WO2018198387A1 - 顕微鏡用光学系及びそれを用いた顕微鏡 - Google Patents

顕微鏡用光学系及びそれを用いた顕微鏡 Download PDF

Info

Publication number
WO2018198387A1
WO2018198387A1 PCT/JP2017/022936 JP2017022936W WO2018198387A1 WO 2018198387 A1 WO2018198387 A1 WO 2018198387A1 JP 2017022936 W JP2017022936 W JP 2017022936W WO 2018198387 A1 WO2018198387 A1 WO 2018198387A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical system
microscope
lens group
sample
objective
Prior art date
Application number
PCT/JP2017/022936
Other languages
English (en)
French (fr)
Inventor
清史 狩野
槌田 博文
梶谷 和男
Original Assignee
アクアシステム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アクアシステム株式会社 filed Critical アクアシステム株式会社
Priority to CN201780089960.1A priority Critical patent/CN110603473B/zh
Priority to SG11201909908U priority patent/SG11201909908UA/en
Priority to KR1020197031023A priority patent/KR102387369B1/ko
Priority to EP17907614.6A priority patent/EP3617768A4/en
Priority to US16/606,970 priority patent/US11378792B2/en
Publication of WO2018198387A1 publication Critical patent/WO2018198387A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/0008Microscopes having a simple construction, e.g. portable microscopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/02Objectives
    • G02B21/025Objectives with variable magnification
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/02Optical objectives with means for varying the magnification by changing, adding, or subtracting a part of the objective, e.g. convertible objective
    • G02B15/10Optical objectives with means for varying the magnification by changing, adding, or subtracting a part of the objective, e.g. convertible objective by adding a part, e.g. close-up attachment
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/02Objectives
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/06Means for illuminating specimens
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/06Means for illuminating specimens
    • G02B21/08Condensers
    • G02B21/086Condensers for transillumination only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/36Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/36Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements
    • G02B21/362Mechanical details, e.g. mountings for the camera or image sensor, housings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/56Accessories
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/02Objectives
    • G02B21/04Objectives involving mirrors

Definitions

  • the present invention relates to a microscope that captures an image of a sample to be observed by a camera function provided in a portable information terminal and displays a photographed image on a display of the portable information terminal, and an optical system for a microscope used therefor.
  • the present applicant takes a picture of a sample to be observed by a camera function provided in a portable information terminal such as a smartphone or a tablet, and displays the photographed image on the display of the portable information terminal as an observation image. (See Japanese Patent Application No. 2016-163997).
  • Patent Document 1 an optical system in which a sample to be observed is directly placed on the most object side surface of the optical system is known (for example, see Patent Document 1).
  • the present invention has been made in view of the above points.
  • the contrast and resolution of an observation image are obtained even when a sample of 1 micron order is arranged so as to be in contact with or adjacent to the most object side surface of the optical system. It is an object of the present invention to provide an optical system for a microscope that can make the lens sufficient, and a microscope using the same.
  • the microscope optical system of the present invention is: An optical system for a microscope used for a microscope that captures an image of a sample to be observed by a camera function provided in a portable information terminal and displays a captured image on a display of the portable information terminal, An illumination optical system for irradiating the sample with light from a light source, and an objective optical system for imaging the light transmitted through the sample;
  • the objective optical system has an objective lens group, a first imaging lens group, and a second imaging lens group in order from the object side, Focusing is performed by moving a part or all of the second imaging lens group along the optical axis, The sample is placed in contact with or adjacent to the most object-side surface of the objective lens group, The following conditional expressions (1), (2) and (3) are satisfied.
  • NA L is the numerical aperture of the illumination optical system
  • NAO is the numerical aperture of said objective lens group
  • M O is the imaging magnification of the objective lens group.
  • the sample is placed on the object side surface (that is, the most object side surface of the optical system).
  • the object side surface that is, the most object side surface of the optical system.
  • the microscope optical system of the present invention is required to satisfy conditional expressions (1) and (2) for ensuring appropriate contrast and resolution.
  • conditional expression (1) if the value falls below the lower limit, the resolution of the image formed by the objective optical system becomes insufficient. On the other hand, if the upper limit is exceeded, the number of optical elements (lenses, etc.) necessary for realizing sufficient resolution increases, and the design becomes very complicated. Further, in this conditional expression (2), if the lower limit value is not reached, the amount of light becomes insufficient, making it difficult to provide contrast. On the other hand, when the value exceeds the upper limit, the amount of light becomes excessive, and it becomes difficult to obtain sufficient resolution.
  • the microscope optical system of the present invention is required to satisfy the conditional expression (3) for enabling observation of a sample of 1 micron order with an appropriate size using a normal size imaging device. .
  • the optical system for a microscope of the present invention even when a sample of 1 micron order is arranged so as to be in contact with or adjacent to the most object side surface of the objective optical system, a photographed image (that is, an observation image) ) And appropriate contrast and resolution, the camera function of the portable information terminal ensures the image quality of the sample to be observed.
  • the image can be taken.
  • conditional expression (1-1) instead of conditional expression (1).
  • only one of the upper limit value and the lower limit value of the conditional expression (1-1) may be replaced with the upper limit value or the lower limit value of the conditional expression (1).
  • conditional expression (2-1) instead of the conditional expression (2).
  • only one of the upper limit value and the lower limit value of conditional expression (2-1) may be replaced with the upper limit value or lower limit value of conditional expression (2).
  • Conditional expression (4) is a conditional expression for obtaining a more appropriate contrast.
  • conditional expression (4) if the lower limit is not reached, it is difficult to obtain a sufficient amount of light. On the other hand, if the upper limit value is exceeded, the amount of light that irradiates outside the observation range increases, flare is likely to occur, and the contrast tends to decrease.
  • conditional expressions (4-1) and (4-2) instead of the conditional expression (4).
  • only one of the upper limit value and the lower limit value of the conditional expression (4-1) may be replaced with the upper limit value or the lower limit value of the conditional expressions (4) and (4-1), or the conditional expression (4-2)
  • Only one of the upper limit value and the lower limit value of) may be replaced with the upper limit value or the lower limit value of conditional expressions (4) and (4-2).
  • D is the distance from the sample-side end surface of the illumination optical system to the sample.
  • Conditional expression (5) is a conditional expression for making the structure of the microscope simple and small when the microscope is designed by applying the above microscope optical system. In conditional expression (5), if the lower limit value is not reached, it is impossible to secure a work space for placing the sample. On the other hand, when the value exceeds the upper limit value, the size of the optical system for the microscope (and hence the microscope on which it is mounted) increases, and the adjustment accuracy required for the illumination optical axis increases.
  • conditional expression (5-1) instead of conditional expression (5).
  • only one of the upper limit value and the lower limit value of the conditional expression (5-1) may be replaced with the upper limit value or the lower limit value of the conditional expression (5).
  • the microscope of the present invention is A microscope including any one of the above optical systems for a microscope, A microscope main body, and a mounting table connected to the microscope main body on which the portable information terminal is mounted;
  • the microscope main body includes a sample mounting unit for mounting the sample, and a light source for irradiating the sample mounting unit with light.
  • the illumination optical system of the microscope optical system is disposed between the sample mounting portion and the light source,
  • the objective lens group of the microscope optical system is arranged inside the microscope main body so that the most object side surface of the objective lens group is exposed at the sample mounting portion,
  • the first imaging lens group of the microscope optical system is disposed on the image side of the objective lens group inside the microscope body,
  • the second imaging lens group of the microscope optical system is arranged inside the portable information terminal.
  • the microscope of the present invention has the second imaging lens that moves at the time of focusing arranged inside the portable information terminal, so that the microscope main body, the objective lens group and the first imaging lens group incorporated therein are 1 One unit can be constructed at low cost.
  • the light source is preferably an LED.
  • LEDs have the merit that they can be driven for a long time with dry batteries and generate little heat. In addition to this, unlike a light bulb or the like, since the illumination light is white, it becomes easier to obtain a better observation image.
  • FIG. 1A shows the state which has mounted the portable information terminal
  • FIG. 1B shows the state which has not mounted the portable information terminal.
  • FIG. 4 is a cross-sectional view along the optical axis showing the configuration of the first imaging lens group of the objective optical system of the microscope optical system in FIG. 3.
  • FIG. 4 is a cross-sectional view along the optical axis showing the configuration of a second imaging lens group of the objective optical system of the microscope optical system in FIG. 3.
  • FIG. 8A is an aberration curve diagram of the microscope optical system of FIG. 3, FIG. 8A shows spherical aberration, FIG. 8B shows astigmatism, and FIG. 8C shows distortion.
  • FIG. 12A is an aberration curve diagram of the microscope optical system of FIG. 9, FIG. 12A shows spherical aberration, FIG. 12B shows astigmatism, and FIG. 12C shows distortion.
  • the photograph which shows the observation image of the spore of a blue mold by the microscope of FIG. 1 or FIG. The photograph which shows the observation image of yeast (Candida) by the microscope of FIG. 1 or FIG.
  • the microscope M captures an image of a sample to be observed by a camera function provided in the portable information terminal and displays it on the display of the portable information terminal.
  • a microscope M includes a microscope main body 1, a mounting table 2 that can be detachably connected to the microscope main body 1, a portable information terminal P mounted on the mounting table 2, and a microscope main body 1. It is comprised with the optical system 3 (optical system for microscopes) arrange
  • the optical system 3 optical system for microscopes
  • the microscope main body 1 includes a housing 1 a in which a recessed portion that is recessed in the horizontal direction is formed, a sample mounting portion 1 b that is provided below the recessed portion of the housing 1 a, and a housing. It has the light source 1c which is arrange
  • the LED is used as the light source 1c.
  • the LED is used as the light source 1c because the LED has a merit that it can be driven for a long time with a dry battery or the like and generates less heat.
  • the illumination light is white, This is because there is a merit that a better observation image can be easily obtained.
  • the light source in this invention is not limited to LED, You may use an incandescent lamp, a xenon lamp, etc. as long as it can fully irradiate a sample with illumination light.
  • the mounting table 2 is configured as an inverted L-shaped member by a plate-shaped mounting plate 2a on which the portable information terminal P is mounted and a plate-shaped support leg 2b that supports the mounting plate 2a.
  • a circular see-through window 2c is formed in the mounting plate 2a so as to penetrate from the surface on the side where the portable information terminal P is mounted to the surface on the microscope body 1 side.
  • the see-through window 2 c is formed at a position corresponding to the camera lens P ⁇ b> 1 (second imaging lens group G ⁇ b> 14) of the portable information terminal P in a state of being placed on the placing table 2.
  • the optical system 3 includes an illumination optical system 3a for irradiating the sample with light from the light source 1c, and an objective optical system 3b for forming an image of light transmitted through the sample.
  • the illumination optical system 3a is disposed inside the housing 1a of the microscope main body 1, adjacent to the lower surface of the light source 1c, and facing the sample mounting portion 1b.
  • the objective optical system 3b includes an objective lens group 3b1 disposed below the sample mounting portion 1b, a first imaging lens group 3b2 disposed at a position corresponding to the transparent window 2c of the housing 1a, and a portable information terminal P camera lens P1 (not shown in FIG. 2).
  • the objective lens group 3b1 is disposed so that the surface closest to the object is exposed on the sample mounting portion 1b, and the sample to be observed is adjacent to the surface directly or via a cover glass or the like. Placed.
  • the light emitted from the light source 1c and transmitted through the sample passes through the objective lens group 3b1, is reflected by the mirror m, and passes through the first imaging lens group 3b2, and then the housing 1a (that is, the microscope body 1).
  • the light is emitted to the outside (specifically, a position corresponding to the see-through window 2c of the mounting table 2).
  • the light emitted to the outside of the housing 1a is imaged by the camera lens P1 of the portable information terminal P mounted on the mounting table 2 (that is, the second imaging optical system that moves during focusing).
  • the image (that is, the observation image of the sample) is photographed by an imaging element built in the portable information terminal P, and is displayed on the display of the portable information terminal P as a photographed image (that is, an observation image).
  • the objective lens group 3b1 and the first lens group 3b1 built in the microscope body 1 are used.
  • the imaging lens group 3b2 (that is, the lens group that does not move) is used as one unit. Thereby, it is not necessary to provide a complicated mechanism in the microscope body 1, and the production cost of the microscope body 1 can be suppressed.
  • the lens group may be configured as an independent unit that is detachable from the microscope body.
  • E represents a power of 10.
  • E-01 represents 10 minus the first power.
  • Each aspheric shape is expressed by the following equation using each aspheric coefficient described in the numerical data.
  • the coordinate in the direction along the optical axis is Z
  • the coordinate in the direction perpendicular to the optical axis is Y.
  • the optical system 3 includes the illumination optical system 3a disposed on the optical axis Lc and the objective optical system 3b.
  • the illumination optical system 3a is comprised only by the illumination lens group G11.
  • the objective optical system 3b includes an objective lens group G12 (that is, the objective lens group 3b1), a first imaging lens group G13 (that is, the first imaging lens group 3b2), The imaging lens group G14 (that is, the camera lens P1) is included.
  • the light emitted from the light source 1c (light emitting surface L) is guided to the sample to be observed (that is, the object plane O) by the illumination lens group G11.
  • the light transmitted through the sample is imaged once on the first image plane IM1 by the objective lens group G12.
  • the image formed on the first image plane IM1 is formed again on the second image plane IM2 by the first imaging lens group G13 and the second imaging lens group G14.
  • the second image plane IM2 coincides with the imaging plane of the imaging element of the portable information terminal P, and the image formed on the plane is displayed on the display of the portable information terminal P.
  • the illumination lens group G11 includes a planoconvex lens L11 having a positive refractive power and having a convex surface facing the object side.
  • the surface data related to the illumination lens group G11 is shown below.
  • the objective lens group G12 includes, in order from the object side, a lens L21 that is a flat lens used as a cover glass, and a lens that is a meniscus lens having negative refractive power and having a convex surface facing the image surface.
  • L22 a lens L23 which is a biconvex lens having a positive refractive power
  • a lens L24 which is a meniscus lens having a negative refractive power and having a concave surface facing the image side
  • the lens L24 and the lens L25 are cemented.
  • the object side surface (tenth surface) and the image side surface (eleventh surface) of the lens L26 are aspheric.
  • the surface data related to the objective lens group G12 is shown below.
  • the first imaging lens group G13 includes a lens L31 that is a biconvex lens having a positive refractive power and a lens L32 that is a meniscus lens having a negative refractive power and having a convex surface facing the image side. And a lens L33 which is a plano-convex lens having a positive refractive power and having a flat surface facing the image side, and a lens L34 which is a flat lens.
  • the lens L31 and the lens L32 are cemented.
  • the surface data related to the first imaging lens group G13 is shown below.
  • a flat lens is provided on the most image side of the first imaging lens group G13 (that is, between the first imaging lens group G13 and the second imaging lens group G14).
  • a certain lens L34 is arranged. The lens L34 is fixed during focusing. Thereby, in the objective optical system 3b, the first imaging lens group G13 and the second imaging lens group G14 are configured to be separable as independent optical systems.
  • the lens L34 is not limited to a flat lens, and may be a spherical or aspherical lens based on the shape of the housing 1a (placement space for the first imaging lens group G13), required optical performance, and the like. May be used.
  • the second imaging lens group G14 has a positive refractive power, a lens L41 that is a biconvex lens having a positive refractive power, a lens L42 that is a biconcave lens having a negative refractive power, and the like.
  • the lens L43 is a meniscus lens having a convex surface facing the image side.
  • focusing is performed by moving the entire second imaging lens group G14 along the optical axis Lc. Specifically, focusing is performed by changing a surface interval (6.6 mm) related to surface number 6 in numerical data 4 described later.
  • the focusing method is not limited to such a configuration, and may be performed by moving a part of the second imaging lens group G14 along the optical axis.
  • the surface data relating to the second imaging lens group G14 is shown below.
  • FIG. 8 is an aberration diagram related to the objective lens group 3b1 of the objective optical system 3b of the optical system 3.
  • FIG. 8A and 8B show spherical aberration (SA (mm)), FIG. 8B shows astigmatism (AST (mm)), and FIG. 8C shows distortion aberration (DIS (%)).
  • SA spherical aberration
  • AST mm
  • DIS distortion aberration
  • the solid line indicates the F line
  • the broken line indicates the d line
  • the alternate long and short dash line indicates the C line aberration.
  • FIG. 8B astigmatism
  • the solid line indicates the tangential plane
  • the broken line indicates the sagittal plane.
  • the optical system 3 the numerical aperture NA L of the illumination optical system 3a is 0.069, the numerical aperture NAO of 0.2 of the objective lens group 3b1, imaging of the objective lens 3b1
  • the magnification MO is 30, which satisfies the following conditional expressions (1), (2) and (3).
  • NA L ⁇ 2 ⁇ NAO ⁇ NA L ⁇ 15 ⁇ (1) 0.01 ⁇ NA L ⁇ 0.1 (2) 25 ⁇ MO ⁇ 100 (3)
  • Conditional expressions (1) and (2) are conditional expressions for ensuring appropriate contrast and resolution.
  • Conditional expression (3) is a conditional expression for enabling observation of a sample on the order of 1 micron with an appropriate size using a normal-size imaging device.
  • the optical system 3 that satisfies these conditional expressions (1), (2), and (3), from the aberration diagram of FIG. 8 and the observed images (that is, taken images) of FIGS.
  • the size of the captured image is made appropriate, and Since the contrast and the resolution can be made sufficient, the image of the sample to be observed can be captured while ensuring sufficient image quality by the camera function provided in the portable information terminal P.
  • the effective diameter Ed (a value obtained by doubling the effective radius) of the illumination optical system 3a is 4.8 mm, which satisfies the following conditional expression (4). 2 mm ⁇ Ed ⁇ 8 mm (4)
  • the microscope optical system of the present invention only needs to satisfy the conditional expressions (1), (2), and (3), and the conditional expression (4) does not necessarily have to be satisfied.
  • the distance D from the end surface on the sample side of the illumination optical system 3a to the sample is 35 mm, and the following conditional expression (5) is satisfied. ing. 5 mm ⁇ D ⁇ 50 mm (5)
  • the size of the optical system for the microscope (and thus the microscope on which it is mounted) is secured while ensuring a sufficient work space for placing the sample.
  • the adjustment accuracy required for the size and the illumination optical axis can be suppressed.
  • the microscope optical system of the present invention only needs to satisfy the conditional expressions (1), (2), and (3), and the conditional expression (5) does not necessarily have to be satisfied.
  • the microscope of the present embodiment differs from the microscope M of the first embodiment only in the configuration of the illumination lens group constituting the illumination optical system and the configuration of the objective lens group of the objective optical system. Only numerical data relating to the configuration of the illumination lens group constituting the illumination optical system, the configuration of the objective lens group of the objective optical system, and various data relating to the entire optical system will be described.
  • the optical system of the present embodiment includes an illumination optical system disposed on the optical axis Lc and an objective optical system.
  • the illumination optical system is comprised only by the illumination lens group G21.
  • the objective optical system includes an objective lens group G22 (that is, objective lens group 3b1), a first imaging lens group G13 (that is, first imaging lens group 3b2), and a second connection, which are arranged in order from the object side. It is composed of an image lens group G14 (that is, a camera lens P1).
  • the light emitted from the light source (light emitting surface L) is guided to the sample to be observed (that is, the object plane O) by the illumination lens group G21.
  • the light transmitted through the sample is imaged once on the first image plane IM1 by the objective lens group G22.
  • the image formed on the first image plane IM1 is formed again on the second image plane IM2 by the first imaging lens group G13 and the second imaging lens group G14.
  • the second image plane IM2 coincides with the imaging plane of the imaging element of the portable information terminal P, and the image formed on the plane is displayed on the display of the portable information terminal P.
  • the illumination lens group G21 includes a biconvex lens L51 having a positive refractive power.
  • the surface data related to the illumination lens group G21 is shown below.
  • the objective lens group G22 includes, in order from the object side, a lens L61 that is a flat lens used as a cover glass, and a lens that is a plano-convex lens having a positive refractive power and a convex surface facing the image side.
  • lens L62 a lens L63 that is a meniscus lens having a positive refractive power and a convex surface facing the image side, a lens L64 that is a meniscus lens having a negative refractive power and a concave surface facing the image side, and positive refraction
  • a lens L65 which is a biconvex lens having power
  • a lens L66 which is a meniscus lens having negative refractive power and having a concave surface facing the image side
  • lens L65 which is a biconvex lens having positive refractive power.
  • the lens L64 and the lens L65 are joined, and the lens L66 and the lens L67 are joined. Further, the objective lens group G22 is configured such that an oil immersion liquid exists between the lens 61 and the lens 62 during observation.
  • the surface data related to the objective lens group G22 is shown below.
  • FIG. 12 is an aberration diagram related to the objective lens group of the objective optical system of the optical system of the present embodiment.
  • FIG. 12A shows spherical aberration (SA (mm)
  • FIG. 12B shows astigmatism (AST (mm))
  • FIG. 12C shows distortion aberration (DIS (%)).
  • SA spherical aberration
  • AST mm
  • DIS distortion aberration
  • the solid line indicates the F-line
  • the broken line indicates the d-line
  • the alternate long and short dash line indicates the C-line aberration.
  • FIG. 12B astigmatism
  • the solid line indicates the tangential plane
  • the broken line indicates the sagittal plane.
  • the numerical aperture NA L of the illumination optical system is 0.093
  • the numerical aperture NAO of the objective lens group 1.2 imaging of the objective lens group
  • the magnification MO is 100, which satisfies the following conditional expressions (1), (2), and (3).
  • Conditional expressions (1) and (2) are conditional expressions for ensuring appropriate contrast and resolution.
  • Conditional expression (3) is a conditional expression for enabling observation of a sample on the order of 1 micron with an appropriate size using a normal-size imaging device.
  • the optical system of the present embodiment satisfying these conditional expressions (1), (2) and (3), the aberration diagram of FIG. 12 and the observed images of FIG. 13 to FIG. As is clear from the image), even when a sample of the order of 1 micron is arranged so as to be in contact with or adjacent to the most object side surface of the objective optical system, the size of the photographed image should be appropriate. In addition, since the contrast and the resolution can be made sufficient, the image of the sample to be observed can be captured while ensuring sufficient image quality by the camera function of the portable information terminal.
  • the effective diameter Ed (a value obtained by doubling the effective radius) of the illumination optical system is 5.2 mm, which satisfies the following conditional expression (4). 2 mm ⁇ Ed ⁇ 8 mm (4)
  • the optical system of the present embodiment satisfies the conditional expression (4), so that a sufficient amount of light is obtained and flare is prevented.
  • the distance D from the end surface on the sample side of the illumination optical system to the sample (that is, d3 in the numerical data 5) is 28 mm, and the following conditional expression (5) is satisfied. Is pleased. 5 mm ⁇ D ⁇ 50 mm (5)
  • the optical system of the present embodiment satisfies the conditional expression (5), an optical system for a microscope (and thus a microscope on which the optical system is mounted) while ensuring a sufficient work space when placing a sample. Therefore, it is possible to reduce the size and the adjustment accuracy required for the illumination optical axis.
  • FIGS. 13 to 20 show images observed with a microscope equipped with any of the optical systems described above.
  • 13 is Escherichia coli (about 3 ⁇ m)
  • FIG. 14 is Salmonella (about 2 ⁇ m)
  • FIG. 15 is S. aureus (about 1 ⁇ m)
  • FIG. 16 is Pseudomonas aeruginosa (about 3 ⁇ m)
  • FIG. 18 is an observation image of yeast (Candida) (about 5 ⁇ m)
  • FIG. 19 is an observation image of wine yeast (about 5 ⁇ m)
  • FIG. 20 is an observation image of oral bacteria (about 0.5 to 10 ⁇ m).
  • SYMBOLS 1 Microscope main body, 1a ... Housing

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Lenses (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

1ミクロンオーダーの試料を光学系の最も物体側の面に接触又は隣接するように配置した場合であっても、観察画像のコントラスト及び解像度を十分なものにすることができる顕微鏡用光学系を提供する。 顕微鏡用光学系は、照明光学系G11と、対物光学系とを備え、対物光学系は、物体側から順に、対物レンズ群G12と、第1結像レンズ群G13と、第2結像レンズ群G14とを有し、以下の条件式を満足する。 NAL×2 ≦ NAO ≦ NAL×15 ・・・(1) 0.01 ≦ NAL ≦ 0.1 ・・・(2) 25 ≦ MO ≦ 100 ・・・(3) ただし、NALは照明光学系G11の開口数であり、NAOは対物レンズ群G12の開口数であり、MOは対物レンズ群G12の結像倍率である。

Description

顕微鏡用光学系及びそれを用いた顕微鏡
 本発明は、観察する試料の像を携帯情報端末が備えているカメラ機能により撮像し、撮影画像を携帯情報端末のディスプレイに表示する顕微鏡及びそれに用いる顕微鏡用光学系に関する。
 本件出願人は、スマートフォン、タブレット等の携帯情報端末が備えているカメラ機能によって、観察する試料の像を撮影し、その撮影画像を観察画像として携帯情報端末のディスプレイに表示する携帯情報端末設置型の顕微鏡を提案している(特願2016‐163997号明細書参照)。
 また、特許文献1に使用可能な光学系としては、観察対象である試料を光学系の最も物体側の面に直接載置するものが知られている(例えば、特許文献1参照)。
米国特許第7995272号明細書
 しかし、特許文献1に記載の光学系では、細菌等の1ミクロンオーダーの試料を観察する場合、その観察画像のコントラスト及び解像度を十分なものにすることが難しく、良好な観察画像を得ることができないという問題があった。そのため、本件出願人が提案している上述の顕微鏡に特許文献1に記載の光学系を採用した場合、携帯情報端末が備えているカメラ機能により撮像画像(すなわち、観察画像)もコントラスト及び解像度が十分なものとはならない。
 本発明は以上の点に鑑みてなされたものであり、1ミクロンオーダーの試料を光学系の最も物体側の面に接触又は隣接するように配置した場合であっても、観察画像のコントラスト及び解像度を十分なものにすることができる顕微鏡用光学系及びそれを用いた顕微鏡を提供することを目的とする。
 上記目的を達成するために、本発明の顕微鏡用光学系は、
 観察する試料の像を携帯情報端末が備えているカメラ機能により撮像し、撮影画像を携帯情報端末のディスプレイに表示する顕微鏡に用いられる顕微鏡用光学系であって、
 光源からの光を試料に照射するための照明光学系と、前記試料を透過した光を結像するための対物光学系を備え、
 前記対物光学系は、物体側から順に、対物レンズ群と、第1結像レンズ群と、第2結像レンズ群とを有し、
 前記第2結像レンズ群の一部又は全部を光軸に沿って移動させることによって、フォーカシングが行われ、
 前記対物レンズ群の最も物体側の面には、前記試料が接触又は隣接して配置され、
 以下の条件式(1),(2)及び(3)を満足することを特徴とする。
   NA×2 ≦ NAO ≦ NA×15 ・・・(1)
   0.01 ≦ NA ≦ 0.1 ・・・(2)
   25 ≦ M ≦ 100 ・・・(3)
 ただし、NAは前記照明光学系の開口数であり、NAOは前記対物レンズ群の開口数であり、Mは前記対物レンズ群の結像倍率である。
 このように、本発明の顕微鏡用光学系では、対物レンズ群の最も物体側のレンズ成分を固定とすることにより、その物体側の面(すなわち、光学系の最も物体側の面)に、試料を接触又は隣接するように配置して(例えば、最も物体側の面に試料を直接又はカバーガラス等を挟んで載置して)観察を行うことができるようになっている。
 これに加え、本発明の顕微鏡用光学系では、適切なコントラスト及び解像度を担保するための条件式(1)及び(2)を満足することを要件としている。
 この条件式(1)において、下限値を下回ると、対物光学系によって結像された像の解像度が不十分となってしまう。一方、上限値を上回ると、十分な解像度を実現するために必要な光学要素(レンズ等)の数が増え、設計が非常に複雑になってしまう。また、この条件式(2)において、下限値を下回ると、光量が足りなくなり、コントラストをつけにくくなる。一方、上限値を上回ると、光量が過剰となり、十分な解像度が得にくくなる。
 さらに、本発明の顕微鏡用光学系では、通常サイズの撮像素子を用いて、1ミクロンオーダーの試料を適度な大きさで観察可能とするための条件式(3)を満足することを要件としている。
 この条件式(3)において、下限値を下回ると、観察画像における試料のサイズが小さくなりすぎてしまう。一方、上限値を上回ると、観察画像における試料のサイズが大きくなりすぎてしまう。
 したがって、本発明の顕微鏡用光学系によれば、1ミクロンオーダーの試料を対物光学系の最も物体側の面に接触又は隣接するように配置した場合であっても、撮影画像(すなわち、観察画像)の大きさを適切なものとし、且つ、そのコントラスト及び解像度を十分なものにすることができるので、携帯情報端末が備えているカメラ機能によって、観察する試料の像を十分な画質を確保しつつ撮像できる。
 なお、条件式(1)に代わり、次の条件式(1-1)を満足するように構成するとさらに好ましいことが、実験的に判明している。また、条件式(1-1)の上限値又は下限値の一方のみを、条件式(1)の上限値又は下限値と置き換えてもよい。
   NA×2.8 ≦ NAO ≦ NA×13 ・・・(1-1)
 また、条件式(2)に代わり、次の条件式(2-1)を満足するように構成するとさらに好ましいことが、実験的に判明している。また、条件式(2-1)の上限値及び下限値の一方のみを、条件式(2)の上限値又は下限値と置き換えてもよい。
   0.07 ≦ NA ≦ 0.09 ・・・(2-1)
 なお、条件式(3)に代わり、次の条件式(3-1)を満足するように構成するとさらに好ましいことが、実験的に判明している。
   30 ≦ M ≦ 100 ・・・(3-1)
 また、本発明の顕微鏡用光学系においては、
 以下の条件式(4)を満足することが好ましい。
   2mm ≦ Ed ≦ 8mm ・・・(4)
 ただし、Edは前記照明光学系の有効径である。
 条件式(4)は、さらに適切なコントラストを得るための条件式である。この条件式(4)において、下限値を下回ると、十分な光量が得にくくなる。一方、上限値を上回ると、観察範囲の外を照射する光量が増えて、フレアが発生しやすくなり、コントラストが低下しやすくなってしまう。
 なお、条件式(4)に代わり、次の条件式(4-1)及び(4-2)のいずれかを満足するように構成するとさらに好ましいことが、実験的に判明している。また、条件式(4-1)の上限値及び下限値の一方のみを、条件式(4)、(4-1)の上限値又は下限値と置き換えてもよいし、条件式(4-2)の上限値及び下限値の一方のみを、条件式(4)、(4-2)の上限値又は下限値と置き換えてもよい。
   4mm ≦ Ed ≦ 6mm ・・・(4-1)
   4.8mm ≦ Ed ≦ 5.2mm ・・・(4-2)
 また、本発明の顕微鏡用光学系においては、
 以下の条件式(5)を満足することが好ましい。
   5mm ≦ D ≦ 50mm ・・・(5)
 ただし、Dは前記照明光学系の前記試料側の端面から前記試料までの距離である。
 条件式(5)は、上記の顕微鏡用光学系を適用して顕微鏡を設計する際に、その顕微鏡の構造を簡易且つ小型なものにするための条件式である。この条件式(5)において、下限値を下回ると、試料を載置する際の作業スペースを確保することができなくなる。一方、上限値を上回ると、顕微鏡用光学系(ひいては、それを搭載する顕微鏡)のサイズが大きくなり、また、照明光軸に対して要求される調整精度が高くなってしまう。
 なお、条件式(5)に代わり、次の条件式(5-1)を満足するように構成するとさらに好ましいことが、実験的に判明している。また、条件式(5-1)の上限値及び下限値の一方のみを、条件式(5)の上限値又は下限値と置き換えてもよい。
   28mm ≦ D ≦ 35mm ・・・(5-1)
 また、上記目的を達成するために、本発明の顕微鏡は、
 上記いずれかの顕微鏡用光学系を備えている顕微鏡であって、
 顕微鏡本体と、前記顕微鏡本体に接続され、前記携帯情報端末が載置される載置台とを備え、
 前記顕微鏡本体は、前記試料を載置するための試料載置部と、前記試料載置部に光を照射するための光源とを有し、
 前記顕微鏡用光学系の前記照明光学系は、前記試料載置部と前記光源との間に配置され、
 前記顕微鏡用光学系の前記対物レンズ群は、前記顕微鏡本体の内部に、前記対物レンズ群の最も物体側の面が前記試料載置部で露出するように配置され、
 前記顕微鏡用光学系の前記第1結像レンズ群は、前記顕微鏡本体の内部の前記対物レンズ群の像側に配置され、
 前記顕微鏡用光学系の前記第2結像レンズ群は、前記携帯情報端末の内部に配置されていることを特徴とする。
 このように、本発明の顕微鏡は、フォーカシング時に移動する第2結像レンズを携帯情報端末の内部に配置することにより、顕微鏡本体及びそれに内蔵される対物レンズ群及び第1結像レンズ群を1つのユニットとして、安価に構成することができる。
 また、本発明の顕微鏡においては、
 前記光源は、LEDであることが好ましい。
 LEDは、乾電池等で長時間駆動でき、発熱も少ないというメリットがある。これに加え、電球等とは異なり、照明光が白色であるので、さらに良好な観察画像を得やすくなる。
第1実施形態に係る顕微鏡を示す斜視図であり、図1Aは携帯情報端末を載置している状態を示し、図1Bは携帯情報端末を載置していない状態を示す。 図1の顕微鏡の内部の構造を示すII-II断面図。 図1の顕微鏡の顕微鏡用光学系の構成を示す光軸に沿う断面図。 図3の顕微鏡用光学系の照明光学系の構成を示す光軸に沿う断面図。 図3の顕微鏡用光学系の対物光学系の対物レンズ群の構成を示す光軸に沿う断面図。 図3の顕微鏡用光学系の対物光学系の第1結像レンズ群の構成を示す光軸に沿う断面図。 図3の顕微鏡用光学系の対物光学系の第2結像レンズ群の構成を示す光軸に沿う断面図。 図3の顕微鏡用光学系の収差曲線図であり、図8Aは球面収差、図8Bは非点収差、図8Cは歪曲収差を示す。 第2実施形態に係る顕微鏡の顕微鏡用光学系の構成を示す光軸に沿う断面図。 図9の顕微鏡用光学系の照明光学系の構成を示す光軸に沿う断面図。 図9の顕微鏡用光学系の対物光学系の対物レンズ群の構成を示す光軸に沿う断面図。 図9の顕微鏡用光学系の収差曲線図であり、図12Aは球面収差、図12Bは非点収差、図12Cは歪曲収差を示す。 図1又は図9の顕微鏡による大腸菌の観察画像を示す写真。 図1又は図9の顕微鏡によるサルモネラ菌の観察画像を示す写真。 図1又は図9の顕微鏡による黄色ブドウ球菌の観察画像を示す写真。 図1又は図9の顕微鏡による緑膿菌の観察画像を示す写真。 図1又は図9の顕微鏡による青カビの胞子の観察画像を示す写真。 図1又は図9の顕微鏡による酵母(カンジダ)の観察画像を示す写真。 図1又は図9の顕微鏡によるワイン酵母の観察画像を示す写真。 図1又は図9の顕微鏡による口腔内細菌の観察画像を示す写真。
 [第1実施形態]
 以下、図1~図8を参照して、第1実施形態に係る顕微鏡M及びそれに用いられる光学系について説明する。顕微鏡Mは、観察する試料の像を携帯情報端末が備えているカメラ機能により撮像し、その携帯情報端末のディスプレイに表示するものである。
 まず、図1及び図2を参照して、顕微鏡Mの構成について説明する。
 図1Aに示すように、顕微鏡Mは、顕微鏡本体1と、その顕微鏡本体1に着脱自在に接続可能な載置台2と、載置台2に載置される携帯情報端末Pと、顕微鏡本体1の内部から携帯情報端末Pの内部に亘って配置された光学系3(顕微鏡用光学系)とで構成される。
 図1B及び図2に示すように、顕微鏡本体1は、水平方向に窪んだ凹部が形成された筐体1aと、筐体1aの凹部の下方側に設けられた試料載置部1bと、筐体1aの凹部の上方側に配置され、試料載置部1bに光を照射する光源1cとを有している。
 光源1cとしては、LEDが用いられている。ここで、光源1cとしてLEDを採用しているのは、LEDが、乾電池等で長時間駆動でき、発熱も少ないというメリットがあり、また、電球等とは異なり、照明光が白色であるので、さらに良好な観察画像を得やすくなるというメリットがあるためである。なお、本発明における光源は、LEDに限定されるものではなく、試料に照明光を十分に照射できるものであれば、白熱電球、キセノンランプ等を用いてもよい。
 載置台2は、携帯情報端末Pを載置する板状の載置板2aと、載置板2aを支持する板状の支持脚2bとによって、逆L字状の部材として構成されている。載置板2aには、携帯情報端末Pを載置する側の面から顕微鏡本体1側の面まで貫くようにして円形の透視窓2cが形成されている。透視窓2cは、載置台2に載置された状態の携帯情報端末PのカメラレンズP1(第2結像レンズ群G14)に対応する位置に形成されている。
 光学系3は、光源1cからの光を試料に照射するための照明光学系3aと、試料を透過した光を結像するための対物光学系3bとで構成されている。
 照明光学系3aは、顕微鏡本体1の筐体1aの内部であって、光源1cの下面に隣接し、且つ、試料載置部1bに対向する位置に配置されている。
 対物光学系3bは、試料載置部1bの下方に配置された対物レンズ群3b1と、筐体1aの透視窓2cに対応する位置に配置された第1結像レンズ群3b2と、携帯情報端末PのカメラレンズP1(図2では不図示)とで構成されている。
 対物レンズ群3b1は、試料載置部1bに最も物体側の面が露出するように配置されており、その面には観察対象である試料が、直接又はカバーガラス等を介して隣接するようにして載置される。
 光源1cから照射され、試料を透過した光は、対物レンズ群3b1を通過した後、ミラーmで反射され、第1結像レンズ群3b2を介して、筐体1a(すなわち、顕微鏡本体1)の外部(具体的には、載置台2の透視窓2cに対応する位置)に出射される。
 筐体1aの外部に射出された光は、載置台2に載置されている携帯情報端末PのカメラレンズP1(すなわち、フォーカシング時に移動する第2結像光学系)によって結像される。その像(すなわち、試料の観察画像)は、携帯情報端末Pの内蔵する撮像素子によって撮影され、携帯情報端末Pのディスプレイ上に撮影画像(すなわち、観察画像)として表示される。
 このように、顕微鏡Mでは、フォーカシング時に移動する第2結像レンズとして携帯情報端末Pに搭載されているカメラレンズP1を利用することにより、顕微鏡本体1に内蔵される対物レンズ群3b1及び第1結像レンズ群3b2(すなわち、移動しないレンズ群)を1つのユニットとしている。これにより、顕微鏡本体1に複雑な機構を設ける必要がなく、顕微鏡本体1の生産コストを抑えることができるようになっている。
 ただし、対物レンズ群及び第1レンズ群の少なくとも一方を交換可能とするために、そのレンズ群を顕微鏡本体と着脱自在な独立したユニットとして構成してもよい。
 次に、図3~図8を参照して、光学系3の構成について詳細に説明する。
 なお、図4~図7に示した各レンズ群の光軸に沿う断面図において、r1,r2,・・・及びd1,d2,・・・の数字は、数値データにおける面番号1,2,・・・に対応している。また、後述する数値データにおいては、sは面番号、rは各面の曲率半径、dは面間隔、ndはd線(波長587.56nm)における屈折率、νdはd線におけるアッベ数、Kは円錐係数、Aは非球面係数をそれぞれ示している。
 また、数値データの非球面係数においては、Eは10のべき乗を表している。例えば、「E-01」は、10のマイナス1乗を表している。また、各非球面形状は、数値データに記載した各非球面係数を用いて以下の式で表される。ただし、光軸に沿う方向の座標をZ、光軸と垂直な方向の座標をYとする。
   Z=(Y/r)/[1+{1-(1+k)・(Y/r)1/2]+A
 上記のように、光学系3は、光軸Lc上に配置された照明光学系3aと、対物光学系3bとで構成されている。
 そして、図3に示すように、光学系3において、照明光学系3aは、照明レンズ群G11のみで構成されている。対物光学系3bは、物体側から順に配置された、対物レンズ群G12(すなわち、対物レンズ群3b1)と、第1結像レンズ群G13(すなわち、第1結像レンズ群3b2)と、第2結像レンズ群G14(すなわち、カメラレンズP1)とで構成されている。
 光源1c(発光面L)から出射された光は、照明レンズ群G11によって、観察対象となる試料(すなわち、物体面O)に導かれる。試料を透過した光は、対物レンズ群G12によって第1像面IM1で一度結像する。第1像面IM1で結像した像は、第1結像レンズ群G13及び第2結像レンズ群G14によって、第2像面IM2で再度結像される。第2像面IM2は、携帯情報端末Pの撮像素子の撮像面と一致しており、その面上で結像された像は、携帯情報端末Pのディスプレイ上に表示される。
 図4に示すように、照明レンズ群G11は、正の屈折力を持ち、物体側に凸面を向けた平凸レンズL11で構成されている。
 以下に、照明レンズ群G11に係る面データを示す。
Figure JPOXMLDOC01-appb-T000001
 図5に示すように、対物レンズ群G12は、物体側から順に、カバーガラスとして用いられる平レンズであるレンズL21と、負の屈折力を持ち、像面に凸面を向けたメニスカスレンズであるレンズL22と、正の屈折力を持つ両凸レンズであるレンズL23と、負の屈折力を持ち、像側に凹面を向けたメニスカスレンズであるレンズL24と、正の屈折力を持つ両凸レンズであるレンズL25と、負の屈折力を持ち、像側に凹面を向けたメニスカスレンズであるレンズL26とにより構成されている。
 対物レンズ群G12においては、レンズL24とレンズL25とが接合されている。また、レンズL26の物体側の面(第10面)及び像側の面(第11面)は、非球面となっている。
 以下に、対物レンズ群G12に係る面データを示す。
Figure JPOXMLDOC01-appb-T000002
 図6に示すように、第1結像レンズ群G13は、正の屈折力を持つ両凸レンズであるレンズL31と、負の屈折力を持ち、像側に凸面を向けたメニスカスレンズであるレンズL32と、正の屈折力を持ち、像側に平面を向けた平凸レンズであるレンズL33と、平レンズであるレンズL34とにより構成されている。
 また、第1結像レンズ群G13においては、レンズL31とレンズL32とが接合されている。
 以下に、第1結像レンズ群G13に係る面データを示す。
Figure JPOXMLDOC01-appb-T000003
 上記の数値データ3に示したように、第1結像レンズ群G13の最も像側に(すなわち、第1結像レンズ群G13と第2結像レンズ群G14との間に)、平レンズであるレンズL34が配置されている。そして、このレンズL34はフォーカシング時に固定となっている。これにより、対物光学系3bでは、第1結像レンズ群G13と第2結像レンズ群G14を、独立した光学系として分離可能に構成されている。
 ただし、レンズL34は平板状レンズに限定されるものではなく、筐体1aの形状(第1結像レンズ群G13の配置スペース)、要求される光学性能等に基づいて、球面又は非球面のレンズを用いてもよい。
 図7に示すように、第2結像レンズ群G14は、正の屈折力を持つ両凸レンズであるレンズL41と、負の屈折力を持つ両凹レンズであるレンズL42と、正の屈折力を持ち、像側に凸面を向けたメニスカスレンズであるレンズL43とによって構成されている。
 光学系3では、第2結像レンズ群G14の全部を光軸Lcに沿って移動させることによって、フォーカシングが行われる。具体的には、後述する数値データ4における面番号6に係る面間隔(6.6mm)を変化させることによってフォーカシングを行う。なお、フォーカシングの方法は、このような構成に限定されるものではなく、第2結像レンズ群G14の一部を光軸に沿って移動させることによって行ってもよい。
 以下に、第2結像レンズ群G14に係る面データを示す。
Figure JPOXMLDOC01-appb-T000004
 以下に、光学系3全体に関する各種データを示す。
Figure JPOXMLDOC01-appb-T000005
 図8に、光学系3の対物光学系3bの対物レンズ群3b1に係る収差図を示す。なお、図8において、図8Aは球面収差(SA(mm))、図8Bは非点収差(AST(mm))を示し、図8Cは歪曲収差(DIS(%))を示す。図8A(球面収差)において、実線はF線、破線はd線、一点鎖線はC線の収差を示す。図8B(非点収差)において、実線はタンジェンシャル平面、破線はサジタル平面を示す。
 上記の各種データ1で示したように、光学系3では、照明光学系3aの開口数NAは0.069、対物レンズ群3b1の開口数NAOは0.2、対物レンズ群3b1の結像倍率Mは30となっており、以下の条件式(1),(2)及び(3)を満足している。
   NA×2 ≦ NAO ≦ NA×15 ・・・(1)
   0.01 ≦ NA ≦ 0.1 ・・・(2)
   25 ≦ M ≦ 100 ・・・(3)
 条件式(1)及び(2)は、適切なコントラスト及び解像度を担保するための条件式である。また、条件式(3)は、通常サイズの撮像素子を用いて、1ミクロンオーダーの試料を適度な大きさで観察可能とするための条件式である。
 これらの条件式(1),(2)及び(3)を満足している光学系3によれば、図8の収差図及び後述する図13~図20の観察画像(すなわち、撮影画像)からも明らかなように、1ミクロンオーダーの試料を対物光学系3bの最も物体側の面に接触又は隣接するように配置した場合であっても、撮影画像の大きさを適切なものとし、且つ、そのコントラスト及び解像度を十分なものにすることができるので、携帯情報端末Pが備えているカメラ機能によって、観察する試料の像を十分な画質を確保しつつ撮像できる。
 また、光学系3では、照明光学系3aの有効径Ed(有効半径を2倍した値)は、4.8mmとなっており、以下の条件式(4)を満足している。
   2mm ≦ Ed ≦ 8mm ・・・(4)
 光学系3は、この条件式(4)を満足しているので、十分な光量を得るとともに、フレアの発生も防止されている。ただし、本発明の顕微鏡用光学系は、条件式(1),(2)及び(3)を満足していればよく、この条件式(4)は必ずしも満足しなくてもよい。
 また、光学系3では、照明光学系3aの試料側の端面から試料までの距離D(すなわち、上記数値データ1におけるd3)は、35mmとなっており、以下の条件式(5)を満足している。
   5mm ≦ D ≦ 50mm ・・・(5)
 光学系3は、この条件式(5)を満足しているので、試料を載置する際の作業スペースを十分に確保しつつ、顕微鏡用光学系(ひいては、それを搭載する顕微鏡)のサイズの大きさ及び照明光軸に対して要求される調整精度の高さを抑えることが可能となっている。ただし、本発明の顕微鏡用光学系は、条件式(1),(2)及び(3)を満足していればよく、この条件式(5)は必ずしも満足しなくてもよい。
 [第2実施形態]
 以下、図9~図12を参照して、第2実施形態に係る顕微鏡に用いられる光学系について説明する。ただし、本実施形態の顕微鏡は、照明光学系を構成する照明レンズ群の構成及び対物光学系の対物レンズ群の構成のみにおいて、第1実施形態の顕微鏡Mと異なっている。照明光学系を構成する照明レンズ群の構成及び対物光学系の対物レンズ群の構成に係る数値データ、並びに、光学系全体に関する各種データについてのみ説明する。
 なお、図10及び図11に示した各レンズ群の光軸に沿う断面図において、r1,r2,・・・及びd1,d2,・・・の数字は、数値データにおける面番号1,2,・・・に対応している。また、後述する数値データにおいては、sは面番号、rは各面の曲率半径、dは面間隔、ndはd線(波長587.56nm)における屈折率、νdはd線におけるアッベ数をそれぞれ示している。
 本実施形態の光学系は、光軸Lc上に配置された照明光学系と、対物光学系とで構成されている。
 そして、図9に示すように、本実施形態の光学系において、照明光学系は、照明レンズ群G21のみで構成されている。対物光学系は、物体側から順に配置された、対物レンズ群G22(すなわち、対物レンズ群3b1)と、第1結像レンズ群G13(すなわち、第1結像レンズ群3b2)と、第2結像レンズ群G14(すなわち、カメラレンズP1)とで構成されている。
 光源(発光面L)から出射された光は、照明レンズ群G21によって、観察対象となる試料(すなわち、物体面O)に導かれる。試料を透過した光は、対物レンズ群G22によって第1像面IM1で一度結像する。第1像面IM1で結像した像は、第1結像レンズ群G13及び第2結像レンズ群G14によって、第2像面IM2で再度結像される。第2像面IM2は、携帯情報端末Pの撮像素子の撮像面と一致しており、その面上で結像された像は、携帯情報端末Pのディスプレイ上に表示される。
 図10に示すように、照明レンズ群G21は、正の屈折力を持つ両凸レンズL51で構成されている。
 以下に、照明レンズ群G21に係る面データを示す。
Figure JPOXMLDOC01-appb-T000006
 図11に示すように、対物レンズ群G22は、物体側から順に、カバーガラスとして用いられる平レンズであるレンズL61と、正の屈折力を持ち、像側に凸面を向けた平凸レンズであるレンズL62と、正の屈折力を持ち、像側に凸面を向けたメニスカスレンズであるレンズL63と、負の屈折力を持ち、像側に凹面を向けたメニスカスレンズであるレンズL64と、正の屈折力を持つ両凸レンズであるレンズL65と、負の屈折力を持ち、像側に凹面を向けたメニスカスレンズであるレンズL66と、正の屈折力を持つ両凸レンズであるレンズL65とにより構成されている。
 また、対物レンズ群G22においては、レンズL64とレンズL65とが接合されており、レンズL66とレンズL67とが接合されている。さらに、対物レンズ群G22においては、観察時に、レンズ61とレンズ62との間に油浸液が存在するように構成されている。
 以下に、対物レンズ群G22に係る面データを示す。
Figure JPOXMLDOC01-appb-T000007
 以下に、本実施形態の光学系全体に関する各種データを示す。
Figure JPOXMLDOC01-appb-T000008
 図12に、本実施形態の光学系の対物光学系の対物レンズ群に係る収差図を示す。なお、図12において、図12Aは球面収差(SA(mm))、図12Bは非点収差(AST(mm))を示し、図12Cは歪曲収差(DIS(%))を示す。図12A(球面収差)において、実線はF線、破線はd線、一点鎖線はC線の収差を示す。図12B(非点収差)において、実線はタンジェンシャル平面、破線はサジタル平面を示す。
 上記の各種データ2で示したように、本実施形態の光学系では、照明光学系の開口数NAは0.093、対物レンズ群の開口数NAOは1.2、対物レンズ群の結像倍率Mは100となっており、以下の条件式(1),(2)及び(3)を満足している。
   NA×2 ≦ NAO ≦ NA×15 ・・・(1)
   0.01 ≦ NA ≦ 0.1 ・・・(2)
   25 ≦ M ≦ 100 ・・・(3)
 条件式(1)及び(2)は、適切なコントラスト及び解像度を担保するための条件式である。また、条件式(3)は、通常サイズの撮像素子を用いて、1ミクロンオーダーの試料を適度な大きさで観察可能とするための条件式である。
 これらの条件式(1),(2)及び(3)を満足している本実施形態の光学系によれば、図12の収差図及び後述する図13~図20の観察画像(すなわち、撮影画像)からも明らかなように、1ミクロンオーダーの試料を対物光学系の最も物体側の面に接触又は隣接するように配置した場合であっても、撮影画像の大きさを適切なものとし、且つ、そのコントラスト及び解像度を十分なものにすることができるので、携帯情報端末が備えているカメラ機能によって、観察する試料の像を十分な画質を確保しつつ撮像できる。
 また、本実施形態の光学系では、照明光学系の有効径Ed(有効半径を2倍した値)は、5.2mmとなっており、以下の条件式(4)を満足している。
   2mm ≦ Ed ≦ 8mm ・・・(4)
 本実施形態の光学系は、この条件式(4)を満足しているので、十分な光量を得るとともに、フレアの発生も防止されている。
 また、本実施形態の光学系では、照明光学系の試料側の端面から試料までの距離D(すなわち、上記数値データ5におけるd3)は、28mmとなっており、以下の条件式(5)を満足している。
   5mm ≦ D ≦ 50mm ・・・(5)
 本実施形態の光学系は、この条件式(5)を満足しているので、試料を載置する際の作業スペースを十分に確保しつつ、顕微鏡用光学系(ひいては、それを搭載する顕微鏡)のサイズの大きさ及び照明光軸に対して要求される調整精度の高さを抑えることが可能となっている。
 [実験データ]
 図13~図20に、上記のいずれかの光学系を備えている顕微鏡による観察画像を示す。図13は大腸菌(約3μm)、図14はサルモネラ菌(約2μm)、図15は黄色ブドウ球菌(約1μm)、図16は緑膿菌(約3μm)、図17は青カビの胞子(約4μm)、図18は酵母(カンジダ)(約5μm)、図19はワイン酵母(約5μm)、図20は口腔内細菌(約0.5~10μm)の観察画像である。
1…顕微鏡本体、1a…筐体、1b…試料載置部、1c…光源、2…載置台、2a…載置板、2b…支持脚、2c…透視窓、3…光学系(顕微鏡用光学系)、3a…照明光学系、3b…対物光学系、3b1…対物レンズ群、3b2…第1結像レンズ群、IM1…第1像面、IM2…第2像面、L…発光面、Lc…光軸、M…顕微鏡、m…ミラー、O…物体面、P…携帯情報端末、P1…カメラレンズ(第2結像レンズ群)。

Claims (5)

  1.  観察する試料の像を携帯情報端末が備えているカメラ機能により撮像し、撮影画像を携帯情報端末のディスプレイに表示する顕微鏡に用いられる顕微鏡用光学系であって、
     光源からの光を試料に照射するための照明光学系と、前記試料を透過した光を結像するための対物光学系を備え、
     前記対物光学系は、物体側から順に、対物レンズ群と、第1結像レンズ群と、第2結像レンズ群とを有し、
     前記第2結像レンズ群の一部又は全部を光軸に沿って移動させることによって、フォーカシングが行われ、
     前記対物レンズ群の最も物体側の面には、前記試料が接触又は隣接して配置され、
     以下の条件式(1),(2)及び(3)を満足することを特徴とする顕微鏡用光学系。
       NA×2 ≦ NAO ≦ NA×15 ・・・(1)
       0.01 ≦ NA ≦ 0.1 ・・・(2)
       25 ≦ M ≦ 100 ・・・(3)
     ただし、NAは前記照明光学系の開口数であり、NAOは前記対物レンズ群の開口数であり、Mは前記対物レンズ群の結像倍率である。
  2.  請求項1に記載の顕微鏡用光学系において、
     以下の条件式(4)を満足することを特徴とする顕微鏡用光学系。
       2mm ≦ Ed ≦ 8mm ・・・(4)
     ただし、Edは前記照明光学系の有効径である。
  3.  請求項1に記載の顕微鏡用光学系において、
     以下の条件式(5)を満足することを特徴とする顕微鏡用光学系。
       5mm ≦ D ≦ 50mm ・・・(5)
     ただし、Dは前記照明光学系の前記試料側の端面から前記試料までの距離である。
  4.  請求項1に記載の顕微鏡用光学系を備えている顕微鏡であって、
     顕微鏡本体と、前記顕微鏡本体に接続され、前記携帯情報端末が載置される載置台とを備え、
     前記顕微鏡本体は、前記試料を載置するための試料載置部と、前記試料載置部に光を照射するための光源とを有し、
     前記顕微鏡用光学系の前記照明光学系は、前記試料載置部と前記光源との間に配置され、
     前記顕微鏡用光学系の前記対物レンズ群は、前記顕微鏡本体の内部に、前記対物レンズ群の最も物体側の面が前記試料載置部で露出するように配置され、
     前記顕微鏡用光学系の前記第1結像レンズ群は、前記顕微鏡本体の内部の前記対物レンズ群の像側に配置され、
     前記顕微鏡用光学系の前記第2結像レンズ群は、前記携帯情報端末の内部に配置されていることを特徴とする顕微鏡。
  5.  請求項4に記載の顕微鏡において、
     前記光源は、LEDであることを特徴とする顕微鏡。
PCT/JP2017/022936 2017-04-28 2017-06-21 顕微鏡用光学系及びそれを用いた顕微鏡 WO2018198387A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201780089960.1A CN110603473B (zh) 2017-04-28 2017-06-21 显微镜用光学系统及使用了该显微镜用光学系统的显微镜
SG11201909908U SG11201909908UA (en) 2017-04-28 2017-06-21 Optical system for microscope, and microscope in which same is used
KR1020197031023A KR102387369B1 (ko) 2017-04-28 2017-06-21 현미경용 광학계 및 그를 이용한 현미경
EP17907614.6A EP3617768A4 (en) 2017-04-28 2017-06-21 OPTICAL SYSTEM FOR MICROSCOPE AND MICROSCOPE WITH USE OF IT
US16/606,970 US11378792B2 (en) 2017-04-28 2017-06-21 Optical system for microscope, and microscope in which same is used

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017089717A JP6296318B1 (ja) 2017-04-28 2017-04-28 顕微鏡用光学系及びそれを用いた顕微鏡
JP2017-089717 2017-04-28

Publications (1)

Publication Number Publication Date
WO2018198387A1 true WO2018198387A1 (ja) 2018-11-01

Family

ID=61629074

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/022936 WO2018198387A1 (ja) 2017-04-28 2017-06-21 顕微鏡用光学系及びそれを用いた顕微鏡

Country Status (8)

Country Link
US (1) US11378792B2 (ja)
EP (1) EP3617768A4 (ja)
JP (1) JP6296318B1 (ja)
KR (1) KR102387369B1 (ja)
CN (1) CN110603473B (ja)
SG (1) SG11201909908UA (ja)
TW (1) TWI713761B (ja)
WO (1) WO2018198387A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN213210581U (zh) * 2020-11-04 2021-05-14 李拥军 一种带限位板的放大显示装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US682903A (en) * 1901-07-01 1901-09-17 Thomas M Bendall Display-case.
US20090015913A1 (en) * 2007-07-11 2009-01-15 Nicholas E Bratt Fixed focus microscope objective lens
WO2015022996A1 (ja) * 2013-08-16 2015-02-19 Nagayama Kuniaki レンズユニット、照明用キャップ部材、試料観察キット及び透過型複式顕微鏡装置
JP2015230356A (ja) * 2014-06-04 2015-12-21 株式会社コプティック 交換レンズ
JP2016163997A (ja) 2016-03-09 2016-09-08 東京窯業株式会社 ハニカム構造体の製造方法
JP6029159B1 (ja) * 2016-05-13 2016-11-24 株式会社タムロン 観察光学系、観察撮像装置、観察撮像システム、結像レンズ系及び観察光学系の調整方法
JP2017037191A (ja) * 2015-08-10 2017-02-16 オリンパス株式会社 顕微鏡
WO2017046973A1 (ja) * 2015-09-15 2017-03-23 マイクロネット株式会社 携帯端末機取付アダプタ

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3842268A (en) 1973-09-17 1974-10-15 Gen Electric Drive system for automatic meter reader
JP2002031758A (ja) * 2000-07-17 2002-01-31 Olympus Optical Co Ltd 顕微鏡
US7282716B2 (en) * 2003-11-10 2007-10-16 Technology Innovations, Llc Digital imaging assembly and methods thereof
EP1816503B1 (en) * 2004-11-26 2017-11-08 Olympus Corporation Luminescent sample imaging method
US7576911B1 (en) * 2006-07-11 2009-08-18 Roy Larimer Variable aperture transmissive substage microscope illuminator
CN101952762B (zh) * 2008-01-02 2012-11-28 加利福尼亚大学董事会 高数值孔径远程显微镜设备
TWM385006U (en) 2010-01-22 2010-07-21 Lumos Technology Co Ltd Microscopic detection device for fluorescent testing
WO2012026379A1 (ja) * 2010-08-25 2012-03-01 株式会社ニコン 顕微鏡光学系及び顕微鏡システム
CN202008549U (zh) * 2010-10-22 2011-10-12 浙江大学 一种超高分辨率的光学显微成像装置
JP5926914B2 (ja) * 2010-11-10 2016-05-25 オリンパス株式会社 液浸顕微鏡対物レンズ
CN102566024A (zh) * 2010-12-09 2012-07-11 苏州生物医学工程技术研究所 一种使用触摸屏系统控制光源的荧光显微镜
DE102011082770B4 (de) * 2011-09-15 2018-11-08 Leica Microsystems (Schweiz) Ag Mikroskop mit Durchlicht-Beleuchtungseinrichtung für kritische Beleuchtung
CN202385171U (zh) * 2011-11-18 2012-08-15 深圳市海量精密仪器设备有限公司 一种基于平板电脑的多功能一体相机
JP2013238789A (ja) * 2012-05-16 2013-11-28 Olympus Corp 観察ユニット、及びこの観察ユニットを備えた顕微鏡システム
USD682903S1 (en) * 2012-05-25 2013-05-21 Nicholas E Bratt Fixed focus microscope with a removable mount for a mobile phone camera
EP2856120A4 (en) 2012-06-05 2016-06-15 Dairy Quality Inc SYSTEM AND METHOD FOR THE ANALYSIS OF BIOLOGICAL LIQUIDS
US8817395B2 (en) * 2012-11-23 2014-08-26 Digilens Co., Ltd. Portable high-power microscope magnification lens structure
JP5996793B2 (ja) * 2013-04-30 2016-09-21 オリンパス株式会社 標本観察装置及び標本観察方法
TWI494596B (zh) * 2013-08-21 2015-08-01 Miruc Optical Co Ltd 顯微鏡用可攜式終端轉接器和使用可攜式終端轉接器的顯微鏡拍攝方法
JP6503221B2 (ja) * 2015-05-13 2019-04-17 オリンパス株式会社 3次元情報取得装置、及び、3次元情報取得方法
US20180275389A1 (en) * 2015-10-08 2018-09-27 The Regents of the University of Colorado, a body corporation Remote Focusing All-Optical Digital Scanning Light Sheet Microscopy for Optically Cleared Tissue Sections
CN205507208U (zh) * 2016-04-13 2016-08-24 麦克奥迪实业集团有限公司 一种基于led阵列的显微镜照明系统
JP6913513B2 (ja) * 2017-05-25 2021-08-04 オリンパス株式会社 顕微鏡用照明装置、及び、顕微鏡

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US682903A (en) * 1901-07-01 1901-09-17 Thomas M Bendall Display-case.
US20090015913A1 (en) * 2007-07-11 2009-01-15 Nicholas E Bratt Fixed focus microscope objective lens
US7995272B2 (en) 2007-07-11 2011-08-09 Nicholas E Bratt Fixed focus microscope objective lens
WO2015022996A1 (ja) * 2013-08-16 2015-02-19 Nagayama Kuniaki レンズユニット、照明用キャップ部材、試料観察キット及び透過型複式顕微鏡装置
JP2015230356A (ja) * 2014-06-04 2015-12-21 株式会社コプティック 交換レンズ
JP2017037191A (ja) * 2015-08-10 2017-02-16 オリンパス株式会社 顕微鏡
WO2017046973A1 (ja) * 2015-09-15 2017-03-23 マイクロネット株式会社 携帯端末機取付アダプタ
JP2016163997A (ja) 2016-03-09 2016-09-08 東京窯業株式会社 ハニカム構造体の製造方法
JP6029159B1 (ja) * 2016-05-13 2016-11-24 株式会社タムロン 観察光学系、観察撮像装置、観察撮像システム、結像レンズ系及び観察光学系の調整方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3617768A4

Also Published As

Publication number Publication date
KR20190126425A (ko) 2019-11-11
JP2018189709A (ja) 2018-11-29
TWI713761B (zh) 2020-12-21
TW201839454A (zh) 2018-11-01
US11378792B2 (en) 2022-07-05
CN110603473B (zh) 2021-09-03
KR102387369B1 (ko) 2022-04-15
SG11201909908UA (en) 2019-11-28
CN110603473A (zh) 2019-12-20
JP6296318B1 (ja) 2018-03-20
US20200379228A1 (en) 2020-12-03
EP3617768A4 (en) 2020-12-30
EP3617768A1 (en) 2020-03-04

Similar Documents

Publication Publication Date Title
CN102460266B (zh) 物镜光学系统
JP5552000B2 (ja) ファインダー装置および撮像装置
WO2013157470A1 (ja) 顕微鏡対物レンズ
JP6185825B2 (ja) 液浸顕微鏡対物レンズ及びそれを用いた顕微鏡
JP2019191274A (ja) 撮像光学系、及び、顕微鏡システム
JPWO2017216969A1 (ja) 明るいリレー光学系及びそれを用いた硬性鏡用光学系、硬性鏡
JPWO2009093582A1 (ja) 望遠鏡光学系
JP6296318B1 (ja) 顕微鏡用光学系及びそれを用いた顕微鏡
JP2012212096A (ja) 顕微鏡光学系
JP6851074B2 (ja) 顕微鏡用対物光学系及びそれを用いた顕微鏡
KR20210109495A (ko) 촬상 광학계
JP6296317B1 (ja) 顕微鏡用対物光学系及びそれを用いた顕微鏡
JP6392947B2 (ja) 液浸顕微鏡対物レンズ及びそれを用いた顕微鏡
JP2000066097A (ja) 撮像レンズ
CN111474697A (zh) 一种微型显微成像镜头
JP7214192B2 (ja) 液浸系顕微鏡対物レンズ、結像レンズ及び顕微鏡装置
JP2013221956A (ja) 顕微鏡
JP5269542B2 (ja) 撮像レンズ系および撮像光学装置
US20230375818A1 (en) Microscope objective lens and microscope apparatus
JP2011170074A (ja) アタッチメントレンズ及びそれを装着した蛍光測定装置
JP2006251412A (ja) 観察用レンズ
JP2015148767A (ja) 内視鏡装置用の結像レンズ系および内視鏡装置
Liao Fiber Bundle Enodoscope
JP2015219506A (ja) 実像結像レンズ系および撮像装置
JP2005049711A (ja) 拡大撮像レンズ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17907614

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 20197031023

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017907614

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017907614

Country of ref document: EP

Effective date: 20191128