WO2018196420A1 - 空调器叶轮的拆装控制方法及空调器 - Google Patents

空调器叶轮的拆装控制方法及空调器 Download PDF

Info

Publication number
WO2018196420A1
WO2018196420A1 PCT/CN2017/118322 CN2017118322W WO2018196420A1 WO 2018196420 A1 WO2018196420 A1 WO 2018196420A1 CN 2017118322 W CN2017118322 W CN 2017118322W WO 2018196420 A1 WO2018196420 A1 WO 2018196420A1
Authority
WO
WIPO (PCT)
Prior art keywords
impeller
motor
electromagnetic coil
force
controlling
Prior art date
Application number
PCT/CN2017/118322
Other languages
English (en)
French (fr)
Inventor
汪春节
韩鹏
杨盼
郭瑞水
Original Assignee
格力电器(武汉)有限公司
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 格力电器(武汉)有限公司, 珠海格力电器股份有限公司 filed Critical 格力电器(武汉)有限公司
Priority to EP17907360.6A priority Critical patent/EP3617526A4/en
Publication of WO2018196420A1 publication Critical patent/WO2018196420A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/02Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps having non-centrifugal stages, e.g. centripetal
    • F04D17/04Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps having non-centrifugal stages, e.g. centripetal of transverse-flow type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/263Rotors specially for elastic fluids mounting fan or blower rotors on shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D23/00Other rotary non-positive-displacement pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D25/0606Units comprising pumps and their driving means the pump being electrically driven the electric motor being specially adapted for integration in the pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/08Units comprising pumps and their driving means the working fluid being air, e.g. for ventilation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/281Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers
    • F04D29/282Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers the leading edge of each vane being substantially parallel to the rotation axis
    • F04D29/283Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers the leading edge of each vane being substantially parallel to the rotation axis rotors of the squirrel-cage type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/60Mounting; Assembling; Disassembling
    • F04D29/62Mounting; Assembling; Disassembling of radial or helico-centrifugal pumps
    • F04D29/624Mounting; Assembling; Disassembling of radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • F04D29/626Mounting or removal of fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0018Indoor units, e.g. fan coil units characterised by fans
    • F24F1/0025Cross-flow or tangential fans

Definitions

  • the invention relates to the technical field of air conditioners, and in particular to a method for disassembling and controlling an air conditioner impeller and an air conditioner.
  • air conditioners are key components in the air duct system. During the long-term use of air conditioners, dust and other debris entering the air duct and water channel from the air inlet make the entire air duct and waterway system seriously polluted. If it is not cleaned in time, it will cause harm to the environment during the operation of the air conditioner. The user's health is a major hazard.
  • the traditional air conditioner, the air duct and the waterway system and the bottom shell as a whole, is the first to be assembled and fixed as the basic parts. If it is necessary to disassemble and wash, the professional parts of the air conditioner need to be disassembled, then removed, cleaned and disassembled. complex.
  • a fan device for a household appliance is disclosed in the Chinese patent CN2823621Y, the fan device being mounted on a frame, comprising a coupling device comprising an impeller nesting embedded in the center of the other end face of the fan and a motor bushing fixedly mounted on a main shaft of the driving motor, wherein the impeller nest is provided with one or more mounting slots, and the motor bushing is provided with one or more mounting cards, when the fan needs to be removed for cleaning and installation
  • the impeller nest is provided with one or more mounting slots
  • the motor bushing is provided with one or more mounting cards
  • the technical problem to be solved by the present invention is that the blade and the motor are not easy to be installed or separated in the prior art, thereby providing a more labor-saving and longer service life, a disassembly and assembly structure for the impeller and the motor, the control method thereof and the air conditioner .
  • an embodiment of the present invention provides a method for controlling disassembly and assembly of an air conditioner impeller, comprising the steps of: controlling a electromagnetic coil to generate a biasing force on the impeller, and the biasing force includes: a force for moving the impeller away from or toward the motor; The rotation of the motor is controlled according to the biasing force to separate or mesh the impeller with the motor.
  • the biasing force is a force for moving the impeller away from the motor direction; controlling the rotation of the motor according to the biasing force comprises: controlling the reversal of the motor according to the biasing force to separate the impeller from the motor; or, the biasing force is a function of moving the impeller away from the motor.
  • controlling the rotation of the motor according to the biasing force includes: controlling the forward rotation of the motor according to the biasing force to engage the impeller with the motor.
  • controlling the electromagnetic coil to generate a biasing force on the impeller includes: controlling the electromagnetic coil to be energized, causing the electromagnetic coil to apply a force away from the motor direction to the impeller; or controlling the electromagnetic coil to be powered off, so as to be installed between the electromagnetic coil and the impeller.
  • the return spring exerts a force on the impeller that is close to the direction of the motor.
  • controlling the electromagnetic coil to generate a biasing force on the impeller includes: controlling the electromagnetic coil to pass a current in the first direction, so that the electromagnetic coil applies a force away from the motor direction to the magnetic matching component mounted on the side of the impeller close to the electromagnetic coil; or The electromagnetic coil is controlled to pass a current in the first direction, so that the electromagnetic coil applies a force to the magnetic matching member toward the direction of the motor.
  • the method before controlling the electromagnetic coil to generate a biasing force on the impeller, the method includes: acquiring a control signal, where the control signal includes disassembling the control signal or installing the control signal.
  • an embodiment of the present invention provides an air conditioner including: an impeller having an impeller shaft rotatably disposed on a bottom case member, wherein the impeller is disposed away from the end of the motor and has a dismounting structure
  • the disassembly structure includes: the electromagnetic coil generates a biasing force on the impeller, and the biasing force includes: a force that moves the impeller away from or toward the motor, and the electromagnetic coil is disposed on an adjacent component adjacent to the impeller; the controller controls the motor to rotate according to the biasing force; To separate or engage the impeller from the motor.
  • the biasing force is a force for moving the impeller away from the motor direction; the controller controls the motor to reverse the biasing force to separate the impeller from the motor; or, the biasing force is a force for moving the impeller away from the motor direction; the controller controls the motor According to the positive pressure of the biasing force, the impeller meshes with the motor.
  • the air conditioner further includes: a return spring disposed between the electromagnetic coil and the impeller, generating a force toward the motor direction when the controller controls the electromagnetic coil to be energized, and the impeller shaft when the controller controls the electromagnetic coil to be powered off The release force is used to restore the position of the impeller shaft to the motor.
  • the air conditioner further comprises: a magnetic matching component mounted on the side of the impeller close to the electromagnetic coil, and when the controller controls the electromagnetic coil to pass the current in the first direction, applying a force away from the motor direction to the magnetic matching component, in the control
  • a force acting in the direction of the motor is applied to the magnetic matching member to restore the position of the impeller shaft to the motor.
  • the air conditioner further includes: an acquisition module, configured to acquire a control signal, where the control signal includes a disassembly control signal or an installation control signal.
  • the air conditioner impeller disassembly control method and the air conditioner provided by the example of the present invention control the direction of the force applied to the impeller by controlling the electromagnetic coil, and cooperate with the reverse or forward transmission of the motor to control the electromagnetic coil to apply the force away from the motor to the impeller.
  • the motor is reversed to automatically separate the impeller from the motor.
  • the electromagnetic coil is applied to the impeller to apply force to the motor, the motor is transmitted positively, so that the impeller and the motor are automatically meshed, so that the impeller can be automatically disassembled or installed, thereby reducing manual operation and improving Work efficiency.
  • FIG. 1 is a schematic flow chart showing a method for disassembling and controlling an air conditioner impeller according to an embodiment of the present invention
  • FIG. 2 is a schematic view showing a matching structure of an impeller and a motor according to an embodiment of the present invention
  • FIG. 3 is a schematic view showing an air conditioner module according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural view of a duct module according to an embodiment of the present invention.
  • FIG. 5 is a schematic view showing the disassembly and assembly structure of the impeller and the motor according to the embodiment of the present invention
  • Figure 6 is a schematic view showing the mounting position of the electromagnetic coil of the embodiment of the present invention.
  • FIG. 7 is a schematic view showing another disassembly and assembly structure of an impeller and a motor according to an embodiment of the present invention.
  • FIG. 8 is a schematic view showing another disassembly and assembly structure for an impeller and a motor according to an embodiment of the present invention.
  • Figure 9 is a schematic view showing the structure of the connecting cylinder and the impeller according to the embodiment of the present invention.
  • Fig. 10 shows an air conditioner control mechanism of an embodiment of the present invention.
  • connection or integral connection; may be mechanical connection or electrical connection; may be directly connected, may also be indirectly connected through an intermediate medium, or may be internal communication of two components, may be wireless connection, or may be wired connection.
  • connection or integral connection; may be mechanical connection or electrical connection; may be directly connected, may also be indirectly connected through an intermediate medium, or may be internal communication of two components, may be wireless connection, or may be wired connection.
  • the embodiment of the invention further provides a control method for disassembling/installing the air conditioner impeller, as shown in FIG. 1 , comprising the following steps:
  • the control signal includes a disassembly control signal or an installation control signal.
  • the impeller needs to be disassembled, and the user or the operator issues a disassembly control signal, and the so-called disassembly control signal may be a cleaning instruction issued by the user, or may be an operator.
  • the overhaul is a disassembly signal.
  • the specific disassembly control signal can be sent to the receiving end of the air conditioner through the remote control or terminal.
  • the impeller can be reinstalled after cleaning or overhauling.
  • the user or operator can send the installation control through the remote control or terminal. Signal, the receiving end transmits the disassembly control signal or the installation control signal to the controller.
  • control the electromagnetic coil to generate a biasing force on the impeller In a specific embodiment, the control solenoid produces a magnetic attraction that attracts the magnetically mating component. Since the magnetic mating component is disposed on the impeller, i.e., the electromagnetic coil attracts the impeller, a force is applied to the impeller that is away from the direction of the motor. After receiving the installation signal, the control solenoid generates a repulsive force that repels the magnetic matching component. Specifically, the repulsive force may be a magnetic repulsive force, or may be an elastic force or other thrust. Apply a force to the impeller close to the direction of the motor.
  • the spiral structure 110 Due to the existence of the spiral structure 110, when the motor bushing 21 and the impeller end face bushing 17 are close to a certain distance, the motor is started to rotate, and the two are affected by the spiral structure 100 to get closer and closer until the meshing is in place. Because the motor has been rotating forward, the structure of the two is getting tighter and tighter. When it is necessary to disassemble, since the spiral structure 110 exists, it is only necessary to reverse the motor, and during the reverse rotation, the motor and the impeller are loosened until they are disengaged.
  • the magnetic polarity of the electromagnetic coil can be changed by controlling the flow direction of the current flowing into the electromagnetic coil, so that the electromagnetic coil is attracted or Repelling the blades, specifically, controlling the electromagnetic coil to pass a current in a first direction, the first direction current causing the electromagnetic coil to exert a force on the magnetic matching component away from the direction of the motor.
  • the control electromagnetic coil When disassembling, the control electromagnetic coil generates a magnetic polarity opposite to the magnetic polarity of the magnetic matching component.
  • the side of the magnetic matching component opposite to the electromagnetic coil is an N pole, and the direction of the current flowing through the electromagnetic coil is controlled to make the electromagnetic coil S pole magnetism is generated on one side of the magnetic matching component, and a force away from the motor direction is applied to the impeller.
  • the electromagnetic coil is controlled to pass a current in the second direction, so that the electromagnetic coil applies a force to the magnetic matching component toward the direction of the motor, so that the magnetic polarity of the electromagnetic coil is the same as the magnetic polarity of the magnetic matching component, thereby repelling the impeller and the impeller. Apply a force toward the direction of the motor.
  • a return spring is disposed between the impeller shaft of the impeller and the electromagnetic coil; the force applied by the electromagnetic coil to the impeller in the direction of the motor can be achieved by the elastic force of the return spring, specifically as follows: controlling the electromagnetic coil to be energized When the electromagnetic coil is energized, the return spring generates a biasing force toward the motor direction; the electromagnetic coil is controlled to be energized, and when the electromagnetic coil is de-energized, the return spring releases the biasing force on the impeller shaft to restore the position of the impeller shaft to the motor.
  • the return spring is directly connected to the impeller shaft. During the operation of the impeller, the rotation of the impeller may cause the follow-up of the spring, which may cause abnormal noise and affect the user experience.
  • the magnetic matching component further includes Connecting cylinder
  • the connecting cylinder moves away from the motor to the first preset position, compresses the return spring and moves the distance greater than the distance moved by the impeller shaft, and allows the impeller to be disassembled.
  • Axial space when the electromagnetic coil applies a force to the impeller shaft toward the direction of the motor, the connecting cylinder is adapted to abut against the impeller shaft and move to the second preset position under the action of the return spring;
  • a preset position controls the motor to reverse; controlling the forward transmission of the motor when the connecting cylinder moves to the second preset position.
  • the first preset position may be an axial space for the impeller to be disassembled
  • the second preset position may be a position for automatically connecting the impeller and the motor.
  • the electromagnetic coil By controlling the electromagnetic coil to control the direction of the force applied to the impeller, in conjunction with the motor reversal or forward transmission, when the electromagnetic coil is applied to the impeller to apply a force away from the motor, the motor is reversed, so that the impeller and the motor are automatically separated, and the electromagnetic coil is controlled.
  • the motor When the force applied to the impeller is applied to the impeller, the motor is transmitted forward, so that the impeller and the motor are automatically meshed, so that the impeller can be automatically disassembled or installed, thereby reducing manual operation and improving work efficiency.
  • a modular air conditioner indoor unit includes a base module 100, a heat exchange module 200, a wind tunnel module 300, and an appearance module 400.
  • one end of the impeller 10 is rotatably connected to the motor 20, and the other end of the impeller 10 is rotatably connected to the bottom case 310 of the air channel module 300, as shown in FIG.
  • the magnetic coupling member 11 of the end face of one end of the motor 10 of the impeller 10 may be an injection molded piece or a metal magnetic material of a ring or an iron piece or a magnetic material.
  • the electromagnetic coil 12 can generate a magnetic fit with the magnetic matching member 11 by changing the direction of the current.
  • the opposite side of the magnetic matching member 11 and the electromagnetic coil 12 is a magnetic positive pole.
  • the opposite end of the electromagnetic coil 12 from the magnetic matching member 11 is a magnetic positive pole, and the electromagnetic coil 12 can generate a motor toward the impeller 10
  • the end of the electromagnetic coil 12 opposite to the magnetic matching member 11 is a magnetic negative pole, and the electromagnetic coil 12 can generate a force away from the motor 20 to the impeller 10.
  • the electromagnetic coil 12 is mounted on the base module 100 and may be connected by a structure such as a screw or a snap.
  • a structure such as a screw or a snap.
  • Other forms of connection that can be fastened to the electromagnetic coil 12 on the base 100 are also possible, and are not limited in this embodiment.
  • the magnetic matching member 11 is a metal that can be attracted by the magnetic material, such as iron or nickel, etc., in order to ensure that the electromagnetic coil 12 applies a force to the impeller 10 in the direction of the motor 20, in an alternative embodiment, as shown in FIG.
  • the detachable structure may further include a return spring 13 disposed between the impeller shaft 15 and the electromagnetic coil 12 to generate a biasing force toward the motor 20 when the electromagnetic coil 12 is energized, and to release the impeller shaft 15 when the electromagnetic coil 12 is de-energized.
  • the biasing force is used to restore the impeller shaft 15 to the position where the motor 20 is docked.
  • the return spring 13 is in a natural state.
  • the return spring 13 is directly connected to the impeller shaft 15. During the operation of the impeller 10, the rotation of the impeller 10 may cause the follow-up of the spring, which may cause abnormal noise and affect the user experience.
  • the magnetic matching member 11 further includes a connecting cylinder 14 disposed between the impeller shaft 15 and the return spring 13, and when the electromagnetic coil 12 applies a force to the impeller shaft 15 away from the direction of the motor 20, the connecting cylinder 14 is connected.
  • the compression return spring 13 is also moved away from the motor 20 and moved by a distance greater than the distance moved by the impeller shaft 15, allowing the axial space of the impeller 10 to be disassembled, and the electromagnetic coil 12 applies a force to the impeller shaft 15 in the direction of the motor 20.
  • the connecting cylinder 14 is adapted to abut against the impeller shaft 15 by the return spring 13. As shown in FIGS. 9 and 4, one end of the connecting cylinder 14 abuts against the return spring 13, and the other end is supported in a sleeve 16 for simultaneously supporting the impeller shaft 15, and the connecting cylinder 14 is movably supported on the sleeve 16. Inside the shaft hole 18. The bushing 16 allows centering and lubrication of the impeller shaft 15.
  • a magnetic matching component disposed at one end of the impeller away from the motor; and an electromagnetic coil disposed on an adjacent component adjacent to the magnetic matching component, the electromagnetic coil and the magnetic matching component are magnetically coupled for applying a direction away from or toward the motor The force.
  • One end of the impeller can be automatically removed by the control of the electromagnetic coil, thereby saving manual removal, and the automatic separation of the impeller and the motor, the impeller and the bottom casing can be realized. Thereby, the efficiency of air conditioning maintenance work can be improved.
  • the air conditioner may further include a control mechanism including: a memory 50 and a processor 60, the motor 20, the electromagnetic coil 12, the memory 50, and the processor 60 pass between The bus is interconnected, the memory is stored in the memory, and the processor 60 executes the computer command to disassemble and control the impeller according to any one of the above embodiments.
  • a control mechanism including: a memory 50 and a processor 60, the motor 20, the electromagnetic coil 12, the memory 50, and the processor 60 pass between The bus is interconnected, the memory is stored in the memory, and the processor 60 executes the computer command to disassemble and control the impeller according to any one of the above embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

一种空调器叶轮的拆装控制方法,包括:通过控制电磁线圈(12)控制对叶轮(10)施加作用力的方向,配合电机(20)反转或正转,在控制电磁线圈(12)对叶轮(10)施加远离电机(20)的作用力时,电机(20)反转,使叶轮(10)与电机(20)自动分离,在控制电磁线圈(12)对叶轮(10)施加朝向电机(20)的作用力时,电机(20)正传,使叶轮(10)与电机(20)自动啮合,从而可以自动拆卸或安装叶轮(10),减少人工操作,提高工作效率。

Description

空调器叶轮的拆装控制方法及空调器 技术领域
本发明涉及空调技术领域,具体涉及一种空调器叶轮的拆装控制方法及空调器。
背景技术
空调器作为一种普遍使用的家用电器,其关键部件在于风道系统。在空调长期使用过程中,从进风口进入风道及水道的灰尘等杂物使得整个风道、水道系统污染严重,若不及时清洁将作为污染源在空调运行的过程中给环境带来危害,对用户的健康较大的危害。
传统的空调器,其风道与水道系统与底壳作为一个整体,作为基础零件最先装配固定,若需拆洗,则需要专业人员对空调的各个零件进行拆分后将其拆出清洗,拆卸复杂。
在中国专利CN2823621Y中公开了一种家用电器的风机装置,风机装置安装在机架上,其包括一种联接装置,所述联接装置包括镶嵌于所述风扇的另一端面中心的叶轮嵌套和固定安装在驱动电机主轴上的电机轴套,所述叶轮嵌套内设置有一个或多个安装槽,所述电机轴套设置有一个或多个安装卡,当需要拆下风扇进行清洗及安装时,都需要手动拨动卡扣,将风扇向风扇端轴方向移动一定的距离,而风扇本身较重,使用时需要较大力气才能拨动,在拆卸或安装的过程中,风叶与电机不易分离与安装。
发明内容
本发明要解决的技术问题在于现有技术中风叶与电机不易安装或分离,进而提供一种更省力、使用寿命更长的一种用于叶轮与电机的拆装结构及其控制方法和空调器。
根据第一方面,本发明实施例提供了一种空调器叶轮的拆装控制方法,包括如下步骤:控制电磁线圈对叶轮产生偏压力,偏压力包括:使叶轮远离或朝向电机方向的作用力;根据偏压力控制电机转动,使叶轮与电机分离或啮合。
可选地,偏压力为使叶轮远离电机方向的作用力;根据偏压力控制电机转动包括:根据偏压力控制电机反转,使叶轮与电机分离;或者,偏压力为使叶轮远离电机方向的作用力;根据偏压力控制电机转动包括:根据偏压力控制电机正转,使叶轮与电机啮合。
可选地,控制电磁线圈对叶轮产生偏压力包括:控制电磁线圈通电,使电磁线圈对叶轮施加远离电机方向的作用力;或者,控制电磁线圈断电,使安装在电磁线圈和叶轮之间的复位弹簧对叶轮施加靠近电机方向的作用力。
可选地,控制电磁线圈对叶轮产生偏压力包括:控制电磁线圈通入第一方向电流,使电磁线圈对安装在叶轮靠近电磁线圈一侧的磁配合部件施加远离电机方向的作用力;或者,控制电磁线圈通入第一方向电流,使电磁线圈对磁配合部件施加朝向电机方向的作用力。
可选地,在控制电磁线圈对叶轮产生偏压力之前包括:获取控制信号,控制信号包括拆卸控制信号或安装控制信号。
根据第二方面,本发明实施例提供了一种空调器,包括:具有叶轮轴的叶轮,其可转动的设置在底壳部件上,其特征在于,叶轮远离电机的一端的设置有拆装结构,拆装结构包括:电磁线圈对叶轮产生偏压力,偏压力包括:使叶轮远离或朝向电机方向的作用力,电磁线圈设置与叶轮相邻 的相邻部件上;控制器控制电机根据偏压力转动,使叶轮与电机分离或啮合。
可选地,偏压力为使叶轮远离电机方向的作用力;控制器控制电机根据偏压力反转,使叶轮与电机分离;或者,偏压力为使叶轮远离电机方向的作用力;控制器控制电机根据偏压力正转,使叶轮与电机啮合。
可选地,空调器还包括:复位弹簧,设置在电磁线圈和叶轮之间,在控制器控制电磁线圈通电时产生朝向电机方向的作用力,并在控制器控制电磁线圈断电时对叶轮轴释放作用力,用于使叶轮轴恢复与电机对接的位置。
可选地,空调器还包括:磁配合部件,安装在叶轮靠近电磁线圈一侧,在控制器控制电磁线圈通入第一方向电流时,对磁配合部件施加远离电机方向的作用力,在控制器控制电磁线圈通入第二方向电流时,对磁配合部件施加朝向电机方向的作用力,使叶轮轴恢复与电机对接的位置。
可选地,空调器还包括:获取模块,用于获取控制信号,控制信号包括拆卸控制信号或安装控制信号。
本发明实例提供的空调器叶轮拆装控制方法及空调器,通过控制电磁线圈控制对叶轮施加作用力的方向,配合电机反转或正传,在控制电磁线圈对叶轮施加远离电机的作用力时,电机反转,使叶轮与电机自动分离,在控制电磁线圈对叶轮施加朝向电机的作用力时,电机正传,使叶轮与电机自动啮合,从而可以自动拆卸或安装叶轮,减少人工操作,提高工作效率。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示出了本发明实施例的空调器叶轮的拆装控制方法的流程示意图;
图2示出了本发明实施例的叶轮与电机配合结构的示意图;
图3示出了本发明实施例的空调器模块的示意图;
图4示出了本发明实施例的风道模块的结构示意图;
图5示出了本发明实施例的用于叶轮与电机的拆装结构的示意图;
图6示出了本发明实施例的电磁线圈安装位置的示意图;
图7示出了本发明实施例另一用于叶轮与电机的拆装结构的示意图、;
图8示出了本发明实施例的另一用于叶轮与电机的拆装结构的示意图;
图9示出了本发明实施例的连接柱体与叶轮配合结构的示意图;
图10示出了本发明实施例空调器控制机构。
附图标记:
10、叶轮;11、磁配合部件;12、电磁线圈;13、复位弹簧;14、连接柱体;15、叶轮轴;20、电机;16、轴套;17、叶轮端面轴套;18、轴 孔;21、电机轴套;110、螺旋状结构;50、存储器;60、处理器。
具体实施方式
下面将结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,还可以是两个元件内部的连通,可以是无线连接,也可以是有线连接。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
本发明实施例还提供了一种空调器叶轮拆/装的控制方法,如图1所示,包括如下步骤:
S11.获取控制信号。在本实施例中,控制信号包括拆卸控制信号或安装控制信号。在具体的实施例中,当用户需要对空调器进行清洁时,需要对叶轮进行拆卸,用户或操作人员发出拆卸控制信号,所称拆卸控制信号可以为用户发出的清洁指令,也可以为操作人员检修是发出的拆卸信号,具体的拆卸控制信号可以通过遥控器或终端发送至空调器的接收端,在清洁或检修完成后将叶轮重新安装,用户或操作人员可以通过遥控器或终端发送安装控制信号,接收端将拆卸控制信号或安装控制信号传送至控制器。
S12.控制电磁线圈对叶轮产生偏压力。在具体地实施例中,控制电磁线圈产生吸引磁配合部件的磁吸引力,由于磁配合部件设置在叶轮上,即电磁线圈吸引叶轮,对叶轮施加一个远离电机方向的作用力。当接收到安装信号后,控制电磁线圈产生排斥磁配合部件的排斥力,具体地,排斥力可以为磁排斥力,也可以为弹力或者其他推力。对叶轮施加一个靠近电机方向的作用力。
S13.根据偏压力控制电机转动。在具体的实施例中,在接收到拆卸信号后,对叶轮施加一个远离电机方向的作用力,并控制电机反转,使电机与叶轮分离。在接收到安装信号后,对叶轮施加一个朝向电机方向的作用力,推动叶轮靠近电机,直至达到可啮合的距离,控制电机反转,使叶轮与电机啮合。在本实施例中,如图2所示,电机轴套21运动面和叶轮端面轴套17设计成螺旋状结构110,使得运动部件在运转时,叶轮端面轴套17与电机轴套21配合面上存在着轴向力,此轴向力使得叶轮不会脱离电机轴套21而牢固运行。
因螺旋状结构110的存在,当电机轴套21与叶轮端面轴套17距离接近到一定距离时,启动电机转动,两者受螺旋结构100影响距离越来越近直到啮合到位。因电机一直正转,使得两者配合结构越来越紧。在需要拆卸时,由于螺旋状结构110存在,只需将电机反转,在反转的过程中,电机与叶轮啮合变松直至脱离。
在可选的实施例中,叶轮端面的磁配合部件为具有磁性材料的注塑件或金属磁性材料时,可以通过控制通入电磁线圈的电流的流向改变电磁线圈的磁极性,使电磁线圈吸引或排斥风叶,具体地,控制电磁线圈通入第 一方向电流,第一方向电流使电磁线圈产生对磁配合部件施加远离电机方向的作用力。在拆卸时,控制电磁线圈产生与磁配合部件的磁极性向反的磁极性,例如,磁配合部件与电磁线圈相对的一侧为N极,则控制流过电磁线圈的电流的方向,使电磁线圈相对磁配合部件的一侧产生S极磁性,对叶轮施加一个远离电机方向的作用力。在安装时,控制电磁线圈通入第二方向电流,使电磁线圈对磁配合部件施加朝向电机方向的作用力,使电磁线圈的磁极性与磁配合部件的磁极性相同,从而排斥叶轮,对叶轮施加一个朝向电机方向的作用力。
在可选的实施例中,叶轮的叶轮轴和电磁线圈之间设置有复位弹簧;电磁线圈对叶轮施加朝向电机方向的作用力可以通过复位弹簧的弹力实现,具体地步骤如下:控制电磁线圈通电;在电磁线圈通电时,复位弹簧产生朝向电机方向的偏压力;控制电磁线圈通电,在电磁线圈断电时,复位弹簧对叶轮轴释放偏压力,使叶轮轴恢复与电机对接的位置。
复位弹簧直接连接在叶轮轴上,叶轮在工作的过程中,叶轮的转动可能会引起弹簧的随动,可能会产生异响,影响用户体验,在可选的实施例中,磁配合部件还包括连接柱体;
电磁线圈对叶轮轴施加一个远离电机方向的作用力时,连接柱体向远离电机方向移动至第一预设位置,压缩复位弹簧且其移动的距离大于叶轮轴移动的距离,让出叶轮拆卸的轴向空间;电磁线圈对叶轮轴施加一个朝向电机方向的作用力时,连接柱体在复位弹簧的作用下适于与叶轮轴相抵并移动至第二预设位置;在连接柱体移动至第一预设位置控制电机反转;在连接柱体移动至第二预设位置时控制电机正传。其中,第一预设位置可 以为为叶轮让出拆卸的轴向的空间,第二预设位置可以为使叶轮与电机达到可自动啮合的位置。
通过控制电磁线圈控制对叶轮施加作用力的方向,配合电机反转或正传,在控制电磁线圈对叶轮施加远离电机的作用力时,电机反转,使叶轮与电机自动分离,在控制电磁线圈对叶轮施加朝向电机的作用力时,电机正传,使叶轮与电机自动啮合,从而可以自动拆卸或安装叶轮,减少人工操作,提高工作效率。
本发明实施例还提供了一种空调器,如图3所示为本发明的一种模块化空调室内机,包括基座模块100,热交换模块200,风水道模块300以及外观模块400。
图4所示,叶轮10的一端可转动的连接电机20,另一端采用该拆装结构与风水道模块300的底壳310可转动的连接,如图5所示包括:
设置在叶轮10远离电机20的一端的磁配合部件11;和电磁线圈12,设置与磁配合部件11相邻的相邻部件上,电磁线圈12与磁配合部件产生偏压力,用于对叶轮10施加一个远离或朝向电机20方向的作用力。在具体的实施例中,叶轮10原理电机20的一端的端面的磁配合部件11可以为铁环或铁片或磁性材料的注塑件或金属磁性材料。在端面为磁性材料的注塑件或金属磁性材料时,电磁线圈12可以通过改变电流方向与磁配合部件11产生磁配合。例如,磁配合部件11与电磁线圈12相对面为磁正极,在通入正向电流时,电磁线圈12与磁配合部件11相对的一端为磁正极,电磁线圈12可以对叶轮10产生一个朝向电机20方向的作用力,在通入反向电流时,电磁线圈12与磁配合部件11相对的一端为磁负极,电磁线圈12 可以对叶轮10产生一个远离电机20的作用力。
在可选的实施例中,如图6所示,电磁线圈12装配在基座模块100上,可以采用螺钉或卡扣等结构形式连接。其他可以紧固的将电磁线圈12转配在基座100上的连接形式也可以,在本实施例中不做限制。
磁配合部件11为可被磁性材料吸引的金属,例如铁或镍等,为保证电磁线圈12对叶轮10施加朝向电机20方向的作用力,在可选的实施例中,如图7所示,拆装结构还可以包括复位弹簧13,设置在叶轮轴15和电磁线圈12之间,在电磁线圈12通电时产生朝向电机20方向的偏压力,并在电磁线圈12断电时对叶轮轴15释放偏压力,用于使叶轮轴15恢复与电机20对接的位置。在叶轮10正常工作下,复位弹簧13为自然状态。
复位弹簧13直接连接在叶轮轴15上,叶轮10在工作的过程中,叶轮10的转动可能会引起弹簧的随动,可能会产生异响,影响用户体验,在可选的实施例中,如图8所示,磁配合部件11还包括连接柱体14,设置在叶轮轴15和复位弹簧13之间,电磁线圈12对叶轮轴15施加一个远离电机20方向的作用力时,连接柱体14也朝向远离电机20方向移动压缩复位弹簧13且其移动的距离大于叶轮轴15移动的距离,让出叶轮10拆卸的轴向空间,电磁线圈12对叶轮轴15施加一个朝向电机20方向的作用力时,连接柱体14在复位弹簧13的作用下适于与叶轮轴15相抵。如图9和图4所示,连接柱体14一端与复位弹簧13相抵,另一端支撑在同时用于支撑叶轮轴15的轴套16内,连接柱体14可移动的支撑在轴套16的轴孔18内。轴套16可以实现叶轮轴15的对中与润滑。
设置在叶轮远离电机的一端的磁配合部件;和电磁线圈,设置与磁配 合部件相邻的相邻部件上,电磁线圈与磁配合部件产生磁配合,用于对叶轮施加一个远离或朝向电机方向的作用力。可以通过电磁线圈的控制自动拆除叶轮的一端,从而可以节省人工拆除,可实现叶轮与电机,叶轮与底壳的自动分离。从而可以提高空调维护工作的效率。
在可选的实施例中,如图10所示,空调器还可以包括控制机构,该控制机构包括:存储器50和处理器60,电机20、电磁线圈12、存储器50和处理器60之间通过总线互相连接,存储器中存储有计算机指令,处理器60通过执行计算机指令,通过上述空调器任意一项描述的拆装结构上述实施例任意一项描述的叶轮的拆装控制方法。
虽然结合附图描述了本发明的实施方式,但是本领域技术人员可以在不脱离本发明的精神和范围的情况下作出各种修改和变型,这样的修改和变型均落入由所附权利要求所限定的范围之内。

Claims (10)

  1. 一种空调器叶轮的拆装控制方法,其特征在于,包括:
    控制电磁线圈对叶轮产生偏压力,所述偏压力包括:使所述叶轮远离或朝向电机方向的作用力;
    根据所述偏压力控制所述电机转动,使所述叶轮与所述电机分离或啮合。
  2. 如权利要求1所述的空调器叶轮的拆装控制方法,其特征在于,
    所述偏压力为使所述叶轮远离所述电机方向的作用力;
    所述根据所述偏压力控制所述电机转动包括:
    根据所述偏压力控制所述电机反转,使所述叶轮与所述电机分离;或者,
    所述偏压力为使所述叶轮远离所述电机方向的作用力;
    所述根据所述偏压力控制所述电机转动包括:
    根据所述偏压力控制所述电机正转,使所述叶轮与所述电机啮合。
  3. 如权利要求1或2所述的空调器叶轮的拆装控制方法,其特征在于,所述控制电磁线圈对叶轮产生偏压力包括:
    控制所述电磁线圈通电,使所述电磁线圈对所述叶轮施加远离所述电机方向的作用力;或者,
    控制所述电磁线圈断电,使安装在电磁线圈和叶轮之间的复位弹簧对所述叶轮施加靠近所述电机方向的作用力。
  4. 如权利要求1或2所述的空调器叶轮的拆装控制方法,其特征在于,所述控制电磁线圈对叶轮产生偏压力包括:
    控制所述电磁线圈通入第一方向电流,使所述电磁线圈对安装在所述叶轮靠近电磁线圈一侧的磁配合部件施加远离所述电机方向的作用力;或者,
    控制所述电磁线圈通入第二方向电流,使所述电磁线圈对所述磁配合部件施加朝向所述电机方向的作用力。
  5. 如权利要求1或2所述的空调器叶轮的拆装控制方法,其特征在于,在所述控制电磁线圈对叶轮产生偏压力之前包括:
    获取控制信号,所述控制信号包括拆卸控制信号或安装控制信号。
  6. 一种空调器,其特征在于,包括:
    具有叶轮轴的叶轮,其可转动的设置在底壳部件上,其特征在于,
    所述叶轮远离电机的一端的设置有拆装结构,所述拆装结构包括:
    所述电磁线圈对叶轮产生偏压力,所述偏压力包括:使所述叶轮远离或朝向电机方向的作用力,所述电磁线圈设置在与所述叶轮相邻的相邻部件上;
    所述控制器控制所述电机根据所述偏压力转动,使所述叶轮与所述电机分离或啮合。
  7. 如权利要求6所述的空调器,其特征在于,
    所述偏压力为使所述叶轮远离所述电机方向的作用力;
    所述控制器控制所述电机根据所述偏压力反转,使所述叶轮与所述电机分离;或者,
    所述偏压力为使所述叶轮远离所述电机方向的作用力;
    所述控制器控制所述电机根据偏压力正转,使所述叶轮与所述电机啮 合。
  8. 如权利要求6或7所述的空调器,其特征在于,还包括:
    复位弹簧,设置在电磁线圈和叶轮之间,在所述控制器控制所述电磁线圈通电时产生朝向所述电机方向的作用力,并在所述控制器控制电磁线圈断电时对所述叶轮轴释放所述作用力,用于使所述叶轮轴恢复与电机对接的位置。
  9. 如权利要求6或7所述的空调器,其特征在于,还包括:
    磁配合部件,安装在所述叶轮靠近电磁线圈一侧,在所述控制器控制所述电磁线圈通入第一方向电流时,对所述磁配合部件施加远离所述电机方向的作用力,在所述控制器控制电磁线圈通入第二方向电流时,对所述磁配合部件施加朝向所述电机方向的作用力,使所述叶轮轴恢复与电机对接的位置。
  10. 如权利要求6或7所述的空调器,其特征在于,还包括:
    获取模块,用于获取控制信号,所述控制信号包括拆卸控制信号或安装控制信号。
PCT/CN2017/118322 2017-04-26 2017-12-25 空调器叶轮的拆装控制方法及空调器 WO2018196420A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP17907360.6A EP3617526A4 (en) 2017-04-26 2017-12-25 CONTROL PROCEDURE FOR MOUNTING OR DISMANTLING AN AIR CONDITIONER WHEEL, AND AIR CONDITIONER

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710286542.3A CN108799196B (zh) 2017-04-26 2017-04-26 空调器叶轮的拆/装控制方法及空调器
CN201710286542.3 2017-04-26

Publications (1)

Publication Number Publication Date
WO2018196420A1 true WO2018196420A1 (zh) 2018-11-01

Family

ID=63918016

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/118322 WO2018196420A1 (zh) 2017-04-26 2017-12-25 空调器叶轮的拆装控制方法及空调器

Country Status (3)

Country Link
EP (1) EP3617526A4 (zh)
CN (1) CN108799196B (zh)
WO (1) WO2018196420A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111219360B (zh) * 2018-11-27 2022-08-02 广东美的环境电器制造有限公司 风轮装置及家用电器
CN111121174B (zh) * 2020-01-16 2024-03-29 珠海格力电器股份有限公司 风机组件、窗机空调及其控制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2544877Y (zh) * 2002-03-04 2003-04-16 长沙海赛新技术有限公司 风机叶轮拆卸器
CN2823621Y (zh) 2005-07-22 2006-10-04 珠海格力电器股份有限公司 家用电器的风机装置
DE102012018968A1 (de) * 2012-09-26 2013-03-14 Daimler Ag Vorrichtung und Verfahren zum Demontieren einer Lageranordnung zum drehbaren Lagern eines Rades eines Fahrzeugs
TW201318889A (zh) * 2011-11-02 2013-05-16 Dmp Electronics Inc 便於拆卸與組裝之全向輪及全向輪組
CN205714939U (zh) * 2016-05-06 2016-11-23 宁波方太厨具有限公司 一种叶轮可快速拆装的离心风机
CN106194849A (zh) * 2015-04-30 2016-12-07 贵州盘江矿山机械有限公司 一种引风机转子叶轮拆卸装置
CN205817716U (zh) * 2016-06-15 2016-12-21 天津钢管集团股份有限公司 水环真空泵叶轮拆卸专用工具

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04126926A (ja) * 1990-09-19 1992-04-27 Mitsubishi Electric Corp 空気調和機
CN2185861Y (zh) * 1993-11-13 1994-12-21 成都市工业合作联社 一种具有加湿功能的冷暖风扇
JP3117944B2 (ja) * 1997-10-29 2000-12-18 三菱電機株式会社 送風機
US6247324B1 (en) * 2000-03-07 2001-06-19 Chien-Chih Hsu Air conditioning apparatus with a water pump
CN2713363Y (zh) * 2004-07-06 2005-07-27 广东科龙电器股份有限公司 空调室内机排风门的开关组件
JP6207454B2 (ja) * 2014-04-17 2017-10-04 三菱電機株式会社 空気調和機の室内ユニット
CN104482596B (zh) * 2014-11-13 2017-04-12 游飞 易拆装壁挂式空调室内机
CN205897337U (zh) * 2016-07-12 2017-01-18 宁波奥克斯空调有限公司 一种易拆的壁挂式空调器室内机
WO2018137419A1 (zh) * 2017-01-25 2018-08-02 珠海格力电器股份有限公司 叶轮组件及空调器
CN206682170U (zh) * 2017-03-16 2017-11-28 珠海格力电器股份有限公司 一种轴承座组件及其空调器
CN106917828B (zh) * 2017-03-16 2019-08-30 珠海格力电器股份有限公司 一种轴承座组件及其空调器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2544877Y (zh) * 2002-03-04 2003-04-16 长沙海赛新技术有限公司 风机叶轮拆卸器
CN2823621Y (zh) 2005-07-22 2006-10-04 珠海格力电器股份有限公司 家用电器的风机装置
TW201318889A (zh) * 2011-11-02 2013-05-16 Dmp Electronics Inc 便於拆卸與組裝之全向輪及全向輪組
DE102012018968A1 (de) * 2012-09-26 2013-03-14 Daimler Ag Vorrichtung und Verfahren zum Demontieren einer Lageranordnung zum drehbaren Lagern eines Rades eines Fahrzeugs
CN106194849A (zh) * 2015-04-30 2016-12-07 贵州盘江矿山机械有限公司 一种引风机转子叶轮拆卸装置
CN205714939U (zh) * 2016-05-06 2016-11-23 宁波方太厨具有限公司 一种叶轮可快速拆装的离心风机
CN205817716U (zh) * 2016-06-15 2016-12-21 天津钢管集团股份有限公司 水环真空泵叶轮拆卸专用工具

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3617526A4 *

Also Published As

Publication number Publication date
EP3617526A4 (en) 2021-01-13
CN108799196A (zh) 2018-11-13
EP3617526A1 (en) 2020-03-04
CN108799196B (zh) 2020-10-16

Similar Documents

Publication Publication Date Title
WO2018196420A1 (zh) 空调器叶轮的拆装控制方法及空调器
WO2018166198A1 (zh) 一种轴承座组件及其空调器
WO2019161695A1 (zh) 风道组件及空调器
CN112594794A (zh) 清洁装置、清洁方法、室外机及空调器
CN216522058U (zh) 风机和空调器
EP3617525A1 (en) Impeller assembly, and air conditioner for same
CN208853426U (zh) 一种实验室通风柜风速控制系统
WO2018137380A1 (zh) 空调器
WO2019174336A1 (zh) 用于风叶的风叶支撑组件、风道组件及空调器
WO2019047569A1 (zh) 磁吸组件及具有其的室内机
CN109611921B (zh) 吸油烟机
WO2021223497A1 (zh) 空调室内机和空调
CN210469147U (zh) 一种用于可调节挡板的磁性转动组件
CN108916263B (zh) 一种电磁离合变量水泵
CN219081884U (zh) 风机及燃气热水器
CN216240908U (zh) 一种变流量电控风扇
WO2018196777A1 (zh) 一种空调器
CN219509844U (zh) 一种便于维护的离心式风机
CN221005394U (zh) 洁净室隔离幕帘
CN213272868U (zh) 空调器及其室内机
CN210197633U (zh) 一种新型空调设备防护外壳
CN220369159U (zh) 一种农业信息化大棚通风装置
CN204284611U (zh) 电动两通阀控制定位器
CN110966681A (zh) 一种厨房空调装置
CN210041951U (zh) 现代建筑智能化弱电系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17907360

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017907360

Country of ref document: EP

Effective date: 20191126