WO2018186134A1 - ロボット装置、電子機器の製造装置及び製造方法 - Google Patents

ロボット装置、電子機器の製造装置及び製造方法 Download PDF

Info

Publication number
WO2018186134A1
WO2018186134A1 PCT/JP2018/009872 JP2018009872W WO2018186134A1 WO 2018186134 A1 WO2018186134 A1 WO 2018186134A1 JP 2018009872 W JP2018009872 W JP 2018009872W WO 2018186134 A1 WO2018186134 A1 WO 2018186134A1
Authority
WO
WIPO (PCT)
Prior art keywords
clamp
axial direction
robot
support surface
connector
Prior art date
Application number
PCT/JP2018/009872
Other languages
English (en)
French (fr)
Inventor
進一 竹山
弘邦 別府
英明 正村
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to US16/497,073 priority Critical patent/US11413765B2/en
Priority to CN201880021413.4A priority patent/CN110461552B/zh
Publication of WO2018186134A1 publication Critical patent/WO2018186134A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • B25J11/005Manipulators for mechanical processing tasks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/02Gripping heads and other end effectors servo-actuated
    • B25J15/0253Gripping heads and other end effectors servo-actuated comprising parallel grippers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P19/00Machines for simply fitting together or separating metal parts or objects, or metal and non-metal parts, whether or not involving some deformation; Tools or devices therefor so far as not provided for in other classes
    • B23P19/04Machines for simply fitting together or separating metal parts or objects, or metal and non-metal parts, whether or not involving some deformation; Tools or devices therefor so far as not provided for in other classes for assembling or disassembling parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/08Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
    • B25J13/081Touching devices, e.g. pressure-sensitive
    • B25J13/082Grasping-force detectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/0052Gripping heads and other end effectors multiple gripper units or multiple end effectors
    • B25J15/0066Gripping heads and other end effectors multiple gripper units or multiple end effectors with different types of end effectors, e.g. gripper and welding gun
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/06Gripping heads and other end effectors with vacuum or magnetic holding means
    • B25J15/0616Gripping heads and other end effectors with vacuum or magnetic holding means with vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/02Sensing devices
    • B25J19/021Optical sensing devices
    • B25J19/023Optical sensing devices including video camera means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/0084Programme-controlled manipulators comprising a plurality of manipulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R43/00Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors
    • H01R43/26Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors for engaging or disengaging the two parts of a coupling device
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/0061Tools for holding the circuit boards during processing; handling transport of printed circuit boards

Definitions

  • the present technology relates to a robot apparatus, an electronic apparatus manufacturing apparatus, and a manufacturing method used for assembling electronic components.
  • an object of the present technology is to provide a robot apparatus, an electronic apparatus manufacturing apparatus, and a manufacturing method that can appropriately perform assembly between components.
  • a robot apparatus includes a first robot.
  • the first robot includes a first articulated arm, a first clamping mechanism, and an ejection part.
  • the first clamp mechanism includes a first clamp claw and a second clamp claw.
  • the first clamp pawl is attached to the first articulated arm and has a first support surface.
  • the second clamp claw has a second support surface facing the first support surface in a first axial direction orthogonal to the first support surface, and the second clamp claw is opposed to the first clamp claw. It is configured to be relatively movable in the first axial direction.
  • the first clamp mechanism is configured to be able to hold an object in the first axial direction by the first support surface and the second support surface.
  • the ejection portion is provided on one of the first clamp claw and the second clamp claw, and is configured to eject fluid in a second axial direction orthogonal to the first axial direction. Is done.
  • the lock member can be maintained in an open state by, for example, ejecting air to the connector having the lock member while sandwiching the object. Accordingly, it is possible to appropriately assemble the object to the connector.
  • the second clamp pawl may further include a side surface orthogonal to the second axial direction, and the ejection portion may be provided on the side surface.
  • the first clamp pawl may further include a base portion and a connecting portion.
  • the base portion is fixed to the first articulated arm.
  • the connecting portion is connected between the base portion and the first support surface and extends in the first axial direction.
  • the robot apparatus may further include a force sensor.
  • the force sensor is disposed between the first articulated arm and the base portion and detects a force acting on the first clamp mechanism. Thereby, it becomes possible to control appropriately the clamping force etc. by the 1st clamp mechanism with respect to a target object.
  • the first clamp mechanism may further include an elevating member attached to the second clamp pawl and movable relative to the second clamp pawl in the first axial direction. Thereby, for example, with respect to the connector having the lock member, the lock member can be pushed down to the lock position by the elevating member.
  • the fluid ejected from the ejection section is not particularly limited, and may be air or liquid.
  • the robot apparatus may further include a second robot apparatus.
  • the second robot apparatus includes a second clamp mechanism capable of sandwiching the object, and a second articulated arm supporting the second clamp mechanism, and the second clamp device. The object is transferred from the mechanism to the first clamping mechanism.
  • the second robot may further include a suction part that sucks the target part.
  • the second clamp mechanism includes a pair of clamp claws that are opposed to each other in a uniaxial direction perpendicular to the suction direction of the object by the suction portion and can clamp the target object in the uniaxial direction. Have. Thereby, the pick-up of a target object and the transfer to a 1st robot can be performed appropriately.
  • the first robot may further include an imaging unit capable of photographing the object sandwiched by the first clamp mechanism. Thereby, the clamp position of a target object can be controlled appropriately.
  • An electronic device manufacturing apparatus is an electronic device manufacturing apparatus including a connector having a lock member that can be opened and closed, and a flexible wiring member having a connection terminal connected to the connector.
  • a joint arm, a clamp mechanism, and an ejection part are provided.
  • the clamp mechanism has a first clamp claw and a second clamp claw.
  • the first clamp claw is attached to the articulated arm and has a first support surface.
  • the second clamp claw has a second support surface facing the first support surface in a first axial direction orthogonal to the first support surface, and the second clamp claw is opposed to the first clamp claw. It is configured to be relatively movable in the first axial direction.
  • the clamp mechanism causes the flexible wiring member to protrude from the first support surface and the second support surface in a state where the connection terminal protrudes in a second axial direction orthogonal to the first axial direction. 1 is configured to be sandwiched in the axial direction.
  • the ejection portion is provided on one of the first clamp claw and the second clamp claw, and is configured to eject air to the lock member facing the second axial direction. Is done.
  • An electronic device manufacturing method is a method of manufacturing an electronic device including a connector having a lock member that can be opened and closed, and a flexible wiring member having a connection terminal connected to the connector, It includes holding the flexible wiring member in the thickness direction by a mechanism.
  • the clamp mechanism is transported to a position where the connection terminal faces the connector.
  • the lock member is released by ejecting air from the clamp mechanism to the connector.
  • the connection terminal is connected to the connector by bringing the flexible wiring member close to the connector by the clamp mechanism.
  • FIG. 1 is a schematic side view showing an electronic apparatus manufacturing apparatus (robot apparatus) according to an embodiment of the present technology.
  • robot apparatus an electronic apparatus manufacturing apparatus
  • FIG. 1 an application example of the present technology to an automatic connection process of wiring members, which is one manufacturing process of an electronic device, will be described.
  • the robot apparatus 1 of this embodiment includes a work table 2 that supports an assembly robot 100 (first robot), a transfer robot 200 (second robot), and a semi-finished product (hereinafter referred to as a workpiece W) of an electronic device. And a controller 3 that controls the driving of the assembly robot 100 and the transfer robot 200.
  • the assembly robot 100 includes a hand unit 101 and a multi-joint arm 102 (first multi-joint arm) capable of moving the hand unit 101 with six degrees of freedom.
  • the transfer robot 200 includes a hand unit 201 and a multi-joint arm 202 (second multi-joint arm) that can move the hand unit 201 with six-axis freedom.
  • the articulated arms 102 and 202 are arranged on the work table 2 or in the vicinity of the work table 2 and are connected to respective drive sources (not shown). Details of the hand units 101 and 102 will be described later.
  • the controller 3 is typically composed of a computer having a CPU (Central Processing Unit) and a memory, and is configured to drive the assembly robot 100 and the transfer robot 200 in accordance with a program stored in the memory. An example of controlling the robots 100 and 200 by the controller 3 will also be described later.
  • CPU Central Processing Unit
  • FIG. 2A is a schematic perspective view showing an example of the workpiece W
  • FIGS. 2B and 2C are schematic diagrams for explaining the processing procedure of the robot apparatus 1 for the workpiece W.
  • FIG. In the figure, an X axis, a Y axis, and a Z axis indicate triaxial directions orthogonal to each other, and the Z axis corresponds to a height direction (the same applies to FIG. 3).
  • the work W includes a work main body Wa, a circuit board Wb and an electronic unit Wc arranged on the work main body Wa.
  • Examples of the work main body Wa include a part of a case of an electronic device or a plate-like support disposed in the case.
  • the circuit board Wb is a component mounting board on which various electronic components are mounted on a printed wiring board, and a connector part C is mounted on a part of the upper surface thereof.
  • the electronic unit Wc constitutes one function of the electronic device, and typically includes a computer constituted by a CPU, a memory, and the like.
  • the circuit board Wb and the electronic unit Wc are electrically connected to each other via the wiring member F.
  • the wiring member F is a flexible band-shaped connecting member such as FFC or FPC, one end of which is already connected to the electronic unit Wc, and the other end (terminal portion Fa) is not connected to the connector part C.
  • the workpiece main body Wa, the circuit board Wb, or the electronic unit Wc (the electronic unit Wc in the example of FIG. 2A) is placed at an appropriate position.
  • a plurality of terminal portions (for example, 40 pins) are arranged at a predetermined pitch in the width direction.
  • FIG. 2A Work W is placed on the work table 2 in the form shown in FIG. 2A.
  • the robot apparatus 1 is configured to be able to automatically assemble the terminal portion Fa of the wiring member F to the connector part C.
  • 2B and 2C respectively show an outline when the terminal unit Fa is connected to the connector part C by the robot apparatus 1.
  • FIG. 2B and 2C respectively show an outline when the terminal unit Fa is connected to the connector part C by the robot apparatus 1.
  • the robot apparatus 1 picks up the wiring member F by the transfer robot 200 and transfers it to the assembly robot 100 (FIG. 2B), and the assembly robot 100 sets the wiring member F as described later. Connecting the terminal portion Fa to the connector part C (FIG. 2C).
  • the connector component C includes a main body C1 having a terminal portion Ca and a lock member C2 configured to be rotatable with respect to the main body C1.
  • the main body C1 is formed of a plastic product having a substantially rectangular parallelepiped shape having a longitudinal direction in the X-axis direction.
  • the main body C1 includes a pedestal C10 mounted on the circuit board Wb, and a groove Cs into which the terminal portion Fa of the wiring member F is fitted is formed on one side surface orthogonal to the Y-axis direction of the main body C1. It is provided parallel to the X-axis direction.
  • the terminal portion Ca is provided on the inner surface of the groove portion Cs and is electrically connected to the terminal portion Fa fitted in the groove portion Cs (see FIG. 3A).
  • the lock member C2 is formed of a plate-like plastic molded body having one end pivotally supported on the upper part of the groove Cs of the main body C1 and having a long side in the X-axis direction.
  • the lock member C2 is configured to be openable and closable between a lock position where the pedestal C10 is shielded from above as shown in FIG. 3A and an open position where the pedestal C10 is opened upward as shown in FIG. 3B.
  • the connector part C is configured to be able to hold the wiring member F with a predetermined clamping pressure between the lock member C2 and the pedestal C10 at the lock position.
  • the lock member C2 is further configured to take a semi-open position that can be stopped at an appropriate rotation position between the lock position and the open position, as shown in FIG. 3C.
  • the connector part C has a click mechanism that can freely rotate between a half-open position and an open position, and can be rotated by applying an operation force of a predetermined level or more between the half-open position and the lock position. Have.
  • the assembly robot 100 when connecting the wiring member F to the connector part C, the assembly robot 100 is configured to perform the stable connection work of the wiring member F by reliably rotating the lock member C2 to the open position. It is configured as follows. The details of the assembly robot 100 as the first robot will be described below.
  • FIG. 4 is a schematic front view showing the configuration of the hand unit 101
  • FIG. 5A is a schematic right side view showing the clamp mechanism in an enlarged manner
  • FIGS. 5B and 5C are diagrams for explaining an operation example of the clamp mechanism.
  • the x-axis, y-axis, and z-axis indicate triaxial directions orthogonal to each other.
  • the hand portion 101 has a clamp mechanism CL1 (first clamp mechanism) including support portions 111 and 121 capable of holding the wiring member F in the thickness direction.
  • the hand unit 101 further includes a base block 14, first and second cameras 171, 172, a plurality of illuminators 18, a force sensor 15, and the like.
  • the base block 14 supports the clamp mechanism CL1, the first and second cameras 171 and 172 (imaging units), and the plurality of illuminators 18.
  • the first camera 171 is configured to be able to take an image of the wiring member F sandwiched by the clamp mechanism CL1.
  • the second camera 172 is configured to be able to photograph the wiring member F when receiving the wiring member F from the transfer robot 200.
  • Image signals acquired by the first and second cameras 171 and 172 are output to the controller 3.
  • the plurality of illuminators 18 are light sources for illuminating the clamp mechanism CL1 and the vicinity thereof when the cameras 171 and 172 are photographed.
  • the force sensor 15 is provided between the hand unit 101 and the articulated arm 102, and is configured to detect an external force acting on the hand unit 101 and a reaction force of the clamp mechanism CL1. A detection signal from the force sensor 15 is output to the controller 3.
  • the clamp mechanism CL1 includes a first clamp claw 11 having a support surface 11a (first support surface) and a second clamp claw 12 having a support surface 12a (second support surface).
  • the clamp mechanism CL1 is configured to be able to hold the wiring member F in the thickness direction by the support surfaces 11a and 12a (see FIG. 5A).
  • the first clamp claw 11 is typically made of a metal plate, but may be made of a synthetic resin material.
  • the first clamp claw 11 includes a support portion 111, a base portion 112, and a connecting portion 113 that connects the support portion 111 and the base portion 112.
  • the support portion 111 corresponds to a hook portion that protrudes in the horizontal direction from the lower end portion of the first clamp claw 11, and has one main surface of the strip-shaped wiring member F on its upper surface (the lower surface of the wiring member F shown in FIG. 5A).
  • a support surface 11a (first support surface) for supporting the substrate is formed.
  • the base portion 112 is composed of a plate-like portion provided at the upper end portion of the first clamp claw 11 and is fixed to the distal end portion of the articulated arm 102 by being connected to the lower end portion of the base block 14.
  • the connecting portion 113 is configured by a plate-like portion extending in the Z-axis direction so as to be orthogonal to the support portion 111 and the base portion 112. The connecting portion 113 is provided so as to be adjacent to the second clamp claw 12 in the X-axis direction.
  • the first clamp claw 11 further has a protrusion 114.
  • the protrusion 114 is for lifting the lock member C2 of the connector part C from the lock position to the open position or the semi-open position.
  • the formation position and form of the protrusion 114 are not particularly limited.
  • the protrusion 114 is formed in a partial disk shape that is inclined upward by a predetermined angle from the tip of the support 111 (see FIGS. 4 and 5A). ).
  • the second clamp claw 12 has a support part 121 and a base part 122 provided above the support part 121.
  • claw 12 may be comprised with a metal material and may be comprised with a synthetic resin material.
  • the support portion 121 is provided at the lower end portion of the second clamp claw 12, and a support surface 12a (second support surface) facing the support surface 11a of the first clamp claw 11 in the Z-axis direction on the lower surface thereof. It is formed.
  • the base 122 is adjacent to the connecting portion 113 of the first clamp claw 11 in the x-axis direction, and is connected to the first clamp claw 11 by the drive rod R1 of the first drive cylinder installed in the base block 14. It is configured to be relatively movable in the z-axis direction (see FIG. 5B).
  • the clamp mechanism CL1 further includes an ejection part 120.
  • the ejection part 120 is for rotating the lock member C2 of the connector part C from the half-open position to the open position, as will be described later.
  • the ejection unit 120 is configured to eject fluid (air in this example) in the y-axis direction.
  • the ejection part 120 includes an ejection hole 120a provided in a side surface part 123 orthogonal to the Y-axis direction of the base part 122, and an air source (not shown) mounted on the base block 14 or the articulated arm 102 via the inside of the base part 122. including.
  • the position at which the ejection hole 120a is provided is not particularly limited, and in the present embodiment, it is provided at the lowermost position of the second clamp claw 12 or in the vicinity thereof (see FIG. 4).
  • the clamp mechanism CL1 further includes a lifting member 13.
  • the elevating member 13 is for rotating the lock member C2 of the connector part C from the open position to the lock position, as will be described later.
  • the elevating member 13 is made of an elastic material having an appropriate cushioning property such as rubber or elastomer resin.
  • the raising / lowering member 13 is arrange
  • the elevating member 13 is supported via a support arm 132 by a movable block 131 attached to the back surface of the second clamp claw 12 (base portion 122).
  • the movable block 131 is configured to be movable up and down integrally with the second clamp pawl 12 by driving the first drive cylinder (drive rod R1) (see FIG. 5B).
  • the movable block 131 is further configured to be relatively movable in the z-axis direction with respect to the second clamp pawl 12 by the drive rod R2 of the second drive cylinder installed in the base block 14 (see FIG. 5C).
  • the support arm 132 extends in the y-axis direction via a notch 124 provided in the base 122, and connects the elevating member 13 and the movable block 131 to each other (see FIG. 5A).
  • FIG. 6 is a schematic front view showing the configuration of the hand unit 201
  • FIG. 7 is a bottom view of the main part of the hand unit 201
  • FIG. 8A is an enlarged schematic left side view showing the clamp mechanism in the hand unit 201
  • FIG. It is a figure which shows the operation example of a clamp mechanism.
  • the a-axis, b-axis, and c-axis indicate triaxial directions orthogonal to each other.
  • the hand part 201 includes a clamp mechanism CL2 (second clamp mechanism) including support parts 211 and 221 capable of sandwiching the wiring member F in the width direction, and an adsorption member 23 (adsorption part).
  • the hand unit 201 further includes a base block 24, a camera 27, a plurality of illuminators 28, a force sensor 25, and the like.
  • the base block 24 supports the clamp mechanism CL2, the camera 27, and the plurality of illuminators 28.
  • the camera 27 is configured to be able to photograph the wiring member F when the wiring member F is picked up from the workpiece W.
  • the image signal acquired by the camera 27 is output to the controller 3.
  • the plurality of illuminators 28 are light sources for illuminating the clamp mechanism CL ⁇ b> 2 and the vicinity thereof when the camera 27 is photographing.
  • the force sensor 25 is provided between the hand unit 201 and the articulated arm 202, and is configured to be able to detect an external force acting on the hand unit 201 and a reaction force of the clamp mechanism CL2. A detection signal of the force sensor 25 is output to the controller 3.
  • the clamp mechanism CL ⁇ b> 2 includes a first clamp claw 21 and a second clamp claw 22.
  • the clamp mechanism CL2 is configured to be able to hold the wiring member F in the width direction by the support portions 211 and 221 provided at the lower ends of the first and second clamp claws 21 and 22 (FIG. 7, (See FIG. 8A).
  • the first and second clamp claws 21 and 22 are typically made of a metal plate material, but may be made of a synthetic resin material.
  • the first and second clamp claws 21 and 22 are configured to be movable in directions close to or away from each other by drive units 261 and 262 built in the base block 24 so as to face each other in the a-axis direction.
  • the support portions 211 and 221 have hook portions 211 a and 221 a that can support the peripheral edge portion of the other main surface of the wiring member F whose one main surface is adsorbed by the adsorbing member 23, respectively.
  • the suction member 23 is disposed between the first clamp claw 21 and the second clamp claw 22 and is wired in a direction orthogonal to the clamping direction of the wiring member F in the first and second clamp claws 21 and 22.
  • the member F is adsorbed.
  • the bottom of the suction member 23 has a T-shaped suction surface, and has a slot-like suction hole 230 in the suction surface that is long in the b-axis direction.
  • the suction hole 230 is connected to a negative pressure source (not shown) mounted on the base block 24 or the articulated arm 202.
  • the suction member 23 is configured to be relatively movable in the c-axis direction with respect to the first and second clamp claws 21 and 22 by a drive rod R3 of a third drive cylinder installed in the base block 24 (FIG. 8B). reference). As shown in FIGS. 8A and 8B, the suction member 23 is connected to the drive rod R3 via a support plate 231 attached to the tip of the drive rod R3.
  • FIG. 9 is a flowchart showing an operation procedure of the robot apparatus 1.
  • the controller 3 picks up the wiring member F by the transfer robot 200 (step 101), unlocks the connector part C by the assembly robot 100 (step 102), and sets the wiring member F from the transfer robot 200 to the assembly robot 100.
  • a transfer process step 103
  • a process of connecting the wiring member F to the connector part C by the assembly robot 100 step 104.
  • FIGS. 10A and 10B are schematic side views of the main part for explaining the pick-up process of the wiring member F.
  • the transfer robot 200 (hand unit 201) moves immediately above the wiring member F on the workpiece W, and holds the wiring member F on the terminal portion Fa side by suction.
  • a photographed image of the wiring member F on the workpiece W acquired by the camera 27 is used for searching for the wiring member F on the workpiece W, and the relative position of the hand unit 201 with respect to the wiring member F is determined by image processing. Be controlled. After the suction member 23 moves to a position spaced apart from the suction point of the wiring member F by a predetermined distance, the hand unit 201 extends the drive rod R3 by a predetermined distance as shown in FIG. The wiring member F is brought close to the upper surface of the wiring member F, and the wiring member F is vacuum-sucked through the suction holes 230.
  • the hand unit 201 pulls the adsorption member 23 upward by the drive rod R3 as shown in FIG. 10B, and moves the wiring member F in the width direction by the clamp mechanism CL2 while maintaining the adsorption state. Hold it. Accordingly, the wiring member F is stably held by the hand unit 201.
  • the position (suction position) of the wiring member F attracted and held by the hand unit 201 is set at a position separated from the terminal part Fa by a predetermined distance.
  • the predetermined distance is set to a size that allows the hand portion 101 (clamp mechanism CL1) of the assembly robot 100 to hold the region between the terminal portion Fa and the suction position, as will be described later.
  • FIG. 11A to 11C are schematic side views of the main part for explaining the unlocking process of the connector part C.
  • the assembly robot 100 (hand unit 101) rotates the lock member C2 of the connector part C from the lock position to the half-open position.
  • a photographed image of the connector part C on the work W acquired by the second camera 172 is used.
  • the relative position is controlled.
  • the hand unit 101 is in a state where the second clamp claw 12 is moved upward with respect to the first clamp claw 11 as shown in FIGS. 4 and 5A.
  • the hand portion 101 moves to a position where the lower end portion (support portion 111) of the first clamp claw 11 is separated from the tip of the lock member C2 of the connector part C by a predetermined distance in the Y-axis direction.
  • the hand portion 101 moves forward toward the lock member C2 while being tilted by a predetermined angle around the y-axis toward the lock member C2, and moves the protrusion 114 at the tip of the support portion 111 to the lock member C2. Engage under the tip.
  • the hand unit 101 moves upward as shown in FIG. 11C and pushes up the tip of the lock member C2 by the protrusion 114, thereby rotating the lock member C2 from the lock position to the half-open position.
  • the lock member C2 of the connector part C is not always in the lock position, and may be in the half-open position or the open position. Even in these cases, it is possible to cause the lock member C2 to assume the half-open position or the open position by executing the above-described unlocking process. Note that this step may be omitted in a predetermined case such as when it is certain that the lock member C2 is not in the locked position.
  • FIG. 12A and 12B are schematic side views of the main part for explaining the transfer process of the wiring member F from the hand part 201 of the transport robot 200 to the hand part 101 of the assembly robot 100.
  • the hand portion 201 of the transfer robot 200 holding the wiring member F stands by in a lateral posture in which the terminal portion Fa of the wiring member F is positioned above.
  • the hand unit 101 of the assembly robot 100 faces the hand unit 201 of the transfer robot 200 in a horizontal posture in which the elevating member 13 is upward in the illustrated example.
  • the clamp mechanism CL ⁇ b> 1 of the hand unit 101 is maintained in the open position in which the second clamp claw 12 is separated from the first clamp claw 11 in the z-axis direction.
  • Positioning of the hand unit 101 with respect to the hand unit 201 is executed based on an image signal from the second camera 172.
  • the hand unit 101 of the assembly robot 100 has a terminal part of the wiring member F between the support part 111 of the first clamp claw 11 and the support part 121 of the second clamp claw 12.
  • the clamp mechanism CL1 is driven to clamp the wiring member F.
  • the clamping position is not particularly limited.
  • the wiring member F is clamped at a position about 5 to 10 mm away from the terminal portion Fa.
  • the positioning of the hand unit 101 with respect to the wiring member F is executed based on the image signal from the first camera 171.
  • the hand unit 201 of the transfer robot 200 releases the suction operation by the suction member 23 and the clamping operation to the wiring member F by the clamp mechanism CL2. Thereby, the transfer of the wiring member F from the transfer robot 200 to the assembly robot 100 is completed.
  • FIG. 13 and 14A to 14C are schematic side views of the main part for explaining the connection process of the wiring member F to the connector part C.
  • FIG. 1 the assembly robot 100 (hand unit 101) rotates the lock member C2 of the connector part C to the open position, and connects the terminal part Fa of the wiring member F to the connector part C.
  • the hand unit 101 moves the ejection part 120 to a position facing the tip of the lock member C2 of the connector part C, and ejects the wiring member F while holding the wiring member F between the support surfaces 11a and 12a.
  • Air J is ejected from the section 120.
  • the air J ejected from the ejection part 120 is applied to the connection surface of the connector part C including the lock member C2, and the wind pressure causes the lock member C2 to rotate from the half-open position to the open position.
  • the groove part Cs and the base part C10 of the connector component C are widely opened outside.
  • the ejection of air from the ejection part 120 is started. Thereby, generation
  • the attitude of the hand portion 101 is controlled to be inclined at a predetermined angle around the x-axis toward the connector part C so that the air J is ejected obliquely from above the connector part C toward the lock member C2. Is done.
  • the lock member C2 can be efficiently rotated to the open position. The inclined posture of the hand unit 101 is maintained until the connection of the wiring member F to the connector part C is completed.
  • the hand portion 101 moves so that the terminal portion Fa of the wiring member F is positioned immediately above the pedestal portion C10 of the connector component C, and the terminal portion is moved from this position to the lower pedestal portion C10. Press Fa.
  • the terminal part Fa is bent horizontally following the upper surface of the base part C10.
  • the rigidity of the wiring member F is increased, and a linear posture is stably secured.
  • the hand unit 101 moves forward toward the connector part C, engages the terminal part Fa with the groove part Cs of the connector part C, and further advances the terminal part Fa by a predetermined amount. It electrically connects to the terminal part Ca in the groove part Cs.
  • the terminal portion Fa can be stably moved into the groove portion Cs of the connector part C following the advance of the hand portion 101.
  • the ejection of air J from the ejection part 120 is stopped after a predetermined time has elapsed from the start of ejection.
  • the said predetermined time is not specifically limited, In this embodiment, it is set to the time until the connection to the connector C of the terminal part Fa is completed. Thereby, since the state which always opened the locking member C2 can be maintained, the stable connection operation
  • the hand part 101 After connecting the terminal part Fa to the connector part C, the hand part 101 releases the clamping mechanism CL1 and releases the clamping operation of the wiring member F. Then, as shown in FIG. 14C, the hand unit 101 moves so that the elevating member 13 is positioned immediately above the lock member C2 while maintaining the tilted posture, and closes the clamp mechanism CL1 again at that position and drives the drive rod. The elevating member 13 is moved downward by R2 (see FIG. 5C). As a result, the lock member C2 receives the downward pressing operation from the elevating member 13, and rotates to the lock position.
  • the lock member C2 of the connector part C is stably maintained in the open position by the ejection of the air J.
  • the wiring member F can be properly assembled to the connector part C.
  • the ejection part 120 is provided in the side part 123 of the 2nd clamp nail
  • the portion 101 can be downsized and the configuration can be simplified.
  • the clamping mechanism CL1 and the articulated arm 102 clamp the wiring member F. Can be made to face each other. Thereby, when the strip-shaped wiring member F is sandwiched in the thickness direction, the wiring member F can be easily conveyed to the height of the connector component C.
  • the hand unit 101 since the hand unit 101 includes the force sensor 15, it detects an external force acting on the clamp mechanism CL1, a clamping force (reaction force) of the wiring member F by the clamp mechanism CL1, and the like. Is possible. Accordingly, it is possible to appropriately control the operation of releasing the lock position of the connector component C with respect to the lock member C2, the operation of connecting the wiring member F to the connector component C, the operation of pressing the lock member C2 to the lock position with the elevating member 13. It becomes possible.
  • the wiring member F is connected to the connector part C by the cooperative operation of the assembly robot 100 and the transfer robot 200, the configuration of each of the hand units 101 and 201 is complicated.
  • the connection process of the wiring member F to the connector part C can be stably performed while avoiding the above.
  • the industrial robot has been described as an example.
  • the present technology can also be applied to a service robot including business use.
  • the ejection part 120 may be comprised so that a liquid can be ejected besides air.
  • the cleaning agent is sprayed, the present technology can be applied to an automatic cleaning device that cleans the floor using a brush sandwiched by a clamp mechanism.
  • the ejection part 120 is provided on the second clamp claw 12 of the hand part 101, but instead, it may be provided on the first clamp claw 11. Further, the location and number of the ejection portions 120 and the shape of the ejection holes 120a are not limited to the above-described examples, and can be changed as appropriate.
  • the robot apparatus 1 has been described by taking as an example the case where the robot apparatus 1 includes the assembly robot 100 and the transfer robot 200.
  • the transfer robot 200 may be omitted as necessary, and only the assembly robot 100 is wired.
  • the member F may be connected to the connector part C.
  • connection work can be performed while removing foreign matters such as dust and oil in the connection portion by ejecting air. It is also possible to perform processing of an object while applying a paint or an adhesive or processing of an object while washing with a liquid.
  • this technique can also take the following structures. (1) a first articulated arm; A first clamping claw attached to the first articulated arm and having a first support surface; and a second opposing the first support surface in a first axial direction perpendicular to the first support surface.
  • a second clamp claw that is relatively movable in the first axial direction with respect to the first clamp claw, and the first support surface and the second support surface
  • a first clamping mechanism configured to be able to clamp an object in the first axial direction
  • An ejection portion provided on any one of the first clamp pawl and the second clamp pawl and configured to eject fluid in a second axial direction orthogonal to the first axial direction;
  • a robot apparatus comprising a first robot having: (2) The robot apparatus according to (1) above, The second clamp claw further has a side surface orthogonal to the second axial direction, The ejection part is provided on the side part.
  • the first clamp claw includes a base portion fixed to the first articulated arm, and a connecting portion connected between the base portion and the first support surface and extending in the first axial direction. Further, the robot apparatus. (4) The robot device according to any one of (1) to (3) above, A robot apparatus further comprising a force sensor that is disposed between the first articulated arm and the base and detects a force acting on the first clamp mechanism. (5) The robot device according to any one of (1) to (4) above, The first clamp mechanism further includes an elevating member attached to the second clamp claw and movable relative to the second clamp claw in the first axial direction. (6) The robot apparatus according to any one of (1) to (5) above, The ejection unit ejects air as the fluid.
  • the second robot further includes a suction part that sucks the target part,
  • the second clamp mechanism has a pair of clamp claws that face each other in a uniaxial direction orthogonal to the suction direction of the object by the suction portion and can clamp the target object in the uniaxial direction. .
  • the robot device further includes an imaging unit capable of capturing an image of the object held by the first clamp mechanism.
  • An electronic device manufacturing apparatus including a connector having a lock member that can be opened and closed, and a connection member having a connection terminal connected to the connector, An articulated arm, A first clamp claw having a first support surface attached to the articulated arm, and a second support surface facing the first support surface in a first axial direction orthogonal to the first support surface And a second clamp claw that is relatively movable in the first axial direction with respect to the first clamp claw, and the connection terminal extends from the first support surface and the second support surface.
  • a clamping mechanism configured to be able to clamp the connecting member in the first axial direction in a state where the connecting member protrudes in a second axial direction orthogonal to the first axial direction;
  • An ejection portion provided on one of the first clamp pawl and the second clamp pawl and configured to eject fluid to the lock member facing the second axial direction;
  • An electronic apparatus manufacturing apparatus comprising: (12) A method of manufacturing an electronic device comprising a connector having a lock member that can be opened and closed, and a connection member having a connection terminal connected to the connector, The connecting member is clamped in the thickness direction by a clamp mechanism, Transport the clamping mechanism to a position where the connection terminal faces the connector; The lock member is released by ejecting fluid from the clamp mechanism to the connector, A method of manufacturing an electronic device, wherein the connection terminal is connected to the connector by bringing the connection member close to the connector by the clamp mechanism.
  • connection member is a manufacturing method of the electronic device which is FPC (flexible printed circuit board) or FFC (flexible flat cable).
  • FPC flexible printed circuit board
  • FFC flexible flat cable

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Robotics (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Multimedia (AREA)
  • Human Computer Interaction (AREA)
  • Manipulator (AREA)

Abstract

本技術の一形態に係るロボット装置は、第1の多関節アームと、第1のクランプ機構と、噴出部とを有する第1のロボット装置を具備する。上記第1のクランプ機構は、第1のクランプ爪と、第2のクランプ爪とを有する。上記第1のクランプ爪は、前記第1の多関節アームに取り付けられ、第1の支持面を有する。上記第2のクランプ爪は、前記第1の支持面に直交する第1の軸方向に前記第1の支持面と対向する第2の支持面を有し、前記第1のクランプ爪に対して前記第1の軸方向に相対移動可能に構成される。上記噴出部は、前記第1のクランプ爪及び前記第2のクランプ爪の何れか一方に設けられ、前記第1の軸方向と直交する第2の軸方向に流体を噴出することが可能に構成される。

Description

ロボット装置、電子機器の製造装置及び製造方法
 本技術は、電子部品の組み立て等に用いられるロボット装置、電子機器の製造装置及び製造方法に関する。
 例えば、電子機器の製造においては電子部品の組み立てに産業用ロボットが広く用いられている。例えば、FFC(Flexible Flat Cable)やFPC(Flexible Printed Circuit)等のフレキシブル配線部材とコネクタ部品との接続工程を自動で行う技術が知られている(例えば特許文献1参照)。また近年、コネクタ部品の分野においては、フレキシブル配線部材との接続状態を保持する開閉可能なロック部材を備えたものが知られている(例えば特許文献2参照)。
特開平10-240151号公報 特開2002-231348号公報
 ロック部材を有するコネクタ部品に対するフレキブル配線部材の組み立てを自動化するに際して、ロック部材が組み立てに適した開放姿勢にないと、コネクタ部品にフレキシブル配線部材を適切に接続することができない。
 以上のような事情に鑑み、本技術の目的は、部品間の組み立て等を適切に行うことができるロボット装置、電子機器の製造装置及び製造方法を提供することにある。
 本技術の一形態に係るロボット装置は、第1のロボットを具備する。
 上記第1のロボットは、第1の多関節アームと、第1のクランプ機構と、噴出部とを有する。
 上記第1のクランプ機構は、第1のクランプ爪と、第2のクランプ爪とを有する。上記第1のクランプ爪は、前記第1の多関節アームに取り付けられ、第1の支持面を有する。上記第2のクランプ爪は、前記第1の支持面に直交する第1の軸方向に前記第1の支持面と対向する第2の支持面を有し、前記第1のクランプ爪に対して前記第1の軸方向に相対移動可能に構成される。上記第1のクランプ機構は、前記第1の支持面及び前記第2の支持面により対象物を前記第1の軸方向に挟持することが可能に構成される。
 上記噴出部は、前記第1のクランプ爪及び前記第2のクランプ爪の何れか一方に設けられ、前記第1の軸方向と直交する第2の軸方向に流体を噴出することが可能に構成される。
 上記ロボット装置においては、第1のクランプ機構が噴出部を有しているため、対象物を挟持しながら、例えばロック部材を有するコネクタに対するエアの噴出により当該ロック部材を開放状態に維持できる。これにより、上記コネクタに対する対象物の適切な組み付けが可能となる。
 前記第2のクランプ爪は、前記第2の軸方向に直交する側面部をさらに有し、前記噴出部は、前記側面部に設けられてもよい。
 噴出部が第2のクランプ爪に内蔵されることにより、第1のロボット装置の小型化と構成の簡素化を図ることができる。
 前記第1のクランプ爪は、ベース部と、連結部とをさらに有してもよい。上記ベース部は、前記第1の多関節アームに固定される。上記連結部は、前記ベース部と前記第1の支持面との間に接続され、前記第1の軸方向に延びる。
 これにより、第1のクランプ機構と多関節アームとが対象物の挟持方向に対向することになるため、例えば帯状の対象物を厚み方向に挟持する場合において、その対象物を接続対象物の高さに容易に搬送することが可能となる。
 前記ロボット装置は、力覚センサをさらに具備してもよい。
 上記力覚センサは、前記第1の多関節アームと前記ベース部との間に配置され、前記第1のクランプ機構に作用する力を検出する。
 これにより、対象物に対する第1のクランプ機構による挟持力等を適切に制御することが可能となる。
 前記第1のクランプ機構は、前記第2のクランプ爪に取り付けられ前記第2のクランプ爪に対して前記第1の軸方向に相対移動可能な昇降部材をさらに有してもよい。
 これにより、例えば、ロック部材を有するコネクタに対して、上記昇降部材によって上記ロック部材をそのロック位置へ押し下げることが可能となる。
 上記噴出部から噴出される流体は特に限定されず、エアでもよいし液体でもよい。
 前記ロボット装置は、第2のロボット装置をさらに具備してもよい。
 上記第2のロボット装置は、前記対象物を挟持することが可能な第2のクランプ機構と、前記第2のクランプ機構を支持する第2の多関節アームとを有し、前記第2のクランプ機構から前記第1のクランプ機構へ前記対象物を移載する。
 前記第2のロボットは、前記対象部を吸着する吸着部をさらに有してもよい。この場合、前記第2のクランプ機構は、前記吸着部による前記対象物の吸着方向に直交する一軸方向に相互に対向し前記対象物を前記一軸方向に挟持することが可能な一対のクランプ爪を有する。
 これにより、対象物のピックアップと第1のロボットへの移載を適切に行うことができる。
 前記第1のロボットは、前記第1のクランプ機構に挟持される前記対象物を撮影可能な撮像部をさらに有してもよい。
 これにより、対象物のクランプ位置を適切に制御することができる。
 本技術の一形態に係る電子機器の製造装置は、開閉可能なロック部材を有するコネクタと、前記コネクタに接続される接続端子を有するフレキシブル配線部材とを含む電子機器の製造装置であって、多関節アームと、クランプ機構と、噴出部とを具備する。
 上記クランプ機構は、第1のクランプ爪と、第2のクランプ爪とを有する。上記第1のクランプ爪は、前記多関節アームに取り付けられ、第1の支持面を有する。上記第2のクランプ爪は、前記第1の支持面に直交する第1の軸方向に前記第1の支持面と対向する第2の支持面を有し、前記第1のクランプ爪に対して前記第1の軸方向に相対移動可能に構成される。上記クランプ機構は、前記第1の支持面及び前記第2の支持面から前記接続端子を前記第1の軸方向と直交する第2の軸方向に突出させた状態で前記フレキシブル配線部材を前記第1の軸方向に挟持することが可能に構成される。
 上記噴出部は、前記第1のクランプ爪及び前記第2のクランプ爪の何れか一方に設けられ、前記第2の軸方向に対向する前記ロック部材に対してエアを噴出することが可能に構成される。
 本技術の一形態に係る電子機器の製造方法は、開閉可能なロック部材を有するコネクタと、前記コネクタに接続される接続端子を有するフレキシブル配線部材とを含む電子機器の製造方法であって、クランプ機構によって前記フレキシブル配線部材をその厚み方向に挟持することを含む。
 前記クランプ機構は、前記接続端子が前記コネクタと対向する位置へ搬送される。
 前記クランプ機構から前記コネクタへエアを噴出することで、前記ロック部材が開放される。
 前記クランプ機構によって前記フレキシブル配線部材を前記コネクタへ近接させることで、前記接続端子が前記コネクタへ接続される。
 以上のように、本技術によれば、部品間の組み立て等を適切に行うことができる
 なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。
本技術の一実施形態に係る電子機器の製造装置(ロボット装置)を示す概略側面図である。 組立対象である接続部材の形態とその組立手順を説明する概略図である。 上記接続部材と接続されるコネクタ部品の構成を説明する要部の概略側断面図である。 上記ロボット装置における第1のロボットの要部の構成を示す概略正面図である。 上記第1のロボットのクランプ機構を拡大して示す概略側面図及びその動作例を説明する図である。 上記ロボット装置における第2のロボットの要部の構成を示す概略正面図である。 上記第2のロボットの要部底面図である。 上記第2のロボットのクランプ機構を拡大して示す概略左側面図及びその動作例を説明する図である。 上記ロボット装置の動作手順を示すフローチャートである。 上記接続部材のピックアップ工程を説明する要部の概略側面図である。 上記コネクタ部品のロック解除工程を説明する要部の概略側面図である。 上記第2のロボットから上記第1のロボットへの上記接続部材の移載工程を説明する要部の概略側面図である。 上記コネクタ部品への上記接続部材の接続工程を説明する要部の概略側面図である。 上記コネクタ部品への上記接続部材の接続工程を説明する要部の概略側面図である。
 以下、本技術に係る実施形態を、図面を参照しながら説明する。
 図1は、本技術の一実施形態に係る電子機器の製造装置(ロボット装置)を示す概略側面図である。本実施形態では、電子機器の一製造工程である配線部材の自動接続工程への本技術の適用例について説明する。
[ロボット装置の概略構成]
 本実施形態のロボット装置1は、組立ロボット100(第1のロボット)と、搬送ロボット200(第2のロボット)と、電子機器の半完成品(以下、ワークWという)を支持する作業台2と、組立ロボット100及び搬送ロボット200の駆動を制御するコントローラ3とを備える。
 組立ロボット100は、ハンド部101と、ハンド部101を6軸自由度で移動させることが可能な多関節アーム102(第1の多関節アーム)とを有する。
 搬送ロボット200も同様に、ハンド部201と、ハンド部201を6軸自由度で移動させることが可能な多関節アーム202(第2の多関節アーム)とを有する。
 多関節アーム102,202は、作業台2又は作業台2に近接して配置されており、図示しない各々の駆動源にそれぞれ接続される。
 ハンド部101,102の詳細については後述する。
 コントローラ3は、典型的には、CPU(Central Processing Unit)やメモリを有するコンピュータで構成され、組立ロボット100及び搬送ロボット200を上記メモリに格納されたプログラムに従って駆動するように構成される。
 コントローラ3による各ロボット100,200の制御例についても後述する。
 図2Aは、ワークWの一例を示す概略斜視図、図2B,CはワークWに対するロボット装置1の処理の手順を説明する概略図である。
 なお図において、X軸、Y軸及びZ軸は、相互に直交する3軸方向を示しており、Z軸は高さ方向に相当する(図3についても同様)。
 ワークWは、ワーク本体Waと、ワーク本体Waの上に配置された回路基板Wb及び電子ユニットWcとを有する。
 ワーク本体Waとしては、例えば、電子機器のケースの一部、あるいは当該ケース内に配置される板状の支持体等が挙げられる。回路基板Wbはプリント配線基板上に各種電子部品が搭載された部品実装基板であり、その上面の一部にコネクタ部品Cが搭載されている。電子ユニットWcは、電子機器の一機能を構成し、典型的には、CPUやメモリ等で構成されたコンピュータを内蔵する。
 回路基板Wbと電子ユニットWcは、配線部材Fを介して相互に電気的に接続される。配線部材Fは、FFC又はFPC等の柔軟性のある帯状の接続部材であり、その一端は電子ユニットWcに既に接続され、他端(端子部Fa)は、コネクタ部品Cに未接続の状態で、ワーク本体Wa、回路基板Wb又は電子ユニットWc(図2Aの例では電子ユニットWc)の上の適宜の位置に置かれている。端子部Faには複数の端子部(例えば40ピン)が幅方向に所定ピッチで配列されている。
 ワークWは、図2Aに示したような形態で作業台2の上に載置される。ロボット装置1は、配線部材Fの端子部Faをコネクタ部品Cへ自動的に組み付けることが可能に構成される。図2B,Cは、ロボット装置1によって端子部Faをコネクタ部品Cへ接続するときの概要をそれぞれ示している。
 図2B,Cを参照して、ロボット装置1は、後述するように、搬送ロボット200で配線部材Fをピックアップし組立ロボット100へ受け渡す工程(図2B)と、組立ロボット100で配線部材Fの端子部Faをコネクタ部品Cへ接続する工程(図2C)とを有する。
 図3A~Cは、コネクタ部品Cの構成を説明する要部の概略側断面図である。
 コネクタ部品Cは、端子部Caを有する本体部C1と、本体部C1に対して回動可能に構成されたロック部材C2とを有する。
 本体部C1は、X軸方向に長手方向を有する概略直方体形状のプラスチック成形体で構成される。本体部C1は、回路基板Wbに搭載される台座部C10を有するとともに、本体部C1のY軸方向に直交する一方の側面部には、配線部材Fの端子部Faが嵌合する溝部CsがX軸方向に平行に設けられている。端子部Caは、溝部Csの内面に設けられており、溝部Csに嵌合された端子部Faと電気的に接続される(図3A参照)。
 ロック部材C2は、本体部C1の溝部Csの上部に一端が軸支された、X軸方向に長辺を有する板状のプラスチック成形体で構成される。ロック部材C2は、図3Aに示すように台座部C10を上方から遮蔽するロック位置と、図3Bに示すように台座部C10を上方に開放させる開放位置との間を開閉可能に構成される。詳細な機構の説明は省略するが、コネクタ部品Cは、上記ロック位置においてロック部材C2と台座部C10との間で配線部材Fを所定の挟圧力で保持することが可能に構成される。
 ロック部材C2はさらに、図3Cに示すように、ロック位置と開放位置との間の適宜の回動位置で停止することが可能な半開放位置をとることができるように構成される。コネクタ部品Cは、半開放位置と開放位置との間では自由に回動し、半開放位置とロック位置との間では所定以上の操作力が加えられることで回動が可能となるクリック機構を有する。
 ここで、上記構成のコネクタ部品Cにおいては、ロック部材C2が半開放位置(図3B)又はロック位置(図3C)にある場合だと、ロック部材C2が開放位置(図3A)にある場合と比較して、配線部材Fの端子部Faを溝部Csへ挿し込むことが困難となる。このため、コネクタ部品Cへの配線部材Fの接続を自動化する場合、ロック部材C2を開放位置に維持する手段が別途必要とされる。また、ロック部材C2の開閉状態は、個々のワークWにばらつきがあるため、個々のワークWに対してロック部材C2を適切に開放位置へ回動させておく必要がある。
 そこで本実施形態では、コネクタ部品Cに配線部材Fを接続するに際して、ロック部材C2を確実に開放位置へ回動させて配線部材Fの安定した接続作業を可能とするため、組立ロボット100が以下のように構成されている。
 以下、第1のロボットとしての組立ロボット100の詳細について説明する。
[第1のロボット]
 図4はハンド部101の構成を示す概略正面図、図5Aはそのクランプ機構を拡大して示す概略右側面図、図5B,Cは上記クランプ機構の動作例を説明する図である。
 なお、各図においてx軸、y軸及びz軸は、相互に直交する3軸方向を示している。
 ハンド部101は、配線部材Fをその厚み方向に挟持することが可能な支持部111,121を含むクランプ機構CL1(第1のクランプ機構)を有する。ハンド部101はさらに、ベースブロック14、第1及び第2のカメラ171,172、複数の照明器18、力覚センサ15等を有する。
 ベースブロック14は、クランプ機構CL1と、第1及び第2のカメラ171,172(撮影部)と、複数の照明器18とを支持する。
 第1のカメラ171は、クランプ機構CL1で挟持された配線部材Fを撮影することが可能に構成される。第2のカメラ172は、後述するように、搬送ロボット200から配線部材Fを受け取る際に、当該配線部材Fを撮影することが可能に構成される。第1及び第2のカメラ171,172で取得された画像信号は、コントローラ3へ出力される。
 複数の照明器18は、カメラ171,172の撮影時にクランプ機構CL1及びその近傍を照明するための光源である。
 力覚センサ15は、ハンド部101と多関節アーム102との間に設けられ、ハンド部101に作用する外力やクランプ機構CL1の反力を検出することが可能に構成される。力覚センサ15の検出信号は、コントローラ3へ出力される。
(第1のクランプ機構)
 クランプ機構CL1は、支持面11a(第1の支持面)を有する第1のクランプ爪11と、支持面12a(第2の支持面)を有する第2のクランプ爪12とを有する。クランプ機構CL1は、支持面11a,12aにより配線部材Fをその厚み方向に挟持することが可能に構成される(図5A参照)。
 第1のクランプ爪11は、典型的には金属製の板材で構成されるが、合成樹脂材料で構成されてもよい。第1のクランプ爪11は、支持部111と、ベース部112と、支持部111とベース部112とを連結する連結部113とを有する。
 支持部111は、第1のクランプ爪11の下端部から水平方向に突出するフック部に相当し、その上面に帯状の配線部材Fの一方の主面(図5Aに示す配線部材Fの下面)を支持する支持面11a(第1の支持面)が形成される。
 ベース部112は、第1のクランプ爪11の上端部に設けられた板状部からなり、ベースブロック14の下端部に接続されることで、多関節アーム102の先端部に固定される。
 連結部113は、支持部111とベース部112とに対して直交するようにZ軸方向に延びる板状部で構成される。連結部113は、第2のクランプ爪12とX軸方向に隣接するように設けられる。
 第1のクランプ爪11は、突起部114をさらに有する。突起部114は、後述するように、コネクタ部品Cのロック部材C2をロック位置から開放位置又は半開放位置へリフトするためのものである。突起部114の形成位置、形態は特に限定されず、本実施形態では、支持部111の先端部から所定角度上向きに傾斜して設けられた部分円盤形状に形成される(図4、図5A参照)。
 第2のクランプ爪12は、支持部121と、支持部121の上方に設けられた基部122とを有する。第2のクランプ爪12は、金属材料で構成されてもよいし、合成樹脂材料で構成されてもよい。
 支持部121は、第2のクランプ爪12の下端部に設けられ、その下面に、第1のクランプ爪11の支持面11aとZ軸方向に対向する支持面12a(第2の支持面)が形成される。
 基部122は、第1のクランプ爪11の連結部113とx軸方向に隣接しており、ベースブロック14に設置された第1の駆動シリンダの駆動ロッドR1により第1のクランプ爪11に対してz軸方向に相対移動可能に構成される(図5B参照)。
 クランプ機構CL1は、噴出部120をさらに有する。噴出部120は、後述するように、コネクタ部品Cのロック部材C2を半開放位置から開放位置へ回動させるためのものである。
 噴出部120は、y軸方向へ流体(本例ではエア)を噴出することが可能に構成される。噴出部120は、基部122のY軸方向に直交する側面部123に設けられた噴出孔120aと、基部122の内部を介してベースブロック14あるいは多関節アーム102に搭載された図示しないエア源とを含む。噴出孔120aが設けられる位置は特に限定されず、本実施形態では、第2のクランプ爪12の最下端位置又はその近傍に設けられる(図4参照)。
 クランプ機構CL1は、昇降部材13をさらに有する。昇降部材13は、後述するように、コネクタ部品Cのロック部材C2を開放位置からロック位置へ回動させるためのものである。
 昇降部材13は、例えば、ゴムやエラストマ樹脂等の適度なクッション性を有する弾性材料で構成される。昇降部材13は、第2のクランプ爪12(基部122)の正面側に配置される。
 昇降部材13は、第2のクランプ爪12(基部122)の背面に取り付けられた可動ブロック131に支持アーム132を介して支持される。
 可動ブロック131は、上記第1の駆動シリンダ(駆動ロッドR1)の駆動により第2のクランプ爪12と一体的に昇降可能に構成される(図5B参照)。可動ブロック131はさらに、ベースブロック14に設置された第2の駆動シリンダの駆動ロッドR2により第2のクランプ爪12に対してz軸方向に相対移動可能に構成される(図5C参照)。
 支持アーム132は、基部122に設けられた切欠き部124を介してy軸方向に延び、昇降部材13と可動ブロック131とを相互に連結する(図5A参照)。
[第2のロボット]
 図6はハンド部201の構成を示す概略正面図、図7は、ハンド部201の要部底面図、図8Aはハンド部201におけるクランプ機構を拡大して示す概略左側面図、図8Bは上記クランプ機構の動作例を示す図である。
 なお、各図においてa軸、b軸及びc軸は、相互に直交する3軸方向を示している。
 ハンド部201は、配線部材Fをその幅方向に挟持することが可能な支持部211,221を含むクランプ機構CL2(第2のクランプ機構)と、吸着部材23(吸着部)とを有する。ハンド部201はさらに、ベースブロック24、カメラ27、複数の照明器28、力覚センサ25等を有する。
 ベースブロック24は、クランプ機構CL2と、カメラ27と、複数の照明器28とを支持する。
 カメラ27は、後述するように、ワークWから配線部材Fをピックアップする際に、当該配線部材Fを撮影することが可能に構成される。カメラ27で取得された画像信号は、コントローラ3へ出力される。
 複数の照明器28は、カメラ27の撮影時にクランプ機構CL2及びその近傍を照明するための光源である。
 力覚センサ25は、ハンド部201と多関節アーム202との間に設けられ、ハンド部201に作用する外力やクランプ機構CL2の反力を検出することが可能に構成される。力覚センサ25の検出信号は、コントローラ3へ出力される。
(第2のクランプ機構)
 クランプ機構CL2は、第1のクランプ爪21と、第2のクランプ爪22とを有する。クランプ機構CL2は、第1及び第2のクランプ爪21,22各々の下端に設けられた支持部211,221によって配線部材Fをその幅方向に挟持することが可能に構成される(図7、図8A参照)。
 第1及び第2のクランプ爪21,22は、典型的には金属製の板材で構成されるが、合成樹脂材料で構成されてもよい。第1及び第2のクランプ爪21,22は、a軸方向に相互に対向するようにベースブロック24に内蔵された駆動部261,262によって相互に近接あるいは離間する方向へ移動可能に構成される。支持部211,221は、吸着部材23に一方の主面が吸着された配線部材Fの他方の主面の周縁部を支持することが可能なフック部211a,221aをそれぞれ有する。
 吸着部材23は、第1のクランプ爪21と第2のクランプ爪22との間に配置され、第1及び第2のクランプ爪21,22におる配線部材Fの挟持方向に直交する方向に配線部材Fを吸着する。吸着部材23の底部には、図7に示すように、T字形状の吸着面を有し、そのb軸方向に長手の吸着面内にスロット状の吸着孔230を有する。吸着孔230は、ベースブロック24あるいは多関節アーム202に搭載された図示しない負圧源に接続される。
 吸着部材23は、ベースブロック24に設置された第3の駆動シリンダの駆動ロッドR3により第1及び第2のクランプ爪21,22に対してc軸方向に相対移動可能に構成される(図8B参照)。吸着部材23は、図8A,Bに示すように、駆動ロッドR3の先端に取り付けられた支持プレート231を介して駆動ロッドR3に接続される。
[電子機器の製造方法]
 次に、以上のように構成されるロボット装置1の典型的な動作について説明する。
 図9は、ロボット装置1の動作手順を示すフローチャートである。
 コントローラ3は、搬送ロボット200による配線部材Fのピックアップ工程(ステップ101)と、組立ロボット100によるコネクタ部品Cのロック解除工程(ステップ102)と、搬送ロボット200から組立ロボット100への配線部材Fの移載工程(ステップ103)と、組立ロボット100によるコネクタ部品Cへの配線部材Fの接続工程(ステップ104)とを有する。
 以下、各工程について説明する。以下の説明では、各ロボットのハンド部101,201を主体として説明するが、これらの動作はコントローラ3により制御される。
(ピックアップ工程)
 図10A,Bは、配線部材Fのピックアップ工程を説明する要部の概略側面図である。
 この工程において、搬送ロボット200(ハンド部201)は、ワークW上の配線部材Fの直上に移動し、配線部材Fの端子部Fa側を吸着保持する。
 ワークW上の配線部材Fの探索にはカメラ27により取得されたワークW上の配線部材Fの撮影画像が用いられ、それを画像処理することで、配線部材Fに対するハンド部201の相対位置が制御される。ハンド部201は、吸着部材23が配線部材Fの吸着ポイントから所定距離だけ上方へ離間した位置に移動した後、図10Aに示すように、駆動ロッドR3を所定距離だけ伸長させて吸着部材23を配線部材Fの上面に近接させるとともに、吸着孔230を介して配線部材Fを真空吸着する。
 ハンド部201は、配線部材Fを吸着した後、図10Bに示すように、駆動ロッドR3により吸着部材23を上方へ引き戻し、吸着状態を保持したままクランプ機構CL2により配線部材Fをその幅方向に挟持する。これにより、ハンド部201により配線部材Fが安定に保持される。
 ハンド部201が吸着保持する配線部材Fの位置(吸着位置)は、端子部Faから所定距離離間した位置に設定される。上記所定距離は、後述するように、端子部Faと吸着位置との間の領域を、組立ロボット100のハンド部101(クランプ機構CL1)が挟持できる大きさに設定される。
(コネクタ部品のロック解除工程)
 図11A~Cは、コネクタ部品Cのロック解除工程を説明する要部の概略側面図である。
 この工程において、組立ロボット100(ハンド部101)は、コネクタ部品Cのロック部材C2をロック位置から半開放位置へ回動させる。
 ワークW上のコネクタ部品Cの探索には第2のカメラ172により取得されたワークW上のコネクタ部品Cの撮影画像が用いられ、それを画像処理することで、コネクタ部品Cに対するハンド部101の相対位置が制御される。
 ハンド部101は、図4及び図5Aに示すように第2のクランプ爪12が第1のクランプ爪11に対して上方へ移動させた状態にある。ハンド部101は、図11Aに示すように、第1のクランプ爪11の下端部(支持部111)がコネクタ部品Cのロック部材C2の先端からY軸方向に所定距離離間した位置に移動する。ハンド部101は、図11Bに示すようにy軸まわりにロック部材C2側へ所定角度倒し込んだ状態でロック部材C2に向かって前進し、支持部111の先端の突起部114をロック部材C2の先端の下方に係合させる。そしてハンド部101は、図11Cに示すように上方に移動し、突起部114でロック部材C2の先端を押し上げることで、ロック部材C2をロック位置から半開放位置へ回動させる。
 ここで、コネクタ部品Cのロック部材C2は常にロック位置にあるとは限られず、半開放位置又は開放位置にある場合がる。これらの場合においても、上述のロック解除工程を実行することで、ロック部材C2に半開放位置又は開放位置をとらせることが可能となる。
 なお、ロック部材C2がロック位置にないことが確実な場合などの所定の場合は、当該工程は省略されてもよい。
(接続部材の移載工程)
 図12A,Bは、搬送ロボット200のハンド部201から組立ロボット100のハンド部101への配線部材Fの移載工程を説明する要部の概略側面図である。
 この工程では、配線部材Fが搬送ロボット200(ハンド部201)から組立ロボット100(ハンド部101)へ移し替えられる。
 図12Aに示すように、配線部材Fを保持した搬送ロボット200のハンド部201は、配線部材Fの端子部Faが上方に位置する横向きの姿勢で待機する。
 一方、組立ロボット100のハンド部101は、図示の例では昇降部材13が上方となる横向きの姿勢で、搬送ロボット200のハンド部201と対向する。このときのハンド部101のクランプ機構CL1は、図5Aに示すように、第2のクランプ爪12が第1のクランプ爪11に対してz軸方向に離間した開放位置に維持される。ハンド部201に対するハンド部101の位置決めは、第2のカメラ172からの画像信号に基づいて実行される。
 続いて、組立ロボット100のハンド部101は、図12Bに示すように、第1のクランプ爪11の支持部111と第2のクランプ爪12の支持部121との間に配線部材Fの端子部Faが位置するように搬送ロボット200のハンド部201に対して相対移動した後、クランプ機構CL1を駆動して配線部材Fを挟持する。挟持位置は特に限定されないが、例えば、端子部Faから5~10mm程度離れた位置で配線部材Fが挟持される。配線部材Fに対するハンド部101の位置決めは、第1のカメラ171からの画像信号に基づいて実行される。
 その後、搬送ロボット200のハンド部201は、吸着部材23による吸着動作及びクランプ機構CL2による配線部材Fに対する挟持動作をそれぞれ解除する。これにより、搬送ロボット200から組立ロボット100への配線部材Fの移載が完了する。
(コネクタ部品への接続工程)
 図13及び図14A~Cは、コネクタ部品Cへの配線部材Fの接続工程を説明する要部の概略側面図である。
 この工程において、組立ロボット100(ハンド部101)は、コネクタ部品Cのロック部材C2を開放位置へ回動させ、配線部材Fの端子部Faをコネクタ部品Cへ接続する。
 図13に示すように、ハンド部101は、噴出部120をコネクタ部品Cのロック部材C2の先端に対向する位置へ移動させ、支持面11a,12aで配線部材Fを挟持した状態のまま、噴出部120からエアJを噴出する。噴出部120から噴出されたエアJは、ロック部材C2を含むコネクタ部品Cの接続面に照射され、その風圧でロック部材C2が半開放位置から開放位置へ回動する。これにより、コネクタ部品Cの溝部Cs及び台座部C10が外部に広く開放される。
 本実施形態では、噴出部120とロック部材C2との相対距離が所定以下になったところで、噴出部120からのエアの噴出が開始される。これにより、コネクタ部品Cの位置以外の位置へのエアの噴出による塵埃の発生を抑えることができる。
 また本実施形態では、コネクタ部品Cの斜め上方からエアJをロック部材C2へ向けて噴出するように、ハンド部101の姿勢がコネクタ部品Cに向かってx軸まわりに所定角度傾斜した姿勢に制御される。これにより、エアJを構成する流束のうち、台座部C10や回路基板Wbの表面で反射した流束をも利用できるため、ロック部材C2を効率よく開放位置へ回動させることができる。なお、ハンド部101の上記傾斜姿勢は、コネクタ部品Cへの配線部材Fの接続が完了するまで維持される。
 続いて図14Aに示すように、ハンド部101は、配線部材Fの端子部Faがコネクタ部品Cの台座部C10の直上に位置するように移動し、この位置から下方の台座部C10へ端子部Faを押し付ける。これにより、端子部Faが台座部C10の上面にならって水平に折り曲げられる。これにより配線部材Fの剛性が高まり、直線的な姿勢が安定に確保される。
 続いて図14Bに示すように、ハンド部101は、コネクタ部品Cに向かって前進し、端子部Faをコネクタ部品Cの溝部Csに嵌合させ、さらに所定量前進させることで、端子部Faを溝部Cs内の端子部Caに電気的に接続する。上述のように配線部材Fは幅方向の剛性が高められるため、ハンド部101の前進に追従して端子部Faをコネクタ部品Cの溝部Cs内に安定に進入させることができる。
 噴出部120からのエアJの噴出は、噴出開始から所定時間経過後に停止される。上記所定時間は特に限定されないが、本実施形態では、端子部FaのコネクタCへの接続が完了するまでの時間に設定される。これにより、ロック部材C2を常に開放した状態を維持できるため、端子部Faの安定した接続作業を確保することができる。
 コネクタ部品Cへの端子部Faの接続後、ハンド部101は、クランプ機構CL1を開放し配線部材Fの挟持動作を解除する。そして図14Cに示すように、ハンド部101は、上記傾斜姿勢を維持したまま、昇降部材13がロック部材C2の直上に位置するように移動し、その位置でクランプ機構CL1を再び閉じるとともに駆動ロッドR2により昇降部材13を下方へ移動させる(図5C参照)。これによりロック部材C2は昇降部材13からの下方への押圧操作を受けて、ロック位置へ回動する。
 以上のように本実施形態によれば、ハンド部101が噴出部120を有しているため、エアJの噴出によりコネクタ部品Cのロック部材C2がその開放位置に安定に維持される。これにより、コネクタ部品Cに対する配線部材Fの適切な組み付けが可能となる。
 また本実施形態によれば、噴出部120が第2のクランプ爪12の側面部123に設けられているため、噴出部120を第2のクランプ爪12に内蔵させることが可能となり、これによりハンド部101の小型化と構成の簡素化を図ることができる。
 さらに本実施形態によれば、ハンド部101の第1のクランプ爪11が配線部材Fの挟持方向に長手の連結部113を有するため、クランプ機構CL1と多関節アーム102とが配線部材Fの挟持方向に対向させることができる。これにより、帯状の配線部材Fを厚み方向に挟持する場合において、配線部材Fをコネクタ部品Cの高さに容易に搬送することができる。
 さらに本実施形態によれば、ハンド部101は、力覚センサ15を備えているため、クランプ機構CL1に作用する外力やクランプ機構CL1による配線部材Fの挟持力(反力)等を検出することが可能となる。これにより、コネクタ部品Cのロック部材C2に対するロック位置の解除動作、コネクタ部品Cに対する配線部材Fの接続動作、昇降部材13によるロック部材C2に対するロック位置への押圧動作等を適切に制御することが可能となる。
 そして本実施形態によれば、組立ロボット100と搬送ロボット200との協働動作によって配線部材Fをコネクタ部品Cへ接続するように構成されているため、各ハンド部101,201の構成の複雑化を回避しつつ、コネクタ部品Cへの配線部材Fの接続工程を安定して行うことできる。
<変形例>
 例えば以上の実施形態では、産業用ロボットを例に挙げて説明したが、業務用を含むサービスロボットにも本技術は適用可能である。また、噴出部120はエア以外にも液体を噴出可能に構成されてもよい。例えば、洗浄剤を吹き付けならクランプ機構で挟持したブラシを用いて床面を清掃する自動清掃装置などに本技術は適用可能である。
 また、以上の実施形態では、噴出部120がハンド部101の第2のクランプ爪12に設けられたが、これに代えて、第1のクランプ爪11に設けられてもよい。また、噴出部120が設けられる場所や数、さらには噴出孔120aの形状は上述の例に限られず、適宜変更することが可能である。
 さらに以上の実施形態では、ロボット装置1は組立ロボット100と搬送ロボット200を備える場合を例に挙げて説明したが、搬送ロボット200は必要に応じて省略してもよく、組立ロボット100のみで配線部材Fのコネクタ部品Cへの接続を行うようにしてもよい。
 さらに、以上の実施形態では、ロック部材C2付きのコネクタ部品Cへの配線部材Fの接続に本技術を適用した例について説明したが、これに限られず、ロック部材を備えないコネクタ部品への接続にも用いてもよい。この場合、エアの噴出により接続部内のゴミや油脂等の異物を除去しながら接続作業を行うことができる。また、塗料や接着材を塗布しながらの対象物の処理や、液体で洗浄しながらの対象物の処理を行うことも可能である。
 なお、本技術は以下のような構成もとることができる。
(1) 第1の多関節アームと、
 前記第1の多関節アームに取り付けられ第1の支持面を有する第1のクランプ爪と、前記第1の支持面に直交する第1の軸方向に前記第1の支持面と対向する第2の支持面を有し前記第1のクランプ爪に対して前記第1の軸方向に相対移動可能な第2のクランプ爪とを有し、前記第1の支持面及び前記第2の支持面により対象物を前記第1の軸方向に挟持することが可能に構成された第1のクランプ機構と、
 前記第1のクランプ爪及び前記第2のクランプ爪の何れか一方に設けられ、前記第1の軸方向と直交する第2の軸方向に流体を噴出することが可能に構成された噴出部と
 を有する第1のロボット
 を具備するロボット装置。
(2)上記(1)に記載のロボット装置であって、
 前記第2のクランプ爪は、前記第2の軸方向に直交する側面部をさらに有し、
 前記噴出部は、前記側面部に設けられる
 ロボット装置。
(3)上記(1)又は(2)に記載のロボット装置であって、
 前記第1のクランプ爪は、前記第1の多関節アームに固定されるベース部と、前記ベース部と前記第1の支持面との間に接続され前記第1の軸方向に延びる連結部と、をさらに有する
 ロボット装置。
(4)上記(1)~(3)のいずれか1つに記載のロボット装置であって、
 前記第1の多関節アームと前記ベース部との間に配置され、前記第1のクランプ機構に作用する力を検出する力覚センサをさらに具備する
 ロボット装置。
(5)上記(1)~(4)のいずれか1つに記載のロボット装置であって、
 前記第1のクランプ機構は、前記第2のクランプ爪に取り付けられ前記第2のクランプ爪に対して前記第1の軸方向に相対移動可能な昇降部材をさらに有する
 ロボット装置。
(6)上記(1)~(5)のいずれか1つに記載のロボット装置であって、
 前記噴出部は、前記流体としてエアを噴出する
 ロボット装置。
(7)上記(1)~(5)のいずれか1つに記載のロボット装置であって、
 前記噴出部は、前記流体として液体を噴出する
 ロボット装置。
(8)上記(1)~(7)のいずれか1つに記載のロボット装置であって、
 前記対象物を挟持することが可能な第2のクランプ機構と、前記第2のクランプ機構を支持する第2の多関節アームとを有し、前記第2のクランプ機構から前記第1のクランプ機構へ前記対象物を移載する第2のロボットをさらに具備する
 ロボット装置。
(9)上記(8)に記載のロボット装置であって、
 前記第2のロボットは、前記対象部を吸着する吸着部をさらに有し、
 前記第2のクランプ機構は、前記吸着部による前記対象物の吸着方向に直交する一軸方向に相互に対向し前記対象物を前記一軸方向に挟持することが可能な一対のクランプ爪を有する
 ロボット装置。
(10)上記(1)~(9)のいずれか1つに記載のロボット装置であって、
 前記第1のロボットは、前記第1のクランプ機構に挟持される前記対象物を撮影可能な撮像部をさらに有する
 ロボット装置。
(11) 開閉可能なロック部材を有するコネクタと、前記コネクタに接続される接続端子を有する接続部材とを含む電子機器の製造装置であって、
 多関節アームと、
 前記多関節アームに取り付けられ第1の支持面を有する第1のクランプ爪と、前記第1の支持面に直交する第1の軸方向に前記第1の支持面と対向する第2の支持面を有し前記第1のクランプ爪に対して前記第1の軸方向に相対移動可能な第2のクランプ爪とを有し、前記第1の支持面及び前記第2の支持面から前記接続端子を前記第1の軸方向と直交する第2の軸方向に突出させた状態で前記接続部材を前記第1の軸方向に挟持することが可能に構成されたクランプ機構と、
 前記第1のクランプ爪及び前記第2のクランプ爪の何れか一方に設けられ、前記第2の軸方向に対向する前記ロック部材に対して流体を噴出することが可能に構成された噴出部と
 を具備する電子機器の製造装置。
(12) 開閉可能なロック部材を有するコネクタと、前記コネクタに接続される接続端子を有する接続部材とを含む電子機器の製造方法であって、
 クランプ機構によって前記接続部材をその厚み方向に挟持し、
 前記接続端子が前記コネクタと対向する位置へ前記クランプ機構を搬送し、
 前記クランプ機構から前記コネクタへ流体を噴出することで前記ロック部材を開放し、
 前記クランプ機構によって前記接続部材を前記コネクタへ近接させることで、前記接続端子を前記コネクタへ接続する
 電子機器の製造方法。
(13)上記(12)に記載の電子機器の製造方法であって、
 前記接続部材は、FPC(フレキシブルプリント基板)又はFFC(フレキシブルフラットケーブル)である
 電子機器の製造方法。
(14)上記(12)又は(13)に記載の電子機器の製造方法であって、
 前記流体は、エアである
 電子機器の製造方法。
 1…ロボット装置
 11…第1のクランプ爪
 11a…支持面
 12…第2のクランプ爪
 12a…支持面
 13…昇降部材
 14…突起部
 15…力覚センサ
 23…吸着部材
 171,172…カメラ
 100…組立ロボット
 120…噴出部
 101…ハンド部
 102…多関節アーム
 111…支持部
 112…ベース部
 113…連結部
 200…搬送ロボット
 201…ハンド部
 202…多関節アーム
 C…コネクタ部品
 C2…ロック部材
 CL1…第1のクランプ機構
 CL2…第2のクランプ機構
 F…配線部材
 Fa…端子部

Claims (14)

  1.  第1の多関節アームと、
     前記第1の多関節アームに取り付けられ第1の支持面を有する第1のクランプ爪と、前記第1の支持面に直交する第1の軸方向に前記第1の支持面と対向する第2の支持面を有し前記第1のクランプ爪に対して前記第1の軸方向に相対移動可能な第2のクランプ爪とを有し、前記第1の支持面及び前記第2の支持面により対象物を前記第1の軸方向に挟持することが可能に構成された第1のクランプ機構と、
     前記第1のクランプ爪及び前記第2のクランプ爪の何れか一方に設けられ、前記第1の軸方向と直交する第2の軸方向に流体を噴出することが可能に構成された噴出部と
     を有する第1のロボット
     を具備するロボット装置。
  2.  請求項1に記載のロボット装置であって、
     前記第2のクランプ爪は、前記第2の軸方向に直交する側面部をさらに有し、
     前記噴出部は、前記側面部に設けられる
     ロボット装置。
  3.  請求項1に記載のロボット装置であって、
     前記第1のクランプ爪は、前記第1の多関節アームに固定されるベース部と、前記ベース部と前記第1の支持面との間に接続され前記第1の軸方向に延びる連結部と、をさらに有する
     ロボット装置。
  4.  請求項1に記載のロボット装置であって、
     前記第1の多関節アームと前記ベース部との間に配置され、前記第1のクランプ機構に作用する力を検出する力覚センサをさらに具備する
     ロボット装置。
  5.  請求項1に記載のロボット装置であって、
     前記第1のクランプ機構は、前記第2のクランプ爪に取り付けられ前記第2のクランプ爪に対して前記第1の軸方向に相対移動可能な昇降部材をさらに有する
     ロボット装置。
  6.  請求項1に記載のロボット装置であって、
     前記噴出部は、前記流体としてエアを噴出する
     ロボット装置。
  7.  請求項1に記載のロボット装置であって、
     前記噴出部は、前記流体として液体を噴出する
     ロボット装置。
  8.  請求項1に記載のロボット装置であって、
     前記対象物を挟持することが可能な第2のクランプ機構と、前記第2のクランプ機構を支持する第2の多関節アームとを有し、前記第2のクランプ機構から前記第1のクランプ機構へ前記対象物を移載する第2のロボットをさらに具備する
     ロボット装置。
  9.  請求項8に記載のロボット装置であって、
     前記第2のロボットは、前記対象部を吸着する吸着部をさらに有し、
     前記第2のクランプ機構は、前記吸着部による前記対象物の吸着方向に直交する一軸方向に相互に対向し前記対象物を前記一軸方向に挟持することが可能な一対のクランプ爪を有する
     ロボット装置。
  10.  請求項1に記載のロボット装置であって、
     前記第1のロボットは、前記第1のクランプ機構に挟持される前記対象物を撮影可能な撮像部をさらに有する
     ロボット装置。
  11.  開閉可能なロック部材を有するコネクタと、前記コネクタに接続される接続端子を有する接続部材とを含む電子機器の製造装置であって、
     多関節アームと、
     前記多関節アームに取り付けられ第1の支持面を有する第1のクランプ爪と、前記第1の支持面に直交する第1の軸方向に前記第1の支持面と対向する第2の支持面を有し前記第1のクランプ爪に対して前記第1の軸方向に相対移動可能な第2のクランプ爪とを有し、前記第1の支持面及び前記第2の支持面から前記接続端子を前記第1の軸方向と直交する第2の軸方向に突出させた状態で前記接続部材を前記第1の軸方向に挟持することが可能に構成されたクランプ機構と、
     前記第1のクランプ爪及び前記第2のクランプ爪の何れか一方に設けられ、前記第2の軸方向に対向する前記ロック部材に対して流体を噴出することが可能に構成された噴出部と
     を具備する電子機器の製造装置。
  12.  開閉可能なロック部材を有するコネクタと、前記コネクタに接続される接続端子を有する接続部材とを含む電子機器の製造方法であって、
     クランプ機構によって前記接続部材をその厚み方向に挟持し、
     前記接続端子が前記コネクタと対向する位置へ前記クランプ機構を搬送し、
     前記クランプ機構から前記コネクタへ流体を噴出することで前記ロック部材を開放し、
     前記クランプ機構によって前記接続部材を前記コネクタへ近接させることで、前記接続端子を前記コネクタへ接続する
     電子機器の製造方法。
  13.  請求項12に記載の電子機器の製造方法であって、
     前記接続部材は、FPC(フレキシブルプリント基板)又はFFC(フレキシブルフラットケーブル)である
     電子機器の製造方法。
  14.  請求項12に記載の電子機器の製造方法であって、
     前記流体は、エアである
     電子機器の製造方法。
PCT/JP2018/009872 2017-04-03 2018-03-14 ロボット装置、電子機器の製造装置及び製造方法 WO2018186134A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/497,073 US11413765B2 (en) 2017-04-03 2018-03-14 Robotic device, production device for electronic apparatus, and production method
CN201880021413.4A CN110461552B (zh) 2017-04-03 2018-03-14 机械手装置、用于电子设备的生产装置和生产方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017073584 2017-04-03
JP2017-073584 2017-04-03

Publications (1)

Publication Number Publication Date
WO2018186134A1 true WO2018186134A1 (ja) 2018-10-11

Family

ID=63712582

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/009872 WO2018186134A1 (ja) 2017-04-03 2018-03-14 ロボット装置、電子機器の製造装置及び製造方法

Country Status (3)

Country Link
US (1) US11413765B2 (ja)
CN (1) CN110461552B (ja)
WO (1) WO2018186134A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111195907A (zh) * 2018-11-16 2020-05-26 精工爱普生株式会社 机器人系统及连接方法
CN111283660A (zh) * 2018-12-07 2020-06-16 精工爱普生株式会社 机器人系统及连接方法
JP2020188232A (ja) * 2019-05-17 2020-11-19 株式会社デンソー フレキシブル基板の組付方法及び組付装置
EP3974119A1 (de) * 2020-09-23 2022-03-30 Liebherr-Verzahntechnik GmbH Vorrichtung zum automatisierten herstellen einer steckverbindung

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7415606B2 (ja) 2020-01-30 2024-01-17 セイコーエプソン株式会社 接続方法およびロボットシステム
KR102557259B1 (ko) * 2021-03-09 2023-07-19 (주) 한주반도체 Pcb cnt 자동 해체장치
KR102557264B1 (ko) * 2021-03-09 2023-07-19 (주) 한주반도체 Pcb cnt 자동 체결장치

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04223886A (ja) * 1990-03-29 1992-08-13 Hoya Corp 研磨方法および研磨装置
JPH11277474A (ja) * 1998-03-31 1999-10-12 Nok Corp 平行開閉チャック装置
JP2009023072A (ja) * 2007-07-23 2009-02-05 Fanuc Ltd 可撓性ワーク組付方法
JP2011115877A (ja) * 2009-12-02 2011-06-16 Canon Inc 双腕ロボット
WO2013157121A1 (ja) * 2012-04-19 2013-10-24 株式会社安川電機 ロボットシステム
WO2015087854A1 (ja) * 2013-12-10 2015-06-18 川崎重工業株式会社 ロボットハンド、ロボット、およびロボットセル
JP2016209967A (ja) * 2015-05-12 2016-12-15 富士通株式会社 把持装置及びフラットケーブル挿入装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4336085A1 (de) * 1993-10-22 1995-04-27 Atotech Deutschland Gmbh Verfahren zum Entfernen von Flüssigkeit von der Oberfläche eines benetzten Behandlungsgutes und Anordnung zur Durchführung des Verfahrens
JP3505948B2 (ja) 1997-03-03 2004-03-15 松下電器産業株式会社 表示パネルの組立方法
JP4607348B2 (ja) 2001-02-07 2011-01-05 第一電子工業株式会社 コネクタ
CA2357271C (en) * 2001-03-30 2008-05-20 Axium Automation Inc. Gripping and transport clamp mounted at the end of a robotic arm and method for operating the same
US6971921B1 (en) * 2004-08-24 2005-12-06 Cheng Uei Precision Industry Co., Ltd. Open/close type electrical connector
JP5369638B2 (ja) * 2008-11-21 2013-12-18 株式会社Ihi ロボット装置
FI20106090A0 (fi) * 2010-10-21 2010-10-21 Zenrobotics Oy Menetelmä kohdeobjektin kuvien suodattamiseksi robottijärjestelmässä
JP5878702B2 (ja) * 2011-07-20 2016-03-08 Thk株式会社 把持装置
JP2013078825A (ja) * 2011-10-04 2013-05-02 Yaskawa Electric Corp ロボット装置、ロボットシステムおよび被加工物の製造方法
WO2013157120A1 (ja) * 2012-04-19 2013-10-24 株式会社安川電機 ロボットシステム
CN103684036A (zh) * 2012-09-18 2014-03-26 精工爱普生株式会社 压电马达、机器人手、机器人、电子部件搬运装置、电子部件检查装置、送液泵、打印装置
CN103552063A (zh) * 2013-09-29 2014-02-05 爱马特(江苏)自动化有限公司 升降用旋转臂来移送工件的机械手装置
JP6366932B2 (ja) * 2013-12-10 2018-08-01 川崎重工業株式会社 ワーク反転支援装置および同装置を備えたロボットセル

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04223886A (ja) * 1990-03-29 1992-08-13 Hoya Corp 研磨方法および研磨装置
JPH11277474A (ja) * 1998-03-31 1999-10-12 Nok Corp 平行開閉チャック装置
JP2009023072A (ja) * 2007-07-23 2009-02-05 Fanuc Ltd 可撓性ワーク組付方法
JP2011115877A (ja) * 2009-12-02 2011-06-16 Canon Inc 双腕ロボット
WO2013157121A1 (ja) * 2012-04-19 2013-10-24 株式会社安川電機 ロボットシステム
WO2015087854A1 (ja) * 2013-12-10 2015-06-18 川崎重工業株式会社 ロボットハンド、ロボット、およびロボットセル
JP2016209967A (ja) * 2015-05-12 2016-12-15 富士通株式会社 把持装置及びフラットケーブル挿入装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111195907A (zh) * 2018-11-16 2020-05-26 精工爱普生株式会社 机器人系统及连接方法
JP2020082228A (ja) * 2018-11-16 2020-06-04 セイコーエプソン株式会社 ロボットシステムおよび接続方法
CN111195907B (zh) * 2018-11-16 2022-11-29 精工爱普生株式会社 机器人系统及连接方法
JP7225725B2 (ja) 2018-11-16 2023-02-21 セイコーエプソン株式会社 ロボットシステムおよび挿入方法
CN111283660A (zh) * 2018-12-07 2020-06-16 精工爱普生株式会社 机器人系统及连接方法
TWI701116B (zh) * 2018-12-07 2020-08-11 日商精工愛普生股份有限公司 機械人系統及連接方法
JP2020188232A (ja) * 2019-05-17 2020-11-19 株式会社デンソー フレキシブル基板の組付方法及び組付装置
JP7346905B2 (ja) 2019-05-17 2023-09-20 株式会社デンソー フレキシブル基板の組付方法及び組付装置
EP3974119A1 (de) * 2020-09-23 2022-03-30 Liebherr-Verzahntechnik GmbH Vorrichtung zum automatisierten herstellen einer steckverbindung

Also Published As

Publication number Publication date
US20200376679A1 (en) 2020-12-03
CN110461552A (zh) 2019-11-15
US11413765B2 (en) 2022-08-16
CN110461552B (zh) 2023-05-23

Similar Documents

Publication Publication Date Title
WO2018186134A1 (ja) ロボット装置、電子機器の製造装置及び製造方法
US7490398B1 (en) Methods for assembling a disk drive using robotic end effector
WO2018207552A1 (ja) ロボット装置および電子機器の製造方法
JP6322959B2 (ja) ロボット、ロボットシステム、及びロボット制御装置
US20170151673A1 (en) Manipulator system, and image capturing system
JP2010105106A (ja) 生産装置
JP7052791B2 (ja) ロボット装置および電子機器の製造方法
JP7261957B2 (ja) 電子機器組み立て装置および電子機器組み立て方法
WO2016129069A1 (ja) 部品供給装置
CN111618845B (zh) 机器人系统
JP2016207565A (ja) コネクタの接続装置および接続方法
EP3595423B1 (en) Conveyance device and mounting-related device
JP5999198B2 (ja) ロボットシステム
CN114555240A (zh) 末端执行器以及末端执行器的控制装置
JP5827046B2 (ja) 板状部材の支持装置および支持方法、ならびに板状部材の搬送装置
JP6442063B2 (ja) 部品実装機、ノズル撮像方法
JP5917389B2 (ja) 多関節型双腕ロボットによるベルト組付けシステム
JP6862567B2 (ja) 装着部品保持用チャックおよび部品装着機
US20200037478A1 (en) Three-dimensional mounting device and three-dimensional mounting method
US11992957B2 (en) Mounting-related device and rail device
JP2009172720A (ja) ビンピッキング装置
JP2015085480A (ja) ロボット、制御装置、ロボットシステム、ロボット制御方法、及びプログラム
JP7033026B2 (ja) 姿勢変換装置および作業装置
WO2017081809A1 (ja) 部品実装装置、部品実装方法、及び、表面実装機
JP2015085457A (ja) ロボット、ロボットシステム及びロボット制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18781420

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18781420

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP