WO2018188400A1 - 一种从煤焦油或煤直接液化油中提取酚类物质的方法 - Google Patents

一种从煤焦油或煤直接液化油中提取酚类物质的方法 Download PDF

Info

Publication number
WO2018188400A1
WO2018188400A1 PCT/CN2018/073313 CN2018073313W WO2018188400A1 WO 2018188400 A1 WO2018188400 A1 WO 2018188400A1 CN 2018073313 W CN2018073313 W CN 2018073313W WO 2018188400 A1 WO2018188400 A1 WO 2018188400A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
extractant
coal
extracting
coal tar
Prior art date
Application number
PCT/CN2018/073313
Other languages
English (en)
French (fr)
Inventor
罗和安
李泳霖
艾秋红
游奎一
严石
姜国璋
张新
Original Assignee
榆林市榆神工业区衡溢盐业有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 榆林市榆神工业区衡溢盐业有限公司 filed Critical 榆林市榆神工业区衡溢盐业有限公司
Publication of WO2018188400A1 publication Critical patent/WO2018188400A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/68Purification; separation; Use of additives, e.g. for stabilisation
    • C07C37/70Purification; separation; Use of additives, e.g. for stabilisation by physical treatment
    • C07C37/72Purification; separation; Use of additives, e.g. for stabilisation by physical treatment by liquid-liquid treatment
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10CWORKING-UP PITCH, ASPHALT, BITUMEN, TAR; PYROLIGNEOUS ACID
    • C10C1/00Working-up tar
    • C10C1/18Working-up tar by extraction with selective solvents

Definitions

  • the invention relates to the field of coal chemical industry, in particular to a method for extracting phenolic substances from coal tar or coal direct liquefaction oil by extraction.
  • Coal tar or coal direct liquefaction oil is a complex mixture of tens of thousands of components, such as more than 500 kinds of single compounds that have been separated and identified from coal tar, including phenol, naphthol and alkylphenol.
  • An acidic component The phenolic substances in coal tar or direct liquefied oil account for about 10% to 30% of the total mass. The presence of these phenolic substances has adverse effects on their subsequent processing, such as the use of coal tar to produce light oil. The presence of phenolic compounds will increase the consumption of hydrogen, and the water produced by the hydrogenation of phenolic compounds will affect the activity and life of the catalyst, thereby affecting the economics of the entire hydrogenation process. In addition, valuable components of phenolic compounds are not effectively utilized, which not only reduces the added value of coal tar, but also wastes natural resources.
  • the chemical method includes an alkali washing method, a sodium carbonate solution extraction method, a sodium hydrogen sulfide solution extraction method, and the like.
  • the alkali washing method is the main industrial application method at the present stage, and mainly includes an alkaline solution such as a sodium hydroxide solution or a calcium hydroxide solution as a method for extracting a phenol compound as an alkali washing agent.
  • the selective extraction method includes a hot water extraction method, a salt aqueous solution extraction method, and an alcohol aqueous solution extraction method.
  • CN104845662A discloses a method for extracting phenolic substances in coal tar fraction by using strong base weak acid salt as extracting agent and dichloromethane as stripping agent. Although the method is less corrosive, it recovers strong alkali weak acid salt. The rate is low and the phenol recovery rate is low.
  • CN102731262A discloses a method for extracting phenols from coal-based oils by using calcium hydroxide or calcium oxide materials, and mixing the coal-based oil with calcium hydroxide or calcium oxide solution, and then acidifying with CO 2 to obtain crude phenol.
  • No. 4,256,568 A discloses a method for removing phenolic substances from coal tar by using metal oxides and hydroxides, separating them to obtain hydroxy metal phenates, and heating them to be decomposed into crude phenol oil and metal oxides.
  • the method utilizes metal complexation and acid-base neutralization principle, and uses alkaline metal oxide or hydroxide to remove phenol, which inevitably causes corrosion to equipment and pipelines, crude phenol oil yield and purity are low, and energy consumption is large. Metal oxide or hydroxide recovery is low.
  • Supercritical fluid extraction method utilizes the unique properties of supercritical fluid, such as solvation ability and diffusion capacity.
  • US4827050 proposes a method for separating neutral oil, basic oil and acid oil in coal tar by using supercritical CO 2 as extractant. There is no waste generated during the extraction process, but the application conditions are harsh, the energy consumption is high, the material requirements of the equipment are high, and the investment cost is also large.
  • CN103896739B proposes the use of triacetin and / or sulfolane, or triacetin and / or sulfolane with glycerol, triethanolamine, triethylene glycol, tetraethylene glycol, dimethyl
  • triacetin and / or sulfolane with glycerol
  • triethanolamine triethylene glycol
  • tetraethylene glycol dimethyl
  • One or more mixed solvents of sulfone and diethanolamine are mixed as an extractant in any ratio, and the obtained phenol-containing solvent is separated by a rectification column, crude phenol oil is obtained at the top of the column, and an extractant is obtained at the bottom of the column, and is circulated.
  • the method has no waste water discharge, does not consume acid and alkali, does not corrode equipment, but has high energy consumption, and the crude phenol oil has low purity because a certain amount of neutral oil is entrained in the crude phenol oil.
  • CN102219649B Using alcohol water or aqueous alcohol amine solution as extracting agent, extracting phenols from coal tar distillate oil, and then using solvent such as toluene or ethers or alkanes as stripping agent, stripping phenols in aqueous solution, and then rectifying The stripping agent and phenols are separated.
  • CN105176556A reports the use of ammonia water, a strong base acid aqueous solution or an organic amine aqueous solution as an extractant, and a hydrocarbon solvent such as cyclohexane, n-hexane, toluene or cumene, an ether or an ester as a stripping agent.
  • US20040200717A also proposes a phenol purification method for extracting phenolic substances in oil by solvent extraction and stripping phenolic substances by stripping agent.
  • the above three invention methods have no waste water discharge and do not consume acid and alkali, but all of them have problems of high energy consumption and low recovery rate of extractant and stripping agent, and neutral oil in crude phenol oil.
  • the invention aims to provide a method for extracting phenolic substances from coal tar or coal direct liquefaction oil, which is characterized in that an organic amine aqueous solution is used as an extracting agent to extract phenolic substances in coal tar or coal direct liquefaction oil, and then Acidizing the extract phase with a gaseous acidifying agent to obtain a crude phenol oil and an extracting agent rich in acidifying agent, and then removing the acidifying agent in the extracting agent by heating or decompressing to realize regeneration and recycling of the extracting agent; desorbing The acid gas can be recycled as an acidifying agent or used in further processing. Therefore, the method for extracting phenol from coal tar or coal direct liquefaction oil provided by the invention has the characteristics of no consumption of acid and alkali, no waste generation and discharge, low energy consumption, high phenol extraction rate and high purity of crude phenol oil.
  • a method of extracting a phenolic substance from coal tar or direct coal liquefied oil comprising:
  • Extraction step extracting a phenolic substance in an oil raw material containing coal tar or direct coal liquefied oil using an extracting agent to obtain an extract phase (A) and a raffinate phase (B), wherein the extract phase (A) is An extractant rich in phenolic substances, and a raffinate phase (B) is a dephenolized oil;
  • Acidifier removal and extractant regeneration step acidifier removal and extractant regeneration for the acidifier-rich extractant phase (D) under heating or depressurization (for example, vacuum), collection and removal The acidifier (E) is removed, and a regenerated extractant is obtained at the same time;
  • the residual extractant is recovered from the raffinate phase (B) and the crude phenol oil (C), respectively, to obtain a purified dephenolized oil and a phenolic oil.
  • the residual extractant is recovered from the crude phenol oil (C) to obtain a refined phenolic oil.
  • the oil feedstock comprising coal tar or coal direct liquefaction oil used in step 1) of the above process is or is selected from:
  • Gasoline, diesel, kerosene or a portion of light oil from coal tar or direct coal liquefied oil is provided.
  • the gasoline, diesel, kerosene or light oil fractions derived from coal tar or direct coal liquefied oil described herein are relatively low viscous oils, respectively.
  • the extractant used in step 1) is an aqueous solution of an organic amine, preferably an aqueous solution of a C 1 -C 24 organic amine;
  • the C 1 -C 24 organic amine is or is selected from one or more of the following:
  • C 1 -C 24 hydrocarbyl amines such as methylamine, ethylamine, propylamine, butylamine, pentylamine, hexylamine, heptyl amine, octyl amine, nonyl amine, decyl amine, Dodecylamine, tetradecylamine, hexadecylamine, octadecylamine, eicosylamine, tetracosylamine, unsubstituted or substituted (eg halogen substituted) aniline, not a substituted or substituted (e.g., halogen substituted) benzylamine, cyclohexylamine, methylcyclohexylamine, cyclohexylmethylamine, N-methylcyclohexylamine or N-methylbenzylamine, and the like;
  • primary amines such as methylamine, ethylamine, propylamine,
  • Di(C 1 -C 16 hydrocarbyl)amines (secondary amines, ie monoamines having a secondary amine group), such as dimethylamine, diethylamine, methylethylamine, dipropylamine, A Propylamine, ethylpropylamine, dibutylamine, ethylbutylamine, dipentylamine, dihexylamine, diheptylamine, dioctylamine, dinonylamine, dinonylamine , bis(dodecyl)amine, di(tetradecyl)amine, di(hexadecyl)amine, di(octadecyl)amine, di(octadecyl)amine or di (twenty Tetraalkyl)amine, etc.;
  • Unsubstituted or hydroxy-substituted hydroxy group substituted on the C 2 -C 14 alkylene is C 2 -C 14 alkylene diamines (where two amine groups are each independently a primary or secondary amino group), for example, ethylene Amine, N-methylethylenediamine, N,N'-dimethylethylenediamine, 1,3-propanediamine, N-methyl, N'ethyl-1,3-propanediamine, dibutyl Amines (including various isomers such as 1, 2 or 1,3- or 1,4-butanediamine), pentadiammonium (including various isomers), hexamethylenediamine (including various isomers) ), 3-hydroxymethyl-hexanediamine, heptanediamine (including various isomers), 3-hydroxymethyl-heptanediamine, octanediamine (including various isomers), 3,5- Dihydroxyoctanediamine, decanediamine (including various isomers), decanediamine (including various iso
  • C 4 -C 16 polyalkylene polyamines which are not substituted by a hydroxyl group or substituted by a hydroxyl group on a C 2 -C 14 alkylene group, such as diethylenetriamine, triethylenetetramine, tetraethylene-5 Amine, pentaethylene hexamine, dipropylene triamine, tripropylene tetramine, tetrapropylene pentamine, pentapropylene hexamine, dibutylene triamine, tributylene tetramine, tetrabutadiene Pentylamine, triethylenediamine, dimethyldiethyltriamine, tris(2-hydroxy-1,3-propylene)tetramine or tetrakis(2-hydroxy-1,3-propylene) Pentaamine;
  • C 2 -C 18 organic alcohol amines preferably C 2 -C 10 organic alcohol amines; for example, monoethanolamine, diethanolamine, triethanolamine, monopropanolamine, dipropanolamine, tripropanolamine, monoisopropyl Alcoholamine, diisopropanolamine, triisopropanolamine, monobutanolamine, dibutanolamine, tributanolamine, hydroxybutyloxybutylamine, bis(hydroxybutyloxybutyl)amine , tris(hydroxybutyloxybutyl)amine, bis(hydroxybutyloxybutyloxybutyl)amine, tris(hydroxybutyloxybutyl)amine, bis(hydroxybutyloxybutyloxybutyl)amine, tris(hydroxybutyloxybutyloxybutyl)amine, and two of them a mixture of one or more; more preferably, monoethanolamine, diethanolamine, monopropanolamine, dipropanolamine, mono
  • the C 1 -C 24 organic amine is or is selected from one or more of the following:
  • Ethylenediamine N-methyl-ethylenediamine, N,N'-dimethylethylenediamine, 1,3-propanediamine, N-methyl, N'ethyl-1,3-propanediamine , butanediamine (including various isomers such as 1, 2 or 1,3- or 1,4-butanediamine), pentamethylene diamine (including various isomers), hexamethylene diamine (including various Isomer), 3-hydroxymethyl-hexanediamine, p or m-phenylenediamine, 3,3'-dichloro-4,4'-diphenylmethanediamine (MOCA), or piperazine;
  • MOCA 3,3'-dichloro-4,4'-diphenylmethanediamine
  • Diethylenetriamine, triethylenetetramine, or tetraethylenepentamine Diethylenetriamine, triethylenetetramine, or tetraethylenepentamine
  • C 2 -C 18 organic alcohol amines preferably monoethanolamine, diethanolamine, triethanolamine, monopropanolamine, monoisopropanolamine, or monobutanolamine.
  • the C 1 -C 24 organic amine is or is selected from one or more of the group consisting of ethanolamine, diethanolamine, triethanolamine, C 2 -C 6 fatty amine or C 2 -C 6 fatty diamine.
  • the mass fraction of the organic amine is generally from 5% to 90%, preferably from 10% to 80%, preferably from 20% to 70%, preferably from 30% to 70%, more preferably from 40% to 60% by weight.
  • the removed acidulant (E) is recycled, ie recycled for use in step 2).
  • the acidulating agent removed from the extractant can be recycled or it can be further processed.
  • the regenerated extractant is recycled, i.e., recycled for use in step 1).
  • the regenerated extractant is recycled for the extraction of phenolic substances from coal tar or direct coal liquefied oil.
  • the extraction operation may employ a single-stage or multi-stage extraction apparatus.
  • the extraction temperature is ⁇ 100 ° C, more preferably ⁇ 90 ° C, more preferably ⁇ 80 ° C.
  • the extraction operation pressure is ⁇ 2 MPa, more preferably ⁇ 1.8 MPa, and still more preferably ⁇ 1.6 MPa (absolute).
  • the acidifying agent in gaseous or gaseous form is an acid gas, preferably carbon dioxide, sulfur dioxide, or other industrial mixed gases (such as flue gases) containing carbon dioxide or/and sulfur dioxide.
  • the acidification in step 2) employs a conventional single or multistage gas liquid reaction apparatus.
  • the acidification temperature is ⁇ 100 ° C, more preferably ⁇ 90 ° C, more preferably ⁇ 80 ° C.
  • the acidification operating pressure is ⁇ 2 MPa, more preferably ⁇ 1.8 MPa, and even more preferably ⁇ 1.6 MPa (absolute).
  • the acidifier removal and extractant regeneration step 3 is carried out by using a single or multistage gas-liquid separation device.
  • the recovery of the residual extractant is carried out by means of water extraction or distillation. That is, the extracting agent is recovered by water extraction or distillation, and a small amount of the extracting agent in the dephenolized oil or crude phenol oil is removed and recovered, and the residual extractant content thereof is controlled to be ⁇ 0.5 wt%, preferably ⁇ 0.3 wt%.
  • the organic tar aqueous solution is used as an extracting agent to extract coal tar or coal direct liquefied oil, and the extracting phase is an extracting agent rich in phenolic substances, and the raffinate phase is dephenolized oil.
  • the coal tar or coal direct liquefied oil is a distillate including their distillate (especially fractions ⁇ 340 ° C) and they are directly with other oils having a lower viscosity (such as gasoline, diesel, kerosene, coal tar or coal) A mixed oil of light fractions in liquefied oil, etc.).
  • the extraction may be carried out by a conventional extraction apparatus such as a tower type or a single stage or a multistage tank or centrifugal type, and the extraction temperature is ⁇ 100 ° C, the pressure is ⁇ 2 MPa, preferably the temperature is ⁇ 80 ° C, and the pressure is ⁇ 1 MPa.
  • a conventional extraction apparatus such as a tower type or a single stage or a multistage tank or centrifugal type, and the extraction temperature is ⁇ 100 ° C, the pressure is ⁇ 2 MPa, preferably the temperature is ⁇ 80 ° C, and the pressure is ⁇ 1 MPa.
  • the aqueous solution of the organic amine is an ethanolamine, preferably a water soluble diethanolamine, triethanolamine, C or aliphatic amines like 2 -C 6 aliphatic diamines or more aqueous organic amine in a concentration (mass fraction) 5% to 90%, preferably 10% to 80%.
  • the acidifier is used as an acidifier to acidify the extractant rich in phenolic substances, and after acidification, the crude phenol oil and the acidifier-rich extractant are obtained by phase separation.
  • the acidification may be carried out by a conventional apparatus such as a tower type or a single stage or a multistage type, and the acidification temperature is ⁇ 100 ° C, the pressure is ⁇ 2 MPa, preferably the temperature is ⁇ 80 ° C, and the pressure is ⁇ 1 MPa (absolute pressure).
  • the acidifying agent is industrial carbon dioxide or sulfur dioxide gas, or a mixed gas containing carbon dioxide or/and sulfur dioxide (such as flue gas, etc.), and the acid gas has a molar content of >10%.
  • the acidifier-rich extractant is heated or depressurized to remove the acidifying agent to realize the regeneration of the extracting agent; the regenerated extracting agent is recycled, and the removed acidifying agent can be recycled, or further Processing.
  • the removal or regeneration may be carried out by a conventional apparatus such as a tower type or a single stage or a multistage tank or centrifugal type, and the removal or regeneration temperature is ⁇ 50 ° C, the pressure is ⁇ 0.5 MPa, preferably the temperature is ⁇ 60 ° C, and the pressure is ⁇ 0.2. MPa.
  • a small amount of extractant is more or less dissolved in the dephenolized oil and the crude phenol oil obtained by the process or the steps 1 and 2, respectively, and can be separated and recovered by a conventional water extraction or distillation method.
  • the content of the extractant in the dephenolized oil and the crude phenol oil which are separated and recovered is controlled to be 0.5% or less; the recovered extractant is recycled.
  • the method for extracting phenol from coal tar or coal direct liquefaction oil has the characteristics of no consumption of acid and alkali, no waste generation and discharge, low energy consumption, high phenol extraction rate and high purity of crude phenol oil.
  • Examples 2 to 7 The apparatus, method and procedure were the same as in Example 1, and other examples and results are shown in Table 1.
  • Example 8 The apparatus, method and procedure were the same as in Example 1, except that pure ethanolamine was used as an extractant, and the extracted water was dissolved into a 50% aqueous solution, which was acidified by industrial CO 2 gas, and other implementation conditions and results were included. Table 1.
  • Example 9 Apparatus, method and procedure were the same as in Example 1, except that the organic amine was 1,2-propylenediamine, and other examples and results are shown in Table 1.
  • Example 10 Apparatus, method and procedure were the same as in Example 1, except that industrial sulfur dioxide was used as the acidifying agent, and other examples and results are shown in Table 1.
  • Dephenolization rate (crude phenol oil mass x phenol content) / (coal tar mass x phenol content); (b) regenerated ethanolamine solution; (c) acidifier is industrial carbon dioxide.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

一种通过萃取手段从煤焦油或煤直接液化油中提取酚类化合物的方法,包括以下步骤:①对煤焦油或煤直接液化油中的酚类物质进行萃取,萃余相为脱酚油,萃取相为富含酚类物质的萃取剂;②采用酸化剂对萃取相进行酸化,得到粗酚油和富含酸化剂的萃取剂;③进行酸化剂脱除和萃取剂再生;④回收脱酚油和粗酚油中少量的萃取剂。

Description

一种从煤焦油或煤直接液化油中提取酚类物质的方法 技术领域
本发明涉及煤化工领域,具体涉及一种通过萃取从煤焦油或煤直接液化油中提取酚类物质的方法。
背景技术
煤焦油或煤直接液化油是一种组分上万种的复杂混合物,如目前已从煤焦油中分离并认定的单种化合物约500余种,其中包含苯酚、萘酚和烷基酚等63种酸性组分。煤焦油或煤直接液化油中酚类物质约占其总质量的10%~30%,这些酚类物质的存在,对它们的后续加工存在不利影响,如利用煤焦油加氢生产轻质油时,酚类化合物的存在将增大氢气的消耗,而且酚类化合物加氢生成的水则会影响催化剂的活性与寿命,从而影响整个加氢生产工艺的经济性。此外,酚类化合物中有价值的组分未得到有效利用,不仅降低了煤焦油的附加值,而且浪费了自然资源。
因此,高效经济地将这些酚类物质从煤焦油或煤直接液化油中分离出来是它们深度加工的一个重要的研发课题。迄今为止,人们依据这些酚类物质的性质,已经探索出了多种酚类化合物的提取方法,如化学法、选择性溶剂抽提法、超临界流体萃取法等。化学法包含碱洗法、碳酸钠溶液抽提法、硫氢化钠溶液抽提法等。碱洗法为现阶段主要工业应用方法,主要包括氢氧化钠溶液、氢氧化钙溶液等碱性溶液作为碱洗剂提取酚类化合物的方法。选择性抽提法包含热水抽提法、盐类水溶液抽提法、醇类水溶液抽提法等。
化学法是目前应用或研发最为广泛的方法,主要是采用强碱溶液、强碱弱酸盐或金属氧化物等强碱溶液提酚。CN104845662A公开了一种采用强碱弱酸盐作萃取剂、二氯甲烷作为反萃取剂的提取煤焦油馏分中酚类物质的方法,该 方法虽然腐蚀性较小,但其强碱弱酸盐回收率低、苯酚回收率较低。CN102731262A公开了一种采用含有氢氧化钙或氧化钙物质提取煤基油品中酚类的方法,煤基油品与氢氧化钙或氧化钙溶液混合提酚后,采用CO 2酸化,得到粗酚油与石灰石,该法对设备腐蚀严重,酸化后产生大量碱渣难以处理,对环境影响较大。US4256568A公开了一种采用金属氧化物与氢氧化物脱除煤焦油中酚类物质,分离后得到羟基金属酚盐,再加热使其分解为粗酚油与金属氧化物的方法。该方法利用的金属络合和酸碱中和原理,使用碱性金属氧化物或氢氧化物脱酚,不可避免的对设备及管道造成腐蚀,粗酚油收率与纯度低,能耗大,金属氧化物或氢氧化物回收率低。
超临界流体萃取法是利用超临界流体的独特性质,如溶剂化能力与扩散能力,US4827050提出采用超临界CO 2作为萃取剂将煤焦油中的中性油、碱性油与酸性油分离的方法,该法提取过程中无废弃物产生,但其应用条件比较苛刻,能耗较高,对设备材质要求高,投资费用也较大。
对于选择性溶剂抽提法,CN103896739B提出采用三乙酸甘油酯和/或环丁砜,或者是三乙酸甘油酯和/或环丁砜与丙三醇、三乙醇胺、三甘醇、四甘醇、二甲基亚砜和二乙醇胺中的一种或多种以任意比例混合的混合溶剂作为萃取剂,萃取获得的含酚溶剂再经精馏塔分离,塔顶得到粗酚油,塔底获得萃取剂,并循环利用,该方法无废水排放,不消耗酸碱,不腐蚀设备,但能耗较高,而且由于粗酚油中夹带了一定量中性油,所以粗酚油的纯度较低。CN102219649B采用醇水或醇胺水溶液作为萃取剂,萃取煤焦油馏分油中的酚类,再用甲苯或醚类、烷烃类等溶剂作为反萃剂,反萃水溶液中的酚类,再通过精馏分离反萃剂和酚类。CN105176556A报道了采用氨水、强碱弱酸盐水溶液或有机胺水溶液等作为萃取剂,用烃类溶剂环己烷、正己烷、甲苯或异丙苯、醚类物质或酯类物质等作为反萃取剂。US20040200717A也提出了一种采用溶剂萃取油中酚类物质,反萃剂反萃酚类物质的酚类提纯方法。上述三个发明方法都无废水排放,不消耗酸碱,但均存在萃取剂与反萃取剂回收能耗较高和回收率较低、粗 酚油中夹带中性油等问题。
发明内容
本发明旨在提供一种从煤焦油或煤直接液化油中提取酚类物质的方法,其特征在于:以有机胺水溶液作为萃取剂,萃取煤焦油或煤直接液化油中的酚类物质,再以气态酸化剂对萃取相进行酸化,从而得到粗酚油和富含酸化剂的萃取剂,再通过加热或减压脱除萃取剂中酸化剂,实现萃取剂的再生和循环使用;解吸出来的酸性气体可以循环作为酸化剂使用或进一步加工利用。因此,本发明提供的从煤焦油或煤直接液化油中提酚的方法具有不消耗酸碱、无三废产生和排放、能耗物耗较低、提酚率和粗酚油纯度较高等特点。
根据本发明,提供从煤焦油或煤直接液化油中提取酚类物质的方法,该方法包括:
1)萃取步骤:采用萃取剂对包含煤焦油或煤直接液化油的油品原料中的酚类物质进行提取,获得萃取相(A)和萃余相(B),其中萃取相(A)为富含酚类物质的萃取剂,和萃余相(B)为脱酚油;
2)酸化步骤:采用气态或气体形式的酸化剂对于萃取相(A)进行酸化,通过分离获得粗酚油(C)和富含酸化剂的萃取剂(D);
3)酸化剂脱除和萃取剂再生步骤:在加热或减压(例如抽真空)的情况下对于富含酸化剂的萃取剂相(D)进行酸化剂脱除和萃取剂再生,收集所脱除出来的酸化剂(E),同时获得再生的萃取剂;
4)残留萃取剂的回收:分别从萃余相(B)和粗酚油(C)中回收残留的萃取剂,获得精制的脱酚油和酚类油。
一般而言,在以上步骤4)残留萃取剂的回收中,“分别从萃余相(B)和粗酚油(C)中回收残留的萃取剂,获得精制的脱酚油和酚类油”包括或是指:
从萃余相(B)中回收残留的萃取剂,获得精制的脱酚油;和/或
从粗酚油(C)中回收残留的萃取剂,获得精制的酚类油。
优选,在上述方法的步骤1)中所使用的包含煤焦油或煤直接液化油的油品原料是或选自于:
(1)煤焦油,
(2)煤直接液化油,
(3)由(1)煤焦油与(2)煤直接液化油所形成的混合油,
以及
(4)由(1)或(2)或(3)与选自于下列这些油品当中的任何一种或多种所形成的混合油:
汽油、柴油、煤油或来自于煤焦油或煤直接液化油中的轻质油部分。
这里所述的汽油、柴油、煤油或来自于煤焦油或煤直接液化油中的轻质油部分分别是相对低粘性油品。
优选,在步骤1)中所使用的萃取剂是有机胺的水溶液,优选C 1-C 24有机胺的水溶液;
优选,C 1-C 24有机胺类是或选自于下列这些中的一种或多种:
C 1-C 24烃基胺类(伯胺类),例如甲胺,乙胺,丙胺,丁基胺,戊基胺,己基胺,庚基胺,辛基胺,壬基胺,癸基胺,十二烷基胺,十四烷基胺,十六烷基胺,十八烷基胺,二十烷基胺,二十四烷基胺,未取代或取代(如卤素取代)的苯胺,未取代或取代(如卤素取代)的苄基胺,环己基胺,甲基环己基胺,环己基甲基胺,N-甲基环己基胺或N-甲基苄胺,等等;
二(C 1-C 16烃基)胺类(仲胺类,即具有一个仲胺基的单胺类),例如二甲胺,二乙基胺,甲基乙基胺,二丙基胺,甲基丙基胺,乙基丙基胺,二丁基胺,乙 基丁基胺,二戊基胺,二己基胺,二庚基胺,二辛基胺,二壬基胺,二癸基胺,二(十二烷基)胺,二(十四烷基)胺,二(十六烷基)胺,二(十八烷基)胺,二(二十烷基)胺或二(二十四烷基)胺,等等;
未被羟基取代或在C 2-C 14亚烃基上被羟基取代的C 2-C 14亚烃基二胺类(其中两个胺基各自独立地是伯胺基或仲胺基),例如乙二胺,N-甲基乙二胺,N,N’-二甲基乙二胺,1,3-丙二胺,N-甲基,N’乙基-1,3-丙二胺,丁二胺(包括各种异构体,如1,2或1,3-或1,4-丁二胺),戊二铵(包括各种异构体),己二胺(包括各种异构体),3-羟甲基-己二胺,庚二胺(包括各种异构体),3-羟甲基-庚二胺,辛二胺(包括各种异构体),3,5-二羟基辛二胺,壬二胺(包括各种异构体),癸二胺(包括各种异构体),3,6-二羟基癸二胺,十二烷二胺,十四烷二胺,p或m-苯二胺,3,3’-二氯-4,4’-二苯基甲烷二胺(MOCA),或哌嗪,等等;
未被羟基取代或在C 2-C 14亚烃基上被羟基取代的C 4-C 16多亚烷基多胺类,例如二亚乙基三胺,三亚乙基四胺,四亚乙基五胺,五亚乙基六胺,二亚丙基三胺,三亚丙基四胺,四亚丙基五胺,五亚丙基六胺,二亚丁基三胺,三亚丁基四胺,四亚丁基五胺,三亚乙基二胺,二甲基二乙基三胺,三(2-羟基-1,3-亚丙基)四胺或四(2-羟基-1,3-亚丙基)五胺;等;
未被羟基取代或任选被羟基取代的具有三个伯胺基的C 3-C 18有机三胺类或具有四个伯胺基的C 5-C 18有机四胺类,例如1,3,5-三氨基-环己烷,1,3,5-三(氨基乙基)-环己烷,1,3,5-三(氨基丙基)-1,3,5-六氢化三嗪,1,3,5-三(甲基胺丙基)-1,3,5-六氢化三嗪,或,三聚氰胺,季戊四胺,等等;或
C 2-C 18有机醇胺类;优选C 2-C 10有机醇胺类;例如,单乙醇胺,二乙醇胺, 三乙醇胺,单丙醇胺,二丙醇胺,三丙醇胺,单异丙醇胺,二异丙醇胺,三异丙醇胺,单丁醇胺,二丁醇胺,三丁醇胺,羟丁基氧基丁基胺,二(羟丁基氧基丁基)胺,三(羟丁基氧基丁基)胺,二(羟丁基氧基丁基氧基丁基)胺,三(羟丁基氧基丁基氧基丁基)胺,和它们中的两种或多种的混合物;更优选,一乙醇胺,二乙醇胺,一丙醇胺,二丙醇胺,单异丙醇胺,二异丙醇胺,单丁醇胺,或二丁醇胺,等。
更优选的是,C 1-C 24有机胺类是或选自于下列这些中的一种或多种:
甲胺,乙胺,丙胺,丁基胺,戊基胺,己基胺,未取代或取代(如卤素取代)的苯胺,未取代或取代(如卤素取代)的苄基胺,环己基胺,或甲基环己基胺;
二甲胺,二乙基胺,甲基乙基胺,二丙基胺,或甲基丙基胺;
乙二胺,N-甲基-乙二胺,N,N’-二甲基乙二胺,1,3-丙二胺,N-甲基,N’乙基-1,3-丙二胺,丁二胺(包括各种异构体,如1,2或1,3-或1,4-丁二胺),戊二铵(包括各种异构体),己二胺(包括各种异构体),3-羟甲基-己二胺,p或m-苯二胺,3,3’-二氯-4,4’-二苯基甲烷二胺(MOCA),或哌嗪;
二亚乙基三胺,三亚乙基四胺,或四亚乙基五胺;
1,3,5-三氨基-环己烷,1,3,5-三(氨基乙基)-环己烷,1,3,5-三(氨基丙基)-1,3,5-六氢化三嗪,1,3,5-三(甲基胺丙基)-1,3,5-六氢化三嗪,或,三聚氰胺,季戊四胺;
C 2-C 18有机醇胺类;优选一乙醇胺,二乙醇胺,三乙醇胺,一丙醇胺,一异丙醇胺,或单丁醇胺。
优选,C 1-C 24有机胺类是或选自于下列这些中的一种或多种:乙醇胺、二 乙醇胺、三乙醇胺、C 2-C 6脂肪胺或C 2-C 6脂肪二胺。
对于有机胺的水溶液的浓度,有机胺的质量分数一般为5%-90%、优选10%-80%、优选20%-70%、优选30-70%、更优选40-60%(wt)
优选,脱除出来的酸化剂(E)可循环使用,即循环用于步骤2)中。从萃取剂中脱除出来的酸化剂可循环使用,或也可作进一步加工处理。
优选,再生的萃取剂可循环使用,即循环用于步骤1)中。再生的萃取剂循环用于萃取煤焦油或煤直接液化油中的酚类物质。
在步骤1)中,萃取操作可采用单级或多级萃取装置。一般,萃取温度为≤100℃、更优选≤90℃、更优选≤80℃。一般,萃取操作压力为≤2MPa、更优选为≤1.8MPa、更优选为≤1.6MPa(绝对)。
一般来说,在本申请中,气态或气体形式的酸化剂是酸性气体,优选是二氧化碳,二氧化硫,或含有二氧化碳或/和二氧化硫的其它工业混合气体(如烟道气)。
优选,步骤2)中的酸化采用常规的单级或多级气液反应装置。一般,酸化温度为≤100℃、更优选≤90℃、更优选≤80℃。一般,酸化操作压力为≤2MPa、更优选为≤1.8MPa、更优选为≤1.6MPa(绝对)。
一般,酸化剂脱除和萃取剂再生步骤3)是通过采用单级或多级气液分离装置来进行的。
一般,残留萃取剂的回收是通过采用水萃或蒸馏方式来进行的。即,所述的萃取剂回收为采用水萃或蒸馏,对所述脱酚油或粗酚油中少量萃取剂进行脱除和回收,将其中的残留萃取剂含量控制<0.5wt%,优选<0.3wt%。
因此,根据本发明,提供通过萃取法从煤焦油或煤直接液化油中提取酚类物质的方法,该方法包括以下几个主要过程或步骤:
(1)以有机胺水溶液作为萃取剂对煤焦油或煤直接液化油进行萃取,萃 取相为富含酚类物质的萃取剂,萃余相为脱酚油。
所述的煤焦油或煤直接液化油,是包括它们的馏分油(特别是≤340℃的馏分)以及它们与具有较低粘度的其它油品(如汽油、柴油、煤油、煤焦油或煤直接液化油中的轻质馏分等)的混合油。
所述的萃取可采用塔式或单级或多级的釜式或离心式等常规萃取设备,萃取温度≤100℃、压力≤2MPa,优选温度≤80℃、压力≤1MPa。
所述的有机胺水溶液为乙醇胺、二乙醇胺、三乙醇胺、C 2-C 6的脂肪胺或脂肪二胺等水溶性较好的一种或多种有机胺的水溶液,其浓度(质量分数)为5%~90%,优选10%~80%。
(2)以酸性气体为酸化剂,对富含酚类物质的萃取剂进行酸化,酸化后分相可得粗酚油和富含酸化剂的萃取剂。
所述的酸化可采用塔式或单级或多级的釜式等常规设备,酸化温度≤100℃、压力≤2MPa,优选温度≤80℃、压力≤1MPa(绝压)。
所述的酸化剂为工业二氧化碳或二氧化硫气体,或含二氧化碳或/和二氧化硫的混合气体(如烟道气等),其酸性气体的摩尔含量>10%。
(3)将富含酸化剂的萃取剂升温或减压,以脱除其中的酸化剂,实现萃取剂的再生;再生的萃取剂循环使用,脱除出来的酸化剂可循环使用,也可进一步加工处理。
所述的脱除或再生可采用塔式或单级或多级的釜式或离心式等常规设备,脱除或再生温度≥50℃、压力≤0.5MPa,优选温度≥60℃、压力≤0.2MPa。
(4)由过程或步骤1和2分别所获得的脱酚油和粗酚油中都或多或少溶有少量的萃取剂,可以采用通过常规的水萃或蒸馏方法对其进行分离回收,将经分离回收处理的脱酚油和粗酚油中的萃取剂含量控制在0.5%以下;回收的萃取剂循环使用。
本发明的优点和效果
从煤焦油或煤直接液化油中提酚的方法具有不消耗酸碱、无三废产生和排 放、能耗物耗较低、提酚率和粗酚油纯度较高等特点。
具体实施方式
下面结合实施例对本发明作进一步说明,实施例不应该解释为对本发明范围的限制。
实施例1:
将67.0g浓度为60%的乙醇胺水溶液和40.0g馏程为120~340℃、总酚含量为47.7%的煤焦油馏分油加入到250ml带搅拌三口烧瓶中,在60℃和常压下充分搅拌1h,分液后获得23.0g脱酚油和83.3g含酚乙醇胺水溶液。将含酚乙醇胺水溶液置入150ml烧瓶中,在60℃和常压下通入工业CO 2气体对其进行酸化,1h后冷却、分液得到19.9g粗酚油和71.6g富含CO 2乙醇胺水溶液;将富含CO 2有机胺水溶液置入烧瓶中升温至80℃进行解吸,在常压下搅拌1h,得64.9g再生乙醇胺水溶液。脱酚油和粗酚油中均含有少量的乙醇胺和水,分别用质量比(水:油)为1:1的水萃取其中的乙醇胺,分别获得21.7g的脱酚油(乙醇胺含量为0.11%)和15.6g的粗酚油(乙醇胺含量为0.46%)。计算得脱酚率为81.12%。
实施例2~7:装置、方法和步骤与实施例1相同,其它实施条件和结果列入表1。
实施例8:装置、方法和步骤与实施例1相同,但以纯乙醇胺作萃取剂,萃取相加水溶解成50%水溶液,再以工业CO 2气体对其进行酸化,其它实施条件和结果列入表1。
实施例9:装置、方法和步骤与实施例1相同,但有机胺采用1,2-丙二胺,其它实施条件和结果列入表1。
实施例10:装置、方法和步骤与实施例1相同,但采用工业二氧化硫作为酸化剂,其它实施条件和结果列入表1。
表1
Figure PCTCN2018073313-appb-000001
注:(a)脱酚率=(粗酚油质量×酚含量)/(煤焦油质量×酚含量);(b)再生乙醇胺溶液;(c)酸化剂为工业二氧化碳。

Claims (10)

  1. 一种从煤焦油或煤直接液化油中提取酚类物质的方法,该方法包括:
    1)萃取步骤:采用萃取剂对包含煤焦油或煤直接液化油的油品原料中的酚类物质进行提取,获得萃取相(A)和萃余相(B),其中萃取相(A)为富含酚类物质的萃取剂,和萃余相(B)为脱酚油;
    2)酸化步骤:采用气态或气体形式的酸化剂对于萃取相(A)进行酸化,通过分离获得粗酚油(C)和富含酸化剂的萃取剂(D);
    3)酸化剂脱除和萃取剂再生步骤:在加热或减压(例如抽真空)的情况下对于富含酸化剂的萃取剂相(D)进行酸化剂脱除和萃取剂再生,收集所脱除出来的酸化剂(E),同时获得再生的萃取剂;
    4)残留萃取剂的回收:分别从萃余相(B)和粗酚油(C)中回收残留的萃取剂,获得精制的脱酚油和酚类油。
  2. 根据权利要求1所述的方法,其中在步骤4)残留萃取剂的回收中,“分别从萃余相(B)和粗酚油(C)中回收残留的萃取剂,获得精制的脱酚油和酚类油”包括或是指:
    从萃余相(B)中回收残留的萃取剂,获得精制的脱酚油;和/或
    从粗酚油(C)中回收残留的萃取剂,获得精制的酚类油。
  3. 根据权利要求1或2所述的方法,其中步骤1)中所述的油品原料是:
    (1)煤焦油,
    (2)煤直接液化油,
    (3)由(1)煤焦油与(2)煤直接液化油所形成的混合油,
    以及
    (4)由(1)或(2)或(3)与选自于下列这些油品当中的任何一种或多种所形 成的混合油:
    汽油、柴油、煤油或来自于煤焦油或煤直接液化油中的轻质油部分。
  4. 根据权利要求1-3中任何一项所述的方法,其中步骤1)中所使用的萃取剂是(水溶性)有机胺的水溶液,优选C 1-C 24有机胺的水溶液。
  5. 根据权利要求4所述的方法,其中
    C 1-C 24有机胺类是或选自于下列这些中的一种或多种:
    C 1-C 24烃基胺类;
    二(C 1-C 16烃基)胺类;
    未被羟基取代或在C 2-C 14亚烃基上被羟基取代的C 2-C 14亚烃基二胺类;
    未被羟基取代或在C 2-C 14亚烃基上被羟基取代的C 4-C 16多亚烷基多胺类;
    未被羟基取代或任选被羟基取代的具有三个伯胺基的C 3-C 18有机三胺类或具有四个伯胺基的C 5-C 18有机四胺类;或
    C 2-C 18有机醇胺类。
  6. 根据权利要求1-5中任何一项所述的方法,其中有机胺的水溶液中,有机胺的质量分数为5%-90%、优选10%-80%、优选20%-70%、优选30-70%;和/或
    其中萃取采用单级或多级萃取装置,萃取温度为≤100℃、更优选≤90℃、更优选≤80℃,及萃取操作压力为≤2MPa、更优选为≤1.8MPa、更优选为≤1.6MPa。
  7. 根据权利要求1-6中任何一项所述的方法,其中气态或气体形式的酸化剂是酸性气体,优选是二氧化碳,二氧化硫,或含有二氧化碳或/和二氧化硫的其它工业混合气体(如烟道气)。
  8. 根据权利要求1-7中任何一项所述的方法,其中步骤2)中的酸化采用常规的单级或多级气液反应装置,酸化温度为≤100℃、更优选≤90℃、更优选 ≤80℃和操作压力为≤2MPa、更优选为≤1.8MPa、更优选为≤1.6MPa。
  9. 根据权利要求1-8中任何一项所述的方法,其中酸化剂脱除和萃取剂再生步骤3)是通过采用单级或多级气液分离装置来进行的。
  10. 根据权利要求1-9中任何一项所述的方法,其中残留萃取剂的回收是通过采用水萃或蒸馏方式来进行的。
PCT/CN2018/073313 2017-04-13 2018-01-19 一种从煤焦油或煤直接液化油中提取酚类物质的方法 WO2018188400A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710242204.XA CN106986750B (zh) 2017-04-13 2017-04-13 一种从煤焦油或煤直接液化油中提取酚类物质的方法
CN201710242204.X 2017-04-13

Publications (1)

Publication Number Publication Date
WO2018188400A1 true WO2018188400A1 (zh) 2018-10-18

Family

ID=59415152

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/073313 WO2018188400A1 (zh) 2017-04-13 2018-01-19 一种从煤焦油或煤直接液化油中提取酚类物质的方法

Country Status (2)

Country Link
CN (1) CN106986750B (zh)
WO (1) WO2018188400A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111408331A (zh) * 2020-05-06 2020-07-14 马钢奥瑟亚化工有限公司 一种用于生产粗酚的环保型高效分解反应器及使用方法
WO2020186031A1 (en) * 2019-03-12 2020-09-17 University Of Wyoming High value products derived from coal-based feedstocks
US12006219B2 (en) 2019-03-12 2024-06-11 University Of Wyoming Thermo-chemical processing of coal via solvent extraction

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106986750B (zh) * 2017-04-13 2019-07-16 榆林市榆神工业区衡溢盐业有限公司 一种从煤焦油或煤直接液化油中提取酚类物质的方法
CN108034453B (zh) * 2017-11-14 2020-05-26 神华集团有限责任公司 从煤直接液化油中提取酚类化合物的方法
CN108395367B (zh) * 2018-03-06 2020-12-25 宁夏大学 一种煤焦油中分离酚类化合物的方法
CN108484368A (zh) * 2018-05-15 2018-09-04 青岛科技大学 一种利用乙醇胺从煤焦油中提取酚类化合物的方法
CN109825322B (zh) * 2019-01-21 2021-07-23 湘潭大学 一种从煤焦油或煤直接液化油中提取酚类物质的方法
CN110015949B (zh) * 2019-05-16 2022-07-05 湘潭大学 一种从含酚原料油中提取酚类物质的方法
CN111574330A (zh) * 2020-06-17 2020-08-25 北京石油化工学院 一种粗酚和有机胺混合物的分离方法
CN112811499A (zh) * 2020-12-30 2021-05-18 昆山美淼环保科技有限公司 一种硫酸钠废水处理脱酚萃取剂的再生系统
CN114317973A (zh) * 2021-12-17 2022-04-12 北京工业大学 一种废旧发光二极管有机组分热解回收方法
CN115724722B (zh) * 2022-10-31 2024-06-18 中国神华煤制油化工有限公司 一种降低粗酚中中性油含量的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3302812A1 (de) * 1983-01-28 1984-08-02 Bayer Ag, 5090 Leverkusen Verfahren zur gewinnung von phenolen aus kohlenwasserstoffen
CN1094025A (zh) * 1992-04-23 1994-10-26 通用电气公司 从苯酚焦油中提取苯酚的方法
CN101143805A (zh) * 2006-09-15 2008-03-19 中国石油化工股份有限公司 一种从含酚原料油中分离酚类化合物的方法
CN102219649A (zh) * 2011-04-22 2011-10-19 煤炭科学研究总院 一种从煤液化油或煤焦油中提取酚类化合物的方法
CN106986750A (zh) * 2017-04-13 2017-07-28 榆林市榆神工业区衡溢盐业有限公司 一种从煤焦油或煤直接液化油中提取酚类物质的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105176556A (zh) * 2015-09-11 2015-12-23 波露明(北京)科技有限公司 一种煤焦油含酚馏分油分离酚的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3302812A1 (de) * 1983-01-28 1984-08-02 Bayer Ag, 5090 Leverkusen Verfahren zur gewinnung von phenolen aus kohlenwasserstoffen
CN1094025A (zh) * 1992-04-23 1994-10-26 通用电气公司 从苯酚焦油中提取苯酚的方法
CN101143805A (zh) * 2006-09-15 2008-03-19 中国石油化工股份有限公司 一种从含酚原料油中分离酚类化合物的方法
CN102219649A (zh) * 2011-04-22 2011-10-19 煤炭科学研究总院 一种从煤液化油或煤焦油中提取酚类化合物的方法
CN106986750A (zh) * 2017-04-13 2017-07-28 榆林市榆神工业区衡溢盐业有限公司 一种从煤焦油或煤直接液化油中提取酚类物质的方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020186031A1 (en) * 2019-03-12 2020-09-17 University Of Wyoming High value products derived from coal-based feedstocks
US12006219B2 (en) 2019-03-12 2024-06-11 University Of Wyoming Thermo-chemical processing of coal via solvent extraction
CN111408331A (zh) * 2020-05-06 2020-07-14 马钢奥瑟亚化工有限公司 一种用于生产粗酚的环保型高效分解反应器及使用方法

Also Published As

Publication number Publication date
CN106986750B (zh) 2019-07-16
CN106986750A (zh) 2017-07-28

Similar Documents

Publication Publication Date Title
WO2018188400A1 (zh) 一种从煤焦油或煤直接液化油中提取酚类物质的方法
CN100484894C (zh) 单塔加压汽提处理煤气化废水的方法及其装置
WO2018090460A1 (zh) 炼油废水生产中不合格液氨的再精制工艺及系统
DE102005033837B4 (de) Verfahren zum Entfernen von sauren Gasen und Ammoniak aus einem Fluidstrom
CN110002629B (zh) 一种高浓度酚氨废水的除油脱酚联合处理方法及系统
AU2011328098A1 (en) Amine-containing absorption medium, process and apparatus for absorption of acidic gases from gas mixtures
CN109569193B (zh) 一种吸收与再生同步的脱硫方法
CN107760353B (zh) 一种采用可逆萃取溶剂进行油固分离的方法
CN103896739B (zh) 通过萃取精馏手段提取煤直接液化油中酚类化合物的方法
CN110740801A (zh) 用于净化气体的具有至少两个喷射阶段的方法和设备以及用途
CN109825322B (zh) 一种从煤焦油或煤直接液化油中提取酚类物质的方法
US2486778A (en) Process for the separation of acid gases from gaseous mixtures
CN102159679B (zh) 在石油烃脱硫工艺中回收氢气的方法及装置
JP2001521018A (ja) アルカノールアミンの精製方法
CN101809128A (zh) 从气体物流中除去二氧化碳的方法
CN217459117U (zh) 一种焦化废水综合治理装置
RU2175882C2 (ru) Способ подготовки углеводородного газа к транспорту &#34;оптимет&#34;
CN110947262B (zh) 基于水合物的颗粒物/废气协同脱除系统及方法
CA1166272A (en) Process for removal of hydroxy and/or mercapto- substituted hydrocarbons from coal liquids
CN110903861B (zh) 萃取萘的萃取剂及其制备方法和应用以及荒煤气除萘的方法及装置
CN104030316B (zh) 一种荒煤气生产无水氨的新工艺
CN115572614B (zh) 一种脱除费托油中窄馏分含氧化合物的方法
CN114873823B (zh) 一种焦化废水综合治理装置及工艺方法
CN102659758A (zh) 粗苯加氢精制中环丁砜的再生提纯方法
CN221319446U (zh) 基于双效酚塔的节约高温位蒸汽的酚氨废水处理设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18783819

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18783819

Country of ref document: EP

Kind code of ref document: A1