WO2018190014A1 - 単焦点レンズ系、単焦点レンズ系を有する撮像装置および撮像装置を有する移動体 - Google Patents
単焦点レンズ系、単焦点レンズ系を有する撮像装置および撮像装置を有する移動体 Download PDFInfo
- Publication number
- WO2018190014A1 WO2018190014A1 PCT/JP2018/007353 JP2018007353W WO2018190014A1 WO 2018190014 A1 WO2018190014 A1 WO 2018190014A1 JP 2018007353 W JP2018007353 W JP 2018007353W WO 2018190014 A1 WO2018190014 A1 WO 2018190014A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lens
- lens element
- lens group
- single focus
- lens system
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/16—Optical objectives specially designed for the purposes specified below for use in conjunction with image converters or intensifiers, or for use with projectors, e.g. objectives for projection TV
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/04—Reversed telephoto objectives
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/001—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
- G02B13/0015—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
- G02B13/002—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
- G02B13/0045—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/06—Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/18—Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B9/00—Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
- G02B9/60—Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having five components only
Definitions
- the present disclosure relates to a single-focus lens system, an imaging device having a single-focus lens system, and a movable body having the imaging device.
- Patent Document 1 discloses a first lens that is a negative lens, a second lens that is a meniscus lens having a convex surface directed to the image side, a stop, and a positive lens, which are arranged from the object side to the image side.
- a single focus lens system including a third lens, a fourth lens that is a positive lens, and a fifth lens that is a positive lens is disclosed.
- the single focus lens system in the present disclosure includes a first lens group having a positive power, an aperture stop, and a second lens group having a positive power.
- the first lens group includes, in order from the object side to the image side, a first lens element having a negative power, a second lens element having a negative power, and a third lens element having a positive power.
- the second lens group includes a fourth lens element having power and a fifth lens element having positive power.
- fG1 is a focal length of the first lens group with respect to the d-line
- fG2 is a focal length of the second lens group with respect to the d-line
- w is a half angle of view, 0.5 ⁇ fG1 / fG2 ⁇ 3.0 (1) 60 ⁇ w (6) It is comprised so that the conditions (1) and conditions (6) represented by these may be satisfied.
- FIG. 1 is a lens arrangement diagram of a single focus lens system according to the first embodiment.
- FIG. 2 is a longitudinal aberration diagram in the infinitely focused state according to Numerical Example 1 of the embodiment.
- FIG. 3 is a lens arrangement diagram of the single focus lens system according to the second embodiment.
- FIG. 4 is a longitudinal aberration diagram in the infinitely focused state according to Numerical Example 2 of the embodiment.
- FIG. 5 is a lens arrangement diagram of a single focus lens system according to the third embodiment.
- FIG. 6 is a longitudinal aberration diagram in the infinitely focused state according to Numerical Example 3 of the embodiment.
- FIG. 7 is a schematic configuration diagram of an imaging apparatus according to the fourth embodiment.
- FIG. 8 is a schematic configuration diagram of a moving body on which the imaging device according to the embodiment is mounted.
- FIG. 9 is a schematic configuration diagram of a moving body on which an imaging device according to another embodiment is mounted.
- the lens group is a group composed of at least one lens element.
- the power, the combined focal length, etc. are determined for each lens group in accordance with the type, number, and arrangement of lens elements constituting the lens group.
- FIGS. 1, 3 and 5 are lens arrangement diagrams of a single focus lens system according to the embodiment. 1, 3, and 5 show the lens arrangement of the single focus lens system in the infinitely focused state.
- an asterisk * attached to a specific surface indicates that the surface is aspherical.
- a symbol (+) and a symbol ( ⁇ ) attached to a symbol of each lens group correspond to a power symbol of each lens group. That is, the symbol (+) indicates positive power, and the symbol ( ⁇ ) indicates negative power.
- the straight line described on the rightmost side indicates the position of the image plane S (corresponding to a position where an image sensor is disposed, which will be described later).
- the aspect ratios are the same.
- Embodiment 1 The single focus lens system according to Embodiment 1 will be described below with reference to FIG.
- FIG. 1 is a lens arrangement diagram of a single focus lens system according to the first embodiment.
- the single focus lens system includes, in order from the object side to the image side, a first lens group G1 having a positive power, an aperture stop A, a second lens group G2 having a positive power, and a parallel. It consists of a flat plate P or the like.
- the object side corresponds to the first lens group G1 side
- the image side corresponds to the image plane S side.
- the first lens group G1 includes, in order from the object side to the image side, a first lens element L1 having negative power, a second lens element L2 having negative power, and a third lens element L3 having positive power. including.
- the second lens group G2 includes, in order from the object side to the image side, a fourth lens element L4 having negative power and a fifth lens element L5 having positive power.
- the first lens element L1 is a glass lens having a meniscus shape with a convex surface facing the object side.
- the second lens element L2 is a resin lens having a biconcave shape.
- the concave surface on the object side and the image plane S side of the second lens element L2 has an aspheric shape.
- the third lens element L3 is a biconvex glass lens.
- the fourth lens element L4 is a resin lens having a meniscus shape with a convex surface facing the image surface S side. Both the object side and the image plane S side of the fourth lens element L4 have aspherical shapes.
- the fifth lens element L5 is a resin lens having a biconvex shape. Both the object side and the image plane S side of the fifth lens element L5 have aspherical shapes.
- the single focus lens system of Embodiment 1 is configured.
- Embodiment 2 The single focus lens system according to Embodiment 2 will be described below with reference to FIG.
- FIG. 3 is a lens arrangement diagram of a single focus lens system according to the second embodiment.
- the single focus lens system according to the second embodiment includes, in order from the object side to the image side, a first lens group G1 having a positive power, an aperture stop A, and a second lens group G2 having a positive power. It consists of a flat plate P or the like.
- the first lens group G1 includes, in order from the object side to the image side, a first lens element L1 having negative power, a second lens element L2 having negative power, and a third lens element L3 having positive power. including.
- the second lens group G2 includes, in order from the object side to the image side, a fourth lens element L4 having a positive power and a fifth lens element L5 having a positive power.
- the first lens element L1 is a glass lens having a meniscus shape with a convex surface facing the object side.
- the second lens element L2 is a resin lens having a meniscus shape with a convex surface facing the image surface S side. Both the object side and the image plane S side of the second lens element L2 have aspherical shapes.
- the third lens element L3 is a biconvex glass lens.
- the fourth lens element L4 is a resin lens having a meniscus shape with a convex surface facing the image surface S side. Both the object side and the image plane S side of the fourth lens element L4 have aspherical shapes.
- the fifth lens element L5 is a resin lens having a biconvex shape. Both the object side and the image plane S side of the fifth lens element L5 have aspherical shapes.
- the single focus lens system of Embodiment 2 is configured.
- Embodiment 3 The single focus lens system according to Embodiment 3 will be described below with reference to FIG.
- FIG. 5 is a lens arrangement diagram of a single focus lens system according to the third embodiment.
- the single focus lens system of Embodiment 3 is parallel to the first lens group G1 having a positive power, the aperture stop A, and the second lens group G2 having a positive power in order from the object side to the image side. It consists of a flat plate P or the like.
- the first lens group G1 includes, in order from the object side to the image side, a first lens element L1 having negative power, a second lens element L2 having negative power, and a third lens element L3 having positive power. including.
- the second lens group G2 includes, in order from the object side to the image side, a fourth lens element L4 having a positive power and a fifth lens element L5 having a positive power.
- the first lens element L1 is a glass lens having a meniscus shape with a convex surface facing the object side.
- the second lens element L2 is a resin lens having a meniscus shape with a convex surface facing the image surface S side. Both the object side and the image plane S side of the second lens element L2 have aspherical shapes.
- the third lens element L3 is a biconvex glass lens.
- the fourth lens element L4 is a resin lens having a meniscus shape with a convex surface facing the image surface S side. Both the object side and the image plane S side of the fourth lens element L4 have aspherical shapes.
- the fifth lens element L5 is a resin lens having a biconvex shape. Both the object side and the image plane S side of the fifth lens element L5 have aspherical shapes.
- the single focus lens system of Embodiment 3 is configured.
- a plurality of possible conditions are defined for the single focus lens system according to the first to third embodiments.
- the configuration of a single focus lens system that satisfies all of the plurality of conditions is most effective.
- the single focus lens system includes, in order from the object side to the image side, a first lens group G1 having a positive power, an aperture stop A, and a second lens having a positive power. Consists of a lens group G2 and the like.
- the first lens group G1 includes, in order from the object side to the image side, a first lens element L1 having negative power, a second lens element L2 having negative power, and a third lens element L3 having positive power.
- the second lens group G2 includes a fourth lens element L4 having power and a fifth lens element L5 having positive power.
- the single focus lens system satisfies the following condition (1), for example.
- fG1 is the focal length of the first lens group G1 with respect to the d line
- fG2 is the focal length of the second lens group G2 with respect to the d line.
- the first lens group G1 includes two lens elements having negative power. As a result, it is possible to realize a single focus lens system in which the total angle of view is wider than 100 °, for example, while favorably correcting various aberrations.
- condition (1) defines the relationship between the focal length of the first lens group G1 with respect to the d line and the focal length of the second lens group G2 with respect to the d line.
- the single focus lens system in the present disclosure satisfies the following condition (2), for example.
- L4R1 is an object-side radius of curvature of the fourth lens element L
- L4R2 is an image-side radius of curvature of the fourth lens element L4.
- condition (2) defines the ratio of the sum and difference of the curvature radius on the object side of the fourth lens element L4 and the curvature radius on the image side of the fourth lens element L4.
- condition (2) is lower than the lower limit (5.5) or more than the upper limit (20) of the condition (2), various aberrations, particularly astigmatism, cannot be corrected sufficiently. Therefore, it is difficult to ensure good optical performance in the single focus lens system.
- condition (2) it is more preferable if one or both of the following conditions (2c) and (2d) are satisfied within the range of condition (2).
- the single focus lens system of the present disclosure satisfies the following condition (3), for example.
- f4 is the focal length of the fourth lens element L4 with respect to the d-line
- f is the focal length of the entire system with respect to the d-line.
- condition (3) defines the relationship between the focal length of the fourth lens element L4 with respect to the d line and the focal length with respect to the d line of the entire system constituting the single focus lens system.
- the negative power of the fourth lens element L4 becomes too strong. Therefore, in the single focus lens system, various aberrations, especially field curvature, increase, and it becomes difficult to ensure good optical performance.
- the value is equal to or greater than the upper limit (20) of the condition (3), the negative power of the fourth lens element L4 becomes too small. Therefore, it is difficult to reduce the size of the single focus lens system.
- the single focus lens system of the present disclosure satisfies the following condition (4), for example.
- ndL3 is a refractive index with respect to the d-line of the third lens element L3.
- condition (4) defines the refractive index for the d-line of the third lens element L3.
- the single focus lens system of the present disclosure satisfies the following condition (5) simultaneously with the above condition (4), for example.
- ⁇ dL3 is an Abbe number with respect to the d-line of the third lens element L3.
- Condition (5) defines the Abbe number of the third lens element L3 with respect to the d-line.
- the single focus lens system of the present disclosure satisfies the following condition (6), for example.
- w is a half angle of view.
- Condition (6) is a condition related to the diagonal half field angle of the single focus lens system.
- condition (1) and the condition (6) are satisfied at the same time, a wide angle can be realized while maintaining high optical performance in the single focus lens system.
- the single focus lens system of the present disclosure desirably has, for example, a shape having an inflection point outside the optical axis on the object side surface of the second lens element L2. Accordingly, it is possible to satisfactorily correct aberrations near and outside the optical axis of the second lens element L2. Therefore, various aberrations, particularly field curvature can be sufficiently corrected. As a result, good optical performance can be secured in the single focus lens system.
- Embodiment 4 an imaging apparatus including the single focus lens system of Embodiment 1 according to Embodiment 4 will be described with reference to FIG.
- the imaging device is exemplified by a camera or the like attached to a moving body that moves with a vehicle or a person.
- any one of the single focus lens systems according to the second embodiment and the third embodiment may be applied instead of the single focus lens system according to the first embodiment.
- FIG. 7 is a schematic configuration diagram of a camera including the single focus lens system according to the first embodiment according to the fourth embodiment.
- a camera 100 which is an example of an imaging apparatus includes a single focus lens system 201, an imaging element 202, a parallel plate P, and the like.
- the single focus lens system 201 forms an optical image of an object.
- the image sensor 202 converts an optical image formed by the single focus lens system 201 into an electrical image signal.
- the parallel plate P is constituted by a band pass filter that transmits only wavelengths in the near infrared region (for example, wavelengths of 800 nm to 1000 nm), for example.
- the image sensor 202 is arranged at the position of the image plane S in the single focus lens system of Embodiment 1 shown in FIG.
- a color filter that receives light in the near-infrared region is disposed in at least some or all of the plurality of pixels of the image sensor 202.
- the camera 100 including the single focus lens system 201 is configured.
- FIG. 8 is a schematic configuration diagram of an automobile provided with the camera 100 in the vicinity of a room mirror in the vehicle 500.
- the camera 100 is installed in the vicinity of a room mirror (not shown) in the vehicle 500 toward the inside of the vehicle. That is, the camera 100 is used as a sensing camera that captures images of the driver and passengers.
- a light emitting diode (LED (not shown)) having a wavelength in the near-infrared region (for example, a wavelength of 800 nm to 1000 nm) is installed near the room mirror in the vehicle 500. The LED radiates signal light whose emission intensity is modulated in a direction in the vehicle 500 (for example, driver and passenger direction).
- the image in the vehicle 500 is picked up by the camera 100 as the phase delay of the reflected light of the LED.
- the captured image is used for sensing the posture or state of the driver and passengers (particularly, the driver).
- the controller 300 detects the distance from the image captured by the camera 100 to each part of the driver and passengers as subjects, for example, by an area demodulation method. Thereby, distance image data including information on the distance to the subject is obtained.
- the controller 300 detects the state of the driver, for example, based on the obtained distance image data. Then, the controller 300 determines whether or not the driver is in a situation where driving may be hindered, such as sleepiness or sudden illness. When it is determined that there is a possibility that the driving may be hindered, the controller 300 alerts the driver. Furthermore, when the obstacle to driving is not solved, the controller 300 automatically stops the vehicle 500. This ensures the safety of the driver and passengers.
- the single focus lens system 201 of the present disclosure is effective as a lens system of an imaging apparatus such as a sensing camera.
- a lens element having substantially no power may be added as appropriate to the single focus lens system according to the first to third embodiments.
- the aspherical shape of the lens element included in the single focus lens system of Embodiments 1 to 3 may be formed by, for example, polishing or molding. Furthermore, you may form with the so-called replica lens (hybrid lens) which forms the aspherical surface of a film on the surface of a spherical lens.
- replica lens hybrid lens
- the single focus lens system according to the first to third embodiments is installed in the vehicle 500, and as a sensing camera for detecting the distance to each part of the driver and the passenger,
- the camera 100 which comprises an imaging device
- the camera 100 including the single focus lens system of the present disclosure may be attached to a lower part of a side mirror (particularly, on the side opposite to the driver) of the vehicle 500 and applied to a sensing camera that senses an object in a downward direction.
- the driver can more surely confirm the person or object existing in the blind spot, and execute avoidance driving or the like.
- the camera 100 mounted on the vehicle is described as an example of the imaging device including the single focus lens system 201 according to the first to third embodiments of the present disclosure.
- the camera 100 may be incorporated into a video display device 600 that is an example of a moving body that moves with the movement of a person. That is, the video display device 600 detects the distance to a part such as a person's arm wearing the video display device 600 with a wide angle of view (for example, 100 °) via the camera 100. Then, the controller 300 processes information such as the detected distance. Thereby, in the virtual reality space, the wearer can experience a more realistic experience such as grasping an object.
- the unit of length in the table is “mm”, and the unit of angle of view is “°”.
- view angle in the table means a diagonal half view angle.
- r is a radius of curvature
- d is a surface interval
- nd is a refractive index with respect to the d line
- vd is an Abbe number with respect to the d line
- n940 nm is a refractive index with respect to a wavelength of 940 nm.
- the surface marked with * is an aspherical surface.
- the aspheric shape is defined by the following equation.
- Z is the distance from the point on the aspherical surface whose height from the optical axis is h to the tangential plane of the aspherical vertex
- h is the height from the optical axis
- r is the vertex radius of curvature
- ⁇ is the conic constant.
- An are n-order aspherical coefficients.
- SA Spherical Aberration
- AST Astigmatism
- DIS Distortion (%)
- the vertical axis represents the F number (indicated by “F” in the figure)
- the solid line represents the wavelength 940 nm
- the short dashed line represents the wavelength 960 nm
- the long dashed line represents the wavelength 950 nm
- the alternate long and short dash line represents the characteristic for the wavelength 930 nm.
- the vertical axis represents the image height
- the solid line represents the characteristic with respect to the sagittal plane (indicated by “s” in the figure)
- the broken line represents the characteristic with respect to the meridional plane (indicated by “m” in the figure).
- w represents a half angle of view.
- the vertical axis represents the image height
- w represents the half angle of view.
- the single-focus lens system includes a digital still camera, a digital video camera, a mobile phone device camera, a PDA (Personal Digital Assistance) camera, an in-vehicle camera, a sensing camera for measuring a subject distance, a monitoring camera, It can be applied to a WEB camera or the like.
- the present disclosure is suitable for a camera that requires a wide-angle lens such as an in-vehicle camera or a surveillance camera.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Lenses (AREA)
Abstract
Description
0.5 < fG1/fG2 < 3.0 ・・・(1)
60 < w ・・・(6)
で表される、条件(1)および条件(6)を満足するように構成される。
以下に、実施の形態1に係る単焦点レンズ系について、図1を用いて、説明する。
以下に、実施の形態2に係る単焦点レンズ系について、図3を用いて、説明する。
以下に、実施の形態3に係る単焦点レンズ系について、図5を用いて、説明する。
以下に、実施の形態1から実施の形態3に係る単焦点レンズ系の構成を満足することが可能な条件について、具体的に説明する。
ここで、fG1は第1レンズ群G1のd線に対する焦点距離、fG2は第2レンズ群G2のd線に対する焦点距離、である。
fG1/fG2 < 2.5 ・・・(1b)
これにより、前述の効果が、さらに向上する。
fG1/fG2 < 2.0 ・・・(1d)
これにより、前述の効果が、さらに向上する。
ここで、L4R1は第4レンズ素子L4における物体側の曲率半径、L4R2は第4レンズ素子L4における像側の曲率半径、である。
|(L4R1+L4R2)/(L4R1-L4R2)| < 15 ・・・(2b)
これにより、前述の効果が、より向上する。
|(L4R1+L4R2)/(L4R1-L4R2)| < 10 ・・・(2d)
これにより、前述の効果が、さらに向上する。
ここで、f4は第4レンズ素子L4のd線に対する焦点距離、fは全系のd線に対する焦点距離、である。
|f4/f| < 17.5 ・・・(3b)
これにより、前述の効果が、より向上する。
|f4/f| < 15 ・・・(3d)
これにより、前述の効果が、さらに向上する。
ここで、ndL3は、第3レンズ素子L3のd線に対する屈折率である。
ここで、νdL3は、第3レンズ素子L3のd線に対するアッベ数である。
ここで、wは、半画角である。
以下、実施の形態4に係る、実施の形態1の単焦点レンズ系を備える撮像装置について、図7を用いて、説明する。撮像装置は、車両や人などと共に移動する移動体に装着されるカメラなどで例示される。
以上のように、本出願に開示する技術について、実施の形態1から実施の形態4を例に説明した。
以下、実施の形態1から実施の形態3に係る単焦点レンズ系の構成において、具体的に実施した数値実施例1から数値実施例3について、図2、図4および図6を参照しながら説明する。
以下に、図1に示す実施の形態1に対応する単焦点レンズ系の数値実施例1を示す。具体的には、単焦点レンズ系の数値実施例1として、面データを(表1)、非球面データを(表2)、各種データを(表3)、単レンズデータを(表4)に示す。
以下に、図3に示す実施の形態2に対応する単焦点レンズ系の数値実施例2を示す。具体的には、単焦点レンズ系の数値実施例2として、面データを(表5)、非球面データを(表6)、各種データ(表7)、単レンズデータ(表8)に示す。
以下に、図5に示す実施の形態3に対応する単焦点レンズ系の数値実施例3を示す。具体的には、単焦点レンズ系の数値実施例3として、面データを(表9)、非球面データを(表10)、各種データ(表11)、単レンズデータ(表12)に示す。
以上のように、実施の形態1から実施の形態3に係る単焦点レンズ系について、数値実施例1から数値実施例3に基づいて、具体的に実施した。
G2 第2レンズ群
L1 第1レンズ素子
L2 第2レンズ素子
L3 第3レンズ素子
L4 第4レンズ素子
L5 第5レンズ素子
P 平行平板
A 開口絞り
S 像面
100 カメラ(撮像装置)
201 単焦点レンズ系
202 撮像素子
300 コントローラ
500 車両(移動体)
600 映像表示機器
Claims (8)
- 物体側から像側へと順に、
正のパワーを有する第1レンズ群と、
開口絞りと、
正のパワーを有する第2レンズ群と、
を含み、
前記第1レンズ群は、
負のパワーを有する第1レンズ素子と、
負のパワーを有する第2レンズ素子と、
正のパワーを有する第3レンズ素子と、
を含み、
前記第2レンズ群は、
パワーを有する第4レンズ素子と、
正のパワーを有する第5レンズ素子と、
を含み、
fG1を第1レンズ群のd線に対する焦点距離、
fG2を第2レンズ群のd線に対する焦点距離、
wを半画角、
とするとき、
0.5 < fG1/fG2 < 3.0 ・・・(1)
60 < w ・・・(6)
で表される、条件(1)および条件(6)を満足するように構成される、
単焦点レンズ系。 - L4R1を第4レンズ素子における物体側の曲率半径、
L4R2を第4レンズ素子における像側の曲率半径、
とするとき、
5.5<|(L4R1+L4R2)/(L4R1-L4R2)|<20・・・(2)
で表される、条件(2)を満足するように構成される、
請求項1に記載の単焦点レンズ系。 - f4を第4レンズ素子のd線に対する焦点距離、
fを全系のd線に対する焦点距離、
とするとき、
10.5 < |f4/f| < 20 ・・・(3)
で表される、条件(3)を満足するように構成される、
請求項1に記載の単焦点レンズ系。 - ndL3を第3レンズ素子のd線に対する屈折率、
とするとき、
1.7 < ndL3 ・・・(4)
で表される、条件(4)を満足するように構成される、
請求項1に記載の単焦点レンズ系。 - νdL3を第3レンズ素子のd線に対するアッベ数、
とするとき、
20 < νdL3 ・・・(5)
で表される、条件(5)を満足するように構成される、
請求項4に記載の単焦点レンズ系。 - 前記第2レンズ素子の物体側面の形状は、光軸外で変曲点を持つ、
請求項1に記載の単焦点レンズ系。 - 物体の光学的な像を電気的な画像信号として出力可能な撮像装置であって、
物体の光学的な像を形成する単焦点レンズ系と、
前記単焦点レンズ系により形成された光学的な前記像を電気的な画像信号に変換する撮像素子と、
を備え、
前記単焦点レンズ系は、物体側から像側へと順に、
正のパワーを有する第1レンズ群と、
開口絞りと、
正のパワーを有する第2レンズ群と、
を含み、
前記第1レンズ群は、
負のパワーを有する第1レンズ素子と、
負のパワーを有する第2レンズ素子と、
正のパワーを有する第3レンズ素子と、
を含み、
前記第2レンズ群は、
パワーを有する第4レンズ素子と、
正のパワーを有する第5レンズ素子と、
を含み、
fG1を第1レンズ群のd線に対する焦点距離、
fG2を第2レンズ群のd線に対する焦点距離、
wを半画角、
とするとき、
0.5 < fG1/fG2 < 3.0 ・・・(1)
60 < w ・・・(6)
で表される、条件(1)および条件(6)を満足するように構成される、
撮像装置。 - 物体の光学的な像を電気的な画像信号に変換し、変換された前記画像信号の表示および記録の少なくとも一方を行う移動体であって、
物体の光学的な前記像を形成する単焦点レンズ系と、
前記単焦点レンズ系により形成された光学的な前記像を電気的な前記画像信号に変換する撮像素子と、
前記撮像素子を制御するコントローラと、を備え、
前記単焦点レンズ系は、物体側から像側へと順に、
正のパワーを有する第1レンズ群と、
開口絞りと、
正のパワーを有する第2レンズ群と、
を含み、
前記第1レンズ群は、
負のパワーを有する第1レンズ素子と、
負のパワーを有する第2レンズ素子と、
正のパワーを有する第3レンズ素子と、
を含み、
前記第2レンズ群は、
パワーを有する第4レンズ素子と、
正のパワーを有する第5レンズ素子と、
を含み、
fG1を第1レンズ群のd線に対する焦点距離、
fG2を第2レンズ群のd線に対する焦点距離、
wを半画角、
とするとき、
0.5 < fG1/fG2 < 3.0 ・・・(1)
60 < w ・・・(6)
で表される、条件(1)および条件(6)を満足するように構成される、
移動体。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/483,187 US11029498B2 (en) | 2017-04-14 | 2018-02-27 | Single-focal lens system, imaging device having single-focal lens system, and moving body having imaging device |
JP2019512372A JP6748856B2 (ja) | 2017-04-14 | 2018-02-27 | 単焦点レンズ系、単焦点レンズ系を有する撮像装置および撮像装置を有する移動体 |
EP18784208.3A EP3611547B1 (en) | 2017-04-14 | 2018-02-27 | Single-focal lens system, imaging device having single-focal lens system, and moving body having imaging device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017080186 | 2017-04-14 | ||
JP2017-080186 | 2017-04-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018190014A1 true WO2018190014A1 (ja) | 2018-10-18 |
Family
ID=63793288
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/007353 WO2018190014A1 (ja) | 2017-04-14 | 2018-02-27 | 単焦点レンズ系、単焦点レンズ系を有する撮像装置および撮像装置を有する移動体 |
Country Status (4)
Country | Link |
---|---|
US (1) | US11029498B2 (ja) |
EP (1) | EP3611547B1 (ja) |
JP (1) | JP6748856B2 (ja) |
WO (1) | WO2018190014A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110609379A (zh) * | 2019-10-29 | 2019-12-24 | 长春理工大学 | 双通道共透镜式光学系统 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110716289B (zh) * | 2019-12-12 | 2020-03-31 | 江西联创电子有限公司 | 光学成像镜头 |
CN113376800B (zh) * | 2021-06-04 | 2022-09-23 | 江西凤凰光学科技有限公司 | 一种宽工作距大光圈广角tof镜头 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005227426A (ja) * | 2004-02-12 | 2005-08-25 | Nagano Kogaku Kenkyusho:Kk | 広角レンズ |
CN101261354A (zh) * | 2007-03-06 | 2008-09-10 | 扬明光学股份有限公司 | 广角镜头 |
JP2009063877A (ja) * | 2007-09-07 | 2009-03-26 | Nidec Nissin Corp | 超広角レンズ |
JP2010008496A (ja) * | 2008-06-24 | 2010-01-14 | Panasonic Corp | 広角レンズ、照明光学系、面発光装置 |
JP2010243711A (ja) * | 2009-04-03 | 2010-10-28 | Ricoh Co Ltd | 広角レンズ及び撮像装置 |
US20120069140A1 (en) * | 2010-09-20 | 2012-03-22 | Largan Precision Co., Ltd. | Wide-angle imaging lens assembly |
US20130128369A1 (en) * | 2011-11-22 | 2013-05-23 | Samsung Electro-Mechanics Co., Ltd. | Super wide angle lens module |
JP2016038574A (ja) | 2014-08-07 | 2016-03-22 | ナルックス株式会社 | 撮像光学系 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003307674A (ja) | 2002-04-18 | 2003-10-31 | Kyocera Corp | 超広角レンズ |
-
2018
- 2018-02-27 EP EP18784208.3A patent/EP3611547B1/en active Active
- 2018-02-27 WO PCT/JP2018/007353 patent/WO2018190014A1/ja active Application Filing
- 2018-02-27 US US16/483,187 patent/US11029498B2/en active Active
- 2018-02-27 JP JP2019512372A patent/JP6748856B2/ja active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005227426A (ja) * | 2004-02-12 | 2005-08-25 | Nagano Kogaku Kenkyusho:Kk | 広角レンズ |
CN101261354A (zh) * | 2007-03-06 | 2008-09-10 | 扬明光学股份有限公司 | 广角镜头 |
JP2009063877A (ja) * | 2007-09-07 | 2009-03-26 | Nidec Nissin Corp | 超広角レンズ |
JP2010008496A (ja) * | 2008-06-24 | 2010-01-14 | Panasonic Corp | 広角レンズ、照明光学系、面発光装置 |
JP2010243711A (ja) * | 2009-04-03 | 2010-10-28 | Ricoh Co Ltd | 広角レンズ及び撮像装置 |
US20120069140A1 (en) * | 2010-09-20 | 2012-03-22 | Largan Precision Co., Ltd. | Wide-angle imaging lens assembly |
US20130128369A1 (en) * | 2011-11-22 | 2013-05-23 | Samsung Electro-Mechanics Co., Ltd. | Super wide angle lens module |
JP2016038574A (ja) | 2014-08-07 | 2016-03-22 | ナルックス株式会社 | 撮像光学系 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3611547A4 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110609379A (zh) * | 2019-10-29 | 2019-12-24 | 长春理工大学 | 双通道共透镜式光学系统 |
CN110609379B (zh) * | 2019-10-29 | 2021-06-25 | 长春理工大学 | 双通道共透镜式光学系统 |
Also Published As
Publication number | Publication date |
---|---|
US20190361207A1 (en) | 2019-11-28 |
EP3611547A1 (en) | 2020-02-19 |
US11029498B2 (en) | 2021-06-08 |
JP6748856B2 (ja) | 2020-09-02 |
EP3611547B1 (en) | 2022-12-28 |
EP3611547A4 (en) | 2020-04-08 |
JPWO2018190014A1 (ja) | 2019-11-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6740904B2 (ja) | 撮像レンズおよび撮像装置 | |
US10627600B2 (en) | Imaging optical lens system, image capturing unit and electronic device | |
JP6812251B2 (ja) | 結像光学系及び撮像装置 | |
JP7245977B2 (ja) | 単焦点レンズ系、および、カメラ | |
CN203838397U (zh) | 广角摄像镜头和摄像装置 | |
JP5335710B2 (ja) | 撮像レンズおよび撮像装置 | |
JP6941456B2 (ja) | 撮像レンズおよび撮像装置 | |
JP6762789B2 (ja) | 撮像レンズおよび撮像装置 | |
WO2018135269A1 (ja) | 単焦点レンズ系、および、カメラ | |
CN105705980B (zh) | 单焦点透镜系统、摄像机以及汽车 | |
JP6985410B2 (ja) | 撮像レンズ系及び撮像装置 | |
JP2009098322A (ja) | 撮像レンズおよび撮像装置 | |
WO2018066641A1 (ja) | 撮像レンズ系及び撮像装置 | |
JP6643201B2 (ja) | 撮像レンズおよび撮像装置 | |
TWI813196B (zh) | 成像光學系統鏡組、取像裝置及電子裝置 | |
WO2018190014A1 (ja) | 単焦点レンズ系、単焦点レンズ系を有する撮像装置および撮像装置を有する移動体 | |
JP5313566B2 (ja) | 撮像レンズおよびこれを用いた撮像装置 | |
CN113625430A (zh) | 光学系统、取像模组、电子设备及载具 | |
JP2016188893A (ja) | 撮像レンズ系及び撮像装置 | |
JP7267115B2 (ja) | 光学レンズ系及び撮像装置 | |
JP2021156923A (ja) | 光学系および撮像装置 | |
CN113960761B (zh) | 光学镜头、摄像模组、电子设备及汽车 | |
US20240111130A1 (en) | Optical system and camera module comprising same | |
CN210626766U (zh) | 光学系统、摄像模组及汽车 | |
WO2022264700A1 (ja) | 撮像レンズ系、カメラモジュール、車載システム、移動体 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18784208 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019512372 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2018784208 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2018784208 Country of ref document: EP Effective date: 20191114 |