WO2018181623A1 - 多元系極性オレフィン共重合体、及びその製造方法 - Google Patents

多元系極性オレフィン共重合体、及びその製造方法 Download PDF

Info

Publication number
WO2018181623A1
WO2018181623A1 PCT/JP2018/013056 JP2018013056W WO2018181623A1 WO 2018181623 A1 WO2018181623 A1 WO 2018181623A1 JP 2018013056 W JP2018013056 W JP 2018013056W WO 2018181623 A1 WO2018181623 A1 WO 2018181623A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
substituted
olefin copolymer
hydrocarbon group
Prior art date
Application number
PCT/JP2018/013056
Other languages
English (en)
French (fr)
Inventor
小林 稔
佐藤 智彦
正弘 上松
芳佳 山田
Original Assignee
日本ポリエチレン株式会社
日本ポリプロ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ポリエチレン株式会社, 日本ポリプロ株式会社 filed Critical 日本ポリエチレン株式会社
Priority to CN201880021258.6A priority Critical patent/CN110461889B/zh
Priority to US16/497,556 priority patent/US11168166B2/en
Priority to EP18777731.3A priority patent/EP3604362B1/en
Publication of WO2018181623A1 publication Critical patent/WO2018181623A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/02Acids; Metal salts or ammonium salts thereof, e.g. maleic acid or itaconic acid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/102Esters of polyhydric alcohols or polyhydric phenols of dialcohols, e.g. ethylene glycol di(meth)acrylate or 1,4-butanediol dimethacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2410/00Features related to the catalyst preparation, the catalyst use or to the deactivation of the catalyst
    • C08F2410/04Dual catalyst, i.e. use of two different catalysts, where none of the catalysts is a metallocene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/619Component covered by group C08F4/60 containing a transition metal-carbon bond

Definitions

  • the present invention relates to a multicomponent polar olefin copolymer and a method for producing the same. More specifically, the present invention relates to a multicomponent polar olefin copolymer having a polymerizable functional group, which is obtained by being polymerized using a polar comonomer having a specific structure, and which is a linear polymer primary structure.
  • Olefin polymers such as ethylene polymers and copolymers of ethylene and ⁇ -olefins are excellent in various properties such as physical properties and moldability among resin materials, and are highly economical and highly compatible with environmental problems. It is a versatile and important industrial material.
  • the olefin polymer does not have a polar group, it has been difficult to apply to applications requiring physical properties such as adhesiveness with other materials, printability, or compatibility with a filler or the like.
  • a copolymer of ethylene and a polar group-containing vinyl monomer produced by a high pressure radical polymerization process has been used as a composition of a single substance or another resin (Patent Documents 1 and 2) ).
  • Patent Documents 1 and 2 due to the polymer multi-branched structure, it is inferior to low elastic modulus and mechanical properties, and when it is used alone as well as when it is used as a composition with other resins, applications that require particularly high strength The scope of application to the market has been limited.
  • an olefin polymer having a polymerizable functional group as a polar group is expected to be a material that can be strengthened by post-modification or post-crosslinking while maintaining molding characteristics.
  • copolymers having olefins with different reactivity such as exo methylene group have been reported so far, it is possible to produce an olefin polymer having a methacrylate side chain, which is a polymerizable functional group having polarity. It has been considered difficult.
  • Non-Patent Document 1 reports that a linear copolymer having a methacrylate at a side chain can be obtained by using a palladium compound as a polymerization catalyst.
  • Japanese Patent No. 2792982 Japanese Patent Laid-Open No. 3-229713 Japanese Patent Publication No. 2002-521534 Japanese Patent Application Laid-Open No. 6-184214 Japanese Patent Laid-Open Publication No. 2008-223011 Japanese Patent Laid-Open Publication No. 2010-150246 Japanese Patent Laid-Open Publication No. 2010-150532 Japanese Patent Application Laid-Open No. 2010-202647
  • An object of the present invention is to provide a multi-component polar olefin copolymer whose solvent solubility is sufficiently improved without impairing mechanical properties and other physical properties, and a method for producing the same.
  • the present inventors aim to produce the present copolymer by a simple and efficient production method in the production of a multi-component polar olefin copolymer, and introduce a polar group.
  • Various verifications and searches were made for the selection of polymerization catalysts, polar monomers, multimeric monomers, and the like.
  • a multi-component polar olefin copolymer in which an acrylate compound having a specific substituent is selected as a comonomer component solves the above-mentioned problems, and the invention has been completed.
  • said olefin polymer was easily obtained by using the complex of a specific structure for a polymerization catalyst, and came to create also the invention of a manufacturing method. Based on these achievements, the following inventions are provided.
  • Q represents a divalent hydrocarbon group having 2 to 10 carbon atoms, a divalent hydrocarbon group having 2 to 10 carbon atoms substituted with a hydroxyl group, or an alkoxy group having 1 to 10 carbon atoms And a divalent hydrocarbon group of 3 to 20 carbon atoms, a divalent hydrocarbon group of 4 to 20 carbon atoms substituted by an ester group of 2 to 10 carbon atoms, and a substituted silyl of 3 to 18 carbon atoms Group-substituted divalent hydrocarbon group having 5 to 28 carbon atoms, an ether-substituted divalent hydrocarbon group having 2 to 10 carbon atoms, or a halogen atom having 2 to 10 carbon atoms Indicates a divalent hydrocarbon group.
  • T1 represents a methacryloyloxy group.
  • T 2 is a hydrocarbon group having 1 to 10 carbon atoms substituted with a hydroxyl group, a hydrocarbon group having 2 to 20 carbon atoms substituted with an alkoxy group having 1 to 10 carbon atoms, 2 carbon atoms A hydrocarbon group of 3 to 20 carbon atoms substituted with an ester group of to 10, a hydrocarbon group of 4 to 28 carbon atoms substituted with a substituted silyl group of 3 to 18 carbon atoms, a carbon atom substituted by a halogen atom 1 to 10 hydrocarbon group, alkoxy group having 1 to 10 carbon atoms, aryloxy group having 6 to 20 carbon atoms, carboxyl group, ester group having 2 to 10 carbon atoms, acyloxy group having 2 to 10 carbon atoms, amino group, A substituted amino group having 1 to 12 carbon atoms, a substituted silyl group having 3 to 18 carbon atoms, or a halogen atom
  • the ratio (Mw / Mn) of weight-average molecular weight (Mw) to number-average molecular weight (Mn) determined by gel permeation chromatography (GPC) is characterized by being in the range of 1.5 to 3.5
  • transition metal catalyst is a transition metal catalyst in which a chelating phosphine compound is coordinated to nickel metal or palladium metal.
  • a method for producing the multicomponent polar olefin copolymer according to any one of the above [1] to [5], which comprises polymerizing in the presence of a transition metal catalyst of Groups 5 to 10 of the periodic table A process for producing a multicomponent polar olefin copolymer, characterized in that
  • the multicomponent polar olefin copolymer of the present invention has high solvent solubility. Moreover, according to the production method of the present invention, a multicomponent polar olefin copolymer having high solvent solubility can be produced.
  • Multi-component polar olefin copolymer (1) Multi-component polar olefin copolymer
  • the multi-component polar olefin copolymer of the present invention is one non-polar monomer (ethylene or ⁇ -olefin having 3 to 10 carbon atoms)
  • a multi-component polar olefin copolymer comprising an X1) unit and one or more polar monomer (Z1) units which are compounds represented by the general formula (1).
  • the multi-component polar olefin copolymer is different from the non-polar monomer (X1), and is one or more non-polar monomers selected from the group consisting of ethylene and ⁇ -olefins having 3 to 10 carbon atoms It is characterized in that it contains at least one structural unit of the X2) unit and one or more kinds of polar monomer (Z2) units which are compounds represented by the general formula (2).
  • Q represents a divalent hydrocarbon group having 2 to 10 carbon atoms, a divalent hydrocarbon group having 2 to 10 carbon atoms substituted with a hydroxyl group, or an alkoxy group having 1 to 10 carbon atoms And a divalent hydrocarbon group of 3 to 20 carbon atoms, a divalent hydrocarbon group of 4 to 20 carbon atoms substituted by an ester group of 2 to 10 carbon atoms, and a substituted silyl of 3 to 18 carbon atoms Group-substituted divalent hydrocarbon group having 5 to 28 carbon atoms, an ether-substituted divalent hydrocarbon group having 2 to 10 carbon atoms, or a halogen atom having 2 to 10 carbon atoms It shows a substituent selected from the group consisting of divalent hydrocarbon groups.
  • T1 represents a methacryloyloxy group.
  • T 2 is a hydrocarbon group having 1 to 10 carbon atoms substituted with a hydroxyl group, a hydrocarbon group having 2 to 20 carbon atoms substituted with an alkoxy group having 1 to 10 carbon atoms, 2 carbon atoms A hydrocarbon group of 3 to 20 carbon atoms substituted with an ester group of to 10, a hydrocarbon group of 4 to 28 carbon atoms substituted with a substituted silyl group of 3 to 18 carbon atoms, a carbon atom substituted by a halogen atom 1 to 10 hydrocarbon group, alkoxy group having 1 to 10 carbon atoms, aryloxy group having 6 to 20 carbon atoms, carboxyl group, ester group having 2 to 10 carbon atoms, acyloxy group having 2 to 10 carbon atoms, amino group, A substituted amino group having 1 to 12 carbon atoms, a substituted silyl group having 3 to 18 carbon atoms, or a halogen atom
  • Nonpolar Monomer (2-1) Nonpolar Monomer (X1) The nonpolar monomer (X1) used in the present invention is one of ethylene and an ⁇ -olefin of 3 to 10 carbon atoms. Preferred specific examples include ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 1-decene, 3-methyl-1-butene, 4-methyl-1-pentene, and particularly preferred A specific example is ethylene.
  • the nonpolar monomer (X2) used in the present invention is one or two or more monomers selected from the group consisting of ethylene and ⁇ -olefins of 3 to 10 carbon atoms, and is not identical to X1 and is different Is a feature.
  • X1 the same example as the above-mentioned X1 can be mentioned.
  • X2 may use 1 type and may use 2 or more types together.
  • combinations of the two include ethylene / propylene, ethylene / 1-butene, ethylene / 1-hexene, ethylene / 1-octene, propylene / 1-butene, propylene / 1-hexene, propylene / 1-octene and the like. .
  • the combination containing ethylene is mentioned.
  • the combination containing ethylene is mentioned.
  • Polar monomer (Z1) The polar monomer (Z1) used in the present invention is a polar group-containing monomer.
  • the polar monomer (Z1) is an acrylate compound having a specific substituent, and is represented by the general formula (1).
  • the polar monomer (Z1) may be used alone or in combination of two or more.
  • Q represents a divalent hydrocarbon group having 2 to 10 carbon atoms, a divalent hydrocarbon group having 2 to 10 carbon atoms substituted with a hydroxyl group, or an alkoxy group having 1 to 10 carbon atoms And a divalent hydrocarbon group of 3 to 20 carbon atoms, a divalent hydrocarbon group of 4 to 20 carbon atoms substituted by an ester group of 2 to 10 carbon atoms, and a substituted silyl of 3 to 18 carbon atoms Group-substituted divalent hydrocarbon group having 5 to 28 carbon atoms, an ether-substituted divalent hydrocarbon group having 2 to 10 carbon atoms, or a halogen atom having 2 to 10 carbon atoms Indicates a divalent hydrocarbon group.
  • T1 represents a methacryloyloxy group.
  • the divalent hydrocarbon group having 2 to 10 carbon atoms as Q in General Formula (1) is preferably a divalent hydrocarbon group having 2 to 8 carbon atoms. And more preferably an alkylene group having 2 to 8 carbon atoms, a phenylene group or an alkylene-phenylene-alkylene group.
  • Preferred examples are ethylene, trimethylene, tetramethylene, pentamethylene, hexamethylene, 1,4-cyclohexylene, ⁇ methylene- (1,4-cyclohexylene) ⁇ , ⁇ methylene- (1,4-cyclohexylene) -methylene ⁇ group, vinylene group, 1-propenylene group, 2-propenylene group, 1-butenylene group, 2-butenylene group, 3-butenylene group, 1-pentenylene group, 2-pentenylene group Group, 3-pentenylene group, 4-pentenylene group, 1-hexenylene group, 2-hexenylene group, 3-hexenylene group, 4-hexenylene group, 4-hexenylene group, 5-hexenylene group, phenylene group, methylene phenylene group, ⁇ methylene- (1,1 4-phenylene) -methylene ⁇ group, more preferably ethylene group, trimethylene group, tetramethylene Pentamethylene group,
  • the divalent hydrocarbon group having 2 to 10 carbon atoms substituted with a hydroxyl group as Q in General Formula (1) is preferably a hydroxyl group-substituted form of the divalent hydrocarbon group having 2 to 10 carbon atoms described above. It can be mentioned.
  • the number of hydroxyl groups to be substituted may be one or two or more, and one is preferable from the viewpoint of easy production of the copolymer.
  • Preferred specific examples are (1-hydroxy) ethylene group, (2-hydroxy) ethylene group, (1-hydroxy) trimethylene group, (2-hydroxy) trimethylene group, (3-hydroxy) trimethylene group, (1-hydroxy) Tetramethylene group, (2-hydroxy) tetramethylene group, (3-hydroxy) tetramethylene group, (4-hydroxy) tetramethylene group, (1-hydroxy) pentamethylene group, (2-hydroxy) pentamethylene group, (( 3-hydroxy) pentamethylene, (4-hydroxy) pentamethylene, (5-hydroxy) pentamethylene, (1-hydroxy) hexamethylene, (2-hydroxy) hexamethylene, (3-hydroxy) hexa Methylene group, (4-hydroxy) hexamethylene group, (5-hydroxy) Xamethylene group, (6-hydroxy) hexamethylene group, more preferably (1-hydroxy) ethylene group, (2-hydroxy) ethylene group, (2-hydroxy) trimethylene group, (5-hydroxy) pentamethylene group And (6-hydroxy) hexamethylene, particularly preferably (1
  • the divalent hydrocarbon group having 3 to 20 carbon atoms and substituted by an alkoxy group having 1 to 10 carbon atoms as Q in the general formula (1) is preferably a divalent carbon having 2 to 10 carbon atoms as described above. Examples thereof include structures in which a hydrogen group is substituted by an alkoxy group having 1 to 10 carbon atoms.
  • C3 to C20 in the divalent hydrocarbon group means the total number of carbon atoms including the carbon number (1 to 10) of the substituted alkoxy group, and the same applies to the following similar descriptions, The total number of carbon atoms in the whole hydrocarbon group is shown.
  • the number of alkoxy groups to be substituted may be one or two or more, and the total number of carbon atoms in the divalent hydrocarbon group is 3 to 20 even when substituted by two or more alkoxy groups. It is.
  • the number of alkoxy groups to be substituted is preferably one in that the copolymer can be easily produced.
  • the number of carbon atoms of the alkoxy group to be substituted is preferably 1 to 4, and more preferably 1 or 2.
  • Preferred examples are (1-methoxy) ethylene, (2-methoxy) ethylene, (1-ethoxy) ethylene, (2-ethoxy) ethylene, (1-methoxy) trimethylene, (2-methoxy) Trimethylene group, (3-methoxy) trimethylene group, (1-methoxy) tetramethylene group, (2-methoxy) tetramethylene group, (3-methoxy) tetramethylene group, (4-methoxy) tetramethylene group, (1- (Methoxy) pentamethylene group, (2-methoxy) pentamethylene group, (3-methoxy) pentamethylene group, (4-methoxy) pentamethylene group, (5-methoxy) pentamethylene group, (1-methoxy) hexamethylene group , (2-methoxy) hexamethylene group, (3-methoxy) hexamethylene group, (4-methoxy) hexamethylene group (5-methoxy) hexamethylene group, (6-me
  • the divalent hydrocarbon group having 4 to 20 carbon atoms and substituted by an ester group having 2 to 10 carbon atoms as Q in the general formula (1) is preferably a divalent carbon having 2 to 10 carbon atoms as described above. Examples thereof include structures in which a hydrogen group is substituted by an ester group having 2 to 10 carbon atoms.
  • the number of ester groups to be substituted may be one or two or more, and the total number of carbon atoms in the divalent hydrocarbon group is 4 to 20 even when substituted by two or more ester groups. .
  • the number of ester groups to be substituted is preferably one in that the copolymer can be easily produced.
  • the ester group to be substituted is more preferably a methoxycarbonyl group or an ethoxycarbonyl group.
  • Preferred specific examples are (1-methoxycarbonyl) ethylene group, (2-methoxycarbonyl) ethylene group, (1-ethoxycarbonyl) ethylene group, (2-ethoxycarbonyl) ethylene group, (1-methoxycarbonyl) trimethylene group, (2-methoxycarbonyl) trimethylene group, (3-methoxycarbonyl) trimethylene group, (1-methoxycarbonyl) tetramethylene group, (2-methoxycarbonyl) tetramethylene group, (3-methoxycarbonyl) tetramethylene group, (4 -Methoxycarbonyl) tetramethylene group, (1-methoxycarbonyl) pentamethylene group, (2-methoxycarbonyl) pentamethylene group, (3-methoxycarbonyl) pentamethylene group, (4-methoxycarbonyl) pen
  • the divalent hydrocarbon group having 5 to 28 carbon atoms and substituted by a substituted silyl group having 3 to 18 carbon atoms as Q in General Formula (1) is preferably a divalent hydrocarbon group having 2 to 10 carbon atoms as described above. Examples thereof include structures in which a hydrocarbon group is substituted with a substituted silyl group having 3 to 18 carbon atoms.
  • the number of substituted silyl groups to be substituted may be one or two or more, and the total number of carbon atoms in the divalent hydrocarbon group is 5 to 20 even when substituted by two or more substituted silyl groups. It is.
  • the number of substituted silyl groups to be substituted is preferably one in that the copolymer can be easily produced.
  • the substituted silyl group is more preferably a trialkylsilyl group, and the three alkyls in the trialkylsilyl group may be the same or different, and a trimethylsilyl group or a triethylsilyl group is more preferable.
  • Preferred specific examples are (1-trimethylsilyl) ethylene, (2-trimethylsilyl) ethylene, (1-triethylsilyl) ethylene, (2-triethylsilyl) ethylene, (1-trimethylsilyl) trimethylene, (2- Trimethylsilyl) trimethylene group, (3-trimethylsilyl) trimethylene group, (1-trimethylsilyl) tetramethylene group, (2-trimethylsilyl) tetramethylene group, (3-trimethylsilyl) tetramethylene group, (4-trimethylsilyl) tetramethylene group, (( 1-trimethylsilyl) pentamethylene group, (2-trimethylsilyl) pentamethylene group, (3-trimethylsilyl) pentamethylene group, (4-trimethylsilyl) pentamethylene group, (5-trimethylsilyl) pentamethylene group, (1- Lymethylsilyl) hexamethylene, (2-trimethylsilyl) hexamethylene, (3
  • the divalent hydrocarbon group having 2 to 10 carbon atoms which is substituted by an ether group as Q in General Formula (1), is preferably a partial structure of the above-mentioned divalent hydrocarbon group having 2 to 10 carbon atoms.
  • the structure substituted by the ether group is mentioned.
  • One or two or more places may be substituted with an ether group (etheric oxygen atom), and one place is preferable because the copolymer can be easily produced.
  • Preferred examples are 1-oxapropylene group, 1,4-dioxahexene group, 1,4,7-trioxanonene group, 1,4,7,10-tetraoxadodecene group, and particularly preferably 1-oxaoxide group.
  • Propylene group and 1,4-dioxahexene group are 1-oxapropylene group, 1,4-dioxahexene group, 1,4,7-trioxanonene group, 1,4,7,10-tetra
  • the divalent hydrocarbon group having 2 to 10 carbon atoms substituted by a halogen atom as Q in General Formula (1) is preferably a divalent hydrocarbon group having 2 to 10 carbon atoms as described above, a halogen atom And a structure substituted by
  • the number of halogen atoms to be substituted may be one or two or more, and one is preferable from the viewpoint of easy production of a copolymer.
  • the halogen atom is more preferably a chlorine atom or a bromine atom.
  • T1 in the general formula (1) represents a methacryloyloxy group.
  • B A divalent hydrocarbon group having 2 to 10 carbon atoms as Q, and a methacryloyloxy group as T1.
  • C A divalent hydrocarbon group having 2 to 10 carbon atoms substituted with an ether group as Q, and a methacryloyloxy group as T1.
  • (3-2) Specific Examples of Polar Monomer (Z1) Examples of the polar monomer (Z1) are specifically described below.
  • (Z1-1) is an example of a combination (A) of Q and T1
  • (Z1-2) is an example of a combination (B) of Q and T1
  • (Z1-3) is an example of Q and T1. It is an example of a combination (C).
  • the portion of [] in (Z1-3), i.e., - the number of repetitions of (CH 2 -CH 2 -O-) is preferably 1-3.
  • the polar monomer (Z2) used in the present invention is a polar group-containing monomer.
  • the polar monomer (Z2) is a compound represented by the general formula (2), and may be one kind or two or more kinds.
  • T 2 represents a hydrocarbon group of 1 to 10 carbon atoms substituted by a hydroxyl group, a hydrocarbon group of 2 to 20 carbon atoms substituted by an alkoxy group of 1 to 10 carbon atoms, A hydrocarbon group of 3 to 20 carbon atoms substituted with an ester group of 2 to 10, a hydrocarbon group of 4 to 28 carbon atoms substituted of a substituted silyl group of 3 to 18 carbon atoms, carbon substituted by a halogen atom Hydrocarbon group of 1 to 10, alkoxy group of 1 to 10 carbons, aryloxy group of 6 to 20 carbon atoms, carboxyl group, ester group of 2 to 10 carbon atoms, acyloxy group of 2 to 10 carbon atoms, amino group And a substituted amino group having 1 to 12 carbon atoms, a substituted silyl group having 3 to 18 carbon atoms, or a halogen atom.
  • the number of hydroxyl groups to be substituted may be one or two or more.
  • One is preferable from the viewpoint of easy production of the copolymer.
  • preferable examples thereof include a hydroxyl group-substituted product of an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 3 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, and an aryl group having 6 to 20 carbon atoms.
  • examples of the alkyl group having 1 to 10 carbon atoms and the cycloalkyl group having 3 to 10 carbon atoms include a methyl group, an ethyl group, a 1-propyl group, a 1-butyl group, a 1-pentyl group and a 1-hexyl group 1-heptyl group, 1-octyl group, 1-nonyl group, 1-decyl group, t-butyl group, tricyclohexylmethyl group, isopropyl group, 1-dimethylpropyl group, 1,1,2-trimethylpropyl group, 1,1-diethylpropyl, isobutyl, 1,1-dimethylbutyl, 2-pentyl, 3-pentyl, 2-hexyl, 3-hexyl, 2-ethylhexyl, 2-heptyl, 3 -Heptyl group, 4-heptyl group, 2-propyl heptyl group, 2-octyl
  • alkenyl group having 2 to 10 carbon atoms examples include a vinyl group, an allyl group, a butenyl group, a cinnamyl group and a styryl group.
  • preferred substituents are a vinyl group and a styryl group, and particularly preferred is a styryl group.
  • Examples of the aryl group having 6 to 20 carbon atoms include a phenyl group and a naphthyl group.
  • substituents which may be present on the aromatic ring of these aryl groups include alkyl groups, aryl groups, fused aryl groups, phenylcyclohexyl Group, phenyl butenyl group, tolyl group, xylyl group, p-ethylphenyl group and the like.
  • a preferred aryl group is a phenyl group.
  • Preferred specific examples of the hydrocarbon group having 1 to 10 carbon atoms substituted with a hydroxyl group are hydroxymethyl group, 1-hydroxyethyl group, 2-hydroxyethyl group, 1-hydroxy-n-propyl group, 2-hydroxy-n group -Propyl, 3-hydroxy-n-propyl, 1-hydroxy-isopropyl, 2-hydroxy-isopropyl, 2,2'-dihydroxy-isopropyl, 1-hydroxy-n-butyl, 2-hydroxy- n-butyl group, 3-hydroxy-n-butyl group, 4-hydroxy-n-butyl group, 1-hydroxy-1-methyl-propyl group, 1-hydroxy-2-methyl-propyl group, 2-hydroxy-1 group -Methyl-propyl, 2-hydroxy-2-methyl-propyl, 3-hydroxy-1-methyl-propyl, 3-hydroxy 2-methyl - propyl group, 3-hydroxy-3-methyl - propyl group.
  • preferred is a hydroxymethyl group, 1-hydroxyethyl group or 2-hydroxye
  • the hydrocarbon group having 2 to 20 carbon atoms which is substituted with an alkoxy group having 1 to 10 carbon atoms as T 2 in the general formula (2), is preferably a hydrocarbon group having 1 to 10 carbon atoms.
  • the number of alkoxy groups to be substituted may be one or two or more, and the total number of carbon atoms of hydrocarbon groups is 2 to 20 even when substituted by two or more alkoxy groups.
  • the number of substituted alkoxy groups is preferably one from the viewpoint that the copolymer can be easily produced. More preferably, it is a hydrocarbon group having 2 to 6 carbon atoms substituted with a methoxy group or an ethoxy group, and specifically, 1- (methoxymethyl) ethyl group, 1- (ethoxymethyl) ethyl group, 1- ( Examples include methoxyethyl) ethyl group, 1- (ethoxyethyl) ethyl group, di (methoxymethyl) methyl group, di (ethoxymethyl) methyl group and di (phenoxymethyl) methyl group. Particularly preferred are 1- (methoxymethyl) ethyl group and 1- (ethoxymethyl) ethyl group.
  • the hydrocarbon group having 3 to 20 carbon atoms which is substituted by an ester group having 2 to 10 carbon atoms as T 2 in the general formula (2), is preferably a hydrocarbon group having 1 to 10 carbon atoms. It is a structure substituted by an ester group of 2 to 10, and examples thereof include the alkyl group, cycloalkyl group, alkenyl group and aryl group described above, methoxycarbonyl group, ethoxycarbonyl group, isopropoxycarbonyl group, 1-propoxycarbonyl group 1-butoxycarbonyl group, t-butoxycarbonyl group, or a substituent substituted with a phenoxycarbonyl group.
  • the number of ester groups to be substituted may be one or two or more, and the total number of carbon atoms in the hydrocarbon group is 3 to 20 even when substituted by two or more ester groups.
  • the number of ester groups to be substituted is preferably one from the viewpoint of easy production of the copolymer. More preferably, they are a methoxycarbonyl group and a hydrocarbon group of 3 to 5 carbon atoms substituted with an ethoxycarbonyl group. Specifically, 1- (methoxycarbonyl) methyl group, 2- (methoxycarbonyl) ethyl group, 1 And-(ethoxycarbonyl) methyl group and 2- (ethoxycarbonyl) ethyl group. More preferably, it is a 1- (methoxycarbonyl) methyl group or a 1- (ethoxycarbonyl) methyl group.
  • the hydrocarbon group having 4 to 28 carbon atoms which is substituted by a substituted silyl group having 3 to 18 carbon atoms as T 2 in the general formula (2), is preferably a hydrocarbon group having 1 to 10 carbons having 3 to 6 carbon atoms 18 structures substituted with a substituted silyl group, for example, (trimethylsilyl) methyl group, ((dimethyl) (phenyl) silyl) methyl group, ((diphenyl) (methyl) silyl) methyl group, (triphenylsilyl) It is a methyl group or bis (trimethylsilyl) methyl group.
  • more preferable substituents are (trimethylsilyl) methyl group and bis (trimethylsilyl) methyl group.
  • the number of substituted silyl groups may be one or two or more, and the total number of carbon atoms in the divalent hydrocarbon group is 4 to 20 even when substituted by two or more substituted silyl groups. It is.
  • the number of substituted silyl groups to be substituted is preferably one in that the copolymer can be easily produced.
  • the hydrocarbon group having 1 to 10 carbon atoms substituted by a halogen atom as T 2 in the general formula (2) include a structure in which a hydrocarbon group having 1 to 10 carbon atoms is substituted by a halogen atom, For example, it is a substituent having 1 to 6 carbon atoms which is substituted by a fluorine atom, a chlorine atom or a bromine atom.
  • the number of halogen atoms to be substituted may be one or two or more, and one is preferable from the viewpoint of easy production of a copolymer.
  • the halogen atom is more preferably a chlorine atom or a fluorine atom.
  • Specific preferred examples include a monochloromethyl group, a dichloromethyl group, a trifluoromethyl group or a pentafluorophenyl group.
  • more preferable substituents are a monochloromethyl group and a dichloromethyl group.
  • the alkoxy group having 1 to 10 carbon atoms as T2 in the general formula (2) is preferably an alkoxy group having 1 to 6 carbon atoms, and preferred examples thereof include a methoxy group, an ethoxy group, an n-propoxy group, an iso Propoxy group, n-butoxy group, t-butoxy group and the like.
  • a further preferable substituent is a methoxy group, an ethoxy group or an isopropoxy group, and particularly preferably a methoxy group.
  • the aryloxy group having a carbon number of 6 to 20 as T2 in the general formula (2) is preferably an aryloxy group having a carbon number of 6 to 12, and preferred examples thereof include phenoxy group, 4-methylphenoxy group, 4-methoxy group There may be mentioned phenoxy, 2,6-dimethylphenoxy and 2,6-di-t-butylphenoxy. Among these, a more preferable substituent is a phenoxy group or a 2,6-dimethyl phenoxy group, particularly preferably a phenoxy group.
  • the ester group having 2 to 10 carbon atoms as T2 in the general formula (2) is preferably an ester group having 2 to 8 carbon atoms, and preferred examples thereof include a methoxycarbonyl group, an ethoxycarbonyl group, and n-propoxycarbonyl group Groups, isopropoxycarbonyl group, n-butoxycarbonyl group, t-butoxycarbonyl group, (4-hydroxybutoxy) carbonyl group, (4-glycidyl butoxy) carbonyl group, phenoxy carbonyl group.
  • substituents are methoxycarbonyl group, ethoxycarbonyl group, n-butoxycarbonyl group, t-butoxycarbonyl group, (4-glycidyl butoxy) carbonyl group, and particularly preferably a methoxycarbonyl group, It is an ethoxycarbonyl group or n-butoxycarbonyl group.
  • the acyloxy group having 2 to 10 carbon atoms as T 2 in the general formula (2) is preferably an acyloxy group having 2 to 8 carbon atoms, and preferred specific examples thereof include an acetyl (acetyl) group, a propionyl group, A butyryl (butyryl) group is mentioned.
  • the number of substituted amino groups of the substituted amino group having 1 to 12 carbon atoms as T2 in the general formula (2) may be one or two or more.
  • the substituent include an alkyl group, a phenyl group and a trialkylsilyl group.
  • Preferred specific examples of the substituted amino group are monomethylamino group, dimethylamino group, monoethylamino group, diethylamino group, monoisopropylamino group, diisopropylamino group, monophenylamino group, diphenylamino group, bis (trimethylsilyl) amino group It can be mentioned. Among these, more preferable substituents are diphenylamino group and bis (trimethylsilyl) amino group.
  • the number substituted for the silyl group may be one or two or more.
  • an alkyl group, a phenyl group etc. are mentioned as a substituent.
  • Preferred specific examples of the substituted silyl group are trimethylsilyl group, (dimethyl) (phenyl) silyl group, (diphenyl) (methyl) silyl group and triphenylsilyl group.
  • a further preferable substituent is a trimethylsilyl group.
  • the halogen atom as T2 in the general formula (2) is preferably a fluorine atom, a chlorine atom or a bromine atom, and more preferably a chlorine atom.
  • Polar monomer (Z2) Specific examples of the polar monomer (Z2) preferably include trimethylsilyl acrylate, methyl acrylate, ethyl acrylate, n-butyl acrylate and t-butyl acrylate. Can. Among these, more preferable polar monomers (Z2) are methyl acrylate, ethyl acrylate and n-butyl acrylate.
  • the amount of structural units derived from the polar monomer (Z1) in the copolymer is not particularly limited, but is preferably 0.01 to 10 mol%. Of these, 0.1 to 5.0 mol% is more preferable, and 0.2 to 1.5 mol% is particularly preferable.
  • the amount of structural units derived from the polar monomer (Z2) in the copolymer is not particularly limited, but is preferably 0.01 to 15 mol%. Among these, 0.1 to 12 mol% is more preferable, and 5.0 to 10.0 mol% is particularly preferable.
  • the amount of structural unit can be controlled by the selection of transition metal catalyst at the time of polymerization, the amount of polar monomer added at the time of polymerization, and the pressure and temperature at the time of polymerization.
  • transition metal catalyst As a specific means for increasing the amount of structural units derived from polar monomers in the copolymer, it is effective to increase the amount of polar monomers added at the time of polymerization, to reduce the olefin pressure at the time of polymerization, and to increase the polymerization temperature. For example, it is required to control these factors to control the target copolymer region.
  • non-polar monomer (X1) units, non-polar monomer (X2) units, polar monomer (Z1) units, and other monomer units other than polar monomer (Z2) units May be contained.
  • Other monomers include cyclic olefin monomers such as cyclopentene, cyclohexene, norbornene and ethylidene norbornene, and styrenic monomers such as p-methylstyrene, etc.
  • the multi-component polar olefin copolymer in the present invention preferably has a degree of methyl branching calculated by 13 C-NMR of 5.0 or less per 1,000 carbons of the main chain. Among these, particularly preferably 3.0 or less per 1,000 carbons of the main chain.
  • the degree of methyl branching can be controlled by the choice of transition metal catalyst used for polymerization and the polymerization temperature. As a specific means for reducing the degree of methyl branching of the multicomponent polar olefin copolymer, it is effective to reduce the polymerization temperature. For example, these factors can be adjusted to control to the desired copolymer region.
  • the multi-component polar olefin copolymer according to the present invention has a weight-average molecular weight (Mw) to number-average molecular weight (Mn) ratio (Mw / Mn) of 1.5 as determined by gel permeation chromatography (GPC). It is preferably in the range of ⁇ 3.5. Among them, the range is more preferably in the range of 1.6 to 3.3, and particularly preferably in the range of 1.7 to 3.0.
  • Mw / Mn of the multicomponent polar olefin copolymer in the present invention satisfies the above conditions, various processability including the formation of the laminate becomes sufficient, and the adhesive strength becomes excellent.
  • Mw / Mn can be controlled by the choice of transition metal catalyst used.
  • Transition Metal Catalyst As an example of a method for producing a multicomponent polar olefin copolymer of the present invention, a transition metal compound of Groups 5 to 10 of the periodic table is used as a catalyst, There is a way to polymerize. Specific examples of preferred transition metals include vanadium, niobium, tantalum, chromium, molybdenum, tungsten, manganese, iron, ruthenium, cobalt, rhodium, nickel, palladium, etc. .
  • transition metals of periodic table groups 8 to 11 are transition metals of periodic table group 10, and particularly preferred are nickel (Ni) and palladium (Pd). These metals may be used alone or in combination of two or more. It is preferable to use, as a catalyst, a transition metal compound of Groups 5 to 10 of the periodic table having a chelating ligand as a transition metal catalyst.
  • the chelating ligand has at least two atoms selected from the group consisting of P, N, O and S and is bidentate or multidentate It contains a ligand and is electronically neutral or anionic. Its structure is illustrated in the review by Brookhart et al. (Chem. Rev., 2000, 100, 1169).
  • examples of bidentate anionic P, O ligands include, for example, phosphorus sulfonic acid, phosphorus carboxylic acid, phosphorus phenol, and phosphorus enolate, and in addition, as bidentate anionic N, O ligands, for example, salicylic acid Examples include aldoiminate and pyridine carboxylic acid, and others include diimine ligands, diphenoxide ligands, and diamide ligands.
  • phosphine phenolate-based catalysts transition metal catalysts coordinated with a chelating phosphine compound
  • the phosphine phenolate catalyst is a catalyst in which a phosphorus ligand having an aryl group which may have a substituent is coordinated to a nickel metal (see, for example, JP-A-2010-260913).
  • the polymerization catalyst may be used alone or may be supported on a carrier.
  • a carrier any carrier can be used as long as the gist of the present invention is not impaired.
  • inorganic oxides and polymer supports can be suitably used as the support.
  • SiO 2 , Al 2 O 3 , MgO, ZrO 2 , TiO 2 , B 2 O 3 , CaO, ZnO, BaO, ThO 2 or the like or a mixture thereof can be mentioned, and SiO 2 -Al 2 O 3 Mixed oxides such as SiO 2 -V 2 O 5 , SiO 2 -TiO 2 , SiO 2 -MgO, and SiO 2 -Cr 2 O 3 can also be used, and inorganic silicates, polyethylene carriers, polypropylene carriers, A polystyrene carrier, a polyacrylic acid carrier, a polymethacrylic acid carrier, a polyacrylic acid ester carrier, a polyester carrier, a polyamide carrier, a polyimide carrier and the like can be used.
  • the particle size, particle size distribution, pore volume, specific surface area and the like of these carriers are not particularly limited, and any carrier can be used.
  • the catalyst component may be used to carry out prepolymerization in the presence of an olefin in the polymerization vessel or outside the polymerization vessel.
  • An olefin is a hydrocarbon containing at least one carbon-carbon double bond, and examples thereof include ethylene, propylene, 1-butene, 1-hexene, 3-methylbutene-1, styrene and divinylbenzene. There is no limitation, and mixtures of these with other olefins may be used. Preferably, it is an olefin having 2 or 3 carbon atoms.
  • the olefin can be supplied by any method such as a method of supplying an olefin to a reaction vessel at a constant speed or a constant pressure, a combination thereof, or stepwise change.
  • the copolymerization reaction in the present invention is carried out in the presence or absence of a solvent.
  • the solvent include hydrocarbon solvents such as propane, n-butane, isobutane, n-hexane, n-heptane, toluene, xylene, cyclohexane, methylcyclohexane and the like, liquids such as liquefied ⁇ -olefin, diethyl ether, ethylene glycol Polar solvents such as dimethyl ether, tetrahydrofuran, dioxane, ethyl acetate, methyl benzoate, acetone, methyl ethyl ketone, formylamide, acetonitrile, methanol, isopropyl alcohol, ethylene glycol and the like can be mentioned.
  • mixtures of the solvents described herein may be used as mixed solvents. In order to obtain high polymerization activity and high molecular weight,
  • the copolymerization can be carried out in the presence or absence of a known additive.
  • a radical polymerization inhibitor and an additive having an effect of stabilizing a formed copolymer are preferable.
  • quinone derivatives and hindered phenol derivatives can be mentioned as examples of preferable additives.
  • monomethyl ether hydroquinone, 2,6-di-t-butyl-4-methylphenol (BHT), reaction product of trimethylaluminum and BHT, reaction formation of tetravalent titanium alkoxide and BHT Things can be used.
  • the type of polymerization is not particularly limited. Slurry polymerization in which at least a part of the formed polymer becomes a slurry in the medium, bulk polymerization with liquefied monomer itself as medium, gas phase polymerization carried out in vaporized monomer, or formed polymer into monomer liquefied under high temperature and pressure High-pressure ion polymerization or the like in which at least a part of is dissolved is preferably used.
  • a polymerization mode any mode of batch polymerization, semi-batch polymerization, and continuous polymerization may be adopted.
  • Unreacted monomers and media may be separated from the produced multi-component polar olefin copolymer and recycled for use. At the time of recycling, these monomers and media may be purified and reused, or may be reused without purification. Conventional known methods can be used to separate the resulting copolymer from unreacted monomer and medium. For example, methods such as filtration, centrifugation, solvent extraction, reprecipitation using a poor solvent can be used.
  • the copolymerization temperature is usually ⁇ 20 ° C. to 290 ° C., preferably 0 ° C. to 250 ° C.
  • the copolymerization pressure is 0.1 MPa to 100 MPa, preferably 0.3 MPa to 90 MPa
  • the copolymerization time is 0. It can be selected from the range of 1 minute to 10 hours, preferably 0.5 minutes to 7 hours, more preferably 1 minute to 6 hours.
  • copolymerization is generally carried out under an inert gas atmosphere.
  • a nitrogen or argon atmosphere can be used, and a nitrogen atmosphere is preferably used.
  • a small amount of oxygen or air may be mixed.
  • the supply of the catalyst and the monomer to the copolymerization reactor there is no particular limitation on the supply of the catalyst and the monomer to the copolymerization reactor, and various supply methods can be taken depending on the purpose.
  • various supply methods can be taken depending on the purpose.
  • in the case of batch polymerization it is possible to supply a predetermined amount of monomers to the copolymerization reactor in advance and supply a catalyst thereto.
  • additional monomers and additional catalyst may be supplied to the copolymerization reactor.
  • continuous polymerization it is possible to take a method of continuously supplying a predetermined amount of monomer and catalyst to the copolymerization reactor continuously or intermittently and performing the copolymerization reaction continuously.
  • control of the composition of the multicomponent polar olefin copolymer a method of controlling by supplying a plurality of monomers to the reactor and changing the supply ratio can be generally used.
  • Other methods include controlling the copolymerization composition by utilizing the difference in monomer reactivity ratio due to the difference in catalyst structure, and controlling the copolymerization composition by utilizing the polymerization temperature dependency of the monomer reactivity ratio.
  • a conventionally known method can be used to control the molecular weight of the multicomponent polar olefin copolymer.
  • a method of controlling molecular weight by controlling polymerization temperature a method of controlling molecular weight by controlling monomer concentration, a method of controlling molecular weight using chain transfer agent, control of ligand structure in transition metal complex And control the molecular weight.
  • a chain transfer agent a conventionally known chain transfer agent can be used.
  • hydrogen, metal alkyl and the like can be used.
  • the standard polystyrene method was used, and the conversion from the retention volume to the molecular weight was performed using a calibration curve with standard polystyrene prepared in advance.
  • the standard polystyrenes used are all manufactured by Tosoh Corp., and are F380, F288, F128, F80, F40, F20, F10, F4, F1, A5000, A2500 and A1000.
  • a calibration curve was generated by injecting 0.2 mL of a solution of ODCB (containing 0.5 mg / mL BHT) to 0.5 mg / mL each.
  • the calibration curve used the cubic equation obtained by approximating by the least squares method.
  • NMR analysis 3-1) Measurement conditions of multi-component polar olefin copolymer 200 mg of a sample together with tetrachloroethane to be polymerized is put in a NMR sample tube with an inner diameter of 10 mm ⁇ , purged with nitrogen, sealed and heated to dissolve uniformly. The solution was subjected to NMR measurement as a clear solution. NMR measurement used NMR apparatus AVANCEIII400 of Bruker Biospin Co., Ltd. equipped with a cryoprobe of 10 mm ⁇ . The measurement was carried out by the reverse gate decoupling method for the 13 C-NMR measurement conditions: sample temperature 120 ° C., pulse angle 90 °, pulse interval 51.5 seconds, integration number 512 times. The chemical shifts were set to 74.3 ppm of the 13 C signal of tetrachloroethane, and the chemical shifts of the signals by other 13 C were based on this.
  • Measuring Method of Methyl Branch of Ethylene / Methyl Acrylate / 2-Acryloyloxyethyl Methacrylate Terpolymer Methyl branch is 20.0 to 19.8 ppm of methyl carbon in 13 C-NMR spectrum
  • Methyl branches number (pieces / backbone 1000C) I B1 ⁇ 1000 / ⁇ 2 ⁇ (I B1 + I MA-br + I MAEA-br + I E) ⁇
  • I B1 , I MA-br , I MAEA -br and I E are amounts shown by the following formulas.
  • I B1 (I 20.0 to 19.8 + I 37.6 to 37.3 ) / 3
  • I MA-br I 46.5-45.8 + I 44.5-43.5
  • I MAEA-br I 45.8 ⁇ 45.4
  • I E [I 31.0 to 28.5 + 3 ⁇ (I MA-br + I MAEA-br + I B1 )] / 2
  • I indicates the integrated intensity
  • the numerical value of I subscript indicates the range of chemical shift. For example, I 31.0-28.5 shows the integrated intensity of the detected signal between 31.0 ppm and 28.5 ppm.
  • I total MAEA total amount (mol%) I total MAEA x 100 / [I total MAEA + I total MA + I E ]
  • MA total amount (mol%) I total MA x 100 / [I total MAEA + I total MA + I E ]
  • I total MAEA , I total MA and I E are amounts shown by the following formulas, respectively.
  • I total MAEA I 64.0 to 61.0 / 2
  • I total MA I 53.0 to 51.0
  • I E (I 180.0 to 110.0 + I 72.0 to 2.0- I total MAEA x 9-I total MA x 4)
  • I indicates the integrated intensity
  • the numerical value of I subscript indicates the range of chemical shift. For example, I 180.0-110.0 shows the integrated intensity of the detected signal between 180.0 ppm and 110.0 ppm.
  • Methyl branch is 20.0 to 19.8 ppm of methyl in 13 C-NMR spectrum Methyl per 1,000 carbon main chain using the value I B1 obtained by dividing the sum of the integrated intensities of the signals of carbon, 33.3 to 33.0 ppm methine carbon, and 37.6 to 37.3 ppm methylene carbon by 4
  • the number of branches was calculated using the following equation.
  • Methyl branches number (pieces / backbone 1000C) I B1 ⁇ 1000 / ⁇ 2 ⁇ (I B1 + I nBA-br + I MAEA-br + I E) ⁇
  • I B1 , I nBA-br , I MAEA-br , I E are amounts shown by the following formulas, respectively.
  • I B1 (I 20.0 to 19.8 + I 33.3 to 33.0 + I 37.6 to 37.3 ) / 4
  • InBA-br I 46.4 to 46.0 + I 44.6 to 43.8
  • I MAEA-br I 46.0 to 45.7
  • I E [I 31.0 to 28.0 + 3 ⁇ (I nBA-br + I MAEA-br + I B1 )] / 2
  • I indicates the integrated intensity
  • the numerical value of I subscript indicates the range of chemical shift.
  • I 31.0-28.0 shows the integrated intensity of the detected signal between 31.0 ppm and 28.0 ppm.
  • MAEA total amount (mol%) I total MAEA x 100 / [I total MAEA + I total nBA + I E ]
  • nBA total amount (mol%) I total nBA x 100 / [I total MAEA + I total nBA + I E ]
  • I total MAEA , I total nBA , and I E are amounts shown by the following formulas, respectively.
  • I total MAEA I 63.0 to 61.0 / 2
  • I total nBA (I 14.1 to 13.6 + I 19.8 to 19.3 + I 31.4 to 31.1 + I 64.5 to 63.8 )
  • I E (I 180.0 to 110.0 + I 72.0 to 2.0- I total MAEA x 9-I total nBA x 7) / 2
  • I indicates the integrated intensity
  • the numerical value of I subscript indicates the range of chemical shift. For example, I 180.0-110.0 shows the integrated intensity of the detected signal between 180.0 ppm and 110.0 ppm.
  • Example 2 Tenary copolymerization of ethylene / methyl acrylate / 2-acryloyloxyethyl methacrylate
  • the catalyst solution was prepared.
  • Example 3 Tenary copolymerization of ethylene / methyl acrylate / 2-acryloyloxyethyl methacrylate 300 ⁇ mol of the metal complex (II) was weighed into a sufficiently nitrogen-substituted 30 mL flask, dehydrated toluene (10 mL) was added, and this was stirred for 10 minutes to prepare a catalyst solution.
  • Example 4 Tenary copolymerization of ethylene / butyl acrylate / 2-acryloyloxyethyl methacrylate
  • the catalyst solution was prepared.
  • Example 5 Tenary copolymerization of ethylene / butyl acrylate / 2-acryloyloxyethyl methacrylate
  • the catalyst solution was prepared.
  • Comparative Example 1 Copolymerization of ethylene / 2-acryloyloxyethyl methacrylate 40 ⁇ mol each of bis (cyclooctadiene) nickel and phosphophenol ligand (I) are weighed into a fully nitrogen-substituted 30 mL flask, dehydrated toluene (10 mL) is added, and this is stirred for 10 minutes. The catalyst solution was prepared.
  • the multi-component polar olefin copolymer of the example has the same or higher solubility in various solvents as compared with the copolymer of the comparative example, and exhibits good solubility. It became clear.
  • a novel multi-component polar olefin copolymer having a linear polymer primary structure is a novel olefin copolymer having a polymerizable functional group, and the solvent solubility is sufficiently improved without impairing mechanical properties and other physical properties.
  • the multi-component polar olefin copolymer of the present invention can be used in a wide range of applications and has high industrial applicability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Polymerization Catalysts (AREA)

Abstract

本発明は、機械的物性等を損なわずに、溶剤溶解性が十分に改良された多元系極性オレフィン共重合体を提供することを目的とする。本発明は、エチレン又は炭素数3~10のα-オレフィンである1種の非極性モノマー(X1)単位と、1種又は2種以上の極性モノマー(式(1)、Z1)単位とを含み、前記X1とは異なる1種又は2種以上の非極性モノマー(X2)単位、及び/又は、1種又は2種以上の極性モノマー(式(2)、Z2)単位の構造単位を含む、多元系極性オレフィン共重合体に関する。

Description

多元系極性オレフィン共重合体、及びその製造方法
 本発明は、多元系極性オレフィン共重合体、及びその製造方法に関する。更に詳しくは、特定構造の極性コモノマーを用いて重合されることで得られ、直線状のポリマー一次構造である、重合性官能基を有する多元系極性オレフィン共重合体に関するものである。
 エチレン重合体及びエチレンとα-オレフィンの共重合体などのオレフィン系重合体は、樹脂材料の中で物性や成形性などの諸性質に優れ、経済性や環境問題適合性なども高く、非常に汎用されかつ重要な産業資材である。
 しかし、オレフィン系重合体は極性基を持たないため、他の材料との接着性や印刷適性、或はフィラーなどとの相溶性の物性が要求される用途への適用は困難であった。これを改良した材料として、高圧ラジカル法重合プロセスによって製造されたエチレンと極性基含有ビニルモノマーとの共重合体が、単体もしくは他の樹脂との組成物として用いられてきた(特許文献1及び2)。しかし、ポリマー多分岐構造に由来して、低弾性率や機械物性に劣り、単体で用いる場合はもちろんのこと、他の樹脂との組成物として用いる場合においても、特に高強度が要求される用途への応用範囲は限られたものとなっていた。
 一方、極性基として重合性官能基を有するオレフィン系重合体は、成形特性を保持しつつ、後修飾や後架橋により高強度化可能な材料となることが期待される。これまでに、エキソメチレン基のような反応性の異なるオレフィンを有するコポリマーが報告されてきたものの、極性を有する重合性官能基である、メタクリレートを側鎖に有するオレフィン系重合体を製造することは困難とされてきた。
 近年、これらの課題に対して、極性官能基への耐性を有する後周期遷移金属触媒を用いることで克服しようとする試みが報告されている(特許文献3~8)。非特許文献1には、重合触媒にパラジウム化合物を用いることで、メタクリレートを側鎖に有する直線状コポリマーが得られることが報告されている。
日本国特許第2792982号公報 日本国特開平3-229713号公報 日本国特表2002-521534号公報 日本国特開平6-184214号公報 日本国特開2008-223011号公報 日本国特開2010-150246号公報 日本国特開2010-150532号公報 日本国特開2010-202647号公報
Thomas Runzi,Damien Guironnet,Inigo Gottker-Schnetmann,and Stefan Mecking J.Am.Chem.Soc.,2010,132(46),pp16623-16630.
 しかしながら、従来の重合性官能基を有するオレフィン共重合体は、本願発明者らによる評価の結果、各種溶剤やモノマーへの溶解性が不十分であり(本願の比較例参照)、ブレンド時の性能発現が困難であった。これらの従来技術を鑑みれば、簡易で効率の良い重合法により製造され、機械的物性その他の諸物性を損なわずに、溶剤溶解性が十分に改良された、極性基含有オレフィン共重合体の開発が望まれているのは明白である。
 本発明の目的は、機械的物性その他の諸物性を損なわずに、溶剤溶解性が十分に改良された多元系極性オレフィン共重合体、及びその製造方法を提供することにある。
 本発明者らは、上記した本発明の課題の解決を目指して、多元系極性オレフィン共重合体の製造において、簡易で効率的な製法による当共重合体の製造を図り、極性基の導入方法、重合触媒、極性モノマー、多元モノマーなどの選択について、種々検証し探索した。
 その結果、コモノマー成分として特定の置換基を有するアクリレート化合物を選択した多元系極性オレフィン共重合体が、上記の課題を解決することを見いだして、発明を完成するに至った。
 また、特定構造の錯体を重合触媒に用いることで、上記のオレフィン系重合体が容易に得られることをも見いだし、製造方法の発明をも創生するに至った。これらの成果に基づいて、次の発明を提供する。
[1]エチレン又は炭素数3~10のα-オレフィンである1種の非極性モノマー(X1)単位と、下記一般式(1)で表される化合物である1種又は2種以上の極性モノマー(Z1)単位とを含む多元系極性オレフィン共重合体であって、前記非極性モノマー(X1)とは異なり、エチレン及び炭素数3~10のα-オレフィンからなる群より選ばれる1種又は2種以上の非極性モノマー(X2)単位、並びに、下記一般式(2)で表される化合物である1種又は2種以上の極性モノマー(Z2)単位の少なくともいずれか一方の構造単位を含むことを特徴とする、多元系極性オレフィン共重合体。
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
[一般式(1)において、Qは、炭素数2~10の二価の炭化水素基、水酸基で置換された炭素数2~10の二価の炭化水素基、炭素数1~10のアルコキシ基で置換された炭素数3~20の二価の炭化水素基、炭素数2~10のエステル基で置換された炭素数4~20の二価の炭化水素基、炭素数3~18の置換シリル基で置換された炭素数5~28の二価の炭化水素基、エーテル基で置換された炭素数2~10の二価の炭化水素基、又はハロゲン原子で置換された炭素数2~10の二価の炭化水素基を示す。T1は、メタクリロイルオキシ基を示す。
 一般式(2)において、T2は、水酸基で置換された炭素数1~10の炭化水素基、炭素数1~10のアルコキシ基で置換された炭素数2~20の炭化水素基、炭素数2~10のエステル基で置換された炭素数3~20の炭化水素基、炭素数3~18の置換シリル基で置換された炭素数4~28の炭化水素基、ハロゲン原子で置換された炭素数1~10の炭化水素基、炭素数1~10のアルコキシ基、炭素数6~20のアリーロキシ基、カルボキシル基、炭素数2~10のエステル基、炭素数2~10のアシルオキシ基、アミノ基、炭素数1~12の置換アミノ基、炭素数3~18の置換シリル基、又はハロゲン原子を示す。]
[2]ゲルパーミエイションクロマトグラフィー(GPC)によって求められる重量平均分子量(Mw)と数平均分子量(Mn)の比(Mw/Mn)が1.5~3.5の範囲であることを特徴とする、前記[1]に記載の多元系極性オレフィン共重合体。
[3]13C-NMRにより算出されるメチル分岐度が、主鎖1,000炭素当たり5.0以下であることを特徴とする、前記[1]又は[2]に記載の多元系極性オレフィン共重合体。
[4]周期表第5~10族の遷移金属触媒を用いて重合されたことを特徴とする、前記[1]~[3]のいずれか1に記載の多元系極性オレフィン共重合体。
[5]前記遷移金属触媒が、ニッケル金属又はパラジウム金属にキレート性ホスフィン化合物が配位した遷移金属触媒であることを特徴とする、前記[4]に記載の多元系極性オレフィン共重合体。
[6]前記[1]~[5]のいずれか1に記載の多元系極性オレフィン共重合体を製造する方法であって、周期表第5~10族の遷移金属触媒の存在下に重合することを特徴とする、多元系極性オレフィン共重合体の製造方法。
[7]前記遷移金属触媒が、ニッケル金属又はパラジウム金属にキレート性ホスフィン化合物が配位した遷移金属触媒であることを特徴とする、前記[6]に記載の多元系極性オレフィン共重合体の製造方法。
 本発明の多元系極性オレフィン共重合体は、高い溶剤溶解性を有する。また、本発明の製造方法によれば、高い溶剤溶解性を有する多元系極性オレフィン共重合体を製造することができる。
 以下、本発明の多元系極性オレフィン共重合体、及びその製造方法について、項目毎に具体的かつ詳細に説明する。
1.多元系極性オレフィン共重合体について
(1)多元系極性オレフィン共重合体
 本発明の多元系極性オレフィン共重合体は、エチレン又は炭素数3~10のα-オレフィンである1種の非極性モノマー(X1)単位と、一般式(1)で表される化合物である1種又は2種以上の極性モノマー(Z1)単位とを含む多元系極性オレフィン共重合体である。さらに、多元系極性オレフィン共重合体は、前記非極性モノマー(X1)とは異なり、エチレン及び炭素数3~10のα-オレフィンからなる群より選ばれる1種又は2種以上の非極性モノマー(X2)単位、並びに、一般式(2)で表される化合物である1種又は2種以上の極性モノマー(Z2)単位の少なくともいずれか一方の構造単位を含むことを特徴とする。
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
[一般式(1)において、Qは、炭素数2~10の二価の炭化水素基、水酸基で置換された炭素数2~10の二価の炭化水素基、炭素数1~10のアルコキシ基で置換された炭素数3~20の二価の炭化水素基、炭素数2~10のエステル基で置換された炭素数4~20の二価の炭化水素基、炭素数3~18の置換シリル基で置換された炭素数5~28の二価の炭化水素基、エーテル基で置換された炭素数2~10の二価の炭化水素基、又はハロゲン原子で置換された炭素数2~10の二価の炭化水素基からなる群より選ばれた置換基を示す。T1は、メタクリロイルオキシ基を示す。
 一般式(2)において、T2は、水酸基で置換された炭素数1~10の炭化水素基、炭素数1~10のアルコキシ基で置換された炭素数2~20の炭化水素基、炭素数2~10のエステル基で置換された炭素数3~20の炭化水素基、炭素数3~18の置換シリル基で置換された炭素数4~28の炭化水素基、ハロゲン原子で置換された炭素数1~10の炭化水素基、炭素数1~10のアルコキシ基、炭素数6~20のアリーロキシ基、カルボキシル基、炭素数2~10のエステル基、炭素数2~10のアシルオキシ基、アミノ基、炭素数1~12の置換アミノ基、炭素数3~18の置換シリル基、又はハロゲン原子を示す。]
(2)非極性モノマー
(2-1)非極性モノマー(X1)
 本発明に用いられる非極性モノマー(X1)は、エチレン又は炭素数3~10のα-オレフィンの1種のモノマーである。
 好ましい具体例として、エチレン、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-オクテン、1-デセン、3-メチル-1-ブテン、4-メチル-1-ペンテンが挙げられ、特に好ましい具体例として、エチレンが挙げられる。
(2-2)非極性モノマー(X2)
 本発明に用いられる非極性モノマー(X2)は、エチレン及び炭素数3~10のα-オレフィンからなる群より選ばれる1種又は2種以上のモノマーであり、前記X1とは同一でなく、異なることが特徴である。
 好ましい具体例としては、前述のX1と同様な例が挙げられる。また、X2は、1種類を使用してもよいし、2種以上を併用してもよい。
 2種の組み合わせとしては、エチレン/プロピレン、エチレン/1-ブテン、エチレン/1-ヘキセン、エチレン/1-オクテン、プロピレン/1-ブテン、プロピレン/1-ヘキセン、プロピレン/1-オクテンなどが挙げられる。好ましくは、エチレンを含む組み合わせが挙げられる。
 3種の組み合わせとしては、エチレン/プロピレン/1-ブテン、エチレン/プロピレン/1-ヘキセン、エチレン/プロピレン/1-オクテン、プロピレン/1-ブテン/ヘキセン、プロピレン/1-ブテン/1-オクテンなどが挙げられる。好ましくは、エチレンを含む組み合わせが挙げられる。
(3)極性モノマー(Z1)
 本発明に用いられる極性モノマー(Z1)は、極性基含有モノマーである。極性モノマー(Z1)は、特定の置換基を有するアクリレート化合物であり、一般式(1)で表される。極性モノマー(Z1)は1種でも2種以上であってもよい。
Figure JPOXMLDOC01-appb-C000007
[一般式(1)において、Qは、炭素数2~10の二価の炭化水素基、水酸基で置換された炭素数2~10の二価の炭化水素基、炭素数1~10のアルコキシ基で置換された炭素数3~20の二価の炭化水素基、炭素数2~10のエステル基で置換された炭素数4~20の二価の炭化水素基、炭素数3~18の置換シリル基で置換された炭素数5~28の二価の炭化水素基、エーテル基で置換された炭素数2~10の二価の炭化水素基、又はハロゲン原子で置換された炭素数2~10の二価の炭化水素基を示す。T1は、メタクリロイルオキシ基を示す。]
(3-1)極性モノマー(Z1)の詳細
 一般式(1)におけるQとしての炭素数2~10の二価の炭化水素基は、好ましくは、炭素数2~8の二価の炭化水素基、更に好ましくは、炭素数2~8の、アルキレン基、フェニレン基又はアルキレン-フェニレン-アルキレン基である。
 好ましい具体例は、エチレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基、1,4-シクロへキシレン基、{メチレン-(1,4-シクロへキシレン)}基、{メチレン-(1,4-シクロへキシレン)-メチレン}基、ビニレン基、1-プロペニレン基、2-プロペニレン基、1-ブテニレン基、2-ブテニレン基、3-ブテニレン基、1-ペンテニレン基、2-ペンテニレン基、3-ペンテニレン基、4-ペンテニレン基、1-ヘキセニレン基、2-ヘキセニレン基、3-ヘキセニレン基、4-ヘキセニレン基、5-ヘキセニレン基、フェニレン基、メチレンフェニレン基、{メチレン-(1,4-フェニレン)-メチレン}基であり、更に好ましくは、エチレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基、4-ヘキセニレン基、{メチレン-(1,4-シクロへキシレン)-メチレン}基、フェニレン基であり、特に好ましくは、エチレン基、テトラメチレン基、ヘキサメチレン基である。
 一般式(1)におけるQとしての水酸基で置換された炭素数2~10の二価の炭化水素基は、好ましくは、前述の炭素数2~10の二価の炭化水素基の水酸基置換体が挙げられる。置換される水酸基の数は1個でも2個以上でもよく、1個が共重合体の製造がしやすい点から好ましい。
 好ましい具体例は、(1-ヒドロキシ)エチレン基、(2-ヒドロキシ)エチレン基、(1-ヒドロキシ)トリメチレン基、(2-ヒドロキシ)トリメチレン基、(3-ヒドロキシ)トリメチレン基、(1-ヒドロキシ)テトラメチレン基、(2-ヒドロキシ)テトラメチレン基、(3-ヒドロキシ)テトラメチレン基、(4-ヒドロキシ)テトラメチレン基、(1-ヒドロキシ)ペンタメチレン基、(2-ヒドロキシ)ペンタメチレン基、(3-ヒドロキシ)ペンタメチレン基、(4-ヒドロキシ)ペンタメチレン基、(5-ヒドロキシ)ペンタメチレン基、(1-ヒドロキシ)ヘキサメチレン基、(2-ヒドロキシ)ヘキサメチレン基、(3-ヒドロキシ)ヘキサメチレン基、(4-ヒドロキシ)ヘキサメチレン基、(5-ヒドロキシ)ヘキサメチレン基、(6-ヒドロキシ)ヘキサメチレン基であり、更に好ましくは、(1-ヒドロキシ)エチレン基、(2-ヒドロキシ)エチレン基、(2-ヒドロキシ)トリメチレン基、(5-ヒドロキシ)ペンタメチレン基、(6-ヒドロキシ)ヘキサメチレン基であり、特に好ましくは、(1-ヒドロキシ)エチレン基、(2-ヒドロキシ)トリメチレン基である。
 一般式(1)におけるQとしての炭素数1~10のアルコキシ基で置換された炭素数3~20の二価の炭化水素基は、好ましくは、前述の炭素数2~10の二価の炭化水素基を、炭素数1~10のアルコキシ基で置換した構造体が挙げられる。なお、二価の炭化水素基における炭素数3~20とは、置換されたアルコキシ基の炭素数(1~10)も含む、炭素原子の総数を示し、以下の同様の記載についても同様に、炭化水素基全体における炭素原子の総数を示す。
 また、置換されるアルコキシ基の数は1個でも2個以上でもよく、2個以上のアルコキシ基で置換される場合であっても、二価の炭化水素基における炭素数の総数は3~20である。置換されるアルコキシ基の数は1個が共重合体の製造がしやすい点から好ましい。
 置換されるアルコキシ基の炭素数は1~4が好ましく、1又は2がより好ましい。
 好ましい具体例は、(1-メトキシ)エチレン基、(2-メトキシ)エチレン基、(1-エトキシ)エチレン基、(2-エトキシ)エチレン基、(1-メトキシ)トリメチレン基、(2-メトキシ)トリメチレン基、(3-メトキシ)トリメチレン基、(1-メトキシ)テトラメチレン基、(2-メトキシ)テトラメチレン基、(3-メトキシ)テトラメチレン基、(4-メトキシ)テトラメチレン基、(1-メトキシ)ペンタメチレン基、(2-メトキシ)ペンタメチレン基、(3-メトキシ)ペンタメチレン基、(4-メトキシ)ペンタメチレン基、(5-メトキシ)ペンタメチレン基、(1-メトキシ)ヘキサメチレン基、(2-メトキシ)ヘキサメチレン基、(3-メトキシ)ヘキサメチレン基、(4-メトキシ)ヘキサメチレン基、(5-メトキシ)ヘキサメチレン基、(6-メトキシ)ヘキサメチレン基であり、更に好ましくは、(1-メトキシ)エチレン基、(2-メトキシ)エチレン基、(1-エトキシ)エチレン基、(2-エトキシ)エチレン基であり、特に好ましくは、(1-メトキシ)エチレン基、(2-メトキシ)エチレン基である。
 一般式(1)におけるQとしての炭素数2~10のエステル基で置換された炭素数4~20の二価の炭化水素基は、好ましくは、前述の炭素数2~10の二価の炭化水素基を、炭素数2~10のエステル基で置換した構造体が挙げられる。置換されるエステル基の数は1個でも2個以上でもよく、2個以上のエステル基で置換される場合であっても、二価の炭化水素基における炭素数の総数は4~20である。置換されるエステル基の数は1個が共重合体の製造がしやすい点から好ましい。
 置換されるエステル基はメトキシカルボニル基又はエトキシカルボニル基がより好ましい。
 好ましい具体例は、(1-メトキシカルボニル)エチレン基、(2-メトキシカルボニル)エチレン基、(1-エトキシカルボニル)エチレン基、(2-エトキシカルボニル)エチレン基、(1-メトキシカルボニル)トリメチレン基、(2-メトキシカルボニル)トリメチレン基、(3-メトキシカルボニル)トリメチレン基、(1-メトキシカルボニル)テトラメチレン基、(2-メトキシカルボニル)テトラメチレン基、(3-メトキシカルボニル)テトラメチレン基、(4-メトキシカルボニル)テトラメチレン基、(1-メトキシカルボニル)ペンタメチレン基、(2-メトキシカルボニル)ペンタメチレン基、(3-メトキシカルボニル)ペンタメチレン基、(4-メトキシカルボニル)ペンタメチレン基、(5-メトキシカルボニル)ペンタメチレン基、(1-メトキシカルボニル)ヘキサメチレン基、(2-メトキシカルボニル)ヘキサメチレン基、(3-メトキシカルボニル)ヘキサメチレン基、(4-メトキシカルボニル)ヘキサメチレン基、(5-メトキシカルボニル)ヘキサメチレン基、(6-メトキシカルボニル)ヘキサメチレン基であり、更に好ましくは、(1-メトキシカルボニル)エチレン基、(2-メトキシカルボニル)エチレン基、(1-エトキシカルボニル)エチレン基、(2-エトキシカルボニル)エチレン基であり、特に好ましくは、(1-メトキシカルボニル)エチレン基、(2-メトキシカルボニル)エチレン基である。
 一般式(1)におけるQとしての炭素数3~18の置換シリル基で置換された炭素数5~28の二価の炭化水素基は、好ましくは、前述の炭素数2~10の二価の炭化水素基を、炭素数3~18の置換シリル基で置換した構造体が挙げられる。置換される置換シリル基の数は1個でも2個以上でもよく、2個以上の置換シリル基で置換される場合であっても、二価の炭化水素基における炭素数の総数は5~20である。置換される置換シリル基の数は1個が共重合体の製造がしやすい点から好ましい。
 また、置換シリル基は、トリアルキルシリル基がより好ましく、トリアルキルシリル基における3つのアルキルはそれぞれ同一でも異なっていてもよく、トリメチルシリル基又はトリエチルシリル基がさらに好ましい。
 好ましい具体例は、(1-トリメチルシリル)エチレン基、(2-トリメチルシリル)エチレン基、(1-トリエチルシリル)エチレン基、(2-トリエチルシリル)エチレン基、(1-トリメチルシリル)トリメチレン基、(2-トリメチルシリル)トリメチレン基、(3-トリメチルシリル)トリメチレン基、(1-トリメチルシリル)テトラメチレン基、(2-トリメチルシリル)テトラメチレン基、(3-トリメチルシリル)テトラメチレン基、(4-トリメチルシリル)テトラメチレン基、(1-トリメチルシリル)ペンタメチレン基、(2-トリメチルシリル)ペンタメチレン基、(3-トリメチルシリル)ペンタメチレン基、(4-トリメチルシリル)ペンタメチレン基、(5-トリメチルシリル)ペンタメチレン基、(1-トリメチルシリル)ヘキサメチレン基、(2-トリメチルシリル)ヘキサメチレン基、(3-トリメチルシリル)ヘキサメチレン基、(4-トリメチルシリル)ヘキサメチレン基、(5-トリメチルシリル)ヘキサメチレン基、(6-トリメチルシリル)ヘキサメチレン基であり、更に好ましくは、(1-トリメチルシリル)エチレン基、(2-トリメチルシリル)エチレン基、(1-トリエチルシリル)エチレン基、(2-トリエチルシリル)エチレン基であり、特に好ましくは、(1-トリメチルシリル)エチレン基、(2-トリメチルシリル)エチレン基である。
 一般式(1)におけるQとしてのエーテル基で置換された炭素数2~10の二価の炭化水素基は、好ましくは、前述の炭素数2~10の二価の炭化水素基の部分構造をエーテル基で置換した構造体が挙げられる。エーテル基(エーテル性酸素原子)で置換される箇所は1箇所でも2箇所以上でもよく、1箇所が共重合体の製造がしやすい点から好ましい。
 好ましい具体例は、1-オキサプロピレン基、1,4-ジオキサヘキセン基、1,4,7-トリオキサノネン基、1,4,7,10-テトラオキサドデセン基であり、特に好ましくは、1-オキサプロピレン基、1,4-ジオキサヘキセン基である。
 一般式(1)におけるQとしてのハロゲン原子で置換された炭素数2~10の二価の炭化水素基は、好ましくは、前述の炭素数2~10の二価の炭化水素基を、ハロゲン原子で置換した構造体が挙げられる。置換されるハロゲン原子の数は1個でも2個以上でもよく、1個が共重合体の製造がしやすい点から好ましい。また、ハロゲン原子は塩素原子又は臭素原子がより好ましい。
 好ましい具体例は、(1-クロロ)エチレン基、(2-クロロ)エチレン基、(1-ブロモ)エチレン基、(2-ブロモ)エチレン基、(1-クロロ)トリメチレン基、(2-クロロ)トリメチレン基、(3-クロロ)トリメチレン基、(1-クロロ)テトラメチレン基、(2-クロロ)テトラメチレン基、(3-クロロ)テトラメチレン基、(4-クロロ)テトラメチレン基、(1-クロロ)ペンタメチレン基、(2-クロロ)ペンタメチレン基、(3-クロロ)ペンタメチレン基、(4-クロロ)ペンタメチレン基、(5-クロロ)ペンタメチレン基、(1-クロロ)ヘキサメチレン基、(2-クロロ)ヘキサメチレン基、(3-クロロ)ヘキサメチレン基、(4-クロロ)ヘキサメチレン基、(5-クロロ)ヘキサメチレン基、(6-クロロ)ヘキサメチレン基であり、更に好ましくは、(1-クロロ)エチレン基、(2-クロロ)エチレン基、(1-ブロモ)エチレン基、(2-ブロモ)エチレン基であり、特に好ましくは、(1-クロロ)エチレン基、(2-クロロ)エチレン基である。
 一般式(1)におけるT1は、メタクリロイルオキシ基を示す。
 一般式(1)におけるQ及びT1の好ましい組み合わせ(A)~(C)を以下に示す。
 (A)Qとして水酸基で置換された炭素数2~10の二価の炭化水素基、T1としてメタクリロイルオキシ基。
 (B)Qとして炭素数2~10の二価の炭化水素基、T1としてメタクリロイルオキシ基。
 (C)Qとしてエーテル基で置換された炭素数2~10の二価の炭化水素基、T1としてメタクリロイルオキシ基。
(3-2)極性モノマー(Z1)の具体例
 極性モノマー(Z1)の例を以下に具体的に記載する。なお、(Z1-1)はQ及びT1の組み合わせ(A)の一例であり、(Z1-2)はQ及びT1の組み合わせ(B)の一例であり、(Z1-3)はQ及びT1の組み合わせ(C)の一例である。
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
 なお、(Z1-3)における[ ]の部分、すなわち、(-CH-CH-O-)の繰り返し数は、好ましくは1~3である。
(4)極性モノマー(Z2)
 本発明に用いられる極性モノマー(Z2)は、極性基含有モノマーである。極性モノマー(Z2)は、一般式(2)で表される化合物であり、1種でも2種以上であってもよい。
Figure JPOXMLDOC01-appb-C000011
[一般式(2)において、T2は、水酸基で置換された炭素数1~10の炭化水素基、炭素数1~10のアルコキシ基で置換された炭素数2~20の炭化水素基、炭素数2~10のエステル基で置換された炭素数3~20の炭化水素基、炭素数3~18の置換シリル基で置換された炭素数4~28の炭化水素基、ハロゲン原子で置換された炭素数1~10の炭化水素基、炭素数1~10のアルコキシ基、炭素数6~20のアリーロキシ基、カルボキシル基、炭素数2~10のエステル基、炭素数2~10のアシルオキシ基、アミノ基、炭素数1~12の置換アミノ基、炭素数3~18の置換シリル基、又はハロゲン原子を示す。]
(4-1)極性基含有モノマーの詳細
 一般式(2)におけるT2としての水酸基で置換された炭素数1~10の炭化水素基において、置換される水酸基の数は1個でも2個以上でもよく、1個が共重合体の製造がしやすい点から好ましい。具体的に、好ましくは、炭素数1~10のアルキル基、炭素数3~10のシクロアルキル基、炭素数2~10のアルケニル基、炭素数6~20のアリール基の水酸基置換体が挙げられる。
 ここで、炭素数1~10のアルキル基、炭素数3~10のシクロアルキル基の例は、メチル基、エチル基、1-プロピル基、1-ブチル基、1-ペンチル基、1-ヘキシル基、1-ヘプチル基、1-オクチル基、1-ノニル基、1-デシル基、t-ブチル基、トリシクロヘキシルメチル基、イソプロピル基、1-ジメチルプロピル基、1,1,2-トリメチルプロピル基、1,1-ジエチルプロピル基、イソブチル基、1,1-ジメチルブチル基、2-ペンチル基、3-ペンチル基、2-ヘキシル基、3-ヘキシル基、2-エチルヘキシル基、2-ヘプチル基、3-ヘプチル基、4-ヘプチル基、2-プロピルヘプチル基、2-オクチル基、3-ノニル基、シクロプロピル基、シクロブチル基、シクロペンチル基、メチルシクロペンチル基、シクロヘキシル基、メチルシクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロドデシル基、1-アダマンチル基、2-アダマンチル基、エキソ-ノルボルニル基、エンド-ノルボニル基、2-ビシクロ[2.2.2]オクチル基、ノピニル基、デカヒドロナフチル基、メンチル基、ネオメンチル基、ネオペンチル基、及び5-デシル基などである。これらの中で、好ましい置換基は、メチル基、エチル基である。
 炭素数2~10のアルケニル基としては、ビニル基、アリル基、ブテニル基、シンナミル基、スチリル基が挙げられる。これらの中で好ましい置換基は、ビニル基、スチリル基であり、特に好ましくは、スチリル基である。
 炭素数6~20のアリール基としては、フェニル基、ナフチル基が挙げられ、これらのアリール基の芳香環に存在させうる置換基の例としては、アルキル基、アリール基、融合アリール基、フェニルシクロヘキシル基、フェニルブテニル基、トリル基、キシリル基、p-エチルフェニル基などである。これらの中で、好ましいアリール基は、フェニル基である。
 水酸基で置換された炭素数1~10の炭化水素基の好ましい具体例は、ヒドロキシメチル基、1-ヒドロキシエチル基、2-ヒドロキシエチル基、1-ヒドロキシ-n-プロピル基、2-ヒドロキシ-n-プロピル基、3-ヒドロキシ-n-プロピル基、1-ヒドロキシ-イソプロピル基、2-ヒドロキシ-イソプロピル基、2,2’-ジヒドロキシ-イソプロピル基、1-ヒドロキシ-n-ブチル基、2-ヒドロキシ-n-ブチル基、3-ヒドロキシ-n-ブチル基、4-ヒドロキシ-n-ブチル基、1-ヒドロキシ-1-メチル-プロピル基、1-ヒドロキシ-2-メチル-プロピル基、2-ヒドロキシ-1-メチル-プロピル基、2-ヒドロキシ-2-メチル-プロピル基、3-ヒドロキシ-1-メチル-プロピル基、3-ヒドロキシ-2-メチル-プロピル基、3-ヒドロキシ-3-メチル-プロピル基である。これらのうちで好ましくは、ヒドロキシメチル基、1-ヒドロキシエチル基、2-ヒドロキシエチル基であり、特に好ましくは、ヒドロキシメチル基、1-ヒドロキシエチル基である。
 一般式(2)におけるT2としての炭素数1~10のアルコキシ基で置換された炭素数2~20の炭化水素基は、好ましくは、炭素数1~10の炭化水素基を炭素数1~10のアルコキシ基で置換した構造体であり、例えば、前述のアルキル基、シクロアルキル基、アルケニル基、アリール基を、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、又はt-ブトキシ基で置換した置換基である。置換されるアルコキシ基の数は1個でも2個以上でもよく、2個以上のアルコキシ基で置換される場合であっても、炭化水素基の炭素数の総数は2~20である。置換されるアルコキシ基の数は1個が共重合体が製造しやすい点から好ましい。
 更に好ましくはメトキシ基又はエトキシ基で置換された炭素数2~6の炭化水素基であり、具体的には、1-(メトキシメチル)エチル基、1-(エトキシメチル)エチル基、1-(メトキシエチル)エチル基、1-(エトキシエチル)エチル基、ジ(メトキシメチル)メチル基、ジ(エトキシメチル)メチル基、ジ(フェノキシメチル)メチル基が挙げられる。特に好ましくは、1-(メトキシメチル)エチル基、1-(エトキシメチル)エチル基である。
 一般式(2)におけるT2としての炭素数2~10のエステル基で置換された炭素数3~20の炭化水素基は、好ましくは、好ましくは、炭素数1~10の炭化水素基を炭素数2~10のエステル基で置換した構造体であり、例えば、前述のアルキル基、シクロアルキル基、アルケニル基、アリール基を、メトキシカルボニル基、エトキシカルボニル基、イソプロポキシカルボニル基、1-プロポキシカルボニル基、1-ブトキシカルボニル基、t-ブトキシカルボニル基、フェノキシカルボニル基で置換した置換基である。置換されるエステル基の数は1個でも2個以上でもよく、2個以上のエステル基で置換される場合であっても、炭化水素基における炭素数の総数は3~20である。置換されるエステル基の数は1個が共重合体を製造しやすい点から好ましい。
 更に好ましくはメトキシカルボニル基、エトキシカルボニル基で置換された炭素数3~5の炭化水素基であり、具体的には、1-(メトキシカルボニル)メチル基、2-(メトキシカルボニル)エチル基、1-(エトキシカルボニル)メチル基、2-(エトキシカルボニル)エチル基が挙げられる。更に好ましくは、1-(メトキシカルボニル)メチル基、又は、1-(エトキシカルボニル)メチル基である。
 一般式(2)におけるT2としての炭素数3~18の置換シリル基で置換された炭素数4~28の炭化水素基は、好ましくは、炭素数1~10の炭化水素基を炭素数3~18の置換シリル基で置換した構造体であり、例えば、(トリメチルシリル)メチル基、((ジメチル)(フェニル)シリル)メチル基、((ジフェニル)(メチル)シリル)メチル基、(トリフェニルシリル)メチル基、ビス(トリメチルシリル)メチル基である。これらの中で、更に好ましい置換基は、(トリメチルシリル)メチル基、ビス(トリメチルシリル)メチル基である。置換される置換シリル基の数は1個でも2個以上でもよく、2個以上の置換シリル基で置換される場合であっても、二価の炭化水素基における炭素数の総数は4~20である。置換される置換シリル基の数は1個が共重合体の製造がしやすい点から好ましい。
 一般式(2)におけるT2としてのハロゲン原子で置換された炭素数1~10の炭化水素基は、好ましくは、炭素数1~10の炭化水素基をハロゲン原子で置換した構造体が挙げられ、例えばフッ素原子、塩素原子、又は臭素原子で置換された炭素数1~6の置換基である。置換されるハロゲン原子の数は1個でも2個以上でもよく、1個が共重合体の製造がしやすい点から好ましい。また、ハロゲン原子は塩素原子又はフッ素原子がより好ましい。
 具体的に好ましい例として、モノクロロメチル基、ジクロロメチル基、トリフルオロメチル基、又はペンタフルオロフェニル基が挙げられる。これらの中で、更に好ましい置換基は、モノクロロメチル基、ジクロロメチル基である。
 一般式(2)におけるT2としての炭素数1~10のアルコキシ基は、好ましくは、炭素数1~6のアルコキシ基であり、好ましい具体例は、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、及びt-ブトキシ基などである。これらの中で、更に好ましい置換基としては、メトキシ基、エトキシ基、又はイソプロポキシ基であり、特に好ましくは、メトキシ基である。
 一般式(2)におけるT2としての炭素数6~20のアリーロキシ基は、好ましくは、炭素数6~12のアリーロキシ基であり、好ましい具体例は、フェノキシ基、4-メチルフェノキシ基、4-メトキシフェノキシ基、2,6-ジメチルフェノキシ基、及び2,6-ジ-t-ブチルフェノキシ基が挙げられる。これらの中で、更に好ましい置換基は、フェノキシ基、又は2,6-ジメチルフェノキシ基であり、特に好ましくは、フェノキシ基である。
 一般式(2)におけるT2としての炭素数2~10のエステル基は、好ましくは、炭素数2~8のエステル基であり、好ましい具体例は、メトキシカルボニル基、エトキシカルボニル基、n-プロポキシカルボニル基、イソプロポキシカルボニル基、n-ブトキシカルボニル基、t-ブトキシカルボニル基、(4-ヒドロキシブトキシ)カルボニル基、(4-グリシジルブトキシ)カルボニル基、フェノキシカルボニル基が挙げられる。これらの中で、更に好ましい置換基は、メトキシカルボニル基、エトキシカルボニル基、n-ブトキシカルボニル基、t-ブトキシカルボニル基、(4-グリシジルブトキシ)カルボニル基であり、特に好ましくは、メトキシカルボニル基、エトキシカルボニル基、n-ブトキシカルボニル基である。
 一般式(2)におけるT2としての炭素数2~10のアシルオキシ基は、好ましくは、炭素数2~8のアシルオキシ基であり、好ましい具体例は、アセチル(acetyl)基、プロピオニル(propionyl)基、ブチリル(butyryl)基が挙げられる。
 一般式(2)におけるT2としての炭素数1~12の置換アミノ基の置換されるアミノ基の数は1個でも2個以上でもよい。また置換基としてはアルキル基、フェニル基、トリアルキルシリル基等が挙げられる。置換アミノ基の好ましい具体例は、モノメチルアミノ基、ジメチルアミノ基、モノエチルアミノ基、ジエチルアミノ基、モノイソプロピルアミノ基、ジイソプロピルアミノ基、モノフェニルアミノ基、ジフェニルアミノ基、ビス(トリメチルシリル)アミノ基が挙げられる。これらの中で、更に好ましい置換基は、ジフェニルアミノ基、ビス(トリメチルシリル)アミノ基である。
 一般式(2)におけるT2としての炭素数3~18の置換シリル基において、シリル基に対して置換される数は1個でも2個以上でもよい。また置換基としてはアルキル基、フェニル基等が挙げられる。置換シリル基の好ましい具体例は、トリメチルシリル基、(ジメチル)(フェニル)シリル基、(ジフェニル)(メチル)シリル基、トリフェニルシリル基である。これらの中で、更に好ましい置換基は、トリメチルシリル基である。
 一般式(2)におけるT2としてのハロゲン原子は、好ましくは、フッ素原子、塩素原子、臭素原子であり、更に好ましくは塩素原子である。
(4-2)極性モノマー(Z2)の具体例
 極性モノマー(Z2)としては、具体的には、トリメチルシリルアクリレート、メチルアクリレート、エチルアクリレート、n-ブチルアクリレート、t-ブチルアクリレートを好適に例示することができる。これらの中で、更に好ましい極性モノマー(Z2)は、メチルアクリレート、エチルアクリレート、n-ブチルアクリレートである。
(5)コポリマー組成(オレフィン共重合体組成)
 本発明における多元系極性オレフィン共重合体では、共重合体中の極性モノマー(Z1)に由来する構造単位量は、特に限定されないが、0.01~10mol%であることが好ましい。これらのうちで0.1~5.0mol%がより好ましく、0.2~1.5mol%が特に好ましい。
 また、共重合体中の極性モノマー(Z2)に由来する構造単位量は、特に限定されないが、0.01~15mol%であることが好ましい。これらのうちで0.1~12mol%がより好ましく、5.0~10.0mol%が特に好ましい。
 この構造単位量は、重合時の遷移金属触媒の選択や、重合時に添加する極性モノマー量、重合時の圧力や温度で制御することが可能である。共重合体中の極性モノマーに由来する構造単位量を増加させる具体的手段として、重合時に添加する極性モノマー量の増加、重合時のオレフィン圧力の低減、重合温度の増加が有効である。例えば、これらの因子を調節して、目的とするコポリマー領域に制御することが求められる。
 なお、本発明の多元系極性オレフィン共重合体には、非極性モノマー(X1)単位、非極性モノマー(X2)単位、極性モノマー(Z1)単位、極性モノマー(Z2)単位以外の他のモノマー単位を含有していてもよい。
 他のモノマーとして、シクロペンテン、シクロヘキセン、ノルボルネン、エチリデンノルボルネン等の環状オレフィンモノマー、p-メチルスチレンなどのスチレン系モノマーなどを挙げることができ、これらの骨格に、水酸基、アルコキサイド基、カルボン酸基、エステル基、アルデヒド基を含有してもよい。
 本発明における多元系極性オレフィン共重合体は、13C-NMRにより算出されるメチル分岐度が、主鎖1,000炭素当たり5.0以下であることが好ましい。このうちで特に好ましくは、主鎖1,000炭素当たり3.0以下である。メチル分岐が、この数値を満たすと弾性率が高く、成形体の機械強度も高くなる。
 このメチル分岐度は、重合に使用する遷移金属触媒の選択や、重合温度で制御することが可能である。多元系極性オレフィン共重合体のメチル分岐度を低下させる具体的手段として、重合温度の低下が有効である。例えば、これらの因子を調節して、目的とするコポリマー領域に制御することができる。
 また、本発明における多元系極性オレフィン共重合体は、ゲルパーミエイションクロマトグラフィー(GPC)によって求められる重量平均分子量(Mw)と数平均分子量(Mn)の比(Mw/Mn)が1.5~3.5の範囲であることが好ましい。このうちで更に好ましくは1.6~3.3の範囲であり、特に好ましくは1.7~3.0の範囲である。
 本発明における多元系極性オレフィン共重合体のMw/Mnが上記の条件を満たすと、積層体の成形を始めとして各種加工性が十分となり、接着強度が優れたものとなる。Mw/Mnは、使用する遷移金属触媒の選択で制御することが可能である。
2.多元系極性オレフィン共重合体の製造方法について
(1)遷移金属触媒
 本発明の多元系極性オレフィン共重合体の製造方法の一例として、周期表第5~10族の遷移金属化合物を触媒として用い、重合する方法がある。
 好ましい遷移金属の具体例として、バナジウム原子、ニオビウム原子、タンタル原子、クロム原子、モリブデン原子、タングステン原子、マンガン原子、鉄原子、ルテニウム原子、コバルト原子、ロジウム原子、ニッケル原子、パラジウム原子などが挙げられる。これらの中で好ましくは、周期表第8~11族の遷移金属であり、さらに好ましくは周期表第10族の遷移金属であり、特に好ましくはニッケル(Ni)、パラジウム(Pd)である。これらの金属は、単一であっても複数を併用してもよい。
 遷移金属触媒として、キレート性配位子を有する周期表第5~10族の遷移金属化合物を触媒として用いることが好ましい。
 キレート性配位子は、P、N、O、及びSからなる群より選択される少なくとも2個の原子を有しており、二座配位(bidentate)又は多座配位(multidentate)であるリガンドを含み、電子的に中性又は陰イオン性である。Brookhartらによる総説に、その構造が例示されている(Chem.Rev.,2000,100,1169)。好ましくは、二座アニオン性P、O配位子として例えば、リンスルホン酸、リンカルボン酸、リンフェノール、リンエノラートが挙げられ、他に、二座アニオン性N、O配位子として例えば、サリチルアルドイミナートやピリジンカルボン酸が挙げられ、他に、ジイミン配位子、ジフェノキサイド配位子、ジアミド配位子が挙げられる。
 キレート性配位子を有する周期表第5~10族の遷移金属化合物としては、代表的に、いわゆる、ホスフィンフェノラート系と称される触媒(キレート性ホスフィン化合物が配位した遷移金属触媒)が知られている。ホスフィンフェノラート系触媒は、置換基を有していてもよいアリール基を有するリン系リガンドがニッケル金属に配位した触媒である(例えば、日本国特開2010-260913号公報を参照)。
(2)重合触媒の使用態様
 重合触媒は、単独で用いてもよく、また担体に担持して用いることもできる。使用可能な担体としては、本発明の主旨を損なわない限りにおいて、任意の担体を用いることができる。
 一般に、担体として、無機酸化物やポリマー担体が好適に使用できる。具体的には、SiO、Al、MgO、ZrO、TiO、B、CaO、ZnO、BaO、ThOなど又はこれらの混合物が挙げられ、SiO-Al、SiO-V、SiO-TiO、SiO-MgO、SiO-Crなどの混合酸化物も使用することができ、無機ケイ酸塩、ポリエチレン担体、ポリプロピレン担体、ポリスチレン担体、ポリアクリル酸担体、ポリメタクリル酸担体、ポリアクリル酸エステル担体、ポリエステル担体、ポリアミド担体、ポリイミド担体などが使用可能である。
 これらの担体については、粒径、粒径分布、細孔容積、比表面積などに特に制限はなく、任意のものが使用可能である。
 触媒成分を用いて、重合槽内で、または重合槽外でオレフィンの存在下で予備重合を行ってもよい。オレフィンとは炭素間二重結合を少なくとも1個含む炭化水素をいい、エチレン、プロピレン、1-ブテン、1-ヘキセン、3-メチルブテン-1、スチレン、ジビニルベンゼンなどが例示されるが、特に種類に制限はなく、これらと他のオレフィンとの混合物を用いてもよい。好ましくは炭素数2又は3のオレフィンである。オレフィンの供給方法は、オレフィンを反応槽に定速的にあるいは定圧状態になるように維持する供給方法やその組み合わせ、段階的な変化をさせるなど、任意の方法が可能である。
(3)共重合反応
 本発明における共重合反応は、溶媒の存在下、又は非存在下に行われる。溶媒としては、例えば、プロパン、n-ブタン、イソブタン、n-ヘキサン、n-ヘプタン、トルエン、キシレン、シクロヘキサン、メチルシクロヘキサンなどの炭化水素溶媒、液化α-オレフィンなどの液体、ジエチルエ-テル、エチレングリコールジメチルエーテル、テトラヒドロフラン、ジオキサン、酢酸エチル、安息香酸メチル、アセトン、メチルエチルケトン、ホルミルアミド、アセトニトリル、メタノ-ル、イソプロピルアルコ-ル、エチレングリコ-ルなどの極性溶媒が挙げられる。また、ここで記載した溶媒の混合物を混合溶媒として使用してもよい。なお、高い重合活性や高い分子量を得るうえでは、上記の炭化水素溶媒がより好ましい。
 本発明における共重合に際して、公知の添加剤の存在下又は非存在下で共重合を行うことができる。添加剤としては、ラジカル重合禁止剤や、生成共重合体を安定化する作用を有する添加剤が好ましい。例えば、キノン誘導体やヒンダードフェノール誘導体などが好ましい添加剤の例として挙げられる。
 具体的には、モノメチルエ-テルハイドロキノン、2,6-ジ-t-ブチル-4-メチルフェノ-ル(BHT)、トリメチルアルミニウムとBHTとの反応生成物、4価チタンのアルコキサイドとBHTとの反応生成物などが使用可能である。
 また、添加剤として、無機及び/又は有機フィラーを使用し、これらのフィラーの存在下で重合を行ってもよい。
 本発明において、重合形式に特に制限はない。媒体中で少なくとも一部の生成重合体がスラリーとなるスラリー重合、液化したモノマー自身を媒体とするバルク重合、気化したモノマー中で行う気相重合、又は、高温高圧で液化したモノマーに生成重合体の少なくとも一部が溶解する高圧イオン重合などが好ましく用いられる。
 また、重合様式としては、バッチ重合、セミバッチ重合、連続重合のいずれの様式を採用してもよい。
 未反応モノマーや媒体は、生成した多元系極性オレフィン共重合体から分離し、リサイクルして使用してもよい。リサイクルの際、これらのモノマーや媒体は、精製して再使用してもよいし、精製せずに再使用してもよい。生成共重合体と未反応モノマー及び媒体との分離には、従来の公知の方法が使用できる。例えば、濾過、遠心分離、溶媒抽出、貧溶媒を使用した再沈などの方法が使用できる。
 共重合温度、共重合圧力及び共重合時間に特に制限はないが、通常は、以下の範囲から生産性やプロセスの能力を考慮して、最適な設定を行うことができる。
 即ち、共重合温度は、通常-20℃から290℃、好ましくは0℃から250℃、共重合圧力は、0.1MPaから100MPa、好ましくは、0.3MPaから90MPa、共重合時間は、0.1分から10時間、好ましくは、0.5分から7時間、更に好ましくは1分から6時間の範囲から選ぶことができる。
 本発明において、共重合は、一般に不活性ガス雰囲気下で行われる。例えば、窒素、アルゴン雰囲気が使用でき、窒素雰囲気が好ましく使用される。なお、少量の酸素や空気の混入があってもよい。
 共重合反応器への触媒とモノマーの供給に関しても特に制限はなく、目的に応じて様々な供給法をとることができる。例えばバッチ重合の場合、予め所定量のモノマーを共重合反応器に供給しておき、そこに触媒を供給する手法をとることが可能である。この場合、追加のモノマーや追加の触媒を共重合反応器に供給してもよい。また、連続重合の場合、所定量のモノマーと触媒を共重合反応器に連続的に、又は間歇的に供給し、共重合反応を連続的に行う手法をとることができる。
 多元系極性オレフィン共重合体の組成の制御に関しては、複数のモノマーを反応器に供給し、その供給比率を変えることによって制御する方法を一般に用いることができる。その他、触媒の構造の違いによるモノマー反応性比の違いを利用して共重合組成を制御する方法や、モノマー反応性比の重合温度依存性を利用して共重合組成を制御する方法が挙げられる。
 多元系極性オレフィン共重合体の分子量制御には、従来公知の方法を使用することができる。即ち、重合温度を制御して分子量を制御する方法、モノマー濃度を制御して分子量を制御する方法、連鎖移動剤を使用して分子量を制御する方法、遷移金属錯体中の配位子構造の制御により分子量を制御するなどが挙げられる。
 連鎖移動剤を使用する場合には、従来公知の連鎖移動剤を用いることができる。例えば、水素、メタルアルキルなどを使用することができる。
 以下、実施例及び比較例を挙げて本発明をより詳細に説明するが、本発明は下記の例に限定されるものではない。本発明において製造される多元系極性オレフィン共重合体の各種の評価方法は、以下の通りである。
 なお、実施例で用いた触媒及び配位子構造を以下に示した。
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
1.評価方法
(1)分子量及び分子量分布(Mw、Mn、Q値)
 (測定条件)
   使用機種:ウォーターズ社製150C
   検出器:FOXBORO社製MIRAN1A・IR検出器(測定波長:3.42μm)
   測定温度:140℃
   溶媒:オルトジクロロベンゼン(ODCB)
   カラム:昭和電工社製AD806M/S(3本)
   流速:1.0mL/分
   注入量:0.2mL
 (試料の調製)
 試料はODCB(0.5mg/mLのBHT(2,6-ジ-t-ブチル-4-メチルフェノ-ル)を含む)を用いて1mg/mLの溶液を調製し、140℃で約1時間を要して溶解させた。
 (分子量の算出)
 標準ポリスチレン法により行い、保持容量から分子量への換算は、予め作成しておいた標準ポリスチレンによる検量線を用いて行った。使用する標準ポリスチレンはいずれも東ソ-社製の銘柄であり、F380、F288、F128、F80、F40、F20、F10、F4、F1、A5000、A2500、A1000である。各々が0.5mg/mLとなるようにODCB(0.5mg/mLのBHTを含む)に溶解した溶液を0.2mL注入して較正曲線を作成した。較正曲線は最小二乗法で近似して得られる三次式を用いた。分子量への換算に使用する粘度式[η]=K×Mαは以下の数値を用いた。
 PS:K=1.38×10-4、α=0.7
 PE:K=3.92×10-4、α=0.733
 PP:K=1.03×10-4、α=0.78
(2)融点(Tm)
 セイコ-インスツルメンツ社製DSC6200示差走査熱量測定装置を使用して、シート状にしたサンプル片を5mgアルミパンに詰め、室温から一旦200℃まで昇温速度100℃/分で昇温し、5分間保持した。その後に、10℃/分で20℃まで降温して結晶化させた後に、10℃/分で200℃まで昇温することにより融解曲線を得た。融解曲線を得るために行った最後の昇温段階における主吸熱ピークのピークトップ温度を融点Tmとし、該ピークのピーク面積をΔHmとした。
(3)NMR分析
(3-1)多元系極性オレフィン共重合体の測定条件
 試料200mgを重化テトラクロロエタンと共に内径10mmφのNMR試料管に入れて窒素置換した後封管し、加熱溶解して均一な溶液としてNMR測定に供した。NMR測定は10mmφのクライオプローブを装着したブルカー・バイオスピン(株)のNMR装置AVANCEIII400を用いた。
 13C-NMR測定条件は試料の温度120℃、パルス角を90°、パルス間隔を51.5秒、積算回数を512回、逆ゲートデカップリング法で測定を実施した。
 化学シフトはテトラクロロエタンの13Cシグナルを74.3ppmとして設定し、他の13Cによるシグナルの化学シフトはこれを基準とした。
(3-2)エチレン/アクリル酸メチル/2-アクリロイロキシエチルメタクリレートの三元共重合体のメチル分岐量測定方法
 メチル分岐は、13C-NMRスペクトルの20.0~19.8ppmのメチル炭素と37.6~37.3ppmのメチレン炭素による信号の積分強度の総和を3で割った値IB1を用い、主鎖1,000炭素(主鎖1000C)あたりのメチル分岐数を以下の式を用いて算出した。
  メチル分岐数(個/主鎖1000C)=IB1×1000/{2×(IB1+IMA-br+IMAEA-br+I)}
 ここで、IB1、IMA-br、IMAEA-br、Iはそれぞれ、以下の式で示される量である。
  IB1=(I20.0~19.8+I37.6~37.3)/3、
  IMA-br=I46.5~45.8+I44.5~43.5
  IMAEA-br=I45.8~45.4
  I=[I31.0~28.5+3×(IMA-br+IMAEA-br+IB1)]/2
 Iは積分強度を、Iの下つき添字の数値は化学シフトの範囲を示す。例えばI31.0~28.5は31.0ppmと28.5ppmの間に検出したシグナルの積分強度を示す。
(3-3)エチレン/アクリル酸メチル/2-アクリロイロキシエチルメタクリレートの三元共重合体のコモノマー含有量測定方法
 メタクリロイルオキシエチルアクリレート(MAEA)のアクリレートに結合した2個のメチレン炭素シグナルは、13C-NMRスペクトルの64.0~61.0ppmに検出する。また、メチルアクリレート(MA)のメトキシ基由来のメチル炭素は53.0~51.0ppmに検出する。これらのシグナル強度を用い、以下の式からMAEAおよびMAの総量を算出した。
  MAEA総量(mol%)=Itotal MAEA×100/[Itotal MAEA+Itotal MA+I
  MA総量(mol%)=Itotal MA×100/[Itotal MAEA+Itotal MA+I
 ここで、Itotal MAEA、Itotal MA、Iはそれぞれ、以下の式で示される量である。
  Itotal MAEA=I64.0~61.0/2
  Itotal MA=I53.0~51.0
  I=(I180.0~110.0+I72.0~2.0-Itotal MAEA×9-Itotal MA×4)/2
 Iは積分強度を、Iの下つき添字の数値は化学シフトの範囲を示す。例えばI180.0~110.0は180.0ppmと110.0ppmの間に検出したシグナルの積分強度を示す。
(3-4)エチレン/アクリル酸ブチル/2-アクリロイロキシエチルメタクリレートの三元共重合体のメチル分岐量の測定方法
 メチル分岐は、13C-NMRスペクトルの20.0~19.8ppmのメチル炭素と33.3~33.0ppmのメチン炭素と37.6~37.3ppmのメチレン炭素による信号の積分強度の総和を4で割った値IB1を用い、主鎖1,000炭素あたりのメチル分岐数を以下の式を用いて算出した。
  メチル分岐数(個/主鎖1000C)=IB1×1000/{2×(IB1+InBA-br+IMAEA-br+I)}
 ここで、IB1、InBA-br、IMAEA-br、Iはそれぞれ、以下の式で示される量である。
  IB1=(I20.0~19.8+I33.3~33.0+I37.6~37.3)/4、
  InBA-br=I46.4~46.0+I44.6~43.8
  IMAEA-br=I46.0~45.7
  I=[I31.0~28.0+3×(InBA-br+IMAEA-br+IB1)]/2
 Iは積分強度を、Iの下つき添字の数値は化学シフトの範囲を示す。例えばI31.0~28.0は31.0ppmと28.0ppmの間に検出したシグナルの積分強度を示す。
(3-5)エチレン/アクリル酸ブチル/2-アクリロイロキシエチルメタクリレートの三元共重合体のコモノマー含有量の測定方法
 メタクリロイルオキシエチルアクリレート(MAEA)のアクリレートに結合した2個のメチレン炭素シグナルは、13C-NMRスペクトルの63.0~61.0ppmに検出する。また、n-ブチルアクリレート(nBA)のn-ブトキシ基由来のメチル炭素は14.1~13.6ppm、3個のメチレン炭素は19.8~19.3ppm、31.4~31.1ppm、64.5~63.8ppmに検出する。これらのシグナル強度を用い、以下の式からMAEAおよびnBAの総量を算出した。
  MAEA総量(mol%)=Itotal MAEA×100/[Itotal MAEA+Itotal nBA+I
  nBA総量(mol%)=Itotal nBA×100/[Itotal MAEA+Itotal nBA+I
 ここで、Itotal MAEA、Itotal nBA、Iはそれぞれ、以下の式で示される量である。
  Itotal MAEA=I63.0~61.0/2
  Itotal nBA=(I14.1~13.6+I19.8~19.3+I31.4~31.1+I64.5~63.8)/4
  I=(I180.0~110.0+I72.0~2.0-Itotal MAEA×9-Itotal nBA×7)/2
 Iは積分強度を、Iの下つき添字の数値は化学シフトの範囲を示す。例えばI180.0~110.0は180.0ppmと110.0ppmの間に検出したシグナルの積分強度を示す。
(4)溶解性試験
 50mLのガラス製ビーカーに、粉末状又はペレット状の多元系極性オレフィン共重合体を0.1g秤量して入れ、これに溶剤(メチルメタクリレート(MMA)、トルエン、酢酸エチル、またはオルソジクロロベンゼン(ODCB))を10mL加えた。恒温装置付きオイルバスを90℃に設定して、このオイルバスにビーカーの半分程度を投入し、手でビーカーを撹拌しながら多元系極性オレフィン共重合体を溶解させた。ビーカーをオイルバスに投入してから、目視にて多元系極性オレフィン共重合体が完全に溶解するまでの時間を測定した。
2.触媒の合成
 リンフェノール配位子(I)は、国際公開第2010/050256号記載(合成例4)の方法に従って合成した。金属錯体(II)は、J.Am.Chem.Soc.,2007,129,8948-8949記載の方法に従って合成した。
3.重合
実施例1(エチレン/アクリル酸メチル/2-アクリロイロキシエチルメタクリレートの三元共重合)
 充分に窒素置換した30mLフラスコに、360μmolのビス(シクロオクタジエン)ニッケルとリンフェノール配位子(I)をそれぞれ秤量し、脱水トルエン(10mL)を加えた後、これを10分間撹拌することで、触媒溶液を調製した。次に、内容積2.4Lの誘導撹拌機付ステンレス製オートクレーブ内を精製窒素で置換し、精製トルエン(1000mL)、トリノルマルオクチルアルミニウムヘプタン溶液(3.2mmol)、メチルアクリレート(コモノマー濃度0.110mol/L)、2-アクリロイロキシエチルメタクリレート(コモノマー濃度0.013mol/L)をオートクレーブ内に導入した。重合温度90℃、エチレン圧2.5MPaにて、先に調製した触媒溶液を添加し、100分間重合した。
 重合終了後、エチレンをパージ、オートクレーブを室温まで冷却し、得られたポリマーを、アセトン(1L)を用いて再沈殿させた。濾過により得られた固形ポリマーを塩酸(100mL)で洗浄後、60℃で3時間減圧乾燥することで、共重合体を12.2g回収した。
実施例2(エチレン/アクリル酸メチル/2-アクリロイロキシエチルメタクリレートの三元共重合)
 充分に窒素置換した30mLフラスコに、360μmolのビス(シクロオクタジエン)ニッケルとリンフェノール配位子(I)をそれぞれ秤量し、脱水トルエン(10mL)を加えた後、これを10分間撹拌することで、触媒溶液を調製した。次に、内容積2.4Lの誘導撹拌機付ステンレス製オートクレーブ内を精製窒素で置換し、精製トルエン(1000mL)、トリノルマルオクチルアルミニウムヘプタン溶液(3.2mmol)、メチルアクリレート(コモノマー濃度0.120mol/L)、2-アクリロイロキシエチルメタクリレート(コモノマー濃度0.010mol/L)をオートクレーブ内に導入した。重合温度90℃、エチレン圧2.5MPaにて、先に調製した触媒溶液を添加し、100分間重合した。
 重合終了後、エチレンをパージ、オートクレーブを室温まで冷却し、得られたポリマーを、アセトン(1L)を用いて再沈殿させた。濾過により得られた固形ポリマーを塩酸(100mL)で洗浄後、60℃で3時間減圧乾燥することで、共重合体を12.8g回収した。
実施例3(エチレン/アクリル酸メチル/2-アクリロイロキシエチルメタクリレートの三元共重合)
 充分に窒素置換した30mLフラスコに、300μmolの金属錯体(II)を秤量し、脱水トルエン(10mL)を加えた後、これを10分間撹拌することで、触媒溶液を調製した。次に、内容積2.4Lの誘導撹拌機付ステンレス製オートクレーブ内を精製窒素で置換し、精製トルエン(500mL)、メチルアクリレート(コモノマー濃度1.480mol/L)、2-アクリロイロキシエチルメタクリレート(コモノマー濃度0.010mol/L)をオートクレーブ内に導入した。重合温度80℃、エチレン圧1.0MPaにて、先に調製した触媒溶液を添加し、100分間重合した。
 重合終了後、エチレンをパージ、オートクレーブを室温まで冷却し、得られたポリマーを、アセトン(1L)を用いて再沈殿させた。濾過により得られた固形ポリマーを塩酸(100mL)で洗浄後、60℃で3時間減圧乾燥することで、共重合体を4.9g回収した。
実施例4(エチレン/アクリル酸ブチル/2-アクリロイロキシエチルメタクリレートの三元共重合)
 充分に窒素置換した30mLフラスコに、480μmolのビス(シクロオクタジエン)ニッケルとリンフェノール配位子(I)をそれぞれ秤量し、脱水トルエン(10mL)を加えた後、これを10分間撹拌することで、触媒溶液を調製した。次に、内容積2.4Lの誘導撹拌機付ステンレス製オートクレーブ内を精製窒素で置換し、精製トルエン(1000mL)、トリノルマルオクチルアルミニウムヘプタン溶液(3.2mmol)、メチルアクリレート(コモノマー濃度0.250mol/L)、2-アクリロイロキシエチルメタクリレート(コモノマー濃度0.007mol/L)をオートクレーブ内に導入した。重合温度100℃、エチレン圧2.5MPaにて、先に調製した触媒溶液を添加し、40分間重合した。
 重合終了後、エチレンをパージ、オートクレーブを室温まで冷却し、得られたポリマーを、アセトン(1L)を用いて再沈殿させた。濾過により得られた固形ポリマーを塩酸(100mL)で洗浄後、60℃で3時間減圧乾燥することで、共重合体を12.1g回収した。
実施例5(エチレン/アクリル酸ブチル/2-アクリロイロキシエチルメタクリレートの三元共重合)
 充分に窒素置換した30mLフラスコに、480μmolのビス(シクロオクタジエン)ニッケルとリンフェノール配位子(I)をそれぞれ秤量し、脱水トルエン(10mL)を加えた後、これを10分間撹拌することで、触媒溶液を調製した。次に、内容積2.4Lの誘導撹拌機付ステンレス製オートクレーブ内を精製窒素で置換し、精製トルエン(1000mL)、トリノルマルオクチルアルミニウムヘプタン溶液(3.2mmol)、メチルアクリレート(コモノマー濃度0.250mol/L)、2-アクリロイロキシエチルメタクリレート(コモノマー濃度0.007mol/L)をオートクレーブ内に導入した。重合温度110℃、エチレン圧2.5MPaにて、先に調製した触媒溶液を添加し、35分間重合した。
 重合終了後、エチレンをパージ、オートクレーブを室温まで冷却し、得られたポリマーを、アセトン(1L)を用いて再沈殿させた。濾過により得られた固形ポリマーを塩酸(100mL)で洗浄後、60℃で3時間減圧乾燥することで、共重合体を8.7g回収した。
比較例1(エチレン/2-アクリロイロキシエチルメタクリレートの共重合)
 充分に窒素置換した30mLフラスコに、40μmolのビス(シクロオクタジエン)ニッケルとリンフェノール配位子(I)をそれぞれ秤量し、脱水トルエン(10mL)を加えた後、これを10分間撹拌することで、触媒溶液を調製した。次に、内容積2.4Lの誘導撹拌機付ステンレス製オートクレーブ内を精製窒素で置換し、精製トルエン(1000mL)、トリノルマルオクチルアルミニウムヘプタン溶液(0.2mmol)、2-アクリロイロキシエチルメタクリレート(コモノマー濃度0.006mol/L)をオートクレーブ内に導入した。重合温度90℃、エチレン圧2.5MPaにて、先に調製した触媒溶液を添加し、18分間重合した。
 重合終了後、エチレンをパージ、オートクレーブを室温まで冷却し、得られたポリマーを、アセトン(1L)を用いて再沈殿させた。濾過により得られた固形ポリマーを塩酸(100mL)で洗浄後、60℃で3時間減圧乾燥することで、共重合体を23.5g回収した。
4.結果及び考察
 実施例及び比較例の共重合体の物性評価結果、および溶解性試験の結果を表1に示した。なお、比較例2~4の共重合体については、高圧ラジカル法重合プロセスによって製造されたエチレン/メチルアクリレート共重合体である、日本ポリエチレン(株)製レクスパールEMAをそれぞれ使用した。
Figure JPOXMLDOC01-appb-T000014
 表1に示すように、実施例の多元系極性オレフィン共重合体は、比較例の共重合体と比較して、各種溶剤への溶解性が同等以上であり、良好な溶解性を示すことが明らかとなった。
 本発明は上記で詳述した実施形態に限定されず、本発明の請求項に示した範囲で様々な変形又は変更が可能である。
 本発明を詳細に、また特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は2017年3月28日出願の日本特許出願(特願2017-062302)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明によれば、直線状のポリマー一次構造を有し、新規な多元系極性オレフィン共重合体が提供される。これは、重合性官能基を有する新規なオレフィン共重合体であり、機械的物性その他の諸物性を損なわずに、溶剤溶解性が十分に改良されている。よって、本発明の多元系極性オレフィン共重合体は、広範な用途に使用でき、産業上の利用可能性が高い。

Claims (7)

  1.  エチレン又は炭素数3~10のα-オレフィンである1種の非極性モノマー(X1)単位と、下記一般式(1)で表される化合物である1種又は2種以上の極性モノマー(Z1)単位とを含む多元系極性オレフィン共重合体であって、
     前記非極性モノマー(X1)とは異なり、エチレン及び炭素数3~10のα-オレフィンからなる群より選ばれる1種又は2種以上の非極性モノマー(X2)単位、並びに、下記一般式(2)で表される化合物である1種又は2種以上の極性モノマー(Z2)単位の少なくともいずれか一方の構造単位を含むことを特徴とする、多元系極性オレフィン共重合体。
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
    [一般式(1)において、Qは、炭素数2~10の二価の炭化水素基、水酸基で置換された炭素数2~10の二価の炭化水素基、炭素数1~10のアルコキシ基で置換された炭素数3~20の二価の炭化水素基、炭素数2~10のエステル基で置換された炭素数4~20の二価の炭化水素基、炭素数3~18の置換シリル基で置換された炭素数5~28の二価の炭化水素基、エーテル基で置換された炭素数2~10の二価の炭化水素基、又はハロゲン原子で置換された炭素数2~10の二価の炭化水素基を示す。T1は、メタクリロイルオキシ基を示す。
     一般式(2)において、T2は、水酸基で置換された炭素数1~10の炭化水素基、炭素数1~10のアルコキシ基で置換された炭素数2~20の炭化水素基、炭素数2~10のエステル基で置換された炭素数3~20の炭化水素基、炭素数3~18の置換シリル基で置換された炭素数4~28の炭化水素基、ハロゲン原子で置換された炭素数1~10の炭化水素基、炭素数1~10のアルコキシ基、炭素数6~20のアリーロキシ基、カルボキシル基、炭素数2~10のエステル基、炭素数2~10のアシルオキシ基、アミノ基、炭素数1~12の置換アミノ基、炭素数3~18の置換シリル基、又はハロゲン原子を示す。]
  2.  ゲルパーミエイションクロマトグラフィー(GPC)によって求められる重量平均分子量(Mw)と数平均分子量(Mn)の比(Mw/Mn)が1.5~3.5の範囲であることを特徴とする、請求項1に記載の多元系極性オレフィン共重合体。
  3.  13C-NMRにより算出されるメチル分岐度が、主鎖1,000炭素当たり5.0以下であることを特徴とする、請求項1又は2に記載の多元系極性オレフィン共重合体。
  4.  周期表第5~10族の遷移金属触媒を用いて重合されたことを特徴とする、請求項1~3のいずれか1項に記載の多元系極性オレフィン共重合体。
  5.  前記遷移金属触媒が、ニッケル金属又はパラジウム金属にキレート性ホスフィン化合物が配位した遷移金属触媒であることを特徴とする、請求項4に記載の多元系極性オレフィン共重合体。
  6.  請求項1~5のいずれか1項に記載の多元系極性オレフィン共重合体を製造する方法であって、周期表第5~10族の遷移金属触媒の存在下に重合することを特徴とする、多元系極性オレフィン共重合体の製造方法。
  7.  前記遷移金属触媒が、ニッケル金属又はパラジウム金属にキレート性ホスフィン化合物が配位した遷移金属触媒であることを特徴とする、請求項6に記載の多元系極性オレフィン共重合体の製造方法。
     
PCT/JP2018/013056 2017-03-28 2018-03-28 多元系極性オレフィン共重合体、及びその製造方法 WO2018181623A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880021258.6A CN110461889B (zh) 2017-03-28 2018-03-28 多元系极性烯烃共聚物及其生产方法
US16/497,556 US11168166B2 (en) 2017-03-28 2018-03-28 Multi-component polar olefin copolymer and method for producing the same
EP18777731.3A EP3604362B1 (en) 2017-03-28 2018-03-28 Multi-component polar olefin copolymer and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017062302 2017-03-28
JP2017-062302 2017-03-28

Publications (1)

Publication Number Publication Date
WO2018181623A1 true WO2018181623A1 (ja) 2018-10-04

Family

ID=63677865

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/013056 WO2018181623A1 (ja) 2017-03-28 2018-03-28 多元系極性オレフィン共重合体、及びその製造方法

Country Status (5)

Country Link
US (1) US11168166B2 (ja)
EP (1) EP3604362B1 (ja)
JP (1) JP6949769B2 (ja)
CN (1) CN110461889B (ja)
WO (1) WO2018181623A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020158688A1 (ja) * 2019-01-28 2020-08-06 日本ポリエチレン株式会社 極性基含有オレフィン共重合体
CN113454127B (zh) * 2019-03-04 2024-03-26 日本聚乙烯株式会社 多元离聚物

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03229713A (ja) 1990-02-05 1991-10-11 Showa Denko Kk エチレン共重合体の製造方法
JPH06184214A (ja) 1992-09-21 1994-07-05 Shell Internatl Res Maatschappij Bv 重合方法
JP2792982B2 (ja) 1990-01-18 1998-09-03 昭和電工株式会社 エチレン共重合体の製造方法
JP2002521534A (ja) 1998-07-27 2002-07-16 バセル テクノロジー カンパニー ビー.ブイ. 重合方法
JP2008223011A (ja) 2007-02-28 2008-09-25 Rohm & Haas Co 実質的に線状のコポリマーおよびその製造方法
US20090253878A1 (en) * 2008-02-29 2009-10-08 Zhibin Ye Branched polyolefin polymer tethered with polymerizable methacryloyl groups and process for preparing same
WO2010050256A1 (ja) 2008-10-30 2010-05-06 日本ポリプロ株式会社 新規な金属錯体ならびにそれを用いたα-オレフィン重合体の製造方法およびα-オレフィンと(メタ)アクリル酸エステル共重合体の製造方法
WO2010058849A1 (ja) * 2008-11-20 2010-05-27 日本ポリエチレン株式会社 新規なトリアリールホスフィン又はトリアリールアルシン化合物及びそれらを用いたα-オレフィン重合触媒、三元共重合体、並びにα-オレフィン・(メタ)アクリル酸系共重合体の製造方法
JP2010120991A (ja) * 2008-11-17 2010-06-03 Dainippon Printing Co Ltd ハードコート層用硬化性樹脂組成物、及びハードコートフィルム
JP2010150532A (ja) 2008-11-20 2010-07-08 Japan Polyethylene Corp エチレン−α−オレフィン極性基含有ビニルモノマー三元共重合体
JP2010202647A (ja) 2009-02-05 2010-09-16 Japan Polyethylene Corp 新規なトリアリールホスフィン又はトリアリールアルシン化合物及びそれらを使用するα−オレフィン系重合触媒並びにα−オレフィン系共重合体の製造方法。
JP2010260913A (ja) 2009-04-30 2010-11-18 Japan Polypropylene Corp 新規な金属錯体を含む重合触媒成分およびそれを用いたα−オレフィン重合体またはα−オレフィン・(メタ)アクリル酸エステル共重合体の製造方法
JP2017062302A (ja) 2015-09-24 2017-03-30 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4065613A (en) 1975-03-17 1977-12-27 E. I. Du Pont De Nemours And Company Alternating copolymers of alkyl acrylate/ethylene/branching agents
JPS6259658A (ja) 1985-09-11 1987-03-16 Denki Kagaku Kogyo Kk 熱可塑性樹脂組成物
US20090221757A1 (en) * 2008-02-29 2009-09-03 Ppg Industries Ohio, Inc. Polymers containing an oligomeric macromonomer
JP5381570B2 (ja) 2009-09-29 2014-01-08 大日本印刷株式会社 ハードコートフィルムの製造方法、ハードコートフィルム、偏光板及びディスプレイパネル
KR101992244B1 (ko) 2012-06-27 2019-06-25 다우 글로벌 테크놀로지스 엘엘씨 에틸렌계 중합체 및 그의 제조 방법
CN103951777B (zh) * 2014-05-20 2016-09-28 中国科学院长春应用化学研究所 一种三元乙丙橡胶及其制备方法

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2792982B2 (ja) 1990-01-18 1998-09-03 昭和電工株式会社 エチレン共重合体の製造方法
JPH03229713A (ja) 1990-02-05 1991-10-11 Showa Denko Kk エチレン共重合体の製造方法
JPH06184214A (ja) 1992-09-21 1994-07-05 Shell Internatl Res Maatschappij Bv 重合方法
JP2002521534A (ja) 1998-07-27 2002-07-16 バセル テクノロジー カンパニー ビー.ブイ. 重合方法
JP2008223011A (ja) 2007-02-28 2008-09-25 Rohm & Haas Co 実質的に線状のコポリマーおよびその製造方法
US20090253878A1 (en) * 2008-02-29 2009-10-08 Zhibin Ye Branched polyolefin polymer tethered with polymerizable methacryloyl groups and process for preparing same
WO2010050256A1 (ja) 2008-10-30 2010-05-06 日本ポリプロ株式会社 新規な金属錯体ならびにそれを用いたα-オレフィン重合体の製造方法およびα-オレフィンと(メタ)アクリル酸エステル共重合体の製造方法
JP2010120991A (ja) * 2008-11-17 2010-06-03 Dainippon Printing Co Ltd ハードコート層用硬化性樹脂組成物、及びハードコートフィルム
WO2010058849A1 (ja) * 2008-11-20 2010-05-27 日本ポリエチレン株式会社 新規なトリアリールホスフィン又はトリアリールアルシン化合物及びそれらを用いたα-オレフィン重合触媒、三元共重合体、並びにα-オレフィン・(メタ)アクリル酸系共重合体の製造方法
JP2010150532A (ja) 2008-11-20 2010-07-08 Japan Polyethylene Corp エチレン−α−オレフィン極性基含有ビニルモノマー三元共重合体
JP2010150246A (ja) 2008-11-20 2010-07-08 Japan Polyethylene Corp 新規なトリアリールホスフィン又はトリアリールアルシン化合物及びそれらを用いたα−オレフィン系重合触媒並びにα−オレフィン系共重合体の製造方法。
JP2010202647A (ja) 2009-02-05 2010-09-16 Japan Polyethylene Corp 新規なトリアリールホスフィン又はトリアリールアルシン化合物及びそれらを使用するα−オレフィン系重合触媒並びにα−オレフィン系共重合体の製造方法。
JP2010260913A (ja) 2009-04-30 2010-11-18 Japan Polypropylene Corp 新規な金属錯体を含む重合触媒成分およびそれを用いたα−オレフィン重合体またはα−オレフィン・(メタ)アクリル酸エステル共重合体の製造方法
JP2017062302A (ja) 2015-09-24 2017-03-30 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
BROOKHART ET AL., CHEM. REV., vol. 100, 2000, pages 1169
J. AM. CHEM. SOC., vol. 129, 2007, pages 8948 - 8949
JIANLI WANG ET AL.: "One-Pot Synthesis of Hyperbranched Polyethylenes Tethered with Polymerizable Methacryloyl Groups via Selective Ethylene Copolymerization with Heterobifunctional Comonomers by Chain Walking Pd-Diimine Catalysis", MACROMOLECULES, vol. 41, no. 6, 4 March 2008 (2008-03-04), pages 2290 - 2293, XP055612890 *
See also references of EP3604362A4
THOMAS RUNZI ET AL.: "Reactivity of Methacrylates in Insertion Polymerization", J. AM. CHEM. SOC., vol. 132, no. 46, 2010, pages 16623 - 16630, XP055327143, DOI: doi:10.1021/ja107538r *
THOMAS RUNZIDAMIEN GUIRONNETINIGO GOTTKER-SCHNETMANNSTEFAN MECKING, J. AM. CHEM. SOC., vol. 132, no. 46, 2010, pages 16623 - 16630

Also Published As

Publication number Publication date
CN110461889A (zh) 2019-11-15
EP3604362B1 (en) 2023-08-02
CN110461889B (zh) 2022-07-08
US20200385502A1 (en) 2020-12-10
US11168166B2 (en) 2021-11-09
EP3604362A4 (en) 2020-04-15
JP2018165364A (ja) 2018-10-25
JP6949769B2 (ja) 2021-10-13
EP3604362A1 (en) 2020-02-05

Similar Documents

Publication Publication Date Title
US10550211B2 (en) Process for producing ethylene/unsaturated carboxylic acid copolymer, and said copolymer
JP5575459B2 (ja) エチレン−α−オレフィン極性基含有ビニルモノマー三元共重合体
JP7213504B2 (ja) 極性基含有オレフィン共重合体
Zhang et al. Influence of initiating groups on phosphino-phenolate nickel catalyzed ethylene (co) polymerization
Xia et al. Sterically very bulky aliphatic/aromatic phosphine-sulfonate palladium catalysts for ethylene polymerization and copolymerization with polar monomers
JPWO2016067776A1 (ja) 極性基含有オレフィン系重合体の製造方法
JP6949769B2 (ja) 多元系極性オレフィン共重合体、及びその製造方法
Eagan et al. Chain-straightening polymerization of olefins to form polar functionalized semicrystalline polyethylene
JP2017031300A (ja) エチレン・α−オレフィン・極性基含有アリルモノマー三元共重合体及びその製造方法
He et al. Ni (II) and Pd (II) complexes bearing benzocyclohexane–ketoarylimine for copolymerization of norbornene with 5‐norbornene‐2‐carboxylic ester
Gao et al. Synthesis of bimodal polyethylene with unsymmetrical α-diimine nickel complexes: Influence of ligand backbone and unsym-substituted aniline moiety
Liu et al. Novel Ni and Pd (benzocyclohexan‐ketonaphthylimino) 2 complexes for copolymerization of norbornene with octene
JP5694846B2 (ja) 新規なトリアリールホスフィン又はトリアリールアルシン化合物及びそれらによるα−オレフィン系重合触媒並びにα−オレフィン系重合体の製造方法
Huo et al. A highly active and thermally stable 6, 13-dihydro-6, 13-ethanopentacene-15, 16-diimine nickel (II) complex as catalyst for norbornene polymerization
JP7392515B2 (ja) 多元アイオノマー
JP6177501B2 (ja) オレフィン系極性共重合体
JP2012229190A (ja) 新規なトリアリールホスフィン又はトリアリールアルシン化合物及びそれらを用いるオレフィン系重合触媒並びにオレフィン系共重合体の製造方法
Xue et al. Significant cooperative effects in binuclear titanium complexes based on trifluoromethyl substituted bis-β-carbonylenamine ligands for ethylene (co) polymerization
Gui et al. Vinyl polymerization of norbornene catalyzed by a new bis (β‐ketoamino) nickel (II) complex–methylaluminoxane system
Gagieva et al. New fluorine‐containing bissalicylidenimine–titanium complexes for olefin polymerization
JP6007142B2 (ja) 優れた接着性能を有する極性オレフィン系多元共重合体
JP2012201673A (ja) 新規なトリアリールホスフィン又はトリアリールアルシン化合物及びそれらを使用するオレフィン系重合触媒並びにオレフィン系共重合体の製造方法
JP6968656B2 (ja) オレフィン共重合体、及びその製造方法
JP2023036036A (ja) 極性基含有オレフィン共重合体、及びその製造方法
He et al. Synthesis of bis-(benzocyclohexan-ketoimino) Ni (ii) with different electron groups and their catalytic copolymerization of norbornene and polar norbornene

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18777731

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018777731

Country of ref document: EP

Effective date: 20191028