WO2018185967A1 - 薄膜トランジスタ基板及びその製造方法 - Google Patents

薄膜トランジスタ基板及びその製造方法 Download PDF

Info

Publication number
WO2018185967A1
WO2018185967A1 PCT/JP2017/041050 JP2017041050W WO2018185967A1 WO 2018185967 A1 WO2018185967 A1 WO 2018185967A1 JP 2017041050 W JP2017041050 W JP 2017041050W WO 2018185967 A1 WO2018185967 A1 WO 2018185967A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating film
electrode
absorption layer
film transistor
thin film
Prior art date
Application number
PCT/JP2017/041050
Other languages
English (en)
French (fr)
Inventor
古畑 武夫
俊明 藤野
井上 和式
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201780087013.9A priority Critical patent/CN110447092A/zh
Priority to US16/476,343 priority patent/US20200044090A1/en
Priority to JP2019511059A priority patent/JP6727414B2/ja
Publication of WO2018185967A1 publication Critical patent/WO2018185967A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1225Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/124Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66969Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • H01L29/78633Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device with a light shield
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/124Insulating layers formed between TFT elements and OLED elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals

Definitions

  • the present invention relates to a thin film transistor substrate and a method for manufacturing the same.
  • Liquid crystal display one of the conventional thin panels, is widely used for monitors of personal computers and personal digital assistants by taking advantage of low power consumption and small size and light weight. ing. In recent years, liquid crystal display devices are widely used for TV applications.
  • a light emitter such as an EL (Electro-Luminescence) element is used as a pixel.
  • the electroluminescence type EL display device used in the above is also used as a next-generation thin panel device. Note that the EL element is a self-luminous type and has characteristics not found in liquid crystal display devices such as a wide viewing angle, high contrast, and high-speed response.
  • Thin film transistors (TFTs) used in these display devices often use a MOS (Metal Oxide Semiconductor) structure using a semiconductor layer as a channel layer (active layer).
  • MOS thin film transistors such as an inverted stagger type (bottom gate type) and a top gate type.
  • an amorphous Si film or a polycrystalline Si film is used for the channel layer.
  • a polycrystalline Si film may be used from the viewpoint of improving the aperture ratio of the display region, improving the resolution, and the necessity of configuring a peripheral driver circuit such as a gate driver with a thin film transistor. Many.
  • an InGaZnO-based oxide semiconductor layer that has higher mobility than amorphous silicon and can be formed at a low temperature has been used for a channel layer of a thin film transistor.
  • the oxide semiconductor layer can be formed by a sputtering method.
  • a thin film transistor used for a display device is disposed on a transparent substrate such as a glass substrate, and is used in a state where it is always irradiated with light from a backlight.
  • a white LED LightLEDEmitting Diode
  • the emission spectrum of the white LED has a strong peak around a wavelength of 450 nm.
  • the energy band gap of the InGaZnO-based oxide semiconductor layer is, for example, about 3.1 eV, and is transparent to visible light.
  • there are levels in the energy band that generate carriers when excited by light in the vicinity of a wavelength of 450 nm. The generated carriers cause variations in characteristics and variations in characteristics of the thin film transistor.
  • the light shielding layer is disposed on the active layer as described above.
  • light directly incident on the active layer from the gap between the gate electrodes cannot be shielded.
  • an object of the present invention is to provide a technique capable of suppressing light having a harmful wavelength from reaching the active layer.
  • the thin film transistor substrate according to the present invention includes a substrate, a gate electrode disposed on the substrate, an absorption layer including an oxide semiconductor disposed on the substrate and spaced apart from the gate electrode, and the gate.
  • an absorption layer including an oxide semiconductor is provided on the substrate and spaced apart from the gate electrode.
  • FIG. 3 is a plan view schematically showing the overall configuration of the thin film transistor substrate according to the first to third embodiments.
  • 7 is a plan view showing an example of another configuration of a liquid crystal display device including the thin film transistor substrate according to Embodiments 1 to 3.
  • FIG. 3 is a plan view illustrating an example of a configuration of a liquid crystal display device including the thin film transistor substrate according to Embodiment 1.
  • FIG. It is a top view which shows an example of the spectrum of a backlight.
  • 2 is a cross-sectional view illustrating an example of a structure of a thin film transistor substrate according to Embodiment 1.
  • FIG. 3 is a plan view illustrating an example of a configuration of an absorption layer according to Embodiment 1.
  • FIG. 6 is a cross-sectional view illustrating an example of a configuration of a thin film transistor substrate according to a second embodiment. 6 is a cross-sectional view illustrating an example of a configuration of a thin film transistor substrate according to Embodiment 3.
  • FIG. 6 is a cross-sectional view illustrating an example of a configuration of a thin film transistor substrate according to Embodiment 3.
  • the thin film transistor (TFT) disposed in the semiconductor device according to the first to third embodiments of the present invention described below is used as a switching device.
  • the TFT can be applied to a switching device for a pixel or a drive circuit provided in a flat display device (flat panel display) such as a liquid crystal display device or an electroluminescent EL display device.
  • FIG. 1 is a plan view schematically showing an overall configuration of a TFT substrate 100 which is a thin film transistor substrate. As shown in FIG. 1, in the TFT substrate 100, pixels (regions) including the pixel TFTs 30 are arranged in a matrix and are arranged around the display region 24 so as to surround the display region 24. A frame region 23 is defined.
  • a plurality of source lines 12 and a plurality of gate lines 13 are arranged so as to intersect each other at right angles, and the pixel TFTs 30 and 30 corresponding to the respective intersections of the source lines 12 and the gate lines 13 are arranged.
  • a pixel region including a pixel electrode is provided.
  • a scanning signal driving circuit 25 for applying a driving voltage to the gate wiring 13 and a display signal driving circuit 26 for supplying a driving voltage to the source wiring 12 are arranged in the frame region 23.
  • FIG. 1 detailed illustrations of the connection between the gate line 13 and the scanning signal drive circuit 25 and the partial connection between the source line 12 and the display signal drive circuit 26 are omitted. .
  • the absorption layer 1 that is a light shielding layer is used as a common electrode that forms an electric field with the pixel electrode 7, and the light shielding layer connection wiring 14 is connected to the absorption layer 1. Is done.
  • the absorption layer 1 that is a light shielding layer is used as a storage capacitor electrode that assists the storage of charge accumulation in the pixel electrode 7.
  • the following methods are conceivable for connecting the absorption layer 1 and the extraction electrode for applying a voltage to the absorption layer 1.
  • One is a method of forming a take-out electrode (not shown) electrically connected through a contact hole on the absorption layer 1 at a terminal portion defined in the frame region 23 and the like, and connecting the take-out electrode and the absorption layer 1 It is.
  • the other is a method using the light shielding layer connection wiring 14 shown in FIG.
  • An example of a configuration in which the light shielding layer connection wiring 14 and the absorption layer 1 are connected is shown in FIG.
  • the absorption layer connection wiring 14 is disposed in the same layer as the gate electrode 3 with the same material as the gate electrode 3.
  • the light shielding layer connection wiring 14 has a shape extending in the same direction as the gate wiring 13, and is disposed so as to overlap with a partial region of the absorption layer 1. In the region where both overlap, the absorption layer 1 is disposed in the upper layer, and the absorption layer 1 and the light shielding layer connection wiring 14 are electrically connected to each other.
  • an extraction electrode (not shown) that is electrically connected through a contact hole on the light shielding layer connection wiring 14 is formed in the terminal portion defined in the frame region 23 and the like, and the extraction electrode and the light shielding layer connection wiring 14 are connected. To do.
  • a part of the absorption layer 1 has a low resistance as a countermeasure against color unevenness in such a liquid crystal display.
  • a low resistance region is formed in a part of the absorption layer 1 in the same extending direction as the gate wiring 13.
  • a large amount of hydrogen is injected into a region of the absorption layer 1 where the resistance is desired to be reduced, and a region in the absorption layer 1 having a higher hydrogen concentration than other regions is formed.
  • a low resistance region is formed in a partial region of the absorption layer 1, and this can play the same role as the light shielding layer connection wiring 14. For this reason, it is not necessary to extend the light shielding layer connection wiring 14 in the pixel region, and the area occupied by the light shielding layer connection wiring 14 in the pixel region can be reduced. As a result, the backlight light is not blocked by the light shielding layer connection wiring 14, so that the aperture ratio can be increased and the display performance can be improved.
  • Embodiment 1 The structure of the thin film transistor and thus the thin film transistor substrate according to Embodiment 1 of the present invention will be described.
  • a case where the present invention is applied to a general TFT structure called a back channel etching structure will be described as an example.
  • FIG. 3 is a plan view showing an example of the configuration of the liquid crystal display device having the thin film transistor substrate according to the first embodiment, and exemplifies a pixel portion of the TFT array substrate in the liquid crystal display device.
  • the TFT array substrate is a substrate corresponding to the TFT substrate 100 of FIG. 1 and may be referred to as an “array substrate” in the following description.
  • a liquid crystal display device includes a liquid crystal panel (not shown) having a structure in which a liquid crystal layer is sandwiched between an array substrate and a counter substrate, and a driving printed board (not shown) connected to the liquid crystal panel. And a backlight unit (not shown).
  • a liquid crystal panel (not shown) having a structure in which a liquid crystal layer is sandwiched between an array substrate and a counter substrate, and a driving printed board (not shown) connected to the liquid crystal panel.
  • a backlight unit not shown.
  • gate wirings 13 (FIG. 1) and source wirings 12 (FIG. 1) are arranged in a matrix, and as shown in FIG.
  • the backlight is disposed on the surface of the array substrate opposite to the counter substrate, that is, the lower surface of the array substrate.
  • the white backlight used in the liquid crystal display device has a spectrum shown as an example shown in FIG.
  • the spectrum of FIG. 4 has a peak in the vicinity of a wavelength of 450 to 460 nm.
  • the absorption layer 1 is provided beside the gate electrode 3, the active layer 5 of the thin film transistor is provided on the gate electrode 3, and the source electrode 4 and the drain electrode 6 are separated from each other on the active layer 5.
  • the drain electrode 6 is connected to the pixel electrode 7 which is a transparent electrode through a contact hole not shown in FIG.
  • the pixel electrode 7 only needs to have a comb-like or slit-like shape, and FIG. 3 shows an example in which the pixel electrode 7 has a comb-like shape.
  • FIG. 5 is a cross-sectional view taken along the line AA in FIG. 3, and is a cross-sectional view showing an example of the configuration of the array substrate according to the first embodiment.
  • the array substrate includes an absorption layer 1, a gate insulating film 2, a gate electrode 3, a source electrode 4, an active layer 5, a drain electrode 6, a pixel electrode 7, a protective insulating film 8, and a substrate 11. Prepare.
  • the gate electrode 3 is disposed on the substrate 11.
  • the substrate 11 is an insulating substrate having optical transparency such as a glass substrate or a quartz substrate.
  • the gate electrode 3 includes a metal material such as aluminum.
  • the gate electrode 3 may have a multilayer structure including materials of different compositions on the upper and lower surfaces or one of the surfaces.
  • the absorbing layer 1 is disposed on the substrate 11 so as to be separated from the gate electrode 3.
  • the absorption layer 1 includes an oxide semiconductor.
  • a gate insulating film 2 is disposed on the gate electrode 3 and the absorption layer 1 so as to cover the gate electrode 3 and the absorption layer 1.
  • the gate insulating film 2 is configured by a single layer including any one of insulating materials such as a silicon oxide film, a silicon nitride film, a silicon oxynitride film, and an alumina film, or a multilayer structure including a plurality of these materials. Yes.
  • the active layer 5 is disposed on the gate insulating film 2 and overlaps the gate electrode 3 in plan view.
  • the active layer 5 includes an oxide semiconductor.
  • the source electrode 4 is disposed on the upper part and the side part of the one end side portion of the active layer 5 and is connected to one end side portion of the active layer 5.
  • the drain electrode 6 is disposed on the upper and side portions of the other end portion of the active layer 5, and is connected to the other end portion of the active layer 5.
  • the source electrode 4 and the drain electrode 6 are separated from each other.
  • the source electrode 4 and the drain electrode 6 include a metal such as molybdenum, titanium, or aluminum, or a laminated film of these metals.
  • a protective insulating film 8 is disposed on the source electrode 4, the active layer 5 and the drain electrode 6.
  • the protective insulating film 8 covers the source electrode 4 and the active layer 5, and covers the drain electrode 6 except for the contact hole 9 provided on a part of the drain electrode 6.
  • the protective insulating film 8 is disposed to suppress moisture and the like entering from the outside, and includes a silicon oxide film, a silicon nitride film, alumina, and the like.
  • the insulating film includes the gate insulating film 2 and the protective insulating film 8.
  • the absorption layer 1 is disposed between the gate electrodes 3 at the entrance where light is incident, and absorbs light harmful to the thin film transistor. Since the layer 1 can effectively absorb, variation in characteristics of the thin film transistor can be suppressed.
  • the pixel electrode 7 is disposed above the absorption layer 1, and the pixel electrode 7 and the absorption layer 1 are insulated from each other by the gate insulating film 2 and the protective insulating film 8. For this reason, an electric field can be applied to the pixel electrode 7 by applying a voltage to the absorption layer 1.
  • the absorption layer 1 can be used as a common electrode. That is, an electric field can be formed above the pixel electrode 7 by applying a voltage to each of the absorption layer 1 and the pixel electrode 7. By this electric field, the orientation of the liquid crystal layer located above the pixel electrode 7 can be controlled, and the liquid crystal display can be controlled on and off. Furthermore, by using the absorption layer 1 as a common electrode, the mask for forming the absorption layer 1 and the common electrode can be reduced. As a result, an increase in the number of masks used in the entire manufacturing process can be suppressed, and an increase in cost can be suppressed.
  • the pixel electrode 7 does not necessarily have a comb shape or a slit shape.
  • the absorption layer 1 holds the charge of the pixel electrode 7. It can be used as an electrode for In this case, since the leakage at the time of turning off the TFT is reduced, the characteristics of the TFT can be improved.
  • the absorption layer 1 is disposed so as to surround the gate electrode 3, and as shown in FIG. 5, the gate insulating film 2 is interposed between the absorption layer 1 and the gate electrode 3. It is arranged.
  • the distance between the gate electrode 3 and the absorption layer 1 is reduced, the suppression of light incidence on the active layer 5 can be enhanced.
  • the distance between the gate electrode 3 and the absorption layer 1 is about 3 ⁇ m, for example, but this distance depends on the processing accuracy of the process. For example, when fine processing using a dry etching technique is possible, the distance between the gate electrode 3 and the absorption layer 1 can be made smaller than the same distance when formed by wet etching.
  • the distance from the gate electrode 3 can be reduced by making the area of the absorption layer 1 relatively small. It may be relatively large. In particular, in the pixel region for blue display, it is preferable to secure the light intensity by making the area of the absorption layer 1 relatively small.
  • the hole 1a may be provided in the absorption layer 1 partially.
  • the shape of the hole 1a may be any of a square, a rectangle, a circle, an ellipse, a polygon, and the like, and the shape may be determined according to the shape of the liquid crystal display device. According to such a configuration, the light intensity can be ensured.
  • the oxide semiconductor of the absorption layer 1 includes the same metal element as the oxide semiconductor of the active layer 5. And the composition ratio in the metal of the metal element of the absorption layer 1 is the same as the composition ratio in the metal of the metal element of the active layer 5.
  • an oxide semiconductor containing at least one element of In, Ga, and Zn for example, an InGaZnO-based oxide semiconductor may be used.
  • the present invention is not limited to this, and the absorption layer 1 and the active layer 5 may contain, for example, Sn, Al, and B.
  • the same kind of defect level in the band cap is formed at the same energy position.
  • harmful light absorbed in the active layer 5 out of light from the backlight can be selectively absorbed in advance by the absorption layer 1, so that fluctuations in characteristics of the thin film transistor can be suppressed.
  • light that does not affect the characteristics variation of the thin film transistor is transmitted and the light intensity can be secured, so that deterioration in display performance can be suppressed.
  • FIG. 7 is a diagram showing an example of the reflectance characteristic of the InGaZnO film disposed on the Al film.
  • the dotted line in the figure indicates the reflectance characteristic of the Al film
  • the alternate long and short dash line indicates the reflectance characteristic of the InGaZnO film
  • the alternate long and two short dashes line indicates the reflectance characteristic of the InGaZnO film having a relatively high H content.
  • an InGaZnO film having a relatively high H content may be referred to as a hydrogen-containing InGaZnO film.
  • both the InGaZnO film and the hydrogen-containing InGaZnO film decrease as the wavelength decreases from about 500 nm. From this, it can be seen that the absorptance of the InGaZnO film increases as the wavelength decreases from about 500 nm. It can also be seen that the hydrogen-containing InGaZnO film absorbs more light than the InGaZnO film in the range where the wavelength is shortened from about 500 nm.
  • the absorption at a wavelength of about 500 nm to 400 nm is caused by the fact that the defect level in the band gap of the InGaZnO film absorbs light.
  • the absorption layer 1 suppresses the light absorption of the active layer 5 by absorbing the light contributing to the excitation of the defect level in advance. Degradation of the thin film transistor can be suppressed.
  • the hydrogen content in the absorption layer 1 is preferably larger than the hydrogen content in the active layer 5. According to such a configuration, the effect of selectively absorbing light harmful to the active layer 5 in the absorption layer 1 can be enhanced.
  • the oxygen content in the absorption layer 1 may be larger than the oxygen content in the active layer 5.
  • the band gap of the absorption layer 1 can be widened, so that the transmittance on the short wavelength side of the absorption layer 1 is improved. For this reason, it is possible to make it difficult for the active layer 5 to absorb light harmful to the active layer 5.
  • the film thickness of the absorption layer 1 increases, the amount of light absorbed in the absorption layer 1 increases exponentially. For this reason, when the film thickness of the active layer 5 is about 50 nm, for example, the film thickness of the absorption layer 1 is between 10 nm and 500 nm, for example, thick when emphasizing absorption and thin when emphasizing transmission. That's fine.
  • FIG. 8 is a flowchart showing an example of the method for manufacturing the array substrate according to the first embodiment.
  • the resist coating and patterning described in the text are described as photolithography in FIG.
  • the resist removal described in the text is described as resist stripping and pure water cleaning in FIG.
  • step S1 the substrate 11 is purely cleaned.
  • step S2 a metal film made of, for example, aluminum is formed on the substrate 11, and then in step S3, a resist is applied and patterned.
  • step S4 the metal film is wet etched using the resist as a mask, and then in step S5, the resist is removed to form the gate electrode 3.
  • the thickness of the gate electrode 3 is, for example, about 200 nm.
  • step S6 an oxide semiconductor is formed on the region of the substrate 11 where the gate electrode 3 is not formed, and then in step S7, a resist is applied and patterned.
  • step S8 the oxide semiconductor film is wet-etched using the resist as a mask. Then, in step S9, the resist is removed, and the absorption layer 1 separated from the gate electrode 3 is formed on the substrate 11.
  • the oxide semiconductor film to be the absorption layer 1 for example, an oxide semiconductor that is transparent to visible light and includes at least one element of In, Ga, and Zn, for example, an InGaZnO-based oxide semiconductor Form.
  • a sputtering method is used as a method for forming the InGaZnO film to be the absorption layer 1.
  • direct current (DC) power is 100 W to 1000 W
  • the substrate temperature is 25 ° C. to 300 ° C.
  • the pressure is 0.1 Pa to 1.0 Pa
  • the ratio of O 2 to the total pressure in the Ar atmosphere is 1% to It is performed under the condition of 20%.
  • the H concentration in the InGaZnO film is controlled between 10 atoms% and 0.1 atoms% by controlling and adjusting the water partial pressure, that is, the H 2 O pressure to be between 5E-3 Pa and 5E-5 Pa. it can.
  • the hydrogen content in the InGaZnO film can be increased as the value of the H 2 O pressure when forming the InGaZnO film is larger.
  • the absorption layer 1 is formed by sputtering using a target having the same composition ratio of the metal element and the target used for forming the active layer 5 described later. And the absorption layer 1 is formed under the state of a moisture partial pressure higher than the moisture partial pressure at the time of formation of the active layer 5 mentioned later. Thereby, the hydrogen content in the absorption layer 1 can be made larger than the hydrogen content in the active layer 5. Therefore, the effect of selectively absorbing light harmful to the active layer 5 in the absorption layer 1 can be enhanced.
  • the absorption layer 1 is formed under a state where the oxygen partial pressure is higher than the oxygen partial pressure at the time of forming the active layer 5 described later. Thereby, the oxygen content in the absorption layer 1 can be made larger than the oxygen content in the active layer 5. Therefore, the band gap of the absorption layer 1 can be widened, and the transmittance on the short wavelength side of the absorption layer 1 is improved. Therefore, it is possible to make it difficult for the active layer 5 to absorb light harmful to the active layer 5.
  • the gate insulating film 2 is formed so as to cover the gate electrode 3 and the absorption layer 1.
  • the gate insulating film 2 is formed as a silicon nitride film, a silicon oxide film, an alumina film, or a laminated film thereof using a CVD (Chemical Vapor Deposition) method or a sputtering method.
  • the total film thickness of the gate insulating film 2 is, for example, about 200 to 600 nm.
  • an InGaZnO film which is an oxide semiconductor
  • the gate insulating film 2 by sputtering, for example, with a thickness of about 50 nm.
  • the absorption layer 1 is formed by a sputtering method using a target having the same composition ratio of a metal element and a target used for forming an active layer 5 described later.
  • the metal element contained in the oxide semiconductor of the absorption layer 1 and the metal element contained in the oxide semiconductor of the active layer 5 can be made the same, and the same kind of defect level in the band cap has the same energy. Formed in position.
  • variation in characteristics of the thin film transistor can be suppressed, and deterioration in display performance can be suppressed.
  • the hydrogen content in the active layer 5 is smaller, the number of defect levels that cause characteristic deterioration in the band gap decreases, and the characteristic deterioration of the thin film transistor is less likely to occur. Therefore, it is preferable to reduce the water partial pressure during the formation of the active layer 5 as much as possible and to reduce the hydrogen content in the active layer 5 as much as possible.
  • step S11 a resist is applied and patterned.
  • step S12 the InGaZnO film is wet-etched using the resist as a mask, and then the resist is removed to form the active layer 5 in step S13.
  • the thickness of the gate electrode 3 is, for example, about 200 nm. Note that dry etching may be used instead of wet etching for etching the InGaZnO film.
  • step S14 a metal film made of, for example, titanium, aluminum, molybdenum or the like is formed on the gate insulating film 2 and the active layer 5, and in step S15, a resist is applied and patterned.
  • step S16 the metal film is wet etched using the resist as a mask, and then in step S17, the resist is removed to form the source electrode 4 and the drain electrode 6.
  • the source electrode 4 is connected to one side of the active layer 5, the drain electrode 6 is connected to the other side of the active layer 5, and the source electrode 4 and the drain electrode 6 are separated from each other.
  • dry etching may be used instead of wet etching.
  • a gas type or etchant for dry etching is appropriately selected according to the material such as the source electrode 4.
  • the protective insulating film 8 is formed so as to cover the surfaces of the active layer 5, the source electrode 4, and the drain electrode 6.
  • a silicon oxide film is formed by CVD as the protective insulating film 8. The film thickness is about 100 nm.
  • a silicon oxide film (organic film) containing an organic substance is formed thereon as the protective insulating film 8 by a coating method. A slit coater or a spin coater is used for the coating method. By using a coating method, the upper surface of the protective insulating film 8 can be planarized.
  • the thickness of the organic film is, for example, about 1.5 ⁇ m.
  • a silicon nitride film may be laminated on the silicon oxide film formed by CVD. By forming the silicon nitride film, the influence of moisture on the thin film transistor can be suppressed.
  • the protective insulating film 8 is not limited to a silicon oxide film but may be an insulator such as a silicon nitride film.
  • step S19 a resist is applied and patterned.
  • step S20 the protective insulating film 8 on the drain electrode 6 is dry-etched, and then in step S21, the resist is removed to form a contact hole 9.
  • step S22 after forming a transparent conductive film such as an ITO film (a film containing In, Sn, O) on the inner wall of the contact hole 9 and the protective insulating film 8 by a sputtering method or the like, in step S23, A resist is applied and patterned.
  • step S24 the ITO film is wet etched, and in step S25, the resist is removed to form the pixel electrode 7.
  • the pixel electrode 7 having a comb shape is formed by the patterning. Further, the pixel electrode 7 disposed on the insulating film including the gate insulating film 2 and the protective insulating film 8 and above the absorption layer 1 is formed. Note that the material of the pixel electrode 7 is not limited to the above elements, but is not limited to ITO as long as it has a conductive characteristic that transmits a visible region such as an oxide semiconductor, and may be InZnO, InO, ZnO, or the like. .
  • the absorption layer 1 can be used as a common electrode by applying a voltage to the absorption layer 1 and the pixel electrode 7.
  • An electric field can be formed above the electrode 7. Note that a state in which a voltage is applied to the pixel electrode 7 can be realized by applying an appropriate voltage to the gate electrode 3 and the source electrode 4 to supply charges to the pixel electrode 7.
  • the extraction electrode for applying a voltage to the absorption layer 1 can be produced as follows.
  • a terminal portion defined in a region other than the display region 24 (FIG. 1), for example, the frame region 23 the contact hole 9 is formed simultaneously with the formation of the contact hole 9 in the gate insulating film 2 and the protective insulating film 8 on the absorption layer 1.
  • the contact hole (not shown) is formed.
  • an extraction electrode electrically connected to the absorption layer 1 through the another contact hole is formed simultaneously with the patterning of the pixel electrode 7 on the protective insulating film 8 in the terminal portion.
  • the configuration of the extraction electrode or the like for applying a voltage to the absorption layer 1 can be manufactured in parallel with the configuration of the display region 24 without adding a new process.
  • the array substrate according to the first embodiment as described above includes the substrate 11, the gate electrode 3 disposed on the substrate 11, and the oxide disposed on the substrate 11 so as to be separated from the gate electrode 3.
  • An absorption layer 1 including a semiconductor, and a gate electrode 3 and a gate insulating film 2 disposed on the absorption layer 1 are provided.
  • the array substrate is disposed on the gate insulating film 2 and overlapped with the gate electrode 3 in plan view.
  • the active layer 5 includes an oxide semiconductor, and the source electrode 4 is connected to the active layer 5.
  • the absorption layer 1 by providing the absorption layer 1, for example, light having a wavelength harmful to the active layer 5 out of the backlight light incident on the active layer 5 can be absorbed by the absorption layer 1. For this reason, it is possible to prevent light having a harmful wavelength from reaching the active layer 5. Moreover, since the absorption layer 1 can absorb only wavelengths that are harmful to the active layer 5, the light intensity can be secured and the influence on the display performance can be reduced.
  • FIG. 9 is a cross-sectional view showing an example of the configuration of the array substrate according to Embodiment 2 of the present invention.
  • constituent elements that are the same as or similar to the constituent elements described above are assigned the same reference numerals, and different constituent elements are mainly described.
  • the structure in which the pixel electrode 7 is provided on the insulating film including the gate insulating film 2 and the protective insulating film 8 has been described.
  • the pixel electrode 7 is disposed on the insulating film including the gate insulating film 2 without including the protective insulating film 8. That is, the gate insulating film 2 is the only insulating film between the pixel electrode 7 and the absorption layer 1.
  • the distance between the absorption layer 1 and the pixel electrode 7 is determined only by the film thickness of the gate insulating film 2, the distance can be easily controlled and the variation in the distance in the plane can be reduced. Can be reduced. Therefore, variations in display performance within the plane can be reduced.
  • step S1 to step S17 in FIG. 8 similarly to the first embodiment, the processing from step S1 to step S17 in FIG. 8 is performed, and the source electrode 4 and the drain electrode 6 are formed.
  • a transparent conductive film such as an ITO film (a film containing In, Sn, O) so as to cover the surfaces of the active layer 5, the source electrode 4, and the drain electrode 6, a resist is applied and patterned. Then, after wet etching the ITO film, the resist is removed to form the pixel electrode 7.
  • the pixel electrode 7 configured in this way is connected to the drain electrode 6.
  • the pixel electrode 7 is disposed on the insulating film including only the gate insulating film 2 and above the absorption layer 1 and has a comb-like shape.
  • a protective insulating film 8 is formed on the source electrode 4, the active layer 5, the drain electrode 6 and the pixel electrode 7.
  • the gate insulating film 2 and the protective insulating film 8 on the absorption layer 1 are etched in a terminal portion defined in a region different from the display region 24 (FIG. 1), for example, the frame region 23.
  • a contact hole exposing the absorption layer 1 can be formed.
  • the insulating film under the pixel electrode 7 includes the gate insulating film 2 without including the protective insulating film 8. According to such a configuration, the in-plane variation of the distance between the absorption layer 1 and the pixel electrode 7 can be reduced. Therefore, it is possible to obtain a good display performance with little variation in the plane while obtaining a high light shielding effect on the active layer 5.
  • FIG. 10 is a cross-sectional view showing an example of the configuration of the array substrate according to Embodiment 3 of the present invention.
  • constituent elements that are the same as or similar to the constituent elements described above are assigned the same reference numerals, and different constituent elements are mainly described.
  • Embodiments 1 and 2 described above the case where the absorption layer 1 is used as a common electrode by making the shape of the pixel electrode 7 comb-like or the like has been described.
  • the absorption layer 1 is used as a storage capacitor electrode. For this reason, in Embodiment 3, it is not necessary to make the shape of the pixel electrode 7 comb-like or the like.
  • the processes from step S1 to step S22 in FIG. 8 are performed as in the first embodiment, and a transparent conductive film such as an ITO film is formed on the inner wall of the contact hole 9 and the protective insulating film 8. To do. Thereafter, the pixel electrode 7 disposed on the insulating film including the gate insulating film 2 and the protective insulating film 8 and above the absorption layer 1 is formed. At this time, the shape of the pixel electrode 7 does not have to be a comb shape.
  • the pixel electrode 7 is used as a lower electrode that forms an electric field in the liquid crystal layer with the upper electrode. Control of the liquid crystal display can be performed by controlling the electric field. According to this structure, a liquid crystal display with a high manufacturing margin or high contrast can be realized.
  • the absorption layer 1 is disposed under the insulating film and below the absorption layer 1, the charge holding performance of the pixel electrode 7 can be improved by applying a voltage to the absorption layer 1. That is, the absorption layer 1 can be used as a charge holding electrode of the pixel electrode 7.
  • the charge holding electrode uses the same metal as the gate electrode, the transmittance is lowered. In order to prevent this decrease, a charge holding electrode having a large area on a plane cannot be formed, and the capacitance between the charge holding electrode and the pixel electrode cannot be increased.
  • a large capacitance is formed between the pixel electrode 7 and the absorption layer 1 by using the transparent absorption layer 1 that can have a large area as the charge holding electrode. can do. For this reason, it is possible to improve the charge retention characteristics of the pixel electrode 7 and thus improve the characteristics of the thin film transistor while suppressing a reduction in light transmittance.
  • an interlayer insulating film (not shown) is formed on the pixel electrode 7, and an oxidation film such as an ITO film is formed thereon.
  • An electrode obtained by forming a physical semiconductor film (not shown) and patterning the oxide semiconductor film in a comb shape may be used as the common electrode. By doing so, an electric field can be formed between the pixel electrode 7 and the common electrode, and the liquid crystal display can be controlled on and off.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Nonlinear Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Thin Film Transistor (AREA)

Abstract

有害な波長の光が活性層に到達することを抑制可能な技術を提供することを目的とする。薄膜トランジスタ基板は、ゲート絶縁膜2上に配設され、ゲート電極3と平面視で重ねられた、酸化物半導体を含む活性層5と、活性層5にそれぞれ接続されたソース電極4及びドレイン電極6と、活性層1、ソース電極4及びドレイン電極6上に配設された保護絶縁膜8と、ゲート絶縁膜2またはゲート絶縁膜2及び保護絶縁膜8を含む絶縁膜上で、かつ吸収層1上方に配設され、ドレイン電極6に接続された画素電極7とを備える。

Description

薄膜トランジスタ基板及びその製造方法
 本発明は、薄膜トランジスタ基板及びその製造方法に関する。
 従来の一般的な薄型パネルの1つである液晶表示装置(Liquid Crystal Display:LCD)は、低消費電力や小型軽量といったメリットを活かして、パーソナルコンピュータや携帯情報端末機器のモニタなどに広く用いられている。近年では、液晶表示装置は、TV用途としても広く用いられている。
 また、液晶表示装置で問題となる視野角やコントラストの制限、あるいは動画対応の高速応答への追従が困難であるといった問題を解決するため、EL(Electro-Luminescence)素子のような発光体を画素に用いた電界発光型EL表示装置も次世代の薄型パネル用デバイスとして用いられるようになってきている。なお、EL素子は、自発光型で広視野角、高コントラスト及び高速応答等の液晶表示装置にはない特徴を有する。
 これらの表示装置に用いられる薄膜トランジスタ(Thin Film Transistor:TFT)には、チャネル層(活性層)として半導体層を用いたMOS(Metal Oxide Semiconductor)構造が多用される。MOS構造の薄膜トランジスタには、逆スタガ型(ボトムゲート型)やトップゲート型といった種類がある。また、チャネル層には、非晶質Si膜や多結晶Si膜が用いられる。例えば、小型の表示パネルでは、表示領域の開口率の向上、解像度の向上、及び、ゲートドライバなどの周辺駆動回路を薄膜トランジスタによって構成する必要性などの観点から、多結晶Si膜を使用することが多い。しかし、最近では、アモルファスシリコンよりも高移動度であり、かつ低温成膜が可能なInGaZnO系の酸化物半導体層が薄膜トランジスタのチャネル層に使用されるようになってきている。当該酸化物半導体層は、スパッタリング法で成膜することが可能である。
 表示装置に用いられる薄膜トランジスタは、ガラス基板などの透明基板上に配設され、バックライトからの光照射を常に受けた状態で使用される。バックライトには一般的に白色LED(Light Emitting Diode)が用いられており、白色LEDの発光スペクトルは波長450nm付近で強いピークを有する。
 一方、InGaZnO系の酸化物半導体層のエネルギーバンドギャップは、例えば3.1eV程度であり、可視光に対しては透明である。しかし、エネルギーバンド内には、波長450nm付近の光によって励起されることによってキャリアを生成する準位が存在する。生成されたキャリアは、薄膜トランジスタの特性バラツキや特性変動を引き起こす原因となる。
 そこで、上記のような光照射の影響、つまり薄膜トランジスタの特性バラツキや特性変動を抑制するために、半導体層への光入射を抑制するための様々な工夫がなされている。例えば特許文献1の技術では、活性層の上に酸化物半導体からなる遮光層が配設されている。
特開2012-222176号公報
 しかしながら、特許文献1の技術では上述のように活性層の上に遮光層が配設されているが、ゲート電極同士の隙間から活性層に直接入射する光は遮光できない。また、TFT内の各層の界面で反射して活性層に横側から入射する光などもあることから、遮光性能が不十分であるという問題があった。
 そこで、本発明は、上記のような問題点を鑑みてなされたものであり、有害な波長の光が活性層に到達することを抑制可能な技術を提供することを目的とする。
 本発明に係る薄膜トランジスタ基板は、基板と、前記基板上に配設されたゲート電極と、前記基板上に前記ゲート電極と離間して配設された、酸化物半導体を含む吸収層と、前記ゲート電極及び前記吸収層上に配設されたゲート絶縁膜と、前記ゲート絶縁膜上に配設され、前記ゲート電極と平面視で重ねられた、酸化物半導体を含む活性層と、前記活性層にそれぞれ接続されたソース電極及びドレイン電極と、前記活性層、前記ソース電極及び前記ドレイン電極上に配設された保護絶縁膜と、前記ゲート絶縁膜または前記ゲート絶縁膜及び前記保護絶縁膜を含む絶縁膜上で、かつ前記吸収層上方に配設され、前記ドレイン電極に接続された画素電極とを備える。
 本発明によれば、基板上にゲート電極と離間して配設された、酸化物半導体を含む吸収層を備える。これにより、活性層に有害な光を吸収層で効果的に吸収することができるので、当該光が活性層に到達することを抑制することができる。
 本発明の目的、特徴、態様及び利点は、以下の詳細な説明と添付図面とによって、より明白となる。
実施の形態1~3に係る薄膜トランジスタ基板の全体構成を模式的に示す平面図である。 実施の形態1~3に係る薄膜トランジスタ基板を備える液晶表示装置の別構成の一例を示す平面図である。 実施の形態1に係る薄膜トランジスタ基板を備える液晶表示装置の構成の一例を示す平面図である。 バックライトのスペクトルの一例を示す平面図である。 実施の形態1に係る薄膜トランジスタ基板の構成の一例を示す断面図である。 実施の形態1に係る吸収層の構成の一例を示す平面図である。 InGaZnO膜の反射率特性の一例を示す平面図である。 実施の形態1に係る薄膜トランジスタ基板の製造方法の一例を示すフローチャートである。 実施の形態2に係る薄膜トランジスタ基板の構成の一例を示す断面図である。 実施の形態3に係る薄膜トランジスタ基板の構成の一例を示す断面図である。
 以下に説明する本発明の実施の形態1~3に係る半導体装置内に配設される薄膜トランジスタ(TFT)は、スイッチングデバイスとして用いられる。なお、TFTは、例えば液晶表示装置及び電界発光型EL表示装置等の平面型表示装置(フラットパネルディスプレイ)に設けられる、画素用、駆動回路用のスイッチングデバイスなどに適用することができる。
 図1は、薄膜トランジスタ基板であるTFT基板100の全体構成を模式的に示す平面図である。同図1に示すように、TFT基板100では、画素TFT30を含む画素(領域)がマトリクス状に配列されてなる表示領域24と、表示領域24を囲むように表示領域24の周辺に配設された額縁領域23とが規定されている。
 表示領域24には、複数のソース配線12と複数のゲート配線13とが互いに直交するように交差して配設され、ソース配線12とゲート配線13との各交差部に対応して画素TFT30及び画素電極を含む画素領域が配設されている。
 ゲート配線13に駆動電圧を与える走査信号駆動回路25と、ソース配線12に駆動電圧を与える表示信号駆動回路26とが額縁領域23に配設されている。なお図1では、ゲート配線13と走査信号駆動回路25との間の接続、及び、ソース配線12と表示信号駆動回路26との間の一部の接続については、詳細な図示を省略している。
 走査信号駆動回路25により選択的に1本のゲート配線13に電流が流れ、表示信号駆動回路26により選択的に1本のソース配線12に電流が流れた時に、それらの配線の交点に存在する画素の画素TFT30がオン状態となり、当該画素TFT30に接続された画素電極に電荷が蓄積される。
 以下で説明する実施の形態1及び2では、遮光層である吸収層1が、画素電極7との間に電界を形成する共通電極として用いられ、吸収層1には遮光層接続配線14が接続される。一方、後述する実施の形態3では、遮光層である吸収層1が、画素電極7における電荷の蓄積の保持を補助する保持容量電極として用いられる。
 吸収層1と、吸収層1に電圧を印加するための取り出し電極の接続には、次のような方法が考えられる。一つは、額縁領域23などに規定された端子部において、吸収層1上のコンタクトホールを通じて電気的に接続された図示しない取り出し電極を形成し、当該取り出し電極と吸収層1とを接続する方法である。
 もう一つは、図1に図示した遮光層接続配線14を用いる方法である。遮光層接続配線14と吸収層1とが接続された構成の一例を図2に示す。吸収層接続配線14は、ゲート電極3と同一材料でゲート電極3と同層に配設される。また、遮光層接続配線14は、ゲート配線13と同一方向に延伸した形状を有し、かつ、吸収層1の一部の領域と重なり接するように配設される。両者が重なる領域では吸収層1が上層に配置され、吸収層1と遮光層接続配線14とは互いに電気的に接続される。また、額縁領域23などに規定された端子部において、遮光層接続配線14上のコンタクトホールを通じて電気的に接続された図示しない取り出し電極を形成し、当該取り出し電極と遮光層接続配線14とを接続する。
 このようにすることで、吸収層1の抵抗が比較的高い場合に、低抵抗で電圧降下の小さい遮光層接続配線14から吸収層1へ電圧が印加される。このため、吸収層1の基板面内の電圧ばらつきを低減でき、その結果、基板内の液晶表示の色ムラを低減できる。
 また、他に、このような液晶表示の色ムラ対策として、吸収層1の一部の領域を低抵抗にすることも効果的である。例えば、ゲート配線13と同一延伸方向の吸収層1の一部に低抵抗領域を形成する。低抵抗領域の形成する方法として、吸収層1のうち低抵抗にしたい領域に水素を多く注入し、吸収層1の中で他の領域に比べ水素濃度を高めた領域を形成する。
 このようにすることで吸収層1の一部の領域に低抵抗領域が形成され、これが遮光層接続配線14と同様の役割を担うことができる。このため、遮光層接続配線14を画素領域内に張り巡らす必要がなくなり、遮光層接続配線14の画素領域内を占める面積を減らすことができる。その結果、遮光層接続配線14によりバックライト光が遮られることがなくなるので、開口率を上げることができ、表示性能を向上させることができる。
 <実施の形態1>
 本発明の実施の形態1に係る薄膜トランジスタひいては薄膜トランジスタ基板の構成について説明する。なお、以下では、バックチャネルエッチング構造と呼ばれる一般的なTFT構造に適用する場合を一例として説明する。
 図3は、本実施の形態1に係る薄膜トランジスタ基板を有する液晶表示装置の構成の一例を示す平面図であり、液晶表示装置におけるTFTアレイ基板の画素部を例示したものである。なお、TFTアレイ基板は、図1のTFT基板100に相当する基板であり、以下の説明では「アレイ基板」と記すこともある。
 液晶表示装置は、一般に、アレイ基板と対向基板との間に液晶層が挟まれた構造を有する液晶パネル(図示せず)と、この液晶パネルに接続される駆動用プリント基板(図示せず)と、バックライトユニット(図示せず)とを備える。アレイ基板の基板上にはマトリクス状にゲート配線13(図1)及びソース配線12(図1)が配設され、図3に示すように、ゲート配線13の一部であるゲート電極3と、ソース配線12の一部であるソース電極4との交差部には薄膜トランジスタである画素TFT30が配設されている。
 バックライトは、アレイ基板の面のうち対向基板と逆側の面、つまりアレイ基板の下面に配設される。液晶表示装置に用いられる白色のバックライトは、図4に示される一例のように示すスペクトルを持っている。図4のスペクトルは波長450~460nm付近にピークを持つ。
 図3に戻って、ゲート電極3の脇に吸収層1が設けられ、ゲート電極3上に薄膜トランジスタの活性層5が設けられ、活性層5上にソース電極4とドレイン電極6とが互いに離間して配設されている。ドレイン電極6は、図3には図示されていないコンタクトホールを介して、透明電極である画素電極7に接続されている。画素電極7は、櫛歯状またはスリット状の形状を有していればよく、図3には、画素電極7が櫛歯状の形状を有している例が示されている。
 図5は、図3のA-A線に沿った断面図であり、本実施の形態1に係るアレイ基板の構成の一例を示す断面図である。アレイ基板は、吸収層1と、ゲート絶縁膜2と、ゲート電極3と、ソース電極4と、活性層5と、ドレイン電極6と、画素電極7と、保護絶縁膜8と、基板11とを備える。
 ゲート電極3は、基板11上に配設されている。基板11は、ガラス基板や石英基板等の光透過性を有する絶縁性の基板である。また、ゲート電極3は、アルミニウム等の金属材料を含む。なお、ゲート電極3は、上下面あるいはいずれか一方側の面に別組成の材料を含む多層構造であってもよい。
 吸収層1は、基板11上にゲート電極3と離間して配設されている。この吸収層1は、酸化物半導体を含んでいる。
 ゲート電極3及び吸収層1を被覆するように、ゲート電極3及び吸収層1上にゲート絶縁膜2が配設されている。ゲート絶縁膜2は、シリコン酸化膜、シリコン窒化膜、シリコン酸窒化膜、アルミナ膜等の絶縁性の材料のいずれか1つを含む単層、または、これらの複数を含む多層構造で構成されている。
 活性層5は、ゲート絶縁膜2上に配設され、ゲート電極3と平面視で重ねられている。この活性層5は、酸化物半導体を含んでいる。
 ソース電極4は、活性層5の一端側部分の上部上及び側部上に配設され、活性層5の一端側部分に接続されている。ドレイン電極6は、活性層5の他端側部分の上部上及び側部上に配設され、活性層5の他端側部分に接続されている。そして、ソース電極4及びドレイン電極6は互いに離間している。ソース電極4及びドレイン電極6は、モリブデン、チタン、アルミニウム等の金属、またはそれらの金属の積層膜を含む。
 ソース電極4、活性層5及びドレイン電極6上に保護絶縁膜8が配設されている。本実施の形態1では、保護絶縁膜8は、ソース電極4及び活性層5を被覆し、ドレイン電極6の一部上に設けられたコンタクトホール9を除いてドレイン電極6を被覆する。保護絶縁膜8は、外部から侵入する水分等を抑制するために配設され、シリコン酸化膜やシリコン窒化膜、アルミナ等を含む。
 絶縁膜上に、コンタクトホール9を通じてドレイン電極6と接続された画素電極7が配設される。本実施の形態1では、当該絶縁膜は、ゲート絶縁膜2及び保護絶縁膜8を含む。
 ここで、従来の構成では、バックライトからの光のうち、ゲート電極同士の間の隙間を通って各層の界面で反射されるなどした光が活性層5に入射されていた。これに対して、本実施の形態1に係るアレイ基板によれば、ゲート電極3同士の間の、光が入射される入口に吸収層1が配設されており、薄膜トランジスタに有害な光を吸収層1で効果的に吸収することができるので、薄膜トランジスタの特性の変動を抑制できる。また、画素電極7が吸収層1上方に配設され、画素電極7及び吸収層1が互いにゲート絶縁膜2及び保護絶縁膜8によって絶縁されている。このため、吸収層1に電圧を印加することによって画素電極7に電界を及ぼすことができる。
 また本実施の形態1では、画素電極7が櫛歯状またはスリット状の形状を有するので、吸収層1をコモン(共通)電極として用いることができる。すなわち、吸収層1及び画素電極7のそれぞれに電圧を印加することで、画素電極7の上方にも電界を形成することができる。この電界によって、画素電極7の上層に位置する液晶層の配向を制御することができ、液晶表示のON及びOFFなどの制御を行うことができる。さらに、吸収層1をコモン電極としても利用することによって、吸収層1及びコモン電極を形成するためのマスクを低減することができる。その結果、製造工程全体で用いるマスク数の増加を抑制することができるので、コストの増加を抑制することができる。
 なお、画素電極7は必ずしも櫛歯状またはスリット状の形状を有する必要はない。例えば、後述する実施の形態3で説明するように、櫛歯状などが設けられていない形状を有するように画素電極7が構成されている場合には、吸収層1は画素電極7の電荷保持するための電極として利用できる。この場合、TFTのオフ時のリークが低減するため、TFTの特性を向上できる。
 なお、図3で示すように、吸収層1は、ゲート電極3を取り囲むように配設され、図5に示すように、これら吸収層1とゲート電極3との間にはゲート絶縁膜2が配設されている。このような構成において、ゲート電極3と吸収層1との間の距離を小さくすれば、活性層5への光入射の抑制を高めることができる。ウェットエッチングの場合、ゲート電極3と吸収層1との間の距離は例えば約3μm程度となるが、この距離は、プロセスの加工精度に依存する。例えばドライエッチング技術を用いた微細加工が可能である場合は、ゲート電極3と吸収層1との間の距離を、ウェットエッチングで形成した場合の同距離よりも小さくすることができる。
 ただし、活性層5への光入射の抑制よりも、表示の光強度を確保することを優先する場合には、吸収層1の面積を比較的小さくことによって、ゲート電極3との間の距離を比較的大きくしてもよい。特に青色表示の画素領域においては、吸収層1の面積を比較的小さくすることによって光強度を確保することが好ましい。
 また、図6に示すように部分的に吸収層1に穴1aが設けられてもよい。穴1aの形状は、正方形、長方形、円、楕円、多角形等のいずれでもよく、液晶表示装置の形に合わせて形状を決めればよい。このような構成によれば、光強度を確保することができる。
 ところで本実施の形態1では、吸収層1の酸化物半導体は、活性層5の酸化物半導体と同じ金属元素を含んでいる。そして、吸収層1の金属元素の金属における組成比は、活性層5の金属元素の金属における組成比と同じとなっている。吸収層1及び活性層5の酸化物半導体としては、In、Ga及びZnの元素を少なくとも1つ含む酸化物半導体、例えばInGaZnO系酸化物半導体を用いればよい。ただしこれに限ったものではなく、吸収層1及び活性層5には、例えばSn、Al、Bが含まれてもよい。
 このような構成によれば、バンドキャップ内の同種の欠陥準位が同じエネルギー位置に形成される。これにより、バックライトからの光のうち活性層5に吸収される有害な光を、吸収層1で事前に選択的に吸収することができるので、薄膜トランジスタの特性の変動を抑制できる。また、薄膜トランジスタの特性変動に影響を与えない光は透過され、光強度を確保できるので、表示性能の低下を抑制することができる。
 図7は、Al膜上に配設されたInGaZnO膜の反射率特性の一例を示す図である。図の点線は、Al膜の反射率特性を示し、一点鎖線は、InGaZnO膜の反射率特性を示し、二点鎖線は、Hの含有量が比較的多いInGaZnO膜の反射率特性を示す。以下、Hの含有量が比較的多いInGaZnO膜を水素含有InGaZnO膜と記すこともある。
 図7の反射率特性から、InGaZnO膜及び水素含有InGaZnO膜のいずれも、波長500nm程度から短波長になるにつれて低下している。このことからInGaZnO膜の吸収率が、波長500nm程度から短波長になるにつれて上昇することが分かる。また、波長が500nm程度から短くなる範囲において、水素含有InGaZnO膜は、InGaZnO膜よりも多くの光を吸収していることが分かる。
 この500nm~400nm程度の波長の吸収は、InGaZnO膜のバンドギャップ内の欠陥準位が光を吸収することに起因する。このように活性層5の欠陥準位が光を吸収してしまうと、薄膜トランジスタの特性変動ひいては劣化が生じてしまう。このことに鑑みて、上述したように本実施の形態1では、吸収層1が欠陥準位の励起に寄与する光を事前に吸収することによって、活性層5の光の吸収を抑制するので、薄膜トランジスタの劣化を抑えることができる。ここで、図7の特性に鑑みて、吸収層1における水素の含有量は、活性層5における水素の含有量よりも多いことが好ましい。このような構成によれば、活性層5に有害な光を吸収層1において選択的に吸収する効果を高めることができる。
 なお、吸収層1における酸素の含有量は、活性層5における酸素の含有量よりも多くてもよい。これによって吸収層1のバンドギャップを広げることができるため、吸収層1の短波長側の透過性が向上する。このため活性層5に有害な光を活性層5において吸収しにくくすることができる。
 また、吸収層1の膜厚は厚くするほど、指数関数的に吸収層1での光の吸収量が増える。このため、活性層5の膜厚が例えば50nm程度である場合には、吸収層1の膜厚は例えば10nm~500nmの間で、吸収を重視する場合は厚く、透過を重視する場合は薄くすればよい。
 <製造方法>
 次に、本実施の形態1に係るアレイ基板の製造方法について説明する。図8は、本実施の形態1に係るアレイ基板の製造方法の一例を示すフローチャートである。なお、本文中で記載したレジスト塗布及びパターニングを、図8中では写真製版と記載した。また本文中で記載したレジスト除去を、図8中ではレジスト剥離及び純水洗浄と記載した。
 まずステップS1にて、基板11を純粋洗浄する。ステップS2にて、基板11上に例えばアルミニウムからなる金属膜を形成した後、ステップS3にて、レジストを塗布及びパターニングする。そして、ステップS4にて、レジストをマスクとして金属膜をウェットエッチングした後、ステップS5にて、レジストを除去してゲート電極3を形成する。ゲート電極3の厚みは例えば200nm程度である。
 次にステップS6にて、基板11のゲート電極3が形成されていない領域上に酸化物半導体を形成した後、ステップS7にて、レジストを塗布及びパターニングする。そして、ステップS8にて、レジストをマスクとして酸化物半導体膜をウェットエッチングした後、ステップS9にて、レジストを除去して基板11上にゲート電極3と離間する吸収層1を形成する。
 本実施の形態1では、吸収層1となる酸化物半導体膜として、例えば、可視光に対して透明で、In、Ga及びZnの元素を少なくとも1つ含む酸化物半導体、例えばInGaZnO系酸化物半導体を形成する。吸収層1となるInGaZnO膜の形成方法として、スパッタリング法を用いる。ターゲットには、例えばInGaZnOを含み、組成比がIn:Ga:Zn=1:1:1であるターゲットを用いる。上記スパッタリング法を、例えば、直流(DC)電力が100W~1000W、基板温度が25℃~300℃、圧力が0.1Pa~1.0Pa、Ar雰囲気中全圧に対するOの割合が1%~20%である状態下で行う。
 なお、水分分圧、つまりHO圧力を5E-3Pa~5E-5Paの間にするように制御及び調整することによって、InGaZnO膜中のH濃度を10atoms%~0.1atoms%の間に制御できる。この際、InGaZnO膜形成時のHO圧力の値が大きいほど、InGaZnO膜中の水素含有量を増やすことができる。
 そこで本実施の形態1では、吸収層1を、後述する活性層5の形成に用いるターゲットと金属元素の組成比が同じターゲットを用いて、スパッタリング法によって形成する。そして、吸収層1を、後述する活性層5の形成時の水分分圧よりも高い水分分圧の状態下で形成する。これにより、吸収層1における水素の含有量は、活性層5における水素の含有量よりも多くすることができる。したがって、活性層5に有害な光を吸収層1において選択的に吸収する効果を高めることができる。
 また、InGaZnO膜形成時のAr圧力に対するOの割合を高いほど、InGaZnO膜中の酸素含有量を増やすことができる。そこで本実施の形態1では、吸収層1を、後述する活性層5の形成時の酸素分圧よりも高い酸素分圧の状態下で形成する。これにより、吸収層1における酸素の含有量は、活性層5における酸素の含有量よりも多くすることができる。したがって、吸収層1のバンドギャップを広げることができ、吸収層1の短波長側の透過性が向上するため、活性層5に有害な光を活性層5において吸収しにくくすることができる。
 次にステップS10にて、ゲート電極3及び吸収層1を被覆するようにゲート絶縁膜2を形成する。ゲート絶縁膜2はCVD(Chemical Vapor Deposition)法やスパッタリング法を用いてシリコン窒化膜やシリコン酸化膜、アルミナ膜、またはそれらの積層膜として形成する。ゲート絶縁膜2のトータルの膜厚は例えば200~600nm程度である。
 次に、ゲート絶縁膜2上にスパッタリング法で酸化物半導体であるInGaZnO膜を例えば50nm程度の厚さで形成する。なお、上述したように本実施の形態1では、吸収層1を、後述する活性層5の形成に用いるターゲットと金属元素の組成比が同じターゲットを用いてスパッタリング法によって形成する。これにより、吸収層1の酸化物半導体に含まれる金属元素と、活性層5の酸化物半導体に含まれる金属元素とを同じにすることができ、バンドキャップ内の同種の欠陥準位が同じエネルギー位置に形成される。この結果、薄膜トランジスタの特性の変動を抑制でき、かつ、表示性能の低下を抑制することができる。
 なお、活性層5における水素の含有量が少ないほど、バンドギャップ内に特性劣化を引き起こす欠陥準位が少なくなり、薄膜トランジスタの特性劣化が生じ難くなる。そこで、活性層5の形成時の水分分圧をなるべく低くして、活性層5における水素の含有量をなるべく少なくすることが好ましい。
 この後ステップS11にて、レジストを塗布及びパターニングする。そして、ステップS12にて、レジストをマスクとしてInGaZnO膜をウェットエッチングした後、ステップS13にて、レジストを除去して活性層5を形成する。ゲート電極3の厚みは例えば200nm程度である。なお、InGaZnO膜のエッチングには、ウェットエッチングの代わりにドライエッチングが用いられてもよい。
 ステップS14にて、ゲート絶縁膜2及び活性層5上に、例えばチタン、アルミニウム、モリブデン等からなる金属膜を形成した後、ステップS15にて、レジストを塗布及びパターニングする。そして、ステップS16にて、レジストをマスクとして金属膜をウェットエッチングした後、ステップS17にて、レジストを除去してソース電極4及びドレイン電極6を形成する。ソース電極4は活性層5の一方側に接続され、ドレイン電極6は活性層5の他方側に接続され、ソース電極4及びドレイン電極6は互いに離間している。ソース電極4及びドレイン電極6のエッチングには、ウェットエッチングの代わりにドライエッチングが用いられてもよい。ソース電極4などの材料に応じてドライエッチングのガス種やエッチャントが適切に選定される。
 ステップS18にて、活性層5、ソース電極4及びドレイン電極6の表面を覆うように保護絶縁膜8を形成する。保護絶縁膜8としてCVDでシリコン酸化膜を形成する。膜厚は100nm程度形成する。同じく保護絶縁膜8としてその上に塗布法によって有機物を含んだシリコン酸化膜(有機膜)を形成する。塗布法にはスリットコーターやスピンコーターを用いる。塗布法を用いることにより保護絶縁膜8上の上面を平坦化することができる。
 この有機膜に感光性樹脂を用いると工程を削減できるメリットがある。有機膜の膜厚は例えば1.5μm程度である。なお、CVDで形成したシリコン酸化膜の上にシリコン窒化膜を積層してもよい。シリコン窒化膜を形成することで、薄膜トランジスタへの水分の影響を抑制することが可能である。保護絶縁膜8は、シリコン酸化膜に限らずシリコン窒化膜など絶縁体であればよい。
 ステップS19にて、レジストを塗布及びパターニングする。そして、ステップS20にて、ドレイン電極6上の保護絶縁膜8をドライエッチングした後、ステップS21にて、レジストを除去してコンタクトホール9を形成する。
 ステップS22にて、コンタクトホール9の内壁及び保護絶縁膜8上にITO膜(In、Sn、Oを含有する膜)などの透明導電膜をスパッタリング法などによって成膜した後、ステップS23にて、レジストを塗布及びパターニングする。そして、ステップS24にて、ITO膜をウェットエッチングした後、ステップS25にて、レジストを除去して画素電極7を形成する。
 本実施の形態1では、上記パターニングによって櫛歯状を有する画素電極7を形成する。また、ゲート絶縁膜2及び保護絶縁膜8を含む絶縁膜上で、かつ吸収層1上方に配設された画素電極7を形成する。なお、画素電極7の材料は、上記元素に限らず酸化物半導体などの可視領域を透過する導電特性があればITOに限ったものではなく、例えば、InZnO、InO、ZnOなどであってもよい。
 以上のように構成された本実施の形態1に係るアレイ基板を備える表示装置では、吸収層1及び画素電極7に電圧を印加することによって、吸収層1をコモン電極として用いることができ、画素電極7の上方に電界を形成することができる。なお、画素電極7に電圧を印加する状態は、ゲート電極3及びソース電極4に適切な電圧を印加して、画素電極7に電荷を供給することによって実現することができる。
 なお、吸収層1に電圧を印加するための取り出し電極は次のようにして作製できる。表示領域24(図1)とは別の領域、例えば額縁領域23などに規定された端子部において、吸収層1上のゲート絶縁膜2及び保護絶縁膜8に、コンタクトホール9の形成と同時に別のコンタクトホール(図示せず)を形成する。次に、上記端子部における保護絶縁膜8上に、吸収層1に上記別のコンタクトホールを通じて電気的に接続された取り出し電極を、画素電極7のパターニングと同時に形成する。このようにして、吸収層1に電圧を印加する取り出し電極などの構成を、新たに工程を追加することなく、表示領域24の構成の作製と並行して作製できる。
 <実施の形態1のまとめ>
 以上のような本実施の形態1に係るアレイ基板は、基板11と、基板11上に配設されたゲート電極3と、基板11上にゲート電極3と離間して配設された、酸化物半導体を含む吸収層1と、ゲート電極3及び吸収層1上に配設されたゲート絶縁膜2とを備える。そして、当該アレイ基板は、ゲート絶縁膜2上に配設され、ゲート電極3と平面視で重ねられた、酸化物半導体を含む活性層5と、活性層5にそれぞれ接続されたソース電極4及びドレイン電極6と、活性層5、ソース電極4及びドレイン電極6上に配設された保護絶縁膜8と、ゲート絶縁膜2及び保護絶縁膜8を含む絶縁膜上で、かつ吸収層1上方に配設され、ドレイン電極6に接続された画素電極7とを備える。
 以上のような構成によれば、吸収層1を設けることによって、例えば活性層5に入射するバックライト光のうち活性層5に有害な波長の光を吸収層1により吸収できる。このため、有害な波長の光が活性層5に到達することを抑制することができる。また、吸収層1は活性層5に有害な波長のみ吸収できるので、光強度を確保することができ、表示性能への影響を小さくすることができる。
 <実施の形態2>
 図9は、本発明の実施の形態2に係るアレイ基板の構成の一例を示す断面図である。以下、本実施の形態2で説明する構成要素のうち、上述の構成要素と同じまたは類似する構成要素については同じ参照符号を付し、異なる構成要素について主に説明する。
 上述した実施の形態1では、ゲート絶縁膜2及び保護絶縁膜8を含む絶縁膜上に画素電極7が配設された構造について説明した。これに対して本実施の形態2では、図9に示すように、保護絶縁膜8を含まずにゲート絶縁膜2を含む絶縁膜上に画素電極7が配設されている。すなわち、画素電極7と吸収層1との間の絶縁膜が、ゲート絶縁膜2のみである。このような構成によれば、吸収層1と画素電極7との間の距離はゲート絶縁膜2のみの膜厚で決まるため、当該距離の制御が容易であり平面内での当該距離のばらつきを低減できる。したがって平面内における表示性能のばらつきを低減できる。
 次に、本実施の形態2に係るアレイ基板の製造方法について説明する。本実施の形態2では、実施の形態1と同様に図8のステップS1からステップS17までの処理を行い、ソース電極4及びドレイン電極6を形成する。
 その後、活性層5、ソース電極4及びドレイン電極6の表面を覆うようにITO膜(In、Sn、Oを含有する膜)などの透明導電膜を成膜した後、レジストを塗布及びパターニングする。そして、ITO膜をウェットエッチングした後、レジストを除去して画素電極7を形成する。このように構成された画素電極7は、ドレイン電極6と接続される。また、画素電極7は、ゲート絶縁膜2のみを含む絶縁膜上で、かつ吸収層1上方に配設され、櫛歯状の形状を有する。
 次に、ソース電極4、活性層5、ドレイン電極6及び画素電極7上に保護絶縁膜8を形成する。
 なお図示しないが、表示領域24(図1)とは別の領域、例えば額縁領域23などに規定された端子部において、吸収層1上のゲート絶縁膜2及び保護絶縁膜8をエッチングして、吸収層1を露出するコンタクトホールを形成することができる。
 <実施の形態2のまとめ>
 以上のような本実施の形態1に係るアレイ基板では、画素電極7下の絶縁膜は、保護絶縁膜8を含まずにゲート絶縁膜2を含む。このような構成によれば、吸収層1と画素電極7との間の距離について平面内のばらつきを低減できる。したがって、活性層5への高い遮光効果を得ながら、平面内でばらつきの少ない良好な表示性能を得ることができる。
 <実施の形態3>
 図10は、本発明の実施の形態3に係るアレイ基板の構成の一例を示す断面図である。以下、本実施の形態3で説明する構成要素のうち、上述の構成要素と同じまたは類似する構成要素については同じ参照符号を付し、異なる構成要素について主に説明する。
 上述した実施の形態1及び2では、画素電極7の形状を櫛歯状などにすることにより、吸収層1をコモン電極として利用する場合について説明した。これに対して本実施の形態3では、吸収層1を保持容量電極として用いる。このため本実施の形態3では、画素電極7の形状を櫛歯状などにする必要がない。
 次に、本実施の形態3に係るアレイ基板の製造方法について説明する。本実施の形態3では、実施の形態1と同様に図8のステップS1からステップS22までの処理を行い、コンタクトホール9の内壁及び保護絶縁膜8上にITO膜などの透明導電膜を成膜する。その後、ゲート絶縁膜2及び保護絶縁膜8を含む絶縁膜上で、かつ吸収層1上方に配設された画素電極7を形成する。この際、画素電極7の形状を櫛歯状などにする必要はない。
 TN(Twisted Nematic)構造やVA(Vertical Alignment)構造においては、画素電極7は、上部電極との間で液晶層に電界を形成する下部電極として用いられる。当該電界を制御することによって、液晶表示のON及びOFFなどの制御を行うことができる。この構造によれば、製造マージンが高い、あるいは高コントラストな液晶表示を実現できる。
 <実施の形態3のまとめ>
 吸収層1は、絶縁膜下で、かつ吸収層1下方に配設されているため、吸収層1に電圧を印加することによって画素電極7の電荷保持性能を向上できる。すなわち、吸収層1を画素電極7の電荷保持用電極として利用できる。
 従来、電荷保持用電極はゲート電極と同様の金属を用いていたため、透過率の低下を招いていた。この低下が生じないようにするため、平面上で大きな面積を有する電荷保持用電極を形成することができず、電荷保持用電極と画素電極との間の容量を高めることができなかった。
 これに対して本実施の形態3では、大きな面積を有することが可能な透明な吸収層1を電荷保持用電極に利用することによって、画素電極7と吸収層1との間により大きな容量を形成することができる。このため、光の透過率の低減を抑えながら、画素電極7の電荷保持特性の向上、ひいては薄膜トランジスタの特性の向上が可能となる。
 なお、FFS(fringe field switching)構造として利用するには、上述したアレイ基板を形成した後、画素電極7上に層間絶縁膜(図示せず)を形成し、その上に例えばITO膜などの酸化物半導体膜(図示せず)を成膜し、当該酸化物半導体膜を櫛歯状にパターニングして得られた電極をコモン電極として用いればよい。こうすることで画素電極7とコモン電極間に電界を形成することができ、液晶表示のON及びOFFなどの制御を行うことができる。
 なお、本発明は、その発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略したりすることが可能である。
 本発明は詳細に説明されたが、上記した説明は、すべての態様において、例示であって、本発明がそれに限定されるものではない。例示されていない無数の変形例が、本発明の範囲から外れることなく想定され得るものと解される。
 1 吸収層、1a 穴、2 ゲート絶縁膜、3 ゲート電極、4 ソース電極、5 活性層、6 ドレイン電極、7 画素電極、8 保護絶縁膜、11 基板。

Claims (12)

  1.  基板<11>と、
     前記基板上に配設されたゲート電極<3>と、
     前記基板上に前記ゲート電極と離間して配設された、酸化物半導体を含む吸収層<1>と、
     前記ゲート電極及び前記吸収層上に配設されたゲート絶縁膜<2>と、
     前記ゲート絶縁膜上に配設され、前記ゲート電極と平面視で重ねられた、酸化物半導体を含む活性層<5>と、
     前記活性層にそれぞれ接続されたソース電極<4>及びドレイン電極<6>と、
     前記活性層、前記ソース電極及び前記ドレイン電極上に配設された保護絶縁膜<8>と、
     前記ゲート絶縁膜または前記ゲート絶縁膜及び前記保護絶縁膜を含む絶縁膜上で、かつ前記吸収層上方に配設され、前記ドレイン電極に接続された画素電極<7>と
    を備える、薄膜トランジスタ基板。
  2.  請求項1に記載の薄膜トランジスタ基板であって、
     前記絶縁膜は、前記保護絶縁膜<8>を含まずに前記ゲート絶縁膜<2>を含む、薄膜トランジスタ基板。
  3.  請求項1または請求項2に記載の薄膜トランジスタ基板であって、
     前記画素電極<7>は、櫛歯状またはスリット状の形状を有する、薄膜トランジスタ基板。
  4.  請求項1から請求項3のうちのいずれか1項に記載の薄膜トランジスタ基板であって、
     前記吸収層<1>は、前記活性層<5>と同じ金属元素を含む、薄膜トランジスタ基板。
  5.  請求項4に記載の薄膜トランジスタ基板であって、
     前記吸収層<1>の前記金属元素の金属における組成比は、前記活性層<5>の前記金属元素の金属における組成比と同じであり、
     前記吸収層における水素の含有量は、前記活性層における水素の含有量よりも多い、薄膜トランジスタ基板。
  6.  請求項5に記載の薄膜トランジスタ基板であって、
     前記吸収層<1>における酸素の含有量は、前記活性層<5>における酸素の含有量よりも多い、薄膜トランジスタ基板。
  7.  請求項4から請求項6のうちのいずれか1項に記載の薄膜トランジスタ基板であって、
     平面視にて前記吸収層<1>に、1以上の穴<1a>が設けられている、薄膜トランジスタ基板。
  8.  基板上にゲート電極を形成する工程と、
     前記基板上に前記ゲート電極と離間して配設された、酸化物半導体を含む吸収層を形成する工程と、
     前記ゲート電極及び前記吸収層上に配設されたゲート絶縁膜を形成する工程と、
     前記ゲート絶縁膜上に配設され、前記ゲート電極と平面視で重ねられた、酸化物半導体を含む活性層を形成する工程と、
     前記活性層にそれぞれ接続されたソース電極及びドレイン電極を形成する工程と、
     前記活性層、前記ソース電極及び前記ドレイン電極上に配設された保護絶縁膜を形成する工程と、
     前記ゲート絶縁膜または前記ゲート絶縁膜及び前記保護絶縁膜を含む絶縁膜上で、かつ前記吸収層上方に配設され、前記ドレイン電極に接続された画素電極を形成する工程と
    を備える、薄膜トランジスタ基板の製造方法。
  9.  請求項8に記載の薄膜トランジスタ基板の製造方法であって、
     前記画素電極は、櫛歯状またはスリット状の形状を有する、薄膜トランジスタ基板の製造方法。
  10.  請求項8または請求項9に記載の薄膜トランジスタ基板の製造方法であって、
     前記吸収層は、前記活性層の形成に用いるターゲットと金属元素の組成比が同じターゲットを用いて、スパッタリング法によって形成される、薄膜トランジスタ基板の製造方法。
  11.  請求項10に記載の薄膜トランジスタ基板の製造方法であって、
     前記吸収層は、前記活性層の形成時の水分分圧よりも高い水分分圧の状態下で形成される、薄膜トランジスタ基板の製造方法。
  12.  請求項11に記載の薄膜トランジスタ基板の製造方法であって、
     前記吸収層は、前記活性層の形成時の酸素分圧よりも高い酸素分圧の状態下で形成される、薄膜トランジスタ基板の製造方法。
PCT/JP2017/041050 2017-04-03 2017-11-15 薄膜トランジスタ基板及びその製造方法 WO2018185967A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780087013.9A CN110447092A (zh) 2017-04-03 2017-11-15 薄膜晶体管基板及其制造方法
US16/476,343 US20200044090A1 (en) 2017-04-03 2017-11-15 Thin film transistor substrate and method for manufacturing same
JP2019511059A JP6727414B2 (ja) 2017-04-03 2017-11-15 薄膜トランジスタ基板及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017073405 2017-04-03
JP2017-073405 2017-04-03

Publications (1)

Publication Number Publication Date
WO2018185967A1 true WO2018185967A1 (ja) 2018-10-11

Family

ID=63713393

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/041050 WO2018185967A1 (ja) 2017-04-03 2017-11-15 薄膜トランジスタ基板及びその製造方法

Country Status (4)

Country Link
US (1) US20200044090A1 (ja)
JP (1) JP6727414B2 (ja)
CN (1) CN110447092A (ja)
WO (1) WO2018185967A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021120974A (ja) * 2020-01-30 2021-08-19 株式会社Flosfia 半導体装置および半導体システム

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013076656A (ja) * 2011-09-30 2013-04-25 Dainippon Printing Co Ltd 透明バイオセンサ
JP2014135378A (ja) * 2013-01-10 2014-07-24 Japan Display Inc 半導体装置及び表示装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012086595A1 (ja) * 2010-12-22 2012-06-28 シャープ株式会社 半導体装置、カラーフィルタ基板、カラーフィルタ基板を備える表示装置、および半導体装置の製造方法
CN104022123B (zh) * 2014-05-16 2016-08-31 京东方科技集团股份有限公司 一种柔性显示基板及其制备方法、柔性显示装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013076656A (ja) * 2011-09-30 2013-04-25 Dainippon Printing Co Ltd 透明バイオセンサ
JP2014135378A (ja) * 2013-01-10 2014-07-24 Japan Display Inc 半導体装置及び表示装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021120974A (ja) * 2020-01-30 2021-08-19 株式会社Flosfia 半導体装置および半導体システム
JP7539630B2 (ja) 2020-01-30 2024-08-26 株式会社Flosfia 半導体装置および半導体システム

Also Published As

Publication number Publication date
JPWO2018185967A1 (ja) 2019-06-27
CN110447092A (zh) 2019-11-12
JP6727414B2 (ja) 2020-07-22
US20200044090A1 (en) 2020-02-06

Similar Documents

Publication Publication Date Title
JP6725317B2 (ja) 表示装置
US20170256569A1 (en) Semiconductor device and display device and manufacturing method thereof
JP5284544B2 (ja) 半導体装置および表示装置
JP7085352B2 (ja) 表示装置
JP6832656B2 (ja) 半導体装置の製造方法
US9613990B2 (en) Semiconductor device and method for manufacturing same
JP2018074076A (ja) 表示装置
WO2019146264A1 (ja) 表示装置及びその製造方法
KR102075530B1 (ko) 박막트랜지스터 어레이 기판 및 그 제조방법, 및 이를 포함하는 표시장치
WO2017065199A1 (ja) 半導体装置およびその製造方法
JP5824536B2 (ja) 半導体装置およびその製造方法
WO2015098183A1 (ja) アクティブマトリクス基板の製造方法および表示装置の製造方法ならびに表示装置
KR20120042029A (ko) 표시 장치 및 그 제조 방법
JP5824534B2 (ja) 半導体装置およびその製造方法
JP2011135086A (ja) 薄膜トランジスタ、その製造方法、およびそれを利用した表示基板
WO2014147964A1 (ja) 薄膜半導体基板、発光パネル及び薄膜半導体基板の製造方法
KR20120039947A (ko) 표시 장치 및 그 제조 방법
JP2018170325A (ja) 表示装置
JP4481942B2 (ja) 表示装置用薄膜トランジスタ、同トランジスタを用いた基板及び表示装置とその製造方法
WO2018061954A1 (ja) 薄膜トランジスタ基板、薄膜トランジスタ基板の製造方法及び表示装置
KR20160001821A (ko) 이중 광 차단층을 구비한 산화물 반도체를 포함하는 박막 트랜지스터 기판
WO2013115051A1 (ja) 半導体装置およびその製造方法
JP6678830B1 (ja) 薄膜トランジスタ基板、その製造方法及びそれを備えた液晶表示装置
KR20120043404A (ko) 표시장치 및 이의 제조방법
KR101776039B1 (ko) 유기발광다이오드 표시장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17904550

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019511059

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17904550

Country of ref document: EP

Kind code of ref document: A1