WO2018190092A1 - X線検査装置 - Google Patents

X線検査装置 Download PDF

Info

Publication number
WO2018190092A1
WO2018190092A1 PCT/JP2018/011217 JP2018011217W WO2018190092A1 WO 2018190092 A1 WO2018190092 A1 WO 2018190092A1 JP 2018011217 W JP2018011217 W JP 2018011217W WO 2018190092 A1 WO2018190092 A1 WO 2018190092A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
ray
trimming
region
fdd
Prior art date
Application number
PCT/JP2018/011217
Other languages
English (en)
French (fr)
Inventor
雅実 長野
祥司 鶴
Original Assignee
東芝Itコントロールシステム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝Itコントロールシステム株式会社 filed Critical 東芝Itコントロールシステム株式会社
Priority to CN201880015777.1A priority Critical patent/CN110383051B/zh
Publication of WO2018190092A1 publication Critical patent/WO2018190092A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • G01N23/046Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material using tomography, e.g. computed tomography [CT]

Definitions

  • Embodiments of the present invention relate to an X-ray inspection apparatus in which a lack of visual field does not occur around a captured image.
  • the X-ray inspection apparatus includes an X-ray irradiation source, a table on which an inspection object (hereinafter referred to as a workpiece) is placed, and an X-ray detector that receives X-rays transmitted through the workpiece.
  • the X-rays emitted from the irradiation source spread in a conical shape and reach the workpiece, and further spread after passing through the workpiece and reach the X-ray detector.
  • X-rays attenuate in proportion to the square of the distance from the X-ray source to the detector (FDD: Focus to Detector Distance).
  • the imaging magnification of the CT image is a value obtained by dividing FDD by the distance (FCD: Focus to Center Distance) from the X-ray source to the center of the sample table on which the imaging object is placed. Therefore, in order to capture a CT image with a desired imaging magnification and a high dose and good S / N, FDD and FCD may be reduced while maintaining the imaging magnification.
  • the reconstruction of the CT image requires information on where the straight line connecting the X-ray source and the center of the sample table hits the detector. If this information is obtained from the symmetry (0 ° to 180 ° and 180 ° to 360 °) of a fluoroscopic image taken from the 360 ° direction, the lack of field of view may interfere and not be obtained correctly. is there. Since the lacking field of view has a substantially constant luminance and good symmetry, it greatly affects the original symmetry judgment of the fluoroscopic image.
  • Example 1 When it is desired to automatically extract a photographing object portion from a CT image, the average luminance value of the object is often used as a threshold value.
  • Example 2 When three-dimensional data is created from a CT image, since there is a visual field missing portion in the circumferential direction of the CT image, the three-dimensional data becomes such that the visual field missing portion can be seen outside.
  • the irradiation angle when the irradiation angle is wide compared to the light receiving area of the detector, the entire area of the light receiving area is within the X-ray irradiation range even if the detector is close to the X-ray source.
  • various problems associated with the lack of visual field occur when the FDD is reduced. Therefore, conventionally, when a small FDD is required, such as a small inspection target and a large magnification, a small detector dedicated to a small FDD is used instead of a large detector. I was trying not to happen.
  • An object of the present embodiment is to provide an X-ray inspection apparatus capable of creating an X-ray fluoroscopic image only in an area necessary for reconstruction of a CT image.
  • the X-ray inspection apparatus has the following configuration.
  • An X-ray irradiation source a table on which an inspection object is placed, and an X-ray detector that receives X-rays transmitted through the inspection object and detects a transmission image thereof.
  • a shift mechanism that moves the X-ray detector along the optical axis of the X-ray.
  • a control unit that controls movement of the X-ray detector by the shift mechanism.
  • An image acquisition unit that acquires, from the X-ray detector, a reference image for determining a visual field defect region and an image of an inspection target to be trimmed.
  • An average luminance value calculation unit for calculating an average luminance value of an image having no visual field defect in the reference image.
  • a visual field defect region determination unit that determines a pixel having a luminance less than a threshold value of the average luminance value calculated by the average luminance value calculation unit as a visual field defect region for the photographed X-ray fluoroscopic image.
  • a trimming image acquisition unit that acquires, as an image of a trimming region, an X-ray fluoroscopic image other than the visual field defect region determined by the visual field defect region determination unit from an image obtained by photographing the inspection object.
  • a reconstruction processing unit that reconstructs a CT image based on an X-ray fluoroscopic image of the trimming region acquired by the trimming image acquisition unit.
  • a boundary leveling unit that corrects a boundary between a visual field defect region determined by the visual field defect region determination unit and an area other than the visual field defect region from an image obtained by photographing the inspection object.
  • the X-ray inspection apparatus of the second embodiment has the following configuration.
  • An X-ray irradiation source a table on which an inspection object is placed, and an X-ray detector that receives X-rays transmitted through the inspection object and detects a transmission image thereof.
  • a shift mechanism that moves the X-ray detector along the optical axis of the X-ray.
  • a control unit that controls movement of the X-ray detector by the shift mechanism.
  • An image acquisition unit that acquires, from the X-ray detector, a reference image for determining a visual field defect region and an image of an inspection target to be trimmed.
  • a set value acquisition unit that reads the following data input in advance by the user.
  • X-ray irradiation angle ( ⁇ ) (2) Detector pitch (mm / detector channel) (3) Standard FDD (L1) (6) Based on the X-ray irradiation angle ( ⁇ ) acquired from the set value acquisition unit and the reference FDD (L1), a reference irradiation range calculation unit that determines the irradiation range in the reference FDD (L1) as the reference irradiation range (W1) . (7) An imaging position irradiation range calculation unit that obtains an irradiation range (W2) in an arbitrary FDD (L2) based on the values obtained from the set value acquisition unit and the reference irradiation range calculation unit according to the following Equation 1.
  • a trimming area calculation unit for calculating a trimming area by calculating the number of detector channels corresponding to the irradiation range (W2) obtained by the imaging position irradiation range calculation unit by the following equation (2).
  • Trimming area irradiation range (W2) at arbitrary FDD / detector pitch (mm / detector channel)
  • a trimming image acquisition unit that acquires an X-ray fluoroscopic image of the trimming region calculated by the trimming region calculation unit from an image obtained by photographing the inspection object.
  • a reconstruction processing unit that reconstructs a CT image based on an X-ray fluoroscopic image of the trimming region acquired by the trimming image acquisition unit.
  • a storage unit that stores trimming regions in a plurality of FDDs obtained by the trimming region calculation unit in association with each FDD.
  • the trimming image acquisition unit reads out a corresponding trimming region from the storage unit in accordance with the FDD of the photographing part of the workpiece, and acquires an X-ray fluoroscopic image of the trimming region.
  • the block diagram which shows the whole structure of 1st Embodiment The figure which shows an example of the X-ray fluoroscopic image in which the visual field defect area
  • the X-ray inspection apparatus of this embodiment includes an X-ray tube 1 that is a radiation source, a table 2 on which a workpiece is placed, and an X-ray that receives an X-ray beam emitted from the X-ray tube 1.
  • the detectors 3 are arranged with a predetermined interval.
  • the X-ray tube 1 emits a conical X-ray beam in the horizontal direction from the focal point, and the X-ray beam passes through the work placed on the table 2 and reaches the X-ray detector 3.
  • the table 2 is rotated about a vertical axis by a rotary table or an XY drive mechanism (not shown), or moved in a direction parallel to the direction in which the X-ray tube 1 is brought into contact with or separated from and the direction in which the X-ray detector 3 is moved. .
  • the X-ray detector 3 detects the X-ray beam with two-dimensional spatial resolution, and outputs data for displaying a transmission image on a display or film.
  • the X-ray inspection apparatus stops the X-ray detector 3 at a predetermined FDD position determined according to the dimensions of the workpiece and the required imaging magnification, and images the workpiece. Therefore, the X-ray detector 3 is connected to a shift mechanism 4 as a drive source for movement, and a control unit 5 that controls the movement direction and the movement amount of the X-ray detector 3 by the shift mechanism 4.
  • the control unit 5 moves the X-ray detector 3 in the direction in which the X-ray detector 3 moves along the optical axis of the X-ray tube 1, that is, the direction in which the FDD changes.
  • the control unit 5 is provided with an input unit 6 for the user to preset the movement position and movement direction of the X-ray detector 3.
  • the input unit 6 can be composed of an input device such as a keyboard and a mouse, an external device such as a network, and the like.
  • the X-ray detector 3 includes a trimming processing unit 7 that removes a visual field defect region from an image captured at a stop position.
  • the trimming processing unit 7 of the present embodiment includes an image acquisition unit 71, an average luminance value calculation unit 72, a visual field lack region determination unit 73, a boundary correction unit 74, and a trimming image acquisition unit 75.
  • the image acquisition unit 71 acquires from the X-ray detector 3 a reference image for determining a field-of-view defect region and an image of a workpiece to be trimmed.
  • the reference image is an X-ray fluoroscopic image in which nothing is reflected.
  • the average luminance value calculation unit 72 calculates the average luminance value of the center portion of the image having no visual field defect in the reference image, for example, the upper right inclined hatching portion in FIG.
  • the visual field defect area determination unit 73 determines a pixel having a luminance less than a predetermined% of the average luminance value calculated by the average luminance value calculation unit 72 as a visual field defect area in the captured fluoroscopic image.
  • the predetermined percentage of the average luminance value is a threshold value with which it can be determined that the pixel belongs to the visual field lacking region, and the user sets the value in the trimming processing unit 7 from the input unit 6 in advance.
  • the boundary correction unit 74 adjusts so that the field defect area becomes a quadrangle.
  • a conventionally known method can be appropriately employed.
  • the reference image is set as two-dimensional coordinates of XY, and the straight line in the XY direction passing through the maximum value or the minimum value of the coordinates of the pixel determined to be the visual field missing region is set as the outer edge of the region without the visual field missing.
  • the trimming image acquisition unit 75 acquires an X-ray fluoroscopic image other than the visual field defect region obtained by the boundary correction unit 74 from the image obtained by photographing the workpiece.
  • a reconstruction processing unit 8 is provided that reconstructs a CT image based on an X-ray fluoroscopic image other than the visual field lacking region.
  • the storage unit 9 is connected.
  • the storage unit 9 is configured by a storage device such as a memory or a hard disk.
  • the fluoroscopic image in FIG. 2 is output from the X-ray detector 3 to the image acquisition unit 71.
  • the average luminance value calculation unit 72 calculates the average luminance value of the central portion of the image without a visual field defect from the fluoroscopic images input to the image acquisition unit 71.
  • the field-of-view defect determination unit 73 determines a pixel having an average luminance value calculated by the average luminance value calculation unit 72 and a luminance less than a threshold set in advance by the user from the input unit 6 for the photographed fluoroscopic image. Is regarded as a visual field defect region.
  • the boundary correction unit 74 adjusts so that the boundary between the visual field lacking region and the region without visual field lacking performed by the visual field lacking region determination unit 73 is a square.
  • the reference image is set as two-dimensional coordinates of XY, and a straight line in the XY direction passing through the maximum value or the minimum value of the coordinates of a pixel determined to be a visual field lacking region is defined as the outer edge of the region without visual field lacking.
  • the coordinates of the field missing region or the region without the field missing obtained in this way are stored in the storage unit 9 together with the corresponding FDD.
  • the X-ray fluoroscopic image other than the visual field defect region obtained by the trimming image acquisition unit 75 is output to the reconstruction processing unit 8, and the reconstruction processing unit 8 performs CT based on the X-ray fluoroscopic image without the visual field defect region. The image is reconstructed.
  • the present embodiment has the following effects. (1) Since an image can be reconstructed on the basis of an X-ray fluoroscopic image having no field-of-view defect region, an appropriate CT image in accordance with the actual condition of the workpiece W can be obtained. (2) Any X-ray detector 3 size or FDD can always perform CT imaging with an optimal fluoroscopic image.
  • the trimming processing unit 7 of the second embodiment includes a set value acquisition unit 76, a reference irradiation range calculation unit 77, an imaging position irradiation range calculation unit 78, and a trimming region calculation unit 79.
  • the set value acquisition unit 76 reads the following data that the user previously inputs to the input unit 6 (see FIG. 3). (1) X-ray irradiation angle ( ⁇ ) (2) Detector pitch (mm / detector channel) (3) Reference FDD (L1) (FDD where the irradiation range and the light-receiving surface of the detector coincide with each other and the field of view is not lost)
  • the reference irradiation range calculation unit 77 Based on the X-ray irradiation angle ( ⁇ ) acquired from the setting value acquisition unit 76 and the reference FDD (L1), the reference irradiation range calculation unit 77 sets the irradiation range at the reference FDD (L1) as the reference irradiation range (W1). Ask.
  • the trimming area calculation unit 79 calculates the number of detector channels corresponding to the obtained irradiation range (W2) by the following formula to obtain the trimming area.
  • the X-ray detector 3 is moved to the position of the FDD to be imaged.
  • the X-ray detector 3 is moved by inputting the FDD (L2) of the imaging position of the workpiece W from the input unit 6, and the control unit 5 controls the shift mechanism 4 based on this FDD to input the X-ray detector 3. Stop at the position of the FDD.
  • the FDD of the imaging position is not known in advance as in the case of manually moving the X-ray detector 3
  • the FDD is automatically or automatically set in a state where the X-ray detector 3 is stopped at the imaging position. Manually set in the input unit 6 as the FDD (L2) of the shooting position.
  • the setting value acquisition unit 76 of the trimming processing unit 7 reads these values and the reference irradiation range calculation unit 77 reads them. Then, a reference irradiation range (W1) which is an irradiation range in the reference FDD (L1) is obtained. Once calculated, the reference irradiation range has the same value even when the FDD of the imaging position is different unless the light receiving area or the X-ray irradiation angle of the X-ray detector 3 is changed. By saving, it is not necessary to calculate from the next time.
  • the photographing position irradiation range calculation unit 78 obtains the irradiation range (W2) in the FDD (L2) of the photographing position of the workpiece W based on Equation 1. Subsequently, based on these values, the trimming area calculation unit 79 obtains a trimming area based on Equation 2.
  • the calculation of the trimming area and the X-ray fluoroscopic image of the workpiece W can be performed first by storing the respective data in the storage unit 9 and reading them appropriately. good.
  • the second embodiment has the following unique effects in addition to the effects common to the first embodiment.
  • the size of the detector obtained from the reference irradiation range (W1), and the FDD information (L1, L2) as shown in FIG. can be easily obtained by scientific calculation.
  • the determination of the trimming area is not necessary. It can be done quickly and easily. Further, since the boundary line between the visual field defect region and the region without the visual field defect is also formed in a straight line, calculation for correcting the boundary part is unnecessary, which is advantageous.
  • the third embodiment is a modification of the second embodiment. As shown in FIG. 4, by using the method of the second embodiment, the trimming areas (M2, M3, M4) serving as references in a plurality of FDDs (L2, L3, L4) that are expected to photograph the workpiece W are obtained. This is registered in the storage unit 9.
  • the X-ray detector 3 When imaging the workpiece W, the X-ray detector 3 is moved to the FDD region most suitable for imaging the workpiece from among a plurality of FDDs registered in the storage unit 9, and an X-ray fluoroscopic image is captured, and this FDD is supported. Using the trimmed area, the missing visual field area is deleted from the captured fluoroscopic image.
  • the nearest FDD value registered in the storage unit 9 and the corresponding trimming are performed.
  • a trimming region at an arbitrary FDD position is obtained from the similarity of triangles using the region value.
  • an X-ray fluoroscopic image of air is taken at a position where the visual field is largely missing, a position where the visual field is not missing, and a position between them (a plurality of positions are possible), and a trimming area is obtained and registered. Since the trimming area increases / decreases depending on the geometric system, the trimming area at a position not photographed is obtained by interpolation.
  • trimming areas at a plurality of imaging locations are stored in advance in association with FDD at each imaging location, and an appropriate trimming area is called in accordance with the FDD at the imaging location of the work W, so that X-ray fluoroscopy is performed. It is possible to delete a visual field defect region in the image. As a result, it is not necessary to calculate a trimming area every time the image is moved to a new FDD, and an X-ray fluoroscopic image without a visual field lacking area can be obtained quickly. Further, even for an FDD in which no trimming area is registered, an accurate trimming area can be obtained by simple calculation by geometrically interpolating according to the FDD. [4.
  • Embodiments The present invention is not limited to the above-described embodiment, and can be embodied by modifying the components without departing from the scope of the invention in the implementation stage.
  • various inventions can be formed by appropriately combining a plurality of components disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment.
  • constituent elements over different embodiments may be appropriately combined. Specifically, the following other embodiments are also included.
  • the X-ray tube 1, the table 2, and the X-ray detector 3 may be installed side by side in the vertical direction, in addition to being installed in parallel with the installation surface of the X-ray inspection apparatus.
  • the X-ray detector 3 is not limited to a flat plate orthogonal to the optical axis of the X-ray, but may have a light-receiving surface that is curved around a vertical axis passing through the X-ray focal point.
  • radio X-ray fluoroscopic images are taken at a position where the field of view is largely missing, a position where the field of view is not missing, and a position between them (multiple positions are possible), and trimming is performed.
  • An area to be processed may be obtained and registered in the storage unit 9.
  • the trimming area registered in the storage unit 9 is set as the imaging position of the workpiece W for the trimming area at the position where the X-ray fluoroscopic image of air is not captured. It is obtained by interpolation according to the FDD position.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pulmonology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

CT画像の再構成に必要な領域のみのX線透視画像を作成することのできるX線検査装置を提供する。画像取得部71は、視野欠け領域を判定するための基準画像とトリミングの対象となるワークの画像を、X線検出器3から取得する。平均輝度値計算部72は、基準画像中の視野欠けの無い画像の平均輝度値を計算する。視野欠け領域判定部73は、撮影した透視画像について、平均輝度値計算部72が計算した平均輝度値の閾値未満の輝度を持つ画素を視野欠け領域と判定する。トリミング画像取得部75は、ワークを撮影した画像中から視野欠け領域以外のX線透視画像を取得する。再構成処理部8は、視野欠け領域以外のX線透視画像に基づいてCT画像を再構成する。

Description

X線検査装置
 本発明の実施形態は、撮影画像の周囲に視野欠けが生じることがないX線検査装置に関する。
 X線検査装置は、X線の照射源と、検査対象物(以下、ワークという)を載せるテーブルと、ワークを透過したX線を受光するX線検出器とから構成される。照射源から発したX線は、円錐状に広がってワークに達し、ワークを通過した後もさらに広がってX線検出器に達する。X線は、X線源から検出器までの距離(FDD:Focus to Detector Distance)の二乗に比例して減衰する。一方,CT画像の撮影倍率は、FDDを、X線源から撮影対象物が載っている試料テーブルの中心までの距離(FCD:Focus to Center Distance)で割った値である。そのため、所望の撮影倍率、かつ、高線量でS/Nの良いCT画像を撮影するには、撮影倍率を維持しつつFDDとFCDを小さくすればよい。
特開2016-118394号公報
 しかし、FDDを小さくするとX線照射角による視野欠け、すなわちX線が検出器に照射されない範囲が発生する。大きな検出器を使うほど、視野欠けは起きやすい。視野欠けがある状態では、CT画像の撮影に次のような問題が生じる。
(1)CT画像の再構成には、X線源と試料テーブルの中心を結ぶ直線が、検出器のどこに当たるかという情報が必要になる。この情報を、360°方向から撮影したX線透視画像の対称性(0°~180°と180°~360°)から求める場合、視野欠け部分が邪魔してしまい、正しく求まらない場合がある。視野欠け部分は輝度がほぼ一定で対称性が良いため、透視画像本来の対称性判断に大きな影響を与えることになる。
(2)X線源と試料テーブルの中心を結ぶ直線が正しく求まり、CT画像が再構成できた場合でも、再構成処理後のCT画像の円周方向に視野欠け部分が現れ、X線照射角以外の不要な部分まで含むX線透視画像、CT画像になる。そのため、画像処理上、次のような問題が発生する。
例1:CT画像から撮影対象物部分を自動で抽出したい場合、対象物の平均輝度値を閾値に使うことが多いが、視野欠け領域まで対象物とみなしてしまうことがある。
例2:CT画像から3次元データを作成する場合、CT画像の円周方向に視野欠け部分があるので、視野欠け部分が外側に見えるような3次元データになってしまう。
 以上のように、検出器の受光面積に比較して照射角が広い場合は、検出器をX線源に近づけても受光面積の全域がX線の照射範囲内に収まるため視野欠けの問題はないが、照射角が狭い場合はFDDを小さくすると視野欠けに伴う種々の問題が発生する。そのため、従来は、検査対象が小型で大きな拡大率を必要とするなど、小さなFDDが要求される場合には、大きな検出器を使わずに小さなFDD専用の小さい検出器を使うことで、視野欠けが起きないようにしていた。
 また、特許文献1に記載のように、X線で撮影した画像の一部をトリミングすること自体は知られているが、これらの従来技術は、ユーザが撮影画像中から所望の領域を抽出するものに過ぎず、検出器のFDDを小さくした場合における視野欠けの解消に適用することはできなかった。
 本実施形態は、上記のような従来技術の問題点を解決するために提案されたものである。本実施形態の目的は、CT画像の再構成に必要な領域のみのX線透視画像を作成することのできるX線検査装置を提供することにある。
 第1実施形態のX線検査装置は、次のような構成を有する。
(1)X線の照射源と、検査対象物を載せるテーブルと、検査対象物を透過したX線を受光してその透過画像を検出するX線検出器。
(2)前記X線検出器をX線の光軸に沿って移動させるシフト機構。
(3)前記シフト機構による前記X線検出器の移動を制御する制御部。
(4)視野欠け領域を判定するための基準画像とトリミングの対象となる検査対象物の画像を、前記X線検出器から取得する画像取得部。
(5)基準画像中の視野欠けの無い画像の平均輝度値を計算する平均輝度値計算部。
(6)撮影したX線透視画像について、前記平均輝度値計算部が計算した平均輝度値の閾値未満の輝度を持つ画素を視野欠け領域と判定する視野欠け領域判定部。
(7)検査対象物を撮影した画像中から前記視野欠け領域判定部が判定した視野欠け領域以外のX線透視画像をトリミング領域の画像として取得するトリミング画像取得部。
(8)前記トリミング画像取得部が取得したトリミング領域のX線透視画像に基づいてCT画像を再構成する再構成処理部。
 第1実施形態において次のような構成を採用すると良い。
(1)検査対象物を撮影した画像中から前記視野欠け領域判定部が判定した視野欠け領域と視野欠け領域以外の領域の境界を整正する境界整正部。
 第2実施形態のX線検査装置は、次のような構成を有する。
(1)X線の照射源と、検査対象物を載せるテーブルと、検査対象物を透過したX線を受光してその透過画像を検出するX線検出器。
(2)前記X線検出器をX線の光軸に沿って移動させるシフト機構。
(3)前記シフト機構による前記X線検出器の移動を制御する制御部。
(4)視野欠け領域を判定するための基準画像とトリミングの対象となる検査対象物の画像を、前記X線検出器から取得する画像取得部。
(5)ユーザが予め入力した下記のデータを読み込む設定値取得部。
 (1) X線照射角(α)
 (2) 検出器ピッチ(mm/検出器チャンネル)
 (3) 基準FDD(L1)
(6)前記設定値取得部から取得したX線照射角(α)と基準FDD(L1)を基に、基準FDD(L1)における照射範囲を基準照射範囲(W1)として求める基準照射範囲計算部。
(7)前記設定値取得部及び前記基準照射範囲計算部から得られた値に基づいて、任意のFDD(L2)における照射範囲(W2)を下記の式1により求める撮影位置照射範囲計算部。
 式1:求めたい照射範囲(W2)=基準照射範囲(W1)×(任意のFDD(L2)/基準FDD(L1))
(8)前記撮影位置照射範囲計算部が求めた照射範囲(W2)が検出器何チャンネルに相当するかを下記の式2で計算して、トリミング領域を求めるトリミング領域計算部。
 式2:トリミング領域=任意のFDDでの照射範囲(W2)/検出器ピッチ(mm/検出器チャンネル)
(9)検査対象物を撮影した画像中から前記トリミング領域計算部が計算したトリミング領域のX線透視画像を取得するトリミング画像取得部。
(10)前記トリミング画像取得部が取得したトリミング領域のX線透視画像に基づいてCT画像を再構成する再構成処理部。
 第2実施形態において次のような構成を採用すると良い。
(1)前記トリミング領域計算部が求めた複数のFDDにおけるトリミング領域を、各FDDと対応付けて記憶する記憶部。
(2)トリミング画像取得部は、前記ワークの撮影箇所のFDDに合わせて対応するトリミング領域を記憶部から読み出してトリミング領域のX線透視画像を取得する。
第1実施形態の全体構成を示すブロック図。 第1実施形態における視野欠け領域が含まれたX線透視画像の一例を示す図。 第2実施形態の全体構成を示すブロック図。 第3実施形態において、視野欠け領域を判定する方法を説明する図。
[1.第1実施形態]
[1-1.実施形態の構成]
 以下、第1実施形態を、図面に従って具体的に説明する。第1実施形態は、透視画像の輝度について予め設定された閾値を使用してトリミングを行うものである。
 本実施形態のX線検査装置は、図1に示すように、放射線源であるX線管1と、ワークを載せるテーブル2と、X線管1から放射されたX線ビームを受光するX線検出器3を、所定の間隔を保って配置して構成される。
 X線管1は、その焦点から水平方向に円錐状のX線ビームを発するもので、X線ビームはテーブル2上に載置されたワークを透過して、X線検出器3に達する。テーブル2は、図示しない回転テーブルやXY駆動機構によって、垂直方向の軸を中心として回転し、あるいはX線管1の接離する方向及びX線検出器3の移動方向と平行な方向に移動する。
 X線検出器3は、X線ビームを2次元の空間分解能をもって検出し、透過像をディスプレイやフィルム上に表示するデータを出力する。X線検査装置は、X線検出器3をワークの寸法や必要とする撮影倍率に応じて定められた所定のFDDの位置に停止させて、ワークを撮影する。そのため、X線検出器3は、移動のための駆動源としてシフト機構4と、シフト機構4によるX線検出器3の移動方向及び移動量を制御する制御部5が接続される。制御部5は、X線検出器3をX線管1の光軸に沿って移動する方向、すなわちFDDが変化する方向に移動させる。制御部5には、X線検出器3の移動位置や移動方向をユーザが予め設定するための入力部6が設けられる。入力部6は、キーボード、マウスなどの入力装置、ネットワークなどの外部装置などから構成することができる。
 X線検出器3は、停止位置で撮影した画像中から、視野欠け領域を除去するトリミング処理部7を備えている。本実施形態のトリミング処理部7は、画像取得部71、平均輝度値計算部72、視野欠け領域判定部73、境界整正部74及びトリミング画像取得部75を備える。
 画像取得部71は、視野欠け領域を判定するための基準画像と、トリミングの対象となるワークの画像を、X線検出器3から取得する。基準画像とは、何も映っていないX線透視画像のことである。平均輝度値計算部72は、基準画像中の視野欠けの無い画像の中央部、例えば、図2の右上傾斜ハッチング部分の平均輝度値を計算する。視野欠け領域判定部73は、撮影した透視画像について、平均輝度値計算部72が計算した平均輝度値の所定%未満の輝度を持つ画素を視野欠け領域と判定する。平均輝度値の所定%は、その画素が視野欠け領域に属すると判定できるような閾値であり、予めユーザが入力部6からその値をトリミング処理部7に設定しておく。
 視野欠け領域判定部73が画素単位で行った視野欠け領域と視野欠けの無い領域の境界はギザギザになると考えられるので、境界整正部74は、視野欠け領域が四角形となるように調整する。調整の方法は従来公知の手法を適宜採用できる。例えば、基準画像をXYの二次元座標として設定し、視野欠け領域と判定された画素の座標の最大値あるいは最小値を通るXY方向の直線を視野欠けの無い領域の外縁とする。
 トリミング画像取得部75は、ワークを撮影した画像中から、境界整正部74によって得られた視野欠け領域以外のX線透視画像を取得する。トリミング画像取得部75の出力側には、視野欠け領域以外のX線透視画像にもとづいてCT画像を再構成する再構成処理部8が設けられる。
 前記の各部には、入力部6から入力されたデータ、X線検出器3が読み込んだ画像のデータ、トリミング処理部7の計算結果や判定した視野欠け領域などのデータを格納すると共に適宜読み出すための記憶部9が接続されている。この記憶部9はメモリやハードディスクなどの記憶装置によって構成される。
[1-2.実施形態の作用]
(1)視野欠け領域の判定
 本実施形態においては、入力部6からワークWの撮影位置のFDDを入力し、このFDDに基づき制御部5はシフト機構4を制御して、X線検出器3を入力されたFDDの位置に停止させる。この状態で、何も映っていないX線透視画像を撮影する。このようにすると、図2に示すような視野欠けのない画像中央部と、その周囲に形成される視野欠け領域とを有する透視画像が得られる。通常、何も映っていないX線透視画像は、視野欠けの無い画像中央部(図2の右上傾斜ハッチング部分)は空気の透視画像であるため、周囲の視野欠け領域(図2のクロスハッチング部分)に比較して輝度が大きく、一方視野欠け領域はX線を受光していないため輝度が殆ど0である。
 図2の透視画像は、X線検出器3から画像取得部71に出力される。平均輝度値計算部72は、画像取得部71に入力された透視画像の中から、視野欠けの無い画像中央部の平均輝度値を計算する。視野欠け領域判定部73は、撮影した透視画像について、平均輝度値計算部72が計算した平均輝度値と、予め入力部6からユーザが設定した閾値未満の輝度をもつ画素を判定し、その画素の部分を視野欠け領域とみなす。
 境界整正部74は、視野欠け領域判定部73が画素単位で行った視野欠け領域と視野欠けの無い領域の境界が四角形となるように調整する。本実施形態では、基準画像をXYの二次元座標として設定し、視野欠け領域と判定された画素の座標の最大値あるいは最小値を通るXY方向の直線を視野欠けの無い領域の外縁とする。このようにして得られた視野欠け領域あるいは視野欠けの無い領域の座標は、対応するFDDとともに、記憶部9に保存される。
(2)ワークWの撮影
 ワークWの撮影にあたっては、前記のようにしてX線検出器3を視野欠け領域あるいは視野欠けの無い領域の座標を求めたFDDの位置にX線検出器3を停止させる。その状態で、テーブル2の上にワークWを載置して、X線透視画像を撮影する。X線検出器3によって検出されたX線透視画像は、トリミング画像取得部75に出力される。トリミング画像取得部75は、X線検出器3の停止位置のFDDに対応した座標を記憶部9から読み出して、この座標位置に基づいてワークWのX線透視画像中から、視野欠け領域以外の画像を取得する。
 トリミング画像取得部75によって得られた視野欠け領域以外のX線透視画像は、再構成処理部8に出力され、再構成処理部8においては、視野欠け領域がないX線透視画像に基づいてCT画像が再構成される。
[1-3.実施形態の効果]
 本実施形態は、次のような効果を有する。
(1)視野欠け領域の無いX線透視画像に基づいて、画像の再構成をすることができるので、ワークWの実態に即した適切なCT画像を得ることができる。
(2)どのようなX線検出器3のサイズやFDDでも常に、最適なX線透視画像でCT画像撮影を行うことができる。
(3)X線検出器3をX線発生装置側に接近させ、X線幾何学倍率を拡大した場合でも視野欠けのないX線透視画像及びCT画像が得られる。
(4)FDDと視野欠け領域の画像を対応付けて記憶部9に保存しておくことにより、そのFDDにX線検出器3を停止させれば、その都度視野欠け領域を判定することなく、ワークWを撮影したX線透視画像から視野欠け領域の無い透視画像を得ることができる。
(5)境界整正部74によって画素単位で行った視野欠け領域と視野欠けの無い領域の境界が四角形となるように調整するので、外縁部が綺麗に整った視野欠け領域の無いX線透視画像を得ることができる。
[2.第2実施形態]
[2-1.実施形態の構成]
 第2実施形態は、トリミング処理部7の構成が第1実施形態とは異なるもので、他の構成は第1実施形態と同様である。第1実施形態と同様の構成については、同一の符号を付し、説明を省略する。
 第2実施形態のトリミング処理部7は、設定値取得部76、基準照射範囲計算部77、撮影位置照射範囲計算部78及びトリミング領域計算部79を備える。
 設定値取得部76は、ユーザが予め入力部6に対して入力した下記のデータを読み込む(図3を参照)。
(1) X線照射角(α)
(2) 検出器ピッチ(mm/検出器チャンネル)
(3) 基準FDD(L1)(照射範囲と検出器の受光面とが一致し、視野欠けが生じないFDD)
 基準照射範囲計算部77は、設定値取得部76から取得したX線照射角(α)と基準FDD(L1)を基に、基準FDD(L1)での照射範囲を基準照射範囲(W1)として求める。撮影位置照射範囲計算部78は、設定値取得部76及び基準照射範囲計算部77により既知となった値を基に、三角形の相似を使って、任意のFDD(L2)における照射範囲(W2)を下記の式により求める。
 式1:求めたい照射範囲(W2)=基準照射範囲(W1)×(任意のFDD(L2)/基準FDD(L1))
 トリミング領域計算部79は、求めた照射範囲(W2)が検出器何チャンネルに相当するかを下記の式で計算して、トリミング領域を求める。
 式2:トリミング領域=任意のFDDでの照射範囲(W2)/検出器ピッチ(mm/検出器チャンネル)
[2-2.実施形態の作用]
 第2実施形態においては、ワークWの撮影に先立ち、入力部6から下記の値を入力して記憶部9に保存しておく。これらの値は、第2実施形態を適用するX線撮影装置固有のものであるから、一度設定すればよく、ワークWの撮影の都度入力する必要は無い。
(1) X線照射角(α)
(2) 検出器ピッチ(mm/検出器チャンネル)
(3) 基準FDD(L1)
 次に、ワークWのX線透視画像を撮影するには、X線検出器3を撮影しようとするFDDの位置に移動させる。X線検出器3の移動は、入力部6からワークWの撮影位置のFDD(L2)を入力し、このFDDに基づき制御部5はシフト機構4を制御して、X線検出器3を入力されたFDDの位置に停止させる。また、X線検出器3を手動で移動させる場合のように、撮影位置のFDDが予め分かっていない場合には、X線検出器3を撮影位置に停止させた状態において、そのFDDを自動あるいは手動で撮影位置のFDD(L2)として、入力部6に設定する。
 このようにすると、前記式1及び式2を実行するために必要な値が得られるので、トリミング処理部7の設定値取得部76は、これらの値を読み込んで、基準照射範囲計算部77において、基準FDD(L1)での照射範囲である基準照射範囲(W1)を求める。この基準照射範囲は、一度計算すれば、X線検出器3の受光面積やX線照射角が変更されない限り、撮影位置のFDDが異なる場合であっても同じ値となるので、記憶部9に保存することにより、次回以降は計算不要である。
 前記のようにして求められた値に基づき、撮影位置照射範囲計算部78は、式1に基づいてワークWの撮影位置のFDD(L2)における照射範囲(W2)を求める。続いて、これらの値に基づき、トリミング領域計算部79は、式2に基づいてトリミング領域を求める。
 この状態で、ワークWのX線透視画像を撮影し、その画像中から、前記のようにして求められたトリミング領域、すなわち、FDD(L2)における照射範囲(W2)に相当する部分の画像のみを抽出することにより、周囲に視野欠け領域を含まないX線透視画像を撮影することができる。
 なお、第2実施形態において、トリミング領域の計算とワークWのX線透視画像の撮影とは、それぞれのデータを記憶部9に保存しておき適宜読み出すことにより、いずれを先に実施しても良い。
[2-3.実施形態の効果]
 第2実施形態においては、第1実施形態と共通する効果に加え、次のような特有な効果を有する。
(1)第2実施形態においては、図3に示すようなX線照射角(α)、基準照射範囲(W1)から得られる検出器のサイズ、及びFDDの情報(L1,L2)から、幾何学計算によりトリミングする領域を簡単に求めることができる。
(2)第2実施形態は、第1実施形態のようにワークを撮影する位置において予め空気の透視画像を撮影して輝度の閾値によるトリミング領域の計算も不要であるから、トリミング領域の判定が迅速かつ簡単に実施できる。また、視野欠け領域と視野欠けの無い領域との境界線も直線状に形成されることから、境界部分を整正するための計算も不要であり、その点でも有利である。
[3.第3実施形態]
 第3実施形態は、第2実施形態の変形例である。図4に示すように、第2実施形態の方法により、ワークWを撮影すると予想される複数のFDD(L2,L3,L4)で基準となるトリミング領域(M2,M3,M4)を求めて、記憶部9に登録しておくものである。
 ワークWの撮影時には、記憶部9に登録した複数のFDDの中から、ワークの撮影に最適なFDDの領域にX線検出器3を移動させてX線透視画像を撮影し、そのFDDに対応したトリミング領域を利用して、撮影したX線透視画像中から視野欠け領域を削除する。一方、登録したFDD中にワークWの撮影に最適なFDDが存在しない場合、すなわち、任意のFDD位置において撮影を行う場合には、記憶部9に登録した最も近いFDDの値とそれに対応するトリミング領域の値を使って任意のFDD位置のトリミング領域を三角形の相似から求める。
 このように第3実施形態では、大きく視野が欠ける位置と欠けない位置、その間の位置(複数位置可)で空気のX線透視画像を撮影しておき、トリミング領域を求めて登録しておく。トリミング領域は幾何系に応じて増減するため、撮影してない位置のトリミング領域については補間することで求める。
 第3実施形態では、予め複数の撮影箇所のトリミング領域を各撮影箇所のFDDと対応付けて記憶しておき、ワークWの撮影位置のFDDに応じて適切なトリミング領域を呼び出して、X線透視画像中の視野欠け領域を削除することができる。その結果、新たなFDDに移動する都度トリミング領域を計算する必要が無く、視野欠け領域の無いX線透視画像を迅速に得ることができる。また、トリミング領域を登録していないFDDについても、FDDに合わせて幾何学的に補間することにより、簡単な計算で正確なトリミング領域を得ることができる。
[4.他の実施形態]
 本発明は、前記実施形態に限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。具体的には、次のような他の実施形態も包含する。
(1)X線管1、テーブル2及びX線検出器3は、X線検査装置の据え付け面と平行に並べて設置する以外に、垂直方向に並べて設置して良い。
(2)X線検出器3はX線の光軸と直交する平板に限定されるものでは無く、X線焦点を通る垂直な軸を中心として湾曲した受光面を有するものでも良い。
(3)第1実施形態おいて、第3実施形態と同様に、大きく視野が欠ける位置と欠けない位置、その間の位置(複数位置可)で空気のX線透視画像を撮影しておき、トリミングする領域を求めて記憶部9に登録しておいても良い。その場合、トリミングの領域は幾何系に応じて増減するため、空気のX線透視画像を撮影してない位置のトリミング領域については、記憶部9に登録したトリミング領域を、ワークWの撮影位置のFDD位置に合わせて補間することで求める。
1…X線管
2…テーブル
3…X線検出器
4…シフト機構
5…制御部
6…入力部
7…トリミング処理部
71…画像取得部
72…平均輝度値計算部
73…視野欠け領域判定部
74…境界整正部
75…トリミング画像取得部
76…設定値取得部
77…基準照射範囲計算部
78…撮影位置照射範囲計算部
79…トリミング領域計算部
8…再構成処理部
9…記憶部

Claims (4)

  1.  X線の照射源と、検査対象物を載せるテーブルと、検査対象物を透過したX線を受光してその透過画像を検出するX線検出器と、を備えたX線検査装置であって、
     前記X線検出器をX線の光軸に沿って移動させるシフト機構と、
     前記シフト機構による前記X線検出器の移動を制御する制御部と、
     視野欠け領域を判定するための基準画像とトリミングの対象となる検査対象物の画像を、前記X線検出器から取得する画像取得部と、
     基準画像中の視野欠けの無い画像の平均輝度値を計算する平均輝度値計算部と、
     撮影したX線透視画像について、前記平均輝度値計算部が計算した平均輝度値の閾値未満の輝度を持つ画素を視野欠け領域と判定する視野欠け領域判定部と、
     検査対象物を撮影した画像中から前記視野欠け領域判定部が判定した視野欠け領域以外のX線透視画像をトリミング領域の画像として取得するトリミング画像取得部と、
     前記トリミング画像取得部が取得したトリミング領域のX線透視画像に基づいてCT画像を再構成する再構成処理部を備えることを特徴とするX線検査装置。
  2.  検査対象物を撮影した画像中から前記視野欠け領域判定部が判定した視野欠け領域と視野欠け領域以外の領域の境界を整正する境界整正部を有する請求項1に記載のX線検査装置。
  3.  X線の照射源と、検査対象物を載せるテーブルと、検査対象物を透過したX線を受光してその透過画像を検出するX線検出器と、を備えたX線検査装置であって、
     前記X線検出器をX線の光軸に沿って移動させるシフト機構と、
     前記シフト機構による前記X線検出器の移動を制御する制御部と、
     視野欠け領域を判定するための基準画像とトリミングの対象となる検査対象物の画像を、前記X線検出器から取得する画像取得部と、
     ユーザが予め入力した下記のデータを読み込む設定値取得部と、
     (1) X線照射角(α)
     (2) 検出器ピッチ(mm/検出器チャンネル)
     (3) 基準FDD(L1)
     前記設定値取得部から取得したX線照射角(α)と基準FDD(L1)を基に、基準FDD(L1)における照射範囲を基準照射範囲(W1)として求める基準照射範囲計算部と、
     前記設定値取得部及び前記基準照射範囲計算部から得られた値に基づいて、任意のFDD(L2)における照射範囲(W2)を下記の式1により求める撮影位置照射範囲計算部と、
     式1:求めたい照射範囲(W2)=基準照射範囲(W1)×(任意のFDD(L2)/基準FDD(L1))
     前記撮影位置照射範囲計算部が求めた照射範囲(W2)が検出器何チャンネルに相当するかを下記の式2で計算して、トリミング領域を求めるトリミング領域計算部と、
     式2:トリミング領域=任意のFDDでの照射範囲(W2)/検出器ピッチ(mm/検出器チャンネル)
     検査対象物を撮影した画像中から前記トリミング領域計算部が計算したトリミング領域のX線透視画像を取得するトリミング画像取得部と、
     前記トリミング画像取得部が取得したトリミング領域のX線透視画像に基づいてCT画像を再構成する再構成処理部を備えることを特徴とするX線検査装置。
  4.  前記トリミング領域計算部が求めた複数のFDDにおけるトリミング領域を、各FDDと対応付けて記憶する記憶部を備え、
     トリミング画像取得部は、前記ワークの撮影箇所のFDDに合わせて対応するトリミング領域を記憶部から読み出してトリミング領域のX線透視画像を取得する請求項3に記載のX線検査装置。
     
PCT/JP2018/011217 2017-04-11 2018-03-20 X線検査装置 WO2018190092A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880015777.1A CN110383051B (zh) 2017-04-11 2018-03-20 X射线检查装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017078459A JP6843683B2 (ja) 2017-04-11 2017-04-11 X線検査装置
JP2017-078459 2017-04-11

Publications (1)

Publication Number Publication Date
WO2018190092A1 true WO2018190092A1 (ja) 2018-10-18

Family

ID=63793280

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/011217 WO2018190092A1 (ja) 2017-04-11 2018-03-20 X線検査装置

Country Status (3)

Country Link
JP (1) JP6843683B2 (ja)
CN (1) CN110383051B (ja)
WO (1) WO2018190092A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113406710A (zh) * 2020-03-17 2021-09-17 同方威视技术股份有限公司 探测器模块、探测器设备和检查设备
JP7501166B2 (ja) * 2020-07-03 2024-06-18 オムロン株式会社 X線検査装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62254737A (ja) * 1986-04-28 1987-11-06 株式会社東芝 X線ct装置
JPS63243852A (ja) * 1987-03-31 1988-10-11 Toshiba Corp Ctスキヤナの画像再構成方式
JP2003061946A (ja) * 2001-08-27 2003-03-04 Shimadzu Corp Ct装置
JP2010185859A (ja) * 2009-02-10 2010-08-26 Toshiba It & Control Systems Corp Ct装置およびct装置の較正方法
JP2010204060A (ja) * 2009-03-06 2010-09-16 Hitachi-Ge Nuclear Energy Ltd X線検査装置及びx線検査装置の検査方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004362876A (ja) * 2003-06-03 2004-12-24 Toshiba Corp X線透視撮影装置
JP2005241575A (ja) * 2004-02-27 2005-09-08 Toshiba Corp X線断層撮影装置および立体透視画像構成装置
JP4640589B2 (ja) * 2005-05-12 2011-03-02 株式会社島津製作所 X線撮影装置
JP4150390B2 (ja) * 2005-09-14 2008-09-17 Tdk株式会社 外観検査方法及び外観検査装置
CN101210896B (zh) * 2006-12-30 2011-05-11 同方威视技术股份有限公司 一种射线源与探测器的对准机构及其方法
JP5075490B2 (ja) * 2007-06-07 2012-11-21 株式会社日立メディコ X線ct装置
TWI394490B (zh) * 2008-09-10 2013-04-21 Omron Tateisi Electronics Co X射線檢查裝置及x射線檢查方法
JP5395614B2 (ja) * 2009-10-23 2014-01-22 パナソニック株式会社 X線検査装置
CN103747734B (zh) * 2011-07-19 2016-03-09 株式会社日立医疗器械 X射线图像诊断装置及x射线发生装置的控制方法
CN103163163A (zh) * 2011-12-16 2013-06-19 株式会社岛津制作所 X射线检查装置
CN102932582B (zh) * 2012-10-26 2015-05-27 华为技术有限公司 实现运动检测的方法及装置
CN104865281B (zh) * 2014-02-24 2017-12-12 清华大学 人体背散射检查方法和系统
JP6583649B2 (ja) * 2015-02-24 2019-10-02 株式会社島津製作所 X線透視撮影装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62254737A (ja) * 1986-04-28 1987-11-06 株式会社東芝 X線ct装置
JPS63243852A (ja) * 1987-03-31 1988-10-11 Toshiba Corp Ctスキヤナの画像再構成方式
JP2003061946A (ja) * 2001-08-27 2003-03-04 Shimadzu Corp Ct装置
JP2010185859A (ja) * 2009-02-10 2010-08-26 Toshiba It & Control Systems Corp Ct装置およびct装置の較正方法
JP2010204060A (ja) * 2009-03-06 2010-09-16 Hitachi-Ge Nuclear Energy Ltd X線検査装置及びx線検査装置の検査方法

Also Published As

Publication number Publication date
JP6843683B2 (ja) 2021-03-17
CN110383051A (zh) 2019-10-25
JP2018179711A (ja) 2018-11-15
CN110383051B (zh) 2022-07-05

Similar Documents

Publication Publication Date Title
JP6120940B2 (ja) Ct検出方法及びct装置
JP4977201B2 (ja) マルチx線発生装置のための制御装置、制御方法、及びコンピュータ可読メモリ
JP6342437B2 (ja) 放射線断層撮影システム及びその制御プログラム
US7244063B2 (en) Method and system for three dimensional tomosynthesis imaging
JP2010214091A (ja) X線ct装置及びx線ct装置の制御プログラム
JP2011167334A (ja) 放射線撮影装置
US8345818B2 (en) Tomosynthesis system for digital X-ray imaging and method of controlling the same
JP2013176468A (ja) 情報処理装置、情報処理方法
JP2018105865A (ja) コンピュータトモグラフィ
WO2018190092A1 (ja) X線検査装置
JP2006141904A (ja) X線撮影装置
JP2020048991A5 (ja)
CN107049346B (zh) 医疗摄影控制方法、医疗摄影控制装置和医疗摄影设备
JP6771879B2 (ja) X線コンピュータ断層撮影装置
JP4697642B2 (ja) Ct装置
KR101904788B1 (ko) 컴퓨터 단층 촬영 장치
JP5564385B2 (ja) 放射線画像撮影装置、放射線画像撮影方法およびプログラム
JP5239585B2 (ja) X線撮像装置
JP2014087697A (ja) X線撮影装置及びその制御方法、コンピュータプログラム
JP6299045B2 (ja) 画像処理装置、画像処理方法、及びx線撮影装置
JP6272153B2 (ja) 荷電粒子線装置、三次元画像の再構成画像処理システム、方法
JP2014068985A (ja) 放射線撮影装置
JP7485574B2 (ja) X線ct装置、x線ct装置の制御方法、およびプログラム
JP2005176988A (ja) データ補正方法およびx線ct装置
JP6333444B2 (ja) 情報処理装置、情報処理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18784693

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18784693

Country of ref document: EP

Kind code of ref document: A1