WO2018193694A1 - 導電性無機フィラー - Google Patents
導電性無機フィラー Download PDFInfo
- Publication number
- WO2018193694A1 WO2018193694A1 PCT/JP2018/004801 JP2018004801W WO2018193694A1 WO 2018193694 A1 WO2018193694 A1 WO 2018193694A1 JP 2018004801 W JP2018004801 W JP 2018004801W WO 2018193694 A1 WO2018193694 A1 WO 2018193694A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- glass fiber
- metal
- fiber
- glass
- resin
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C25/00—Surface treatment of fibres or filaments made from glass, minerals or slags
- C03C25/10—Coating
- C03C25/12—General methods of coating; Devices therefor
- C03C25/16—Dipping
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B5/00—Non-insulated conductors or conductive bodies characterised by their form
- H01B5/14—Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C25/00—Surface treatment of fibres or filaments made from glass, minerals or slags
- C03C25/10—Coating
- C03C25/1095—Coating to obtain coated fabrics
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C25/00—Surface treatment of fibres or filaments made from glass, minerals or slags
- C03C25/10—Coating
- C03C25/42—Coatings containing inorganic materials
- C03C25/46—Metals
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/08—Metals
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/40—Glass
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K7/00—Use of ingredients characterised by shape
- C08K7/02—Fibres or whiskers
- C08K7/04—Fibres or whiskers inorganic
- C08K7/14—Glass
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K9/00—Use of pretreated ingredients
- C08K9/02—Ingredients treated with inorganic substances
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L101/00—Compositions of unspecified macromolecular compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/20—Conductive material dispersed in non-conductive organic material
- H01B1/22—Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B13/00—Apparatus or processes specially adapted for manufacturing conductors or cables
- H01B13/0036—Details
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B5/00—Non-insulated conductors or conductive bodies characterised by their form
- H01B5/16—Non-insulated conductors or conductive bodies characterised by their form comprising conductive material in insulating or poorly conductive material, e.g. conductive rubber
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/02—Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/08—Metals
- C08K2003/0812—Aluminium
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/08—Metals
- C08K2003/0881—Titanium
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/08—Metals
- C08K2003/0893—Zinc
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/001—Conductive additives
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/002—Physical properties
- C08K2201/003—Additives being defined by their diameter
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/002—Physical properties
- C08K2201/004—Additives being defined by their length
Definitions
- the present invention relates to a conductive inorganic filler used in combination with a resin, and a conductive resin article containing the filler.
- Patent Documents 3 to 5 disclose conductive resin articles containing fiber fillers, in which glass fiber is coated with zinc, zinc alloy or the like by a method such as hot dipping, electroless plating, vacuum deposition, or sputtering. Is illustrated.
- Patent Documents 1 and 2 in order to ensure the conductivity of the resin article of the resin article, the content has been increased or the fiber length has been increased.
- Patent Documents 4 and 5 conductive fibers having a fiber length of about 1 mm or 3 mm are blended in the resin.
- the length of the conductive fiber in the resin pellet of the semi-finished product of a resin article, the length of the conductive fiber can be adjusted as a result by adjusting the length of the resin pellet mixed with the conductive fiber. Has been made.
- the conductivity of a resin article containing a conductive filler is affected by the shape of the conductive fiber constituting the conductive filler, particularly the fiber length.
- a filler composed of conductive fibers having a long fiber length it is preferable to use a filler composed of conductive fibers having a long fiber length.
- it has been difficult to provide a practical conductive filler because it is difficult to achieve both a long fiber length with good conductivity characteristics and ease of blending into a resin.
- an object of the present invention is to provide a conductive filler that can be easily blended into a resin and has good conductivity imparting to the resin.
- the conductive filler of the present invention is a conductive filler made of glass fiber granules, and the glass fiber includes a metal coating in the longitudinal direction of the glass fiber,
- the glass fiber has a fiber length distribution;
- the fiber length (L10) at a cumulative distribution of 10% based on the number is 20 ⁇ m to 200 ⁇ m,
- the fiber length (L97) in the cumulative distribution 97% based on the number is 400 ⁇ m to 1000 ⁇ m,
- the glass fiber has an average fiber diameter of 1 to 40 ⁇ m.
- the fiber length in L10 and L97 is the cumulative distribution 10 on the basis of the number calculated from the distribution obtained by measuring the outline of each fiber placed on the plate with a microscope and measuring 100 or more fibers. % And 97% fiber length.
- a predetermined amount of glass fiber powder is collected from the central part of a sufficiently stirred glass fiber powder lump and used as a sample for measuring the fiber length of the glass fiber.
- the sample is subjected to contour observation with a microscope, and the fiber lengths of all the fibers observed with the microscope are measured.
- the collection of glass fiber particles is performed again.
- the average fiber diameter is a value measured in accordance with the method B described in “7.6 Single Fiber Diameter” of JIS R 3420 (2013) “Glass Fiber General Test Method”.
- the average fiber diameter is treated as a value including metal coating. Further, when the fiber is non-circular due to the non-circular shape of the glass fiber or the metal coating being provided on a part of the glass fiber, the fiber breakage according to the above JIS R 3420. When the area is measured and the fiber has a circular shape, the diameter corresponding to the cross-sectional area is defined as the average fiber diameter.
- L10 is less than 20 ⁇ m, it becomes difficult to make L97 into a granular material of 400 ⁇ m or more, and when it exceeds 200 ⁇ m, it becomes difficult to blend the filler into the resin.
- L10 is preferably 30 ⁇ m to 200 ⁇ m, more preferably 50 ⁇ m to 200 ⁇ m.
- L97 is less than 400 ⁇ m, when the filler is blended in the resin, the imparting of conductivity to the resin tends to be insufficient. On the other hand. When it exceeds 1000 ⁇ m, it becomes difficult to blend the filler into the resin. Considering these, L97 is preferably 500 ⁇ m to 1000 ⁇ m, more preferably 500 ⁇ m to 700 ⁇ m.
- the filler is blended with a resin material to form a conductive resin composition.
- the conductive resin composition preferably contains 0.01 to 30% by volume of the conductive filler in the conductive resin composition.
- a glass fiber provided with a metal coating in the longitudinal direction of the fiber is referred to as a metal-coated glass fiber.
- the conductive inorganic filler of the present invention can be easily blended into a resin, and the resin can have good conductivity.
- FIG. 1 schematically shows a conductive metal-coated glass fiber filler of the present invention.
- the apparatus for manufacturing the metal-coated glass fiber of this invention is shown typically.
- FIG. 3 is an enlarged view of a region A in FIG. 2.
- FIG. 1 schematically shows a metal-coated glass fiber 1 constituting a conductive filler made of a granular material.
- the metal-coated glass fiber 1 is composed of a glass fiber 2 and a longitudinal direction of the glass fiber 2.
- the metal coating 7 may cover the entire surface of the glass fiber 2 in the longitudinal direction, or may cover a half circumference of the glass fiber, or may cover a quarter circumference.
- FIG. 1B a part of the glass fiber in the longitudinal direction may be covered.
- the surface area of the metal coating increases, and it becomes easy to form a conductive path by contact between fillers. Succeeds in raising.
- the portion not coated with the metal becomes the metal uncoated surface 21 where the glass fiber is exposed on the surface.
- a silane coupling agent-treated layer it is possible to improve the adhesion with a resin material when it is made into a resin article, and as a result, it is possible to improve the strength of the resin article. It has been. Therefore, when a silane coupling agent treatment layer is provided on the non-metal-coated surface 21, the adhesion between the resin material and the metal-coated glass fiber can be improved, and the strength of the resin article can be improved.
- the glass fiber powder has a distribution in fiber length, the fiber length (L10) in a 10% cumulative distribution based on the number is 20 ⁇ m to 200 ⁇ m, and the fiber length in the cumulative distribution 97% based on the number (L97). ) Is preferably 400 ⁇ m to 1000 ⁇ m.
- the fiber length (L97) measured with a 97% cumulative distribution based on the number is surprisingly determined if there is a fiber having a long fiber length of 400 ⁇ m or more even if the fiber is about 3% based on the number. Is greatly improved.
- the average fiber diameter of the glass fiber is preferably 1 to 40 ⁇ m.
- the average fiber diameter of the glass fiber is less than 1 ⁇ m, thread breakage is likely to occur, and thus the productivity at the time of production tends to be inferior.
- the average fiber diameter may be 2 to 40 ⁇ m, more preferably 3 to 30 ⁇ m.
- the fiber length and average fiber diameter of the glass fiber are preferably within the above range, but fibers outside the above range may inevitably be mixed into the filler.
- fine powder having a fiber length of less than 5 ⁇ m which is generated when a part of the fiber is missing, may be included.
- Such a fine powder may be included in the filler to such an extent that the object of the present invention is not impaired, for example, up to 5% by mass.
- calculation of the fiber length (L10) with a number-based cumulative distribution of 10% and the fiber length (L97) with a number-based cumulative distribution of 97% in the measurement of the fiber length distribution is performed. Sometimes not included.
- the glass fiber glass composition examples include E glass, C glass, S glass, D glass, ECR glass, A glass, and AR glass. Among these, it is particularly preferable to use E glass or a similar composition of E glass. Since E glass has a composition with few alkali components in the glass, it is preferable because alkali elution hardly occurs and influence on the resin material is small.
- the metal coating 7 can be formed by various methods.
- the metal coating 7 can be prepared by a hot dipping method in which the glass fiber is brought into contact with the metal melt immediately after the fiber is spun.
- the metal constituting the metal coating in this case may be a metal having a melting point lower than the softening point of the glass fiber, and examples thereof include pure metals such as zinc, aluminum, tin, and indium, and alloys containing these metals. It is done. Among these, when zinc is included in the metal coating, the contact resistance between the metal coatings can be reduced, which is preferable.
- the zinc content in the alloy is set to 50% by mass or more.
- the amount is less than 50% by mass, the effect of zinc for improving the contact conductivity is hardly generated, and in the resin article including the fiber filler 1, it is difficult to ensure sufficient conductivity.
- the zinc content may be 75% by mass or more, preferably 85% by mass or more.
- the upper limit of the zinc content is not particularly limited, but the upper limit may be 99.999% by mass or less, preferably 99.99% by mass or less.
- the metal other than zinc is at least one selected from the group consisting of barium, strontium, calcium, magnesium, beryllium, aluminum, titanium, zirconium, manganese and tantalum.
- the examples of metals that can be mentioned aluminum and titanium can be mentioned as more preferable examples.
- the volume ratio between the glass fiber 2 and the metal coating 7 is preferably 5 to 95% by volume of the glass fiber 2 and 5 to 95% by volume of the remaining metal coating 7.
- the volume ratio of the glass fiber 2 is 5 to 95% by volume (5 to 95% by volume for the metal coating 7), preferably 10 to 95% by volume (5 to 90% by volume for the metal coating 7). Good.
- FIG. 2 schematically shows an apparatus for producing the metal-coated glass fiber 11.
- FIG. 3 is an enlarged view of region A in FIG.
- the glass fiber 2 drawn out from the bushing nozzle 31 attached to the lower part of the glass melting furnace 3 is taken up by the glass fiber winder 5.
- the metal melting furnace 4 for forming the metal coating is disposed between the bushing nozzle 31 and the winder 5, and a hole 41 for discharging the metal melt to the outside is provided on the side in contact with the glass fiber 2.
- the metal melt oozes out from the hole 41 and a droplet 71 is formed.
- the glass fiber 2 is pressed against the metal melting furnace 4 side (in the direction of the arrow indicated by B in FIG. 2) by the pressing machine 6 to bring the glass fiber 2 into contact with the droplet 71.
- the glass fiber 2 is formed by drawing a glass melt from a bushing nozzle 31 attached to the lower part of the glass melting furnace 3 and winding it with a glass fiber winder 5.
- the bushing nozzle 31 can be made of platinum or a platinum rhodium alloy.
- the diameter of the bushing nozzle 31 for discharging the glass melt can be suitably about 1 to 5 mm ⁇ , and is appropriately adjusted according to the desired fiber diameter of the glass fiber.
- the temperature of the glass melt when fiberizing varies depending on the composition of the glass, but in the case of the E glass composition, it is preferable to adjust the temperature when passing through the bushing nozzle to be 1100 to 1350 ° C.
- the glass fiber 2 is pulled out from the bushing nozzle 31 and coated with metal before being wound up by the winder 5.
- the metal raw material of the metal coating 7 is melted in the metal melting furnace 4 to form a molten metal in the furnace 4, and the metal melt is discharged from the hole 41 provided on the wall surface of the melting furnace 4. If the periphery of the hole 41 deteriorates the wettability with the metal melt, the metal melt discharged from the hole 41 is easily converted into a dome-shaped droplet 71.
- the metal coating 7 is formed on the glass fiber 2. If the dome-shaped droplet 71 is not formed at the time of coating, the metal melt does not stay around the hole 41 but flows out. For this reason, it is preferable that the hole 41 or the periphery of the hole 41 has poor wettability with the metal melt.
- ceramic is preferably used for the hole.
- the ceramic used include alumina, zirconia, silicon carbide, boron nitride, silicon nitride, and aluminum nitride.
- the shape of the hole 41 can be a circle, an ellipse, a rectangle, a square, a trapezoid, or the like.
- the opening area of the hole 41 is preferably 0.75 to 80 mm 2 . When the opening area is smaller than 0.75 mm 2 , the metal melt is difficult to come out, and when it is larger than 80 mm 2 , the metal melt is excessively discharged, and the metal melt flows out without staying around the hole 41.
- the opening area is preferably 3 to 60 mm 2 .
- the glass-coated glass fiber 2 may swing in a direction perpendicular to the traveling direction of the glass fiber 2. Even in such a case, it is preferable that the hole 41 has a shape such as a rectangle or an ellipse in which the direction perpendicular to the traveling direction of the glass fiber 2 is long so that the metal coating can be reliably performed.
- the amount of metal supplied from the hole 41 can be adjusted as appropriate depending on the hole shape, the distance between the hole 41 and the surface of the metal melt in the metal melting furnace, the viscosity of the metal melt, and the like. As the distance between the hole 41 and the surface of the metal melt in the metal melting furnace increases, the amount of metal supply increases, while as the distance decreases, the amount of metal supply decreases. Since the viscosity of the metal melt varies greatly depending on the type and composition of the metal, it is preferable to adjust appropriately.
- the material of the outer wall surface of the metal melting furnace 4 with which the droplets 71 come into contact can be appropriately selected from ceramics, metal, glass, carbon and the like according to the temperature of the metal to be melted.
- ceramics examples thereof include alumina, zirconia, silicon carbide, boron nitride, silicon nitride, and aluminum nitride.
- the metal melting furnace 4 can be appropriately heated using a heater or the like.
- the temperature in the metal melting furnace needs to be higher than the melting point of the metal to be melted.
- the metal melting furnace becomes expensive (reason 3). It is not preferable to make the heating temperature of the metal melting furnace too high. Considering the reasons 1 to 3, the temperature of the metal melting furnace is preferably 400 to 1000 ° C. For reasons 2 and 3, it is not preferable that the temperature of the metal melting furnace is too high. Therefore, the upper limit of the temperature of the metal melting furnace is 850 ° C, preferably 750 ° C, more preferably 600 ° C, and even more preferably. May be 550 ° C. If the temperature of the metal melting furnace is low, it may take time for the raw metal to melt, so the lower limit of the temperature range of the metal melting furnace may be 450 ° C.
- the metal coating 7 preferably includes at least one selected from the group consisting of aluminum and titanium.
- the temperature in the metal melting furnace may be 600 to 800 ° C. for reason 1 in order to further improve the adhesion to the glass fiber. .
- the glass fiber 2 is wound up by the winder 5 and passes through the metal melting furnace 4 side.
- the metal coating 7 is formed on the glass fiber.
- the pressing device 6 is moved to move the glass fiber 2 to the metal melting furnace 4 side (in the direction of the arrow indicated by B in FIG. 2), and the glass fiber 2 is moved in the center direction of the droplet 71.
- the metal melting furnace 4 may be moved in the direction of the glass fiber 2, and the glass fiber 2 may be pressed toward the center of the droplet 71.
- the amount of metal melt per unit time required for metal coating on glass fiber is as follows: fiber diameter of glass fiber (R: ⁇ m), thickness of metal coating (t: ⁇ m), winding speed (s: m / m Min) and the specific gravity (p: g / cm 3 ) of the coated metal, so that the metal supply amount (M: g / min) supplied to the hole 41 can be estimated from the following equation (1). .
- the ideal metal supply amount when the glass fiber diameter is 28 ⁇ m and the winding speed is 290 m / min under the conditions for producing a zinc-coated glass fiber with a metal coating thickness of 1.0 ⁇ m is the formula (i) From 0.18 g / min.
- the metal supply amount tends to be larger than the calculation.
- the speed at which the glass fiber 2 passes through the melting furnace 4 side can be adjusted by the winding speed of the winder 5, and the speed is preferably 100 to 5000 m / min. Since the winding speed also affects the fiber diameter of the glass fiber, it is determined from the viewpoint of the shape design of the metal-coated glass fiber. If the winding speed is pulled slower than 100 m / min, the fiber diameter becomes larger than 40 ⁇ m. If the winding speed is pulled faster than 5000 m / min, yarn breakage occurs frequently, resulting in low productivity during production.
- the pressing machine 6 When the pressing machine 6 is used, the initial positions of the pressing machine 6 and the glass fiber 2 are separated from each other, and the pressing machine 6 has a moving mechanism and moves the pressing machine 6 so that the passing position of the glass fiber 2 is reached. Is adjusted so as to come into contact with the dome-shaped droplet 71 formed on the hole 41.
- the pressing machine is for determining the passage position of the glass fiber, and there is no particular limitation as long as a member having a moving mechanism that can be stably operated and a heat-resistant surface having a smooth surface is used.
- Examples of the moving mechanism of the pressing machine include a stage with a fine adjustment mechanism of two or more axes and a robot with a movement mechanism of two or more axes.
- Examples of the heat-resistant member having a smooth surface include ceramics, graphite, and surface-polished metal.
- the member having a smooth surface allows the glass fiber 2 to pass when the spinning of the glass fiber 2 starts, and the positional relationship between the glass fiber 2 and the droplet 71 formed on the hole 41 at the time of metal coating. Serves as a guide that can be constant. Therefore, as the form of the member having a smooth surface, an article having a hole, a comb-like article, a plate having a groove, a bar, or the like can be suitably used.
- the shape of the holed article may be a circle, an ellipse, a rectangle, a square, a trapezoid, or the like, and the edge of the hole may be partially cut and used as a groove.
- the opening area of the article with the hole is preferably 0.2 to 20 mm 2 .
- the opening area is smaller than 0.2 mm 2, it is difficult to pass the glass fiber 2 at the start of spinning of the glass fiber.
- the opening area is preferably 0.8 to 7 mm 2 .
- the comb-shaped article preferably has a tooth length of 0.1 to 100 mm. If the tooth length is shorter than 0.1 mm, it is difficult to guide the path of the glass fiber, and if the tooth length is longer than 100 mm, it is easy to break. Considering these, the tooth length is preferably 1 to 100 mm. When a comb-shaped article is used as the pressing machine, it becomes easy to guide the path of a plurality of glass fibers.
- the pressing machine can be used not only on the lower side of the metal melting furnace 4 but also on the upper side.
- the pressing machine may be installed on one of the upper side and the lower side, or may be installed on both upper and lower sides.
- it is more preferable that the glass fiber is placed on both the upper and lower sides because the glass fiber can be accurately pressed against the droplet 71.
- the formation of the metal coating on the glass fiber may be performed by a method other than the hot dipping method described above.
- methods for forming a metal coating on glass fibers other than the hot dipping method include an electroless plating method, a silver mirror reaction method, and a CVD method.
- a chopped strand of metal-coated glass fibers having a fiber length of 1 to 100 mm can be obtained by cutting a metal-coated glass fiber bundle in which a plurality of metal-coated glass fibers 1 are aligned to a predetermined length. Furthermore, the pulverized chopped strand of the metal-coated glass fiber can be used to produce a conductive filler powder.
- a known glass fiber cutting method such as using a cutting machine can be used.
- a direct chopper or the like may be used to cut the metal-coated glass fiber 1 online while spinning to form a chopped strand of metal-coated glass fiber.
- the fiber length of the chopped strand is preferably 1 to 100 mm.
- the fiber length of the chopped strand is less than 1 mm, it is difficult to set the fiber length (L97) in the cumulative distribution of 97% on the basis of the number of particles in the conductive filler powder to 400 ⁇ m to 1000 ⁇ m.
- the fiber length of the chopped strand may be 1 mm to 50 mm, 2 mm to 10 mm.
- the metal-coated glass fiber bundle may be a bundle of a plurality of metal-coated glass fibers 1.
- the sizing agent for use in sizing comprises a resin, a silane coupling agent, a surfactant, a pH adjusting agent, an organic solvent and / or water, and can be struck using a known sizing agent.
- the fibers are less likely to fuzz or fray, and the efficiency of the cutting process is improved.
- the focusing of the metal-coated glass fibers in this case may be performed online during spinning or may be performed offline after spinning.
- the cut metal-coated glass fiber does not have to satisfy the quality of “chopped strand as a product”. It may be one that is frayed.
- the cut metal-coated glass fiber chopped strand is further pulverized into a conductive filler powder.
- the chopped strands of the metal-coated glass fiber can be pulverized using a known pulverization method such as ball mill, cutter mill, hammer mill, jet mill, or mortar pulverization.
- the conductive filler of the present invention has a fiber length (L10) of 20 ⁇ m to 150 ⁇ m with a 10% cumulative distribution based on the number, and a fiber length (L97) with a cumulative distribution of 97% based on the number of 400 ⁇ m to 1000 ⁇ m. Although preferable, the fiber length can be pulverized under appropriate conditions so that the fiber length falls within these ranges.
- the conductive filler particles obtained by pulverization may be classified in order to remove fine powder or to obtain a desired fiber length distribution.
- the classification can be performed by a known classification method such as dry classification performed using a sieve in the air or wet classification performed in water or an organic solvent. When performing dry classification, the coarseness of the sieve can be selected as appropriate. Further, the step of pulverizing the chopped strand may be performed while being mixed with a resin material described later.
- the conductive filler may be substantially made of a glass fiber powder or may be made of the metal-coated glass fiber 1. *
- the conductive filler can be made into a conductive resin article by being compounded (mixed) with a resin material.
- a known resin can be used as the resin material combined with the conductive filler.
- Thermoplastic resins such as polyphenylene sulfide, polyimide, polyethersulfone, polyetheretherketone, fluororesin, epoxy resin, silicone resin, phenol resin, unsaturated polyester resin, polyurethane, rubber, elastomer, etc. Can be mentioned.
- the resin is thickened with cellulose, glucose, gelatin and the like, further acetone, methyl ethyl ketone, methyl isobutyl ketone, ethanol, isopropyl alcohol, normal propyl alcohol, butanol, ethyl acetate, butyl acetate, An organic solvent such as xylene and toluene, or water may be added.
- the conductive resin article may contain 0.01 to 30% by volume of a conductive filler. Since the conductive filler of the present invention has good conductivity when combined with a resin, the conductive fiber filler may be 10% by volume or less, preferably 7% by volume.
- the conductivity of the conductive filler of the present invention can be evaluated by filling the inside of an insulating container of a specific size with a filler to form a filler filling, and inserting a tester electrode into the filling. it can.
- a conductive filler is weighed into a cylindrical container made of an insulating material having a diameter of 17 mm and a height of 4 mm so that the filler volume becomes 200 mm 3, and the container is filled with the filler.
- the electroconductivity can be evaluated by inserting an electrode of a tester into the filling of the conductive filler into the cylindrical container so that the interval is 17 mm and measuring the electric resistance of the filling.
- the filler in this example simulates the case where the content of the conductive filler in the resin article is 22% by volume.
- a known kneading method and apparatus can be used in accordance with the characteristics of the resin to be compounded.
- a thermoplastic resin it is preferable to use a heat-melt type kneader, such as a single-screw kneader, a twin-screw kneader, a single-screw kneading extruder, a twin-screw kneading extruder, a kneader or mixer equipped with a heating device, etc. Can be used.
- thermoplastic resin examples include an injection molding method and blow molding method
- thermosetting resin examples include a hand lay-up method, a spray-up method, a pultrusion method, an SMC method, a BMC method, and a transfer molding method.
- the molded composite (conductive resin article including a conductive filler) can be used in various applications as a resin that conducts electricity. If it is combined with a thermosetting resin or a moisture-effective resin and used as an adhesive, it can be used as a conductive adhesive that replaces solder. In addition, when used as a part or case for automobiles, electronic devices, etc. that require electromagnetic shielding, it can shield electromagnetic waves and suppress interference from electromagnetic noise, malfunction of equipment, and health effects caused by electromagnetic waves. it can.
- a metal-coated glass fiber was prepared by contacting with a droplet.
- the composition of the metal coating was adjusted to be an alloy of 99.5% by mass of zinc and 0.5% by mass of aluminum.
- the composition of the metal coating was It adjusted so that it might become an alloy of 99.5 mass% of zinc and 0.5 mass% of titanium.
- a chopped strand of 6 mm metal-coated glass fibers was produced using a cutting machine.
- the average fiber length of the glass fibers provided with the metal coating in the longitudinal direction and the volume percentage of the glass fibers and the metal coating were measured by the evaluation method (2) described later.
- the chopped strands were pulverized manually using a pestle and mortar, and classified, and conductive fillers of Examples 1 to 5 and Comparative Example 1 having various physical properties shown in Table 1 were obtained.
- Various physical properties are evaluated by the following methods (2), (3), and (4).
- the conductive filler is weighed into a cylindrical container made of an insulating material having a diameter of 17 mm and a height of 4 mm so that the filler volume is 200 mm 3, and the container is filled with the filler. Filled. The filling of the conductive filler into the cylindrical container simulates the case where the content of the conductive filler in the resin article is 22% by volume. A tester electrode was inserted into the filling of the conductive filler so that the interval was 17 mm, and the electrical resistance of the filling was measured to evaluate the conductivity.
- the conductive fillers of Examples 1 to 5 have good conductivity, and in particular, the conductive fillers of Examples 1 and 3 to 5 have excellent conductivity. confirmed.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Engineering & Computer Science (AREA)
- General Life Sciences & Earth Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Dispersion Chemistry (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Manufacturing & Machinery (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Non-Insulated Conductors (AREA)
Abstract
Description
前記ガラス繊維は繊維長分布を有し、
個数基準の累積分布10%での繊維長(L10)が20μm~200μm、
個数基準の累積分布97%での繊維長(L97)が400μm~1000μmであり、
前記ガラス繊維の、平均繊維径が1~40μmであることを特徴とする。尚、L10、L97における繊維長とは、プレート上に置いた各繊維を顕微鏡で輪郭観察し、100本以上の繊維を測定した場合に得られる分布から算出された、それぞれ個数基準の累積分布10%、97%での繊維長とする。
ガラス繊維の粉粒体は繊維長に分布を持ち、個数基準の累積分布10%での繊維長(L10)が20μm~200μm、個数基準の累積分布97%での繊維長(L97)が400μm~1000μmであることが好ましい。個数基準の累積分布97%での繊維長(L97)で測定するのは、個数基準で3%程度の繊維でも、400μm以上と長い繊維長を持つ繊維があれば、意外なことに、導電性が大きく改善されるためである。
金属被覆7は種々の方法で形成することができるが、例えばガラス繊維が紡糸された直後に、金属融液に接触させる溶融めっき法で、作製することができる。この場合の金属被覆を構成する金属は、ガラス繊維の軟化点よりも低い融点を持つ金属であれば良く、例えば亜鉛、アルミニウム、スズ、インジウムなどの純金属、及びこれらの金属を含む合金が挙げられる。中でも、金属被覆に亜鉛を含む場合は金属被覆同士の接触抵抗を低いものとすることができるので好ましい。
以下に金属被覆ガラス繊維1の製造方法の具体例を、図面を用いて詳述する。図2は、金属被覆ガラス繊維11を製造するための装置を模式的に示したものである。また、図3は、図2の領域Aを拡大して示したものである。ガラス溶融炉3の下部に取り付けられたブッシングノズル31から引き出されたガラス繊維2は、ガラス繊維巻取り機5で巻き取られる。金属被覆を形成するための金属溶融炉4は、ブッシングノズル31と巻取り機5との間に配置され、ガラス繊維2と接する側には金属融液を外部に排出するための孔部41が配置され、金属融液は孔部41から滲み出て、液滴71が形成される。押し当て機6で、ガラス繊維2を金属溶融炉4側(図2中のBで示した矢印の方向)に押し当てて、ガラス繊維2を液滴71に接触させる。
ガラス繊維2は、ガラス融液をガラス溶融炉3の下部に取り付けられたブッシングノズル31から引き出し、ガラス繊維巻取り機5で巻き取ることで形成される。ブッシングノズル31は、白金や白金ロジウム合金製のものを使用できる。ブッシングノズル31のガラス融液を排出するための径は、1~5mmφ程度のものを好適に使用することができ、所望するガラス繊維の繊維径に応じて適宜調整される。繊維化する場合のガラス融液の温度はガラスの組成によっても異なるが、Eガラス組成の場合はブッシングノズルを通る時の温度が1100~1350℃となるように調整することが好ましい。
ガラス繊維2はブッシングノズル31から引き出され、巻取り機5で巻き取られるまでに金属が被覆される。金属被覆7の金属原料は、金属溶融炉4にて溶解され、炉4内で溶湯を形成し、前記溶融炉4の壁面に備え付けた孔部41から金属融液を吐出する。孔部41の周囲が金属融液との濡れ性を悪くすると、孔部41から吐出される金属融液をドーム状の液滴71としやすくなる。この液滴71の中をガラス繊維が通過することで、ガラス繊維2に金属被覆7が形成される。この被覆時に、ドーム状の液滴71が形成されないと、金属融液が孔部41の周辺に留まらずに、流れ出すこととなる。そのため、孔部41、又は孔部41の周囲は金属融液との濡れ性が悪い方が好ましい。
金属溶融炉の加熱温度を高くしすぎることは好ましくない。理由1~3のことを考慮すると、金属溶融炉の温度は、400~1000℃とすることが好ましい。また、理由2、3のために、金属溶融炉の温度が高過ぎることは好ましくはないので、金属溶融炉の温度の上限は、850℃、好ましくは750℃、より好ましくは600℃、さらに好ましくは550℃としてもよい。金属溶融炉の温度が低いと原料の金属が溶融するのに時間を要することがあるので金属溶融炉の前記温度範囲の下限は、450℃としてもよい。
ガラス繊維2は、巻取り機5に巻き取られ、金属溶融炉4の側を通過する。ガラス繊維2を金属溶融炉4の液滴71に押し当てることで、ガラス繊維に金属被覆7を形成する。このときに、押し当て機6を移動させて、ガラス繊維2を金属溶融炉4側(図2中のBで示した矢印の方向)に移動させ、ガラス繊維2を液滴71の中心方向に押し当てても良いし、金属溶融炉4をガラス繊維2の方向に移動させて、ガラス繊維2を液滴71の中心方向に押し当てても良い。
例えば、金属被覆の厚さが1.0μmの亜鉛被覆したガラス繊維の作製条件において、ガラス繊維径が28μm、巻取り速度が290m/分とした場合の理想的な金属供給量は(i)式より0.18g/分となる。しかしながら、長時間安定して金属被覆を行うためには金属供給量は計算よりも多くなる傾向がある。
0.1mmよりも短いとガラス繊維の進路をガイドすることが難しく、100mmよりも長いと折れやすいため好ましくない。これらを考慮すると歯の長さは1~100mmとすることが好ましい。なお、押し当て機として櫛形状の物品を用いると、複数本のガラス繊維の進路をガイドすることも容易になる。
複数本の金属被覆ガラス繊維1が引き揃えられてなる金属被覆ガラス繊維束を所定の長さに切断することで、繊維長が1~100mmの金属被覆ガラス繊維のチョップドストランドを得ることができる。さらに、前記金属被覆ガラス繊維のチョップドストランドを粉砕することで、導電性フィラーの粉粒体を作製することができる。
れた金属被覆ガラス繊維1を切断すると、繊維の毛羽立ちやほつれなどが発生しにくくなり、切断工程の効率が良好なものとなる。この場合の金属被覆ガラス繊維の集束は、紡糸中にオンラインでされても良いし、紡糸後にオフラインでされても良い。また、切断された後に粉砕されるため、切断された金属被覆ガラス繊維は『製品としてのチョップドストランド』を満たす品質のもので無くても良く、粗切りされて繊維長が揃っていないもの、毛羽やほつれが発生しているものであっても良い。
導電性フィラーは、樹脂材料と複合化(混合)されることで、導電性樹脂物品とすることができる。導電性フィラーと複合化される樹脂材料は、既知の樹脂を用いることができる。例えば、低密度ポリエチレン、高密度ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリスチレン、ポリ酢酸ビニル、メタクリル樹脂、ABS樹脂、メタロセン樹脂、ポリアミド、ポリアセタール、ポリカーボネート、ポリフェニレンエーテル、ポリエチレンテレフタレート、ポリブチレンテレフタレート、液晶ポリマー、ポリフェニレンサルファイド、ポリイミド、ポリエーテルサルホン、ポリエーテルエーテルケトン、フッ素樹脂などの熱可塑性樹脂、エポキシ樹脂、シリコーン樹脂、フェノール樹脂、不飽和ポリエステル樹脂、ポリウレタンなどの熱硬化性樹脂、ゴム、エラストマーなどが挙げられる。
(1)導電性フィラーの調製
図2、3で説明した装置にて、金属被覆ガラス繊維を調整した。所定の合金組成となるように、各金属を混合して、700℃の雰囲気下にある金属溶融炉で合金の溶湯を形成し、“金属融液を外部に排出するための孔部”を通じて、“金属融液の液滴”を形成した。ガラス溶融炉にてEガラス組成のガラスを1250℃で溶融し、ノズルからガラス繊維を引き出して、巻き取り機の速度を1000m/分に調整して巻き取り、ガラス繊維を“金属融液の液滴”に接触させ、金属被覆ガラス繊維を作製した。実施例1~4では、金属被覆の組成を、亜鉛99.5質量%、アルミニウム0.5質量%の合金となるように調整し、実施例5と比較例1では、金属被覆の組成を、亜鉛99.5質量%とチタン0.5質量%の合金となるように調整した。
前記チョップドストランドを、乳棒及び乳鉢を用いて手動で粉砕し、分級操作によって、表1に示す諸物性を有する、実施例1~5、比較例1の導電性フィラーを得た。諸物性は、以下の(2)、(3)、(4)の方法によって評価されたものである。
作製された導電性フィラーは、JIS R 3420(2013年)『ガラス繊維一般試験方法』の『7.6単繊維直径』に記載されるB法に準じて、平均繊維径を測定した。粉砕前の金属被覆を備えるガラス繊維のチョップドストランドを、冷間埋込樹脂(丸本ストルアス、エポフィックス)で固めて切断面を研磨した後、得られた研磨面を光学顕微鏡により観察した。
作製された導電性フィラーを金属板上に置いて、光学顕微鏡で2mm×2.8mmの範囲の顕微鏡像を得た。得られた画像内にある繊維について、それぞれの繊維の繊維長を測長した。測長された繊維数が100本以上、1000本以下であれば有効とみなし、繊維長を長さ順に並べ、短い側から10%の繊維数が含まれる最大繊維長を個数基準の累積分布10%(L10)、短い側から97%の繊維数が含まれる最大繊維径を個数基準の累積分布97%(L97)とした。
導電性フィラーを、直径17mm、高さ4mmの絶縁物質からなる円筒状容器に、フィラー体積が200mm3となるように量りとり、容器がフィラーで満たされるように充填した。この円筒状容器への導電性フィラーの充填は、樹脂物品中の導電性フィラーの含有量が22体積%の場合を模擬したものである。導電性フィラーの充填物に、間隔が17mmとなるようにテスターの電極を差し込み、充填物の電気抵抗を測定して導電性を評価した。
11 金属被覆ガラス繊維
2 ガラス繊維
21 金属非被覆面
3 ガラス溶融炉
31 ブッシングノズル
4 金属溶融炉
41 金属融液を外部に排出するための孔部
5 巻取り機
6 押し当て機
7 金属被覆
71 金属融液の液滴
Claims (7)
- ガラス繊維の粉粒体からなる導電性フィラーであって、前記ガラス繊維はガラス繊維の長尺方向に金属被覆を備え、
前記ガラス繊維は繊維長分布を有し、
個数基準の累積分布10%での繊維長(L10)が20μm~200μm、
個数基準の累積分布97%での繊維長(L97)が400μm~1000μm、であり、前記ガラス繊維の、JIS R 3420(2013年)のB法によって求められる平均繊維径が1~40μmである導電性フィラー。 - 前記ガラス繊維の繊維長分布が、個数基準の累積分布97%での繊維長(L97)が500μm~1000μmであることを特徴とする請求項1に記載の導電性フィラー。
- 前記ガラス繊維がEガラス組成からなる、請求項1又は2に記載の導電性フィラー。
- 前記金属被覆が亜鉛を含む、請求項1乃至3のいずれかに記載の導電性フィラー。
- 体積%において、前記ガラス繊維が5~95%、前記金属被覆が5~95%である、請求項1乃至4のいずれかに記載の導電性フィラー。
- 導電性樹脂組成物であって、
請求項1乃至5のいずれかに記載の導電性フィラーと、
樹脂材料と、を備え、
導電性樹脂組成物中に前記導電性フィラーを0.01~30体積%含有する、導電性樹脂組成物。 - 請求項1乃至5のいずれかに記載の導電性フィラーを製造する方法であって、
複数本の、ガラス繊維の長尺方向に金属被覆を備えるガラス繊維からなるチョップドストランドを準備する工程と、
前記チョップドストランドを粉砕する工程と、
を備え、
前記チョップドストランドの長さが、1mm~100mmである、導電性フィラーの製造方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201880025647.6A CN110546717A (zh) | 2017-04-20 | 2018-02-13 | 导电性无机填料 |
JP2019513236A JPWO2018193694A1 (ja) | 2017-04-20 | 2018-02-13 | 導電性無機フィラー |
EP18788617.1A EP3605557B1 (en) | 2017-04-20 | 2018-02-13 | Electroconductive inorganic filler |
US16/605,732 US20200126685A1 (en) | 2017-04-20 | 2018-02-13 | Electroconductive Inorganic Filler |
KR1020197030004A KR20190124305A (ko) | 2017-04-20 | 2018-02-13 | 도전성 무기 필러 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-083494 | 2017-04-20 | ||
JP2017083494 | 2017-04-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018193694A1 true WO2018193694A1 (ja) | 2018-10-25 |
Family
ID=63856270
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/004801 WO2018193694A1 (ja) | 2017-04-20 | 2018-02-13 | 導電性無機フィラー |
Country Status (6)
Country | Link |
---|---|
US (1) | US20200126685A1 (ja) |
EP (1) | EP3605557B1 (ja) |
JP (1) | JPWO2018193694A1 (ja) |
KR (1) | KR20190124305A (ja) |
CN (1) | CN110546717A (ja) |
WO (1) | WO2018193694A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021059694A (ja) * | 2019-10-09 | 2021-04-15 | 日本電気硝子株式会社 | 樹脂組成物、立体造形物及び立体造形物の製造方法 |
CN114315128A (zh) * | 2020-09-30 | 2022-04-12 | 中国科学院过程工程研究所 | 一种无机纤维球团及其制备方法和用途 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111048230B (zh) * | 2019-12-28 | 2022-04-01 | 江苏博云塑业股份有限公司 | 一种聚合物导电材料及其制备方法 |
KR102570221B1 (ko) | 2022-12-29 | 2023-08-24 | 김연삼 | 기능성 콘택트렌즈 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60113996A (ja) | 1983-11-26 | 1985-06-20 | 日本板硝子株式会社 | 電磁遮蔽用強化プラスチック材料 |
JPS6129083B2 (ja) | 1977-12-07 | 1986-07-04 | Mb Assoc | |
JPS61157541A (ja) * | 1984-12-28 | 1986-07-17 | Asahi Fiber Glass Co Ltd | 導電性フイラ− |
JPS6320270B2 (ja) | 1980-10-08 | 1988-04-27 | Toray Industries | |
JPH01122508A (ja) * | 1987-11-05 | 1989-05-15 | Nippon Oil & Fats Co Ltd | 透明導電性フィルム材料及びその製造方法 |
JPH0419720B2 (ja) | 1982-10-20 | 1992-03-31 | Phosphorus Chem Ind | |
JP2000336266A (ja) * | 1999-06-01 | 2000-12-05 | Tosoh Corp | 導電性ポリフェニレンスルフィド樹脂組成物 |
JP2002008438A (ja) * | 2000-06-19 | 2002-01-11 | Nisshin Steel Co Ltd | 繊維状導電フィラー |
JP2012236944A (ja) | 2011-05-13 | 2012-12-06 | Mitsubishi Engineering Plastics Corp | 電磁波シールド用繊維/樹脂複合組成物ペレット、電磁波シールド用樹脂組成物及びその成形体 |
JP2017014090A (ja) * | 2015-07-06 | 2017-01-19 | セントラル硝子株式会社 | プラスチック補強用金属被覆ガラス繊維、及びその製造方法 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE528718A (ja) * | 1953-05-28 | |||
JPS6129083A (ja) | 1984-07-19 | 1986-02-08 | 村田 達二郎 | ハロゲンランプソケツトの接点を外す機構 |
JPS6320270A (ja) | 1986-07-11 | 1988-01-27 | Mitsubishi Electric Corp | モ−タ駆動式パワ−ステアリング制御装置 |
JPH0725988B2 (ja) * | 1989-03-16 | 1995-03-22 | 東洋インキ製造株式会社 | 樹脂組成物 |
JP2883402B2 (ja) | 1990-05-15 | 1999-04-19 | 株式会社リコー | 光機能素子 |
DE19532720A1 (de) * | 1995-09-05 | 1997-03-06 | Basf Ag | Flammgeschützte thermoplastische Formmassen |
CN104910517A (zh) * | 2015-06-15 | 2015-09-16 | 上海俊尓新材料有限公司 | 一种双峰分布的玻纤增强聚丙烯复合材料及其制备方法 |
WO2017077980A1 (ja) * | 2015-11-02 | 2017-05-11 | セントラル硝子株式会社 | 電磁遮蔽性金属被覆ガラス繊維フィラー、電磁遮蔽性金属被覆ガラス繊維フィラーの製造方法、及び、電磁遮蔽性樹脂物品 |
-
2018
- 2018-02-13 KR KR1020197030004A patent/KR20190124305A/ko not_active Application Discontinuation
- 2018-02-13 WO PCT/JP2018/004801 patent/WO2018193694A1/ja unknown
- 2018-02-13 US US16/605,732 patent/US20200126685A1/en not_active Abandoned
- 2018-02-13 JP JP2019513236A patent/JPWO2018193694A1/ja not_active Withdrawn
- 2018-02-13 CN CN201880025647.6A patent/CN110546717A/zh active Pending
- 2018-02-13 EP EP18788617.1A patent/EP3605557B1/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6129083B2 (ja) | 1977-12-07 | 1986-07-04 | Mb Assoc | |
JPS6320270B2 (ja) | 1980-10-08 | 1988-04-27 | Toray Industries | |
JPH0419720B2 (ja) | 1982-10-20 | 1992-03-31 | Phosphorus Chem Ind | |
JPS60113996A (ja) | 1983-11-26 | 1985-06-20 | 日本板硝子株式会社 | 電磁遮蔽用強化プラスチック材料 |
JPS61157541A (ja) * | 1984-12-28 | 1986-07-17 | Asahi Fiber Glass Co Ltd | 導電性フイラ− |
JPH01122508A (ja) * | 1987-11-05 | 1989-05-15 | Nippon Oil & Fats Co Ltd | 透明導電性フィルム材料及びその製造方法 |
JP2000336266A (ja) * | 1999-06-01 | 2000-12-05 | Tosoh Corp | 導電性ポリフェニレンスルフィド樹脂組成物 |
JP2002008438A (ja) * | 2000-06-19 | 2002-01-11 | Nisshin Steel Co Ltd | 繊維状導電フィラー |
JP2012236944A (ja) | 2011-05-13 | 2012-12-06 | Mitsubishi Engineering Plastics Corp | 電磁波シールド用繊維/樹脂複合組成物ペレット、電磁波シールド用樹脂組成物及びその成形体 |
JP2017014090A (ja) * | 2015-07-06 | 2017-01-19 | セントラル硝子株式会社 | プラスチック補強用金属被覆ガラス繊維、及びその製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3605557A4 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021059694A (ja) * | 2019-10-09 | 2021-04-15 | 日本電気硝子株式会社 | 樹脂組成物、立体造形物及び立体造形物の製造方法 |
JP7356634B2 (ja) | 2019-10-09 | 2023-10-05 | 日本電気硝子株式会社 | 樹脂組成物、立体造形物及び立体造形物の製造方法 |
CN114315128A (zh) * | 2020-09-30 | 2022-04-12 | 中国科学院过程工程研究所 | 一种无机纤维球团及其制备方法和用途 |
CN114315128B (zh) * | 2020-09-30 | 2022-09-13 | 中国科学院过程工程研究所 | 一种无机纤维球团及其制备方法和用途 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2018193694A1 (ja) | 2020-03-05 |
CN110546717A (zh) | 2019-12-06 |
EP3605557A4 (en) | 2020-03-04 |
EP3605557B1 (en) | 2021-05-26 |
EP3605557A1 (en) | 2020-02-05 |
US20200126685A1 (en) | 2020-04-23 |
KR20190124305A (ko) | 2019-11-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018193694A1 (ja) | 導電性無機フィラー | |
JP6790812B2 (ja) | ガラス繊維強化樹脂成形品 | |
JP4320372B2 (ja) | ガラス含有成形用ペレット及びその製造方法 | |
KR102070453B1 (ko) | 유리 섬유용 유리 조성물, 유리 섬유 및 그것을 이용하는 유리 섬유 강화 수지 조성물 | |
TWI588110B (zh) | A glass fiber having a non-circular cross-sectional shape and a fiber-reinforced resin molded article using the same | |
TWI383403B (zh) | 導電性聚合型組成物,其製造方法及包含該組成物之物件 | |
JP7410411B2 (ja) | ガラス繊維強化樹脂成形品 | |
JP7070819B1 (ja) | ガラス繊維強化樹脂成形品 | |
WO2013099436A1 (ja) | 複合材料 | |
EP4289802A1 (en) | Glass composition, and glass filler and method for producing same | |
US20230234882A1 (en) | Glass composition, glass filler, manufacturing method of glass filler, and resin composition including glass filler | |
EP3372727A1 (en) | Electromagnetic shielding metal-coated glass fiber filler, method for manufacturing electromagnetic shielding metal-coated glass fiber filler, and electromagnetic shielding resin article | |
EP3418260A1 (en) | Flake glass and resin composition | |
CN110678424B (zh) | 片状玻璃和树脂组合物 | |
CN109923080B (zh) | 片状玻璃及树脂组合物 | |
JP2017014090A (ja) | プラスチック補強用金属被覆ガラス繊維、及びその製造方法 | |
CN113874333B (zh) | 玻璃纤维直接纱和长玻璃纤维增强热塑性树脂颗粒 | |
JP2001129826A (ja) | 導電性繊維強化成形材料およびその製造方法 | |
JP6980393B2 (ja) | 補強材及び樹脂成形品 | |
TW202302486A (zh) | 玻璃纖維用玻璃組成物、玻璃纖維、玻璃纖維織物及玻璃纖維強化樹脂組成物 | |
KR20230148319A (ko) | 유리섬유용 유리 조성물, 유리섬유, 유리섬유 직물 및 유리섬유 강화 수지 조성물 | |
JPH11255907A (ja) | 不連続繊維強化樹脂成形品および不連続繊維強化樹脂成形品用成形材料 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18788617 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019513236 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20197030004 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018788617 Country of ref document: EP Effective date: 20191028 |