WO2018192540A1 - 量子点核壳合成装置及量子点核壳合成方法 - Google Patents

量子点核壳合成装置及量子点核壳合成方法 Download PDF

Info

Publication number
WO2018192540A1
WO2018192540A1 PCT/CN2018/083631 CN2018083631W WO2018192540A1 WO 2018192540 A1 WO2018192540 A1 WO 2018192540A1 CN 2018083631 W CN2018083631 W CN 2018083631W WO 2018192540 A1 WO2018192540 A1 WO 2018192540A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
shell
precursor
reaction
zone
Prior art date
Application number
PCT/CN2018/083631
Other languages
English (en)
French (fr)
Inventor
陈绍楷
Original Assignee
东莞市睿泰涂布科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201710266969.7A external-priority patent/CN106916584B/zh
Priority claimed from CN201710266387.9A external-priority patent/CN106893577B/zh
Application filed by 东莞市睿泰涂布科技有限公司 filed Critical 东莞市睿泰涂布科技有限公司
Publication of WO2018192540A1 publication Critical patent/WO2018192540A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J4/00Feed or outlet devices; Feed or outlet control devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements

Definitions

  • the invention relates to the field of quantum dot synthesis, in particular to a quantum dot core shell synthesis device and a quantum dot core shell synthesis method implemented by the quantum dot core shell synthesis device.
  • the synthesis method of quantum dots is a solution process, which mainly consists of a flask surrounding a heating jacket, a magnetic stirrer which can make the solution inside the flask uniform, and a temperature regulator and a thermometer for controlling the temperature of the solution.
  • a capacitor that maintains a stable concentration and a manifold that can convert a vacuum/nitrogen atmosphere are added.
  • the synthesis method is to synthesize a core using an organic compound of a precursor, and in order to form a proper shell in the mixed stirred reactor by the synthesized core and the stabilizer, the precursor is repeatedly injected to form a structurally stable core/shell structure.
  • a one-pot process has been developed, in which all the reactants are placed in the reactor at one time and the shell process is added.
  • Quantum dot synthesis is Ostwald ripening (Ostwald) Ripening), also a function of temperature and time, is known to be a technique in which small particles are grown after merging with relatively large particles, stopping particle growth when forming nanoparticles of the desired size.
  • Ostwald ripening Ostwald Ripening
  • the current method is to control the growth of particles by cooling, which causes a temperature difference, and it is difficult to synthesize particles of uniform size. Therefore, these factors also affect the luminescent properties of quantum dot nanoparticles and the uniform distribution of particles.
  • reaction product In order to obtain nanoparticles of a certain size, rapid cooling is performed. Since the reaction product also contains by-products and organic substances, the organic matter is removed by centrifugal filtration. The separation of the nanoparticles can be carried out by centrifugal filtration using a strong polar solvent such as acetone or ethanol. Forced agitation by a magnetic bar or a stirrer during each reaction. Although it is known that a relatively uniform agitation can be achieved, the reaction agitation speed will vary depending on the amount of the reactants, which will affect the particle size and stabilize the nanoparticles. Formation.
  • Such a conventional synthesis method additionally requires a precursor reactor, a nuclear reactor, a core/shell reactor, and the like, and since it is re-measured and measured after each reaction, and then synthesized, there is a disadvantage that continuous operation cannot be performed. Moreover, due to differences in reaction time, particle separation, etc., it may be impossible to obtain nanoparticles having uniform characteristics.
  • Quantum dot core-shell synthesis is an important part of quantum dot synthesis. How to simplify the core-shell synthesis process through simple and reasonable synthesis devices, and to produce high-quality quantum dots that meet the conditions of use has become the industry demand.
  • the present invention discloses a quantum dot core-shell synthesis device.
  • the invention also discloses a quantum dot core shell synthesis method implemented by the quantum dot core-shell synthesis device.
  • a quantum dot core-shell synthesis device comprising a core/shell reaction zone for performing a core/shell reaction, the reaction zone comprising at least one spiral reaction tube, the spiral reaction tube having an inner wall and a spiral In the opposite direction, the reactant injected into the reaction tube is caused by friction to generate a bubbling effect.
  • the front portion of the core/shell reaction zone is coated with a heating zone, and the rear section of the core/shell reaction zone is coated with cooling.
  • a plurality of injection ports are arranged at the front end of the core/shell reaction zone, and a plurality of float discharge ports are arranged at the rear end of the core/shell reaction zone, and the front end of the core/shell reaction zone is connected Pressure device.
  • the heating zone and the cooling zone respectively comprise a temperature control tube wound on the spiral reaction tube, and the temperature control tube is filled with liquid water or oil for controlling temperature, and the temperature control tube of the heating zone and the cooling zone They are connected to the heating device and the external cooler respectively.
  • the rear portion of the core/shell reaction zone is provided with a rapid rotation zone and a float discharge zone, and the float discharge port is disposed in the float discharge zone.
  • the distance between the tubes of the spiral reaction tube in the rapid rotation region is smaller than the distance between the tubes of the spiral reaction tube in the front portion of the core/shell reaction zone, and the distance between the tubes in the discharge region of the float is larger than the spiral reaction in the front portion of the core/shell reaction zone The distance between the tubes of the tube.
  • the diameter of the rapid rotation zone is three times the diameter of the spiral reaction tube in the front section of the core/shell reaction zone; the curvature of the rapid rotation zone is reduced by 50% compared to the spiral reaction tube in the front section of the core/shell reaction zone.
  • first to fifth injection ports at a distance from the front end of the core/shell reaction zone the distance between adjacent injection ports is 100 cm, and the rear end of the core/shell reaction zone corresponds to the rapid rotation region
  • a sixth injection port is provided, and three floating material discharge ports are provided at the rear end of the core/shell reaction zone.
  • a quantum dot core-shell synthesis method implemented by the aforementioned quantum dot core-shell synthesis device comprises the steps of: vacuum-venting a core/shell reaction zone and converting it into a nitrogen atmosphere, and CdSe core, 1-octadecene And the oily amine is injected into the spiral reaction tube of the core/shell reaction zone, and the spiral reaction tube is heated to a set temperature through the heating zone, and the CdSe core, 1-octadecene and oleylamine are reacted, and Cd is sequentially added at intervals.
  • Precursor and Zn precursor, S precursor, Zn precursor and Cd precursor, S precursor, Zn precursor and Cd precursor, and Zn precursor and S precursor thereby accumulating a multilayer shell on the CdSe core, Synthesis of CdSe/CdZnS/ZnS quantum dots.
  • a rearward section of the core/shell reaction zone is provided with a rapid rotation zone and a float discharge zone, and the float discharge port is disposed in the float discharge zone;
  • first to fifth injection ports at a distance from the front end of the core/shell reaction zone the distance between adjacent injection ports is 100 cm, and the rear end of the core/shell reaction zone corresponds to the rapid rotation region
  • a sixth injection port is provided, and three floating material discharge ports are provided at the rear end of the core/shell reaction zone.
  • the CdSe core, 1-octadecene and oleylamine are metered into the first injection port, and are vacuum-ventilated and converted into a nitrogen atmosphere.
  • the temperature in the heating zone is controlled to 220-250 degrees Celsius, and the reactants are subjected to a helical reaction due to nitrogen pressure.
  • the tube moves for heating reaction, and the reaction time between two adjacent injection ports is 10 minutes.
  • the Cd precursor and the Zn precursor are injected into the second injection port, and the reactants are continuously pushed by the nitrogen pressure to form a first shell.
  • the Cd precursor, the Zn precursor and the S precursor are implanted in the third injection port to form a second shell; the Cd precursor, the Zn precursor and the S precursor are injected into the fourth injection port to form a third shell.
  • the Zn precursor and the S precursor are implanted at the fifth injection port to form a fourth shell, thereby obtaining CdSe/CdZnS/ZnS quantum dots.
  • the reactants enter the rapid rotation region, and the polar injection of ethanol and acetone is injected into the sixth injection port.
  • the temperature in the cooling zone is maintained at 0-4 degrees Celsius, and the reactants are driven by nitrogen pressure. Minutes pass through a reaction tube with a length of 150 ⁇ 200cm. As the curvature of the reaction tube becomes soft, light-weight impurities float on the reactants. At this time, the float is removed to the outside through the float discharge port, and the impurities are removed.
  • the CdSe/CdZnS/ZnS quantum dots are transported to a storage container for storage by a transfer pipe.
  • the invention has the beneficial effects that the quantum dot core shell synthesis device of the invention can improve the stability of the quantum dots and the uniformity of the particle size, and at the same time can make it have no defects, thereby maximizing the quantum efficiency, thereby synthesizing the improved illumination.
  • the quantum dot with high efficiency and sharpness, the device structure is reasonable and simple, and the design is ingenious. It can synthesize a multilayer shell on the core as needed to obtain high-quality quantum dots that meet the size requirements.
  • Figure 1 is a schematic view of the structure of the present invention.
  • this embodiment discloses a quantum dot core-shell synthesis apparatus including a core/shell reaction zone for performing a core/shell reaction, the reaction zone including at least one spiral reaction tube 1
  • the inner wall of the spiral reaction tube 1 is provided with a channel groove opposite to the spiral shape for causing a bubble in the reaction tube injected into the reaction tube due to friction, and the front portion of the core/shell reaction region is coated with a heating zone 2 a rear portion of the core/shell reaction zone is coated with a cooling zone 3, a plurality of injection ports are disposed at a front end of the core/shell reaction zone, and a plurality of floating channels are disposed at a rear end of the core/shell reaction zone.
  • the discharge port 4 is connected to the front end of the core/shell reaction zone with a pressurizing device.
  • the heating zone 2 and the cooling zone 3 respectively comprise a temperature control tube wound on the spiral reaction tube 1, and the temperature control tube is filled with liquid water or oil for controlling temperature, the heating zone 2, the cooling zone
  • the temperature control tubes of 3 are connected to the heating device 5 and the external cooler 6, respectively.
  • the rear portion of the core/shell reaction zone is provided with a rapid rotation zone 11 and a float discharge zone, and the float discharge port 4 is provided in the float discharge zone.
  • the distance between the tubes of the spiral reaction tube 1 in the rapid rotation region 11 is smaller than the distance between the tubes of the spiral reaction tube 1 in the front portion of the core/shell reaction region, and the distance between the tubes in the discharge region of the float is larger than that in the front portion of the core/shell reaction region.
  • the diameter of the rapid rotation region 11 is three times the diameter of the spiral reaction tube 1 in the front stage of the core/shell reaction zone; the curvature of the rapid rotation zone 11 is reduced by 50% compared with the spiral reaction tube 1 in the front stage of the core/shell reaction zone.
  • the first to fifth injection ports 75 are disposed at a distance from the front end of the core/shell reaction zone, and the distance between adjacent injection ports is 100 cm, and the rear end of the core/shell reaction zone corresponds to the rapid rotation.
  • the region 11 is provided with a sixth injection port 76, and three floating material discharge ports 4 are provided at the rear end of the core/shell reaction zone.
  • a quantum dot core-shell synthesis method implemented by the aforementioned quantum dot core-shell synthesis device comprises the steps of: vacuum-venting a core/shell reaction zone and converting it into a nitrogen atmosphere, and CdSe core, 1-octadecene And the oily amine is injected into the spiral reaction tube 1 of the core/shell reaction zone, and the spiral reaction tube 1 is heated to a set temperature through the heating zone 2, and the CdSe core, 1-octadecene and oleylamine are reacted at intervals. Add Cd precursor and Zn precursor, S precursor, Zn precursor and Cd precursor, S precursor, Zn precursor and Cd precursor, and Zn precursor and S precursor, so as to accumulate more on CdSe nucleus. The shell shell synthesizes CdSe/CdZnS/ZnS quantum dots.
  • a rearward section of the core/shell reaction zone is provided with a rapid rotation zone 11 and a float discharge zone, and the float discharge port 4 is disposed in the float discharge zone;
  • the first to fifth injection ports 75 are disposed at a distance from the front end of the core/shell reaction zone, and the distance between adjacent injection ports is 100 cm, and the rear end of the core/shell reaction zone corresponds to the rapid rotation.
  • the region 11 is provided with a sixth injection port 76, and three floating material discharge ports 4 are provided at the rear end of the core/shell reaction zone.
  • the CdSe core, 1-octadecene and oleylamine are metered into the first injection port 71, and are vacuum-ventilated and converted into a nitrogen atmosphere.
  • the temperature of the heating zone 2 is controlled to 220-250 degrees Celsius, and the reactants are subjected to nitrogen pressure.
  • the spiral reaction tube 1 is moved to perform a heating reaction, and the reaction time between the adjacent two injection ports is 10 minutes.
  • the Cd precursor and the Zn precursor are injected into the second injection port 72, and the reactants are continuously pushed by the nitrogen pressure.
  • the reaction forms a first shell; the Cd precursor, the Zn precursor and the S precursor are injected into the third injection port 73 to form a second shell; and the Cd precursor, the Zn precursor and the S precursor are injected at the fourth injection port 74.
  • the body forms a third shell; the Zn precursor and the S precursor are injected into the fifth injection port 75 to form a fourth shell, thereby obtaining CdSe/CdZnS/ZnS quantum dots.
  • the reactants enter the rapid rotation region 11, and the polar injection of ethanol and acetone is injected into the sixth injection port 76, and the temperature of the cooling zone 3 is maintained at 0 to 4 degrees Celsius, and the reactants are pushed under nitrogen pressure.
  • the reaction tube having a length of 150 to 200 cm is passed through for 5 minutes, and as the curvature of the reaction tube becomes soft, light-weight impurities float on the reactants, and the float is removed to the outside through the float discharge port 4,
  • the CdSe/CdZnS/ZnS quantum dots after the impurities are removed are transported to the storage container by the transfer pipe 8 for storage.
  • the size of the quantum dots and the wavelength of the light are determined according to the wavelength of the core and the number of shells. In order to increase the quantum dots, a relatively large number of shells are accumulated, but this reduces the light-emitting characteristics, so the recommended number of shell layers is 4. ⁇ 6 layers.
  • the core and the core and the shell may be composed of ZnS, ZnSe, ZnTe, CdS, CdSe, CdTe, HgS, HgSe, HgTe, MgS, MgSe, MgTe, CaS, CaSe, CaTe, SrS, SrSe, SrTe, BaS.
  • this embodiment discloses a quantum dot core-shell synthesis apparatus including a core/shell reaction zone for performing a core/shell reaction, the reaction zone including at least one spiral reaction tube 1
  • the inner wall of the spiral reaction tube 1 is provided with a channel groove opposite to the spiral shape for causing a bubble in the reaction tube injected into the reaction tube due to friction, and the front portion of the core/shell reaction region is coated with a heating zone 2 a rear portion of the core/shell reaction zone is coated with a cooling zone 3, a plurality of injection ports are disposed at a front end of the core/shell reaction zone, and a plurality of floating channels are disposed at a rear end of the core/shell reaction zone.
  • the discharge port 4 is connected to the front end of the core/shell reaction zone with a pressurizing device.
  • the heating zone 2 and the cooling zone 3 respectively comprise a temperature control tube wound on the spiral reaction tube 1, and the temperature control tube is filled with liquid water or oil for controlling temperature, the heating zone 2, the cooling zone
  • the temperature control tubes of 3 are connected to the heating device 5 and the external cooler 6, respectively.
  • the rear portion of the core/shell reaction zone is provided with a rapid rotation zone 11 and a float discharge zone, and the float discharge port 4 is provided in the float discharge zone.
  • the distance between the tubes of the spiral reaction tube 1 in the rapid rotation region 11 is smaller than the distance between the tubes of the spiral reaction tube 1 in the front portion of the core/shell reaction region, and the distance between the tubes in the discharge region of the float is larger than that in the front portion of the core/shell reaction region.
  • the diameter of the rapid rotation region 11 is three times the diameter of the spiral reaction tube 1 in the front stage of the core/shell reaction zone; the curvature of the rapid rotation zone 11 is reduced by 50% compared with the spiral reaction tube 1 in the front stage of the core/shell reaction zone.
  • the first to fifth injection ports 75 are disposed at a distance from the front end of the core/shell reaction zone, and the distance between adjacent injection ports is 100 cm, and the rear end of the core/shell reaction zone corresponds to the rapid rotation.
  • the region 11 is provided with a sixth injection port 76, and three floating material discharge ports 4 are provided at the rear end of the core/shell reaction zone.
  • a quantum dot core-shell synthesis method implemented by the aforementioned quantum dot core-shell synthesis device comprises the steps of: vacuum-venting a core/shell reaction zone and converting it into a nitrogen atmosphere, and CdSe core, 1-octadecene And the oily amine is injected into the spiral reaction tube 1 of the core/shell reaction zone, and the spiral reaction tube 1 is heated to a set temperature through the heating zone 2, and the CdSe core, 1-octadecene and oleylamine are reacted at intervals. Add Cd precursor and Zn precursor, S precursor, Zn precursor and Cd precursor, S precursor, Zn precursor and Cd precursor, and Zn precursor and S precursor, so as to accumulate more on CdSe nucleus. The shell shell synthesizes CdSe/CdZnS/ZnS quantum dots.
  • a rearward section of the core/shell reaction zone is provided with a rapid rotation zone 11 and a float discharge zone, and the float discharge port 4 is disposed in the float discharge zone;
  • the first to fifth injection ports 75 are disposed at a distance from the front end of the core/shell reaction zone, and the distance between adjacent injection ports is 100 cm, and the rear end of the core/shell reaction zone corresponds to the rapid rotation.
  • the region 11 is provided with a sixth injection port 76, and three floating material discharge ports 4 are provided at the rear end of the core/shell reaction zone.
  • the CdSe core, 1-octadecene and oleylamine are metered into the first injection port 71, and are vacuum-ventilated and converted into a nitrogen atmosphere.
  • the temperature of the heating zone 2 is controlled to 220-250 degrees Celsius, and the reactants are subjected to nitrogen pressure.
  • the spiral reaction tube 1 is moved to perform a heating reaction, and the reaction time between the adjacent two injection ports is 10 minutes.
  • the Cd precursor and the Zn precursor are injected into the second injection port 72, and the reactants are continuously pushed by the nitrogen pressure.
  • the reaction forms a first shell; the Cd precursor, the Zn precursor and the S precursor are injected into the third injection port 73 to form a second shell; and the Cd precursor, the Zn precursor and the S precursor are injected at the fourth injection port 74.
  • the body forms a third shell; the Zn precursor and the S precursor are injected into the fifth injection port 75 to form a fourth shell, thereby obtaining CdSe/CdZnS/ZnS quantum dots.
  • the reactants enter the rapid rotation region 11, and the polar injection of ethanol and acetone is injected into the sixth injection port 76, and the temperature of the cooling zone 3 is maintained at 0 to 4 degrees Celsius, and the reactants are pushed under nitrogen pressure.
  • the reaction tube having a length of 150 to 200 cm is passed through for 5 minutes, and as the curvature of the reaction tube becomes soft, light-weight impurities float on the reactants, and the float is removed to the outside through the float discharge port 4,
  • the CdSe/CdZnS/ZnS quantum dots after the impurities are removed are transported to the storage container by the transfer pipe 8 for storage.
  • the size of the quantum dots and the wavelength of the light are determined according to the wavelength of the core and the number of shells. In order to increase the quantum dots, a relatively large number of shells are accumulated, but this reduces the light-emitting characteristics, so the recommended number of shell layers is 4. ⁇ 6 layers.
  • the core and the core and the shell may be composed of ZnS, ZnSe, ZnTe, CdS, CdSe, CdTe, HgS, HgSe, HgTe, MgS, MgSe, MgTe, CaS, CaSe, CaTe, SrS, SrSe, SrTe, BaS.
  • the quantum dot core-shell synthesis device of the invention can improve the stability of the quantum dots and the uniformity of the particle size, and can make it have no defects, thereby maximizing the quantum efficiency, thereby synthesizing the quantum dots with improved luminous efficiency and vividness.
  • the device structure is reasonable and simple, and the design is ingenious, and the multi-layer shell can be synthesized on the core as needed, thereby obtaining high-quality quantum dots meeting the size requirements.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Luminescent Compositions (AREA)

Abstract

本发明公开了一种量子点核壳合成装置,其包括用于进行核/壳反应的核/壳反应区,该反应区包括至少一个螺旋状反应管,所述螺旋状反应管内壁上设有与该螺旋状相反方向的使注入反应管中的反应物因摩擦产生冒泡效应的途径槽,所述核/壳反应区的前段包覆有加热区,所述核/壳反应区的后段包覆有冷却区,于所述核/壳反应区的前端设有若干个注入口,于该核/壳反应区的后端设有若干个浮游物排出口,所述核/壳反应区的前端连接有加压装置。本发明还公开了一种量子点核壳合成方法。本发明的量子点核壳合成装置能提高量子点的稳定性及粒子大小的均匀,同时能使其没有缺陷,因此能使量子效率最大化,从而合成出提升了发光效率及鲜明度的量子点。

Description

量子点核壳合成装置及量子点核壳合成方法 技术领域
本发明涉及量子点合成领域,具体涉及一种量子点核壳合成装置及通过该量子点核壳合成装置实施的量子点核壳合成方法。
背景技术
现有技术中,量子点的合成方法为溶液法工艺,主要由围绕着加热套的烧瓶、能使烧瓶内部溶液均匀的磁力搅拌器、以及控制溶液温度的温度调节器和温度计组成。 另外,添加了维持稳定浓度的电容器和能转换真空/氮气氛围的多支管组成。
合成方法为利用前驱体(precursor)的有机化合物合成核(core),为了使合成的核和稳定剂在混合搅拌的反应器中形成适当的壳,反复注入前驱体形成结构稳定的核/壳结构,最近还开发出了one-pot工艺,将所有反应物质一次性放入反应器中再添加壳工序的方法。
技术问题
如此,溶液工艺合成方法变成大容量化时,为了反应物质内的均匀性,有时也会用叶轮代替磁力搅拌器,但是因为不均匀的温差、不均匀的环境导致反应物内浓度的差异以及组合的差异。量子点合成是奥斯特瓦尔德熟化(Ostwald ripening),也是温度和时间的函数,据悉此技术是小的粒子与相对大的颗粒合体之后生长,当形成所需大小的纳米粒子时停止粒子生长的技术。但是目前的方法是通过冷却控制粒子生长时,会产生温度差,很难合成出大小均匀的粒子。因此,这些因素还会影响量子点纳米粒子的发光特性和散布大小均匀的粒子。
为了得到一定大小的纳米粒子,进行急速冷却。此反应物中也存有反应的副产物、有机物,所以通过离心过滤除去有机物。纳米粒子分离可通过丙酮或乙醇等强极性溶剂,利用离心过滤区分粒子的大小。各个反应过程中通过磁棒或搅拌机进行强制搅拌,虽然这是众所周知能达到比较均匀搅拌的方法,但是根据反应物的量,反应搅拌速度会有所不同,这会影响粒子的大小和稳定纳米粒子的形成。
这种现有的合成方法还另外需要前驱体反应器、核反应器、核/壳反应器等,因为是在各自反应后重新进行计量、测量,然后进行合成,所以存在无法连续作业的缺点。而且因为反应时间、粒子分离等差异,有可能无法得到具有均匀的特点的纳米粒子。
量子点核壳合成是量子点合成中的一个重要环节,如何能够通过简单合理的合成装置使核壳合成工艺简化,并且能够生产出优质的符合使用条件的量子点成为了业界需求。
技术解决方案
为了解决上述问题,本发明公开了一种量子点核壳合成装置。
本发明还公开了一种通过该量子点核壳合成装置实施的量子点核壳合成方法。
本发明为实现上述目的所采用的技术方案是:
一种量子点核壳合成装置,其包括用于进行核/壳反应的核/壳反应区,该反应区包括至少一个螺旋状反应管,所述螺旋状反应管内壁上设有与该螺旋状相反方向的使注入反应管中的反应物因摩擦产生冒泡效应的途径槽,所述核/壳反应区的前段包覆有加热区,所述核/壳反应区的后段包覆有冷却区,于所述核/壳反应区的前端设有若干个注入口,于该核/壳反应区的后端设有若干个浮游物排出口,所述核/壳反应区的前端连接有加压装置。
所述加热区、冷却区分别包括缠绕于该螺旋状反应管上的温度控制管,所述温度控制管中填充满用于控制温度的液态水或油,该加热区、冷却区的温度控制管分别与加热装置、外部冷却器连接。
所述核/壳反应区的后段设有急速旋转区域和浮游物排出区域,所述浮游物排出口设于该浮游物排出区域。
该急速旋转区域中螺旋状反应管的管间距离小于核/壳反应区前段的螺旋状反应管的管间距离,该浮游物排出区域的管间距离大于核/壳反应区前段的螺旋状反应管的管间距离。
该急速旋转区域的直径为核/壳反应区前段的螺旋状反应管直径的三倍;该急速旋转区域的弯曲度比核/壳反应区前段的螺旋状反应管减少50%。
于所述核/壳反应区的前端按间隔距离设有第一至第五注入口,相邻两注入口之间距离为100cm,于该核/壳反应区的后端对应所述急速旋转区域设有第六注入口,于该核/壳反应区的后端设有三个浮游物排出口。
一种通过前述量子点核壳合成装置实施的量子点核壳合成方法,其包括以下步骤:将核/壳反应区进行真空排气后转换为氮气环境,将CdSe核、1-十八碳烯和油胺注入核/壳反应区的螺旋状反应管,通过加热区将螺旋状反应管加热到设定温度,使CdSe核、1-十八碳烯和油胺反应,按间隔时间依次加入Cd前驱体与Zn前驱体,S前驱体、Zn前驱体与Cd前驱体,S前驱体、Zn前驱体与Cd前驱体,和Zn前驱体与S前驱体,从而在CdSe核上积累多层壳,合成CdSe/CdZnS/ZnS量子点。
所述核/壳反应区的后段设有急速旋转区域和浮游物排出区域,所述浮游物排出口设于该浮游物排出区域;
于所述核/壳反应区的前端按间隔距离设有第一至第五注入口,相邻两注入口之间距离为100cm,于该核/壳反应区的后端对应所述急速旋转区域设有第六注入口,于该核/壳反应区的后端设有三个浮游物排出口。
在第一注入口中计量注入CdSe核、1-十八碳烯和油胺,真空排气后转换为氮气环境,加热区的温度控制为220~250摄氏度,反应物因氮气压力随着螺旋状反应管移动进行加热反应,相邻两注入口之间的反应时间为10分钟,在第二注入口中注入Cd前驱体和Zn前驱体,继续由氮气压力推动反应物前行,反应形成第一层壳;在第三注入口注入Cd前驱体、Zn前驱体和S前驱体,反应形成第二层壳;在第四注入口注入Cd前驱体、Zn前驱体和S前驱体,反应形成第三层壳;在第五注入口注入Zn前驱体和S前驱体,反应形成第四层壳,从而得到CdSe/CdZnS/ZnS量子点。
为了分离合成的量子点和杂质,反应物进入急速旋转区域,于第六注入口注入极性强的乙醇、丙酮,冷却区的温度维持到0~4摄氏度,反应物在氮气压力推动下用5分钟通过长度为150~200cm的反应管,随着反应管的弧度变得柔和,重量轻的杂质浮游在反应物上流过,此时通过浮游物排出口将浮游物清除到外部,去除杂质后的CdSe/CdZnS/ZnS量子点通过输送管道输送至保管用容器进行保存。
有益效果
本发明的有益效果为:本发明的量子点核壳合成装置能提高量子点的稳定性及粒子大小的均匀,同时能使其没有缺陷,因此能使量子效率最大化,从而合成出提升了发光效率及鲜明度的量子点,装置结构合理简单,设计巧妙,能够根据需要在核上合成多层壳体,从而得到符合尺寸要求的优质量子点。
附图说明
下面结合附图与具体实施方式,对本发明进一步说明。
图1是本发明的结构示意图。
本发明的最佳实施方式
实施例,参见图1,本实施例公开了一种量子点核壳合成装置,其包括用于进行核/壳反应的核/壳反应区,该反应区包括至少一个螺旋状反应管1,所述螺旋状反应管1内壁上设有与该螺旋状相反方向的使注入反应管中的反应物因摩擦产生冒泡效应的途径槽,所述核/壳反应区的前段包覆有加热区2,所述核/壳反应区的后段包覆有冷却区3,于所述核/壳反应区的前端设有若干个注入口,于该核/壳反应区的后端设有若干个浮游物排出口4,所述核/壳反应区的前端连接有加压装置。
所述加热区2、冷却区3分别包括缠绕于该螺旋状反应管1上的温度控制管,所述温度控制管中填充满用于控制温度的液态水或油,该加热区2、冷却区3的温度控制管分别与加热装置5、外部冷却器6连接。
所述核/壳反应区的后段设有急速旋转区域11和浮游物排出区域,所述浮游物排出口4设于该浮游物排出区域。
该急速旋转区域11中螺旋状反应管1的管间距离小于核/壳反应区前段的螺旋状反应管1的管间距离,该浮游物排出区域的管间距离大于核/壳反应区前段的螺旋状反应管1的管间距离。
该急速旋转区域11的直径为核/壳反应区前段的螺旋状反应管1直径的三倍;该急速旋转区域11的弯曲度比核/壳反应区前段的螺旋状反应管1减少50%。
于所述核/壳反应区的前端按间隔距离设有第一至第五注入口75,相邻两注入口之间距离为100cm,于该核/壳反应区的后端对应所述急速旋转区域11设有第六注入口76,于该核/壳反应区的后端设有三个浮游物排出口4。
一种通过前述量子点核壳合成装置实施的量子点核壳合成方法,其包括以下步骤:将核/壳反应区进行真空排气后转换为氮气环境,将CdSe核、1-十八碳烯和油胺注入核/壳反应区的螺旋状反应管1,通过加热区2将螺旋状反应管1加热到设定温度,使CdSe核、1-十八碳烯和油胺反应,按间隔时间依次加入Cd前驱体与Zn前驱体,S前驱体、Zn前驱体与Cd前驱体,S前驱体、Zn前驱体与Cd前驱体,和Zn前驱体与S前驱体,从而在CdSe核上积累多层壳,合成CdSe/CdZnS/ZnS量子点。
所述核/壳反应区的后段设有急速旋转区域11和浮游物排出区域,所述浮游物排出口4设于该浮游物排出区域;
于所述核/壳反应区的前端按间隔距离设有第一至第五注入口75,相邻两注入口之间距离为100cm,于该核/壳反应区的后端对应所述急速旋转区域11设有第六注入口76,于该核/壳反应区的后端设有三个浮游物排出口4。
在第一注入口71中计量注入CdSe核、1-十八碳烯和油胺,真空排气后转换为氮气环境,加热区2的温度控制为220~250摄氏度,反应物因氮气压力随着螺旋状反应管1移动进行加热反应,相邻两注入口之间的反应时间为10分钟,在第二注入口72中注入Cd前驱体和Zn前驱体,继续由氮气压力推动反应物前行,反应形成第一层壳;在第三注入口73注入Cd前驱体、Zn前驱体和S前驱体,反应形成第二层壳;在第四注入口74注入Cd前驱体、Zn前驱体和S前驱体,反应形成第三层壳;在第五注入口75注入Zn前驱体和S前驱体,反应形成第四层壳,从而得到CdSe/CdZnS/ZnS量子点。
为了分离合成的量子点和杂质,反应物进入急速旋转区域11,于第六注入口76注入极性强的乙醇、丙酮,冷却区3的温度维持到0~4摄氏度,反应物在氮气压力推动下用5分钟通过长度为150~200cm的反应管,随着反应管的弧度变得柔和,重量轻的杂质浮游在反应物上流过,此时通过浮游物排出口4将浮游物清除到外部,去除杂质后的CdSe/CdZnS/ZnS量子点通过输送管道8输送至保管用容器进行保存。
量子点的大小及发光波长会根据核的波长、壳的数量而定,为了使量子点变大,会积累相对较多的壳,但这样会降低发光特性,因此推荐的壳体层数为4~6层。
在其他实施例中,核及核、壳可以由ZnS、 ZnSe、 ZnTe、 CdS、 CdSe、 CdTe、 HgS、 HgSe、 HgTe、 MgS、 MgSe、 MgTe、 CaS、 CaSe、 CaTe、 SrS、 SrSe、 SrTe、 BaS、 BaSe、 BaTe、 GaN、 GaP、 GaAs、 GaSb、 InN、 InP、 InSb、 Ge、 Si以及这些组合组成的群中做出选择,而且根据需要,在核壳反应区的量子点核和量子点壳之间可以再合成一个以上的这些组合或晶格常数由类似元素组成的量子点缓冲层。
本发明的实施方式
实施例,参见图1,本实施例公开了一种量子点核壳合成装置,其包括用于进行核/壳反应的核/壳反应区,该反应区包括至少一个螺旋状反应管1,所述螺旋状反应管1内壁上设有与该螺旋状相反方向的使注入反应管中的反应物因摩擦产生冒泡效应的途径槽,所述核/壳反应区的前段包覆有加热区2,所述核/壳反应区的后段包覆有冷却区3,于所述核/壳反应区的前端设有若干个注入口,于该核/壳反应区的后端设有若干个浮游物排出口4,所述核/壳反应区的前端连接有加压装置。
所述加热区2、冷却区3分别包括缠绕于该螺旋状反应管1上的温度控制管,所述温度控制管中填充满用于控制温度的液态水或油,该加热区2、冷却区3的温度控制管分别与加热装置5、外部冷却器6连接。
所述核/壳反应区的后段设有急速旋转区域11和浮游物排出区域,所述浮游物排出口4设于该浮游物排出区域。
该急速旋转区域11中螺旋状反应管1的管间距离小于核/壳反应区前段的螺旋状反应管1的管间距离,该浮游物排出区域的管间距离大于核/壳反应区前段的螺旋状反应管1的管间距离。
该急速旋转区域11的直径为核/壳反应区前段的螺旋状反应管1直径的三倍;该急速旋转区域11的弯曲度比核/壳反应区前段的螺旋状反应管1减少50%。
于所述核/壳反应区的前端按间隔距离设有第一至第五注入口75,相邻两注入口之间距离为100cm,于该核/壳反应区的后端对应所述急速旋转区域11设有第六注入口76,于该核/壳反应区的后端设有三个浮游物排出口4。
一种通过前述量子点核壳合成装置实施的量子点核壳合成方法,其包括以下步骤:将核/壳反应区进行真空排气后转换为氮气环境,将CdSe核、1-十八碳烯和油胺注入核/壳反应区的螺旋状反应管1,通过加热区2将螺旋状反应管1加热到设定温度,使CdSe核、1-十八碳烯和油胺反应,按间隔时间依次加入Cd前驱体与Zn前驱体,S前驱体、Zn前驱体与Cd前驱体,S前驱体、Zn前驱体与Cd前驱体,和Zn前驱体与S前驱体,从而在CdSe核上积累多层壳,合成CdSe/CdZnS/ZnS量子点。
所述核/壳反应区的后段设有急速旋转区域11和浮游物排出区域,所述浮游物排出口4设于该浮游物排出区域;
于所述核/壳反应区的前端按间隔距离设有第一至第五注入口75,相邻两注入口之间距离为100cm,于该核/壳反应区的后端对应所述急速旋转区域11设有第六注入口76,于该核/壳反应区的后端设有三个浮游物排出口4。
在第一注入口71中计量注入CdSe核、1-十八碳烯和油胺,真空排气后转换为氮气环境,加热区2的温度控制为220~250摄氏度,反应物因氮气压力随着螺旋状反应管1移动进行加热反应,相邻两注入口之间的反应时间为10分钟,在第二注入口72中注入Cd前驱体和Zn前驱体,继续由氮气压力推动反应物前行,反应形成第一层壳;在第三注入口73注入Cd前驱体、Zn前驱体和S前驱体,反应形成第二层壳;在第四注入口74注入Cd前驱体、Zn前驱体和S前驱体,反应形成第三层壳;在第五注入口75注入Zn前驱体和S前驱体,反应形成第四层壳,从而得到CdSe/CdZnS/ZnS量子点。
为了分离合成的量子点和杂质,反应物进入急速旋转区域11,于第六注入口76注入极性强的乙醇、丙酮,冷却区3的温度维持到0~4摄氏度,反应物在氮气压力推动下用5分钟通过长度为150~200cm的反应管,随着反应管的弧度变得柔和,重量轻的杂质浮游在反应物上流过,此时通过浮游物排出口4将浮游物清除到外部,去除杂质后的CdSe/CdZnS/ZnS量子点通过输送管道8输送至保管用容器进行保存。
量子点的大小及发光波长会根据核的波长、壳的数量而定,为了使量子点变大,会积累相对较多的壳,但这样会降低发光特性,因此推荐的壳体层数为4~6层。
在其他实施例中,核及核、壳可以由ZnS、 ZnSe、 ZnTe、 CdS、 CdSe、 CdTe、 HgS、 HgSe、 HgTe、 MgS、 MgSe、 MgTe、 CaS、 CaSe、 CaTe、 SrS、 SrSe、 SrTe、 BaS、 BaSe、 BaTe、 GaN、 GaP、 GaAs、 GaSb、 InN、 InP、 InSb、 Ge、 Si以及这些组合组成的群中做出选择,而且根据需要,在核壳反应区的量子点核和量子点壳之间可以再合成一个以上的这些组合或晶格常数由类似元素组成的量子点缓冲层。
工业实用性
本发明的量子点核壳合成装置能提高量子点的稳定性及粒子大小的均匀,同时能使其没有缺陷,因此能使量子效率最大化,从而合成出提升了发光效率及鲜明度的量子点,装置结构合理简单,设计巧妙,能够根据需要在核上合成多层壳体,从而得到符合尺寸要求的优质量子点。

Claims (9)

  1. 一种量子点核壳合成装置,其特征在于:其包括用于进行核/壳反应的核/壳反应区,该反应区包括至少一个螺旋状反应管,所述螺旋状反应管内壁上设有与该螺旋状相反方向的使注入反应管中的反应物因摩擦产生冒泡效应的途径槽,所述核/壳反应区的前段包覆有加热区,所述核/壳反应区的后段包覆有冷却区,于所述核/壳反应区的前端设有若干个注入口,于该核/壳反应区的后端设有若干个浮游物排出口,所述核/壳反应区的前端连接有加压装置;
    所述加热区、冷却区分别包括缠绕于该螺旋状反应管上的温度控制管,所述温度控制管中填充满用于控制温度的液态水或油,该加热区、冷却区的温度控制管分别与加热装置、外部冷却器连接。
  2. 根据权利要求1所述的量子点核壳合成装置,其特征在于,所述核/壳反应区的后段设有急速旋转区域和浮游物排出区域,所述浮游物排出口设于该浮游物排出区域。
  3. 根据权利要求2所述的量子点核壳合成装置,其特征在于,该急速旋转区域中螺旋状反应管的管间距离小于核/壳反应区前段的螺旋状反应管的管间距离,该浮游物排出区域的管间距离大于核/壳反应区前段的螺旋状反应管的管间距离。
  4. 根据权利要求2所述的量子点核壳合成装置,其特征在于,该急速旋转区域的直径为核/壳反应区前段的螺旋状反应管直径的三倍;该急速旋转区域的弯曲度比核/壳反应区前段的螺旋状反应管减少50%。
  5. 根据权利要求2所述的量子点核壳合成装置,其特征在于,于所述核/壳反应区的前端按间隔距离设有第一至第五注入口,于该核/壳反应区的后端对应所述急速旋转区域设有第六注入口,于该核/壳反应区的后端设有三个浮游物排出口。
  6. 一种通过权利要求1所述量子点核壳合成装置实施的量子点核壳合成方法,其特征在于,其包括以下步骤:将核/壳反应区进行真空排气后转换为氮气环境,将CdSe核、1-十八碳烯和油胺注入核/壳反应区的螺旋状反应管,通过加热区将螺旋状反应管加热到设定温度,使CdSe核、1-十八碳烯和油胺反应,按间隔时间依次加入Cd前驱体与Zn前驱体,S前驱体、Zn前驱体与Cd前驱体,S前驱体、Zn前驱体与Cd前驱体,和Zn前驱体与S前驱体,从而在CdSe核上积累多层壳,合成CdSe/CdZnS/ZnS量子点。
  7. 根据权利要求6所述的量子点核壳合成方法,其特征在于,所述核/壳反应区的后段设有急速旋转区域和浮游物排出区域,所述浮游物排出口设于该浮游物排出区域;
    于所述核/壳反应区的前端按间隔距离设有第一至第五注入口,相邻两注入口之间距离为100cm,于该核/壳反应区的后端对应所述急速旋转区域设有第六注入口,于该核/壳反应区的后端设有三个浮游物排出口。
  8. 根据权利要求6所述的量子点核壳合成方法,其特征在于,在第一注入口中计量注入CdSe核、1-十八碳烯和油胺,真空排气后转换为氮气环境,加热区的温度控制为220~250摄氏度,反应物因氮气压力随着螺旋状反应管移动进行加热反应,相邻两注入口之间的反应时间为10分钟,在第二注入口中注入Cd前驱体和Zn前驱体,继续由氮气压力推动反应物前行,反应形成第一层壳;在第三注入口注入Cd前驱体、Zn前驱体和S前驱体,反应形成第二层壳;在第四注入口注入Cd前驱体、Zn前驱体和S前驱体,反应形成第三层壳;在第五注入口注入Zn前驱体和S前驱体,反应形成第四层壳,从而得到CdSe/CdZnS/ZnS量子点。
  9. 根据权利要求8所述的量子点核壳合成方法,其特征在于,为了分离合成的量子点和杂质,反应物进入急速旋转区域,于第六注入口注入极性强的乙醇、丙酮,冷却区的温度维持到0~4摄氏度,反应物在氮气压力推动下用5分钟通过长度为150~200cm的反应管,随着反应管的弧度变得柔和,重量轻的杂质浮游在反应物上流过,此时通过浮游物排出口将浮游物清除到外部,去除杂质后的CdSe/CdZnS/ZnS量子点通过输送管道输送至保管用容器进行保存。
     
PCT/CN2018/083631 2017-04-21 2018-04-19 量子点核壳合成装置及量子点核壳合成方法 WO2018192540A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201710266969.7A CN106916584B (zh) 2017-04-21 2017-04-21 量子点合成装置及量子点合成方法
CN201710266387.9 2017-04-21
CN201710266387.9A CN106893577B (zh) 2017-04-21 2017-04-21 量子点核壳合成装置及量子点核壳合成方法
CN201710266969.7 2017-04-21

Publications (1)

Publication Number Publication Date
WO2018192540A1 true WO2018192540A1 (zh) 2018-10-25

Family

ID=63856206

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/083631 WO2018192540A1 (zh) 2017-04-21 2018-04-19 量子点核壳合成装置及量子点核壳合成方法

Country Status (1)

Country Link
WO (1) WO2018192540A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020144644A1 (en) * 2000-12-28 2002-10-10 Quantum Dot Corporation Flow synthesis of quantum dot nanocrystals
CN101565175A (zh) * 2009-06-05 2009-10-28 华东理工大学 一种快速合成硒化镉量子点的装置及其方法
US20100031774A1 (en) * 2007-05-15 2010-02-11 Samsung Electro-Mechanics Co.,Ltd. Apparatus and method for manufacturing metal nanoparticles
CN102232057A (zh) * 2008-10-27 2011-11-02 韩国机械研究院 制造量子点的具有多个加热区的设备及制造量子点的方法
CN102232056A (zh) * 2008-10-27 2011-11-02 韩国机械研究院 用于生成量子点的装置和方法
CN105080448A (zh) * 2015-09-08 2015-11-25 中国科学院广州能源研究所 一种毫米通道式连续化制备系统
CN106433636A (zh) * 2016-11-11 2017-02-22 华南理工大学 一种基于微通道离子泵的一体化量子点合成方法及装置
CN206828441U (zh) * 2017-04-21 2018-01-02 东莞市睿泰涂布科技有限公司 量子点核壳合成装置
CN206828440U (zh) * 2017-04-21 2018-01-02 东莞市睿泰涂布科技有限公司 量子点合成装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020144644A1 (en) * 2000-12-28 2002-10-10 Quantum Dot Corporation Flow synthesis of quantum dot nanocrystals
US20100031774A1 (en) * 2007-05-15 2010-02-11 Samsung Electro-Mechanics Co.,Ltd. Apparatus and method for manufacturing metal nanoparticles
CN102232057A (zh) * 2008-10-27 2011-11-02 韩国机械研究院 制造量子点的具有多个加热区的设备及制造量子点的方法
CN102232056A (zh) * 2008-10-27 2011-11-02 韩国机械研究院 用于生成量子点的装置和方法
CN101565175A (zh) * 2009-06-05 2009-10-28 华东理工大学 一种快速合成硒化镉量子点的装置及其方法
CN105080448A (zh) * 2015-09-08 2015-11-25 中国科学院广州能源研究所 一种毫米通道式连续化制备系统
CN106433636A (zh) * 2016-11-11 2017-02-22 华南理工大学 一种基于微通道离子泵的一体化量子点合成方法及装置
CN206828441U (zh) * 2017-04-21 2018-01-02 东莞市睿泰涂布科技有限公司 量子点核壳合成装置
CN206828440U (zh) * 2017-04-21 2018-01-02 东莞市睿泰涂布科技有限公司 量子点合成装置

Similar Documents

Publication Publication Date Title
JP6410107B2 (ja) コア/シェルナノ粒子の製造プロセス及びコア/シェルナノ粒子
US10910525B2 (en) Cadmium-free quantum dot nanoparticles
US20190218455A1 (en) Highly luminescent semiconductor nanocrystals
JP6138287B2 (ja) Iii−v族/カルコゲン化亜鉛合金半導体量子ドット
US7850777B2 (en) Method of preparing semiconductor nanocrystal compositions
US9577149B2 (en) Continuous synthesis of high quantum yield InP/ZnS nanocrystals
CN110028970B (zh) CdZnSe/CdSe/ZnSe绿光量子点制备方法
US10000862B2 (en) Method of making quantum dots
JP2020514432A (ja) 半導電性発光ナノ粒子
CN109312489A (zh) 在高温下合成核壳纳米晶体的方法
TW201340383A (zh) 塗布半導體奈米晶體之方法、半導體奈米晶體及其產物
Naughton et al. High temperature continuous flow synthesis of CdSe/CdS/ZnS, CdS/ZnS, and CdSeS/ZnS nanocrystals
CN106893577B (zh) 量子点核壳合成装置及量子点核壳合成方法
KR101874811B1 (ko) 양자점 합성 장치 및 양자점 합성 방법
CN109504367B (zh) 一种大尺寸核壳结构量子点的制备方法
KR102036149B1 (ko) 스크류 반응관을 이용한 양자점 합성 장치
WO2018192540A1 (zh) 量子点核壳合成装置及量子点核壳合成方法
CN103059839B (zh) 具有窄的发光的纳米粒子的制备
WO2018192544A1 (zh) 量子点合成装置及量子点合成方法
KR20180106657A (ko) 양자점의 연속흐름 제조방법 및 양자점 연속흐름 제조장치
CN206828441U (zh) 量子点核壳合成装置
US11873434B2 (en) Method for synthesizing a semiconducting nanosized material
JP6815602B2 (ja) 量子ドット
Yang et al. Photoluminescent Enhancement of CdSe/Cd1− x Zn x S Quantum Dots by Hexadecylamine at Room Temperature
Ness et al. Sustainable synthesis of semiconductor nanoparticles in a continuous flow reactor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18788226

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18788226

Country of ref document: EP

Kind code of ref document: A1