WO2018090460A1 - 炼油废水生产中不合格液氨的再精制工艺及系统 - Google Patents

炼油废水生产中不合格液氨的再精制工艺及系统 Download PDF

Info

Publication number
WO2018090460A1
WO2018090460A1 PCT/CN2016/112850 CN2016112850W WO2018090460A1 WO 2018090460 A1 WO2018090460 A1 WO 2018090460A1 CN 2016112850 W CN2016112850 W CN 2016112850W WO 2018090460 A1 WO2018090460 A1 WO 2018090460A1
Authority
WO
WIPO (PCT)
Prior art keywords
ammonia
liquid ammonia
tower
oil
liquid
Prior art date
Application number
PCT/CN2016/112850
Other languages
English (en)
French (fr)
Inventor
李洪
韩祯
李鑫钢
高鑫
丛山
Original Assignee
天津大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天津大学 filed Critical 天津大学
Publication of WO2018090460A1 publication Critical patent/WO2018090460A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C1/00Ammonia; Compounds thereof
    • C01C1/02Preparation, purification or separation of ammonia
    • C01C1/024Purification

Definitions

  • the invention belongs to the technical field of chemical separation engineering, and relates to a re-refining system and an operation process when the production liquid of the refining process is unqualified, and the purification of liquid ammonia is realized by purification techniques such as distillation, adsorption and extraction.
  • the acidic sewage generated by hydrocracking, hydrorefining, aromatics extraction and other devices is treated by sewage stripping and ammonia refining, and the produced liquid ammonia is used as a by-product of the refinery to improve economic benefits.
  • the sewage stripping unit is divided into a double tower process and a single tower process, the double tower process deacidification tower produces a high concentration of H 2 S, the deamination tower produces a sulfur-containing crude ammonia gas, and the single tower process tower tops out H 2 S, The stripping side line is out of crude ammonia.
  • the crude ammonia gas is condensed in three parts and then enters the ammonia refining system.
  • the H 2 S in the ammonia ammonia is removed by concentrated ammonia washing or freeze crystallization, and fixed in the form of NH 4 HS, thereby obtaining a high-purity qualified industrial.
  • Use ammonia GB536-88 standard stipulates that the qualified product liquid ammonia (wt%) ⁇ 99.6%, residue (wt%) ⁇ 0.4%, hydrogen sulfide ⁇ 5ppm, is a colorless transparent liquid.
  • the temperature and pressure of the sewage stripping device and the ammonia refining device are not easy to control, and the ammonia compressor is easy to leak.
  • liquid ammonia produced is oily, and ammonia purity, color, H2S, and residue exceeding the standard may occur, so that liquid ammonia cannot be used normally.
  • liquid ammonia impurity content of refinery wastewater stripping production is complex, containing organic sulfur, inorganic sulfur, phenols, iron and so on. Under the abnormal production conditions, the liquid ammonia production and impurity content are unstable, and it is difficult to reuse the product oil to the original refining device.
  • the object of the present invention is to provide a rerefining system and an operation process for producing unqualified liquid ammonia in a refining process.
  • the operating conditions of the rerefining system are flexibly adjusted for the diversity of impurities in the liquid ammonia, and the liquid ammonia is purified at a small cost to separate and recover the impurity oil.
  • a re-refining process for unqualified liquid ammonia in refinery wastewater production the steps are as follows:
  • Unqualified liquid ammonia enters the liquid ammonia rectification tower, and the oil, water and impurities dissolved in oil and water are separated by heating; the purified ammonia gas is adsorbed and decontaminated from the top of the tower by decompression; liquid ammonia a mixture of impurities such as oil, water, and ammonia in the distillation column enters the extraction column from the bottom of the column;
  • the adsorption and impurity removal process removes the gas phase impurities in the gas ammonia, and further removes the H 2 S to ensure that the H 2 S content of the outlet reaches the standard; the ammonia ammonia which removes the H 2 S is partially condensed and then enters the liquid ammonia reflux tank;
  • the extraction tower extracts ammonia from the oil with an extractant, dissolves the water-containing impurities; the oil water is separated in the extraction tower, the impurity oil is extracted from the top of the tower through the oil storage tank, and the ammonia water mixture at the bottom of the extraction tower enters the ammonia recovery tower;
  • ammonia recovery oil in the top of the ammonia recovery tower recovers the ammonia and oil in the water, and after condensation, enters the ammonia water reflux tank.
  • the bottom of the ammonia recovery tower is mixed with trace ammonia, oil, and heavy impurities, and is discharged or reused after cooling;
  • the liquid ammonia rectification column operating pressure is 1.6 MPa to 2.0 MPa, the top operating temperature is 40 ° C to 50 ° C; the extraction column operating pressure is 1.5 MPa to 1.9 MPa, and the operating temperature is 35 ° C to 50 ° C
  • the operating pressure of the ammonia recovery tower is 1.5 MPa to 1.9 MPa, and the operating temperature at the top of the column is 40 ° C to 140 ° C depending on the ammonia concentration at the top of the column.
  • the unqualified liquid ammonia is derived from the unqualified liquid ammonia produced by the sewage stripping.
  • liquid ammonia reflux tank a part of the liquid ammonia reflux tank is recovered as liquid ammonia, and another portion is refluxed to a liquid ammonia rectification column for secondary rectification.
  • the adsorbent used for the adsorption and impurity removal is an activated carbon adsorbent or a zinc oxide adsorbent.
  • a re-refining system for unqualified liquid ammonia in refinery wastewater production including liquid ammonia rectification column, first-stage adsorption tank, secondary adsorption tank, extraction tower and ammonia recovery tower, the connection relationship and gas-liquid direction are as follows: liquid ammonia and A feed ammonia port is arranged in the middle of the liquid ammonia rectification column for separating the impurities, and the bottom material circulation port of the liquid ammonia rectification column is connected to the bottom reboiler feed port of the bottom of the column, and the first reboiler discharge port is connected to the secondary reboiler.
  • the feed port, the secondary reboiler material outlet is connected to the liquid ammonia rectification column circulating feed inlet; the liquid ammonia rectification tower bottom heavy component material outlet is connected to the extraction tower feed port;
  • the top gas phase outlet of the liquid ammonia rectification column is connected in series with the first-stage adsorption tank and the second-stage adsorption tank, and a pressure reducing valve is installed between the outlet and the first-stage adsorption tank, and the second-stage adsorption tank outlet is connected with the liquid ammonia condenser inlet and the condenser outlet.
  • a pressure reducing valve is installed between the outlet and the first-stage adsorption tank
  • the second-stage adsorption tank outlet is connected with the liquid ammonia condenser inlet and the condenser outlet.
  • Connecting the liquid ammonia reflux tank; the two outlets of the liquid ammonia reflux tank are respectively connected to the liquid ammonia storage tank and the liquid ammonia rectification tower return inlet;
  • the top of the extraction tower is connected with an impurity oil outlet to the oil storage tank at the top of the tower, and the extraction tower extractant inlet is connected to the circulating solvent tank outlet; the ammonia tower mixture outlet of the extraction tower bottom is connected to the ammonia recovery tower side line inlet, the ammonia recovery tower The ejector outlet is connected to the ammonia return tank through the ammonia water condenser; the oily sewage outlet at the bottom of the ammonia recovery tower is connected to the sewage treatment unit through heat exchange of the heat exchanger.
  • the oily sewage outlet at the bottom of the ammonia recovery tower is exchanged through a primary reboiler of the liquid ammonia rectification column.
  • the oily sewage discharged from the cooled ammonia recovery tower is connected to the inlet of the circulating solvent tank.
  • outlet of the ammonia reflux tank is connected to the feed line of the liquid ammonia rectification column.
  • the invention develops the unqualified oil-containing liquid ammonia with unstable liquid ammonia production and impurity content in the prior art, adopts distillation technology to remove oil, adsorbs technology to remove gas phase impurities such as H 2 S, and extracts and removes residues of phenols and the like.
  • the system and its operation process realize the purification and reuse of unqualified liquid ammonia.
  • the system can accurately adjust the operation process according to the content of liquid ammonia impurities to be treated, so that the process of unqualified liquid ammonia is more flexible and efficient.
  • the first-stage adsorption tank and the second-stage adsorption tank are disposed between the gas phase outlet of the liquid ammonia refining tower and the condenser, avoiding repeated heating and cooling, and setting a pressure reducing valve to further decompress the outlet gas ammonia to ensure Ammonia is passed through the adsorption tank in the form of a gas to achieve adsorption of gaseous impurities in the ammonia.
  • ammonia recovery bottom sewage is partially recirculated for use in the extraction tower after the first-stage reboiler of the liquid ammonia rectification tower is heated, thereby achieving double reuse of energy and materials, which can minimize the waste heat discharge of the system waste water, and save energy.
  • the reduction of emissions and the industrialization of installations are of great significance.
  • Figure 1 Process flow diagram of rerefining system for unqualified liquid ammonia in refinery wastewater production.
  • the unqualified liquid ammonia 17 from the stripping of the sewage enters the liquid ammonia rectification column 1, and is heated by the liquid ammonia rectification column primary reboiler 7 and the secondary reboiler 6, to separate the oil and water in the liquid ammonia, and Impurity dissolved in oil and water; purified ammonia gas is depressurized from the top of the tower by the pressure reducing valve 16 and then enters the primary adsorption tank 2; liquid ammonia distillation tower 1 bottom oil, water and other impurities and ammonia mixture from the bottom Entering the extraction tower 8;
  • the primary reboiler heat source may be a heat source generated from a self-circulation of the system, and the secondary reboiler heat source is a low pressure steam.
  • the extraction tower 8 extracts ammonia from the oil with water as an extracting agent, dissolves the water impurities, and recycles the water, and supplements the water 18 through the circulating solvent (water of the present application) tank 9 to replenish water from the top of the extraction tower 8 for the extraction system; Separating in the extraction tower, the impurity oil 20 is recovered from the top of the tower via the oil storage tank 10, and the ammonia water mixture at the bottom of the extraction tower is fed to the ammonia recovery tower 11;
  • the ammonia recovery tower 11 is heated by the ammonia water reboiler 14, and the ammonia and oil in the water are recovered from the top of the tower, condensed by the ammonia condenser 12 into concentrated ammonia water to enter the ammonia reflux tank 13, and partially returned to the liquid ammonia distillation column 1, and the ammonia recovery tower 11
  • the bottom of the tower is oily sewage mixed with trace ammonia, oil and heavy impurities, and the liquid at the bottom of the ammonia recovery tower 11 is exchanged by the primary reboiler 7 of the liquid ammonia distillation column 1, and then cooled by the sewage aftercooler 15 to At room temperature, 4/5 of the circulating extractant is returned to the circulating solvent (water) tank of the extraction column 8, 9, 5 to the sewage treatment unit.
  • the operating pressure of the liquid ammonia rectification column is 1.6 MPa to 2.0 MPa, the operating temperature at the top of the column is 40 ° C to 50 ° C; the operating pressure of the extraction column is 1.5 MPa ⁇ 1.9Mpa, operating temperature is 35 ° C ⁇ 50 ° C; ammonia recovery tower operating pressure is 1.5MPa ⁇ 1.9Mpa, depending on the top ammonia concentration, the top operating temperature is 40 ° C ⁇ 140 ° C.
  • the refinement system of liquid ammonia comprises liquid ammonia rectification tower 1, first adsorption tank 2, secondary adsorption tank 3, extraction Tower 8 and ammonia recovery tower 11, the connection relationship and gas-liquid direction are as follows: liquid ammonia and impurities are separated in the middle of the liquid ammonia rectification column 1 to set the feed port, and the liquid ammonia distillation column bottom material circulation port is connected to the bottom of the column.
  • the boiling device 7 feed port the primary reboiler discharge port is connected to the secondary reboiler 6 feed port, the secondary reboiler material outlet port is connected to the liquid ammonia rectification column circulating feed port; the liquid ammonia distillation column
  • the bottom heavy component material outlet is connected to the inlet of the extraction tower 8;
  • the liquid ammonia rectification tower 1 top gas phase outlet is sequentially connected in series with the first adsorption tank 2 and the second adsorption tank 3, and a pressure reducing valve 16 is installed between the outlet and the first adsorption tank, and the secondary adsorption tank outlet is connected with the liquid ammonia condenser 4
  • the inlet and the condenser outlet are connected to the liquid ammonia reflux tank 5; the two outlets of the liquid ammonia reflux tank are respectively connected to the liquid ammonia storage tank and the liquid ammonia rectification tower return inlet;
  • the extraction tower 8 top impurity oil outlet is connected to the oil storage tank 10 at the top of the tower, the extraction tower 8 extractant feed port is connected to the circulating solvent tank 9 outlet port; the extraction tower 8 bottom ammonia water mixture outlet is connected to the ammonia recovery tower 11 side line feeding
  • the ammonia outlet tower 11 top gas outlet is connected to the ammonia water reflux tank 13 through an ammonia water condenser; the oily sewage outlet at the bottom of the ammonia recovery tower 11 is connected to the sewage treatment unit through heat exchange of the heat exchanger.
  • the oil-containing sewage outlet at the bottom of the ammonia recovery tower 11 is exchanged with the first-stage reboiler 7 of the liquid ammonia rectification column 1 to improve the heat source of the liquid ammonia rectification column 1 material circulation.
  • the ammonia recovery bottom sewage is partially recirculated for use in the extraction tower after the first-stage reboiler of the liquid ammonia distillation tower is heated, and the double reuse of energy and materials can be realized, which can minimize the waste heat discharge of the system waste water, and save energy and reduce emissions. And the industrialization of the device is of great significance.
  • the oil-containing sewage discharged from the cooled ammonia recovery tower 11 is connected to the liquid inlet of the circulating solvent tank 9, and can be used as an extraction solvent for secondary use, thereby reducing the amount of water consumed.
  • the liquid outlet of the ammonia reflux tank 13 may be connected to the feed line of the liquid ammonia rectification column 1.
  • the waste liquid ammonia treatment of a refinery is used to explain the re-refining system and process of the refinery waste liquid ammonia of the present invention.
  • the specific operation steps and descriptions are as follows:
  • a refinery company about 15,000 tons / year of unqualified liquid ammonia products, composed of liquid ammonia (wt%) 98%, C 5 -C 7 light oil, water and phenol residues total (wt%) 2%, hydrogen sulfide 50ppm
  • the liquid refining system of this application is used to purify the liquid ammonia.
  • the ammonia gas with a purity of 99.8% after purification is depressurized from the top of the column by the pressure reducing valve 16 to 1.58 MPa into the primary adsorption tank 2, and activated carbon adsorption is used to remove traces of C 5 , C 6 and most of the H 2 in the gaseous ammonia. S.
  • the secondary adsorption tank 3 further removes H 2 S by using zinc oxide adsorption to ensure that the outlet H 2 S content is 5 ppm or less.
  • the ammonia ammonia from which H 2 S is removed is condensed by liquid ammonia condenser 4 into liquid ammonia into liquid ammonia reflux tank 5, 30% liquid ammonia is refluxed, 70% is qualified product liquid ammonia 19 liquid ammonia tank storage, liquid ammonia recovery rate 99.6%,.
  • Liquid ammonia distillation column 1 A mixture having a 25% ammonia content at the bottom of the column enters the extraction column 8 from the bottom of the column, and extracts ammonia and phenol from the oil with water as an extractant, and recycles the water. 50 kg / h of make-up water 18 through the circulating solvent (water) tank 9 from the top of the extraction tower 8 The extraction system replenishes water. The oil water is separated in the column, and 29.7 kg/h of the impurity oil 20 is taken out from the top of the tower through the oil storage tank 10, and the ammonia water mixture having a bottom ammonia content of 3% is introduced into the ammonia recovery tower 11.
  • the ammonia water reboiler 14 of the ammonia recovery tower 11 is heated by medium pressure steam, and the ammonia content of the ammonia recovery is 80% ammonia water, and is condensed by the ammonia water condenser 12 into concentrated ammonia water to enter the ammonia reflux tank 13, 20% ammonia water reflux, 80% ammonia water.
  • the sewage discharged from the bottom of the tower contains 3.1% of organic matter and 10 ppm of ammonia.
  • the sewage aftercooler 15 is cooled to 40 ° C, and 400 kg / h is returned as a circulating extractant.
  • the solvent (water) tank was 9,56 kg/h to the sewage treatment unit.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

提供一种炼油废水生产中不合格液氨的再精制工艺及系统。该系统包括液氨精馏塔(1)、一级吸附罐(2),二级吸附罐(3)、萃取塔(8)以及氨回收塔(11),连接关系及气液走向为:液氨与杂质分离的液氨精馏塔(1)中部设置进料口,液氨精馏塔(1)塔底物料循环口连接塔底一级再沸器(7)进料口,一级再沸器(7)出料口连接二级再沸器(6)进料口,二级再沸器(6)物料出口连接液氨精馏塔(1)循环进料口;液氨精馏塔(1)塔底重组分物料出口连接萃取塔(8)进料口。该系统可根据需处理液氨杂质含量精确调整操作工艺,使不合格液氨的处理过程更为灵活高效。还包括再精制工艺,其采用蒸馏技术除油,吸附技术去除H 2S等气相杂质,萃取法去除酚类等残余物,实现不合格液氨的提纯再利用。

Description

炼油废水生产中不合格液氨的再精制工艺及系统 技术领域
本发明属化工分离工程技术领域,涉及一种炼油过程生产液氨不合格时的再精制系统及操作工艺,采用蒸馏、吸附、萃取等提纯技术实现液氨的净化。
背景技术
炼油过程中加氢裂化、加氢精制、芳烃抽提等装置产生的酸性污水经污水汽提和氨精制处理,生产的液氨作为炼油厂副产品提高经济效益。污水汽提装置分为双塔流程和单塔流程,双塔流程脱酸塔产出高浓度的H2S,脱氨塔产出含硫粗氨气,单塔流程塔顶出H2S,汽提侧线出粗氨气。粗氨气经三分冷凝后进入氨精制系统,在氨精制系统中由浓氨水洗涤或冷冻结晶去除气氨中的H2S,使其以NH4HS形式固定,从而得到高纯度合格的工业用氨。GB536-88标准规定合格品液氨(wt%)≥99.6%,残留物(wt%)≤0.4%,硫化氢≤5ppm,为无色透明液体。然而生产过程中,污水汽提装置和氨精制装置温度压力不容易控制,氨压缩机容易泄漏,当生产不正常时酸性污水中将大量带油,造成液氨质量波动。生产的液氨含油,还会出现氨纯度、颜色、H2S、残余物超标等问题使液氨无法正常使用。
研究表明炼油污水汽提生产的液氨杂质含量较为复杂,含有机硫、无机硫、酚类、铁元素等。生产不正常工况下液氨产量及杂质含量不稳定,且产品含油回用至原精制装置难度较大。
发明内容
本发明的目的在于提供一种炼油过程生产不合格液氨的再精制系统及操作工艺。在炼油厂生产出不合格液氨情况下,针对也液氨中杂质的多样性,灵活调节再精制系统的操作条件,以较小代价提纯液氨,分离回收杂质油。
本发明采用的技术方案是:
一种炼油废水生产中不合格液氨的再精制工艺,步骤如下:
⑴不合格液氨进入液氨精馏塔,经加热分离液氨中的油、水、以及溶于油和水的杂质;提纯的氨气从塔顶由减压后进行吸附除杂;液氨精馏塔塔底油、水等杂质与氨的混合物自塔底进入萃取塔;
⑵吸附除杂过程除去气氨中的气相杂质,再进一步脱除H2S,保证出口H2S含量达标;除去H2S的气氨一部分冷凝后进入液氨回流罐;
⑶萃取塔以萃取剂萃取油中的氨,溶水性杂质;油水在萃取塔塔中分离,杂质油经油储罐由塔顶采出,萃取塔塔底的氨水混合物进入氨回收塔;
⑷氨回收塔的塔顶回收水中氨和油,经冷凝后进入氨水回流罐,氨回收塔塔底为混合微量氨、油,重杂质的含油污水,冷却后排出或回用;
而且,所述液氨精馏塔操作压力为1.6MPa~2.0Mpa,塔顶操作温度为40℃~50℃;所述萃取塔操作压力为1.5MPa~1.9Mpa,操作温度为35℃~50℃;所述氨回收塔操作压力为1.5MPa~1.9Mpa,根据塔顶氨浓度不同塔顶操作温度为40℃~140℃。
而且,所述不合格液氨来自污水汽提产生的不合格液氨。
而且,所述液氨回流罐的一部分作为液氨回收,另一部分回流至液氨精馏塔进行二次精馏。
而且,所述吸附除杂使用的吸附剂为活性炭吸附剂、氧化锌吸附剂。
一种炼油废水生产中不合格液氨的再精制系统,包括液氨精馏塔、一级吸附罐,二级吸附罐、萃取塔以及氨回收塔,连接关系及气液走向如下:液氨与杂质分离的液氨精馏塔中部设置进料口,液氨精馏塔塔底物料循环口连接塔底一级再沸器进料口,一级再沸器出料口连接二级再沸器进料口,二级再沸器物料出口连接液氨精馏塔循环进料口;液氨精馏塔塔底重组分物料出口连接萃取塔进料口;
液氨精馏塔塔顶气相出口依次串联一级吸附罐和二级吸附罐,在出口与一级吸附罐之间安装减压阀,二级吸附罐出口连接液氨冷凝器入口,冷凝器出口连接液氨回流罐;液氨回流罐的两个出口分别连接液氨储罐和液氨精馏塔回流进料口;
萃取塔塔顶杂质油出口连接塔顶的油储罐,萃取塔萃取剂进料口连接循环溶剂罐出液口;萃取塔塔底氨水混合物出口连接氨回收塔侧线进料口,氨回收塔塔顶出气口经过氨水冷凝器连接氨水回流罐;氨回收塔塔底的含油污水出口经换热器换热后连接污水处理单元。
而且,将氨回收塔塔底的含油污水出口经液氨精馏塔的一级再沸器换热。
而且,将冷却后的氨回收塔排除的含油污水连接循环溶剂罐的进液口。
而且,将氨水回流罐的出液口连接到液氨精馏塔的进料管线上。
本发明具有的有益效果:
本发明针对现有技术中液氨产量及杂质含量不稳定的不合格含油液氨开发了采用蒸馏技术除油,吸附技术去除H2S等气相杂质,萃取法去除酚类等残余物的再精制系统及其操作工艺,实现不合格液氨的提纯再利用。该系统可根据需处理液氨杂质含量精确调整操作工艺,使不合格液氨的处理过程更为灵活高效。
本发明的精制系统中一级吸附罐和二级吸附罐设置于液氨精制塔塔顶气相出口与冷凝器之间,避免重复加热冷却,并设置减压阀将出口气氨进一步减压以保证氨以气体形式通过吸附罐,实现氨中气体杂质的吸附。另外,氨回收塔底污水为液氨精馏塔一级再沸器供热后又部分循环回用于萃取塔,实现能量和物料的双重回用,可最大程度降低系统废水废热排放,对于节能减排及装置的工业化具有重要意义。
附图说明
图1:炼油废水生产不合格液氨的再精制系统工艺流程图。
附图说明:1、液氨精馏塔;2、一级吸附罐,3、二级吸附罐;4液氨冷凝器;5、液氨回流罐;6、二级再沸器;7、塔底一级再沸器;8、萃取塔;9、循环溶剂罐;10、油储罐;11、氨回收塔;12、氨水冷凝器;13、氨水回流罐;14、氨水再沸器;15、污水后冷器;16、减压阀;17、液氨;18、补充水;19、产品液氨;20、杂质油;21、含油污水。
具体实施方式
下面结合具体实施例对本发明作进一步详述,以下实施例只是描述性的,不是限定性的,不能以此限定本发明的保护范围。
本发明提供的炼油废水生产中不合格液氨的再精制工艺及系统,其特征在于:步骤如下:
⑴来自污水汽提的不合格液氨17进入液氨精馏塔1,经液氨精馏塔一级再沸器7和二级再沸器6加热,分离液氨中的油、水、以及溶于油和水的杂质;提纯的氨气从塔顶由减压阀16减压后进入一级吸附罐2;液氨精馏塔1塔底油、水等杂质与氨的混合物自塔底进入萃取塔8;
其中一级再沸器热源可以是来自系统的自循环产生的热源,二级再沸器的热源为低压蒸汽。
⑵在一级吸附罐2内除去气氨中的微量CO2、H2S、轻油品等气相杂质,一级吸附罐2出口气相经二级吸附罐3进一步脱除H2S,保证出口H2S含量达标;除去H2S的气氨由液氨冷凝器4冷凝为液氨进入液氨回流罐5,1/3回流至液氨精馏塔1,2/3作为精制产品液氨19去液氨球罐储存;
⑶萃取塔8以水为萃取剂萃取油中的氨,溶水性杂质,并将水循环利用,补充水18经循环溶剂(本申请为水)罐9从萃取塔8塔顶为萃取系统补水;油水在萃取塔塔中分离,杂质油20经油储罐10由塔顶采出,萃取塔塔底的氨水混合物进入氨回收塔11;
⑷氨回收塔11由氨水再沸器14加热,塔顶回收水中氨和油,经氨水冷凝器12冷凝为浓氨水进入氨水回流罐13,部分回流返回液氨精馏塔1,氨回收塔11塔底为混合微量氨、油,重杂质的含油污水,氨回收塔11塔底出口液体经过液氨精馏塔1的一级再沸器7换热后,再经污水后冷器15冷却至常温,4/5的循环萃取剂返回萃取塔8的循环溶剂(水)罐9,1/5去污水处理单元。
本发明的炼油废水生产不合格液氨再精制系统的操作工艺,液氨精馏塔操作压力为1.6MPa~2.0Mpa,塔顶操作温度为40℃~50℃;萃取塔操作压力为1.5MPa~1.9Mpa,操作温度为35℃~50℃;氨回收塔操作压力为1.5MPa~1.9Mpa,根据塔顶氨浓度不同塔顶操作温度为40℃~140℃。
本发明提供的液氨的再精系统,包括液氨精馏塔1、一级吸附罐2,二级吸附罐3、萃取 塔8以及氨回收塔11,连接关系及气液走向如下:液氨与杂质分离的液氨精馏塔1中部设置进料口,液氨精馏塔塔底物料循环口连接塔底一级再沸器7进料口,一级再沸器出料口连接二级再沸器6进料口,二级再沸器物料出口出口连接液氨精馏塔循环进料口;液氨精馏塔塔底重组分物料出口连接萃取塔8进料口;
液氨精馏塔1塔顶气相出口依次串联一级吸附罐2和二级吸附罐3,在出口与一级吸附罐之间安装减压阀16,二级吸附罐出口连接液氨冷凝器4入口,冷凝器出口连接液氨回流罐5;液氨回流罐的两个出口分别连接液氨储罐和液氨精馏塔回流进料口;
萃取塔8塔顶杂质油出口连接塔顶的油储罐10,萃取塔8萃取剂进料口连接循环溶剂罐9出液口;萃取塔8塔底氨水混合物出口连接氨回收塔11侧线进料口,氨回收塔11塔顶出气口经过氨水冷凝器连接氨水回流罐13;氨回收塔11塔底的含油污水出口经换热器换热后连接污水处理单元。
本申请为了提高换热效率,将氨回收塔11塔底的含油污水出口经液氨精馏塔1的一级再沸器7换热,为液氨精馏塔1物料循环提高热源。氨回收塔底污水为液氨精馏塔一级再沸器供热后又部分循环回用于萃取塔,实现能量和物料的双重回用,可最大程度降低系统废水废热排放,对于节能减排及装置的工业化具有重要意义。
本申请为了节约循环溶剂,将冷却后的氨回收塔11排除的含油污水连接循环溶剂罐9的进液口,可以作为萃取溶剂,进行二次利用,降低水的耗用的量。
为了实现氨回收塔中回收的氨气的再次精制,可以将氨水回流罐13的出液口连接到液氨精馏塔1的进料管线上。
实施例:
本实施例以某炼油厂的废液氨处理为了来说明本发明的炼油废液氨的再精制系统及工艺,具体操作步骤和说明如下:
某炼油企业约15000吨/年不合格液氨产品,组成为液氨(wt%)98%,C5-C7轻油、水及酚类残留物共计(wt%)2%,硫化氢50ppm,采用此申请的再精制系统提纯液氨。
⑴1900kg/h不合格液氨17进入液氨精馏塔1,经液氨精馏塔一级再沸器7换热,二级再沸器6低压蒸汽加热,分离液氨中的油、水、以及酚类杂质。
⑵精制后纯度为99.8%的氨气从塔顶由减压阀16减压至1.58MPa进入一级吸附罐2,采用活性炭吸附,除去气氨中的微量C5、C6和大部分H2S。二级吸附罐3采用氧化锌吸附进一步脱除H2S,保证出口H2S含量5ppm以下。除去H2S的气氨由液氨冷凝器4冷凝为液氨进入液氨回流罐5,30%液氨回流,70%为合格的产品液氨19去液氨球罐储存,液氨回收率99.6%,。
⑶液氨精馏塔1塔底氨含量为25%的混合物自塔底进入萃取塔8,以水为萃取剂萃取油中的氨和酚,并将水循环利用。50kg/h的补充水18经循环溶剂(水)罐9从萃取塔8塔顶为 萃取系统补水。油水在塔中分离,29.7kg/h杂质油20经油储罐10由塔顶采出,塔底氨含量为3%的氨水混合物进入氨回收塔11。
⑷氨回收塔11的氨水再沸器14由中压蒸汽加热,塔顶回收氨含量为80%氨水,经氨水冷凝器12冷凝为浓氨水进入氨水回流罐13,20%氨水回流,80%氨水返回液氨精馏塔1。塔底排放的污水含有机物3.1%,氨10ppm,与液氨精馏塔1的一级再沸器7换热后,污水后冷器15冷却至40℃,400kg/h作为循环萃取剂返回循环溶剂(水)罐9,56kg/h去污水处理单元。
表1主要塔器设备操作工艺条件
Figure PCTCN2016112850-appb-000001
本发明提出的炼油废水生产不合格液氨的再精制系统及操作工艺,已经通过较佳的实施例子进行了描述,相关技术人员明显能在不脱离本发明内容、精神和范围内对本文所述的结构和设备进行改动或适当变更与组合,来实现本发明技术。特别需要指出的是,所有相类似的替换和改动对本领域技术人员来说是显而易见的,他们都被视为包括在本发明精神、范围和内容中。

Claims (9)

  1. 一种炼油废水生产中不合格液氨的再精制工艺,其特征在于:步骤如下:
    ⑴不合格液氨进入液氨精馏塔,经加热分离液氨中的油、水、以及溶于油和水的杂质;提纯的氨气从塔顶由减压后进行吸附除杂;液氨精馏塔塔底油、水等杂质与氨的混合物自塔底进入萃取塔;
    ⑵吸附除杂过程除去气氨中的气相杂质,再进一步脱除H2S,保证出口H2S含量达标;除去H2S的气氨一部分冷凝后进入液氨回流罐;
    ⑶萃取塔以萃取剂萃取油中的氨,溶水性杂质;油水在萃取塔塔中分离,杂质油经油储罐由塔顶采出,萃取塔塔底的氨水混合物进入氨回收塔;
    ⑷氨回收塔的塔顶回收水中氨和油,经冷凝后进入氨水回流罐,氨回收塔塔底为混合微量氨、油,重杂质的含油污水,冷却后排出或回用;
  2. 根据权利要求1所述的炼油废水生产中不合格液氨的再精制工艺,其特征在于:所述液氨精馏塔操作压力为1.6MPa~2.0Mpa,塔顶操作温度为40℃~50℃;所述萃取塔操作压力为1.5MPa~1.9Mpa,操作温度为35℃~50℃;所述氨回收塔操作压力为1.5MPa~1.9Mpa,根据塔顶氨浓度不同塔顶操作温度为40℃~140℃。
  3. 根据权利要求1所述的炼油废水生产中不合格液氨的再精制工艺,其特征在于:所述不合格液氨来自污水汽提产生的不合格液氨。
  4. 根据权利要求1所述的炼油废水生产中不合格液氨的再精制工艺,其特征在于:所述液氨回流罐的一部分作为液氨回收,另一部分回流至液氨精馏塔进行二次精馏。
  5. 根据权利要求1所述的炼油废水生产中不合格液氨的再精制工艺,其特征在于:所述吸附除杂使用的吸附剂为活性炭吸附剂、氧化锌吸附剂。
  6. 一种炼油废水生产中不合格液氨的再精制系统,其特征在于:包括液氨精馏塔、一级吸附罐,二级吸附罐、萃取塔以及氨回收塔,连接关系及气液走向如下:液氨与杂质分离的液氨精馏塔中部设置进料口,液氨精馏塔塔底物料循环口连接塔底一级再沸器进料口,一级再沸器出料口连接二级再沸器进料口,二级再沸器物料出口连接液氨精馏塔循环进料口;液氨精馏塔塔底重组分物料出口连接萃取塔进料口;
    液氨精馏塔塔顶气相出口依次串联一级吸附罐和二级吸附罐,在出口与一级吸附罐之间安装减压阀,二级吸附罐出口连接液氨冷凝器入口,冷凝器出口连接液氨回流罐;液氨回流罐的两个出口分别连接液氨储罐和液氨精馏塔回流进料口;
    萃取塔塔顶杂质油出口连接塔顶的油储罐,萃取塔萃取剂进料口连接循环溶剂罐出液口;萃取塔塔底氨水混合物出口连接氨回收塔侧线进料口,氨回收塔塔顶出气口经过氨水冷凝器连接氨水回流罐;氨回收塔塔底的含油污水出口经换热器换热后连接污水处理单元。
  7. 根据权利要求1所述的炼油废水生产中不合格液氨的再精制系统,其特征在于:将氨回收塔塔底的含油污水出口经液氨精馏塔的一级再沸器换热。
  8. 根据权利要求1所述的炼油废水生产中不合格液氨的再精制系统,其特征在于:将冷却后的氨回收塔排除的含油污水连接循环溶剂罐的进液口。
  9. 根据权利要求1所述的炼油废水生产中不合格液氨的再精制系统,其特征在于:将氨水回流罐的出液口连接到液氨精馏塔的进料管线上。
PCT/CN2016/112850 2016-11-17 2016-12-29 炼油废水生产中不合格液氨的再精制工艺及系统 WO2018090460A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611022262.3A CN106673013B (zh) 2016-11-17 2016-11-17 炼油废水生产中不合格液氨的再精制工艺及系统
CN201611022262.3 2016-11-17

Publications (1)

Publication Number Publication Date
WO2018090460A1 true WO2018090460A1 (zh) 2018-05-24

Family

ID=58866417

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/112850 WO2018090460A1 (zh) 2016-11-17 2016-12-29 炼油废水生产中不合格液氨的再精制工艺及系统

Country Status (2)

Country Link
CN (1) CN106673013B (zh)
WO (1) WO2018090460A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108751317A (zh) * 2018-07-25 2018-11-06 合肥中亚环保科技有限公司 一种新型萃取脱酚系统
CN109775676A (zh) * 2019-03-08 2019-05-21 南通江山农药化工股份有限公司 三氯化磷的精制设备及其工艺
CN110510636A (zh) * 2019-03-22 2019-11-29 兰州隆华特种气体科技有限公司 一种工业氨水及高纯氨联产系统及工艺
CN110527540A (zh) * 2019-09-30 2019-12-03 河南博海化工有限公司 一种洗油蒸馏装置
CN113716776A (zh) * 2021-08-31 2021-11-30 中建安装集团有限公司 一种含油高浓度酚氨废水处理装置及工艺
CN114671476A (zh) * 2022-05-06 2022-06-28 江苏盈天化学有限公司 一种连续从废液中回收高纯乙腈的装置及方法
CN114699783A (zh) * 2022-03-17 2022-07-05 南通汇羽丰新材料有限公司 一种偏氯乙烯单体提纯精馏装置及其方法
CN115106045A (zh) * 2022-07-26 2022-09-27 乐山协鑫新能源科技有限公司 一种渣浆高沸处理系统
CN117839267A (zh) * 2024-03-07 2024-04-09 山东天力科技工程有限公司 一种对位芳纶生产用溶剂回收系统及回收方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113398618A (zh) * 2020-03-17 2021-09-17 北京诺维新材科技有限公司 一种提高蒸馏分离效果的方法及蒸馏系统
CN113045089B (zh) * 2021-03-15 2023-04-18 盛隆资源再生(无锡)有限公司 一种蚀刻废液精制纯化的方法
CN113104861A (zh) * 2021-05-10 2021-07-13 中国科学院过程工程研究所 资源化回收含复杂显色杂质煤化工废水中氨的系统及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1059291A (zh) * 1990-08-31 1992-03-11 中国石油化工总公司抚顺石油化工研究院 一种从炼油厂酸性污水中回收硫和氨的带侧线抽出的单塔汽提方法
CN1145877A (zh) * 1995-09-18 1997-03-26 宗立海 从炼油污水中回收高纯度液氨的方法
CN102730719A (zh) * 2012-07-02 2012-10-17 大连保税区科利德化工科技开发有限公司 一种连续提纯工业氨装置及工艺
CN102992351A (zh) * 2012-11-05 2013-03-27 青岛科技大学 一种煤化工废水回收氨的净化方法和装置
JP5738900B2 (ja) * 2011-01-25 2015-06-24 住友精化株式会社 アンモニア精製システムおよびアンモニアの精製方法
CN206359258U (zh) * 2016-11-17 2017-07-28 天津大学 炼油废水生产中不合格液氨的再精制系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4062710B2 (ja) * 2003-12-03 2008-03-19 大陽日酸株式会社 アンモニアの精製方法及び精製装置
CN100360406C (zh) * 2005-11-25 2008-01-09 河南新飞科隆电源有限公司 一种从氨废水中回收氨的方法
JP2014005156A (ja) * 2012-06-21 2014-01-16 Sumitomo Seika Chem Co Ltd アンモニア精製システム
CN204981455U (zh) * 2015-06-08 2016-01-20 华南理工大学 一种碎煤加压气化高浓废水酚氨回收的清洁生产处理系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1059291A (zh) * 1990-08-31 1992-03-11 中国石油化工总公司抚顺石油化工研究院 一种从炼油厂酸性污水中回收硫和氨的带侧线抽出的单塔汽提方法
CN1145877A (zh) * 1995-09-18 1997-03-26 宗立海 从炼油污水中回收高纯度液氨的方法
JP5738900B2 (ja) * 2011-01-25 2015-06-24 住友精化株式会社 アンモニア精製システムおよびアンモニアの精製方法
CN102730719A (zh) * 2012-07-02 2012-10-17 大连保税区科利德化工科技开发有限公司 一种连续提纯工业氨装置及工艺
CN102992351A (zh) * 2012-11-05 2013-03-27 青岛科技大学 一种煤化工废水回收氨的净化方法和装置
CN206359258U (zh) * 2016-11-17 2017-07-28 天津大学 炼油废水生产中不合格液氨的再精制系统

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108751317A (zh) * 2018-07-25 2018-11-06 合肥中亚环保科技有限公司 一种新型萃取脱酚系统
CN109775676B (zh) * 2019-03-08 2024-03-05 南通江山农药化工股份有限公司 三氯化磷的精制设备及其工艺
CN109775676A (zh) * 2019-03-08 2019-05-21 南通江山农药化工股份有限公司 三氯化磷的精制设备及其工艺
CN110510636A (zh) * 2019-03-22 2019-11-29 兰州隆华特种气体科技有限公司 一种工业氨水及高纯氨联产系统及工艺
CN110510636B (zh) * 2019-03-22 2024-04-16 兰州隆华特种气体科技有限公司 一种工业氨水及高纯氨联产系统及工艺
CN110527540A (zh) * 2019-09-30 2019-12-03 河南博海化工有限公司 一种洗油蒸馏装置
CN110527540B (zh) * 2019-09-30 2024-02-02 河南博海化工有限公司 一种洗油蒸馏装置
CN113716776A (zh) * 2021-08-31 2021-11-30 中建安装集团有限公司 一种含油高浓度酚氨废水处理装置及工艺
CN114699783A (zh) * 2022-03-17 2022-07-05 南通汇羽丰新材料有限公司 一种偏氯乙烯单体提纯精馏装置及其方法
CN114671476A (zh) * 2022-05-06 2022-06-28 江苏盈天化学有限公司 一种连续从废液中回收高纯乙腈的装置及方法
CN115106045A (zh) * 2022-07-26 2022-09-27 乐山协鑫新能源科技有限公司 一种渣浆高沸处理系统
CN115106045B (zh) * 2022-07-26 2024-03-29 乐山协鑫新能源科技有限公司 一种渣浆高沸处理系统
CN117839267A (zh) * 2024-03-07 2024-04-09 山东天力科技工程有限公司 一种对位芳纶生产用溶剂回收系统及回收方法
CN117839267B (zh) * 2024-03-07 2024-05-17 山东天力科技工程有限公司 一种对位芳纶生产用溶剂回收系统及回收方法

Also Published As

Publication number Publication date
CN106673013B (zh) 2018-10-09
CN106673013A (zh) 2017-05-17

Similar Documents

Publication Publication Date Title
WO2018090460A1 (zh) 炼油废水生产中不合格液氨的再精制工艺及系统
CN106698785B (zh) 煤气化废水酚氨回收工艺
WO2016155101A1 (zh) 一种酚氨废水中酚油联合脱除系统及处理工艺
US10702799B2 (en) Systems and methods for enhanced separation of hydrogen sulfide and ammonia in a hydrogen sulfide stripper
CN102863112A (zh) 一种采用单塔同时脱酸脱氨的酚氨废水回收处理方法
US10793928B2 (en) Plant and method for the thermal treatment of solids
CN111646620B (zh) 一种兰炭废水处理方法及装置
CN206359258U (zh) 炼油废水生产中不合格液氨的再精制系统
CN112142618B (zh) 一种低浓度二甲基甲酰胺废水回收系统及方法
CN106082379A (zh) 汽提含酸含氨化工废水的方法
US10456735B2 (en) Systems and methods for removing hydrogen sulfide from an ammonia stream
CN111978233B (zh) 一种提高脱甲胺后nmp粗品纯度的装置
CN102351358A (zh) 一种煤直接液化含酚酸性水的处理方法及其系统
WO2019014083A2 (en) COMBINED SYSTEM FOR REMOVAL OF ACID GASES AND WATER FILTRATION
CN111252981A (zh) 一种含油煤化工废水处理方法和装置
CN114873823B (zh) 一种焦化废水综合治理装置及工艺方法
CN220003002U (zh) 一种用于变换酸水处理的单塔闭式汽提装置
US2086856A (en) Recovery of phenols from aqueous solutions
CN214654313U (zh) 一种煤化工废水的处理系统
CN113213686A (zh) 一种酚氨污水单塔处理系统及方法
CN117735570A (zh) 含氨酸性凝液脱除酸性气及氨回收的工艺方法
CN113086991A (zh) 一种含油氨气除油的工艺
CN112142140A (zh) 一种纳滤膜生产中废水回收装置及方法
CN114534307A (zh) 季戊四醇母液分离季戊四醇与甲酸钙的系统及方法
US20180326347A1 (en) Systems and methods for high co2 ammonia purification

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16921490

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16921490

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 05.11.2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16921490

Country of ref document: EP

Kind code of ref document: A1