WO2018194080A1 - 油性増粘剤用表面疎水化セルロースナノファイバー、それを配合した油性増粘剤組成物、およびそれを配合した化粧品及び油性増粘剤用疎水化セルロースナノファイバー複合体、それを配合した油性増粘剤組成物、およびそれを配合した化粧品 - Google Patents

油性増粘剤用表面疎水化セルロースナノファイバー、それを配合した油性増粘剤組成物、およびそれを配合した化粧品及び油性増粘剤用疎水化セルロースナノファイバー複合体、それを配合した油性増粘剤組成物、およびそれを配合した化粧品 Download PDF

Info

Publication number
WO2018194080A1
WO2018194080A1 PCT/JP2018/015970 JP2018015970W WO2018194080A1 WO 2018194080 A1 WO2018194080 A1 WO 2018194080A1 JP 2018015970 W JP2018015970 W JP 2018015970W WO 2018194080 A1 WO2018194080 A1 WO 2018194080A1
Authority
WO
WIPO (PCT)
Prior art keywords
cnf
oil
hydrophobized
oily
thickener
Prior art date
Application number
PCT/JP2018/015970
Other languages
English (en)
French (fr)
Inventor
翼 辻
昂志 野北
Original Assignee
中越パルプ工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中越パルプ工業株式会社 filed Critical 中越パルプ工業株式会社
Priority to EP18788217.0A priority Critical patent/EP3626797B1/en
Priority to JP2018563186A priority patent/JP6537750B2/ja
Priority to CN201880026496.6A priority patent/CN110741060B/zh
Priority to US16/606,291 priority patent/US20220062149A1/en
Publication of WO2018194080A1 publication Critical patent/WO2018194080A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08HDERIVATIVES OF NATURAL MACROMOLECULAR COMPOUNDS
    • C08H8/00Macromolecular compounds derived from lignocellulosic materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/73Polysaccharides
    • A61K8/731Cellulose; Quaternized cellulose derivatives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/0241Containing particulates characterized by their shape and/or structure
    • A61K8/027Fibers; Fibrils
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B15/00Preparation of other cellulose derivatives or modified cellulose, e.g. complexes
    • C08B15/10Crosslinking of cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B3/00Preparation of cellulose esters of organic acids
    • C08B3/08Preparation of cellulose esters of organic acids of monobasic organic acids with three or more carbon atoms, e.g. propionate or butyrate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B3/00Preparation of cellulose esters of organic acids
    • C08B3/08Preparation of cellulose esters of organic acids of monobasic organic acids with three or more carbon atoms, e.g. propionate or butyrate
    • C08B3/10Preparation of cellulose esters of organic acids of monobasic organic acids with three or more carbon atoms, e.g. propionate or butyrate with five or more carbon-atoms, e.g. valerate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B3/00Preparation of cellulose esters of organic acids
    • C08B3/20Esterification with maintenance of the fibrous structure of the cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/10Esters of organic acids, i.e. acylates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L91/00Compositions of oils, fats or waxes; Compositions of derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/10General cosmetic use
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/41Particular ingredients further characterized by their size
    • A61K2800/413Nanosized, i.e. having sizes below 100 nm
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/48Thickener, Thickening system

Definitions

  • the present invention is an oil-based thickener, which has a high thickening effect on oily thickeners, particularly oily components, and can form an oily composition having a good feeling of use, using cellulose fibers. It is related with the oil-based thickener which can selectively adsorb
  • a product having a cream, gel, emulsion, or liquid dosage form uses a composition in which a polymer material or the like is mixed in a dispersion medium such as water, alcohol, or oil.
  • a polymer material various synthetic polymers, natural polymer polysaccharides, and the like are used for imparting thickening to products.
  • cellulose nanofiber obtained by partially oxidizing and modifying cellulose finely divided into nano-sizes by chemical treatment is used.
  • CNF cellulose nanofiber
  • Patent Document 1 a thickening composition and the like that expresses
  • Silicone oils often used in the oils and the like have a light and refreshing feel, so they are incorporated into various cosmetics and quasi-drugs including skin care cosmetics, makeup cosmetics and hair cosmetics. Yes.
  • Various oil-based thickeners are used to impart thickening to silicone oil and the like. Cosmetics using oil-based thickeners range from liquid foundations, sunscreen gels, moisture creams, hair gels and antiperspirant creams. However, there are currently few oily thickeners that are satisfactory from the viewpoint of thickening effect, feeling in use, stability, and the like.
  • Liquid foundations are made by combining two or three of the three components of powder, oil, and water. Add chemicals, emulsifiers, moisturizers, etc. according to the purpose. Since the powder raw material present in the decorative film is used for the purpose of covering the drawbacks of the skin and wearing it beautifully, it is important that the powder remains on the skin for a long time during use. However, in general, over time, due to secretion of unsaturated fat free acids such as triolein, tripaltimine, oleic acid, and palmitic acid in sebum, the melting point of sebum decreases and makeup collapse occurs. There are problems such as dull skin, shine and uneven makeup.
  • Patent Document 2 discloses an oily thickening that can form an oily composition having a high thickening effect on an oily component such as silicone oil and having an excellent usability.
  • an oily thickening that can form an oily composition having a high thickening effect on an oily component such as silicone oil and having an excellent usability.
  • a thickened oily composition containing the oily thickener and a liquid oil, and a cosmetic containing these oily thickener or thickened oily composition.
  • An oil thickener comprising a siliconized polysaccharide compound and a silicone emulsifier is described.
  • Patent Document 3 discloses core-shell type composite particles in which the surface of spherical resin particles is coated with amorphous calcium phosphate such as hydroxyapatite.
  • the resin particles that are the core particles give a soft and smooth feel, and the amorphous calcium phosphate coated on the surface of the resin particles effectively adsorbs sebum, suppresses makeup collapse due to sebum, and It describes that soft focus (blurring) by light scattering can be realized.
  • Patent Document 1 does not mention increasing the viscosity of silicone oil or the like.
  • patent document 2 although the effect that it has a thickening effect with respect to the oil-based component with respect to silicone oil is described, the thickening effect with respect to unsaturated free fatty acid etc. is not mentioned.
  • Patent Document 3 composite particles to be blended in cosmetics are provided in order to prevent makeup collapse, but the composite particles themselves do not have a thickening effect on oily components.
  • the present invention has been made in view of the above circumstances, and has a high thickening effect on oily components such as silicone oil, nonpolar organic compounds and low polar organic compounds, an oily thickener that is easy to handle, and
  • An object of the present invention is to provide an oil-based thickener that has excellent stability, has thixotropic rheological properties, and can be easily incorporated into cosmetics.
  • the present invention has another object to provide an oil-based thickener that is also excellent in the effect of suppressing cosmetic breakup.
  • the present inventors have found that the above problems can be solved by using surface-hydrophobized CNF in which a part of hydroxyl groups present on the CNF surface is substituted.
  • the invention has been completed.
  • the present inventors have found that a bulky complex can be obtained by binding a compound having a large molecular weight to the surface hydrophobized CNF, focusing on the unreacted hydroxyl group in the surface hydrophobized CNF. As a result, the present invention has been completed.
  • the oil-based thickener of the present invention is CNF having an average thickness of 3 to 200 nm and an average length of 0.1 ⁇ m or more, and a viscosity value of 1 wt% of the CNF aqueous dispersion is 700 to 2100 mPa ⁇ s.
  • the hydroxyl group in the cellobiose unit of CNF is substituted with vinyl esters, and the degree of substitution is 0.2 to 0.8.
  • the present invention has a high thickening effect on oily components such as silicone oil, nonpolar organic compounds and low polar organic compounds, and is an oily thickener that is easy to handle and has excellent stability and thixotropic rheology.
  • oily components such as silicone oil, nonpolar organic compounds and low polar organic compounds
  • an oily thickener that is easy to handle and has excellent stability and thixotropic rheology.
  • an oil-based thickener that has properties and is easily incorporated into cosmetics.
  • decoration is provided.
  • an oily thickener with very little syneresis is provided.
  • the oil-based thickener of the present invention is formed using surface-hydrophobized CNF in which a part of hydroxyl groups present on the CNF surface is substituted.
  • the oil-based thickener of the present invention replaces a hydroxyl group present on the surface of CNF and binds a compound having a large molecular weight to the surface hydrophobized CNF to the hydroxyl group present on the surface of CNF and / or CNF using the compound.
  • a bulky hydrophobized CNF complex obtained by cross-linking each other is used.
  • examples of CNF include CNF derived from polysaccharides including natural plants such as wood fiber, hardwood, conifer, bamboo fiber, sugarcane fiber, seed hair fiber, leaf fiber, and the like. Or you may use it in mixture of 2 or more types.
  • the polysaccharide it is preferable to use pulp having an ⁇ -cellulose content of 60% to 99% by mass. If the purity is ⁇ -cellulose content 60% by mass or more, the fiber diameter and fiber length can be easily adjusted, and entanglement between fibers can be suppressed, and the ⁇ -cellulose content less than 60% by mass is used.
  • the thermal stability at the time of melting is high, the impact strength is not lowered, the coloration suppressing effect is good, and the effect of the present invention can be further improved.
  • 99% by mass or more it becomes difficult to defibrate the fibers to the nano level.
  • the CNF in the present invention is obtained as a CNF dispersion (hereinafter sometimes referred to as water-containing CNF) by performing the following defibrating treatment.
  • the defibrating process is performed using the underwater facing collision method (hereinafter also referred to as the ACC method) shown in FIG.
  • This is a technique in which pulp suspended in water is introduced into two nozzles (FIG. 1: 108a, 108b) facing each other in a chamber (FIG. 1: 107), and injected and collided from these nozzles toward one point. is there.
  • the device shown in FIG. 1 is of a liquid circulation type, and has a tank (FIG. 1: 109), a plunger (FIG.
  • FIG. 1: 110 two opposing nozzles (FIG. 4: 108a, 108b), and heat as needed.
  • An exchanger (FIG. 1: 111) is provided, and fine particles dispersed in water are introduced into two nozzles and sprayed from opposing nozzles (FIG. 1: 108a, 108b) under high pressure to collide against each other in water.
  • a defibrating process may be performed using a pretreatment device (FIGS. 2 and 3). Moreover, you may use this pre-processing apparatus as another defibrating method.
  • the defibrating treatment using the pretreatment device is performed by colliding high-pressure water of about 50 to 400 MPa with a polysaccharide in a water mixture of 0.5 to 10% by mass. This can be performed using, for example, the manufacturing apparatus 1 shown in FIG.
  • the manufacturing apparatus 1 includes a polysaccharide slurry supply path 3 which is a first liquid medium supply path arranged so as to be able to supply a polysaccharide slurry to one chamber 2, and a non-polysaccharide slurry such as water in one chamber. 2 and a second liquid medium supply path 4 that circulates through 2.
  • a polysaccharide slurry supply path 3 which is a first liquid medium supply path arranged so as to be able to supply a polysaccharide slurry to one chamber 2, and a non-polysaccharide slurry such as water in one chamber. 2 and a second liquid medium supply path 4 that circulates through 2.
  • an orifice injection unit 5 that performs orifice injection of the non-polysaccharide slurry in the second liquid medium supply path 4 in a direction intersecting the polysaccharide slurry supply direction from the polysaccharide slurry supply path 3.
  • the polysaccharide slurry supply path 3 is configured
  • the polysaccharide slurry supply path 3 and the second liquid medium supply path 4 have a mutual intersection 6 in one chamber 2.
  • the polysaccharide slurry supply path 3 is a polysaccharide slurry supply unit, and is configured by arranging a tank 7 and a pump 8 for storing the polysaccharide slurry in the circulation path 9, while the second liquid medium supply path 4 is a tank 10, a pump 11, a heat
  • the exchanger 12 and the plunger 13 are arranged in the liquid medium supply path 4 which is a circulation path.
  • the non-polysaccharide slurry is, for example, water, and the nano-sized polysaccharide stored in the tank 10 is initially stored in the tank 10 and then passes through the intersection 6 with the operation of the cellulose nanofiber manufacturing apparatus 1. Those in a state of being included at a concentration according to the degree of operation are also generically referred to.
  • the circulation path 9 of the polysaccharide slurry supply path 3 is arranged in such a manner as to penetrate the chamber 2, so that the non-polysaccharide slurry can be injected through the orifice in a direction crossing the polysaccharide slurry supply path 3 and penetrate the circulation path 9.
  • the orifice injection port 14 of the orifice injection unit 5 connected to the plunger 13 of the second liquid medium supply path 4 opens inside the chamber 2.
  • a discharge port 15 of the chamber 2 is provided at a position facing the orifice injection port 14 of the chamber 2, and a circulation path of the second liquid medium supply path 4 is connected to the discharge port 15 of the chamber 2, so that the second liquid state A medium supply path 4 is configured.
  • the circulation path 9 of the polysaccharide slurry supply path 3 is formed using, for example, a vinyl hose, a rubber hose, an aluminum pipe or the like, and the inlet side of the circulation path 9 into the chamber 2 is opened only in the direction of the chamber 2.
  • a directional valve 16 is installed.
  • a one-way valve 17 that is opened only in the direction of discharge from the chamber 2 is attached to the exit side of the circulation path 9 from the chamber 2.
  • an air suction valve 18 is attached to the circulation path 9 between the chamber 2 and the one-way valve 17, and the air suction valve 18 is opened only in the direction of sucking air from the outside into the circulation path 9.
  • cellulose nanofibers are produced as follows.
  • the non-polysaccharide slurry is circulated through the second liquid medium supply path 4 through the chamber 2.
  • the non-polysaccharide slurry in the tank 10 is circulated through the liquid medium supply path 4 by passing through the heat exchanger 12 and the plunger 13 using the pump 11.
  • the polysaccharide slurry is circulated through the polysaccharide slurry supply path 3 through the chamber 2.
  • the polysaccharide slurry in the tank 7 is circulated through the circulation path 9 formed using a vinyl hose, a rubber hose, or the like, using the pump 8.
  • the non-polysaccharide slurry circulating in the second liquid medium supply path 4 is orifice-injected with respect to the polysaccharide slurry circulating in the polysaccharide slurry supply path 3 and flowing in the chamber 2.
  • high-pressure water is supplied from the plunger 13 to the orifice injection port 14 connected to the plunger 13, and this is orifice-injected from the orifice injection port 14 toward the circulation path 9 at a high pressure of about 50 to 400 MPa.
  • the polysaccharide in the polysaccharide slurry supply path 3 and the polysaccharide in the non-polysaccharide slurry circulating in the second liquid medium supply path 4 are gradually defibrated.
  • a CNF dispersion having a high degree of defibration according to the application can be obtained.
  • the degree of defibration from pulp fibers to CNF can be evaluated by the viscosity value of the CNF dispersion. That is, since CNF contained in the CNF dispersion with increased defibration has a short fiber length, the viscosity value is low. Therefore, a CNF dispersion having a high degree of fibrillation has a low viscosity. On the other hand, a CNF dispersion having a higher viscosity value than this has a high viscosity value because CNF contained in the CNF dispersion has a long fiber length. Accordingly, the degree of defibration is lower than that of the CNF dispersion.
  • the viscosity values of the CNF dispersions are different. Furthermore, for example, the viscosity of the CNF dispersion can be adjusted in the range of about 300 to 10,000 mPa ⁇ s by combining different types of pulp fibers or adjusting the defibration degree.
  • the CNF obtained as described above has a structural formula represented by the following chemical formula 1 because there is no structural change of the cellulose molecule because nano-miniaturization is performed by cleaving only the interaction between natural cellulose fibers.
  • CNF used in the present invention means that the cellobiose unit in Chemical Formula 1 has 6 hydroxyl groups and is not chemically modified. This can be confirmed by comparing the IR spectrum of cellulose with CNF used in the present invention using FT-IR. By this ACC method, the average particle length of cellulose fibers can be pulverized to 10 ⁇ m, and as a result, CNF having an average thickness of 3 to 200 nm and an average length of 0.1 ⁇ m or more is obtained.
  • TEMPO oxidation catalyst phosphoric acid treatment, ozone treatment, enzyme treatment, maleic acid treatment, hydrophobic modification with alkenyl succinic anhydride, hydrophobicity with alkyl ketene dimer, which are known as other methods for producing cellulose nanofibers.
  • Cellulose nanofibers obtained by chemical treatment such as modification and hydrophobic modification by acetylation, or cellulose fibers by wet grinding using mechanical action such as grinder (stone mill type grinder), disk type refiner, conical refiner, etc. Even cellulose nanofibers obtained by a physical method for thinning can be used as CNF in the present invention as long as they have hydroxyl groups in their cellobiose units.
  • the surface-hydrophobized CNF in the present invention refers to those in which a part of hydroxyl groups in the cellobiose unit are substituted with vinyl esters or organic acid vinyl esters.
  • vinyl esters or organic acid vinyl esters examples include linear or vinyl acetate, vinyl butyrate, vinyl stearate, vinyl laurate, vinyl myristate, vinyl propionate, and vinyl versatate. Examples thereof include aromatic carboxylic acids such as branched C2-20 aliphatic carboxylic acid vinyl esters and vinyl benzoates.
  • Nonionics including N-methylpyrrolidone (hereinafter referred to as NMP), dimethylacetamide (hereinafter referred to as DMAc), dimethylformamide (hereinafter referred to as DMF), dimethyl sulfoxide (hereinafter referred to as DMSO) and the like as organic solvents
  • NMP N-methylpyrrolidone
  • DMAc dimethylacetamide
  • DMF dimethylformamide
  • DMSO dimethyl sulfoxide
  • DMSO dimethyl sulfoxide
  • reaction conditions, etc. CNF is dispersed in an organic solvent at a stirrable concentration so that the water content in the reaction vessel is about 6% or less, potassium carbonate is added in a range of 1 to 40 wt% with respect to CNF, and then vinyl ester is added. And / or organic acid vinyl esters are added and the reaction is carried out at a reaction system temperature of 25 ° C. to 100 ° C. for several minutes to 5 hours. After the reaction is complete, the product is recovered and dried. Through the above reaction steps, a surface-hydrophobized CNF having a substitution degree of 0.2 to 0.8 can be obtained.
  • hydrophobicity can be sufficiently imparted even with a water content of about 10%, but the reaction efficiency increases as the amount of water in the reaction system decreases.
  • potassium carbonate works as a reaction catalyst, the buffering effect which keeps the inside of a reaction system alkaline is important, and if the concentration is 40 wt% or more, the effect can be sufficiently maintained.
  • substitution degree measurement In the present invention, the substitution degree is measured by the following method. A surface hydrophobized CNF dispersion having a concentration of 1% (w / w): 10 mL, an equivalent amount of organic solvent: 10 mL is added and dispersed. Next, 10 mL of 0.5N sodium hydroxide solution is added to the dispersion with a whole pipette, and the mixture is reacted at 80 ° C. for 60 minutes for hydrolysis. After completion of the reaction, the reaction is stopped by cooling. After adding a few drops of phenolphthalein solution, titrate 0.1N hydrochloric acid solution using a burette. The degree of substitution (DS) is calculated from the titration value.
  • the surface hydrophobized CNF according to the present invention has a thickening effect on the oil component due to the affinity between the alkyl group in the vinyl ester and the like and the hydrophobic functional group such as the alkyl group in the oil component. These are familiar to each other, and CNFs do not aggregate and form a network. As a result, it is considered that the viscosity of the oil component increases.
  • the surface hydrophobized CNF according to the present invention can be used for various oil components by appropriately selecting the degree of defibration, functional groups (vinyl esters and / or organic acid vinyl esters) and substitution degree of CNF.
  • Surface hydrophobized CNF having a thickening effect can be obtained.
  • the hydrophobized CNF complex in the present invention is one in which surface hydrophobized CNFs are cross-linked via polyhydric alcohols and / or polyalkylene glycols and / or one hydroxyl group of surface hydrophobized CNFs. It is the one that is connected to the part.
  • Vinyl esters or organic acid vinyl esters used in the production of hydrophobic CNF composites include vinyl acetate, vinyl butyrate, vinyl stearate, vinyl laurate, vinyl myristate, vinyl propionate, vinyl versatate, etc. Examples thereof include aromatic carboxylic acids such as vinyl esters of linear or branched C2-20 aliphatic carboxylic acids and vinyl benzoates.
  • Nonionics including N-methylpyrrolidone (hereinafter referred to as NMP), dimethylacetamide (hereinafter referred to as DMAc), dimethylformamide (hereinafter referred to as DMF), dimethyl sulfoxide (hereinafter referred to as DMSO) and the like as organic solvents
  • NMP N-methylpyrrolidone
  • DMAc dimethylacetamide
  • DMF dimethylformamide
  • DMSO dimethyl sulfoxide
  • DMSO dimethyl sulfoxide
  • polyhydric alcohols and polyalkylene glycols are not particularly limited as long as they have two or more hydroxyl groups.
  • examples of the polyhydric alcohol include glycerin, diglycerin, polyglycerin, ethylene glycol, diethylene glycol, triethylene glycol, Propylene glycol, dipropylene glycol, trimethylolpropane, pentaerythritol, 1,3-butanediol and the like can be used, and one or more of these can be used.
  • Polyalkylene glycol is a linear polymer compound having a repeating structure of an ether bond in the main chain, and is produced, for example, by ring-opening polymerization of a cyclic ether.
  • polyalkylene glycols include polymers such as polyethylene glycol and polypropylene glycol, ethylene oxide-propylene oxide copolymers, and derivatives thereof.
  • the copolymer any copolymer such as a random copolymer, a block copolymer, a graft copolymer, and an alternating copolymer can be used.
  • polyhydric alcohols and polyalkylene glycols having molecular weights in the range of about 200 to 100,000 can be used.
  • Polyhydric alcohol and / or polyalkylene glycol may be bonded so as to be 0.01% to 50% with respect to the hydroxyl group of the cellulose nanofiber having a degree of polymerization of about 800. If the amount of the polyhydric alcohol and / or polyalkylene glycol is small, a bulky hydrophobic CNF complex cannot be obtained, so that the CNFs are densely aggregated, resulting in release properties.
  • the crosslinking agent in the present invention is not particularly limited as long as it binds the hydroxyl group in the cellobiose unit possessed by CNF and the hydroxyl groups possessed by the polyhydric alcohol and / or polyalkylene glycol. Specifically, divinyl esters, isocyanate-based crosslinking agents and the like can be used.
  • divinyl esters examples include divinyl adipate, divinyl sebacate, diallyl phthalate, diallyl malate, diallyl succinate and the like. These may be used alone or in combination of two or more. You may do it.
  • the isocyanate-based crosslinking agent contains at least a polyisocyanate compound.
  • the polyisocyanate compound include aromatic polyisocyanates such as tolylene diisocyanate, diphenylmethane diisocyanate and xylylene diisocyanate, aliphatic polyisocyanates such as hexamethylene diisocyanate, alicyclic polyisocyanates such as isophorone diisocyanate and hydrogenated diphenylmethane diisocyanate, etc.
  • biuret bodies that are a reaction product with low molecular active hydrogen-containing compounds such as ethylene glycol, propylene glycol, neopentyl glycol, trimethylolpropane, and castor oil.
  • reaction conditions, etc. CNF is dispersed in an organic solvent at a stirrable concentration so that the amount of water in the reaction vessel is about 6% or less, potassium carbonate is added in a range of 1 to 40 wt% with respect to CNF, and then After adding polyhydric alcohols and / or polyalkylene glycols, divinyl esters and other crosslinking agents in order, then vinyl esters and / or organic acid vinyl esters are added, and the reaction system temperature is 25 ° C. to 100 ° C. The reaction is carried out in the range of several minutes to 5 hours under the following conditions. After completion of the reaction, the reaction product is recovered, dried and purified, whereby a hydrophobized CNF complex can be obtained.
  • hydrophobicity can be sufficiently imparted even with a water content of about 10%, but the reaction efficiency increases as the amount of water in the reaction system decreases.
  • potassium carbonate works as a reaction catalyst, the buffering effect which keeps the inside of a reaction system alkaline is important, and if the density
  • the hydrophobized CNF complex obtained by the above reaction conditions is bulky in terms of chemical structure, contributes to dispersion stability, and provides an oily thickener with very little release.
  • the reason why the hydrophobized CNF complex according to the present invention has very little separation is considered as follows. First, as a factor that causes separation, the adsorptive power of the oil component adsorbed on the alkyl group of the vinyl ester that modifies the CNF surface may be weaker than the adsorptive power of the hydroxyl groups in CNF. Since the CNF network breaks down with time, the oily component adsorbed on the alkyl group of the vinyl ester on the CNF surface existing in the CNF network cannot be retained.
  • the hydrophobized CNF composite according to the present invention has a degree of defibration, functional groups (vinyl esters and / or organic acid vinyl esters, polyhydric alcohols and / or polyalkylene glycols), and substitution degree of cellulose nanofibers.
  • functional groups vinyl esters and / or organic acid vinyl esters, polyhydric alcohols and / or polyalkylene glycols
  • substitution degree of cellulose nanofibers By selecting appropriately, it is possible to obtain an oil-based thickener with extremely little separation from various oil-based components.
  • hydrophobized CNF complex and “oil-based thickener hydrophobized CNF complex” are specified by the production method as specific items thereof. The reason will be explained.
  • embodiments of the hydrophobized CNF complex of the present invention there are at least the following two embodiments.
  • the hydroxyl group which is not chemically modified in the cellobiose unit is substituted with vinyl esters and / or organic acid vinyl esters, so that an unreacted hydroxyl group in one CNF and an unreacted group in another CNF.
  • hydrophobized CNF complex in which two or more hydroxyl groups of polyhydric alcohols and / or polyalkylene glycols are bonded to the hydroxyl group.
  • hydroxyl groups which are not chemically modified in the cellobiose unit are substituted with vinyl esters and / or organic acid vinyl esters, so that two or more hydroxyl groups of polyhydric alcohols and / or polyalkylene glycols are substituted.
  • water-containing CNF is dispersed in a dispersible solvent, tristrimethylsiloxysilylpropyl isocyanate is added, and the reaction is carried out at 20 to 150 ° C. for 2 to 10 hours to obtain cellobiose units. It can be obtained by introducing a polysiloxane chain into the hydroxyl group. A small amount of pyridine or the like may be added as a base catalyst.
  • oily components that can be used for thickener applications include, for example, silicone oils, nonpolar organic compounds and low polar organic compounds, higher fatty acids, ultraviolet absorbers, vegetable oils, mineral oils, seed extract oils, natural oils Oils separated and purified from gas or petroleum, fatty oils obtained from animal subcutaneous tissues, etc., collagen protein hydrolysates obtained by hydrolyzing bones and skins in the presence of acids, alkalis and enzymes alone or in combination. And various solvents having a small polarity such as benzene, animal oils, and the like.
  • silicone oil examples include linear polysiloxanes (eg, dimethicone), methyltrimethicone, methylphenyl polysiloxane, diphenylpolysiloxane, etc .; cyclic polysiloxanes (eg, octamethylcyclotetrasiloxane, decamethylcyclopentasiloxane, Dodecamethylcyclohexasiloxane, etc.) Silicone resin, silicone rubber, various modified polysiloxanes that form a three-dimensional network structure (amino-modified polysiloxane, polyether-modified polysiloxane, alkyl-modified polysiloxane, fluorine-modified polysiloxane, etc.) Etc.
  • linear polysiloxanes eg, dimethicone
  • methyltrimethicone methylphenyl polysiloxane
  • diphenylpolysiloxane etc .
  • Nonpolar organic compounds include, for example, liquid paraffin, light liquid isoparaffin, heavy liquid isoparaffin, petrolatum, n-paraffin, isoparaffin, isododecane, isohexadecane, polyisobutylene, hydrogenated polyisobutylene, polybutene, ozokerite, ceresin, microcrystalline Examples thereof include wax, paraffin wax, polyethylene wax, polyethylene / polypropylene wax, squalene, pristane, and polyisoprene.
  • low polar organic compounds examples include tripropylene glycol dineopentanoate, isononyl isononanoate, isopropyl myristate, cetyl octoate, octyldodecyl myristate, isopropyl palmitate, butyl stearate, hexyl laurate, myristyl myristate, oleic acid Decyl, hexyldecyl dimethyloctanoate, cetyl lactate, myristyl lactate, lanolin acetate, isocetyl stearate, isocetyl isostearate, cholesteryl 12-hydroxystearate, cetyl ethylhexanoate, ethylene glycol di-2-ethylhexanoate, dipentaerythritol Fatty acid ester, N-alkyl glycol monoisostearate, neopentyl glycol dicaprate
  • higher fatty acid examples include lauric acid, myristic acid, palmitic acid, stearic acid, behenic acid, oleic acid, undecylenic acid, toluic acid, isostearic acid, linoleic acid, linolenic acid, eicosapentaenoic acid (EPA), docosahexaenoic acid ( DHA) and the like.
  • UV absorber high polarity oil-based UV absorbers generally used in cosmetics can be widely cited.
  • benzoic acid derivatives such as paraaminobenzoic acid, salicylic acid derivatives, cinnamic acid derivatives, dibenzo
  • vegetable oils examples include mendew foam oil, safflower oil, castor oil, safflower oil, jojoba oil, sunflower oil, almond oil, sesame oil, canola oil, corn oil, soybean oil, peanut oil, mink oil, avocado oil, camellia oil And macadamia nut oil, olive oil, coconut oil, avocado oil, and sasanqua oil.
  • the surface hydrophobized CNF and / or hydrophobized CNF complex of the present invention can be used as an oily thickener composition. That is, the surface hydrophobized CNF and / or the hydrophobized CNF complex obtained by appropriately changing the degree of defibration, the functional group or the degree of substitution is used as an oil thickener composition by combining one or more kinds. Can do.
  • surface hydrophobized CNF and / or hydrophobized CNF complex obtained by appropriately changing the degree of defibration, functional group, or degree of substitution can be obtained by using a known thickening, gelling agent, hydrophobizing agent, suspending agent, dispersing agent.
  • oil-based thickener composition in combination with one or more of an agent / temperature / mechanical stabilizer, anti-caking agent, fluidity improver, dry silica, fused silica particles and the like.
  • an agent / temperature / mechanical stabilizer anti-caking agent
  • fluidity improver dry silica
  • fused silica particles and the like examples of uses of the oil-based thickener composition according to the present invention include a thickener for oil-based paints and a thickener for hydrophobic resins. It can also be used as an oil adsorbent, an oil absorbent, and an oil composition for emulsion, and can also be used for preventing shape breakage, sagging, and improving wear.
  • the surface hydrophobized CNF and / or hydrophobized CNF complex of the present invention is added at a ratio of 0.01 to 20%, more preferably at a ratio of 0.1 to 10% with respect to the oil component, By dispersing it, a high thickening effect can be exhibited, and a cosmetic with good usability and stability can be provided.
  • the desired thickening effect may not be obtained, and when blended in a proportion of 20% or more, the thickening effect is obtained. This is because there is no influence.
  • the oil-based thickener composition of the present invention is high by adding and dispersing in an amount of 0.01 to 20%, more preferably 0.1 to 10% with respect to the oil component.
  • a thickening effect can be exhibited, and a cosmetic with good usability and stability can be provided.
  • the desired thickening effect may not be obtained, and when blended in a proportion of 20% or more, the thickening effect is not affected. It is.
  • CNF aqueous dispersions 1 wt% having different degrees of defibration.
  • BB-B 1600 to 2400 mPa ⁇ s
  • BB-C 640 to 960 mPa ⁇ s
  • defibration treatment was performed using hardwood pulp as a raw material using the ACC method to obtain 1% CNF aqueous dispersion.
  • Viscometer for use in viscosity measurement conditions TVB-15 type viscometer (Toki Sangyo Co., Ltd.) Rotor used: M3 or M4 Measurement temperature: 25 °C Rotation speed: 12rpm Next, hydrous CNF was dispersed in DMSO, potassium carbonate was added, and the mixture was reacted at 80 ° C. When CNF (BB-C) was used, vinyl propionate was performed for 1 hour or 3 hours, vinyl hexanoate was performed for 1 hour or 3.5 hours, and vinyl laurate was performed for 15 minutes or 1 hour. It was difficult to measure the degree of substitution of vinyl propionate.
  • CNF BB-C
  • the vinyl hexanoate had a DS of 0.26 after 1 hour reaction and a DS of 0.73 after 3.5 hour reaction.
  • the vinyl laurate had a DS of 0.47 after a 15 minute reaction and a DS of 0.64 after a 3.5 hour reaction.
  • CNF BB-B
  • vinyl laurate reacted in 1 hour, DS reacted at 0.28, and 3 hours, DS reached 0.56. After completion of the reaction, the product was recovered, washed and purified with an organic solvent.
  • Examples 1-12 (Dispersibility evaluation 1 of surface hydrophobized CNF)
  • the base materials (Hex-CNF DS: 0.73, Lau-CNF DS: 0.64) are adjusted to 0.1% (w / w) concentration for each oil, and each oil is stirred and sonicated.
  • the dispersibility was visually evaluated using the following evaluation criteria. Evaluation criteria ⁇ : High dispersion ⁇ : Low dispersion ⁇ : Agglomeration
  • the oils used in the examples are as follows.
  • Ethylhexyl methoxycinnamate (Uvinul MC-80: BASF Japan Ltd.), dimethylpolysiloxane (KF96-10cs: Shin-Etsu Chemical Co., Ltd.), cyclopentanesiloxane (CY-5 Shin-Etsu Chemical Co., Ltd.), triethylhexa Noin (TIO: Nisshin Oilio Group Co., Ltd.), Cetyl Ethylhexanoate (Saracos 816T: Nisshin Oilio Group Co., Ltd.), Mineral Oil (Silcol P-70: Made by Matsumura Oil Research Institute)
  • Table 1 shows the results. As can be seen from Table 1, Hex-CNF could be dispersed in 3 out of 6 oils (Uvinul MC-80 (Example 1), TIO (Example 7), Saracos 816T (Example 9)). . On the other hand, Lau-CNF could not be dispersed in Silcol P-70 (Example 12) among the six types. It was dispersible in silicone oils (KF96-10cs and CY-5) and oils (Uvinul MC-80) that are said to be difficult to gel.
  • Examples 13-18, Comparative Examples 1-3 Disposibility evaluation 2 of surface hydrophobized CNF
  • base materials Hex-CNF BB-C DS: 0.73, Lau-CNF BB-C DS: 0.64
  • 0.1% (w / w) for each oil, and stir each oil.
  • ultrasonic treatment was performed for 30 minutes, and visual dispersibility was evaluated using the above evaluation criteria. All of them were the same except that AEROSILR R972 (registered trademark Nippon Aerosil Co., Ltd.) was used as a base material, and used as comparative examples.
  • the oils used in Examples 13 to 18 and Comparative Examples 1 to 3 are as follows.
  • Table 2 shows the results. As can be seen from Table 2, Hex-CNF was not dispersed and aggregated with respect to KF-96L-1CS and KF96-10cs (Examples 12 and 15). On the other hand, Lau-CNF was not aggregated and dispersed (Examples 14 and 16). On the other hand, AEROSILR R972 was not dispersed and aggregated with KF-96L-1CS. Further, it was dispersed for KF96-10cs (Comparative Example 1 and Comparative Example 2). Moreover, all the base materials were disperse
  • Examples 19-27 (Dispersibility evaluation 3 of surface hydrophobized CNF) Prepare base materials with different substitution degree and defibration degree of Lau-CNF for each oil to 0.1% (w / w) concentration, stir each oil, perform ultrasonic treatment for 30 minutes and visually Evaluation of dispersibility was performed using the above evaluation criteria.
  • the oil used was the same as that used in Table 2.
  • Table 3 shows the results. As can be seen from Table 3, with respect to KF96L-1CS and Example 19 having a low degree of substitution, precipitation was not so much and dispersibility was high. On the other hand, Example 20 and Example 21 were settled by standing overnight, and Example 19 having a lower substitution degree than Example 20 and Example 21 having a higher substitution degree had higher dispersibility. On the other hand, it was not possible to disperse KF96-10cs in Example 22 with a low degree of substitution, but could be dispersed in Examples 23 and 24 with a high degree of substitution. Further, any of Examples 20 to 22 could be dispersed in oleic acid.
  • Examples 28 to 33 Comparative Examples 4 and 5 (Viscosity evaluation of surface hydrophobized CNF 1) Each sample with Lau-CNF (BB-B DS: 0.28) in weight percent concentration 2-5% and Lau-CNF (BB-C DS: 0.64) in weight percent concentration 3-6% relative to KF96L-1CS Were prepared (Examples 28 and 29). Each sample with Aerosil R972 in a weight percent concentration of 9 to 12% instead of Lau-CNF was used as Comparative Example 4. After shaking and stirring each sample, leave it in a thermostatic chamber (25 ° C) for 5 minutes, and install the B type viscometer (TVB-15 type viscometer (Toki Sangyo Co., Ltd.)) and rotor No. (M3). Used and measured at 12 rpm.
  • B type viscometer TVB-15 type viscometer (Toki Sangyo Co., Ltd.)
  • M3 rotor No. Used and measured at 12 rpm.
  • Tables 4, 5 and 6 show the results. As can be seen from Table 4, for Lau-CNF (BB-C DS: 0.64), the thickening effect could be confirmed (Examples 28 and 29), but for AEROSILR R972, the viscosity was low due to the paste state. It was not possible to measure (Comparative Example 4). Moreover, from Example 28 and Example 29, it can be said that the effect of increasing the viscosity for KF96L-1CS is higher for Lau-CNF having a low substitution degree. Further, as can be seen from Tables 5 and 6, it was found that AEROSILR R972 requires about 9 wt% to obtain a thickening effect on oleic acid (Comparative Example 5).
  • each sample in which AEROSILR R972 was in a weight percent concentration of 8 to 11% instead of Lau-CNF (BB-C DS: 0.64) and Hex-CNF (BB-C DS: 0.75) was used as Comparative Example 8.
  • Tables 7 and 8 show the results. As can be seen from Table 7, for KF96L-1CS, a thickening effect could be confirmed at a lower concentration than AEROSILR R972 (Example 34, Comparative Example 6). On the other hand, also for KF96 10cs, a thickening effect could be confirmed at a low concentration (Example 35, Comparative Example 7). In addition, as can be seen from Table 8, both Lau-CNF (BB-C DS: 0.64) and Hex-CNF (BB-C DS: 0.73) should be confirmed to have a thickening effect at a lower concentration than Aerosil R972. (Example 36, Example 37, Comparative Example 8).
  • Examples 38-42 (Viscosity evaluation of surface hydrophobized CNF 3) Oils (ethyl hexyl methoxycinnamate (Uvinul MC-80: BASF Japan), triethylhexanoin (TIO: Nisshin Oillio Group), cetyl ethylhexanoate (Saracos 816T: Nisshin Oillio Group) ), Samples were prepared with Lau-CNF (BB-C DS: 0.56) at a weight percent concentration of 2 to 5% (Example 38 to Example 40).
  • TIO Nisshin Oillio Group
  • Saracos 816T Nisshin Oillio Group
  • Table 9 and Table 10 show the results. As can be seen from Tables 9 and 10, the thickening effect could be confirmed for all the oils.
  • oleic acid dispersion was prepared using Lau-CNF and Aerosil 200 as an oil thickener so as to have a viscosity of about 40,000 mPa ⁇ s, which is close to a general gel. About these, flow curve preparation (thixotropic evaluation) and yield stress measurement were performed. The viscosity of the Lau-CNF-oleic acid dispersion 6% was 33,800 mPa ⁇ s. The viscosity of the Aerosil 200-oleic acid dispersion 5% was 39,500 mPa ⁇ s. The measurement results are shown in FIGS.
  • the 5% dispersion of Aerosil 200-oleic acid dispersion showed the result of leopexic properties. Further, as can be seen from FIG. 5, the Lau-CNF-oleic acid dispersion 6% was evaluated as a hysteresis loop exhibiting thixotropy.
  • Aerosil 200: 5% showed a yield value of 37.70 Pa and Lau-CNF: 6% showed a yield value of 19.73 Pa.
  • Example 43 Production of hydrophobized CNF complex
  • bamboo pulp as a raw material, fibrillation treatment was performed using an ACC method to obtain 1% CNF aqueous dispersion.
  • BB-C mPa ⁇ s
  • Viscometer for use in viscosity measurement conditions TVB-15 type viscometer (Toki Sangyo Co., Ltd.) Rotor used: M3 or M4 Measurement temperature: 25 °C Rotation speed: 12rpm
  • water-containing CNF was dispersed in DMSO and potassium carbonate was added, and then polyethylene glycol (molecular weight 20000), divinyl adipate, organic acid vinyl (vinyl propionate, vinyl hexanoate, vinyl laurate) were added in this order. Then, the reaction mixture was washed with methanol and purified (Hex-PEG-CNF BB-C).
  • Example 44 (Viscosity evaluation of hydrophobized CNF complex 1) A sample having Hex-PEG-CNF (BB-C) at a weight percent concentration of 1.0 to 2.0% with respect to CY-5 was prepared (Example 44). The sample is shaken and stirred, and then allowed to stand in a thermostatic bath (25 ° C) for 5 minutes. A B type viscometer (TVB-15 viscometer (Toki Sangyo Co., Ltd.)), rotor No. (M3 or M4) ) And was measured at a rotation speed of 12 rpm (only 2.0% M4 was used).
  • TVB-15 viscometer Toki Sangyo Co., Ltd.
  • M3 or M4 rotor No.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Birds (AREA)
  • Epidemiology (AREA)
  • Dermatology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Cosmetics (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

【課題】 シリコーン油、非極性有機化合物及び低極性有機化合物等の油性成分に対して高い増粘効果を有し、取扱の容易な油性増粘剤を提供する。 【解決手段】 平均太さ3~200nmであり、平均長さ0.1μm以上、セルロースナノファイバー水分散液1wt%の粘度値が700~2100mPa・sであり、セロビオースユニット内の水酸基がビニルエステル類及び/又は有機酸ビニルエステル類に置換され、その置換度が0.2~0.8である油性増粘剤用表面疎水化セルロースナノファイバー

Description

油性増粘剤用表面疎水化セルロースナノファイバー、それを配合した油性増粘剤組成物、およびそれを配合した化粧品及び油性増粘剤用疎水化セルロースナノファイバー複合体、それを配合した油性増粘剤組成物、およびそれを配合した化粧品
 本発明は、セルロース繊維を用いて、油性増粘剤、特に油性成分に対して高い増粘効果を有し、使用感の良好な油性組成物を形成することのできる油性増粘剤、皮脂中の遊離脂肪酸を選択的に吸着することができる油性増粘剤、及び前記油性増粘剤を配合した化粧品に関する。
 従来より、クリーム状、ゲル状、乳液状あるいは液体状の剤型を有する製品は、水やアルコール、油等の分散媒体に、高分子材料等を配合した組成物が用いられている。高分子材料には、各種の合成高分子や天然高分子多糖類等を製品に増粘性を付与するために用いられている。
 近年、前記高分子材料として、ナノサイズに微粒子化したセルロースを化学処理により一部酸化変性させたセルロースナノファイバー(以下、CNFということもある。)を用い、それを使用することによって増粘性等を発現させた増粘性組成物等が提案されている(特許文献1)。
 また、前記油等によく用いられるシリコーンオイルは、のびが軽くさっぱりとした感触を有することから、スキンケア化粧品、メイクアップ化粧品、頭髪化粧品をはじめとするさまざまな化粧品及び医薬部外品に配合されている。シリコーンオイル等に増粘性を付与するため、各種油性増粘剤を使用している。油性増粘剤を用いた化粧品は、液状ファンデーション、サンスクリーンジェル、モイスチャークリーム、ヘアジェル、制汗クリーム等多岐にわたる。しかしながら、増粘効果、使用感、安定性などの観点から満足のいく油性増粘剤は、ほとんどないのが現状である。
 液状ファンデーション類は、粉末、油剤、水の3成分のうち2種または3種を組み合わせて作られ、目的に応じて薬剤、乳化剤、保湿剤等を添加する。化粧膜中に存在する粉体原料は、皮膚の欠点をカバーし、美しく装う目的で使用されるため、使用中には長時間にわたり、皮膚上に留まるっていることが重要とされる。しかし、一般的に、経時により、皮脂中のトリオレイン、トリパルチミン、オレイン酸、パルチミン酸等の不飽和脂肪遊離酸の分泌などが原因で、皮脂の融点の降下などを招き、化粧崩れが起こり、肌がくすんだり、テカリが生じたり、化粧ムラになるなどの問題がある。
 そこで、油性成分に対して高い増粘効果を有する油性増粘剤、及び化粧崩れを防止する技術として、下記のような特許文献が公開されている。
 油性成分に対する増粘剤の発明としては、特許文献2に、シリコーン油をはじめとする油性成分に対して高い増粘効果を有し、使用感にも優れる油性組成物を形成し得る油性増粘剤、該油性増粘剤と液状油分とを含有する増粘油性組成物、及びこれら油性増粘剤あるいは増粘油性組成物を配合した化粧品を提供することを目的として、特定の式で示されるシリコーン化多糖化合物とシリコーン乳化剤とからなる油剤増粘剤が記載されている。
 また、化粧崩れを防止する発明として、特許文献3に、球状の樹脂粒子の表面に、ヒドロキシアパタイトなどの非晶質リン酸カルシウムを被覆してなるコアシェル型の複合粒子が開示されている。ここでは、コア粒子となる樹脂粒子がソフトで滑らかな感触を与え、その表面に膜状に被覆された非晶質リン酸カルシウムが皮脂を効果的に吸着し、皮脂による化粧崩れを抑制し、さらには光散乱によるソフトフォーカス(ぼかし)を実現できることが記載されている。
 しかしながら、特許文献1における増粘性組成物はシリコーンオイル等を増粘させることについては触れられていない。また、特許文献2においては、シリコーン油に対する油性成分に対して増粘効果を有する旨が記載されているが、不飽和遊離脂肪酸に対する増粘効果等については触れられていない。さらに、特許文献3においては、化粧崩れを防止するために、化粧料に配合する複合粒子を提供しているが、複合粒子自体は、油性成分に対して増粘効果を有するものではない。
 また、一般的に長期安定性並びに保存性を考慮した場合、化粧品等の製剤について離漿性を考慮する必要があるが、これらの特許文献において得られた増粘性組成物の離漿性については、何ら触れられていない。
特開2014-141675号公報 特開2014-218468号公報 特開2010-241785号公報
 本発明は、上記事情に鑑みなされたもので、シリコーン油、非極性有機化合物及び低極性有機化合物等の油性成分に対して高い増粘効果を有し、取扱の容易な油性増粘剤及び、安定性に優れ、チキソトロピックなレオロジー特性を有し、化粧品への配合が容易な油性増粘剤を提供することを目的とする。
 また、本発明は、化粧崩れの抑制効果にも優れた油性増粘剤を提供することをさらなる目的とする。
 さらに、本発明は、離漿が極めて少ない油性増粘剤を提供することをさらなる目的とする。
 本発明者等は、上記目的を達成するために鋭意検討を行った結果、CNF表面に存在する水酸基の一部を置換した表面疎水化CNFを用いることにより、前記課題を解決できることを見出し、本発明を完成するに至った。
 また、本発明者等は、前記表面疎水化CNFにおける未反応の水酸基に着目し表面疎水化CNFに分子量の大きい化合物を結合することで、嵩高い複合体が得られることを見出し、随意検討を行った結果、本発明を完成するに至った。
 すなわち、本発明の油性増粘剤は、平均太さ3~200nmであり、平均長さ0.1μm以上のCNFであって、前記CNF水分散液1wt%の粘度値が700~2100mPa・sであり、前記CNFのセロビオースユニット内の水酸基がビニルエステル類に置換され、その置換度が0.2~0.8であることを特徴とする。
 本発明により、シリコーン油、非極性有機化合物及び低極性有機化合物等の油性成分に対して高い増粘効果を有し、取扱の容易な油性増粘剤および、安定性に優れ、チキソトロピックなレオロジー特性を有し、化粧品への配合が容易な油性増粘剤が提供される。
また、化粧崩れの抑制効果にも優れた油性増粘剤が提供される。さらに、離漿が極めて少ない油性増粘剤が提供される。
CNFの製造(解繊処理)装置の概念図である。 他のCNFの製造(解繊処理)装置の概念図である。 図2におけるCNFの製造(解繊処理)装置の一部を拡大して示す概念図である。 フローカーブを作成したものである。 フローカーブを作成したものである。 降伏応力測定結果である。
 次に、本発明の実施の形態を詳しく説明する。ただし、以下の実施形態は、発明内容の理解を助けるためのものであり、本発明を限定するものではない。
 本発明の油性増粘剤は、CNF表面に存在する水酸基の一部を置換した表面疎水化CNFを用いてなるものである。
 また、本発明の油性増粘剤は、CNF表面に存在する水酸基を置換し、かつ、表面疎水化CNFに分子量の大きい化合物をCNF表面に存在する水酸基に結合及び/又は前記化合物を用いてCNF同士を架橋して得られる嵩高い疎水化CNF複合体を用いてなるものである。
 まず、CNFの調製方法について説明する。本発明において、CNFとしては例えば、木材繊維、広葉樹、針葉樹、竹繊維、サトウキビ繊維、種子毛繊維、葉繊維等の天然の植物を含む多糖由来のCNFが挙げられ、これらCNFは一種を単独で又は二種以上を混合して用いてもよい。 また多糖としてはα-セルロース含有率60%~99質量%のパルプを用いるのが好ましい。α-セルロース含有率60質量%以上の純度であれば繊維径及び繊維長さが調整しやすくなって繊維同士の絡み合いを抑えることができ、α-セルロース含有率60質量%未満のものを用いた場合に比べ、溶融時の熱安定性が高く、衝撃強度の低下を引き起こすことがないほか、着色抑制効果が良好であり、本発明の効果をより優れたものとすることができる。一方、99質量%以上のものを用いた場合、繊維をナノレベルに解繊することが困難になる。
 本発明におけるCNFは、以下の解繊処理行うことによりCNF分散液(以下、含水状態のCNFということもある。)として得られる。
解繊処理は、図1に示した水中対向衝突法(以下、ACC法と言うこともある。)を用いて行う。これは、水に懸濁したパルプをチャンバー(図1:107)内で相対する二つのノズル(図1:108a,108b)に導入し、これらのノズルから一点に向かって噴射、衝突させる手法である。図1に示される装置は液体循環型となっており、タンク(図1:109)、プランジャ(図1:110)、対向する二つのノズル(図4:108a,108b)、必要に応じて熱交換器(図1:111)を備え、水中に分散させた微粒子を二つのノズルに導入し高圧下で合い対するノズル(図1:108a,108b)から噴射して水中で対向衝突させる。
 前記解繊処理を実施する前に、前処理装置を使用して解繊処理を実施してもよい(図2、図3)。また、その他の解繊方法として、かかる前処理装置を使用してもよい。前記前処理装置を使用した解繊処理は、0.5~10質量%の水混合液にした多糖に対し、50~400MPa程度の高圧水を衝突させて行う。これは例えば図2に示す製造装置1を用いて行うことができる。製造装置1は、一のチャンバー2に対して多糖スラリを供給可能に配置される第1の液状媒体供給経路であるところの多糖スラリ供給経路3と、例えば水である非多糖スラリを一のチャンバー2を介して循環させる第2の液状媒体供給経路4とよりなる。一のチャンバー2内には第2の液状媒体供給経路4の非多糖スラリを多糖スラリ供給経路3からの多糖スラリ供給方向と交差する方向にオリフィス噴射するオリフィス噴射部5を備える。多糖スラリ供給経路3は、多糖スラリを一のチャンバー2を介して循環可能にされる。
 多糖スラリ供給経路3と第2の液状媒体供給経路4とは一のチャンバー2内に相互の交差部6を有する。
 多糖スラリ供給経路3は多糖スラリ供給部であり多糖スラリを貯留するタンク7、ポンプ8を循環路9に配置してなり、一方、第2の液状媒体供給経路4はタンク10、ポンプ11、熱交換器12、プランジャ13を循環路である液状媒体供給経路4に配置してなる。
 なお非多糖スラリは、例えば水であり、当初タンク10に収納され、その後セルロースナノ繊維の製造装置1の作動に伴い交差部6を通過してタンク10に収納されたナノ微細化された多糖を操業の度合いに応じた濃度で含むことになった状態のものをも、包括的に指称する。
 図3に示すようにチャンバー2を貫通する態様で多糖スラリ供給経路3の循環路9が配置され、これと交差する方向に非多糖スラリをオリフィス噴射して循環路9を貫通させることができるように第2の液状媒体供給経路4のプランジャ13に接続されるオリフィス噴射部5のオリフィス噴射口14がチャンバー2内側において開口する。チャンバー2のオリフィス噴射口14と対向する位置にチャンバー2の排出口15が設けられ、このチャンバー2の排出口15に第2の液状媒体供給経路4の循環路が接続されて、第2の液状媒体供給経路4が構成される。
 一方、多糖スラリ供給経路3の循環路9は例えばビニルホース、ゴムホース、アルミパイプ等を用いて形成され、その循環路9のチャンバー2への入り側にはチャンバー2方向にのみ開弁される一方向弁16が取りつけられる。さらに循環路9のチャンバー2からの出側にはチャンバー2からの排出方向にのみ開弁される一方向弁17が取りつけられる。加えてチャンバー2と一方向弁17の間の循環路9にはエア吸入弁18が取りつけられ、このエア吸入弁18は外部から循環路9へエアを吸入する方向にのみ開弁される。
 以上のセルロースナノ繊維の製造装置によれば以下のようにしてセルロースナノファイバーが製造される。
 非多糖スラリーをチャンバー2を介して第2の液状媒体供給経路4を循環させる。具体的にはポンプ11を用いてタンク10内の非多糖スラリを熱交換器12、プランジャ13を通過させて液状媒体供給経路4内を循環させる。一方、多糖スラリーをチャンバー2を介して多糖スラリ供給経路3内を循環させる。具体的にはポンプ8を用いてタンク7内の多糖スラリをビニルホース、ゴムホース等を用いて形成された循環路9内を循環させる。
 これにより、多糖スラリ供給経路3内を循環してチャンバー2内を流通する多糖スラリに対して第2の液状媒体供給経路4を循環する非多糖スラリがオリフィス噴射される。具体的にはプランジャ13に接続されるオリフィス噴射口14にプランジャ13から高圧水が供給され、これがオリフィス噴射口14から循環路9に向けて50~400MPa程度の高圧でオリフィス噴射される。
 その結果、例えばビニルホース、ゴムホース、アルミパイプ等を用いて形成された循環路9に予め形成された貫通孔26a、bを通過して、循環路9と交差する方向に循環路9内側を通過した非多糖スラリが循環路9内を循環する多糖スラリを巻き込みながらチャンバー2の排出口15に向けて排出され、第2の液状媒体供給経路4に流入する。これによって、非多糖スラリが第2の液状媒体供給経路4内を再度循環する。
 以上のプロセスを反復する過程で多糖スラリ供給経路3内を循環してチャンバー2内を流通する多糖スラリ及び第2の液状媒体供給経路4を循環する非多糖スラリ中の多糖が徐々に解繊されて、用途に応じた解繊度合の均一性の高いCNF分散液が得られる。
 パルプ繊維からCNFへの解繊度合は、CNF分散液の粘度値により評価することが出来る。すなわち、解繊度を高めたCNF分散液に含まれるCNFは繊維長さが短いものであるため、粘度値が低いものとなる。したがって、解繊度が高いCNF分散液は、粘度が低いものとなる。一方、これより粘度値が高いCNF分散液は、係るCNF分散液に含まれるCNFは繊維長さが長いものであるため、その粘度値が高いものとなる。したがって、前記CNF分散液と比較して解繊度が低いものとなる。
 また、解繊後の繊維径に対する繊維長の比(アスペクト比)がパルプ繊維毎に異なるので、CNF分散液の粘度値はそれぞれ異なるものとなる。
 さらに、例えば、異なる種類のパルプ繊維を組み合わせることにより、又は、前記解繊度合を調製することにより、CNF分散液の粘度を概ね300~10000mPa・sの範囲で調整することができる。
以上のようにして得るCNFは、天然セルロース繊維間の相互作用のみを解裂させることによってナノ微細化を行うためセルロース分子の構造変化がなく、以下の化学式1に表わされる構造式を有する。換言すると、本願発明で用いるCNFは、化学式1中のセロビオースユニット内に水酸基6個を有し、化学修飾されていないことを意味する。これは、FT-IRを使用してセルロースのIRスペクトルと本願発明に使用するCNFとを比較することで確認することができる。 本ACC法により、セルロース繊維の平均粒子長を10μmにまで粉砕することができ、その結果、平均太さ3~200nmであり、平均長さ0.1μm以上であるCNFが得られる。平均太さと平均繊維長さの測定は、走査型電子顕微鏡(SEM)、透過型電子顕微鏡(TEM)等を適宜選択し、CNFを観察・測定し、得られた写真から20本以上を選択し、これをそれぞれ平均化することにより求める。一方で、対向衝突処理においては、加えられるエネルギーが共有結合を切断するエネルギーには、はるかに及ばず(推定1/300以下)、セルロースの重合度の低下は生じない。本ACC法によって得られたセルロースナノファイバーは、親水サイトと疎水サイトが共存し、両親媒性を示す。
Figure JPOXMLDOC01-appb-C000001
 なお、本発明においては、他のセルロースナノファイバーの製造方法として公知であるTEMPO酸化触媒、リン酸処理、オゾン処理、酵素処理、マレイン酸処理、無水アルケニルコハク酸による疎水変性、アルキルケテンダイマーによる疎水変性、アセチル化による疎水変性などの化学的処理をする方法によって得られるセルロースナノファイバー又はグラインダー(石臼型粉砕機)、ディスク型リファイナー、コニカルリファイナーなどの機械的作用を利用する湿式粉砕でセルロース系繊維を細くする物理的方法によって得られるセルロースナノファイバーであっても、そのセロビオースユニット内に水酸基を有してさえいれば、本発明においてCNFとして使用することができる。
(表面疎水化CNFの製造方法)
 本発明の表面疎水化CNFの製造方法について、以下、詳細に説明する。ここで、本発明における表面疎水化CNFとは、セロビオースユニット中の水酸基の一部がビニルエステル類又は有機酸ビニルエステル類に置換されたもののことをいう。
(ビニルエステル類又は有機酸ビニルエステル類)
 本発明に使用するビニルエステル類又は有機酸ビニルエステル類としては、酢酸ビニル、ビニルブチレート、ビニルステアレート、ビニルラウレート、ビニルミリステート、ビニルプロピオネート、バーサティク酸ビニル等の直鎖状又は分岐鎖状C2-20脂肪族カルボン酸のビニルエステル、安息香酸ビニルなどの芳香族カルボン酸を例示できる。
(有機溶媒)
 有機溶媒としてはN-メチルピロリドン(以下、NMPと記す)、ジメチルアセトアミド(以下、DMAcと記す)、ジメチルホルムアミド(以下、DMFと記す)、ジメチルスルホキシド(以下、DMSOと記す)などを含む非イオン性極性溶媒がある。CNFを十分に分散性しうる有機溶媒中に添加することによってセルロースナノファイバーの表面修飾を均一かつ効率よく行うことができる。特にDMSOはCNFの分散性が高いことに加え、疎水性の高い誘導体化CNFを溶解する。すなわち種々の含水非イオン性極性溶媒中にてセロビオースユニット内の水酸基の置換は進行するが、DMSOを用いた場合が最も反応効率が高い。
(反応条件等)
 反応容器内の水分量が約6%以下になるようにCNFを撹拌可能な濃度で有機溶媒に分散し、炭酸カリウムをCNFに対して、1~40wt%の範囲で添加し、次いで、ビニルエステル類及び/又は有機酸ビニルエステル類を加え、反応系温度25℃~100℃の条件下において、数分~5時間の範囲にて反応させる。反応終了後、生成物を回収し、乾燥する。以上の反応工程により、置換度が0.2~0.8である表面疎水化CNFを得ることができる。また、含水率10%程度でも十分に疎水性を付与できるが、反応系内の水分量が少ないほど反応効率が高い。また、炭酸カリウムは反応触媒として働くが、反応系内をアルカリ性に保つ緩衝効果が重要であり、40wt%以上の濃度があればその効果は十分に維持できる。
(置換度測定)
 本発明において、置換度測定は以下の方法で行う。1%(w/w)濃度の表面疎水化CNF分散液:10mLに対して、等量の有機溶媒:10mLを加えて分散させる。次いで、分散液に0.5N 水酸化ナトリウム溶液をホールピペットで10mL添加し、80℃で60分間反応させ加水分解する。反応終了後、冷却して反応を停止させる。フェノールフタレイン溶液を数滴加えた後、ビュレットを用いて0.1N 塩酸溶液を滴定する。滴定値より置換度(DS)を算出する。
 本願発明に係る表面疎水化CNFが油性成分に対して増粘効果を有するのは、前記ビニルエステル類等中のアルキル基と油性成分中のアルキル基などの疎水性官能基との親和性により、これらが相互によくなじみ、CNF同士が凝集せずにネットワークを形成する。その結果として、油性成分の粘度が上昇するためと考えられる。
 したがって、本願発明に係る表面疎水化CNFは、CNFの解繊度、官能基(ビニルエステル類及び/又は有機酸ビニルエステル類)、置換度を適宜、選択することによって、様々な油性成分に対して増粘効果を有する表面疎水化CNFを得ることができる。
(疎水化CNF複合体の製造方法)
本発明の疎水化CNF複合体の製造方法について、以下、詳細に説明する。ここで、本発明における疎水化CNF複合体とは、表面疎水化CNF同士が、多価アルコール類及び/又はポリアルキレングリコール類を介して架橋されたもの及び/又は表面疎水化CNFの水酸基の一部に結合したもののことをいう。
(ビニルエステル類又は有機酸ビニルエステル類)
 疎水化CNF複合体の製造において使用するビニルエステル類又は有機酸ビニルエステル類としては、酢酸ビニル、ビニルブチレート、ビニルステアレート、ビニルラウレート、ビニルミリステート、ビニルプロピオネート、バーサティク酸ビニル等の直鎖状又は分岐鎖状C2-20脂肪族カルボン酸のビニルエステル、安息香酸ビニルなどの芳香族カルボン酸を例示できる。
(有機溶媒)
 有機溶媒としてはN-メチルピロリドン(以下、NMPと記す)、ジメチルアセトアミド(以下、DMAcと記す)、ジメチルホルムアミド(以下、DMFと記す)、ジメチルスルホキシド(以下、DMSOと記す)などを含む非イオン性極性溶媒がある。CNFを十分に分散性しうる有機溶媒中に添加することによってセルロースナノファイバーの表面修飾を均一かつ効率よく行うことができる。特にDMSOはCNFの分散性が高いことに加え、疎水性の高い誘導体化CNFを溶解する。すなわち種々の含水非イオン性極性溶媒中にてCNF中の水酸基の置換は進行するが、DMSOを用いた場合が最も反応効率が高い。
(多価アルコール類及びポリアルキレングリコール類)
 多価アルコール及びポリアルキレングリコール類としては、水酸基を2つ以上有していれば特に制限はなく、多価アルコールとしては、例えばグリセリン、ジグリセリン、ポリグリセリン、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリメチロールプロパン、ペンタエリスリトール、1,3-ブタンジオールなどが挙げられ、これらを1種又は2種以上を用いることができる。また、ポリアルキレングリコールとしては、主鎖中にエーテル結合の繰り返し構造を有する線状高分子化合物であり、例えば環状エーテルの開環重合等によって製造される。ポリアルキレングリコールの具体例としては、ポリエチレングリコール、ポリプロピレングリコール等の重合体、エチレンオキサイド-プロピレンオキサイド共重合体およびその誘導体等が挙げられる。共重合体としては、ランダム共重合体、ブロック共重合体、グラフト共重合体、交互共重合体等のいずれの共重合体も用いることができる。
また、多価アルコール及びポリアルキレングリコールの分子量は、概ね200~100000の範囲のものを使用することができる。
(多価アルコール及び/又はポリアルキレングリコールのCNFに対する量について)
 重合度が概ね800程度のセルロースナノファイバーが有する水酸基に対して、0.01%~50%となるように多価アルコール及び/又はポリアルキレングリコールを結合させるとよい。多価アルコール及び/又はポリアルキレングリコールの量が少ないと、嵩高い疎水化CNF複合体が得られないので、CNF同士が密に集合してしまい、離漿性が生じてしまう。一方、多価アルコール及び/又はポリアルキレングリコールの量が多いと、有効に反応できるCNF中の水酸基の絶対量が少なくなってしまうため、前記ビニルエステル類及び/又は有機酸ビニルエステル類がCNFの水酸基に導入されにくくなるので、油性成分になじまないものとなってしまう。また、ポリアルキレングリコールは、親水性のエーテル結合を多く含むので、本願発明の目的に反することとなる。
(架橋剤)
 本願発明における架橋剤としては、CNFが有するセロビオースユニット内の水酸基と多価アルコール及び/又はポリアルキレングリコールが有する水酸基同士とを結合するものであれば特に制限されない。具体的には、ジビニルエステル類、イソシアネート系架橋剤等を使用することができる。
 ジビニルエステル類としては、例えば、アジピン酸ジビニル、セバシン酸ジビニル、ジアリルフタレート、ジアリルマレート、ジアリルサクシネート等を挙げることができ、これらは1種単独で用いても良いし、2種以上を併用しても良い。
 イソシアネート系架橋剤は、少なくともポリイソシアネート化合物を含むものである。ポリイソシアネート化合物としては、例えば、トリレンジイソシアネート、ジフェニルメタンジイソシアネート、キシリレンジイソシアネート等の芳香族ポリイソシアネート、ヘキサメチレンジイソシアネート等の脂肪族ポリイソシアネート、イソホロンジイソシアネート、水素添加ジフェニルメタンジイソシアネート等の脂環式ポリイソシアネートなど、及びそれらのビウレット体、イソシアヌレート体、さらにはエチレングリコール、プロピレングリコール、ネオペンチルグリコール、トリメチロールプロパン、ヒマシ油等の低分子活性水素含有化合物との反応物であるアダクト体などが挙げられる。
(反応条件等)
 反応容器内の水分量が約6%以下になるようにCNFを撹拌可能な濃度で有機溶媒に分散し、炭酸カリウムをCNFに対して、1~40wt%の範囲で添加し、次いで、次いで、多価アルコール類及び/又はポリアルキレングリコール類、ジビニルエステル類等の架橋剤を順番に加えた後、次いで、ビニルエステル類及び/又は有機酸ビニルエステル類を加え、反応系温度25℃~100℃の条件下において、数分~5時間の範囲の間で反応させる。反応終了後、反応生成物を回収し、乾燥、精製することで、疎水化CNF複合体を得ることができる。また、含水率10%程度でも十分に疎水性を付与できるが、反応系内の水分量が少ないほど反応効率が高い。また、炭酸カリウムは反応触媒として働くが、反応系内をアルカリ性に保つ緩衝効果が重要であり、40wt%以上の濃度があればその効果は十分に維持できる。
 以上の反応条件によって得られる疎水化CNF複合体は、化学構造上、嵩高いものとなり、分散安定性に寄与し、離漿が極めて少ない油性増粘剤が得られる。
 本願発明に係る疎水化CNF複合体の離漿が極めて少ないのは、以下のように考えられる。まず、離漿が起きる要因としては、CNF表面を修飾しているビニルエステル類のアルキル基に吸着された油性成分の吸着力は、CNF中の水酸基同士の吸着力よりも弱い場合があるため、時間の経過と共にCNFネットワークがくずれるためCNFネットワーク中に存在するCNF表面のビニルエステル類のアルキル基に吸着された前記油性成分を保持できなくなる。その結果、CNF同士が接近、凝集し、油性成分を離漿すると考えられる。しかしながら、本疎水化CNF複合体においては、疎水化CNF複合体が有する多価アルコール類及び/又はポリアルキレングリコール類によって、CNF同士の距離が保たれ、ビニルエステル類のアルキル基に吸着された油性成分が維持される。その結果として、疎水化CNF複合体の離漿が極めて少ないものとなると考えられる。
 したがって、本願発明に係る疎水化CNF複合体は、セルロースナノファイバーの解繊度、官能基(ビニルエステル類及び/又は有機酸ビニルエステル類、多価アルコール及び/又はポリアルキレングリコール類)、置換度を適宜、選択することによって、様々な油性成分に対して離漿が極めて少ない油性増粘剤を得ることができる。
 本発明において、「疎水化CNF複合体」及び「油性増粘剤疎水化CNF複合体」の発明を、その特定事項として製造方法によっても特定している。その理由を説明する。
本発明の疎水化CNF複合体の態様として、少なくとも、以下の2つの態様が存在する。
まず、第一に、セロビオースユニット内の化学修飾されていない水酸基が、ビニルエステル類及び/又は有機酸ビニルエステル類に置換され、一のCNF中の未反応の水酸基と他のCNF中の未反応の水酸基とに対し、多価アルコール類及び/又はポリアルキレングリコール類の2つ以上の水酸基とが結合した疎水化CNF複合体が存在する。
次いで、第二に、セロビオースユニット内の化学修飾されていない水酸基が、ビニルエステル類及び/又は有機酸ビニルエステル類に置換され、多価アルコール類及び/又はポリアルキレングリコール類の2分子以上の水酸基同士が結合し、これが、一のCNF中の未反応の水酸基と他のCNF中の未反応の水酸基とに結合している疎水化CNF複合体が存在する。
そして、これらの疎水化CNF複合体がある割合で組み合わされている。
ここで、水酸基に結合したビニルエステル類及び/又は有機酸ビニルエステル類の置換度を測定するためには、前述のように、水酸化ナトリウム溶液を用いて結合したビニルエステル類及び/又は有機酸ビニルエステル類を遊離させ、これを滴定することによって、算出することができる。しかしながら、係る方法を疎水化CNF複合体に適用すると、第二の疎水化CNF複合体に対しては、多価アルコール類及び/又はポリアルキレングリコール類同士の結合も遊離してしまい、CNF中の水酸基に結合した多価アルコール類及び/又はポリアルキレングリコール類の置換度を正確に算出することができない。
 本願発明のように得られる疎水化CNF複合体をその構造又は特性により直接特定するためには、特定する作業を行うことに著しく過大な経済的支出や時間を要するため、出願時に一義的に特定することは事実上困難である。そこで、疎水化CNF複合体の発明において製造方法を発明特定事項としている。
 また、本発明の疎水化CNFの他の製造方法として、含水CNFを分散しうる溶媒中に分散させ、トリストリメチルシロキシシリルプロピルイソシアネートを加え、20~150 ℃で2~10時間反応させ、セロビオースユニット内の水酸基にポリシロキサン鎖を導入することにより得られる。なお、塩基触媒としてピリジンなどを少量添加してもよい。
(油性成分)
 本発明において、増粘剤用途として用いることのできる油性成分としては、例えば、シリコーン油、非極性有機化合物及び低極性有機化合物、高級脂肪酸、紫外線吸収剤、植物油、鉱物油、種子抽出オイル、天然ガス又は石油から分離精製液化した油、動物の皮下組織などより得られる脂肪油、骨,皮を酸,アルカリ,酵素それぞれ単独あるいは組合せの存在下で加水分解して得られるコラーゲンたん白質加水分解物、ベンゼン等の極性の小さなの各種溶媒、動物油等を挙げることができる。
 シリコーン油としては、例えば、鎖状ポリシロキサン(例えば、ジメチコン)、メチルトリメチコン、メチルフェニルポリシロキサン、ジフェニルポリシロキサン等);環状ポリシロキサン(例えば、オクタメチルシクロテトラシロキサン、デカメチルシクロペンタシロキサン、ドデカメチルシクロヘキサシロキサン等)、3次元網目構造を形成しているシリコーン樹脂、シリコーンゴム、各種変性ポリシロキサン(アミノ変性ポリシロキサン、ポリエーテル変性ポリシロキサン、アルキル変性ポリシロキサン、フッ素変性ポリシロキサン等)等が挙げられる。
 非極性有機化合物としては、例えば、流動パラフィン、軽質流動イソパラフィン、重質流動イソパラフィン、ワセリン、n-パラフィン、イソパラフィン、イソドデカン、イソヘキサデカン、ポリイソブチレン、水素化ポリイソブチレン、ポリブテン、オゾケライト、セレシン、マイクロクリスタリンワックス、パラフィンワックス、ポリエチレンワックス、ポリエチレン・ポリピロピレンワックス、スクワレン、プリスタン、ポリイソプレン等を挙げることができる。
 低極性有機化合物としては、例えば、ジネオペンタン酸トリプロピレングリコール、イソノナン酸イソノニル、ミリスチン酸イソプロピル、オクタン酸セチル、ミリスチン酸オクチルドデシル、パルミチン酸イソプロピル、ステアリン酸ブチル、ラウリン酸ヘキシル、ミリスチン酸ミリスチル、オレイン酸デシル、ジメチルオクタン酸ヘキシルデシル、乳酸セチル、乳酸ミリスチル、酢酸ラノリン、ステアリン酸イソセチル、イソステアリン酸イソセチル、12-ヒドロキシステアリン酸コレステリル、エチルヘキサン酸セチル、ジ-2-エチルヘキサン酸エチレングリコール、ジペンタエリスリトール脂肪酸エステル、モノイソステアリン酸N-アルキルグリコール、ジカプリン酸ネオペンチルグリコール、リンゴ酸ジイソステアリル、ジ-2-ヘプチルウンデカン酸グリセリン、トリ-2-エチルヘキサン酸トリメチロールプロパン、トリイソステアリン酸トリメチロールプロパン、テトラ-2-エチルヘキサン酸ペンタエリスリチル、トリエチルヘキサノイン(トリ-2-エチルヘキサン酸グリセリン)、トリオクタン酸グリセリン、トリイソパルミチン酸グリセリン、トリイソステアリン酸トリメチロールプロパン、セチル2-エチルヘキサノエート、2-エチルヘキシルパルミテート、トリミリスチン酸グリセリン、トリ-2-ヘプチルウンデカン酸グリセライド、ヒマシ油脂肪酸メチルエステル、オレイン酸オレイル、アセトグリセライド、パルミチン酸2-ヘプチルウンデシル、アジピン酸ジイソブチル、N-ラウロイル-L-グルタミン酸-2-オクチルドデシルエステル、アジピン酸ジ-2-ヘプチルウンデシル、エチルラウレート、セバシン酸ジ-2-エチルヘキシル、ミリスチン酸2-ヘキシルデシル、パルミチン酸2-ヘキシルデシル、アジピン酸2-ヘキシルデシル、セバシン酸ジイソプロピル、コハク酸2-エチルヘキシル、クエン酸トリエチル等を挙げることができる。
 高級脂肪酸としては、例えば、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、ベヘン酸、オレイン酸、ウンデシレン酸、トール酸、イソステアリン酸、リノール酸、リノレイン酸、エイコサペンタエン酸(EPA)、ドコサヘキサエン酸(DHA)等が挙げられる。
 紫外線吸収剤としては、一般に化粧品に用いられる高極性の油性紫外線吸収剤を広く挙げることができる。例えば、4-メトキシけい皮酸2-エチルヘキシル、2-ヒドロキシ-4-メトキシベンゾフェノン、パラアミノ安息香酸等の安息香酸誘導体、サリチル酸誘導体、ケイ皮酸誘導体、ジベンゾイルメタン誘導体、β,β-ジフェニルアクリラート誘導体、ベンゾフェノン誘導体、ベンジリデンショウノウ誘導体、フェニルベンゾイミダゾール誘導体、トリアジン誘導体、フェニルベンゾトリアゾール誘導体、アントラニル酸メチル等のアントラニル誘導体、イミダゾリン誘導体、ベンザルマロナート誘導体、4,4-ジアリールブタジエン誘導体等が例示される。
 植物油としては、例えばメンドウフォーム油、紅花油、ヒマシ油、サフラワー油、ホホバ油、ヒマワリ油、アルモンド油、ゴマ油、キャノーラ油、トウモロコシ油、大豆油、落花生油、ミンク油、アボカド油、ツバキ油、マカデミアナッツ油、オリーブ油、ヤシ油、アボガド油及びサザンカ油等を挙げることができる。
(油性増粘剤組成物)
 本発明の表面疎水化CNF及び/又は疎水化CNF複合体を利用して油性増粘剤組成物として使用することができる。すなわち、解繊度、官能基又は置換度を適宜変更して得られた表面疎水化CNF及び/又は疎水化CNF複合体を1種又は2種以上組み合わせて、油性増粘剤組成物として使用することができる。また、解繊度、官能基又は置換度を適宜変更して得られた表面疎水化CNF及び/又は疎水化CNF複合体を、公知の増粘、ゲル化剤、疎水化剤、懸濁剤、分散剤・温度・力学安定剤、固結防止剤、流動性改善剤、乾式シリカ、フューズドシリカ粒子等と、1種又は2種以上組み合わせて、油性増粘剤組成物として使用することもできる。
 本願発明に係る油性増粘剤組成物の用途の例として、油性塗料の増粘剤、疎水性樹脂の増粘剤が挙げられる。また、オイル吸着剤、オイル吸収剤、エマルション用オイル組成物としても利用でき、形状くずれ防止、たれ防止、摩耗性改善にも利用できる。
 本発明の表面疎水化CNF及び/又は疎水化CNF複合体は、前記油性成分に対して0.01~20%の割合で、より好ましくは、0.1~10%の割合で、添加し、分散させることによって、高い増粘効果を発揮することができ、また、これを配合した使用感や安定性の良好な化粧品を提供することができる。本発明に係る0.01%よりも少ない割合で配合した場合には、所望の増粘効果を得られないおそれがあり、また、20%以上の割合で配合した場合には、増粘効果に影響がないからである。
 本発明の油性増粘剤組成物は、前記油性成分に対して0.01~20%の割合で、より好ましくは、0.1~10%の割合で、添加し、分散させることによって、高い増粘効果を発揮することができ、また、これを配合した使用感や安定性の良好な化粧品を提供することができる。0.01%よりも少ない割合で配合した場合には、所望の増粘効果を得られないおそれがあり、また、20%以上の割合で配合した場合には、増粘効果に影響がないからである。
以下、実施例及び比較例とを挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
 まず、実施例、及び比較例に先立ち、以下のようにして表面疎水化CNFを作製した。
(表面疎水化CNFの作成)
竹パルプを原料として、ACC法を用いて、解繊処理を行い、解繊度合いの異なる複数のCNF水分散液1wt%を得た。これらのCNF水分散液について粘度測定を複数回行ったところ1600~2400mPa・s (以下、BB-Bという。)及び640~960mPa・s(以下、BB-Cという。)であった。
 また、広葉樹パルプを原料として、ACC法を用いて、解繊処理を行い、CNF水分散液1%を得た。これらのCNF水分散液について粘度測定を複数回行ったところ2400~3600mPa・s (以下、LB-Cという。)であった。
 さらに、針葉樹パルプを原料として、ACC法を用いて、解繊処理を行い、CNF水分散液1%を得た。これらのCNF水分散液について粘度測定を複数回行ったところ3600~5400mPa・s (以下、NB-Aという。)であった。
粘度測定条件
使用粘度計:TVB-15形粘度計(東機産業株式会社)
使用ロータ:M3またはM4
測定温度:25℃
回転数:12rpm
 次いで、含水CNFをDMSO中に分散させ炭酸カリウムを添加した後、80℃で反応させた。CNF(BB-C)を用いた場合、プロピオン酸ビニルは1時間または3時間、ヘキサン酸ビニルは1時間または3.5時間、ラウリン酸ビニルは15分または1時間で行った。プロピオン酸ビニルの置換度測定は困難であり測定不可能であった。ヘキサン酸ビニルは1時間反応でDS:0.26、3.5時間反応でDS:0.73となった。ラウリン酸ビニルは15分反応でDS:0.47、3.5時間反応でDS:0.64となった。また、CNF(BB-B)を用いた場合、ラウリン酸ビニルは1時間で反応を行いDSは0.28、3時間で反応を行いDSは0.56となった。反応終了後、生成物を回収し有機溶媒にて洗浄・精製した。
実施例1~12
(表面疎水化CNFの分散性評価1)
各オイルに対して基材(Hex-CNF DS:0.73, Lau-CNF DS:0.64)がそれぞれ0.1%(w/w)濃度になるように調製し、各オイルを撹拌し、超音波処理を30分間行い目視による分散性評価を下記の評価基準を用いて行った。
評価基準
○:高分散 △:低分散 ×:凝集
また、実施例において使用したオイルは以下の通りである。
メトキシケイ皮酸エチルへキシル(Uvinul MC-80 :BASFジャパン株式会社)、ジメチルポリシロキサン (KF96-10cs:信越化学工業株式会社)、シクロペンタンシロキサン(CY-5信越化学工業株式会社 )、トリエチルヘキサノイン(T.I.O :日清オイリオグループ株式会社)、エチルヘキサン酸セチル(サラコス816T :日清オイリオグループ株式会社)、ミネラルオイル(シルコールP-70:松村石油研究所製)
Figure JPOXMLDOC01-appb-T000002
 表1に結果を示す。表1から分かるようにHex-CNFは6種類中3種類のオイル(Uvinul MC-80(実施例1)、T.I.O(実施例7) 、サラコス816T(実施例9))に分散することができた。
 一方、Lau-CNFは6種類の内、シルコールP-70(実施例12)に分散することができなかった。シリコーン系オイルである(KF96-10cs及びCY-5)やゲル化しにくいといわれるオイル(Uvinul MC-80)においても分散可能だった。
実施例13~18、比較例1~3
(表面疎水化CNFの分散性評価2)
各オイルに対して基材(Hex-CNF BB-C DS:0.73, Lau-CNF BB-C DS:0.64)がそれぞれ0.1%(w/w)濃度になるように調製し、各オイルを撹拌し、超音波処理を30分間行い目視による分散性評価を前記評価基準を用いて行った。基材としてAEROSILR R972 (登録商標 日本アエロジル株式会社)を使用した以外は全て同一にして比較例とした。
 また、実施例13~実施例18、比較例1~比較例3において使用したオイルは、以下の通りである。
オクタメチルトリシロキサン (KF96L-1CS:信越化学工業株式会社)、ジメチルポリシロキサン (KF96-10cs:信越化学工業株式会社)、オレイン酸(オレイン酸:和光純薬株式会社)
Figure JPOXMLDOC01-appb-T000003
表2に結果を示す。表2から分かるようにKF-96L-1CS、KF96-10csに対して、Hex-CNFは分散できておらず凝集していた(実施例12、実施例15)。一方、Lau-CNFの方は凝集は確認されず、分散していた(実施例14、実施例16)。一方、AEROSILR R972 の方は、KF-96L-1CSに対しては、分散できておらず、凝集していた。また、KF96-10csに対しては、分散していた(比較例1、比較例2)
 また、オレイン酸に対しては、全ての基材は分散していた(実施例17、実施例18及び比較例3)。
実施例19~27
(表面疎水化CNFの分散性評価3)
 各オイルに対してLau-CNFの置換度及び解繊度を変えた基材をそれぞれ0.1%(w/w)濃度になるように調製し、各オイルを撹拌し、超音波処理を30分間行い目視による分散性評価を、前記評価基準を用いて行った。なお、使用したオイルは、表2において使用したオイルと同一のものを使用した。
Figure JPOXMLDOC01-appb-T000004
 表3に結果を示す。表3から分かるようにKF96L-1CS及びに対して、置換度の低い実施例19ではあまり沈降しておらず分散性は高かった。一方、実施例20及び実施例21は一晩静置により沈降しており、置換度の高い実施例20及び実施例21よりも置換度の低い実施例19の方が分散性は高かった。
 一方、KF96-10csに対して、置換度の低い実施例22では、分散させることが出来なかったが、置換度の高い実施例23及び実施例24では、分散させることができた。
 また、オレイン酸に対しては実施例20~実施例22のいずれも分散させることができた。
実施例28~33 比較例4、5
(表面疎水化CNFの粘性評価1)
 KF96L-1CSに対してLau-CNF(BB-B DS:0.28)を重量パーセント濃度2~5%と、Lau-CNF(BB-C DS:0.64)を重量パーセント濃度3~6%とした各サンプルを調製した(実施例28、29)。Lau-CNFに変えて、アエロジルR972を重量パーセント濃度9~12%とした各サンプルを比較例4とした。各サンプルを振とうし撹拌した後、恒温槽(25℃)に5分間静置し、B型粘度計(TVB-15形粘度計(東機産業株式会社))、ローターNo.(M3)を使用し、回転数12rpmにおいて測定した。
 また、オレイン酸に対して、Hex-CNF(BB-C DS:0.75)、Lau-CNF(BB-B DS:0.28)、Lau-CNF(BB-B DS:0.56)、をそれぞれ重量パーセント濃度2~4%、Lau-CNF(BB-C DS:0.64)を重量パーセント濃度3~6%した各サンプルを調製した(実施例30~実施例33)。また、これらに変えて、AEROSILR R972を重量パーセント濃度8~11%とした各サンプルを比較例5とした。各サンプルを振とうし撹拌した後、恒温槽(25℃)に5分間静置し、B型粘度計(TVB-15形粘度計(東機産業株式会社))、ローターNo.(M3)を使用し、回転数12rpmにおいて測定した。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 表4、表5及び表6に結果を示す。表4から分かるように、Lau-CNF(BB-C DS:0.64)については、増粘効果を確認することできたが(実施例28、29)、AEROSILR R972については、ペースト状態のため粘度を測定することが出来なかった(比較例4)。 また、実施例28と実施例29より、KF96L-1CSに対する増粘効果は、低置換度のLau-CNFの方が効果が高いといえる。
 また、表5及び表6から分かるように、AEROSILR R972は、オレイン酸に対する増粘効果を得るには、9wt%程必要であることが分かった(比較例5)。
 一方、Hex-CNF(BB-C DS0.64)については、2wt%程で十分な増粘効果が得られた(実施例30)。また、Lau-CNF(BB-B DS0.28)、Lau-CNF(BB-B DS0.56)については、2wt%程で十分な増粘効果が得られた(実施例31、実施例32)。また、Lau-CNF(BB-C DS0.64)については、3wt%程で増粘効果が得られた(実施例33)。したがって、オレイン酸に対する増粘効果は、Hex-CNF及びLau-CNFの方がアエロジルR972よりも低濃度で効果が得られることが分かった。
実施例34~37 比較例6~8
(表面疎水化CNFの粘性評価2)
KF96L-1CSに対してLau-CNF(BB-C DS:0.64)を重量パーセント濃度2~5%とし、KF96 10csに対して、Lau-CNF(BB-C DS:0.64)を重量パーセント濃度3~6%とした各サンプルを調製した(実施例34、35)。また、Lau-CNFに変えて、KF96L-1CS、KF96 10csに対してAEROSILR R972をそれぞれ、重量パーセント濃度9~12%、10~12%とした各サンプルを比較例6、比較例7とした。各サンプルを振とうし撹拌した後、恒温槽(25℃)に5分間静置し、B型粘度計(TVB-15形粘度計(東機産業株式会社))、ローターNo.(M3)を用いて、回転数12rpmにおいて測定した。
 また、オレイン酸に対して、Hex-CNF(BB-C DS:0.73)、Lau-CNF(BB-C DS:0.64)をそれぞれ重量パーセント濃度2~4%、3~6%とした各サンプルを調製した(実施例36、実施例37)。また、Lau-CNF(BB-C DS:0.64)、Hex-CNF(BB-C DS:0.75)に変えて、AEROSILR R972を重量パーセント濃度8~11%とした各サンプルを比較例8とした。各サンプルを振とうし撹拌した後、恒温槽(25℃)に5分間静置し、B型粘度計(TVB-15形粘度計(東機産業株式会社))、ローターNo.(M3)を用いて、回転数12rpmにおいて測定した。
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
表7及び表8に結果を示す。表7から分かるように、KF96L-1CSについては、AEROSILR R972よりも低濃度で増粘効果を確認することできた(実施例34、比較例6)。一方、KF96 10csについても、低濃度で増粘効果を確認することできた(実施例35、比較例7)
また、表8から分かるように、Lau-CNF(BB-C DS:0.64)、Hex-CNF(BB-C DS:0.73)の両方について、アエロジルR972よりも低濃度で増粘効果を確認することができた(実施例36、実施例37、比較例8)。
実施例38~42
(表面疎水化CNFの粘性評価3)
 各オイル(メトキシケイヒ酸エチルへキシル(Uvinul MC-80 :BASFジャパン株式会社)、トリエチルヘキサノイン(T.I.O :日清オイリオグループ株式会社)、エチルヘキサン酸セチル(サラコス816T :日清オイリオグループ株式会社))に対してLau-CNF(BB-C DS:0.56)を重量パーセント濃度2~5%とした各サンプルを調製した(実施例38~実施例40)。
 各オイル(ジメチルポリシロキサン (KF96-10cs:信越化学工業株式会社)、シクロペンタンシロキサン(CY-5 信越化学工業株式会社 ))に対してLau-CNF(BB-C DS:0.65)を重量パーセント濃度3~5%とした各サンプルを調製した(実施例41、実施例42)。
 各サンプルを振とうし、撹拌した後、恒温槽(25℃)に5分間静置し、B型粘度計(TVB-15形粘度計(東機産業株式会社))、ローターNo.M3を用いて回転数6、60rpmにおいて測定した。
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
 表9及び表10に結果を示す。表9及び表10から分かるように、全てのオイルに対して、増粘効果を確認することできた。
(レオロジー評価)
 一般的なジェルに近い40,000mPa・s程度の粘度となるようにLau-CNF、アエロジル200を油性増粘剤として、オレイン酸分散液を調製した。これらについて、フローカーブ作成(チキソトロピー性評価)並びに降伏応力測定を行った。
Lau-CNF-オレイン酸分散液6%の粘度は、33,800mPa・sであった。アエロジル200-オレイン酸分散液5%分散液の粘度は、39,500mPa・sであった。
 測定結果を図4、図5及び図6に示す。
 図4から分かるように、アエロジル200-オレイン酸分散液5%分散液はレオペキシー性を示す結果であった。また、図5から分かるように、Lau-CNF-オレイン酸分散液6%は、チキソトロピー性を示すヒステリシスループと評価される結果であった。
 図6から分かるように、アエロジル200:5%は37.70 Pa、Lau-CNF:6%は19.73 Paの降伏値を示した。
実施例43
(疎水化CNF複合体の製造)
竹パルプを原料として、ACC法を用いて、解繊処理を行い、CNF水分散液1%を得た。これらのCNF水分散液について粘度測定を行ったところ815mPa・s(以下、BB-Cという。)であった。
粘度測定条件
使用粘度計:TVB-15形粘度計(東機産業株式会社)
使用ロータ:M3またはM4
測定温度:25℃
回転数:12rpm
 次いで、含水CNFをDMSO中に分散させ炭酸カリウムを添加した後、ポリエチレングリコール(分子量20000)、アジピン酸ジビニル、有機酸ビニル(プロピオン酸ビニル、ヘキサン酸ビニル、ラウリン酸ビニル)の順に加え、80℃で反応させたのち、メタノールを用いて洗浄、精製した(Hex-PEG-CNF BB-C)。
(疎水化CNF複合体の分散性評価)
下記のオイルに対して基材(Hex-PEG-CNF)が0.1%(w/w)濃度になるように調製し、各オイルを撹拌し、超音波処理を30分間行い目視による分散性評価を下記の評価基準を用いて行った。
評価基準
○:高分散 △:低分散 ×:凝集
また、使用したオイルは以下の通りである。
シクロペンタンシロキサン(CY-5信越化学工業株式会社 )
Figure JPOXMLDOC01-appb-T000012
表11から分かるように、実施例5,6では分散性評価がそれぞれ、△、×であったが、疎水化CNF複合体を使用した場合には、○評価となった。また、係る検体は、1週間後であっても、離漿は確認されなかった。
実施例44
(疎水化CNF複合体の粘性評価1)
 CY-5に対してHex-PEG-CNF(BB-C)を重量パーセント濃度1.0~2.0%としたサンプルを調製した(実施例44)。サンプルを振とうし、撹拌した後、恒温槽(25℃)に5分間静置し、B型粘度計(TVB-15形粘度計(東機産業株式会社))、ローターNo.(M3又はM4)を使用し、回転数12rpmにおいて測定した(2.0%のみM4を使用した)。
Figure JPOXMLDOC01-appb-T000013
表12から分かるように、Hex-PEG-CNF(BB-C)の増粘効果を確認することできた。

Claims (9)

  1. 平均太さ3~200nmであり、平均長さ0.1μm以上のセルロースナノファイバー(以下、CNFという。)であって、前記CNF水分散液1wt%の粘度値が700~2100mPa・sであり、前記CNFのセロビオースユニット内の水酸基がビニルエステル類に置換され、その置換度が0.2~0.8であることを特徴とする油性増粘剤用表面疎水化CNF。
  2. 平均太さ3~200nmであり、平均長さ0.1μm以上のCNFであって、前記CNF水分散液1wt%の粘度値が300~10000mPa・sであり、前記CNFのセロビオースユニット内の水酸基がビニルエステル類に置換され、その置換度が0.2~0.8であることを特徴とする油性増粘剤用表面疎水化CNF。
  3. 平均太さ3~200nmであり、平均長さ0.1μm以上のCNFであって、前記CNF水分散液1wt%の粘度値が300~10000mPa・sであり、前記CNFのセロビオースユニット内の水酸基がビニルエステル類に置換され、かつ、ビニルエステル類に置換されたCNF同士が、多価アルコール類及び/又はポリアルキレングリコール類を介して架橋されたもの及び/又はビニルエステル類に置換されたCNFの水酸基の一部に結合したものであることを特徴とする疎水化CNF複合体。
  4. α―セルロースの含有率60~99質量%のパルプである多糖の0.5~10質量%水混合液を50~400MPaの高圧水にして、複数箇所から噴射し衝突させて解繊処理して得られる平均太さ3~200nmである含水状態のCNFを、有機溶媒中に炭酸カリウムとともに添加し、多価アルコール類及び/又はポリアルキレングリコール類、架橋剤、ビニルエステル類及び/又は有機酸ビニルエステル類を添加し、反応させ、得られる反応生成物を回収する工程を含むことを特徴とする疎水化CNF複合体。
  5. α―セルロースの含有率60~99質量%のパルプである多糖の0.5~10質量%水混合液を50~400MPaの高圧水にして、複数箇所から噴射し衝突させて解繊処理して得られる平均太さ3~200nmである含水状態のCNFを、有機溶媒中に炭酸カリウムとともに添加し、多価アルコール類及び/又はポリアルキレングリコール類、架橋剤、ビニルエステル類及び/又は有機酸ビニルエステル類を添加し、反応させ、得られる反応生成物を回収する工程を含むことを特徴とする油性増粘剤用疎水化CNF複合体。
  6. 少なくとも、請求項1又は請求項2に記載の油性増粘剤用表面疎水化CNFが配合されたことを特徴とする油性増粘剤組成物。
  7. 少なくとも、請求項3又は請求項4に記載の疎水化CNF複合体、又は請求項5に記載の油性増粘剤疎水化CNF複合体が配合されたことを特徴とする油性増粘剤組成物。
  8. 少なくとも、請求項1又は請求項2に記載の油性増粘剤用表面疎水化セルロースナノファイバーが配合されたことを特徴とする化粧品。
  9. 少なくとも、請求項3又は請求項4に記載の疎水化CNF複合体、又は請求項5に記載の油性増粘剤用疎水化CNF複合体が配合されたことを特徴とする化粧品。
PCT/JP2018/015970 2017-04-19 2018-04-18 油性増粘剤用表面疎水化セルロースナノファイバー、それを配合した油性増粘剤組成物、およびそれを配合した化粧品及び油性増粘剤用疎水化セルロースナノファイバー複合体、それを配合した油性増粘剤組成物、およびそれを配合した化粧品 WO2018194080A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18788217.0A EP3626797B1 (en) 2017-04-19 2018-04-18 Surface-hydrophobicized cellulose nanofibers for oily thickener
JP2018563186A JP6537750B2 (ja) 2017-04-19 2018-04-18 油性増粘剤、それを配合した油性増粘剤組成物、およびそれを配合した化粧品
CN201880026496.6A CN110741060B (zh) 2017-04-19 2018-04-18 疏水化cnf复合体,与油性增稠剂、混合其的油性增稠剂组成物及混合其的化妆品
US16/606,291 US20220062149A1 (en) 2017-04-19 2018-04-18 Surface-hydrophobicized cellulose nanofibers for oily thickener, oily thickener composition containing same, cosmetics and hydrophobicized cellulose nanofiber complex for oily thickener containing same, oily thickener composition containing same, and cosmetics containing same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017083149 2017-04-19
JP2017-083149 2017-04-19
JP2017-255108 2017-12-29
JP2017255108 2017-12-29

Publications (1)

Publication Number Publication Date
WO2018194080A1 true WO2018194080A1 (ja) 2018-10-25

Family

ID=63855773

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/015970 WO2018194080A1 (ja) 2017-04-19 2018-04-18 油性増粘剤用表面疎水化セルロースナノファイバー、それを配合した油性増粘剤組成物、およびそれを配合した化粧品及び油性増粘剤用疎水化セルロースナノファイバー複合体、それを配合した油性増粘剤組成物、およびそれを配合した化粧品

Country Status (5)

Country Link
US (1) US20220062149A1 (ja)
EP (1) EP3626797B1 (ja)
JP (1) JP6537750B2 (ja)
CN (1) CN110741060B (ja)
WO (1) WO2018194080A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022244820A1 (ja) * 2021-05-18 2022-11-24 中越パルプ工業株式会社 疎水化cnf分散体の製造方法、疎水化cnf油性成分含有体の製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6915140B1 (ja) * 2020-10-07 2021-08-04 第一工業製薬株式会社 粘性水系組成物および皮膚外用剤

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010241785A (ja) 2009-03-19 2010-10-28 Sekisui Plastics Co Ltd 樹脂粒子、複合粒子の製造方法及び化粧料
WO2013031391A1 (ja) * 2011-08-26 2013-03-07 オリンパス株式会社 セルロースナノファイバーとその製造方法、複合樹脂組成物、成形体
JP2014141675A (ja) 2014-02-14 2014-08-07 Dai Ichi Kogyo Seiyaku Co Ltd 増粘剤組成物
JP2014218468A (ja) 2013-05-09 2014-11-20 信越化学工業株式会社 油性増粘剤、増粘油性組成物及び化粧料
WO2016010016A1 (ja) * 2014-07-14 2016-01-21 中越パルプ工業株式会社 誘導体化cnf、その製造方法、及びポリオレフィン樹脂組成物
WO2017159823A1 (ja) * 2016-03-16 2017-09-21 株式会社Kri セルロース微細繊維およびその製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2739383B1 (fr) * 1995-09-29 1997-12-26 Rhodia Ag Rhone Poulenc Microfibrilles de cellulose a surface modifiee - procede de fabrication et utilisation comme charge dans les materiaux composites
JP5150792B2 (ja) * 2011-03-11 2013-02-27 Dic株式会社 変性セルロースナノファイバー、その製造方法及びこれを用いた樹脂組成物
CN103275336B (zh) * 2013-06-19 2015-06-10 天津科技大学 一种经干燥后易再分散的纤维素晶体的制备方法
WO2018131721A1 (ja) * 2017-01-16 2018-07-19 株式会社Kri 硫酸エステル化修飾セルロースナノファイバーおよびセルロースナノファイバーの製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010241785A (ja) 2009-03-19 2010-10-28 Sekisui Plastics Co Ltd 樹脂粒子、複合粒子の製造方法及び化粧料
WO2013031391A1 (ja) * 2011-08-26 2013-03-07 オリンパス株式会社 セルロースナノファイバーとその製造方法、複合樹脂組成物、成形体
JP2014218468A (ja) 2013-05-09 2014-11-20 信越化学工業株式会社 油性増粘剤、増粘油性組成物及び化粧料
JP2014141675A (ja) 2014-02-14 2014-08-07 Dai Ichi Kogyo Seiyaku Co Ltd 増粘剤組成物
WO2016010016A1 (ja) * 2014-07-14 2016-01-21 中越パルプ工業株式会社 誘導体化cnf、その製造方法、及びポリオレフィン樹脂組成物
WO2017159823A1 (ja) * 2016-03-16 2017-09-21 株式会社Kri セルロース微細繊維およびその製造方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
FUMAGALLI, MATTHIEU ET AL.: "Versatile Gas-Phase Reactions for Surface to Bulk Esterification of Cellulose Microfibrils Aerogels", BIOMACROMOLECULES, vol. 14, no. 9, 2013, pages 3246 - 3255, XP055613375 *
See also references of EP3626797A4
SEHAQUI, H. ET AL.: "Highly Carboxylated Cellulose Nanofibers via Succinic Anhydride Esterification of Wheat Fibers and Facile Mechanical Disintegration", BIOMACROMOLECULES, vol. 18, no. 1, 29 November 2016 (2016-11-29), pages 242 - 248, XP055613373 *
WANG, YUHONG ET AL.: "Aldehyde Functionalized Cellulose Support for Hydrogels", JOURNAL OF APPLIED POLYMER SCIENCE, vol. 118, no. 5, 2010, pages 2489 - 2495, XP055613377 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022244820A1 (ja) * 2021-05-18 2022-11-24 中越パルプ工業株式会社 疎水化cnf分散体の製造方法、疎水化cnf油性成分含有体の製造方法
JPWO2022244820A1 (ja) * 2021-05-18 2022-11-24
JPWO2022244816A1 (ja) * 2021-05-18 2022-11-24
WO2022244816A1 (ja) * 2021-05-18 2022-11-24 中越パルプ工業株式会社 組成物及び日焼け止め化粧料
JP7344400B2 (ja) 2021-05-18 2023-09-13 中越パルプ工業株式会社 組成物及び日焼け止め化粧料

Also Published As

Publication number Publication date
EP3626797A1 (en) 2020-03-25
US20220062149A1 (en) 2022-03-03
EP3626797B1 (en) 2023-06-14
JP6537750B2 (ja) 2019-07-03
EP3626797A4 (en) 2021-05-05
JPWO2018194080A1 (ja) 2019-06-27
CN110741060B (zh) 2022-11-15
CN110741060A (zh) 2020-01-31

Similar Documents

Publication Publication Date Title
JP6113695B2 (ja) 弾力ジェル状組成物
JP5455168B2 (ja) 化粧料
JP5626828B2 (ja) 化粧品組成物およびそれを用いた乾燥物
KR101431932B1 (ko) 수분 함유 분말 조성물
JP6308531B2 (ja) 皮膚外用剤
EP1847262B1 (en) Cosmetic
US8080239B2 (en) Cosmetic
JP7356107B2 (ja) 水中油型日焼け止め化粧料
KR20120123371A (ko) 점성 조성물
US20090181070A1 (en) Emulsification Systems, Umulsions and Wet Wipes Containing Such Emulsions
JP6276812B2 (ja) 日焼け止め化粧料
JP6845510B2 (ja) 化粧料
JP2021507915A (ja) O/w型ピッカリングエマルジョン組成物を製造するための乳化用組成物及び方法
WO2018194080A1 (ja) 油性増粘剤用表面疎水化セルロースナノファイバー、それを配合した油性増粘剤組成物、およびそれを配合した化粧品及び油性増粘剤用疎水化セルロースナノファイバー複合体、それを配合した油性増粘剤組成物、およびそれを配合した化粧品
WO2020179567A1 (ja) 化粧料、加温使用用化粧料および美容方法
JP7508248B2 (ja) 繊維含有化粧料
JP2021075562A (ja) 化粧料
JP2021075562A5 (ja)
JP6905726B2 (ja) 固形粉末化粧料及び固形粉末化粧料の製造方法
WO2006011661A1 (ja) 化粧品組成物
JP6912232B2 (ja) 粉体化粧料
JP2023142005A (ja) 油性化粧料
JP7344400B2 (ja) 組成物及び日焼け止め化粧料
EP4442738A1 (en) Cellulose particles and dispersion of cellulose particles
US20230201086A1 (en) Cellulose acetate particles, cosmetic composition, and method for producing cellulose acetate particles

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018563186

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18788217

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018788217

Country of ref document: EP

Effective date: 20191119