WO2018190430A1 - 空気入りタイヤ - Google Patents

空気入りタイヤ Download PDF

Info

Publication number
WO2018190430A1
WO2018190430A1 PCT/JP2018/015569 JP2018015569W WO2018190430A1 WO 2018190430 A1 WO2018190430 A1 WO 2018190430A1 JP 2018015569 W JP2018015569 W JP 2018015569W WO 2018190430 A1 WO2018190430 A1 WO 2018190430A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
group
atom
parts
styrene
Prior art date
Application number
PCT/JP2018/015569
Other languages
English (en)
French (fr)
Inventor
勇人 吉安
Original Assignee
住友ゴム工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ゴム工業株式会社 filed Critical 住友ゴム工業株式会社
Priority to US16/498,636 priority Critical patent/US11396590B2/en
Priority to EP18784853.6A priority patent/EP3597697A4/en
Priority to JP2018545510A priority patent/JP7407512B2/ja
Priority to CN201880021265.6A priority patent/CN110520470A/zh
Publication of WO2018190430A1 publication Critical patent/WO2018190430A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C1/0016Compositions of the tread
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/0008Tyre tread bands; Tread patterns; Anti-skid inserts characterised by the tread rubber
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3477Six-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Definitions

  • the present invention relates to a pneumatic tire.
  • silica is used more frequently than carbon black in rubber compositions used for tire treads in order to obtain good fuel efficiency, and the amount of the compound is also increasing (for example, patent documents). 1).
  • silica has a low affinity with rubber, as the amount of silica increases, the dispersibility in rubber deteriorates, and the original performance due to silica formulation cannot be obtained. There was room for improvement in terms of improving wear resistance and wet grip performance in a well-balanced manner.
  • An object of the present invention is to provide a pneumatic tire in which low fuel consumption performance, wear resistance performance, and wet grip performance are improved in a well-balanced manner.
  • a tetrazine compound represented by the following general formula (1) 80 to 150 parts by mass of silica and 0.1 g of a tetrazine compound represented by the following general formula (1) are added to 100 parts by mass of a rubber component having a styrene butadiene rubber content of 30% by mass or more.
  • a rubber composition for a tread containing 1 to 3.0 parts by mass 50 parts by mass or less of a hydrocarbon resin having an SP value of 7.5 to 10.5, and the styrene-butadiene rubber having a styrene content of 23% by mass or more.
  • the present invention relates to a pneumatic tire having the produced tread.
  • R 1 and R 2 may be the same or different and each is a hydrogen atom, —COOR 3 (R 3 represents a hydrogen atom or an alkyl group) or a monovalent hydrocarbon group having 1 to 11 carbon atoms. And the hydrocarbon group may have a hetero atom. R 1 and R 2 may form a salt. ]
  • the tetrazine compound is preferably a compound represented by the following general formula (1-1), (1-2), (1-3), or (1-4).
  • R 11 represents a hydrogen atom, —COOR 17 (R 17 represents a hydrogen atom or an alkyl group) or a monovalent hydrocarbon group having 1 to 11 carbon atoms; The group may have a heteroatom.
  • R 11 may form a salt.
  • R 12 represents a functional group containing at least one atom selected from the group consisting of a nitrogen atom, an oxygen atom, a sulfur atom, a fluorine atom and a silicon atom.
  • R 12 may form a salt.
  • R 13 and R 14 may be the same or different and each represents a hydrogen atom or an alkyl group. R 13 and R 14 may form a salt.
  • R 15 and R 16 may be the same or different and each is a hydrogen atom, —COOR 18 (R 18 represents a hydrogen atom or an alkyl group), a nitrogen atom, an oxygen atom, A functional group containing at least one atom selected from the group consisting of a sulfur atom, a fluorine atom and a silicon atom is shown.
  • R 15 and R 16 may form a salt.
  • the tetrazine-based compound is represented by the following formula (1-1-1), (1-1-2), (1-2-1), (1-3-1), (1-4-1) or (1
  • the compound represented by -4-2) is preferred.
  • the hydrocarbon resin preferably has a weight average molecular weight of 300 to 1400.
  • the hydrocarbon resin is preferably a styrene resin.
  • the content of butadiene rubber in 100% by mass of the rubber component is preferably 5 to 50% by mass.
  • a tetrazine compound represented by the following general formula (1) 80 to 150 parts by mass of silica and 0.1 g of a tetrazine compound represented by the following general formula (1) are added to 100 parts by mass of a rubber component having a styrene butadiene rubber content of 30% by mass or more.
  • a rubber composition for a tread containing 1 to 3.0 parts by mass 50 parts by mass or less of a hydrocarbon resin having an SP value of 7.5 to 10.5, and the styrene-butadiene rubber having a styrene content of 23% by mass or more. Since it is a pneumatic tire having the produced tread, the fuel efficiency performance, wear resistance performance, and wet grip performance are improved in a well-balanced manner.
  • SBR Styrene butadiene rubber
  • high styrene SBR having a styrene content of a specific amount or more has a low affinity with silica, and this tendency becomes more pronounced as the amount of silica is increased.
  • silica is blended, there is a problem that silica cannot be sufficiently dispersed.
  • the side chain of the styrene butadiene rubber is obtained.
  • the affinity with silica is improved even if it is originally low affinity with silica, and silica is dispersed in the vicinity of styrene butadiene rubber.
  • silica can be more uniformly dispersed in the rubber composition. This effect is more prominent when high styrene SBR is used, and more prominent when the amount of silica is large.
  • a specific amount (a large amount) of silica is blended with a rubber component having a relatively high styrene SBR content of a specific amount or more, and is further represented by a specific amount of the above general formula (1).
  • a tetrazine-based compound and a specific hydrocarbon resin By adding a tetrazine-based compound and a specific hydrocarbon resin, the side chain of the styrene butadiene rubber is sufficiently increased, and the affinity of the styrene butadiene rubber with silica is improved. It is thought that the affinity between high styrene SBR and specific hydrocarbon resin is improved by increasing the side chain, and the fuel efficiency, wear resistance, and wet grip performance can be improved in a well-balanced manner. It is expected.
  • a sufficient reinforcing effect by a large amount of silica can be obtained, and the affinity between high styrene SBR and a specific hydrocarbon resin can be improved by increasing the side chain. It is thought that fuel economy performance, wear resistance performance, and wet grip performance were improved in a well-balanced manner. As described above, in the present invention, the balance between the low fuel consumption performance, the wear resistance performance, and the wet grip performance can be synergistically improved by the interaction of the styrene butadiene rubber, the tetrazine compound, the silica, and the specific hydrocarbon resin.
  • the content of styrene butadiene rubber (SBR) in 100% by mass of the rubber component is 30% by mass or more.
  • the content is preferably 50% by mass or more, more preferably 70% by mass, because the effects of the present invention can be more suitably obtained, and the fuel economy performance, wear resistance performance, and wet grip performance can be improved in a balanced manner. That's it.
  • the upper limit may be 100% by mass, preferably 90% by mass or less, more preferably 85% by mass or less.
  • the rubber component means a rubber having a weight average molecular weight (Mw) of 300,000 or more (preferably 350,000 or more).
  • Mw weight average molecular weight
  • the upper limit of Mw is not particularly limited, but is preferably 1.5 million or less, more preferably 1 million or less.
  • Mw is gel permeation chromatography (GPC) (GPC-8000 series, manufactured by Tosoh Corporation, detector: differential refractometer, column: TSKGEL SUPERMALTPORE HZ-M, manufactured by Tosoh Corporation).
  • GPC gel permeation chromatography
  • the SBR is not particularly limited, and for example, emulsion polymerization styrene butadiene rubber (E-SBR), solution polymerization styrene butadiene rubber (S-SBR), and the like can be used. These may be used alone or in combination of two or more.
  • E-SBR emulsion polymerization styrene butadiene rubber
  • S-SBR solution polymerization styrene butadiene rubber
  • the styrene content of SBR is 23% by mass or more, preferably 30% by mass or more, more preferably 35% by mass or more, and particularly preferably 40% by mass or more.
  • the effect of this invention is suitably acquired by making it into a minimum or more.
  • the styrene content is preferably 60% by mass or less, and more preferably 50% by mass or less. By making it below the upper limit, there is a tendency that more excellent wear resistance performance and low fuel consumption performance can be obtained.
  • the styrene content of SBR is calculated by H 1 -NMR measurement.
  • the vinyl content of SBR is preferably 5% by mass or more, more preferably 10% by mass or more.
  • the vinyl content is preferably 80% by mass or less, more preferably 70% by mass or less, still more preferably 50% by mass or less, and particularly preferably 30% by mass or less. If it is within the above numerical range, the effect of the present invention tends to be obtained better.
  • the vinyl content (1,2-bond butadiene unit content) can be measured by infrared absorption spectrum analysis.
  • the weight average molecular weight (Mw) of SBR is preferably 300,000 or more, more preferably 350,000 or more, and still more preferably 800,000 or more.
  • the Mw is preferably 1.5 million or less, more preferably 1.3 million or less. The effect of this invention is acquired more suitably as the said Mw is in the said range.
  • the SBR may be non-modified SBR or modified SBR.
  • the modified SBR may be any SBR having a functional group that interacts with a filler such as silica.
  • a filler such as silica.
  • at least one terminal of SBR is modified with a compound having a functional group (modifier).
  • SBR terminal-modified SBR having the above-mentioned functional group at the terminal
  • main-chain-modified SBR having the above-mentioned functional group at the main chain and main-chain end-modified SBR having the above-mentioned functional group at the main chain and the terminal (for example, in the main chain)
  • Examples of the functional groups include amino groups, amide groups, silyl groups, alkoxysilyl groups, isocyanate groups, imino groups, imidazole groups, urea groups, ether groups, carbonyl groups, oxycarbonyl groups, mercapto groups, sulfide groups, disulfides.
  • These functional groups may have a substituent.
  • an amino group preferably an amino group in which a hydrogen atom of the amino group is substituted with an alkyl group having 1 to 6 carbon atoms
  • an alkoxy group preferably an effect of the present invention can be obtained more preferably.
  • An alkoxysilyl group having 1 to 6 carbon atoms) and an alkoxysilyl group are preferable.
  • SBR SBR manufactured and sold by Sumitomo Chemical Co., Ltd., JSR Co., Ltd., Asahi Kasei Co., Ltd., Nippon Zeon Co., Ltd., etc. can be used, for example.
  • Examples of rubber components other than the above SBR include isoprene rubber, butadiene rubber (BR), styrene butadiene rubber (SBR) having a styrene content of less than 23% by mass, styrene isoprene butadiene rubber (SIBR), and ethylene propylene diene rubber (EPDM). ), Diene rubbers such as chloroprene rubber (CR) and acrylonitrile butadiene rubber (NBR), and butyl rubber.
  • Examples of the isoprene-based rubber include natural rubber (NR), isoprene rubber (IR), modified NR, modified NR, and modified IR.
  • NR for example, those commonly used in the tire industry such as SIR20, RSS # 3, TSR20 and the like can be used.
  • IR it is not specifically limited, For example, IR2200 etc. can use what is common in tire industry.
  • modified NR deproteinized natural rubber (DPNR), high-purity natural rubber (UPNR), etc.
  • modified NR epoxidized natural rubber (ENR), hydrogenated natural rubber (HNR), grafted natural rubber, etc.
  • modified IR include epoxidized isoprene rubber, hydrogenated isoprene rubber, and grafted isoprene rubber. These may be used alone or in combination of two or more.
  • BR is preferable because the effects of the present invention can be more suitably obtained.
  • the BR is not particularly limited.
  • BR1220 manufactured by Nippon Zeon Co., Ltd. BR130B manufactured by Ube Industries, Ltd., BR150B, BR150B and other high cis content BR, Ube Industries, Ltd. VCR412, VCR617, etc.
  • BR containing tactic polybutadiene crystals, BR synthesized using a rare earth catalyst (rare earth BR), and the like can be used. These may be used alone or in combination of two or more.
  • the BR cis content is preferably 97% by mass or more because the wear resistance performance is improved.
  • the weight average molecular weight (Mw) of BR is preferably 300,000 or more, more preferably 350,000 or more.
  • the Mw is preferably 550,000 or less, more preferably 500,000 or less, and still more preferably 450,000 or less.
  • the effect of this invention is acquired more suitably as the said Mw is in the said range.
  • the BR may be non-modified BR or modified BR.
  • Examples of the modified BR include modified BR in which the same functional group as that of the modified SBR is introduced.
  • BR for example, products such as Ube Industries, JSR, Asahi Kasei, Nippon Zeon, and the like can be used.
  • the content of BR in 100% by mass of the rubber component is preferably 5% by mass or more, more preferably 10% by mass or more, and further preferably 15% by mass or more.
  • the BR content is preferably 50% by mass or less, more preferably 40% by mass or less, and still more preferably 30% by mass or less.
  • the total content of SBR (SBR having a styrene content of 23% by mass or more) and BR is preferably 80% by mass or more, more preferably 90% by mass or more, and 100% by mass in 100% by mass of the rubber component. Also good.
  • the rubber composition according to the present invention contains a tetrazine compound represented by the following general formula (1).
  • R 1 and R 2 may be the same or different and each represents a hydrogen atom (—H), —COOR 3 (R 3 represents a hydrogen atom (—H) or an alkyl group), 11 monovalent hydrocarbon groups, which may have a heteroatom.
  • R 1 and R 2 may form a salt.
  • hetero atom examples include a nitrogen atom, an oxygen atom, and a sulfur atom.
  • the hydrocarbon group of R 1 and R 2 has 1 to 11 carbon atoms, preferably 2 to 9 and more preferably 4 to 7.
  • R 1 and R 2 it is considered that interaction with a reinforcing filler (particularly carbon black, silica) is likely to occur, and the reason why better fuel economy performance, wear resistance performance, and wet grip performance can be obtained. Therefore, —COOR 3 or a hydrocarbon group having a hetero atom is preferable, and R 1 and R 2 are more preferably a hydrocarbon group having a hetero atom.
  • the hydrocarbon group of R 1 and R 2 is not particularly limited and the reinforcing filler (particularly, carbon black, silica) interaction with is considered to easily occur, better fuel economy, abrasion resistance
  • a monocyclic group and a heterocyclic group are preferable, at least one is more preferably a heterocyclic group, and both are more preferably a heterocyclic group.
  • the monocyclic group means a group whose ring structure is composed only of carbon atoms
  • the heterocyclic group is composed of two or more elements whose ring structure contains carbon atoms. Means a group.
  • Examples of the monocyclic group include an aryl group and a cycloalkyl group. Of these, an aryl group is preferable.
  • aryl group examples include a phenyl group and a naphthyl group. Of these, a phenyl group is preferred.
  • Examples of the cycloalkyl group include a cyclopentyl group and a cyclohexyl group.
  • heterocyclic group a nitrogen-containing heterocyclic group containing a nitrogen atom as a hetero atom constituting the ring is preferred, and a nitrogen-containing heterocyclic group containing only a nitrogen atom as the hetero atom constituting the ring is more preferred.
  • nitrogen-containing heterocyclic group examples include aziridinyl group, azetidinyl group, pyrrolidinyl group, piperidinyl group, hexamethyleneimino group, imidazolidyl group, piperazinyl group, pyrazolidyl group, pyrrolyl group, imidazolyl group, pyrazolyl group, pyridyl group, pyridazyl group.
  • Pyrimidyl group, pyrazyl group, quinolyl group isoquinolyl group, cinnolinyl group, quinazolinyl group, phthalazinyl group and the like.
  • a pyridyl group and a pyrimidyl group are preferable, and a pyridyl group is more preferable.
  • the hydrogen atom which the said monocyclic group and the said heterocyclic group have may be substituted by the substituent.
  • Interaction with reinforcing fillers especially carbon black, silica
  • it is.
  • Substituents include amino group, amide group, silyl group, alkoxysilyl group, isocyanate group, imino group, imidazole group, urea group, ether group, carbonyl group, oxycarbonyl group, mercapto group, sulfide group, disulfide group, sulfonyl Group, sulfinyl group, thiocarbonyl group, ammonium group, imide group, hydrazo group, azo group, diazo group, carboxyl group, nitrile group, pyridyl group, alkoxy group, hydroxyl group, oxy group, epoxy group, sulfonic acid group, trifluoro A methyl group etc. are mentioned.
  • these substituents may further have the above substituents, and may have, for example, an alkylene group, an alkyl group, or the like in addition to the above substituents.
  • a carboxyl group, the above-mentioned —COOR 3 an amino group (preferably a group represented by the following formula (A), a formula represented by the following formula (B), because the effects of the present invention can be more suitably obtained.
  • an alkoxy group preferably an alkoxy group having 1 to 6 carbon atoms
  • an alkoxysilyl group preferably an alkoxysilyl group having 1 to 6 carbon atoms
  • the substituent may form a salt like the groups represented by the above formulas (A) and (B).
  • a salt include, for example, a salt of an amino group and a halogen atom, a salt of a carboxyl group and a monovalent metal such as Na or K, a salt of a sulfonic acid group and the above monovalent metal, or the like. It is done.
  • R 3 in —COOR 3 represents a hydrogen atom or an alkyl group.
  • the alkyl group preferably has 1 to 8 carbon atoms, more preferably 1 to 3 carbon atoms.
  • Examples of the alkyl group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, and a tert-butyl group.
  • R 3 is preferably an alkyl group.
  • the tetrazine compound represented by the general formula (1) is not particularly limited as long as it can react with the diene rubber.
  • a tetrazine type compound may be used independently and may use 2 or more types together.
  • the compound represented by the following general formula (1-1), (1-2), (1-3), or (1-4) because the effect of the present invention can be more suitably obtained
  • compounds represented by the following general formula (1-1) or (1-4) are preferred, and the following formulas (1-1-1), (1-1-2), (1-2-1) , (1-3-1), (1-4-1) or (1-4-2) (especially in the following formula (1-1-1) or (1-4-1) (Represented compounds) are more preferred.
  • R 11 represents a hydrogen atom (—H), —COOR 17 (R 17 represents a hydrogen atom (—H) or an alkyl group), or a monovalent carbon atom having 1 to 11 carbon atoms. A hydrogen group is shown, and the hydrocarbon group may have a hetero atom. R 11 may form a salt.
  • R 12 represents a functional group containing at least one atom selected from the group consisting of a nitrogen atom, an oxygen atom, a sulfur atom, a fluorine atom and a silicon atom.
  • R 12 may form a salt.
  • R 13 and R 14 may be the same or different and each represents a hydrogen atom (—H) or an alkyl group.
  • R 13 and R 14 may form a salt.
  • R 15 and R 16 may be the same or different, and each represents a hydrogen atom (—H) or —COOR 18 (R 18 represents a hydrogen atom (—H) or an alkyl group). Or a functional group containing at least one atom selected from the group consisting of a nitrogen atom, an oxygen atom, a sulfur atom, a fluorine atom and a silicon atom.
  • R 15 and R 16 may form a salt.
  • hetero atom of R 11 examples include the same atoms as the hetero atoms of R 1 and R 2 .
  • the carbon number of the hydrocarbon group of R 11 is the same as that of the hydrocarbon group of R 1 and R 2 , and the preferred embodiment is also the same.
  • R 11 is considered to easily interact with reinforcing fillers (particularly carbon black and silica), and because better fuel efficiency, wear resistance, and wet grip performance can be obtained.
  • COOR 17 or a hydrocarbon group having a heteroatom is preferred.
  • hydrocarbon group for R 11 examples include the same groups as the hydrocarbon groups for R 1 and R 2 , and the preferred embodiments are also the same.
  • R 17 in —COOR 17 represents a hydrogen atom or an alkyl group.
  • alkyl group include the same groups as the alkyl group for R 3 , and preferred embodiments are also the same.
  • R 17 is preferably an alkyl group.
  • Examples of the functional group containing at least one atom selected from the group consisting of a nitrogen atom, an oxygen atom, a sulfur atom, a fluorine atom, and a silicon atom of R 12 include the same groups as the above-described substituents, and preferred embodiments Is the same.
  • R 12 may be in any of the ortho, meta, and para positions, but the para position is preferred because the effects of the present invention can be obtained more suitably.
  • alkyl group for R 13 and R 14 examples include the same groups as the alkyl group for R 3 , and the preferred embodiments are also the same.
  • R 13 and R 14 are preferably alkyl groups.
  • R 15 and R 16 are each a hydrogen atom or a group consisting of a nitrogen atom, an oxygen atom, a sulfur atom, a fluorine atom and a silicon atom because better fuel efficiency performance, wear resistance performance, and wet grip performance can be obtained.
  • a functional group containing at least one kind of atom more selected is preferable.
  • R 18 of —COOR 18 represents a hydrogen atom or an alkyl group.
  • alkyl group include the same groups as the alkyl group for R 3 , and preferred embodiments are also the same.
  • R 18 is preferably an alkyl group.
  • Examples of the functional group containing at least one atom selected from the group consisting of a nitrogen atom, an oxygen atom, a sulfur atom, a fluorine atom, and a silicon atom of R 15 and R 16 include the same groups as the above substituents, The preferred embodiment is also the same.
  • R 15 and R 16 may be in any of the ortho, meta, and para positions, but the para position is preferred because the effects of the present invention can be obtained more suitably. R 15 and R 16 In both cases, the para position is more preferred.
  • Content of the said tetrazine-type compound is 0.1 mass part or more with respect to 100 mass parts of rubber components, Preferably it is 0.5 mass part or more, More preferably, it is 0.8 mass part or more. By making the lower limit or more, the effect of the present invention tends to be obtained satisfactorily. Moreover, the said content is 3.0 mass parts or less, Preferably it is 2.5 mass parts or less, More preferably, it is 1.5 mass parts or less. There exists a tendency for the effect of this invention to be acquired favorably by making it into an upper limit or less.
  • the content of the tetrazine compound represented by the general formula (1) means the total content when two or more tetrazine compounds are contained.
  • the rubber composition according to the present invention contains silica as a reinforcing filler.
  • the reinforcing filler other than silica is not particularly limited, and examples thereof include carbon black, calcium carbonate, talc, alumina, clay, aluminum hydroxide, aluminum oxide, and mica. Among these, carbon black is preferable because the effects of the present invention can be obtained more suitably.
  • the content of the reinforcing filler is preferably 80 parts by mass or more, more preferably 100 parts by mass or more, and further preferably 120 parts by mass or more with respect to 100 parts by mass of the rubber component.
  • the content is preferably 250 parts by mass or less, more preferably 200 parts by mass or less, still more preferably 180 parts by mass or less, and particularly preferably 160 parts by mass or less.
  • silica examples include dry process silica (anhydrous silica), wet process silica (hydrous silica), and wet process silica is preferred because it has many silanol groups.
  • the nitrogen adsorption specific surface area (N 2 SA) of silica is preferably 90 m 2 / g or more, more preferably 120 m 2 / g or more, and still more preferably 150 m 2 / g or more. By setting the lower limit or more, better wear resistance and wet grip performance can be obtained.
  • the N 2 SA is preferably 400 m 2 / g or less, more preferably 200 m 2 / g or less, and still more preferably 180 m 2 / g or less. By making it below the upper limit, better fuel efficiency can be obtained.
  • the nitrogen adsorption specific surface area of silica is a value measured by the BET method according to ASTM D3037-81.
  • silica examples include products such as Degussa, Rhodia, Tosoh Silica, Solvay Japan, and Tokuyama.
  • the content of silica is 80 parts by mass or more, preferably 100 parts by mass or more, more preferably 120 parts by mass or more with respect to 100 parts by mass of the rubber component.
  • the said content is 150 mass parts or less, Preferably it is 130 mass parts or less.
  • the content of silica in 100% by mass of the reinforcing filler is 50% by mass or more, preferably 60% by mass or more, more preferably 70% by mass or more, still more preferably 80% by mass or more, and particularly preferably 90% by mass. It is above and may be 100 mass%.
  • N134, N110, N220, N234, N219, N339, N330, N326, N351, N550, N762 etc. are mentioned. These may be used alone or in combination of two or more.
  • the nitrogen adsorption specific surface area (N 2 SA) of carbon black is preferably 5 m 2 / g or more, more preferably 50 m 2 / g or more, and still more preferably 100 m 2 / g or more. By setting it to the lower limit or more, better wear resistance and wet grip performance tend to be obtained. Further, the N 2 SA is preferably from 300 meters 2 / g or less, more preferably 150 meters 2 / g, more preferably not more than 130m 2 / g. By setting it to the upper limit or less, good dispersion of carbon black can be easily obtained, and better wear resistance performance, wet grip performance, and low fuel consumption performance tend to be obtained. Incidentally, the nitrogen adsorption specific surface area of carbon black can be determined according to JIS K6217-2: 2001.
  • carbon black examples include products such as Asahi Carbon Co., Ltd., Cabot Japan Co., Ltd., Tokai Carbon Co., Ltd., Mitsubishi Chemical Co., Ltd., Lion Co., Ltd., Shin-Nikka Carbon Co., Ltd., Columbia Carbon Co., etc. Can be used.
  • the content of carbon black is preferably 3 parts by mass or more, more preferably 5 parts by mass or more with respect to 100 parts by mass of the rubber component.
  • the content is preferably 50 parts by mass or less, more preferably 30 parts by mass or less, and still more preferably 10 parts by mass or less. By making it below the upper limit, better fuel efficiency performance tends to be obtained.
  • the total content of carbon black and silica is preferably 80 to 200 parts by weight, more preferably 90 to 180 parts by weight, with respect to 100 parts by weight of the rubber component, because the effects of the present invention can be obtained better. More preferably, it is 100 to 160 parts by mass.
  • the rubber composition according to the present invention preferably contains a silane coupling agent together with silica.
  • the silane coupling agent is not particularly limited.
  • silane coupling agent it is preferable to use a silane coupling agent represented by the formula (2). As a result, better fuel efficiency, wear resistance, and wet grip performance can be obtained.
  • p is an integer of 1 to 3
  • q is an integer of 1 to 5
  • k is an integer of 5 to 12.
  • p is an integer of 1 to 3, but 2 is preferable. When p is 3 or less, the coupling reaction tends to be fast.
  • q is an integer of 1 to 5, preferably 2 to 4, and more preferably 3. When q is 1 to 5, the synthesis tends to be easy.
  • k is an integer of 5 to 12, preferably 5 to 10, more preferably 6 to 8, and still more preferably 7.
  • silane coupling agent represented by the formula (2) examples include 3-octanoylthio-1-propyltriethoxysilane.
  • silane coupling agent examples include Degussa, Momentive, Shin-Etsu Silicone Co., Ltd., Tokyo Chemical Industry Co., Ltd., Amax Co., Ltd., and Toray Dow Corning Co., Ltd.
  • the content of the silane coupling agent is preferably 3 parts by mass or more and more preferably 5 parts by mass or more with respect to 100 parts by mass of silica. There exists a tendency for the effect by having mix
  • the content is preferably 20 parts by mass or less, and more preferably 10 parts by mass or less. When the amount is 20 parts by mass or less, an effect commensurate with the blending amount is obtained, and good workability during kneading tends to be obtained.
  • a hydrocarbon resin having an SP value of 7.5 to 10.5 is contained.
  • the hydrocarbon resin is a polymer using a hydrocarbon monomer as a constituent monomer, and includes a polymer obtained by polymerizing a hydrocarbon monomer as a main component (50% by mass or more). It is done.
  • a hydrocarbon-type monomer means the monomer comprised by a hydrocarbon.
  • the SP value of the hydrocarbon resin is 7.5 to 10.5, preferably 8.0 or more, more preferably 8.3 or more, still more preferably 8.5 or more, and particularly preferably 8.7 or more. Preferably it is 10.0 or less, More preferably, it is 9.8 or less, More preferably, it is 9.6 or less, Most preferably, it is 9.4 or less.
  • the SP value means a solubility parameter calculated by the Hoy method based on the structure of the compound.
  • the Hoy method is, for example, K.K. L. Hoy “Table of Solubility Parameters”, Solvent and Coatings Materials Research and Development Department, Union Carbites Corp. (1985).
  • the weight average molecular weight (Mw) of the hydrocarbon resin is preferably 300 or more, more preferably 600 or more.
  • the Mw of the hydrocarbon resin is preferably 1400 or less, more preferably 1200 or less.
  • the softening point of the hydrocarbon resin is preferably 30 ° C or higher, more preferably 60 ° C or higher, and still more preferably 80 ° C or higher. When the temperature is 30 ° C. or higher, better wear resistance and wet grip performance tend to be obtained.
  • the softening point is preferably 160 ° C. or lower, more preferably 140 ° C. or lower, and further preferably 120 ° C. or lower. When the temperature is 160 ° C. or lower, the dispersibility of the resin becomes good, and better wear resistance performance, wet grip performance, and low fuel consumption performance tend to be obtained.
  • the softening point of the resin is the temperature at which the sphere descends when the softening point specified in JIS K 6220-1: 2001 is measured with a ring and ball softening point measuring device.
  • the hydrocarbon resin is not particularly limited as long as the above SP value is satisfied.
  • styrene resin coumarone indene resin, terpene resin, pt-butylphenol acetylene resin, acrylic resin, dicyclopentadiene resin ( DCPD resin), C5 petroleum resin, C9 petroleum resin, C5C9 petroleum resin and the like.
  • DCPD resin dicyclopentadiene resin
  • C5 petroleum resin C9 petroleum resin
  • C5C9 petroleum resin C5C9 petroleum resin and the like.
  • styrene resins are preferred because the effects of the present invention can be obtained more suitably.
  • the styrene resin is a polymer using a styrene monomer as a constituent monomer, and examples thereof include a polymer obtained by polymerizing a styrene monomer as a main component (50% by mass or more).
  • styrene monomers styrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, ⁇ -methylstyrene, p-methoxystyrene, p-tert-butylstyrene, p-phenylstyrene, o-chlorostyrene, m-chlorostyrene, p-chlorostyrene, etc.
  • styrene monomers each independently polymerized, a copolymer obtained by copolymerizing two or more styrene monomers, and a styrene monomer And copolymers of other monomers that can be copolymerized therewith.
  • Examples of the other monomers include acrylonitriles such as acrylonitrile and methacrylonitrile, unsaturated carboxylic acids such as acrylics and methacrylic acid, unsaturated carboxylic acid esters such as methyl acrylate and methyl methacrylate, chloroprene, and butadiene.
  • Examples thereof include dienes such as isoprene, olefins such as 1-butene and 1-pentene, ⁇ , ⁇ -unsaturated carboxylic acids such as maleic anhydride or acid anhydrides thereof, and the like.
  • ⁇ -methylstyrene resins ( ⁇ -methylstyrene homopolymer, copolymer of ⁇ -methylstyrene and styrene, etc.) are preferable from the viewpoint of the performance balance.
  • the coumarone indene resin is a resin containing coumarone and indene as a monomer component constituting the resin skeleton (main chain).
  • the monomer component contained in the skeleton other than coumarone and indene include styrene, ⁇ -methylstyrene, methylindene, vinyltoluene and the like.
  • terpene resin examples include polyterpene, terpene phenol, and aromatic modified terpene resin.
  • Polyterpenes are resins obtained by polymerizing terpene compounds and their hydrogenated products.
  • the terpene compound is a hydrocarbon represented by a composition of (C 5 H 8 ) n and an oxygen-containing derivative thereof.
  • Monoterpene C 10 H 16
  • sesquiterpene C 15 H 24
  • diterpene C 20 H 32
  • ⁇ -pinene ⁇ -pinene, dipentene, limonene, myrcene, allocymene, ocimene, ⁇ -ferrandrene, ⁇ -terpinene, ⁇ -terpinene, terpinolene 1,8-cineole, 1,4-cineole, ⁇ -terpineol, ⁇ -terpineol, ⁇ -terpineol and the like.
  • Polyterpenes include ⁇ -pinene resins, ⁇ -pinene resins, limonene resins, dipentene resins, ⁇ -pinene / limonene resins and other terpene resins made from the above-mentioned terpene compounds, as well as hydrogenated terpene resins.
  • Additive terpene resins are also included.
  • the terpene phenol include a resin obtained by copolymerizing the terpene compound and the phenol compound, and a resin obtained by hydrogenating the resin. Specifically, the terpene compound, the phenol compound, and formalin are condensed. Resin.
  • phenolic compounds include phenol, bisphenol A, cresol, and xylenol.
  • aromatic modified terpene resin include a resin obtained by modifying a terpene resin with an aromatic compound, and a resin obtained by hydrogenating the resin.
  • the aromatic compound is not particularly limited as long as it has an aromatic ring.
  • phenol compounds such as phenol, alkylphenol, alkoxyphenol, unsaturated hydrocarbon group-containing phenol; naphthol, alkylnaphthol, alkoxynaphthol, Examples thereof include naphthol compounds such as unsaturated hydrocarbon group-containing naphthol; styrene derivatives such as styrene, alkylstyrene, alkoxystyrene, and unsaturated hydrocarbon group-containing styrene; coumarone and indene.
  • Examples of the pt-butylphenol acetylene resin include a resin obtained by a condensation reaction of pt-butylphenol and acetylene.
  • the acrylic resin is not particularly limited, but a solventless acrylic resin can be suitably used from the viewpoint that a resin with few impurities and a sharp molecular weight distribution can be obtained.
  • Solvent-free acrylic resin is a high temperature continuous polymerization method (high temperature continuous mass polymerization method) (U.S. Pat. No. 4,414,370) without using as much as possible a polymerization initiator, a chain transfer agent, an organic solvent and the like as auxiliary materials.
  • high temperature continuous mass polymerization method U.S. Pat. No. 4,414,370
  • (meth) acryl means methacryl and acryl.
  • the acrylic resin does not substantially contain a polymerization initiator, a chain transfer agent, an organic solvent, or the like, which are auxiliary materials.
  • the acrylic resin preferably has a relatively narrow composition distribution and molecular weight distribution obtained by continuous polymerization.
  • the acrylic resin is preferably one that does not substantially contain a polymerization initiator, a chain transfer agent, an organic solvent, or the like that is a secondary raw material, that is, has a high purity.
  • the purity of the acrylic resin (ratio of the resin contained in the resin) is preferably 95% by mass or more, more preferably 97% by mass or more.
  • Examples of the monomer component constituting the acrylic resin include (meth) acrylic acid, (meth) acrylic acid esters (alkyl esters, aryl esters, aralkyl esters, etc.), (meth) acrylamides, and (meth) acrylamide derivatives. And (meth) acrylic acid derivatives.
  • acrylic resin As monomer components constituting the acrylic resin, together with (meth) acrylic acid and (meth) acrylic acid derivatives, styrene, ⁇ -methylstyrene, vinyltoluene, vinylnaphthalene, divinylbenzene, trivinylbenzene, divinylnaphthalene, etc.
  • Aromatic vinyl may be used.
  • the acrylic resin may be a resin composed only of a (meth) acrylic component, or may be a resin including components other than the (meth) acrylic component.
  • the acrylic resin may have a hydroxyl group, a carboxyl group, a silanol group, or the like.
  • resins such as styrene-based resins and coumarone indene resins
  • examples of resins such as styrene-based resins and coumarone indene resins include Maruzen Petrochemical Co., Ltd., Sumitomo Bakelite Co., Ltd., Yashara Chemical Co., Ltd., Tosoh Corp., Rutgers Chemicals, BASF, Arizona Chemical, Products such as Nikkaku Chemical Co., Ltd., Nippon Shokubai Co., Ltd., JX Energy Co., Ltd., Arakawa Chemical Industry Co., Ltd., Taoka Chemical Industry Co., Ltd. can be used.
  • the content of the hydrocarbon resin is preferably 1 part by mass or more, more preferably 3 parts by mass or more, and further preferably 5 parts by mass or more with respect to 100 parts by mass of the rubber component. is there.
  • the content is preferably 50 parts by mass or less, more preferably 30 parts by mass or less, and still more preferably 20 parts by mass or less.
  • a low molecular weight diene polymer having a weight average molecular weight of 200,000 or less it is preferable to contain a low molecular weight diene polymer having a weight average molecular weight of 200,000 or less.
  • the monomer component constituting the low molecular weight diene polymer is not particularly limited as long as it is a diene monomer, and is not limited to 1,3-butadiene, isoprene, 1,3-pentadiene, 2,3-dimethyl-1,3-butadiene, Examples thereof include conjugated diene compounds such as 1,3-hexadiene and branched conjugated diene compounds such as myrcene and farnesene.
  • vinyl compounds such as styrene, ⁇ -methylstyrene, ⁇ -vinylnaphthalene, ⁇ -vinylnaphthalene may be used as the monomer component.
  • low molecular weight diene polymer examples include styrene butadiene copolymer, butadiene polymer, isoprene polymer, acrylonitrile butadiene copolymer, myrcene polymer, farnesene polymer, myrcene butadiene copolymer, myrcene styrene copolymer.
  • examples thereof include a compound, a farnesene butadiene copolymer, and a farnesene styrene copolymer.
  • the styrene-butadiene copolymer, butadiene polymer, isoprene polymer, myrcene polymer, farnesene polymer, myrcene butadiene copolymer, myrcene styrene copolymer are preferred because the effects of the present invention can be obtained more suitably.
  • a polymer, farnesene butadiene copolymer, and farnesene styrene copolymer are preferred.
  • the low molecular weight diene polymer a low molecular weight diene polymer in a liquid state at 25 ° C. is preferable. Moreover, the double bond of the conjugated diene part of the low molecular weight diene polymer may be hydrogenated.
  • the weight average molecular weight (Mw) of the low molecular weight diene polymer is preferably 1000 or more, more preferably 1500 or more.
  • the Mw of the low molecular weight diene polymer is preferably 150,000 or less, more preferably 100,000 or less, still more preferably 50,000 or less, particularly preferably 20,000 or less, and most preferably 15,000 or less.
  • Mw is within the above range, the effect of the present invention (particularly, the effect of improving wet grip performance) can be obtained more suitably.
  • the content of the low molecular weight diene polymer is preferably 1 part by mass or more, more preferably 5 parts by mass or more with respect to 100 parts by mass of the rubber component.
  • the content is preferably 50 parts by mass or less, more preferably 40 parts by mass or less, and still more preferably 30 parts by mass or less.
  • the rubber composition according to the present invention may contain oil.
  • the oil include process oil, vegetable oil and fat, or a mixture thereof.
  • a paraffin process oil, an aroma process oil, a naphthenic process oil, or the like can be used.
  • vegetable oils and fats castor oil, cottonseed oil, sesame oil, rapeseed oil, soybean oil, palm oil, palm oil, peanut hot water, rosin, pine oil, pineapple, tall oil, corn oil, rice bran oil, beet flower oil, sesame oil, Examples include olive oil, sunflower oil, palm kernel oil, camellia oil, jojoba oil, macadamia nut oil, and tung oil. These may be used alone or in combination of two or more.
  • Examples of the oil include Idemitsu Kosan Co., Ltd., Sankyo Oil Chemical Co., Ltd., Japan Energy Co., Ltd., Orisoi Co., Ltd., H & R Co., Toyokuni Oil Co., Ltd., Showa Shell Sekiyu Co., Ltd., Fuji Kosan Co., Ltd. Etc. can be used.
  • the content of oil is preferably 1 part by mass or more, more preferably 10 parts by mass or more with respect to 100 parts by mass of the rubber component.
  • the content is preferably 60 parts by mass or less, more preferably 40 parts by mass or less.
  • the oil content includes the amount of oil contained in rubber (oil-extended rubber).
  • the rubber composition according to the present invention preferably contains a wax.
  • the wax is not particularly limited, and examples thereof include petroleum waxes such as paraffin wax and microcrystalline wax; natural waxes such as plant waxes and animal waxes; synthetic waxes such as polymers such as ethylene and propylene. These may be used alone or in combination of two or more.
  • wax for example, products such as Ouchi Shinsei Chemical Co., Ltd., Nippon Seiwa Co., Ltd., Seiko Chemical Co., Ltd. can be used.
  • the content of the wax is preferably 0.5 parts by mass or more, more preferably 1 part by mass or more with respect to 100 parts by mass of the rubber component. Further, the content is preferably 10 parts by mass or less, more preferably 7 parts by mass or less.
  • the rubber composition according to the present invention preferably contains an antiaging agent.
  • the antiaging agent include naphthylamine antiaging agents such as phenyl- ⁇ -naphthylamine; diphenylamine antiaging agents such as octylated diphenylamine and 4,4′-bis ( ⁇ , ⁇ ′-dimethylbenzyl) diphenylamine; N -Isopropyl-N'-phenyl-p-phenylenediamine, N- (1,3-dimethylbutyl) -N'-phenyl-p-phenylenediamine, N, N'-di-2-naphthyl-p-phenylenediamine, etc.
  • P-phenylenediamine-based anti-aging agent P-phenylenediamine-based anti-aging agent
  • quinoline-based anti-aging agent such as a polymer of 2,2,4-trimethyl-1,2-dihydroquinoline; 2,6-di-t-butyl-4-methylphenol
  • Monophenolic anti-aging agents such as styrenated phenol; tetrakis- [methylene-3- (3 ', 5'-di-t-butyl- '- hydroxyphenyl) propionate] bis methane, tris, and the like polyphenolic antioxidants. These may be used alone or in combination of two or more.
  • anti-aging agent for example, products such as Seiko Chemical Co., Ltd., Sumitomo Chemical Co., Ltd., Ouchi Shinsei Chemical Co., Ltd., and Flexis Co. can be used.
  • the content of the anti-aging agent is preferably 1 part by mass or more, more preferably 2 parts by mass or more with respect to 100 parts by mass of the rubber component. Further, the content is preferably 10 parts by mass or less, more preferably 7 parts by mass or less.
  • the rubber composition according to the present invention preferably contains stearic acid.
  • a conventionally well-known thing can be used as a stearic acid,
  • products such as NOF Corporation, NOF company, Kao Corporation, FUJIFILM Wako Pure Chemicals Co., Ltd., and Chiba fatty acid company, can be used.
  • the content of stearic acid is preferably 0.5 parts by mass or more, more preferably 1 part by mass or more with respect to 100 parts by mass of the rubber component. Further, the content is preferably 10 parts by mass or less, more preferably 5 parts by mass or less. Within the above numerical range, the effects of the present invention tend to be obtained satisfactorily.
  • the rubber composition according to the present invention preferably contains zinc oxide.
  • Conventionally known zinc oxide can be used, for example, Mitsui Kinzoku Mining Co., Ltd., Toho Zinc Co., Ltd., Hakusui Tech Co., Ltd., Shodo Chemical Industry Co., Ltd., Sakai Chemical Industry Co., Ltd. Can be used.
  • the content of zinc oxide is preferably 0.5 parts by mass or more, more preferably 1 part by mass or more with respect to 100 parts by mass of the rubber component. Further, the content is preferably 10 parts by mass or less, more preferably 5 parts by mass or less. If it is within the above numerical range, the effect of the present invention tends to be obtained better.
  • the rubber composition according to the present invention preferably contains sulfur.
  • sulfur include powdered sulfur, precipitated sulfur, colloidal sulfur, insoluble sulfur, highly dispersible sulfur, and soluble sulfur that are generally used in the rubber industry. These may be used alone or in combination of two or more.
  • sulfur for example, products such as Tsurumi Chemical Co., Ltd., Karuizawa Sulfur Co., Ltd., Shikoku Kasei Kogyo Co., Ltd., Flexis Co., Nihon Kiboshi Kogyo Co., Ltd., Hosoi Chemical Co., Ltd. can be used.
  • the content of sulfur is preferably 0.5 parts by mass or more, more preferably 0.8 parts by mass or more with respect to 100 parts by mass of the rubber component.
  • the content is preferably 10 parts by mass or less, more preferably 5 parts by mass or less, and still more preferably 3 parts by mass or less.
  • the rubber composition according to the present invention preferably contains a vulcanization accelerator.
  • vulcanization accelerators include thiazole vulcanization accelerators such as 2-mercaptobenzothiazole, di-2-benzothiazolyl disulfide, N-cyclohexyl-2-benzothiazylsulfenamide; tetramethylthiuram disulfide (TMTD ), Tetrabenzylthiuram disulfide (TBzTD), tetrakis (2-ethylhexyl) thiuram disulfide (TOT-N), and other thiuram vulcanization accelerators; N-cyclohexyl-2-benzothiazolesulfenamide, Nt-butyl- 2-benzothiazolylsulfenamide, N-oxyethylene-2-benzothiazolesulfenamide, N-oxyethylene-2-benzothiazolesulfenamide, N, N′-diisopropyl-2-benzothiazo
  • the sulfenami And guanidine vulcanization accelerators such as diphenyl guanidine, diortolyl guanidine, and orthotolyl biguanidine. These may be used alone or in combination of two or more. Of these, sulfenamide-based vulcanization accelerators and guanidine-based vulcanization accelerators are preferred because the effects of the present invention can be obtained more suitably.
  • the content of the vulcanization accelerator is preferably 1 part by mass or more, more preferably 2 parts by mass or more with respect to 100 parts by mass of the rubber component. Further, the content is preferably 10 parts by mass or less, more preferably 7 parts by mass or less. Within the above numerical range, the effects of the present invention tend to be obtained satisfactorily.
  • the rubber composition may contain additives commonly used in the tire industry.
  • Processing aids such as plasticizers and lubricants; vulcanizing agents other than sulfur (for example, Organic crosslinking agents, organic peroxides) and the like.
  • the rubber composition according to the present invention is produced by a general method. That is, it can be produced by a method of kneading the above components with a Banbury mixer, a kneader, an open roll or the like and then vulcanizing. Since the tetrazine-based compound of the present invention is expected to contribute to the interaction and dispersibility with reinforcing fillers (especially carbon black and silica), before the reinforcing fillers (especially carbon black and silica).
  • a rubber component especially SBR having a styrene content of 23% by mass or more
  • a reinforcing filler especially carbon black or silica
  • the pneumatic tire of the present invention includes a master batch preparation step for preparing a master batch by kneading SBR having a styrene content of 23% by mass or more and a tetrazine compound, and a master batch obtained by the master batch preparation step.
  • the content of SBR having a styrene content of 23% by mass or more in 100% by mass of the component is preferably 60% by mass or more, more preferably 80% by mass or more, still more preferably 90% by mass or more, and most preferably 100% by mass.
  • the masterbatch preparation step is performed on 100 parts by mass of the rubber component kneaded in the masterbatch preparation step.
  • the content of silica kneaded in is preferably 5 parts by mass or less, more preferably 3 parts by mass or less, still more preferably 1 part by mass or less, particularly preferably 0.5 parts by mass or less, and most preferably 0 part by mass. is there.
  • the content of the tetrazine-based compound kneaded in the masterbatch preparation step is 0 with respect to 100 parts by mass of the rubber component kneaded in the masterbatch preparation step. 0.1 parts by mass or more, preferably 0.5 parts by mass or more, more preferably 0.8 parts by mass or more, 3.0 parts by mass or less, preferably 2.5 parts by mass or less, more preferably 1.5 parts by mass. Or less.
  • the kneading temperature is usually 50 to 200 ° C., preferably 80 to 190 ° C., and the kneading time is usually 30 seconds. -30 minutes, and preferably 1-30 minutes.
  • the kneading temperature is usually 100 ° C. or lower, preferably room temperature to 80 ° C.
  • a composition containing a vulcanizing agent and a vulcanization accelerator is usually subjected to a vulcanization treatment such as press vulcanization.
  • the vulcanization temperature is usually 120 to 200 ° C, preferably 140 to 180 ° C.
  • the pneumatic tire of the present invention is produced by a usual method using the rubber composition. That is, the rubber composition containing the above components is extruded in accordance with the shape of each tire member such as a tread at an unvulcanized stage, and is molded together with the other tire members by a normal method on a tire molding machine. By doing so, an unvulcanized tire is formed. The unvulcanized tire is heated and pressurized in a vulcanizer to obtain a tire.
  • the pneumatic tire of the present invention can be suitably used for passenger car tires, large passenger cars, large SUV tires, heavy duty tires such as trucks and buses, light truck tires, motorcycle tires, and run-flat tires. .
  • SBR (1) Styrene butadiene rubber (styrene content: 40% by mass, vinyl content: 15% by mass, Mw: 1,200,000)
  • SBR (2) Styrene butadiene rubber (styrene content: 20% by mass, vinyl content: 50% by mass, Mw: 300,000)
  • BR High cis BR (cis content: 97% by mass, Mw: 400,000)
  • Carbon Black Show Black N220 (N220, N 2 SA: 111 m 2 / g) manufactured by Cabot Japan Silica: Ultrasil VN3 manufactured by Degussa (N 2 SA: 175 m 2 / g)
  • Resin (1) Terpene resin (softening point: 100 ° C., Mw: 900, SP value: 8.2)
  • Resin (2) Copolymer of ⁇ -methylstyrene and styrene (softening point: 85 ° C., Mw: 700, SP value: 9.1)
  • Resin (3) Acrylic resin (softening point: 90 ° C., Mw: 1000, SP value: 10.0)
  • Stearic acid Stearic acid “ ⁇ ” manufactured by NOF Corporation
  • Zinc oxide Zinc flower No.
  • Examples and Comparative Examples> Each material was kneaded according to the formulation shown in Table 1 to obtain an unvulcanized rubber composition.
  • the obtained unvulcanized rubber composition is formed into a tread shape, and is bonded together with other tire members to form an unvulcanized tire, subjected to pressure heating, and a test tire (size: 195 / 65R15) Manufactured.
  • the following evaluation was performed using the obtained test tire, and the results are shown in Table 1.
  • Example 1 (Low fuel consumption performance) Using a rolling resistance tester, the rolling resistance when a test tire is run at a rim (15 ⁇ 6JJ), internal pressure (230 kPa), load (3.43 kN), speed (80 km / h) is measured and compared.
  • Example 1 is shown as an index when the index is 100 (low fuel consumption performance index). A larger index indicates better fuel efficiency.

Abstract

本発明は、低燃費性能、耐摩耗性能、ウェットグリップ性能がバランスよく改善された空気入りタイヤを提供する。 本発明は、スチレンブタジエンゴムの含有量が30質量%以上であるゴム成分100質量部に対して、シリカを80~150質量部、上記一般式(1)で表されるテトラジン系化合物を0.1~3.0質量部、SP値が7.5~10.5の炭化水素樹脂を50質量部以下含有し、 上記スチレンブタジエンゴムのスチレン含量が23質量%以上であるトレッド用ゴム組成物から作製したトレッドを有する空気入りタイヤに関する。

Description

空気入りタイヤ
本発明は、空気入りタイヤに関する。
近年、タイヤのトレッドに用いられるゴム組成物には良好な低燃費性能を得るために、カーボンブラックよりもシリカを用いることが多くなっており、その配合量も増加してきている(例えば、特許文献1)。しかし、シリカはゴムとの親和性が低いため、シリカの配合量が多くなるほどゴム中での分散性が悪化し、シリカ配合による本来の性能が得られず、従来の技術では、低燃費性能、耐摩耗性能、ウェットグリップ性能をバランスよく改善するという点では改善の余地があった。
特表2013-544936号公報
本発明は、低燃費性能、耐摩耗性能、ウェットグリップ性能がバランスよく改善された空気入りタイヤを提供することを目的とする。
本発明は、スチレンブタジエンゴムの含有量が30質量%以上であるゴム成分100質量部に対して、シリカを80~150質量部、下記一般式(1)で表されるテトラジン系化合物を0.1~3.0質量部、SP値が7.5~10.5の炭化水素樹脂を50質量部以下含有し、上記スチレンブタジエンゴムのスチレン含量が23質量%以上であるトレッド用ゴム組成物から作製したトレッドを有する空気入りタイヤに関する。
Figure JPOXMLDOC01-appb-C000004
[式中、R及びRは同一でも異なっていても良く、各々水素原子、-COOR(Rは水素原子またはアルキル基を示す)又は炭素数1~11の一価の炭化水素基を示し、該炭化水素基はヘテロ原子を有してもよい。また、R及びRは塩を形成してもよい。]
上記テトラジン系化合物が、下記一般式(1-1)、(1-2)、(1-3)、又は(1-4)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000005
[式(1-1)中、R11は、水素原子、-COOR17(R17は水素原子又はアルキル基を示す)又は炭素数1~11の一価の炭化水素基を示し、該炭化水素基はヘテロ原子を有してもよい。また、R11は塩を形成してもよい。]
[式(1-2)中、R12は、窒素原子、酸素原子、硫黄原子、フッ素原子およびケイ素原子からなる群より選択される少なくとも1種の原子を含む官能基を示す。また、R12は塩を形成してもよい。]
[式(1-3)中、R13及びR14は同一でも異なっていても良く、各々水素原子又はアルキル基を示す。また、R13及びR14は塩を形成してもよい。]
[式(1-4)中、R15及びR16は同一でも異なっていても良く、各々水素原子、-COOR18(R18は水素原子又はアルキル基を示す)、又は窒素原子、酸素原子、硫黄原子、フッ素原子およびケイ素原子からなる群より選択される少なくとも1種の原子を含む官能基を示す。また、R15及びR16は塩を形成してもよい。]
上記テトラジン系化合物が、下記式(1-1-1)、(1-1-2)、(1-2-1)、(1-3-1)、(1-4-1)又は(1-4-2)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000006
上記炭化水素樹脂の重量平均分子量が300~1400であることが好ましい。
上記炭化水素樹脂が、スチレン系樹脂であることが好ましい。
ゴム成分100質量%中のブタジエンゴムの含有量が5~50質量%であることが好ましい。
本発明は、スチレンブタジエンゴムの含有量が30質量%以上であるゴム成分100質量部に対して、シリカを80~150質量部、下記一般式(1)で表されるテトラジン系化合物を0.1~3.0質量部、SP値が7.5~10.5の炭化水素樹脂を50質量部以下含有し、上記スチレンブタジエンゴムのスチレン含量が23質量%以上であるトレッド用ゴム組成物から作製したトレッドを有する空気入りタイヤであるので、低燃費性能、耐摩耗性能、ウェットグリップ性能がバランスよく改善されている。
本発明の空気入りタイヤは、スチレンブタジエンゴムの含有量が30質量%以上であるゴム成分100質量部に対して、シリカを80~150質量部、下記一般式(1)で表されるテトラジン系化合物を0.1~3.0質量部、SP値が7.5~10.5の炭化水素樹脂を50質量部以下含有し、上記スチレンブタジエンゴムのスチレン含量が23質量%以上であるトレッド用ゴム組成物から作製したトレッドを有する。
本発明では、以下の作用効果により、低燃費性能、耐摩耗性能、ウェットグリップ性能がバランスよく改善されるものと推察される。
スチレンブタジエンゴム(SBR)、特に、スチレン含量が特定量以上の高スチレンSBRは、シリカとの親和性が低く、この傾向はシリカの配合量が多くなるにつれてより顕著となり、高スチレンSBRに多量のシリカを配合した場合、シリカを充分に分散できないという問題があった。
一方、本発明では、スチレンブタジエンゴムと、テトラジン系化合物とが反応することにより、具体的には、スチレンブタジエンゴムの2重結合に、テトラジン系化合物を反応させることにより、スチレンブタジエンゴムの側鎖が増え、この側鎖とシリカとの作用により、元々はシリカとの親和性が低いスチレンブタジエンゴムであっても、シリカとの親和性が向上し、スチレンブタジエンゴム近傍にもシリカを分散させることが可能となり、ゴム組成物中において、シリカをより均一に分散させることが可能となる。この効果は、高スチレンSBRを用いた場合により顕著に得られ、シリカの配合量が多い場合に更に顕著に得られる。
そして、本発明では、比較的高スチレンSBRの含有量が特定量以上のゴム成分に対して、特定量(多量)のシリカを配合し、さらに、特定量の上記一般式(1)で表されるテトラジン系化合物及び特定の炭化水素樹脂を配合することで、スチレンブタジエンゴムの側鎖を充分に増加させ、スチレンブタジエンゴムのシリカとの親和性を向上させた上で、多量のシリカによる補強効果を充分に得ることができると共に側鎖の増加により、高スチレンSBRと特定の炭化水素樹脂との親和性も向上すると考えられるため、低燃費性能、耐摩耗性能、ウェットグリップ性能をバランスよく改善できたものと予想される。すなわち、高スチレンSBRが配合されたゴム組成物において、多量のシリカによる補強効果を充分に得ることができると共に側鎖の増加により、高スチレンSBRと特定の炭化水素樹脂との親和性も向上し、低燃費性能、耐摩耗性能、ウェットグリップ性能をバランスよく改善できたと考えられる。このように、本発明では、スチレンブタジエンゴムとテトラジン系化合物とシリカと特定の炭化水素樹脂の相互作用により、低燃費性能、耐摩耗性能、ウェットグリップ性能の性能バランスを相乗的に改善できる。
以下において、本発明に係るトレッド用ゴム組成物について説明する。
本発明では、ゴム成分100質量%中のスチレンブタジエンゴム(SBR)の含有量が30質量%以上である。該含有量は、本発明の効果がより好適に得られ、低燃費性能、耐摩耗性能、ウェットグリップ性能がよりバランスよく改善できるという理由から、好ましくは50質量%以上、より好ましくは70質量%以上である。上限は100質量%であってもよいが、好ましくは90質量%以下、より好ましくは85質量%以下である。
ここで、本発明では、ゴム成分は、重量平均分子量(Mw)が30万以上(好ましくは35万以上)のゴムを意味する。Mwの上限は特に限定されないが、好ましくは150万以下、より好ましくは100万以下である。
なお、本明細書において、Mwは、ゲルパーミエーションクロマトグラフィー(GPC)(東ソー(株)製GPC-8000シリーズ、検出器:示差屈折計、カラム:東ソー(株)製のTSKGEL SUPERMALTPORE HZ-M)による測定値を基に標準ポリスチレン換算により求めることができる。
SBRとしては特に限定されず、例えば、乳化重合スチレンブタジエンゴム(E-SBR)、溶液重合スチレンブタジエンゴム(S-SBR)等を使用できる。これらは、単独で用いてもよく、2種以上を併用してもよい。
SBRのスチレン含量は、23質量%以上であり、好ましくは30質量%以上、より好ましくは35質量%以上、特に好ましくは40質量%以上である。下限以上にすることで、本発明の効果が好適に得られる。また、該スチレン含量は、好ましくは60質量%以下、より好ましくは50質量%以下である。上限以下にすることで、より優れた耐摩耗性能、低燃費性能が得られる傾向がある。
なお、本明細書において、SBRのスチレン含量は、H-NMR測定により算出される。
SBRのビニル量は、好ましくは5質量%以上、より好ましくは10質量%以上である。また、上記ビニル量は、好ましくは80質量%以下、より好ましくは70質量%以下、更に好ましくは50質量%以下、特に好ましくは30質量%以下である。上記数値範囲内であると、本発明の効果がより良好に得られる傾向がある。
なお、本明細書において、ビニル量(1,2-結合ブタジエン単位量)は、赤外吸収スペクトル分析法によって測定できる。
SBRの重量平均分子量(Mw)は、好ましくは30万以上、より好ましくは35万以上、更に好ましくは80万以上である。上記Mwは、好ましくは150万以下、より好ましくは130万以下である。上記Mwが上記範囲内であると、本発明の効果がより好適に得られる。
また、SBRとしては、非変性SBRでもよいし、変性SBRでもよい。
変性SBRとしては、シリカ等の充填剤と相互作用する官能基を有するSBRであればよく、例えば、SBRの少なくとも一方の末端を、上記官能基を有する化合物(変性剤)で変性された末端変性SBR(末端に上記官能基を有する末端変性SBR)や、主鎖に上記官能基を有する主鎖変性SBRや、主鎖及び末端に上記官能基を有する主鎖末端変性SBR(例えば、主鎖に上記官能基を有し、少なくとも一方の末端を上記変性剤で変性された主鎖末端変性SBR)や、分子中に2個以上のエポキシ基を有する多官能化合物により変性(カップリング)され、水酸基やエポキシ基が導入された末端変性SBR等が挙げられる。
上記官能基としては、例えば、アミノ基、アミド基、シリル基、アルコキシシリル基、イソシアネート基、イミノ基、イミダゾール基、ウレア基、エーテル基、カルボニル基、オキシカルボニル基、メルカプト基、スルフィド基、ジスルフィド基、スルホニル基、スルフィニル基、チオカルボニル基、アンモニウム基、イミド基、ヒドラゾ基、アゾ基、ジアゾ基、カルボキシル基、ニトリル基、ピリジル基、アルコキシ基、水酸基、オキシ基、エポキシ基等が挙げられる。なお、これらの官能基は、置換基を有していてもよい。なかでも、本発明の効果がより好適に得られるという理由から、アミノ基(好ましくはアミノ基が有する水素原子が炭素数1~6のアルキル基に置換されたアミノ基)、アルコキシ基(好ましくは炭素数1~6のアルコキシ基)、アルコキシシリル基(好ましくは炭素数1~6のアルコキシシリル基)が好ましい。
SBRとしては、例えば、住友化学(株)、JSR(株)、旭化成(株)、日本ゼオン(株)等により製造・販売されているSBRを使用できる。
上記SBR以外に使用できるゴム成分としては、イソプレン系ゴム、ブタジエンゴム(BR)、スチレン含量が23質量%未満のスチレンブタジエンゴム(SBR)、スチレンイソプレンブタジエンゴム(SIBR)、エチレンプロピレンジエンゴム(EPDM)、クロロプレンゴム(CR)、アクリロニトリルブタジエンゴム(NBR)などのジエン系ゴムの他、ブチル系ゴムなどが挙げられる。イソプレン系ゴムとしては、天然ゴム(NR)、イソプレンゴム(IR)、改質NR、変性NR、変性IR等が挙げられる。NRとしては、例えば、SIR20、RSS♯3、TSR20等、タイヤ工業において一般的なものを使用できる。IRとしては、特に限定されず、例えば、IR2200等、タイヤ工業において一般的なものを使用できる。改質NRとしては、脱タンパク質天然ゴム(DPNR)、高純度天然ゴム(UPNR)等、変性NRとしては、エポキシ化天然ゴム(ENR)、水素添加天然ゴム(HNR)、グラフト化天然ゴム等、変性IRとしては、エポキシ化イソプレンゴム、水素添加イソプレンゴム、グラフト化イソプレンゴム等、が挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。なかでも、本発明の効果がより好適に得られるという理由から、BRが好ましい。
BRとしては特に限定されず、例えば、日本ゼオン(株)製のBR1220、宇部興産(株)製のBR130B、BR150B等の高シス含量のBR、宇部興産(株)製のVCR412、VCR617等のシンジオタクチックポリブタジエン結晶を含有するBR、希土類系触媒を用いて合成したBR(希土類BR)等を使用できる。これらは、単独で用いてもよく、2種以上を併用してもよい。なかでも、耐摩耗性能が向上するという理由から、BRのシス含量は97質量%以上が好ましい。
BRの重量平均分子量(Mw)は、好ましくは30万以上、より好ましくは35万以上である。上記Mwは、好ましくは55万以下、より好ましくは50万以下、更に好ましくは45万以下である。上記Mwが上記範囲内であると、本発明の効果がより好適に得られる。
また、BRとしては、非変性BRでもよいし、変性BRでもよい。変性BRとしては、変性SBRと同様の官能基が導入された変性BRが挙げられる。
BRとしては、例えば、宇部興産(株)、JSR(株)、旭化成(株)、日本ゼオン(株)等の製品を使用できる。
BRを含有する場合、ゴム成分100質量%中のBRの含有量は、好ましくは5質量%以上、より好ましくは10質量%以上、更に好ましくは15質量%以上である。また、上記BRの含有量は、好ましくは50質量%以下、より好ましくは40質量%以下、更に好ましくは30質量%以下である。上記範囲内にすることで、本発明の効果がより良好に得られる傾向がある。
SBR(スチレン含量が23質量%以上のSBR)、BRの合計含有量は、ゴム成分100質量%中、好ましくは80質量%以上、より好ましくは90質量%以上であり、100質量%であってもよい。
本発明に係るゴム組成物は、下記一般式(1)で表されるテトラジン系化合物を含む。
Figure JPOXMLDOC01-appb-C000007
[式中、R及びRは同一でも異なっていても良く、各々水素原子(-H)、-COOR(Rは水素原子(-H)またはアルキル基を示す)又は炭素数1~11の一価の炭化水素基を示し、該炭化水素基はヘテロ原子を有してもよい。また、R及びRは塩を形成してもよい。]
上記ヘテロ原子としては、窒素原子、酸素原子、硫黄原子等が挙げられる。
及びRの炭化水素基の炭素数は1~11であり、好ましくは2~9、より好ましくは4~7である。
及びRとしては、補強性充填剤(特に、カーボンブラック、シリカ)との相互作用が生じやすいと考えられ、より良好な低燃費性能、耐摩耗性能、ウェットグリップ性能が得られるという理由から、-COOR又はヘテロ原子を有する炭化水素基が好ましく、R及びRが共にヘテロ原子を有する炭化水素基であることがより好ましい。
及びRの炭化水素基としては、特に限定されないが、補強性充填剤(特に、カーボンブラック、シリカ)との相互作用が生じやすいと考えられ、より良好な低燃費性能、耐摩耗性能、ウェットグリップ性能が得られるという理由から、単素環基、複素環基が好ましく、少なくとも一方が複素環基であることがより好ましく、双方が複素環基であることが更に好ましい。
なお、本明細書において、単素環基とは、環構造が炭素原子のみによって構成される基を意味し、複素環基とは、環構造が炭素原子を含む2種類以上の元素によって構成される基を意味する。
単素環基としては、例えば、アリール基、シクロアルキル基等が挙げられる。なかでも、アリール基が好ましい。
アリール基としては、例えば、フェニル基、ナフチル基が挙げられる。なかでも、フェニル基が好ましい。
シクロアルキル基としては、例えば、シクロペンチル基、シクロヘキシル基が挙げられる。
複素環基としては、環を構成するヘテロ原子として窒素原子を含有する含窒素複素環基が好ましく、環を構成するヘテロ原子として窒素原子のみを含有する含窒素複素環基がより好ましい。
含窒素複素環基としては、例えば、アジリジニル基、アゼチジニル基、ピロリジニル基、ピペリジニル基、ヘキサメチレンイミノ基、イミダゾリジル基、ピペラジニル基、ピラゾリジル基、ピロリル基、イミダゾリル基、ピラゾリル基、ピリジル基、ピリダジル基、ピリミジル基、ピラジル基、キノリル基、イソキノリル基、シンノリニル基、キナゾリニル基、フタラジニル基等が挙げられる。なかでも、ピリジル基、ピリミジル基が好ましく、ピリジル基が更に好ましい。
上記単素環基、上記複素環基が有する水素原子は、置換基により置換されていてもよい。補強性充填剤(特に、カーボンブラック、シリカ)との相互作用が生じやすいと考えられ、より良好な低燃費性能、耐摩耗性能、ウェットグリップ性能が得られるという理由から、置換基により置換されていることが好ましい。
置換基としては、アミノ基、アミド基、シリル基、アルコキシシリル基、イソシアネート基、イミノ基、イミダゾール基、ウレア基、エーテル基、カルボニル基、オキシカルボニル基、メルカプト基、スルフィド基、ジスルフィド基、スルホニル基、スルフィニル基、チオカルボニル基、アンモニウム基、イミド基、ヒドラゾ基、アゾ基、ジアゾ基、カルボキシル基、ニトリル基、ピリジル基、アルコキシ基、水酸基、オキシ基、エポキシ基、スルホン酸基、トリフルオロメチル基等が挙げられる。なお、これらの置換基は、更に上記置換基を有していてもよく、上記置換基以外にも例えば、アルキレン基、アルキル基等を有していてもよい。なかでも、本発明の効果がより好適に得られるという理由から、カルボキシル基、上記-COOR、アミノ基(好ましくは下式(A)で表される基、下式(B)で表される基)、アルコキシ基(好ましくは炭素数1~6のアルコキシ基)、アルコキシシリル基(好ましくは炭素数1~6のアルコキシシリル基)が好ましい。
Figure JPOXMLDOC01-appb-C000008
 
なお、置換基は、上式(A)、(B)で表される基のように、塩を形成してもよい。塩を形成する例としては、例えば、アミノ基とハロゲン原子との塩、カルボキシル基とNa、K等の1価の金属との塩、スルホン酸基と上記1価の金属との塩等が挙げられる。
上記-COORのRは水素原子又はアルキル基を示す。該アルキル基の炭素数は、好ましくは1~8、より好ましくは1~3である。
アルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基等が挙げられる。
としては、アルキル基が好ましい。
上記一般式(1)で表されるテトラジン系化合物としては、ジエン系ゴムと反応可能なものであれば特に限定されない。テトラジン系化合物は、単独で用いてもよく、2種以上を併用してもよい。なかでも、本発明の効果がより好適に得られるという理由から、下記一般式(1-1)、(1-2)、(1-3)、又は(1-4)で表される化合物(特に、下記一般式(1-1)又は(1-4)で表される化合物)が好ましく、下記式(1-1-1)、(1-1-2)、(1-2-1)、(1-3-1)、(1-4-1)又は(1-4-2)で表される化合物(特に、下記式(1-1-1)又は(1-4-1)で表される化合物)がより好ましい。
上記一般式(1)で表されるテトラジン系化合物は、市販品を用いてもよく、公知の方法により合成してもよい。
Figure JPOXMLDOC01-appb-C000009
[式(1-1)中、R11は、水素原子(-H)、-COOR17(R17は水素原子(-H)又はアルキル基を示す)又は炭素数1~11の一価の炭化水素基を示し、該炭化水素基はヘテロ原子を有してもよい。また、R11は塩を形成してもよい。]
[式(1-2)中、R12は、窒素原子、酸素原子、硫黄原子、フッ素原子およびケイ素原子からなる群より選択される少なくとも1種の原子を含む官能基を示す。また、R12は塩を形成してもよい。]
[式(1-3)中、R13及びR14は同一でも異なっていても良く、各々水素原子(-H)又はアルキル基を示す。また、R13及びR14は塩を形成してもよい。]
[式(1-4)中、R15及びR16は同一でも異なっていても良く、各々水素原子(-H)、-COOR18(R18は水素原子(-H)又はアルキル基を示す)、又は窒素原子、酸素原子、硫黄原子、フッ素原子およびケイ素原子からなる群より選択される少なくとも1種の原子を含む官能基を示す。また、R15及びR16は塩を形成してもよい。]
Figure JPOXMLDOC01-appb-C000010
11のヘテロ原子としては、R及びRのヘテロ原子と同様の原子が挙げられる。
11の炭化水素基の炭素数はR及びRの炭化水素基と同様であり、好適な態様も同様である。
11としては、補強性充填剤(特に、カーボンブラック、シリカ)との相互作用が生じやすいと考えられ、より良好な低燃費性能、耐摩耗性能、ウェットグリップ性能が得られるという理由から、-COOR17又はヘテロ原子を有する炭化水素基が好ましい。
11の炭化水素基としては、R及びRの炭化水素基と同様の基が挙げられ、好適な態様も同様である。
上記-COOR17のR17は水素原子又はアルキル基を示す。該アルキル基としては、Rのアルキル基と同様の基が挙げられ、好適な態様も同様である。
17としては、アルキル基が好ましい。
12の窒素原子、酸素原子、硫黄原子、フッ素原子およびケイ素原子からなる群より選択される少なくとも1種の原子を含む官能基としては、上記置換基と同様の基が挙げられ、好適な態様も同様である。
12は、オルト位、メタ位、パラ位のいずれの位置であってもよいが、本発明の効果がより好適に得られるという理由から、パラ位が好ましい。
13及びR14のアルキル基は、Rのアルキル基と同様の基が挙げられ、好適な態様も同様である。R13及びR14としては、アルキル基が好ましい。
15及びR16としては、より良好な低燃費性能、耐摩耗性能、ウェットグリップ性能が得られるという理由から、水素原子、又は窒素原子、酸素原子、硫黄原子、フッ素原子およびケイ素原子からなる群より選択される少なくとも1種の原子を含む官能基が好ましい。
-COOR18のR18は水素原子又はアルキル基を示す。該アルキル基としては、Rのアルキル基と同様の基が挙げられ、好適な態様も同様である。
18としては、アルキル基が好ましい。
15及びR16の窒素原子、酸素原子、硫黄原子、フッ素原子およびケイ素原子からなる群より選択される少なくとも1種の原子を含む官能基としては、上記置換基と同様の基が挙げられ、好適な態様も同様である。
15及びR16は、オルト位、メタ位、パラ位のいずれの位置であってもよいが、本発明の効果がより好適に得られるという理由から、パラ位が好ましく、R15及びR16共にパラ位がより好ましい。
上記テトラジン系化合物の含有量は、ゴム成分100質量部に対して、0.1質量部以上、好ましくは0.5質量部以上、より好ましくは0.8質量部以上である。下限以上にすることで、本発明の効果が良好に得られる傾向がある。また、上記含有量は、3.0質量部以下、好ましくは2.5質量部以下、より好ましくは1.5質量部以下である。上限以下にすることで、本発明の効果が良好に得られる傾向がある。
ここで、本明細書において、上記一般式(1)で表されるテトラジン系化合物の含有量とは、2種以上のテトラジン系化合物を含有する場合はその合計含有量を意味する。
本発明に係るゴム組成物は、補強性充填剤としてシリカを含む。
シリカ以外の補強性充填剤としては、特に限定されないが、カーボンブラック、炭酸カルシウム、タルク、アルミナ、クレー、水酸化アルミニウム、酸化アルミニウム、マイカなどが挙げられる。なかでも、本発明の効果がより好適に得られるという理由から、カーボンブラックが好ましい。
補強性充填剤の含有量は、ゴム成分100質量部に対して、好ましくは80質量部以上、より好ましくは100質量部以上、更に好ましくは120質量部以上である。下限以上にすることで、十分な補強性を得ることができ、より良好な耐摩耗性能、ウェットグリップ性能が得られる傾向がある。また、上記含有量は、好ましくは250質量部以下、より好ましくは200質量部以下、更に好ましくは180質量部以下、特に好ましくは160質量部以下である。上限以下にすることで、より良好な低燃費性能が得られる傾向がある。
シリカとしては、例えば、乾式法シリカ(無水シリカ)、湿式法シリカ(含水シリカ)などが挙げられるが、シラノール基が多いという理由から、湿式法シリカが好ましい。
シリカの窒素吸着比表面積(NSA)は、好ましくは90m/g以上、より好ましくは120m/g以上、更に好ましくは150m/g以上である。下限以上にすることで、より良好な耐摩耗性能、ウェットグリップ性能が得られる。上記NSAは、好ましくは400m/g以下、より好ましくは200m/g以下、更に好ましくは180m/g以下である。上限以下にすることで、より良好な低燃費性能が得られる。
なお、シリカの窒素吸着比表面積は、ASTM D3037-81に準じてBET法で測定される値である。
シリカとしては、例えば、デグッサ社、ローディア社、東ソー・シリカ(株)、ソルベイジャパン(株)、(株)トクヤマ等の製品を使用できる。
シリカの含有量は、ゴム成分100質量部に対して、80質量部以上、好ましくは100質量部以上、より好ましくは120質量部以上である。下限以上にすることで、より良好な低燃費性能、耐摩耗性能、ウェットグリップ性能が得られる。また、上記含有量は、150質量部以下、好ましくは130質量部以下である。上限以下にすることで、ゴム組成物中において、シリカが均一に分散することが容易となり、より良好な低燃費性能、耐摩耗性能、ウェットグリップ性能が得られる。
補強性充填剤100質量%中のシリカの含有量は50質量%以上であり、好ましくは60質量%以上、より好ましくは70質量%以上、更に好ましくは80質量%以上、特に好ましくは90質量%以上であり、100質量%であってもよい。
カーボンブラックとしては、特に限定されないが、N134、N110、N220、N234、N219、N339、N330、N326、N351、N550、N762等が挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。
カーボンブラックの窒素吸着比表面積(NSA)は、5m/g以上が好ましく、50m/g以上がより好ましく、100m/g以上が更に好ましい。下限以上にすることで、より良好な耐摩耗性能、ウェットグリップ性能が得られる傾向がある。また、上記NSAは、300m/g以下が好ましく、150m/g以下がより好ましく、130m/g以下が更に好ましい。上限以下にすることで、カーボンブラックの良好な分散が得られやすく、より良好な耐摩耗性能、ウェットグリップ性能、低燃費性能が得られる傾向がある。
なお、カーボンブラックの窒素吸着比表面積は、JIS K6217-2:2001によって求められる。
カーボンブラックとしては、例えば、旭カーボン(株)、キャボットジャパン(株)、東海カーボン(株)、三菱化学(株)、ライオン(株)、新日化カーボン(株)、コロンビアカーボン社等の製品を使用できる。
カーボンブラックを含有する場合、カーボンブラックの含有量は、ゴム成分100質量部に対して、好ましくは3質量部以上、より好ましくは5質量部以上である。下限以上にすることで、十分な補強性を得ることができ、より良好な耐摩耗性能、ウェットグリップ性能が得られる傾向がある。また、上記含有量は、好ましくは50質量部以下、より好ましくは30質量部以下、更に好ましくは10質量部以下である。上限以下にすることで、より良好な低燃費性能が得られる傾向がある。
カーボンブラック及びシリカの合計含有量は、本発明の効果がより良好に得られるという理由から、ゴム成分100質量部に対して、好ましくは80~200質量部、より好ましくは90~180質量部、更に好ましくは100~160質量部である。
本発明に係るゴム組成物は、シリカと共にシランカップリング剤を含むことが好ましい。
シランカップリング剤としては、特に限定されず、例えば、ビス(3-トリエトキシシリルプロピル)テトラスルフィド、ビス(2-トリエトキシシリルエチル)テトラスルフィド、ビス(4-トリエトキシシリルブチル)テトラスルフィド、ビス(3-トリメトキシシリルプロピル)テトラスルフィド、ビス(2-トリメトキシシリルエチル)テトラスルフィド、ビス(2-トリエトキシシリルエチル)トリスルフィド、ビス(4-トリメトキシシリルブチル)トリスルフィド、ビス(3-トリエトキシシリルプロピル)ジスルフィド、ビス(2-トリエトキシシリルエチル)ジスルフィド、ビス(4-トリエトキシシリルブチル)ジスルフィド、ビス(3-トリメトキシシリルプロピル)ジスルフィド、ビス(2-トリメトキシシリルエチル)ジスルフィド、ビス(4-トリメトキシシリルブチル)ジスルフィド、3-トリメトキシシリルプロピル-N,N-ジメチルチオカルバモイルテトラスルフィド、2-トリエトキシシリルエチル-N,N-ジメチルチオカルバモイルテトラスルフィド、3-トリエトキシシリルプロピルメタクリレートモノスルフィド、などのスルフィド系、3-メルカプトプロピルトリメトキシシラン、2-メルカプトエチルトリエトキシシラン、Momentive社製のNXT、NXT-Zなどのメルカプト系、ビニルトリエトキシシラン、ビニルトリメトキシシランなどのビニル系、3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシランなどのアミノ系、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、などのグリシドキシ系、3-ニトロプロピルトリメトキシシラン、3-ニトロプロピルトリエトキシシランなどのニトロ系、3-クロロプロピルトリメトキシシラン、3-クロロプロピルトリエトキシシランなどのクロロ系などがあげられる。これらは、単独で用いてもよく、2種以上を併用してもよい。なかでも、本発明の効果がより良好に得られるという理由から、スルフィド系又はメルカプト系が好ましい。
シランカップリング剤としては、式(2)で表されるシランカップリング剤を使用することが好ましい。これにより、より良好な低燃費性能、耐摩耗性能、ウェットグリップ性能が得られる。
Figure JPOXMLDOC01-appb-C000011
(式(2)中、pは1~3の整数、qは1~5の整数、kは5~12の整数である。)
式(2)において、pは1~3の整数であるが、2が好ましい。pが3以下であると、カップリング反応が速い傾向がある。
qは1~5の整数であるが、2~4が好ましく、3がより好ましい。qが1~5であると合成が容易である傾向がある。
kは5~12の整数であるが、5~10が好ましく、6~8がより好ましく、7が更に好ましい。
式(2)で表されるシランカップリング剤としては、例えば、3-オクタノイルチオ-1-プロピルトリエトキシシランなどが挙げられる。
シランカップリング剤としては、例えば、デグッサ社、Momentive社、信越シリコーン(株)、東京化成工業(株)、アヅマックス(株)、東レ・ダウコーニング(株)等の製品を使用できる。
シランカップリング剤を含有する場合、シランカップリング剤の含有量は、シリカ100質量部に対して、3質量部以上が好ましく、5質量部以上がより好ましい。3質量部以上であると、シランカップリング剤を配合したことによる効果が得られる傾向がある。また、上記含有量は、20質量部以下が好ましく、10質量部以下がより好ましい。20質量部以下であると、配合量に見合った効果が得られ、良好な混練時の加工性が得られる傾向がある。
本発明では、SP値が7.5~10.5の炭化水素樹脂を含有する。
本明細書において、炭化水素樹脂とは、炭化水素系単量体を構成モノマーとして用いたポリマーであり、炭化水素系単量体を主成分(50質量%以上)として重合させたポリマー等が挙げられる。炭化水素系単量体とは、炭化水素により構成される単量体を意味する。
炭化水素樹脂のSP値は7.5~10.5であり、好ましくは8.0以上、より好ましくは8.3以上、更に好ましくは8.5以上、特に好ましくは8.7以上であり、好ましくは10.0以下、より好ましくは9.8以下、更に好ましくは9.6以下、特に好ましくは9.4以下である。
なお、本明細書において、SP値は、化合物の構造に基づいてHoy法によって算出される溶解度パラメーター(Solubility Parameter)を意味する。Hoy法とは、例えば、K.L.Hoy “Table of Solubility Parameters”,Solvent and Coatings Materials Reserch and Development Department,Union Carbites Corp.(1985)に記載された計算方法である。
炭化水素樹脂の重量平均分子量(Mw)は好ましくは300以上、より好ましくは600以上である。また、炭化水素樹脂のMwは、好ましくは1400以下、より好ましくは1200以下である。Mwが上記範囲内であると、本発明の効果(特に、ウェットグリップ性能の改善効果)がより好適に得られる。
炭化水素樹脂の軟化点は、30℃以上が好ましく、60℃以上がより好ましく、80℃以上が更に好ましい。30℃以上であると、より良好な耐摩耗性能、ウェットグリップ性能が得られる傾向がある。また、上記軟化点は、160℃以下が好ましく、140℃以下がより好ましく、120℃以下が更に好ましい。160℃以下であると、樹脂の分散性が良好となり、より良好な耐摩耗性能、ウェットグリップ性能、低燃費性能が得られる傾向がある。
なお、本発明において、樹脂の軟化点は、JIS K 6220-1:2001に規定される軟化点を環球式軟化点測定装置で測定し、球が降下した温度である。
炭化水素樹脂としては、上記SP値を満たす限り特に限定されないが、例えば、スチレン系樹脂、クマロンインデン樹脂、テルペン系樹脂、p-t-ブチルフェノールアセチレン樹脂、アクリル系樹脂、ジシクロペンタジエン系樹脂(DCPD系樹脂)、C5系石油樹脂、C9系石油樹脂、C5C9系石油樹脂等が挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。なかでも、本発明の効果がより好適に得られるという理由から、スチレン系樹脂が好ましい。
スチレン系樹脂は、スチレン系単量体を構成モノマーとして用いたポリマーであり、スチレン系単量体を主成分(50質量%以上)として重合させたポリマー等が挙げられる。具体的には、スチレン系単量体(スチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、α-メチルスチレン、p-メトキシスチレン、p-tert-ブチルスチレン、p-フェニルスチレン、o-クロロスチレン、m-クロロスチレン、p-クロロスチレン等)をそれぞれ単独で重合した単独重合体、2種以上のスチレン系単量体を共重合した共重合体の他、スチレン系単量体及びこれと共重合し得る他の単量体のコポリマーも挙げられる。
前記他の単量体としては、アクリロニトリル、メタクリロニトリルなどのアクリロニトリル類、アクリル類、メタクリル酸などの不飽和カルボン酸類、アクリル酸メチル、メタクリル酸メチルなどの不飽和カルボン酸エステル類、クロロプレン、ブタジエンイソプレンなどのジエン類、1-ブテン、1-ペンテンのようなオレフィン類;無水マレイン酸等のα,β-不飽和カルボン酸又はその酸無水物;等が例示できる。
なかでも、前記性能バランスの観点から、α-メチルスチレン系樹脂(α-メチルスチレン単独重合体、α-メチルスチレンとスチレンとの共重合体等)が好ましい。
クマロンインデン樹脂は、樹脂の骨格(主鎖)を構成するモノマー成分として、クマロン及びインデンを含む樹脂である。クマロン、インデン以外に骨格に含まれるモノマー成分としては、スチレン、α-メチルスチレン、メチルインデン、ビニルトルエンなどが挙げられる。
テルペン系樹脂としては、ポリテルペン、テルペンフェノール、芳香族変性テルペン樹脂などが挙げられる。
ポリテルペンは、テルペン化合物を重合して得られる樹脂及びそれらの水素添加物である。テルペン化合物は、(Cの組成で表される炭化水素及びその含酸素誘導体で、モノテルペン(C1016)、セスキテルペン(C1524)、ジテルペン(C2032)などに分類されるテルペンを基本骨格とする化合物であり、例えば、α-ピネン、β-ピネン、ジペンテン、リモネン、ミルセン、アロオシメン、オシメン、α-フェランドレン、α-テルピネン、γ-テルピネン、テルピノレン、1,8-シネオール、1,4-シネオール、α-テルピネオール、β-テルピネオール、γ-テルピネオールなどが挙げられる。
ポリテルペンとしては、上述したテルペン化合物を原料とするα-ピネン樹脂、β-ピネン樹脂、リモネン樹脂、ジペンテン樹脂、β-ピネン/リモネン樹脂などのテルペン樹脂の他、該テルペン樹脂に水素添加処理した水素添加テルペン樹脂も挙げられる。
テルペンフェノールとしては、上記テルペン化合物とフェノール系化合物とを共重合した樹脂、及び該樹脂に水素添加処理した樹脂が挙げられ、具体的には、上記テルペン化合物、フェノール系化合物及びホルマリンを縮合させた樹脂が挙げられる。なお、フェノール系化合物としては、例えば、フェノール、ビスフェノールA、クレゾール、キシレノールなどが挙げられる。
芳香族変性テルペン樹脂としては、テルペン樹脂を芳香族化合物で変性して得られる樹脂、及び該樹脂に水素添加処理した樹脂が挙げられる。なお、芳香族化合物としては、芳香環を有する化合物であれば特に限定されないが、例えば、フェノール、アルキルフェノール、アルコキシフェノール、不飽和炭化水素基含有フェノールなどのフェノール化合物;ナフトール、アルキルナフトール、アルコキシナフトール、不飽和炭化水素基含有ナフトールなどのナフトール化合物;スチレン、アルキルスチレン、アルコキシスチレン、不飽和炭化水素基含有スチレンなどのスチレン誘導体;クマロン、インデンなどが挙げられる。
p-t-ブチルフェノールアセチレン樹脂としては、p-t-ブチルフェノールとアセチレンとを縮合反応させて得られる樹脂が挙げられる。
アクリル系樹脂としては特に限定されないが、不純物が少なく、分子量分布がシャープな樹脂が得られるという点から、無溶剤型アクリル系樹脂を好適に使用できる。
無溶剤型アクリル系樹脂は、副原料となる重合開始剤、連鎖移動剤、有機溶媒などを極力使用せずに、高温連続重合法(高温連続塊重合法)(米国特許第4,414,370号明細書、特開昭59-6207号公報、特公平5-58005号公報、特開平1-313522号公報、米国特許第5,010,166号明細書、東亜合成研究年報TREND2000第3号p42-45等に記載の方法)により合成された(メタ)アクリル系樹脂(重合体)が挙げられる。なお、本発明において、(メタ)アクリルは、メタクリル及びアクリルを意味する。
上記アクリル系樹脂は、実質的に副原料となる重合開始剤、連鎖移動剤、有機溶媒などを含まないことが好ましい。また、上記アクリル系樹脂は、連続重合により得られる組成分布や分子量分布が比較的狭いものが好ましい。
上述のように、上記アクリル系樹脂としては、実質的に副原料となる重合開始剤、連鎖移動剤、有機溶媒などを含まないもの、すなわち、純度が高いものが好ましい。上記アクリル系樹脂の純度(該樹脂中に含まれる樹脂の割合)は、好ましくは95質量%以上、より好ましくは97質量%以上である。
上記アクリル系樹脂を構成するモノマー成分としては、例えば、(メタ)アクリル酸や、(メタ)アクリル酸エステル(アルキルエステル、アリールエステル、アラルキルエステルなど)、(メタ)アクリルアミド、及び(メタ)アクリルアミド誘導体などの(メタ)アクリル酸誘導体が挙げられる。
また、上記アクリル系樹脂を構成するモノマー成分として、(メタ)アクリル酸や(メタ)アクリル酸誘導体と共に、スチレン、α-メチルスチレン、ビニルトルエン、ビニルナフタレン、ジビニルベンゼン、トリビニルベンゼン、ジビニルナフタレンなどの芳香族ビニルを使用してもよい。
上記アクリル系樹脂は、(メタ)アクリル成分のみで構成される樹脂であっても、(メタ)アクリル成分以外の成分をも構成要素とする樹脂であっても良い。
また、上記アクリル系樹脂は、水酸基、カルボキシル基、シラノール基等を有していてよい。
スチレン系樹脂、クマロンインデン樹脂等の樹脂としては、例えば、丸善石油化学(株)、住友ベークライト(株)、ヤスハラケミカル(株)、東ソー(株)、Rutgers Chemicals社、BASF社、アリゾナケミカル社、日塗化学(株)、(株)日本触媒、JXエネルギー(株)、荒川化学工業(株)、田岡化学工業(株)等の製品を使用できる。
上記炭化水素樹脂を含有する場合、上記炭化水素樹脂の含有量は、ゴム成分100質量部に対して、好ましくは1質量部以上、より好ましくは3質量部以上、更に好ましくは5質量部以上である。また、上記含有量は、好ましくは50質量部以下、より好ましくは30質量部以下、更に好ましくは20質量部以下である。上記含有量が上記範囲内であると、本発明の効果(特に、ウェットグリップ性能の改善効果)がより好適に得られる。
本発明では、重量平均分子量が20万以下の低分子量ジエン系ポリマーを含有することが好ましい。ゴム成分と架橋しうる低分子量のジエン系ポリマーを配合することにより、テトラジン系化合物とシリカとの親和性を阻害せずに、ゴム成分を構成する分子間の距離を開き、ウェットグリップ性能がさらに向上するものと考えられる。
低分子量ジエン系ポリマーを構成するモノマー成分としては、ジエン系モノマーであれば特に限定されず、1,3-ブタジエン、イソプレン、1,3-ペンタジエン、2,3-ジメチル-1,3-ブタジエン、1,3-ヘキサジエンなどの共役ジエン化合物、ミルセン、ファルネセンなどの分枝共役ジエン化合物が挙げられる。また、ジエン系モノマーと共に、スチレン、α-メチルスチレン、α-ビニルナフタレン、β-ビニルナフタレンなどのビニル化合物がモノマー成分として使用されてもよい。
低分子量ジエン系ポリマーとしては、例えば、スチレンブタジエン共重合体、ブタジエン重合体、イソプレン重合体、アクリロニトリルブタジエン共重合体、ミルセン重合体、ファルネセン重合体、ミルセンブタジエン共重合体、ミルセンスチレン共重合体、ファルネセンブタジエン共重合体、ファルネセンスチレン共重合体等が挙げられる。なかでも、本発明の効果がより好適に得られるという理由から、スチレンブタジエン共重合体、ブタジエン重合体、イソプレン重合体、ミルセン重合体、ファルネセン重合体、ミルセンブタジエン共重合体、ミルセンスチレン共重合体、ファルネセンブタジエン共重合体、ファルネセンスチレン共重合体が好ましい。
低分子量ジエン系ポリマーとしては、25℃で液体状態の低分子量ジエン系ポリマーが好ましい。また、低分子量ジエン系ポリマーの共役ジエン部の二重結合は、水素添加されていてもよい。
低分子量ジエン系ポリマーの重量平均分子量(Mw)は好ましくは1000以上、より好ましくは1500以上である。また、低分子量ジエン系ポリマーのMwは、好ましくは15万以下、より好ましくは10万以下、更に好ましくは5万以下、特に好ましくは2万以下、最も好ましくは1.5万以下である。Mwが上記範囲内であると、本発明の効果(特に、ウェットグリップ性能の改善効果)がより好適に得られる。
低分子量ジエン系ポリマーを含有する場合、低分子量ジエン系ポリマーの含有量は、ゴム成分100質量部に対して、好ましくは1質量部以上、より好ましくは5質量部以上である。また、上記含有量は、好ましくは50質量部以下、より好ましくは40質量部以下、更に好ましくは30質量部以下である。上記含有量が上記範囲内であると、本発明の効果(特に、ウェットグリップ性能の改善効果)がより好適に得られる。
本発明に係るゴム組成物は、オイルを含んでもよい。
オイルとしては、例えば、プロセスオイル、植物油脂、又はその混合物が挙げられる。プロセスオイルとしては、例えば、パラフィン系プロセスオイル、アロマ系プロセスオイル、ナフテン系プロセスオイルなどを用いることができる。植物油脂としては、ひまし油、綿実油、あまに油、なたね油、大豆油、パーム油、やし油、落花生湯、ロジン、パインオイル、パインタール、トール油、コーン油、こめ油、べに花油、ごま油、オリーブ油、ひまわり油、パーム核油、椿油、ホホバ油、マカデミアナッツ油、桐油等が挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。
オイルとしては、例えば、出光興産(株)、三共油化工業(株)、(株)ジャパンエナジー、オリソイ社、H&R社、豊国製油(株)、昭和シェル石油(株)、富士興産(株)等の製品を使用できる。
オイルを含有する場合、オイルの含有量は、ゴム成分100質量部に対して、好ましくは1質量部以上、より好ましくは10質量部以上である。また、上記含有量は、好ましくは60質量部以下、より好ましくは40質量部以下である。なお、オイルの含有量には、ゴム(油展ゴム)に含まれるオイルの量も含まれる。
本発明に係るゴム組成物は、ワックスを含むことが好ましい。
ワックスとしては、特に限定されず、パラフィンワックス、マイクロクリスタリンワックス等の石油系ワックス;植物系ワックス、動物系ワックス等の天然系ワックス;エチレン、プロピレン等の重合物等の合成ワックスなどが挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。
ワックスとしては、例えば、大内新興化学工業(株)、日本精蝋(株)、精工化学(株)等の製品を使用できる。
ワックスを含有する場合、ワックスの含有量は、ゴム成分100質量部に対して、好ましくは0.5質量部以上、より好ましくは1質量部以上である。また、上記含有量は、好ましくは10質量部以下、より好ましくは7質量部以下である。
本発明に係るゴム組成物は、老化防止剤を含むことが好ましい。
老化防止剤としては、例えば、フェニル-α-ナフチルアミン等のナフチルアミン系老化防止剤;オクチル化ジフェニルアミン、4,4′-ビス(α,α′-ジメチルベンジル)ジフェニルアミン等のジフェニルアミン系老化防止剤;N-イソプロピル-N′-フェニル-p-フェニレンジアミン、N-(1,3-ジメチルブチル)-N′-フェニル-p-フェニレンジアミン、N,N′-ジ-2-ナフチル-p-フェニレンジアミン等のp-フェニレンジアミン系老化防止剤;2,2,4-トリメチル-1,2-ジヒドロキノリンの重合物等のキノリン系老化防止剤;2,6-ジ-t-ブチル-4-メチルフェノール、スチレン化フェノール等のモノフェノール系老化防止剤;テトラキス-[メチレン-3-(3′,5′-ジ-t-ブチル-4′-ヒドロキシフェニル)プロピオネート]メタン等のビス、トリス、ポリフェノール系老化防止剤などが挙げられる。これらは単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。なかでも、p-フェニレンジアミン系老化防止剤、キノリン系老化防止剤が好ましく、N-(1,3-ジメチルブチル)-N′-フェニル-p-フェニレンジアミン、2,2,4-トリメチル-1,2-ジヒドロキノリンの重合物がより好ましい。
老化防止剤としては、例えば、精工化学(株)、住友化学(株)、大内新興化学工業(株)、フレクシス社等の製品を使用できる。
老化防止剤を含有する場合、老化防止剤の含有量は、ゴム成分100質量部に対して、好ましくは1質量部以上、より好ましくは2質量部以上である。また、上記含有量は、好ましくは10質量部以下、より好ましくは7質量部以下である。
本発明に係るゴム組成物は、ステアリン酸を含むことが好ましい。
ステアリン酸としては、従来公知のものを使用でき、例えば、日油(株)、NOF社、花王(株)、富士フイルム和光純薬(株)、千葉脂肪酸(株)等の製品を使用できる。
ステアリン酸を含有する場合、ステアリン酸の含有量は、ゴム成分100質量部に対して、好ましくは0.5質量部以上、より好ましくは1質量部以上である。また、上記含有量は、好ましくは10質量部以下、より好ましくは5質量部以下である。上記数値範囲内であると、本発明の効果が良好に得られる傾向がある。
本発明に係るゴム組成物は、酸化亜鉛を含むことが好ましい。
酸化亜鉛としては、従来公知のものを使用でき、例えば、三井金属鉱業(株)、東邦亜鉛(株)、ハクスイテック(株)、正同化学工業(株)、堺化学工業(株)等の製品を使用できる。
酸化亜鉛を含有する場合、酸化亜鉛の含有量は、ゴム成分100質量部に対して、好ましくは0.5質量部以上、より好ましくは1質量部以上である。また、上記含有量は、好ましくは10質量部以下、より好ましくは5質量部以下である。上記数値範囲内であると、本発明の効果がより良好に得られる傾向がある。
本発明に係るゴム組成物は、硫黄を含むことが好ましい。
硫黄としては、ゴム工業において一般的に用いられる粉末硫黄、沈降硫黄、コロイド硫黄、不溶性硫黄、高分散性硫黄、可溶性硫黄などが挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。
硫黄としては、例えば、鶴見化学工業(株)、軽井沢硫黄(株)、四国化成工業(株)、フレクシス社、日本乾溜工業(株)、細井化学工業(株)等の製品を使用できる。
硫黄を含有する場合、硫黄の含有量は、ゴム成分100質量部に対して、好ましくは0.5質量部以上、より好ましくは0.8質量部以上である。また、上記含有量は、好ましくは10質量部以下、より好ましくは5質量部以下、更に好ましくは3質量部以下である。上記数値範囲内であると、本発明の効果が良好に得られる傾向がある。
本発明に係るゴム組成物は、加硫促進剤を含むことが好ましい。
加硫促進剤としては、2-メルカプトベンゾチアゾール、ジ-2-ベンゾチアゾリルジスルフィド、N-シクロヘキシル-2-ベンゾチアジルスルフェンアミド等のチアゾール系加硫促進剤;テトラメチルチウラムジスルフィド(TMTD)、テトラベンジルチウラムジスルフィド(TBzTD)、テトラキス(2-エチルヘキシル)チウラムジスルフィド(TOT-N)等のチウラム系加硫促進剤;N-シクロヘキシル-2-ベンゾチアゾールスルフェンアミド、N-t-ブチル-2-ベンゾチアゾリルスルフェンアミド、N-オキシエチレン-2-ベンゾチアゾールスルフェンアミド、N-オキシエチレン-2-ベンゾチアゾールスルフェンアミド、N,N’-ジイソプロピル-2-ベンゾチアゾールスルフェンアミド等のスルフェンアミド系加硫促進剤;ジフェニルグアニジン、ジオルトトリルグアニジン、オルトトリルビグアニジン等のグアニジン系加硫促進剤を挙げることができる。これらは、単独で用いてもよく、2種以上を併用してもよい。なかでも、本発明の効果がより好適に得られるという理由から、スルフェンアミド系加硫促進剤、グアニジン系加硫促進剤が好ましい。
加硫促進剤を含有する場合、加硫促進剤の含有量は、ゴム成分100質量部に対して、好ましくは1質量部以上、より好ましくは2質量部以上である。また、上記含有量は、好ましくは10質量部以下、より好ましくは7質量部以下である。上記数値範囲内であると、本発明の効果が良好に得られる傾向がある。
前記ゴム組成物には、前記成分の他、タイヤ工業において一般的に用いられている添加剤を配合することができ、可塑剤、滑剤などの加工助剤;硫黄以外の加硫剤(例えば、有機架橋剤、有機過酸化物);等を例示できる。
本発明に係るゴム組成物は、一般的な方法で製造される。すなわち、バンバリーミキサーやニーダー、オープンロールなどで前記各成分を混練りし、その後加硫する方法等により製造できる。本発明のテトラジン系化合物は補強性充填剤(特に、カーボンブラック、シリカ)との相互作用や分散性への寄与が期待されるため、補強性充填剤(特に、カーボンブラック、シリカ)よりも前に、もしくは補強性充填剤(特に、カーボンブラック、シリカ)とともにゴム成分(特に、スチレン含量が23質量%以上のSBR)と混練を行い、ゴム成分中にテトラジン系化合物を分散させておくことが好ましい。
スチレン含量が23質量%以上のSBRとテトラジン系化合物との反応を充分に行うために、スチレン含量が23質量%以上のSBRとテトラジン系化合物とを混練することによりマスターバッチを調製し、該マスターバッチを、シリカと混練することが好ましい。すなわち、本発明の空気入りタイヤは、スチレン含量が23質量%以上のSBRとテトラジン系化合物とを混練することによりマスターバッチを調製するマスターバッチ調製工程と、マスターバッチ調製工程により得られたマスターバッチとシリカとを混練する混練工程とを含む製造方法により製造されることが好ましい。ここで、スチレン含量が23質量%以上のSBRとテトラジン系化合物との反応を充分に行うことができ、本発明の効果がより好適に得られるという理由から、マスターバッチ調製工程において混練されるゴム成分100質量%中スチレン含量が23質量%以上のSBRの含有量は、好ましくは60質量%以上、より好ましくは80質量%以上、更に好ましくは90質量%以上であり、最も好ましくは100質量%(マスターバッチ調製工程において混練されるゴム成分がスチレン含量が23質量%以上のSBRのみ)である。また、本発明の効果がより好適に得られるという理由から、マスターバッチ調製工程においてシリカは混練されないことが好ましく、マスターバッチ調製工程において混練されるゴム成分100質量部に対して、マスターバッチ調製工程において混練されるシリカの含有量は、好ましくは5質量部以下、より好ましくは3質量部以下、更に好ましくは1質量部以下、特に好ましくは0.5質量部以下、最も好ましくは0質量部である。また、本発明の効果がより好適に得られるという理由から、マスターバッチ調製工程において混練されるゴム成分100質量部に対して、マスターバッチ調製工程において混練されるテトラジン系化合物の含有量は、0.1質量部以上、好ましくは0.5質量部以上、より好ましくは0.8質量部以上であり、3.0質量部以下、好ましくは2.5質量部以下、より好ましくは1.5質量部以下である。
混練条件としては、加硫剤及び加硫促進剤以外の添加剤を配合する場合、混練温度は、通常50~200℃であり、好ましくは80~190℃であり、混練時間は、通常30秒~30分であり、好ましくは1分~30分である。
加硫剤、加硫促進剤を配合する場合、混練温度は、通常100℃以下であり、好ましくは室温~80℃である。また、加硫剤、加硫促進剤を配合した組成物は、通常、プレス加硫などの加硫処理が施される。加硫温度としては、通常120~200℃、好ましくは140~180℃である。
本発明の空気入りタイヤは、上記ゴム組成物を用いて通常の方法で製造される。
すなわち、前記成分を配合したゴム組成物を、未加硫の段階でトレッドなどの各タイヤ部材の形状にあわせて押出し加工し、他のタイヤ部材とともに、タイヤ成型機上にて通常の方法で成形することにより、未加硫タイヤを形成する。この未加硫タイヤを加硫機中で加熱加圧することによりタイヤを得る。
本発明の空気入りタイヤは、乗用車用タイヤ、大型乗用車用、大型SUV用タイヤ、トラック、バスなどの重荷重用タイヤ、ライトトラック用タイヤ、二輪自動車用タイヤ、ランフラットタイヤに好適に使用可能である。
実施例に基づいて、本発明を具体的に説明するが、本発明はこれらのみに限定されるものではない。
以下、実施例及び比較例で使用した各種薬品について、まとめて説明する。
SBR(1):スチレンブタジエンゴム(スチレン含量:40質量%、ビニル量:15質量%、Mw:120万)
SBR(2):スチレンブタジエンゴム(スチレン含量:20質量%、ビニル量:50質量%、Mw:30万)
BR:ハイシスBR(シス含量:97質量%、Mw:40万)
カーボンブラック:キャボットジャパン(株)製のショウブラックN220(N220、NSA:111m/g)
シリカ:デグッサ社製のUltrasil VN3(NSA:175m/g)
シランカップリング剤:モメンティブ社製のNXT(3-オクタノイルチオ-1-プロピルトリエトキシシラン)
テトラジン系化合物A:上記式(1-1-1)で表される化合物
テトラジン系化合物B:上記式(1-2-1)で表される化合物
テトラジン系化合物C:上記式(1-3-1)で表される化合物
テトラジン系化合物D:上記式(1-4-1)で表される化合物
オイル:出光興産(株)製のダイアナプロセスP523
樹脂(1):テルペン系樹脂(軟化点:100℃、Mw:900、SP値:8.2)
樹脂(2):α-メチルスチレンとスチレンとの共重合体(軟化点:85℃、Mw:700、SP値:9.1)
樹脂(3):アクリル系樹脂(軟化点:90℃、Mw:1000、SP値:10.0)
ステアリン酸:日油(株)製のステアリン酸「椿」
酸化亜鉛:三井金属鉱業(株)製の亜鉛華1号
老化防止剤:精工化学(株)製のオゾノン6C(N-(1,3-ジメチルブチル)-N’-フェニル-p-フェニレンジアミン)
ワックス:日本精蝋(株)製のオゾエース0355
硫黄:鶴見化学(株)製の粉末硫黄
加硫促進剤(1):大内新興化学工業(株)製のノクセラーNS(N-tert-ブチル-2-ベンゾチアゾリルスルフェンアミド)
加硫促進剤(2):大内新興化学工業(株)製のノクセラーD(ジフェニルグアニジン)
<実施例及び比較例>
表1に示す配合内容に従い、各材料を混練し、未加硫ゴム組成物を得た。得られた未加硫ゴム組成物をトレッドの形状に成形し、他のタイヤ部材とともに貼り合わせて未加硫タイヤを形成し、加圧加熱を行って、試験用タイヤ(サイズ:195/65R15)を製造した。得られた試験用タイヤを用いて下記の評価を行い、結果を表1に示した。
(シリカの分散性)
トレッドから切り出したゴムから、測定用試験片を切り出し、JIS K 6812「ポリオレフィン管、継手及びコンパウンドの顔料分散又はカーボン分散の評価方法」に準じて、各試験片中のシリカの凝集塊をカウントして、分散率(%)をそれぞれ算出して、比較例1の分散率を100として、各配合のシリカ分散率を指数表示した。シリカ分散指数が大きいほどシリカが分散し、優れることを示す。
(低燃費性能)
転がり抵抗試験機を用い、試験用タイヤを、リム(15×6JJ)、内圧(230kPa)、荷重(3.43kN)、速度(80km/h)で走行させたときの転がり抵抗を測定し、比較例1を100とした時の指数で表示した(低燃費性能指数)。指数が大きいほど、低燃費性能に優れることを示す。
(耐摩耗性能)
各試験用タイヤを国産FF車に装着し、走行距離8000km後のタイヤトレッド部の溝深さを測定し、タイヤ溝深さが1mm減るときの走行距離を算出し、比較例1を100とした時の指数で表示した(耐摩耗性能指数)。指数が大きいほど、タイヤ溝深さが1mm減るときの走行距離が長く、耐摩耗性能に優れることを示す。
(ウェットグリップ性能)
各試験用タイヤを車両(国産FF2000cc)の全輪に装着して、湿潤アスファルト路面にて初速度100km/hからの制動距離を求め、基準例を100とした時の指数で表示した(ウェットグリップ性能指数)。指数が大きいほど制動距離が短く、ウェットグリップ性能に優れることを示す。
Figure JPOXMLDOC01-appb-T000012
表1から、スチレンブタジエンゴムの含有量が30質量%以上であるゴム成分100質量部に対して、シリカを80~150質量部、下記一般式(1)で表されるテトラジン系化合物を0.1~3.0質量部、SP値が7.5~10.5の炭化水素樹脂を50質量部以下含有し、上記スチレンブタジエンゴムのスチレン含量が23質量%以上であるトレッド用ゴム組成物から作製したトレッドを有する実施例の空気入りタイヤは、低燃費性能、耐摩耗性能、ウェットグリップ性能がバランスよく改善されていた。

Claims (6)

  1. スチレンブタジエンゴムの含有量が30質量%以上であるゴム成分100質量部に対して、シリカを80~150質量部、下記一般式(1)で表されるテトラジン系化合物を0.1~3.0質量部、SP値が7.5~10.5の炭化水素樹脂を50質量部以下含有し、
    前記スチレンブタジエンゴムのスチレン含量が23質量%以上であるトレッド用ゴム組成物から作製したトレッドを有する空気入りタイヤ。
    Figure JPOXMLDOC01-appb-C000001
    [式中、R及びRは同一でも異なっていても良く、各々水素原子、-COOR(Rは水素原子またはアルキル基を示す)又は炭素数1~11の一価の炭化水素基を示し、該炭化水素基はヘテロ原子を有してもよい。また、R及びRは塩を形成してもよい。]
  2. 前記テトラジン系化合物が、下記一般式(1-1)、(1-2)、(1-3)、又は(1-4)で表される化合物である請求項1記載の空気入りタイヤ。
    Figure JPOXMLDOC01-appb-C000002
    [式(1-1)中、R11は、水素原子、-COOR17(R17は水素原子又はアルキル基を示す)又は炭素数1~11の一価の炭化水素基を示し、該炭化水素基はヘテロ原子を有してもよい。また、R11は塩を形成してもよい。]
    [式(1-2)中、R12は、窒素原子、酸素原子、硫黄原子、フッ素原子およびケイ素原子からなる群より選択される少なくとも1種の原子を含む官能基を示す。また、R12は塩を形成してもよい。]
    [式(1-3)中、R13及びR14は同一でも異なっていても良く、各々水素原子又はアルキル基を示す。また、R13及びR14は塩を形成してもよい。]
    [式(1-4)中、R15及びR16は同一でも異なっていても良く、各々水素原子、-COOR18(R18は水素原子又はアルキル基を示す)、又は窒素原子、酸素原子、硫黄原子、フッ素原子およびケイ素原子からなる群より選択される少なくとも1種の原子を含む官能基を示す。また、R15及びR16は塩を形成してもよい。]
  3. 前記テトラジン系化合物が、下記式(1-1-1)、(1-1-2)、(1-2-1)、(1-3-1)、(1-4-1)又は(1-4-2)で表される化合物である請求項1記載の空気入りタイヤ。
    Figure JPOXMLDOC01-appb-C000003
  4. 前記炭化水素樹脂の重量平均分子量が300~1400である請求項1~3のいずれかに記載の空気入りタイヤ。
  5. 前記炭化水素樹脂が、スチレン系樹脂である請求項1~4のいずれかに記載の空気入りタイヤ。
  6. ゴム成分100質量%中のブタジエンゴムの含有量が5~50質量%である請求項1~5のいずれかに記載の空気入りタイヤ。
PCT/JP2018/015569 2017-04-14 2018-04-13 空気入りタイヤ WO2018190430A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/498,636 US11396590B2 (en) 2017-04-14 2018-04-13 Pneumatic tire
EP18784853.6A EP3597697A4 (en) 2017-04-14 2018-04-13 TIRE
JP2018545510A JP7407512B2 (ja) 2017-04-14 2018-04-13 空気入りタイヤ
CN201880021265.6A CN110520470A (zh) 2017-04-14 2018-04-13 充气轮胎

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-080970 2017-04-14
JP2017080970 2017-04-14

Publications (1)

Publication Number Publication Date
WO2018190430A1 true WO2018190430A1 (ja) 2018-10-18

Family

ID=63793640

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/015569 WO2018190430A1 (ja) 2017-04-14 2018-04-13 空気入りタイヤ

Country Status (5)

Country Link
US (1) US11396590B2 (ja)
EP (1) EP3597697A4 (ja)
JP (1) JP7407512B2 (ja)
CN (1) CN110520470A (ja)
WO (1) WO2018190430A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018203850A (ja) * 2017-06-01 2018-12-27 住友ゴム工業株式会社 タイヤ用ゴム組成物の製造方法
EP3572240A1 (en) * 2018-05-23 2019-11-27 Sumitomo Rubber Industries Ltd. Rubber composition for tread and pneumatic tire
JP2020041035A (ja) * 2018-09-10 2020-03-19 横浜ゴム株式会社 タイヤ用ゴム組成物およびそれを用いた空気入りタイヤ
JP7369619B2 (ja) 2019-12-27 2023-10-26 Toyo Tire株式会社 変性植物油及びその製造方法、並びにゴム組成物及びタイヤ
JP7400419B2 (ja) 2019-12-06 2023-12-19 住友ゴム工業株式会社 ゴム組成物及び空気入りタイヤ

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021124640A1 (ja) * 2019-12-19 2021-06-24 株式会社ブリヂストン タイヤ

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4414370A (en) 1981-01-09 1983-11-08 S. C. Johnson & Son, Inc. Process for continuous bulk copolymerization of vinyl monomers
JPS596207A (ja) 1982-06-15 1984-01-13 エス・シ−・ジヨンソン・アンド・サン・インコ−ポレ−テツド バルク重合方法とポリマ−生成物
JPS63114641A (ja) * 1986-10-25 1988-05-19 ヒユールス・アクチエンゲゼルシヤフト ポリフエニレンエーテルおよびゴムを基礎とした建築部材およびそれらの製造方法
JPH01313522A (ja) 1988-04-26 1989-12-19 S C Johnson & Son Inc 環状エステル修飾アクリル系ポリマーの触媒塊状製造方法
US5010166A (en) 1987-03-05 1991-04-23 S. C. Johnson & Son, Inc. Process and apparatus for producing polyol polymers and polyol polymers so produced
JPH0558005B2 (ja) 1984-02-29 1993-08-25 Johnson & Son Inc S C
WO2011158509A1 (ja) * 2010-06-18 2011-12-22 横浜ゴム株式会社 タイヤ用ゴム組成物およびそれを用いた空気入りタイヤ
JP2013544936A (ja) 2010-11-26 2013-12-19 コンパニー ゼネラール デ エタブリッスマン ミシュラン 湿潤地面上で改良されたグリップ性を有するタイヤトレッド
WO2014021002A1 (ja) * 2012-08-03 2014-02-06 住友ゴム工業株式会社 トレッド用ゴム組成物及び空気入りタイヤ
JP2014173062A (ja) * 2013-03-12 2014-09-22 Sumitomo Rubber Ind Ltd トレッド用ゴム組成物及び空気入りタイヤ
JP2015163681A (ja) * 2014-01-31 2015-09-10 横浜ゴム株式会社 ゴム組成物及び空気入りタイヤ
WO2017057758A1 (ja) * 2015-09-30 2017-04-06 大塚化学株式会社 ゴム成分に低発熱性を付与するための添加剤

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2168697A1 (en) * 1995-09-22 1997-03-23 Jean-Paul Lambotte Tire with tread having silica reinforcement
FR2821848A1 (fr) * 2001-03-12 2002-09-13 Michelin Soc Tech Composition de caoutchouc pour bande de roulement de pneumatique et enveloppe de pneumatique l'incorporant
JP5097766B2 (ja) 2009-12-25 2012-12-12 住友ゴム工業株式会社 トレッド用ゴム組成物及び空気入りタイヤ
CN103154119B (zh) * 2010-10-13 2014-10-15 埃克森美孚化学专利公司 弹性体组合物的烃聚合物改性剂
CN105899545B (zh) 2014-01-31 2018-01-09 横滨橡胶株式会社 改性聚合物及橡胶组合物以及充气轮胎
US20170121490A1 (en) * 2014-05-15 2017-05-04 Sumitomo Rubber Industries, Ltd. Rubber composition and pneumatic tire
FR3038320A1 (fr) * 2015-07-02 2017-01-06 Michelin & Cie Composition de caoutchouc comprenant une silice de tres haute surface specifique et une resine hydrocarbonee de faible temperature de transition vitreuse
JP6624204B2 (ja) 2015-10-02 2019-12-25 Dic株式会社 ポリアリーレンスルフィド樹脂組成物、成形品及び製造方法
US11118036B2 (en) * 2015-11-20 2021-09-14 The Goodyear Tire & Rubber Company Pneumatic tire
JP6701433B2 (ja) * 2017-03-10 2020-06-10 大塚化学株式会社 ゴム組成物及びタイヤ
US11597822B2 (en) * 2017-04-14 2023-03-07 Sumitomo Rubber Industries, Ltd. Rubber composition for tires and pneumatic tire
WO2018190429A1 (ja) * 2017-04-14 2018-10-18 住友ゴム工業株式会社 タイヤ用ゴム組成物及び空気入りタイヤ

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4414370A (en) 1981-01-09 1983-11-08 S. C. Johnson & Son, Inc. Process for continuous bulk copolymerization of vinyl monomers
JPS596207A (ja) 1982-06-15 1984-01-13 エス・シ−・ジヨンソン・アンド・サン・インコ−ポレ−テツド バルク重合方法とポリマ−生成物
JPH0558005B2 (ja) 1984-02-29 1993-08-25 Johnson & Son Inc S C
JPS63114641A (ja) * 1986-10-25 1988-05-19 ヒユールス・アクチエンゲゼルシヤフト ポリフエニレンエーテルおよびゴムを基礎とした建築部材およびそれらの製造方法
US5010166A (en) 1987-03-05 1991-04-23 S. C. Johnson & Son, Inc. Process and apparatus for producing polyol polymers and polyol polymers so produced
JPH01313522A (ja) 1988-04-26 1989-12-19 S C Johnson & Son Inc 環状エステル修飾アクリル系ポリマーの触媒塊状製造方法
WO2011158509A1 (ja) * 2010-06-18 2011-12-22 横浜ゴム株式会社 タイヤ用ゴム組成物およびそれを用いた空気入りタイヤ
JP2013544936A (ja) 2010-11-26 2013-12-19 コンパニー ゼネラール デ エタブリッスマン ミシュラン 湿潤地面上で改良されたグリップ性を有するタイヤトレッド
WO2014021002A1 (ja) * 2012-08-03 2014-02-06 住友ゴム工業株式会社 トレッド用ゴム組成物及び空気入りタイヤ
JP2014173062A (ja) * 2013-03-12 2014-09-22 Sumitomo Rubber Ind Ltd トレッド用ゴム組成物及び空気入りタイヤ
JP2015163681A (ja) * 2014-01-31 2015-09-10 横浜ゴム株式会社 ゴム組成物及び空気入りタイヤ
WO2017057758A1 (ja) * 2015-09-30 2017-04-06 大塚化学株式会社 ゴム成分に低発熱性を付与するための添加剤

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"annual research report TREND", vol. 3, 2000, TOAGOSEI CO. , LTD., pages: 42 - 45
K. L. HOY: "Solvent and Coatings Materials Research and Development Department", 1985, UNION CARBITES CORP., article "Table of Solubility Parameters"
See also references of EP3597697A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018203850A (ja) * 2017-06-01 2018-12-27 住友ゴム工業株式会社 タイヤ用ゴム組成物の製造方法
EP3572240A1 (en) * 2018-05-23 2019-11-27 Sumitomo Rubber Industries Ltd. Rubber composition for tread and pneumatic tire
JP2020041035A (ja) * 2018-09-10 2020-03-19 横浜ゴム株式会社 タイヤ用ゴム組成物およびそれを用いた空気入りタイヤ
JP7172312B2 (ja) 2018-09-10 2022-11-16 横浜ゴム株式会社 タイヤ用ゴム組成物およびそれを用いた空気入りタイヤ
JP7400419B2 (ja) 2019-12-06 2023-12-19 住友ゴム工業株式会社 ゴム組成物及び空気入りタイヤ
JP7369619B2 (ja) 2019-12-27 2023-10-26 Toyo Tire株式会社 変性植物油及びその製造方法、並びにゴム組成物及びタイヤ

Also Published As

Publication number Publication date
US20200102448A1 (en) 2020-04-02
JPWO2018190430A1 (ja) 2020-02-27
CN110520470A (zh) 2019-11-29
US11396590B2 (en) 2022-07-26
JP7407512B2 (ja) 2024-01-04
EP3597697A1 (en) 2020-01-22
EP3597697A4 (en) 2021-01-20

Similar Documents

Publication Publication Date Title
JP7407512B2 (ja) 空気入りタイヤ
JP7458705B2 (ja) タイヤ用ゴム組成物及び空気入りタイヤ
JP7031599B2 (ja) タイヤ用ゴム組成物及び空気入りタイヤ
JP2019026712A (ja) 空気入りタイヤ
JP2018095701A (ja) ゴム組成物及び空気入りタイヤ
JP2018203850A (ja) タイヤ用ゴム組成物の製造方法
JP2018150419A (ja) タイヤ用ゴム組成物及び空気入りタイヤ
JP2019131756A (ja) タイヤ用ゴム組成物及び空気入りタイヤ
JP2018145272A (ja) タイヤ用ゴム組成物及び空気入りタイヤ
JP2018150420A (ja) タイヤ用ゴム組成物及び空気入りタイヤ
JP2019196436A (ja) タイヤ用ゴム組成物及び空気入りタイヤ
JP7215304B2 (ja) タイヤトレッド用ゴム組成物及びタイヤ
JP2018135461A (ja) タイヤ用ゴム組成物及び空気入りタイヤ
JP2018135462A (ja) タイヤ用ゴム組成物及び空気入りタイヤ
JP2020125423A (ja) タイヤ用ゴム組成物及び空気入りタイヤ
JP2020045073A (ja) 空気入りタイヤ
JP2019189672A (ja) タイヤ用ゴム組成物及び空気入りタイヤ
JP2019199526A (ja) タイヤ用ゴム組成物及び空気入りタイヤ
JP2018145271A (ja) タイヤ用ゴム組成物及び空気入りタイヤ
JP2019131755A (ja) タイヤ用ゴム組成物及び空気入りタイヤ
JP7371323B2 (ja) タイヤ用ゴム組成物及び空気入りタイヤ
JP7338209B2 (ja) タイヤトレッド用ゴム組成物及びタイヤ
JP2022139699A (ja) タイヤ
JP2022016107A (ja) タイヤ用ゴム組成物及びタイヤ
EP4296082A1 (en) Tire

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018545510

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18784853

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018784853

Country of ref document: EP

Effective date: 20191016