から5のいずれか1項に記載のセメント組成物。
  7.  セメント組成物中の粒径212μmを超える未燃カーボン量が1.5質量%以下である、請求項1から6のいずれか1項に記載にセメント組成物。
  8.  前記フライアッシュ中の未燃カーボンに対する前記フライアッシュ中の粒径212μmを超える未燃カーボンの質量比率が35%以下である、請求項1から7のいずれか1項に記載のセメント組成物。
  9.  原料フライアッシュを分級し、分級された粒径45μm以上の粗粉フライアッシュを解砕し、体積基準の粒度分布において下記式(I)を満たすように、原料フライアッシュと解砕フライアッシュとを混合する、セメント組成物用フライアッシュの製造方法。
       0.24<(D50-D10)/(D90-D50)≦0.5   (I)
    (式中、D10、D50、D90は、それぞれ、フライアッシュの小径側からの累積頻度10%、累積頻度50%及び累積頻度90%に相当する粒径を示す。)
  10.  原料フライアッシュを分級し、分級された粒径45μm以上の粗粉フライアッシュを解砕し、体積基準の粒度分布において下記式(I)を満たすように、原料フライアッシュと解砕フライアッシュとを混合し、混合したフライアッシュをセメント組成物の全量に対して30質量%以下となるように配合する、セメント組成物の製造方法。
       0.24<(D50-D10)/(D90-D50)≦0.5   (I)
    (式中、D10、D50、D90は、それぞれ、フライアッシュの小径側からの累積頻度10%、累積頻度50%及び累積頻度90%に相当する粒径を示す。)
  11.  前記混合したフライアッシュをセメント組成物の全量に対して12質量%以上となるように配合する、請求項10に記載のセメント組成物の製造方法。
  12.  前記混合したフライアッシュ中の非晶質相量が、前記混合したフライアッシュ中の結晶相及び非晶質相の合計量に対して55質量%以上である、請求項10又は11に記載のセメント組成物の製造方法。
  13.  前記混合したフライアッシュの非晶質相中のFe量が3.5質量%以上10質量%以下である、請求項10から12のいずれか1項に記載のセメント組成物の製造方法。
PCT/JP2017/033784 2017-04-28 2017-09-19 セメント組成物、その製造方法、及びセメント組成物用フライアッシュの製造方法 WO2018198391A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201780043029.XA CN109476540B (zh) 2017-04-28 2017-09-19 水泥组合物、其制造方法、和水泥组合物用飞灰的制造方法
KR1020187036002A KR102202545B1 (ko) 2017-04-28 2017-09-19 시멘트 조성물, 그 제조 방법, 및 시멘트 조성물용 플라이 애시의 제조 방법
SG11201900491PA SG11201900491PA (en) 2017-04-28 2017-09-19 Cement composition, method for producing same, and method for producing fly ash for cement composition
NZ755772A NZ755772A (en) 2017-04-28 2017-09-19 Cement composition, method for producing same, and method for preparing fly ash for cement composition
AU2017411816A AU2017411816B2 (en) 2017-04-28 2017-09-19 Cement composition, method for producing same, and method for producing fly ash for cement composition
PH12018500746A PH12018500746B1 (en) 2017-04-28 2018-04-04 Cement composition, method of manufacturing the same, and method of preparing fly ash for cement composition

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-090378 2017-04-28
JP2017090378 2017-04-28
JP2017142304A JP6288355B1 (ja) 2017-04-28 2017-07-21 セメント組成物、その製造方法、及びセメント組成物用フライアッシュの製造方法
JP2017-142304 2017-07-21

Publications (1)

Publication Number Publication Date
WO2018198391A1 true WO2018198391A1 (ja) 2018-11-01

Family

ID=61558025

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/033784 WO2018198391A1 (ja) 2017-04-28 2017-09-19 セメント組成物、その製造方法、及びセメント組成物用フライアッシュの製造方法

Country Status (7)

Country Link
JP (1) JP6288355B1 (ja)
KR (1) KR102202545B1 (ja)
CN (1) CN109476540B (ja)
AU (1) AU2017411816B2 (ja)
NZ (1) NZ755772A (ja)
SG (1) SG11201900491PA (ja)
WO (1) WO2018198391A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020015655A (ja) * 2018-07-27 2020-01-30 株式会社トクヤマ 改質フライアッシュの製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5792560A (en) * 1980-12-01 1982-06-09 Kogyo Gijutsuin Manufacture of construction material from coal ash as main raw material
JP2011529428A (ja) * 2008-06-05 2011-12-08 ソノアッシュ・リミテッド・ライアビリティ・カンパニー 品質が向上した燃焼灰およびその生成方法
JP2012505150A (ja) * 2008-10-10 2012-03-01 ローマン セメント エルエルシー 高い早期強度発現性を有するポゾランセメントブレンド
WO2014077251A1 (ja) * 2012-11-14 2014-05-22 太平洋セメント株式会社 セメント組成物及びその製造方法
JP2015194475A (ja) * 2014-03-28 2015-11-05 太平洋セメント株式会社 フライアッシュの活性度指数予測方法、コンクリート用フライアッシュ、およびフライアッシュ混合セメントの製造方法
JP2016125845A (ja) * 2014-12-26 2016-07-11 太平洋セメント株式会社 高流動性フライアッシュの判別方法、高流動性フライアッシュ、およびフライアッシュ混合セメント

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4176660B2 (ja) 2003-03-11 2008-11-05 太平洋セメント株式会社 水硬性組成物
CN101244903A (zh) * 2008-03-20 2008-08-20 武汉理工大学 一种高温抗爆常温抗裂矿物掺合料及其制备方法
JP5583429B2 (ja) 2009-11-30 2014-09-03 太平洋セメント株式会社 水硬性組成物
US20150299560A1 (en) * 2014-04-17 2015-10-22 University Of Kentucky Research Foundation Proppant for use in hydraulic fracturing to stimulate a well
CN106587848A (zh) * 2016-12-21 2017-04-26 嘉华特种水泥股份有限公司 一种透水混凝土

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5792560A (en) * 1980-12-01 1982-06-09 Kogyo Gijutsuin Manufacture of construction material from coal ash as main raw material
JP2011529428A (ja) * 2008-06-05 2011-12-08 ソノアッシュ・リミテッド・ライアビリティ・カンパニー 品質が向上した燃焼灰およびその生成方法
JP2012505150A (ja) * 2008-10-10 2012-03-01 ローマン セメント エルエルシー 高い早期強度発現性を有するポゾランセメントブレンド
WO2014077251A1 (ja) * 2012-11-14 2014-05-22 太平洋セメント株式会社 セメント組成物及びその製造方法
JP2015194475A (ja) * 2014-03-28 2015-11-05 太平洋セメント株式会社 フライアッシュの活性度指数予測方法、コンクリート用フライアッシュ、およびフライアッシュ混合セメントの製造方法
JP2016125845A (ja) * 2014-12-26 2016-07-11 太平洋セメント株式会社 高流動性フライアッシュの判別方法、高流動性フライアッシュ、およびフライアッシュ混合セメント

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
VELANDIA D. F. ET AL.: "Evaluation of activated high volume fly ash systems using Na2S04 , lime and quicklime in mortars with high loss on ignition fly ashes", CONSTRUCTION AND BUILDING MATERIALS, vol. 128, 2016, pages 248 - 255, XP029805558 *

Also Published As

Publication number Publication date
AU2017411816B2 (en) 2019-06-06
CN109476540B (zh) 2021-02-12
CN109476540A (zh) 2019-03-15
JP6288355B1 (ja) 2018-03-07
KR102202545B1 (ko) 2021-01-13
JP2018188345A (ja) 2018-11-29
KR20190135907A (ko) 2019-12-09
NZ755772A (en) 2020-03-27
AU2017411816A1 (en) 2019-04-18
SG11201900491PA (en) 2019-02-27

Similar Documents

Publication Publication Date Title
JP6278148B1 (ja) フライアッシュ、セメント組成物及びフライアッシュの製造方法
WO2018008513A1 (ja) フライアッシュの使用方法
JP2011502931A (ja) ポゾランを加工する方法
JP5029768B1 (ja) セメント組成物及びその製造方法
JP2019196276A (ja) 石炭灰混合セメント組成物および製造方法
JP2013159490A (ja) セメント組成物の製造方法
JP6288355B1 (ja) セメント組成物、その製造方法、及びセメント組成物用フライアッシュの製造方法
JP2019131433A (ja) セメント組成物の製造方法
JP6311220B2 (ja) 低温焼成セメントクリンカーの製造方法
KR102202526B1 (ko) 석탄회의 제조 방법 및 석탄회, 시멘트 조성물
JP6454061B2 (ja) 低温焼成セメントクリンカー用原料および低温焼成セメントクリンカーの製造方法
JP6823487B2 (ja) セメント組成物の製造方法、及びセメント組成物の品質評価方法
JP6926733B2 (ja) 石炭灰及び石炭灰を含むセメント組成物
JP7200006B2 (ja) フライアッシュ組成物
JP7403252B2 (ja) セメント製品、及びセメント製品の製造方法
JP6253972B2 (ja) セメント
JP7121682B2 (ja) フライアッシュ含有セメント組成物の製造方法
JP2013144619A (ja) セメント組成物及びセメント組成物の製造方法
JP7134668B2 (ja) セメント系固化材組成物
JP2011020867A (ja) フライアッシュの選定方法、及びこれを用いたセメントの製造方法
JP2008239403A (ja) 水硬性組成物
JP2019172519A (ja) ポルトランドセメント
JP2008230864A (ja) セメント添加材
JP2014185068A (ja) セメント

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 12017500746

Country of ref document: PH

WWE Wipo information: entry into national phase

Ref document number: 12018500746

Country of ref document: PH

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17907345

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187036002

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017411816

Country of ref document: AU

Date of ref document: 20170919

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17907345

Country of ref document: EP

Kind code of ref document: A1