WO2018190014A1 - 単焦点レンズ系、単焦点レンズ系を有する撮像装置および撮像装置を有する移動体 - Google Patents

単焦点レンズ系、単焦点レンズ系を有する撮像装置および撮像装置を有する移動体 Download PDF

Info

Publication number
WO2018190014A1
WO2018190014A1 PCT/JP2018/007353 JP2018007353W WO2018190014A1 WO 2018190014 A1 WO2018190014 A1 WO 2018190014A1 JP 2018007353 W JP2018007353 W JP 2018007353W WO 2018190014 A1 WO2018190014 A1 WO 2018190014A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
lens element
lens group
single focus
lens system
Prior art date
Application number
PCT/JP2018/007353
Other languages
English (en)
French (fr)
Inventor
岩下 勉
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2019512372A priority Critical patent/JP6748856B2/ja
Priority to US16/483,187 priority patent/US11029498B2/en
Priority to EP18784208.3A priority patent/EP3611547B1/en
Publication of WO2018190014A1 publication Critical patent/WO2018190014A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/16Optical objectives specially designed for the purposes specified below for use in conjunction with image converters or intensifiers, or for use with projectors, e.g. objectives for projection TV
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/04Reversed telephoto objectives
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/06Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/60Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having five components only

Definitions

  • the present disclosure relates to a single-focus lens system, an imaging device having a single-focus lens system, and a movable body having the imaging device.
  • Patent Document 1 discloses a first lens that is a negative lens, a second lens that is a meniscus lens having a convex surface directed to the image side, a stop, and a positive lens, which are arranged from the object side to the image side.
  • a single focus lens system including a third lens, a fourth lens that is a positive lens, and a fifth lens that is a positive lens is disclosed.
  • the single focus lens system in the present disclosure includes a first lens group having a positive power, an aperture stop, and a second lens group having a positive power.
  • the first lens group includes, in order from the object side to the image side, a first lens element having a negative power, a second lens element having a negative power, and a third lens element having a positive power.
  • the second lens group includes a fourth lens element having power and a fifth lens element having positive power.
  • fG1 is a focal length of the first lens group with respect to the d-line
  • fG2 is a focal length of the second lens group with respect to the d-line
  • w is a half angle of view, 0.5 ⁇ fG1 / fG2 ⁇ 3.0 (1) 60 ⁇ w (6) It is comprised so that the conditions (1) and conditions (6) represented by these may be satisfied.
  • FIG. 1 is a lens arrangement diagram of a single focus lens system according to the first embodiment.
  • FIG. 2 is a longitudinal aberration diagram in the infinitely focused state according to Numerical Example 1 of the embodiment.
  • FIG. 3 is a lens arrangement diagram of the single focus lens system according to the second embodiment.
  • FIG. 4 is a longitudinal aberration diagram in the infinitely focused state according to Numerical Example 2 of the embodiment.
  • FIG. 5 is a lens arrangement diagram of a single focus lens system according to the third embodiment.
  • FIG. 6 is a longitudinal aberration diagram in the infinitely focused state according to Numerical Example 3 of the embodiment.
  • FIG. 7 is a schematic configuration diagram of an imaging apparatus according to the fourth embodiment.
  • FIG. 8 is a schematic configuration diagram of a moving body on which the imaging device according to the embodiment is mounted.
  • FIG. 9 is a schematic configuration diagram of a moving body on which an imaging device according to another embodiment is mounted.
  • the lens group is a group composed of at least one lens element.
  • the power, the combined focal length, etc. are determined for each lens group in accordance with the type, number, and arrangement of lens elements constituting the lens group.
  • FIGS. 1, 3 and 5 are lens arrangement diagrams of a single focus lens system according to the embodiment. 1, 3, and 5 show the lens arrangement of the single focus lens system in the infinitely focused state.
  • an asterisk * attached to a specific surface indicates that the surface is aspherical.
  • a symbol (+) and a symbol ( ⁇ ) attached to a symbol of each lens group correspond to a power symbol of each lens group. That is, the symbol (+) indicates positive power, and the symbol ( ⁇ ) indicates negative power.
  • the straight line described on the rightmost side indicates the position of the image plane S (corresponding to a position where an image sensor is disposed, which will be described later).
  • the aspect ratios are the same.
  • Embodiment 1 The single focus lens system according to Embodiment 1 will be described below with reference to FIG.
  • FIG. 1 is a lens arrangement diagram of a single focus lens system according to the first embodiment.
  • the single focus lens system includes, in order from the object side to the image side, a first lens group G1 having a positive power, an aperture stop A, a second lens group G2 having a positive power, and a parallel. It consists of a flat plate P or the like.
  • the object side corresponds to the first lens group G1 side
  • the image side corresponds to the image plane S side.
  • the first lens group G1 includes, in order from the object side to the image side, a first lens element L1 having negative power, a second lens element L2 having negative power, and a third lens element L3 having positive power. including.
  • the second lens group G2 includes, in order from the object side to the image side, a fourth lens element L4 having negative power and a fifth lens element L5 having positive power.
  • the first lens element L1 is a glass lens having a meniscus shape with a convex surface facing the object side.
  • the second lens element L2 is a resin lens having a biconcave shape.
  • the concave surface on the object side and the image plane S side of the second lens element L2 has an aspheric shape.
  • the third lens element L3 is a biconvex glass lens.
  • the fourth lens element L4 is a resin lens having a meniscus shape with a convex surface facing the image surface S side. Both the object side and the image plane S side of the fourth lens element L4 have aspherical shapes.
  • the fifth lens element L5 is a resin lens having a biconvex shape. Both the object side and the image plane S side of the fifth lens element L5 have aspherical shapes.
  • the single focus lens system of Embodiment 1 is configured.
  • Embodiment 2 The single focus lens system according to Embodiment 2 will be described below with reference to FIG.
  • FIG. 3 is a lens arrangement diagram of a single focus lens system according to the second embodiment.
  • the single focus lens system according to the second embodiment includes, in order from the object side to the image side, a first lens group G1 having a positive power, an aperture stop A, and a second lens group G2 having a positive power. It consists of a flat plate P or the like.
  • the first lens group G1 includes, in order from the object side to the image side, a first lens element L1 having negative power, a second lens element L2 having negative power, and a third lens element L3 having positive power. including.
  • the second lens group G2 includes, in order from the object side to the image side, a fourth lens element L4 having a positive power and a fifth lens element L5 having a positive power.
  • the first lens element L1 is a glass lens having a meniscus shape with a convex surface facing the object side.
  • the second lens element L2 is a resin lens having a meniscus shape with a convex surface facing the image surface S side. Both the object side and the image plane S side of the second lens element L2 have aspherical shapes.
  • the third lens element L3 is a biconvex glass lens.
  • the fourth lens element L4 is a resin lens having a meniscus shape with a convex surface facing the image surface S side. Both the object side and the image plane S side of the fourth lens element L4 have aspherical shapes.
  • the fifth lens element L5 is a resin lens having a biconvex shape. Both the object side and the image plane S side of the fifth lens element L5 have aspherical shapes.
  • the single focus lens system of Embodiment 2 is configured.
  • Embodiment 3 The single focus lens system according to Embodiment 3 will be described below with reference to FIG.
  • FIG. 5 is a lens arrangement diagram of a single focus lens system according to the third embodiment.
  • the single focus lens system of Embodiment 3 is parallel to the first lens group G1 having a positive power, the aperture stop A, and the second lens group G2 having a positive power in order from the object side to the image side. It consists of a flat plate P or the like.
  • the first lens group G1 includes, in order from the object side to the image side, a first lens element L1 having negative power, a second lens element L2 having negative power, and a third lens element L3 having positive power. including.
  • the second lens group G2 includes, in order from the object side to the image side, a fourth lens element L4 having a positive power and a fifth lens element L5 having a positive power.
  • the first lens element L1 is a glass lens having a meniscus shape with a convex surface facing the object side.
  • the second lens element L2 is a resin lens having a meniscus shape with a convex surface facing the image surface S side. Both the object side and the image plane S side of the second lens element L2 have aspherical shapes.
  • the third lens element L3 is a biconvex glass lens.
  • the fourth lens element L4 is a resin lens having a meniscus shape with a convex surface facing the image surface S side. Both the object side and the image plane S side of the fourth lens element L4 have aspherical shapes.
  • the fifth lens element L5 is a resin lens having a biconvex shape. Both the object side and the image plane S side of the fifth lens element L5 have aspherical shapes.
  • the single focus lens system of Embodiment 3 is configured.
  • a plurality of possible conditions are defined for the single focus lens system according to the first to third embodiments.
  • the configuration of a single focus lens system that satisfies all of the plurality of conditions is most effective.
  • the single focus lens system includes, in order from the object side to the image side, a first lens group G1 having a positive power, an aperture stop A, and a second lens having a positive power. Consists of a lens group G2 and the like.
  • the first lens group G1 includes, in order from the object side to the image side, a first lens element L1 having negative power, a second lens element L2 having negative power, and a third lens element L3 having positive power.
  • the second lens group G2 includes a fourth lens element L4 having power and a fifth lens element L5 having positive power.
  • the single focus lens system satisfies the following condition (1), for example.
  • fG1 is the focal length of the first lens group G1 with respect to the d line
  • fG2 is the focal length of the second lens group G2 with respect to the d line.
  • the first lens group G1 includes two lens elements having negative power. As a result, it is possible to realize a single focus lens system in which the total angle of view is wider than 100 °, for example, while favorably correcting various aberrations.
  • condition (1) defines the relationship between the focal length of the first lens group G1 with respect to the d line and the focal length of the second lens group G2 with respect to the d line.
  • the single focus lens system in the present disclosure satisfies the following condition (2), for example.
  • L4R1 is an object-side radius of curvature of the fourth lens element L
  • L4R2 is an image-side radius of curvature of the fourth lens element L4.
  • condition (2) defines the ratio of the sum and difference of the curvature radius on the object side of the fourth lens element L4 and the curvature radius on the image side of the fourth lens element L4.
  • condition (2) is lower than the lower limit (5.5) or more than the upper limit (20) of the condition (2), various aberrations, particularly astigmatism, cannot be corrected sufficiently. Therefore, it is difficult to ensure good optical performance in the single focus lens system.
  • condition (2) it is more preferable if one or both of the following conditions (2c) and (2d) are satisfied within the range of condition (2).
  • the single focus lens system of the present disclosure satisfies the following condition (3), for example.
  • f4 is the focal length of the fourth lens element L4 with respect to the d-line
  • f is the focal length of the entire system with respect to the d-line.
  • condition (3) defines the relationship between the focal length of the fourth lens element L4 with respect to the d line and the focal length with respect to the d line of the entire system constituting the single focus lens system.
  • the negative power of the fourth lens element L4 becomes too strong. Therefore, in the single focus lens system, various aberrations, especially field curvature, increase, and it becomes difficult to ensure good optical performance.
  • the value is equal to or greater than the upper limit (20) of the condition (3), the negative power of the fourth lens element L4 becomes too small. Therefore, it is difficult to reduce the size of the single focus lens system.
  • the single focus lens system of the present disclosure satisfies the following condition (4), for example.
  • ndL3 is a refractive index with respect to the d-line of the third lens element L3.
  • condition (4) defines the refractive index for the d-line of the third lens element L3.
  • the single focus lens system of the present disclosure satisfies the following condition (5) simultaneously with the above condition (4), for example.
  • ⁇ dL3 is an Abbe number with respect to the d-line of the third lens element L3.
  • Condition (5) defines the Abbe number of the third lens element L3 with respect to the d-line.
  • the single focus lens system of the present disclosure satisfies the following condition (6), for example.
  • w is a half angle of view.
  • Condition (6) is a condition related to the diagonal half field angle of the single focus lens system.
  • condition (1) and the condition (6) are satisfied at the same time, a wide angle can be realized while maintaining high optical performance in the single focus lens system.
  • the single focus lens system of the present disclosure desirably has, for example, a shape having an inflection point outside the optical axis on the object side surface of the second lens element L2. Accordingly, it is possible to satisfactorily correct aberrations near and outside the optical axis of the second lens element L2. Therefore, various aberrations, particularly field curvature can be sufficiently corrected. As a result, good optical performance can be secured in the single focus lens system.
  • Embodiment 4 an imaging apparatus including the single focus lens system of Embodiment 1 according to Embodiment 4 will be described with reference to FIG.
  • the imaging device is exemplified by a camera or the like attached to a moving body that moves with a vehicle or a person.
  • any one of the single focus lens systems according to the second embodiment and the third embodiment may be applied instead of the single focus lens system according to the first embodiment.
  • FIG. 7 is a schematic configuration diagram of a camera including the single focus lens system according to the first embodiment according to the fourth embodiment.
  • a camera 100 which is an example of an imaging apparatus includes a single focus lens system 201, an imaging element 202, a parallel plate P, and the like.
  • the single focus lens system 201 forms an optical image of an object.
  • the image sensor 202 converts an optical image formed by the single focus lens system 201 into an electrical image signal.
  • the parallel plate P is constituted by a band pass filter that transmits only wavelengths in the near infrared region (for example, wavelengths of 800 nm to 1000 nm), for example.
  • the image sensor 202 is arranged at the position of the image plane S in the single focus lens system of Embodiment 1 shown in FIG.
  • a color filter that receives light in the near-infrared region is disposed in at least some or all of the plurality of pixels of the image sensor 202.
  • the camera 100 including the single focus lens system 201 is configured.
  • FIG. 8 is a schematic configuration diagram of an automobile provided with the camera 100 in the vicinity of a room mirror in the vehicle 500.
  • the camera 100 is installed in the vicinity of a room mirror (not shown) in the vehicle 500 toward the inside of the vehicle. That is, the camera 100 is used as a sensing camera that captures images of the driver and passengers.
  • a light emitting diode (LED (not shown)) having a wavelength in the near-infrared region (for example, a wavelength of 800 nm to 1000 nm) is installed near the room mirror in the vehicle 500. The LED radiates signal light whose emission intensity is modulated in a direction in the vehicle 500 (for example, driver and passenger direction).
  • the image in the vehicle 500 is picked up by the camera 100 as the phase delay of the reflected light of the LED.
  • the captured image is used for sensing the posture or state of the driver and passengers (particularly, the driver).
  • the controller 300 detects the distance from the image captured by the camera 100 to each part of the driver and passengers as subjects, for example, by an area demodulation method. Thereby, distance image data including information on the distance to the subject is obtained.
  • the controller 300 detects the state of the driver, for example, based on the obtained distance image data. Then, the controller 300 determines whether or not the driver is in a situation where driving may be hindered, such as sleepiness or sudden illness. When it is determined that there is a possibility that the driving may be hindered, the controller 300 alerts the driver. Furthermore, when the obstacle to driving is not solved, the controller 300 automatically stops the vehicle 500. This ensures the safety of the driver and passengers.
  • the single focus lens system 201 of the present disclosure is effective as a lens system of an imaging apparatus such as a sensing camera.
  • a lens element having substantially no power may be added as appropriate to the single focus lens system according to the first to third embodiments.
  • the aspherical shape of the lens element included in the single focus lens system of Embodiments 1 to 3 may be formed by, for example, polishing or molding. Furthermore, you may form with the so-called replica lens (hybrid lens) which forms the aspherical surface of a film on the surface of a spherical lens.
  • replica lens hybrid lens
  • the single focus lens system according to the first to third embodiments is installed in the vehicle 500, and as a sensing camera for detecting the distance to each part of the driver and the passenger,
  • the camera 100 which comprises an imaging device
  • the camera 100 including the single focus lens system of the present disclosure may be attached to a lower part of a side mirror (particularly, on the side opposite to the driver) of the vehicle 500 and applied to a sensing camera that senses an object in a downward direction.
  • the driver can more surely confirm the person or object existing in the blind spot, and execute avoidance driving or the like.
  • the camera 100 mounted on the vehicle is described as an example of the imaging device including the single focus lens system 201 according to the first to third embodiments of the present disclosure.
  • the camera 100 may be incorporated into a video display device 600 that is an example of a moving body that moves with the movement of a person. That is, the video display device 600 detects the distance to a part such as a person's arm wearing the video display device 600 with a wide angle of view (for example, 100 °) via the camera 100. Then, the controller 300 processes information such as the detected distance. Thereby, in the virtual reality space, the wearer can experience a more realistic experience such as grasping an object.
  • the unit of length in the table is “mm”, and the unit of angle of view is “°”.
  • view angle in the table means a diagonal half view angle.
  • r is a radius of curvature
  • d is a surface interval
  • nd is a refractive index with respect to the d line
  • vd is an Abbe number with respect to the d line
  • n940 nm is a refractive index with respect to a wavelength of 940 nm.
  • the surface marked with * is an aspherical surface.
  • the aspheric shape is defined by the following equation.
  • Z is the distance from the point on the aspherical surface whose height from the optical axis is h to the tangential plane of the aspherical vertex
  • h is the height from the optical axis
  • r is the vertex radius of curvature
  • is the conic constant.
  • An are n-order aspherical coefficients.
  • SA Spherical Aberration
  • AST Astigmatism
  • DIS Distortion (%)
  • the vertical axis represents the F number (indicated by “F” in the figure)
  • the solid line represents the wavelength 940 nm
  • the short dashed line represents the wavelength 960 nm
  • the long dashed line represents the wavelength 950 nm
  • the alternate long and short dash line represents the characteristic for the wavelength 930 nm.
  • the vertical axis represents the image height
  • the solid line represents the characteristic with respect to the sagittal plane (indicated by “s” in the figure)
  • the broken line represents the characteristic with respect to the meridional plane (indicated by “m” in the figure).
  • w represents a half angle of view.
  • the vertical axis represents the image height
  • w represents the half angle of view.
  • the single-focus lens system includes a digital still camera, a digital video camera, a mobile phone device camera, a PDA (Personal Digital Assistance) camera, an in-vehicle camera, a sensing camera for measuring a subject distance, a monitoring camera, It can be applied to a WEB camera or the like.
  • the present disclosure is suitable for a camera that requires a wide-angle lens such as an in-vehicle camera or a surveillance camera.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

単焦点レンズ系は、物体側から像側へと順に、正のパワーを有する第1レンズ群(G1)と、開口絞り(A)と、正のパワーを有する第2レンズ群(G2)を含む。第1レンズ群(G1)は、物体側から像側へと順に、負のパワーを有する第1レンズ素子(L1)と、負のパワーを有する第2レンズ素子(L2)と、正のパワーを有する第3レンズ素子(L3)を含む。第2レンズ群(G2)は、パワーを有する第4レンズ素子(L4)と、正のパワーを有する第5レンズ素子(L5)を含む。fG1を第1レンズ群(G1)のd線に対する焦点距離、fG2を第2レンズ群(G2)のd線に対する焦点距離、w:半画角、とするとき、 0.5 < fG1/fG2 < 3.0 ・・・(1) 60 < w ・・・(6) で表される、条件(1)および条件(6)を満足するように構成される。これにより、諸収差を良好に補正できる単焦点レンズ系を提供できる。

Description

単焦点レンズ系、単焦点レンズ系を有する撮像装置および撮像装置を有する移動体
 本開示は、単焦点レンズ系、単焦点レンズ系を有する撮像装置および撮像装置を有する移動体に関する。
 特許文献1は、物体側から像側に配置された、負のレンズである第1のレンズと、像側に凸面を向けたメニスカスレンズである第2のレンズと、絞りと、正のレンズである第3のレンズと、正のレンズである第4のレンズと、正のレンズである第5のレンズと、からなる単焦点レンズ系を開示する。
 一方、昨今、車載カメラ、監視カメラなどに用いられるレンズ系には、より広角なレンズ系の需要が急速に高まっている。
特開2016-38574号公報
 本開示における単焦点レンズ系は、正のパワーを有する第1レンズ群と、開口絞りと、正のパワーを有する第2レンズ群と、を含む。第1レンズ群は、物体側から像側へと順に、負のパワーを有する第1レンズ素子と、負のパワーを有する第2レンズ素子と、正のパワーを有する第3レンズ素子を含む。第2レンズ群は、パワーを有する第4レンズ素子と、正のパワーを有する第5レンズ素子を含む。そして、fG1を第1レンズ群のd線に対する焦点距離、fG2を第2レンズ群のd線に対する焦点距離、wを半画角、とするとき、
  0.5 < fG1/fG2 < 3.0 ・・・(1)
  60 < w ・・・(6)
で表される、条件(1)および条件(6)を満足するように構成される。
 本開示によれば、諸収差の良好な単焦点レンズ系を提供できる。
図1は、実施の形態1に係る単焦点レンズ系のレンズ配置図である。 図2は、同実施の形態の数値実施例1に係る無限遠合焦状態の縦収差図である。 図3は、実施の形態2に係る単焦点レンズ系のレンズ配置図である。 図4は、同実施の形態の数値実施例2に係る無限遠合焦状態の縦収差図である。 図5は、実施の形態3に係る単焦点レンズ系のレンズ配置図である。 図6は、同実施の形態の数値実施例3に係る無限遠合焦状態の縦収差図である。 図7は、実施の形態4に係る撮像装置の概略構成図である。 図8は、同実施の形態に係る撮像装置を搭載する移動体の概略構成図である。 図9は、他の実施の形態に係る撮像装置を搭載する移動体の概略構成図である。
 以下、図面を参照しながら、実施の形態を詳細に説明する。但し、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするためである。
 なお、添付図面および以下の説明は、当業者が本開示を十分に理解するために、提供されるものであって、これらにより、請求の範囲に記載の主題を限定することは意図されていない。
 本開示において、レンズ群とは、少なくとも1枚のレンズ素子で構成された群である。レンズ群を構成するレンズ素子の種類、枚数、配置などに応じて、レンズ群ごとにパワー、合成焦点距離などが決定される。
 図1、図3および図5は、実施の形態に係る単焦点レンズ系のレンズ配置図である。なお、図1、図3および図5は、いずれも無限遠合焦状態にある単焦点レンズ系のレンズ配置を示している。
 各図において、特定の面に付されたアスタリスク*は、その面が非球面であることを示している。また、各図において、各レンズ群の符号に付された記号(+)および記号(-)は、各レンズ群のパワーの符号に対応する。つまり、記号(+)は正のパワー、記号(-)は負のパワーを示す。また、各図において、最も右側に記載された直線は、像面S(後述する、撮像素子の配置される位置に相当)の位置を示す。なお、図1、図3、図5および図7において、縦横比は一致している。
 (実施の形態1)
 以下に、実施の形態1に係る単焦点レンズ系について、図1を用いて、説明する。
 図1は、実施の形態1に係る単焦点レンズ系のレンズ配置図である。
 実施の形態1の単焦点レンズ系は、物体側から像側へと順に、正のパワーを有する第1レンズ群G1と、開口絞りAと、正のパワーを有する第2レンズ群G2と、平行平板Pなどで構成される。なお、物体側とは第1レンズ群G1側に対応し、像側とは、像面S側に対応する。
 第1レンズ群G1は、物体側から像側へと順に、負のパワーを有する第1レンズ素子L1と、負のパワーを有する第2レンズ素子L2と、正のパワーを有する第3レンズ素子L3を含む。
 第2レンズ群G2は、物体側から像側へと順に、負のパワーを有する第4レンズ素子L4と、正のパワーを有する第5レンズ素子L5を含む。
 以下、各レンズ素子について、説明する。
 まず、第1レンズ群G1におけるレンズ素子を説明する。第1レンズ素子L1は、物体側に凸面を向けたメニスカス形状である硝子レンズである。第2レンズ素子L2は、両凹形状である樹脂レンズである。第2レンズ素子L2の物体側および像面S側の凹面は、非球面形状を有する。第3レンズ素子L3は、両凸形状である硝子レンズである。
 つぎに、第2レンズ群G2におけるレンズ素子を説明する。第4レンズ素子L4は、像面S側に凸面を向けたメニスカス形状である樹脂レンズである。第4レンズ素子L4の物体側および像面S側の両面は、非球面形状を有する。第5レンズ素子L5は、両凸形状である樹脂レンズである。第5レンズ素子L5の物体側および像面S側の両面は、非球面形状を有する。
 以上のように、実施の形態1の単焦点レンズ系は構成される。
 (実施の形態2)
 以下に、実施の形態2に係る単焦点レンズ系について、図3を用いて、説明する。
 図3は、実施の形態2に係る単焦点レンズ系のレンズ配置図である。
 実施の形態2の単焦点レンズ系は、物体側から像側へと順に、正のパワーを有する第1レンズ群G1と、開口絞りAと、正のパワーを有する第2レンズ群G2と、平行平板Pなどから構成される。
 第1レンズ群G1は、物体側から像側へと順に、負のパワーを有する第1レンズ素子L1と、負のパワーを有する第2レンズ素子L2と、正のパワーを有する第3レンズ素子L3を含む。
 第2レンズ群G2は、物体側から像側へと順に、正のパワーを有する第4レンズ素子L4と、正のパワーを有する第5レンズ素子L5を含む。
 以下、各レンズ素子について、説明する。
 まず、第1レンズ群G1におけるレンズ素子を説明する。第1レンズ素子L1は、物体側に凸面を向けたメニスカス形状である硝子レンズである。第2レンズ素子L2は、像面S側に凸面を向けたメニスカス形状である樹脂レンズである。第2レンズ素子L2の物体側および像面S側の両面は、非球面形状を有する。第3レンズ素子L3は、両凸形状である硝子レンズである。
 つぎに、第2レンズ群G2におけるレンズ素子を説明する。第4レンズ素子L4は、像面S側に凸面を向けたメニスカス形状である樹脂レンズである。第4レンズ素子L4の物体側および像面S側の両面は、非球面形状を有する。第5レンズ素子L5は、両凸形状である樹脂レンズである。第5レンズ素子L5の物体側および像面S側の両面は、非球面形状を有する。
 以上のように、実施の形態2の単焦点レンズ系は構成される。
 (実施の形態3)
 以下に、実施の形態3に係る単焦点レンズ系について、図5を用いて、説明する。
 図5は、実施の形態3に係る単焦点レンズ系のレンズ配置図である。
 実施の形態3の単焦点レンズ系は、物体側から像側へと順に、正のパワーを有する第1レンズ群G1と、開口絞りAと、正のパワーを有する第2レンズ群G2と、平行平板Pなどから構成される。
 第1レンズ群G1は、物体側から像側へと順に、負のパワーを有する第1レンズ素子L1と、負のパワーを有する第2レンズ素子L2と、正のパワーを有する第3レンズ素子L3を含む。
 第2レンズ群G2は、物体側から像側へと順に、正のパワーを有する第4レンズ素子L4と、正のパワーを有する第5レンズ素子L5を含む。
 以下、各レンズ素子について、説明する。
 まず、第1レンズ群G1におけるレンズ素子を説明する。第1レンズ素子L1は、物体側に凸面を向けたメニスカス形状である硝子レンズである。第2レンズ素子L2は、像面S側に凸面を向けたメニスカス形状である樹脂レンズである。第2レンズ素子L2の物体側および像面S側の両面は、非球面形状を有する。第3レンズ素子L3は、両凸形状である硝子レンズである。
 つぎに、第2レンズ群G2におけるレンズ素子を説明する。第4レンズ素子L4は、像面S側に凸面を向けたメニスカス形状である樹脂レンズである。第4レンズ素子L4の物体側および像面S側の両面は、非球面形状を有する。第5レンズ素子L5は、両凸形状である樹脂レンズである。第5レンズ素子L5の物体側および像面S側の両面は、非球面形状を有する。
 以上のように、実施の形態3の単焦点レンズ系は構成される。
 (条件および効果など)
 以下に、実施の形態1から実施の形態3に係る単焦点レンズ系の構成を満足することが可能な条件について、具体的に説明する。
 つまり、実施の形態1から実施の形態3に係る単焦点レンズ系に対しては、複数の可能な条件が規定される。この場合、複数の条件のすべてを満足する単焦点レンズ系の構成が最も効果的である。
 しかしながら、以下で述べる個別の条件を満足することにより、それぞれに対応する効果を奏する単焦点レンズ系を得ることも可能である。
 実施の形態1から実施の形態3に係る単焦点レンズ系は、物体側から像側へと順に、正のパワーを有する第1レンズ群G1と、開口絞りAと、正のパワーを有する第2レンズ群G2などから構成される。第1レンズ群G1は、物体側から像側へと順に、負のパワーを有する第1レンズ素子L1と、負のパワーを有する第2レンズ素子L2と、正のパワーを有する第3レンズ素子L3を含む。第2レンズ群G2は、パワーを有する第4レンズ素子L4と、正のパワーを有する第5レンズ素子L5を含む。
 上記単焦点レンズ系は、例えば下記の条件(1)を満足することが望ましい。
  0.5 < fG1/fG2 < 3.0 ・・・(1)
 ここで、fG1は第1レンズ群G1のd線に対する焦点距離、fG2は第2レンズ群G2のd線に対する焦点距離、である。
 上記単焦点レンズ系によれば、第1レンズ群G1は、2枚の負のパワーを有するレンズ素子を含む。これにより、諸収差を良好に補正しながら、全画角が、例えば100°より広い、単焦点レンズ系を実現できる。
 つまり、条件(1)は、第1レンズ群G1のd線に対する焦点距離と、第2レンズ群G2のd線に対する焦点距離の関係を規定する。
 条件(1)の下限値(0.5)以下の場合、第1レンズ群G1の正のパワーが強くなり過ぎる。そのため、単焦点レンズ系において、諸収差を良好に補正しながら、広角化することが困難となる。
 また、条件(1)の上限値(3.0)以上の場合、第2レンズ群G2の正のパワーが強くなり過ぎる。そのため、単焦点レンズ系において、諸収差を良好に補正しながら、小型化することが困難となる。
 このとき、条件(1)の範囲内で、以下の条件(1a)または(1b)のいずれか一方を満足すれば、より好ましい。
  0.55 < fG1/fG2  ・・・(1a)
  fG1/fG2 < 2.5   ・・・(1b)
 これにより、前述の効果が、さらに向上する。
 また、条件(1)の範囲内で、以下の条件(1c)または(1d)のいずれか一方を満足すれば、さらに好ましい。
  0.6 < fG1/fG2  ・・・(1c)
  fG1/fG2 < 2.0  ・・・(1d)
 これにより、前述の効果が、さらに向上する。
 また、本開示における単焦点レンズ系は、例えば下記の条件(2)を満足することが望ましい。
  5.5<|(L4R1+L4R2)/(L4R1-L4R2)|<20・・・(2)
 ここで、L4R1は第4レンズ素子L4における物体側の曲率半径、L4R2は第4レンズ素子L4における像側の曲率半径、である。
 つまり、条件(2)は、第4レンズ素子L4の物体側の曲率半径と第4レンズ素子L4の像側の曲率半径の和と差の比を規定する。
 条件(2)の下限値(5.5)以下、または条件(2)の上限値(20)以上の場合、諸収差、特に非点収差を十分に補正することができなくなる。そのため、単焦点レンズ系において、良好な光学性能を確保することが困難となる。
 このとき、条件(2)の範囲内で、以下の条件(2a)、(2b)のいずれか一方、または両方を満足すれば、より好ましい。
  6.0< |(L4R1+L4R2)/(L4R1-L4R2)| ・・・(2a)
  |(L4R1+L4R2)/(L4R1-L4R2)| < 15 ・・・(2b)
 これにより、前述の効果が、より向上する。
 また、条件(2)の範囲内で、以下の条件(2c)、条件(2d)のいずれか一方、または両方を満足すれば、さらに好ましい。
  7.0< |(L4R1+L4R2)/(L4R1-L4R2)| ・・・(2c)
  |(L4R1+L4R2)/(L4R1-L4R2)| < 10 ・・・(2d)
 これにより、前述の効果が、さらに向上する。
 また、本開示の単焦点レンズ系は、例えば下記の条件(3)を満足することが望ましい。
  10.5 < |f4/f| < 20 ・・・(3)
 ここで、f4は第4レンズ素子L4のd線に対する焦点距離、fは全系のd線に対する焦点距離、である。
 つまり、条件(3)は、第4レンズ素子L4のd線に対する焦点距離と、単焦点レンズ系を構成する全系のd線に対する焦点距離との関係を規定する。
 条件(3)の下限値(11)以下の場合、第4レンズ素子L4の負のパワーが強くなり過ぎる。そのため、単焦点レンズ系において、諸収差、特に像面湾曲が増大し、良好な光学性能を確保することが困難となる。逆に、条件(3)の上限値(20)以上の場合、第4レンズ素子L4の負のパワーが小さくなり過ぎる。そのため、単焦点レンズ系の小型化が困難となる。
 このとき、条件(3)の範囲内で、以下の条件(3a)、(3b)のいずれか一方、または両方を満足すれば、より好ましい。
  11.0 < |f4/f| ・・・(3a)
  |f4/f| < 17.5 ・・・(3b)
 これにより、前述の効果が、より向上する。
 また、条件(3)の範囲内で、以下の条件(3c)、条件(3d)のいずれか一方、または両方を満足すれば、さらに好ましい。
  11.5 < |f4/f| ・・・(3c)
  |f4/f| < 15 ・・・(3d)
 これにより、前述の効果が、さらに向上する。
 また、本開示の単焦点レンズ系は、例えば、下記の条件(4)を満足することが望ましい。
  1.7 < ndL3 ・・・(4)
 ここで、ndL3は、第3レンズ素子L3のd線に対する屈折率である。
 つまり、条件(4)は、第3レンズ素子L3のd線に対する屈折率を規定する。
 条件(4)の下限値(1.7)以下の場合、第3レンズ素子L3のパワーを保つためには、曲率半径が小さくなり過ぎる。つまり、諸収差、特に球面収差を十分に補正できなくなる。そのため、単焦点レンズ系において、良好な光学性能を確保することが困難となる。
 また、本開示の単焦点レンズ系は、例えば、前述の条件(4)と、同時に、下記の条件(5)を満足するのが望ましい。
  20 < νdL3 ・・・(5)
 ここで、νdL3は、第3レンズ素子L3のd線に対するアッベ数である。
 条件(5)は、第3レンズ素子L3のd線に対するアッベ数を規定する。
 条件(5)の下限値(20)以下の場合、諸収差、特に色収差を十分に補正できなくなる。そのため、単焦点レンズ系において、良好な光学性能を確保することが困難となる。
 また、本開示の単焦点レンズ系は、例えば、下記の条件(6)を満足することが望ましい。
  60 < w ・・・(6)
 ここで、wは、半画角である。
 条件(6)は、単焦点レンズ系の対角の半画角に関する条件である。
 条件(1)と、同時に、条件(6)を満足すれば、単焦点レンズ系において、高い光学性能を維持しながら、広角化を実現できる。
 また、本開示の単焦点レンズ系は、例えば、第2レンズ素子L2の物体側の面において、光軸外で変曲点を持つ形状が望ましい。これにより、第2レンズ素子L2の光軸付近と光軸外のそれぞれにおいて、良好に収差補正を行うことができる。そのため、諸収差、特に像面湾曲を十分に補正できる。その結果、単焦点レンズ系において、良好な光学性能を確保できる。
 (実施の形態4)
 以下、実施の形態4に係る、実施の形態1の単焦点レンズ系を備える撮像装置について、図7を用いて、説明する。撮像装置は、車両や人などと共に移動する移動体に装着されるカメラなどで例示される。
 なお、撮像装置において、実施の形態1に係る単焦点レンズ系の代わりに、実施の形態2および実施の形態3に係る単焦点レンズ系のいずれか1つを適用してもよい。
 図7は、実施の形態4に係る、実施の形態1の単焦点レンズ系を備えるカメラの概略構成図である。
 撮像装置の一例であるカメラ100は、単焦点レンズ系201と、撮像素子202と、平行平板Pなどを備える。単焦点レンズ系201は、物体の光学的な像を形成する。撮像素子202は、単焦点レンズ系201により形成された光学的な像を、電気的な画像信号に変換する。平行平板Pは、例えば近赤外領域の波長(例えば、800nm~1000nmの波長)のみを透過させるバンドパスフィルターで構成される。
 撮像素子202は、図1に示す、実施の形態1の単焦点レンズ系における像面Sの位置に配置される。撮像素子202の複数の画素の少なくとも一部、または全ての画素には、近赤外領域の波長を受光するカラーフィルターが配置される。
 以上のように、単焦点レンズ系201を備えるカメラ100は構成される。
 以下、上記カメラ100を、移動体の一例である自動車などの車両500に搭載した構成について、図8を用いて、説明する。
 図8は、カメラ100を車両500内のルームミラー付近に備える自動車の概略構成図である。
 カメラ100は、車両500内のルームミラー(図示せず)付近に、車内に向けて設置される。つまり、カメラ100は、運転者および同乗者を撮像するセンシングカメラとして用いられる。車両500内のルームミラー付近には、近赤外領域の波長(例えば800nm~1000nmの波長)を有する発光ダイオード(LED(図示せず))が設置される。LEDは、発光強度が変調された信号光を、車両500内の方向(例えば、運転者および同乗者方向)に放射する。
 車両500内の画像は、LEDの反射光の位相遅延として、カメラ100で撮像される。撮像された画像は、運転者および同乗者(特に、運転者)の姿勢あるいは状態などのセンシングに用いられる。
 具体的には、まず、コントローラ300は、カメラ100で撮像した画像から、被写体である運転者および同乗者の各部までの距離を、例えば面積復調方式などで検出する。これにより、被写体までの距離の情報を含む距離画像データが得られる。
 つぎに、コントローラ300は、得られた距離画像データに基づいて、例えば運転者の状態を検知する。そして、コントローラ300は、運転者が、例えば眠気や急病など、運転に支障をきたす可能性がある状況か、否かを判断する。そして、運転に支障をきたす可能性があると判断した場合、コントローラ300は、運転者に注意を促す。さらに、運転への支障が解消されない場合、コントローラ300は、自動的に車両500を停止させる。これにより、運転者や同乗者の安全性が、確保される。
 つまり、本開示の単焦点レンズ系201は、センシングカメラなどの撮像装置のレンズ系として有効である。
 (他の実施の形態)
 以上のように、本出願に開示する技術について、実施の形態1から実施の形態4を例に説明した。
 しかしながら、本開示における技術は、これらに限定されず、変更、置き換え、付加、省略などを行った実施の形態にも適用できる。また、上記実施の形態1から実施の形態4で説明した各構成要素を組み合わせて、新たな実施の形態とすることも可能である。
 そこで、他の実施の形態について、以下に例示する。
 例えば、実施の形態1から実施の形態3の単焦点レンズ系に、実質的にパワーを有しないレンズ素子を適宜追加してもよい。
 また、実施の形態1から実施の形態3の単焦点レンズ系が有するレンズ素子の非球面形状は、例えば研磨加工やモールド成型で形成してもよい。さらに、球面レンズの表面に被膜の非球面を形成させる、いわゆるレプリカレンズ(ハイブリッドレンズ)で形成してもよい。
 なお、本実施の形態4では、実施の形態1から実施の形態3に係る単焦点レンズ系を、車両500内に設置し、運転者および同乗者の各部までの距離を検出するセンシングカメラとして、撮像装置を構成するカメラ100に適用した例で、説明したが、これに限られない。本開示の単焦点レンズ系を備えるカメラ100を、例えば車両500のサイドミラー(特に運転者と反対側)の下部に取り付け、下方向の物体をセンシングするセンシングカメラに適用してもよい。これにより、運転者は、死角に存在する人物や物体を、より確実に確認し、回避運転などを実行できる。その結果、自動車などの運転時における安全性を、さらに高めることができる。
 また、実施の形態4では、本開示の実施の形態1から実施の形態3に係る単焦点レンズ系201を搭載する撮像装置として、車両に搭載されるカメラ100を例に説明したが、これに限られない。例えば、図9に示すように、カメラ100を、人の動作と共に移動する移動体の一例である映像表示機器600に組み込む構成としてもよい。つまり、映像表示機器600は、映像表示機器600を装着した人の腕などの部位までの距離を、カメラ100を介して、広い画角(例えば100°)で検出する。そして、検出した距離などの情報を、コントローラ300で情報処理する。これにより、仮想現実空間内において、装着者は、例えば物を掴むなど、よりリアリティーのある体験が可能となる。
 (数値実施例)
 以下、実施の形態1から実施の形態3に係る単焦点レンズ系の構成において、具体的に実施した数値実施例1から数値実施例3について、図2、図4および図6を参照しながら説明する。
 なお、各数値実施例において、表中の長さの単位はすべて「mm」で、画角の単位はすべて「°」である。なお、表中の「画角」は、対角半画角を意味する。また、各数値実施例において、rは曲率半径、dは面間隔、ndはd線に対する屈折率、vdはd線に対するアッベ数、n940nmは波長940nmに対する屈折率、である。さらに、各数値実施例において、*印を付した面は非球面である。そして、非球面形状は、次式で定義される。
Figure JPOXMLDOC01-appb-M000001
 ここで、Zは光軸からの高さがhの非球面上の点から、非球面頂点の接平面までの距離、hは光軸からの高さ、rは頂点曲率半径、κは円錐定数、Anはn次の非球面係数である。
 図2、図4および図6は、実施の形態1から実施の形態3に対応する数値実施例1から数値実施例3に係る単焦点レンズ系の無限遠合焦状態における縦収差図である。
 各縦収差図において、左側から順に、球面収差(SA:Spherical Aberration(mm))、非点収差(AST:Astigmatism(mm))、歪曲収差(DIS:Distortion(%))を示している。
 球面収差図において、縦軸はFナンバー(図中、「F」で示す)を表し、実線は波長940nm、短破線は波長960nm、長破線は波長950nm、一点鎖線は波長930nmに対する特性を示している。
 非点収差図において、縦軸は像高を表し、実線はサジタル平面(図中、「s」で示す)、破線はメリディオナル平面(図中、「m」で示す)に対する特性を示している。なお、wは半画角を示している。
 歪曲収差図において、縦軸は像高を表し、wは半画角を示している。ディストーションの実線は、Y=f・tan(w)を理想像高とした場合の収差を示している(Yは像高、fは全系の焦点距離)。
 (数値実施例1)
 以下に、図1に示す実施の形態1に対応する単焦点レンズ系の数値実施例1を示す。具体的には、単焦点レンズ系の数値実施例1として、面データを(表1)、非球面データを(表2)、各種データを(表3)、単レンズデータを(表4)に示す。
Figure JPOXMLDOC01-appb-I000002
Figure JPOXMLDOC01-appb-I000003
Figure JPOXMLDOC01-appb-I000004
Figure JPOXMLDOC01-appb-I000005
 (数値実施例2)
 以下に、図3に示す実施の形態2に対応する単焦点レンズ系の数値実施例2を示す。具体的には、単焦点レンズ系の数値実施例2として、面データを(表5)、非球面データを(表6)、各種データ(表7)、単レンズデータ(表8)に示す。
Figure JPOXMLDOC01-appb-I000006
Figure JPOXMLDOC01-appb-I000007
Figure JPOXMLDOC01-appb-I000008
Figure JPOXMLDOC01-appb-I000009
 (数値実施例3)
 以下に、図5に示す実施の形態3に対応する単焦点レンズ系の数値実施例3を示す。具体的には、単焦点レンズ系の数値実施例3として、面データを(表9)、非球面データを(表10)、各種データ(表11)、単レンズデータ(表12)に示す。
Figure JPOXMLDOC01-appb-I000010
Figure JPOXMLDOC01-appb-I000011
Figure JPOXMLDOC01-appb-I000012
Figure JPOXMLDOC01-appb-I000013
 (条件の対応値)
 以上のように、実施の形態1から実施の形態3に係る単焦点レンズ系について、数値実施例1から数値実施例3に基づいて、具体的に実施した。
 以下に、各数値実施例における上記条件(1)~条件(6)に対応する値を、(表1)に示す。
Figure JPOXMLDOC01-appb-T000014
 (表1)に示すように、各数値実施例で実施した単焦点レンズ系は、上記条件(1)から条件(6)を満たすことがわかる。
 これにより、諸収差の良好な単焦点レンズ系、単焦点レンズ系を備える撮像装置および撮像装置を備える移動体を提供できる。
 本開示に係る単焦点レンズ系は、デジタルスチルカメラ、デジタルビデオカメラ、携帯電話機器のカメラ、PDA(Personal Digital Assistance)のカメラ、車載用のカメラ、被写体距離を測距するセンシングカメラ、監視カメラ、WEBカメラなどに適用可能である。特に、本開示は、車載用のカメラ、監視カメラなどの広角レンズが求められるカメラにおいて好適である。
 G1  第1レンズ群
 G2  第2レンズ群
 L1  第1レンズ素子
 L2  第2レンズ素子
 L3  第3レンズ素子
 L4  第4レンズ素子
 L5  第5レンズ素子
 P   平行平板
 A   開口絞り
 S   像面
 100 カメラ(撮像装置)
 201 単焦点レンズ系
 202 撮像素子
 300 コントローラ
 500 車両(移動体)
 600 映像表示機器

Claims (8)

  1.  物体側から像側へと順に、
      正のパワーを有する第1レンズ群と、
      開口絞りと、
      正のパワーを有する第2レンズ群と、
    を含み、
     前記第1レンズ群は、
      負のパワーを有する第1レンズ素子と、
      負のパワーを有する第2レンズ素子と、
      正のパワーを有する第3レンズ素子と、
    を含み、
     前記第2レンズ群は、
      パワーを有する第4レンズ素子と、
      正のパワーを有する第5レンズ素子と、
    を含み、
      fG1を第1レンズ群のd線に対する焦点距離、
      fG2を第2レンズ群のd線に対する焦点距離、
      wを半画角、
    とするとき、
      0.5 < fG1/fG2 < 3.0 ・・・(1)
      60 < w ・・・(6)
     で表される、条件(1)および条件(6)を満足するように構成される、
    単焦点レンズ系。
  2.   L4R1を第4レンズ素子における物体側の曲率半径、
      L4R2を第4レンズ素子における像側の曲率半径、
     とするとき、
      5.5<|(L4R1+L4R2)/(L4R1-L4R2)|<20・・・(2)
     で表される、条件(2)を満足するように構成される、
    請求項1に記載の単焦点レンズ系。
  3.   f4を第4レンズ素子のd線に対する焦点距離、
      fを全系のd線に対する焦点距離、
     とするとき、
      10.5 < |f4/f| < 20 ・・・(3)
     で表される、条件(3)を満足するように構成される、
    請求項1に記載の単焦点レンズ系。
  4.   ndL3を第3レンズ素子のd線に対する屈折率、
     とするとき、
      1.7 < ndL3 ・・・(4)
     で表される、条件(4)を満足するように構成される、
    請求項1に記載の単焦点レンズ系。
  5.   νdL3を第3レンズ素子のd線に対するアッベ数、
     とするとき、
      20 < νdL3 ・・・(5)
     で表される、条件(5)を満足するように構成される、
    請求項4に記載の単焦点レンズ系。
  6.  前記第2レンズ素子の物体側面の形状は、光軸外で変曲点を持つ、
    請求項1に記載の単焦点レンズ系。
  7.  物体の光学的な像を電気的な画像信号として出力可能な撮像装置であって、
     物体の光学的な像を形成する単焦点レンズ系と、
     前記単焦点レンズ系により形成された光学的な前記像を電気的な画像信号に変換する撮像素子と、
    を備え、
     前記単焦点レンズ系は、物体側から像側へと順に、
      正のパワーを有する第1レンズ群と、
      開口絞りと、
      正のパワーを有する第2レンズ群と、
    を含み、
     前記第1レンズ群は、
      負のパワーを有する第1レンズ素子と、
      負のパワーを有する第2レンズ素子と、
      正のパワーを有する第3レンズ素子と、
    を含み、
     前記第2レンズ群は、
      パワーを有する第4レンズ素子と、
      正のパワーを有する第5レンズ素子と、
    を含み、
      fG1を第1レンズ群のd線に対する焦点距離、
      fG2を第2レンズ群のd線に対する焦点距離、
      wを半画角、
    とするとき、
      0.5 < fG1/fG2 < 3.0 ・・・(1)
      60 < w ・・・(6)
     で表される、条件(1)および条件(6)を満足するように構成される、
    撮像装置。
  8.  物体の光学的な像を電気的な画像信号に変換し、変換された前記画像信号の表示および記録の少なくとも一方を行う移動体であって、
     物体の光学的な前記像を形成する単焦点レンズ系と、
     前記単焦点レンズ系により形成された光学的な前記像を電気的な前記画像信号に変換する撮像素子と、
     前記撮像素子を制御するコントローラと、を備え、
     前記単焦点レンズ系は、物体側から像側へと順に、
      正のパワーを有する第1レンズ群と、
      開口絞りと、
      正のパワーを有する第2レンズ群と、
    を含み、
     前記第1レンズ群は、
      負のパワーを有する第1レンズ素子と、
      負のパワーを有する第2レンズ素子と、
      正のパワーを有する第3レンズ素子と、
    を含み、
     前記第2レンズ群は、
      パワーを有する第4レンズ素子と、
      正のパワーを有する第5レンズ素子と、
    を含み、
      fG1を第1レンズ群のd線に対する焦点距離、
      fG2を第2レンズ群のd線に対する焦点距離、
      wを半画角、
    とするとき、
      0.5 < fG1/fG2 < 3.0 ・・・(1)
      60 < w ・・・(6)
     で表される、条件(1)および条件(6)を満足するように構成される、
    移動体。
PCT/JP2018/007353 2017-04-14 2018-02-27 単焦点レンズ系、単焦点レンズ系を有する撮像装置および撮像装置を有する移動体 WO2018190014A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019512372A JP6748856B2 (ja) 2017-04-14 2018-02-27 単焦点レンズ系、単焦点レンズ系を有する撮像装置および撮像装置を有する移動体
US16/483,187 US11029498B2 (en) 2017-04-14 2018-02-27 Single-focal lens system, imaging device having single-focal lens system, and moving body having imaging device
EP18784208.3A EP3611547B1 (en) 2017-04-14 2018-02-27 Single-focal lens system, imaging device having single-focal lens system, and moving body having imaging device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-080186 2017-04-14
JP2017080186 2017-04-14

Publications (1)

Publication Number Publication Date
WO2018190014A1 true WO2018190014A1 (ja) 2018-10-18

Family

ID=63793288

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/007353 WO2018190014A1 (ja) 2017-04-14 2018-02-27 単焦点レンズ系、単焦点レンズ系を有する撮像装置および撮像装置を有する移動体

Country Status (4)

Country Link
US (1) US11029498B2 (ja)
EP (1) EP3611547B1 (ja)
JP (1) JP6748856B2 (ja)
WO (1) WO2018190014A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110609379A (zh) * 2019-10-29 2019-12-24 长春理工大学 双通道共透镜式光学系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110716289B (zh) * 2019-12-12 2020-03-31 江西联创电子有限公司 光学成像镜头
CN113376800B (zh) * 2021-06-04 2022-09-23 江西凤凰光学科技有限公司 一种宽工作距大光圈广角tof镜头

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005227426A (ja) * 2004-02-12 2005-08-25 Nagano Kogaku Kenkyusho:Kk 広角レンズ
CN101261354A (zh) * 2007-03-06 2008-09-10 扬明光学股份有限公司 广角镜头
JP2009063877A (ja) * 2007-09-07 2009-03-26 Nidec Nissin Corp 超広角レンズ
JP2010008496A (ja) * 2008-06-24 2010-01-14 Panasonic Corp 広角レンズ、照明光学系、面発光装置
JP2010243711A (ja) * 2009-04-03 2010-10-28 Ricoh Co Ltd 広角レンズ及び撮像装置
US20120069140A1 (en) * 2010-09-20 2012-03-22 Largan Precision Co., Ltd. Wide-angle imaging lens assembly
US20130128369A1 (en) * 2011-11-22 2013-05-23 Samsung Electro-Mechanics Co., Ltd. Super wide angle lens module
JP2016038574A (ja) 2014-08-07 2016-03-22 ナルックス株式会社 撮像光学系

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003307674A (ja) 2002-04-18 2003-10-31 Kyocera Corp 超広角レンズ

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005227426A (ja) * 2004-02-12 2005-08-25 Nagano Kogaku Kenkyusho:Kk 広角レンズ
CN101261354A (zh) * 2007-03-06 2008-09-10 扬明光学股份有限公司 广角镜头
JP2009063877A (ja) * 2007-09-07 2009-03-26 Nidec Nissin Corp 超広角レンズ
JP2010008496A (ja) * 2008-06-24 2010-01-14 Panasonic Corp 広角レンズ、照明光学系、面発光装置
JP2010243711A (ja) * 2009-04-03 2010-10-28 Ricoh Co Ltd 広角レンズ及び撮像装置
US20120069140A1 (en) * 2010-09-20 2012-03-22 Largan Precision Co., Ltd. Wide-angle imaging lens assembly
US20130128369A1 (en) * 2011-11-22 2013-05-23 Samsung Electro-Mechanics Co., Ltd. Super wide angle lens module
JP2016038574A (ja) 2014-08-07 2016-03-22 ナルックス株式会社 撮像光学系

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3611547A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110609379A (zh) * 2019-10-29 2019-12-24 长春理工大学 双通道共透镜式光学系统
CN110609379B (zh) * 2019-10-29 2021-06-25 长春理工大学 双通道共透镜式光学系统

Also Published As

Publication number Publication date
JP6748856B2 (ja) 2020-09-02
JPWO2018190014A1 (ja) 2019-11-21
EP3611547A1 (en) 2020-02-19
EP3611547A4 (en) 2020-04-08
US11029498B2 (en) 2021-06-08
EP3611547B1 (en) 2022-12-28
US20190361207A1 (en) 2019-11-28

Similar Documents

Publication Publication Date Title
JP6740904B2 (ja) 撮像レンズおよび撮像装置
JP6812251B2 (ja) 結像光学系及び撮像装置
US10627600B2 (en) Imaging optical lens system, image capturing unit and electronic device
TWI417596B (zh) 廣視角攝影鏡頭
JP7245977B2 (ja) 単焦点レンズ系、および、カメラ
JP5335710B2 (ja) 撮像レンズおよび撮像装置
JP6449083B2 (ja) 撮像レンズ系及び撮像装置
JP6941456B2 (ja) 撮像レンズおよび撮像装置
CN105705980B (zh) 单焦点透镜系统、摄像机以及汽车
WO2018135269A1 (ja) 単焦点レンズ系、および、カメラ
JP6762789B2 (ja) 撮像レンズおよび撮像装置
WO2018066641A1 (ja) 撮像レンズ系及び撮像装置
JP6643201B2 (ja) 撮像レンズおよび撮像装置
JP6985410B2 (ja) 撮像レンズ系及び撮像装置
WO2018190014A1 (ja) 単焦点レンズ系、単焦点レンズ系を有する撮像装置および撮像装置を有する移動体
JP5313566B2 (ja) 撮像レンズおよびこれを用いた撮像装置
JP2016188893A (ja) 撮像レンズ系及び撮像装置
JP7267115B2 (ja) 光学レンズ系及び撮像装置
CN113960761B (zh) 光学镜头、摄像模组、电子设备及汽车
CN113625430A (zh) 光学系统、取像模组、电子设备及载具
TWI813196B (zh) 成像光學系統鏡組、取像裝置及電子裝置
US20240111130A1 (en) Optical system and camera module comprising same
CN210626766U (zh) 光学系统、摄像模组及汽车
WO2022264700A1 (ja) 撮像レンズ系、カメラモジュール、車載システム、移動体
KR20230089561A (ko) 광학계 및 이를 포함하는 카메라 모듈

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18784208

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019512372

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018784208

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018784208

Country of ref document: EP

Effective date: 20191114