WO2018181622A1 - 振動板として機能する導光板 - Google Patents

振動板として機能する導光板 Download PDF

Info

Publication number
WO2018181622A1
WO2018181622A1 PCT/JP2018/013055 JP2018013055W WO2018181622A1 WO 2018181622 A1 WO2018181622 A1 WO 2018181622A1 JP 2018013055 W JP2018013055 W JP 2018013055W WO 2018181622 A1 WO2018181622 A1 WO 2018181622A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
glass
light guide
liquid layer
less
Prior art date
Application number
PCT/JP2018/013055
Other languages
English (en)
French (fr)
Inventor
順 秋山
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Priority to JP2019510074A priority Critical patent/JP6969607B2/ja
Publication of WO2018181622A1 publication Critical patent/WO2018181622A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V33/00Structural combinations of lighting devices with other articles, not otherwise provided for
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/02Diaphragms for electromechanical transducers; Cones characterised by the construction
    • H04R7/04Plane diaphragms

Definitions

  • the present invention relates to a light guide plate that functions as a light guide plate constituting a backlight and functions as a diaphragm of a speaker or a microphone having good acoustic performance.
  • a liquid crystal display device represented by a liquid crystal television, digital signage, and the like includes a planar light emitting device that constitutes a backlight, and a liquid crystal panel that is disposed to face the light emitting surface of the planar light emitting device.
  • the planar light emitting device includes a direct type and an edge light type, and an edge light type that can reduce the size of the light source is often used.
  • the edge light type planar light emitting device includes a light source, a light guide plate, a reflection sheet, various optical sheets (such as a diffusion sheet and a brightness enhancement sheet), and the like.
  • the edge light type light guide plate has a function as a diaphragm.
  • a glazed glass construction is disclosed.
  • Patent Document 2 describes a glass speaker using a glass plate as a diaphragm for a speaker or a microphone. According to the configuration described in Patent Document 2, it is said that the entire audible band can be covered with a speaker diaphragm using a glass plate.
  • Patent Document 1 when the light guide plate has a function as a diaphragm, the deterioration of sound due to resonance vibration cannot be improved while maintaining the luminance necessary for the light guide plate. There was a problem such as.
  • the present invention provides a light guide plate used for a planar light emitting device, which has a good acoustic performance and can achieve improvement in timbre and functions as a speaker or microphone diaphragm. Objective.
  • a first plate that is a glass plate;
  • a second plate which is a resin plate;
  • a light guide plate that functions as a diaphragm is provided.
  • a light guide plate used for a planar light emitting device, which has a good acoustic performance and can achieve improvement in timbre, and functions as a speaker or microphone diaphragm. be able to.
  • FIG. 1 is a side view showing an example of the configuration of the liquid crystal display device according to the present embodiment.
  • FIG. 2 is a diagram illustrating an example of a glass structure.
  • FIG. 3 is a side view showing another example of the glass structure.
  • FIG. 4 is a side view showing another example of the glass structure.
  • FIG. 5 is a side view showing another example of the glass structure.
  • FIG. 6 is a side view showing another example of the configuration of the liquid crystal display device according to the present embodiment.
  • FIG. 1 is a side view showing an example of the configuration of the liquid crystal display device 10 according to the present embodiment.
  • the liquid crystal display device 10 includes a planar light emitting device 14 and a liquid crystal panel 16.
  • the liquid crystal display device 10 is mounted on a thin electronic device such as a liquid crystal television or digital signage.
  • the planar light emitting device 14 includes a glass structure 12 (light guide plate that functions as a vibration plate).
  • the glass structure 12 can be used as a glass light guide plate.
  • the liquid layer 50 described later is disposed at a position parallel to the liquid crystal panel 16, but may be disposed at a position perpendicular to the liquid crystal panel 16.
  • the liquid crystal panel 16 is configured by laminating an alignment layer, a transparent electrode, a glass substrate, and a polarizing filter so as to sandwich a liquid crystal layer disposed in the center in the thickness direction.
  • a color filter is disposed on one side of the liquid crystal layer.
  • the molecules of the liquid crystal layer rotate around the light distribution axis by applying a driving voltage to the transparent electrode, thereby performing a predetermined display.
  • the planar light emitting device 14 of the present embodiment can be an edge light type. Thereby, thickness reduction can be achieved.
  • the planar light emitting device 14 includes a light source 18, a glass structure 12, a reflective sheet 20, a transparent resin layer 21, various optical sheets 22, and reflective dots 24.
  • the transparent resin layer 21 may be formed on both sides as well as on one side, and the transparent resin layer 21 may be bonded to a part of the reflection sheet 20 or the optical sheet 22.
  • the light source 18 is not particularly limited, and an LED (Light Emitting Diode), a hot cathode tube, or a cold cathode tube can be used.
  • the light source 18 is disposed at a position facing the light receiving surface 28 of the glass structure 12. Further, by providing a reflector (not shown) on the back side of the light source 18, the incident efficiency of the light emitted radially from the light source 18 on the glass structure 12 is enhanced.
  • FIG. (A) of FIG. 2 is a side view which shows an example of a structure of the glass structure 12 in this embodiment.
  • FIG. 2B is a perspective view showing an example of the configuration of the glass structure 12.
  • the glass structure 12 includes a first plate 51a, a second plate 51b that is a counter plate facing the first plate 51a, a liquid layer 50, a sealing material 53, and a vibrator 54.
  • One of the first plate 51a and the second plate 51b can be a glass plate, and the other can be a glass plate or a resin plate.
  • the first plate 51a is a glass plate and the second plate 51b is a glass plate or a resin plate will be described as an example, but the reverse may be possible.
  • the glass structure 12 has a configuration in which the liquid layer 50 is sandwiched between the first plate 51 a and the second plate 51 b and the liquid layer 50 is sealed with the sealing material 53.
  • the glass component 12 is provided between the light emitting surface 26 and the light reflecting surface 32 so as to be substantially perpendicular to the light emitting surface 26 and the light reflecting surface 32, and receives the light emitted from the light source 18. 28 and end faces 34, 36 and 38.
  • illustration of the sealing material 53 is abbreviate
  • the resin plate is appropriately selected from any of acrylic resin, polyimide resin, polycarbonate resin, and PET resin.
  • the light exit surface 26 is a surface facing the liquid crystal panel 16.
  • the light emitting surface 26 is rectangular in plan view, but the shape of the light emitting surface 26 is not limited to this.
  • the size of the light emitting surface 26 is not particularly limited because it is determined corresponding to the liquid crystal panel 16. Since the glass structure 12 has high rigidity, its effect is demonstrated as the size increases.
  • the light reflecting surface 32 is a surface opposite to the light emitting surface 26.
  • the light reflecting surface 32 is configured to be substantially parallel to the light emitting surface 26. Further, the shape and size of the light reflecting surface 32 are configured to be the same as those of the light emitting surface 26.
  • the light reflecting surface 32 is not necessarily parallel to the light emitting surface 26.
  • an inclined surface 52 or an inclined surface 62 may be provided.
  • the size of the light reflecting surface 32 may be different from that of the light emitting surface 26.
  • the light receiving surface 28 is a light incident end surface of the glass structure 12 facing the light source 18.
  • the end faces 34, 36 and 38 are non-light-incident end faces of the glass structure 12 excluding the light receiving surface 28.
  • the end surface 38 is a surface opposite to the light receiving surface 28.
  • the end surfaces 34 and 36 are opposed to each other and are provided between the light emitting surface 26 and the light reflecting surface 32, respectively.
  • the light receiving surface 28 is mirror-finished when the glass plate constituting the glass structure 12 is manufactured.
  • the surface roughness Ra of the light receiving surface 28 is 0.1 ⁇ m or less, preferably less than 0.03 ⁇ m, and more preferably 0 in order to make the light from the light source 18 effectively enter the inside of the glass component 12. 0.001 ⁇ m or less, particularly preferably 0.0005 ⁇ m or less. Thereby, the light incident efficiency of the light which enters into the inside of the glass structure 12 from the light source 18 is improved.
  • the surface roughness Ra of the end faces 34, 36 and 38 is preferably 0.4 ⁇ m or less, and more preferably 0.1 ⁇ m or less in order to suppress the occurrence of luminance unevenness due to light scattering at the end face. is there.
  • the surface roughness Ra of the end surfaces 34, 36 and 38 may be equivalent to the surface roughness Ra of the light receiving surface 28 from the viewpoint of improving production efficiency.
  • it shall mean the arithmetic mean roughness (centerline average roughness) by JISB0601-2001 and JISB0031-2003.
  • inclined surfaces may be provided between the light receiving surface 28 and the light emitting surface 26 and between the light receiving surface 28 and the light reflecting surface 32. That is, the inclined surface 52 is provided between the light receiving surface 28 and the light emitting surface 26 adjacent to the light receiving surface 28 and the light emitting surface 26. Similarly, an inclined surface 62 is provided adjacent to the light receiving surface 28 and the light reflecting surface 32 between the light reflecting surface 32 and the light receiving surface 28.
  • the glass plate constituting the glass constituting body 12 a physically tempered glass plate or a chemically tempered glass plate can be used. This is useful for preventing breakage of the glass construct 12.
  • the glass plate located on the outermost surface of the glass structure 12 is preferably a physically tempered glass plate or a chemically tempered glass plate, and all the glass plates constituting the glass plate are physically strengthened.
  • a glass plate or a chemically strengthened glass plate is more preferable.
  • the glass plate located on the outermost surface of the glass structure 12 is preferably made of crystallized glass or phase-separated glass.
  • the liquid layer 50 constituting the glass structure 12 is formed by sealing with a sealing material 53 between the first plate 51a and the second plate 51b.
  • Specific examples of the component of the liquid layer 50 include water, oil, organic solvent, liquid polymer, ionic liquid, or a mixture thereof.
  • the sealing material 53 that seals between the first plate 51a and the second plate 51b is provided so as to seal the liquid layer 50 between these two plates.
  • the sealing material 53 includes polyvinyl acetate, polyvinyl chloride, polyvinyl alcohol, ethylene copolymer, polyacrylate, cyanoacrylate, saturated polyester, polyamide, linear polyimide, melamine resin, urea It is preferable to include at least one selected from the group consisting of resins, phenolic resins, epoxy-based, polyurethane-based, unsaturated polyester-based, reactive acrylic-based, rubber-based, silicone-based and modified silicone-based materials.
  • the glass structure 12 is composed of at least one or more glass plates, but two or more glass plates may be used, or three or more glass plates may be used.
  • the glass plate A and the glass plate B and in the case of three or more sheets, for example, the glass plate A, the glass plate B and the glass plate C may all use glass plates having different compositions, or all have the same composition.
  • These glass plates may be used, or a glass plate having a different composition may be combined with a glass plate having the same composition.
  • the mass and thickness of the glass plate may be all different, all the same, or some different. Especially, it is preferably used from the point of vibration damping inertia that the mass of the glass plate to comprise is the same.
  • the glass structure 12 may arrange
  • FIG. 4 shows an example in which the liquid layer 50 is provided obliquely with respect to the first plate 51a and the second plate 51b.
  • the glass structure 12 can also have a structure having a plurality of liquid layers 50.
  • the glass structure 12 can include a third plate 51c in addition to the first plate 51a and the second plate 51b.
  • any one of the first plate 51a, the second plate 51b, and the third plate 51c can be a glass plate, and the rest can be a glass plate or a resin plate.
  • a plurality of liquid layers 50 are provided in a direction perpendicular to the surface of a plate such as a glass plate.
  • a plurality of liquid layers 50 are provided on the surface of a plate such as a glass plate in an oblique direction.
  • the glass component 12 can be locked at one or a plurality of positions by the locking portion 55.
  • the locking portion 55 is configured as a support member that supports not only the glass structure 12 but also the glass structure 12 and the light source 18 together. Also good.
  • the locking portion 55 is attached to a part of the housing 60 (see FIG. 1) constituting the liquid crystal display device 10 and supports the glass component 12.
  • the glass component 12 is preferably locked directly or indirectly to the housing 60 via the locking portion 55.
  • the glass structure 12 has a function of vibrating by the vibrator 54.
  • the vibrator 54 may be directly attached to the first plate 51 a or the second plate 51 b or may be attached to the locking portion 55.
  • the glass structure 12 may have a vibration suppression function that detects vibration frequency and suppresses vibration. By virtue of the vibration suppressing function, it is possible to prevent the glass component 12 from being attenuated and maintain a predetermined frequency.
  • the vibrator 54 may be any element that stably oscillates at a predetermined audible frequency, such as a piezo element, a crystal vibrator, a ceramic oscillator, a piezoelectric element, or a magnetostrictive element.
  • FIG. 6 is a diagram illustrating another example of the configuration of the liquid crystal display device 10.
  • the glass structure 12 includes a first plate 51 a having a light receiving surface 28 and a second plate 51 b added outside the light receiving surface 28.
  • the liquid layer 50 may be formed by sealing between the first plate 51a and the second plate 51b. That is, if the light guide plate (first plate 51a) that does not have the liquid layer 50 is a glass plate, a glass plate or a resin plate (second plate 51b) may be newly disposed through the liquid layer 50. If the light guide plate (first plate 51a) that does not have the liquid layer 50 is a resin plate, a new glass plate (second plate 51b) may be disposed via the liquid layer 50.
  • the reflection sheet 20 is configured by coating a light reflection member on the surface of a resin sheet such as an acrylic resin.
  • the reflection sheet 20 is disposed so as to face the light reflection surface 32 of the glass structure 12.
  • the reflection sheet 20 may be disposed on the end surfaces 34, 36 and 38. All of the reflection sheets 20 may be disposed with a space from the glass structure 12, or may be bonded to the glass structure 12 with an adhesive transparent resin layer.
  • the reflective sheet 20 When the reflective sheet 20 is disposed on the end surfaces 34, 36, and 38, it is only necessary to dispose at least the end surface 38 facing the light receiving surface 28 among the end surfaces 34, 36, and 38. Thereby, the light incident from the light receiving surface 28 travels away from the light source 18 (toward the right in FIG. 1) while being repeatedly totally reflected inside the glass structure 12, and reaches the end surface 38.
  • the reflection sheet 20 reflects the light again into the glass structure 12. Further, when the reflection sheet 20 is also disposed on the end surfaces 34 and 36, when the light scattered inside the glass structure 12 reaches the end surfaces 34 and 36, the reflection sheet 20 causes the glass structure 12. It can be reflected inside again. Thereby, the light quantity of the light source 18 can be used effectively.
  • An acrylic resin is exemplified as the material of the resin sheet constituting the reflective sheet 20, but is not limited thereto, and for example, a polyester resin such as a PET resin, a urethane resin, and a material formed by combining them can be used.
  • a polyester resin such as a PET resin, a urethane resin, and a material formed by combining them can be used.
  • the light reflecting member constituting the reflection sheet 20 for example, a film in which bubbles or particles are encapsulated in a resin, a metal vapor deposition film, or the like can be used.
  • the reflective sheet 20 may be provided with an adhesive transparent resin layer and bonded to the glass structure 12.
  • an adhesive transparent resin layer provided on the reflection sheet 20 for example, an acrylic resin, a silicone resin, a urethane resin, a synthetic rubber, or the like can be used.
  • the thickness of the reflection sheet 20 is not particularly limited, but for example, a thickness of 0.01 to 0.50 mm can be used.
  • the transparent resin layer 21 is a hard coat layer, an antireflection film (AR coat), an adhesive layer, a lenticular layer, or an antistatic film (antistatic coating) for protecting the surface of the glass structure 12 from scratches. Can do.
  • the transparent resin layer 21 is applied by a coating method such as spray coating, applied by a squeegee method, pressed by a mold by an imprint method, or printed by a printing method such as gravure printing, and then irradiated with ultraviolet rays, or It may be formed by heating.
  • the various optical sheets 22 can be a diffusion sheet, a brightness enhancement sheet, a lenticular sheet, or the like.
  • a milky white acrylic resin film or the like can be used. Since the various optical sheets 22 diffuse the light emitted from the light emitting surface 26 of the glass structure 12, the back side of the liquid crystal panel 16 is irradiated with uniform light having no luminance unevenness.
  • the various optical sheets 22 may be disposed so as to face a predetermined position so as not to contact the glass structure 12, or may be bonded to the glass structure 12 via the transparent resin layer 21. .
  • the light reflecting surface 32 is provided with a plurality of circular reflecting dots 24.
  • the reflective dots 24 are collectively shown, but the plurality of reflective dots may be arranged in a grid pattern, may be arranged in any other pattern, or randomly arranged. However, it is appropriately adjusted so that the luminance distribution of the light emitted from the light emitting surface 26 is uniform.
  • the reflective dots 24 are formed by printing a resin in a dot shape or the like, and may contain scattering particles or bubbles.
  • the size of the reflective dots 24 may be varied from the light receiving surface 28 toward the end surface 38.
  • the diameter of the reflective dot 24 in the region close to the light receiving surface 28 can be set to be small, and the diameter of the reflective dot 24 can be set to increase as the light travels in this direction.
  • the diameter of the reflective dot 24 is appropriately adjusted so that the luminance distribution of the light emitted from the light emitting surface 26 is uniform.
  • the luminance of the emitted light emitted from the light emitting surface 26 can be made uniform, and luminance unevenness occurs. Can be suppressed.
  • it can replace with changing the magnitude
  • the same effect can be obtained by forming grooves on the light reflecting surface 32 that reflect incident light instead of the reflecting dots 24.
  • the planar light-emitting device 14 configured as described above, light incident from the light source 18 into the glass component 12 is incident on the inner surface of the light emitting surface 26 of the glass component 12 and the inner surface of the light reflecting surface 32. It progresses while being totally totally reflected. Further, the light whose traveling direction is changed by the reflective dots 24 and the reflective sheet 20 is emitted to the outside from the light emitting surface 26 facing the liquid crystal panel 16 of the glass structure 12. The light emitted to the outside is diffused by various optical sheets 22 and then enters the liquid crystal panel 16. Then, the glass component 12 vibrates at a predetermined frequency by the vibrator 54 and acts as a diaphragm for a speaker or a microphone. Although not shown, the liquid crystal display device 10 has a function of a speaker or a microphone.
  • the glass structure 12 has a structure in which the liquid layer 50 is sealed with two plates (at least one is a glass plate), but the glass structure 12 is arranged by shifting the end faces of the two plates. By doing so, you may comprise the level
  • the plate A when one plate is the plate A and the other is the plate B, when the plate A resonates, the plate B does not resonate due to the presence of the liquid layer 50, or the resonance fluctuation of the plate B can be attenuated.
  • the glass structure 12 preferably has a loss coefficient of 1 ⁇ 10 ⁇ 2 or more at 25 ° C. and a longitudinal wave sound velocity value in the thickness direction of 5.5 ⁇ 10 3 m / s or more.
  • a large loss coefficient means that the vibration damping ability is large.
  • the loss factor is calculated by the half-width method. Represented by ⁇ W / f ⁇ , where W is the frequency width of a point at which the resonance frequency f of the material is -3 dB lower than the peak value of amplitude h (that is, the point at the maximum amplitude of -3 [dB]). Define the value as the loss factor.
  • the loss factor may be increased, that is, the frequency width W is relatively increased with respect to the amplitude h, which means that the peak becomes broad.
  • the loss factor is a specific value of the material and the like, and for example, in the case of a single glass plate, it varies depending on the composition and relative density.
  • the loss factor can be measured by a dynamic elastic modulus test method such as a resonance method.
  • Longitudinal wave sound velocity value refers to the speed at which longitudinal waves propagate in the diaphragm.
  • the longitudinal wave velocity value and Young's modulus can be measured by an ultrasonic pulse method described in Japanese Industrial Standard (JIS-R1602-1995).
  • the glass structure 12 according to the present embodiment can achieve a high loss factor by providing a liquid layer (liquid layer 50) between at least two plates.
  • the loss factor can be further increased by setting the viscosity and surface tension of the liquid layer 50 in a suitable range.
  • the peak top value of the resonance frequency of one plate A and the other plate B is different, and it is more preferable that the resonance frequency ranges do not overlap.
  • the resonance frequency ranges of the plates A and B overlap or the peak top values are the same, even if one plate resonates due to the presence of the liquid layer 50, the vibration of the other plate Since the resonance is canceled out to some extent by not synchronizing, a higher loss factor can be obtained than in the case of a single glass plate.
  • the plate A and the plate B are preferable as the mass difference is small, and it is more preferable that there is no mass difference.
  • the resonance of the lighter plate can be suppressed by the heavier plate, but it is difficult to suppress the resonance of the heavier plate by the lighter plate. That is, if the mass ratio is biased, the resonance vibrations cannot be canceled in principle due to the difference in inertia force.
  • the mass ratio of the plate A and the plate B represented by (plate A / plate B) is preferably 0.8 to 1.25 (8/10 to 10/8), and 0.9 to 1.1 (9/10). To 10/9) is more preferable, and 1.0 (10/10) is more preferable.
  • At least one of the plate A and the plate B has a larger loss coefficient, which also increases vibration attenuation as the glass component 12, which is preferable for use as a vibration plate.
  • the loss coefficient at 25 ° C. is preferably 1 ⁇ 10 ⁇ 4 or more, more preferably 3 ⁇ 10 ⁇ 4 or more, and further preferably 5 ⁇ 10 ⁇ 4 or more.
  • the upper limit is not particularly limited, but is preferably 5 ⁇ 10 ⁇ 3 or less from the viewpoint of productivity and manufacturing cost.
  • both the plate A and the plate B have the loss factor.
  • the loss factor of a glass plate can be measured by the same method as the loss factor in the glass structure 12.
  • the loss coefficient at 25 ° C. of the glass structure 12 is 1 ⁇ 10 ⁇ 2 or more, preferably 2 ⁇ 10 ⁇ 2 or more, more preferably 5 ⁇ 10 ⁇ 2 or more.
  • the longitudinal wave sound velocity value in the plate thickness direction of the glass structural body 12 is preferably 5.5 ⁇ 10 3 m / s or more because the higher the sound velocity, the higher the reproducibility of the high frequency sound when the diaphragm is used. More preferably, it is 5.7 ⁇ 10 3 m / s or more, and even more preferably 6.0 ⁇ 10 3 m / s or more.
  • the upper limit is not particularly limited, but is preferably 7.0 ⁇ 10 3 m / s or less.
  • the visible light transmittance determined in accordance with Japanese Industrial Standard is preferably 70% or more, more preferably 80% or more, and further preferably 90% or more.
  • the refractive index between the liquid layer 50 and a plate such as a glass plate constituting the glass constituting body 12 is also useful to match the refractive index in order to increase the transmittance of the glass structure 12.
  • the difference between the refractive index of the liquid layer 50 and the refractive index of the pair of plates in contact with the liquid layer 50 (the difference between the refractive index of the liquid layer 50 and the refractive index of the plate A, and the refractive index of the liquid layer 50 and the plate B).
  • the difference between the refractive index and the refractive index is preferably 0.2 or less, more preferably 0.1 or less, and even more preferably 0.01 or less.
  • the glass plates constituting the glass constituting body 12 and / or the liquid layer 50 are color at least one of the glass plates constituting the glass constituting body 12 and / or the liquid layer 50. This is useful when the glass structure 12 is desired to have design properties or when it is desired to have optical functionality such as IR cut or UV cut.
  • the longitudinal wave sound velocity value of the glass plate is preferably 5.0 ⁇ 10 3 m / s or more, more preferably 5.5 ⁇ 10 3 m / s or more, and 6.0 ⁇ 10 3 m / s or more. Is more preferable.
  • the upper limit is not particularly limited, but is preferably 7.0 ⁇ 10 3 m / s or less from the viewpoint of the productivity of the glass plate and the raw material cost. Further, it is more preferable that at least one of the plate A and the plate B satisfies the sound velocity value.
  • the sound velocity value of the glass plate can be measured by the same method as the longitudinal wave sound velocity value in the glass structure 12.
  • At least one of the first plate 51a and the second plate 51b of the glass structure 12 is made of a highly transparent glass plate or resin plate.
  • multi-component oxide glass is used as the glass material used as the glass plate of the glass structure 12.
  • the glass plate of the glass structure 12 it is preferable to use glass having a length of 50 mm and an average internal transmittance of 90% or more at a wavelength of 400 to 700 nm as the glass plate of the glass structure 12. Thereby, attenuation
  • the transmittance at a length of 50 mm is obtained by cleaving the glass structure 12 in a direction perpendicular to the main plane, and is collected from the central portion of the glass structure 12 in a size of 50 mm long ⁇ 50 mm wide and facing each other.
  • the measurement is performed with a length of 50 mm in the normal direction from the first fractured section and a length of 50 mm. Measurement is performed after making the beam width of the incident light narrower than the plate thickness with a slit or the like using a possible spectroscopic measurement device (for example, UH4150: manufactured by Hitachi High-Technologies Corporation). By removing the loss due to reflection on the surface from the transmittance at the 50 mm length thus obtained, the internal transmittance at the 50 mm length can be obtained.
  • the average internal transmittance at a wavelength of 400 to 700 nm at a length of 50 mm is preferably 92% or more, more preferably 95% or more, still more preferably 98% or more, and particularly preferably 99% or more.
  • the total amount A of glass iron used as the glass plate of the glass structure 12 is preferably 100 ppm by mass or less in order to satisfy the above-described average internal transmittance at a wavelength of 400 to 700 nm with a length of 50 mm. More preferably, it is 40 mass ppm or less, and further preferably 20 mass ppm or less.
  • the total amount A of the iron content of the glass used as the glass plate of the glass structure 12 is 5 ppm by mass or more, which improves the solubility of the glass during the production of the multicomponent oxide glass. In addition, it is preferably 8 ppm by mass or more, more preferably 10 ppm by mass or more.
  • the total amount A of the iron content of the glass used as the glass plate of the glass structure 12 can be adjusted by the amount of iron added during glass production.
  • the total iron content A of the glass is expressed as the content of Fe 2 O 3 , but all the iron present in the glass exists as Fe 3+ (trivalent iron). I don't mean.
  • Fe 3+ and Fe 2+ are simultaneously present in the glass.
  • Fe 2+ and Fe 3+ have absorption in the wavelength range of 400 to 700 nm, but the absorption coefficient of Fe 2+ (11 cm ⁇ 1 Mol ⁇ 1 ) is more than the absorption coefficient of Fe 3+ (0.96 cm ⁇ 1 Mol ⁇ 1 ). Therefore, the internal transmittance at a wavelength of 400 to 700 nm is further reduced. Therefore, a low content of Fe 2+ is preferable for increasing the internal transmittance at a wavelength of 400 to 700 nm.
  • the content B of Fe 2+ in the glass used as the glass plate of the glass constituting body 12 is preferably 20 ppm by mass or less in order to satisfy the average internal transmittance in the visible light region described above in terms of the effective optical path length. More preferably, it is at most ppm by mass, and further preferably at most 5 ppm by mass.
  • the Fe 2+ content B of the glass used as the glass plate of the glass structure 12 is 0.01 mass ppm or more, which improves the solubility of the glass during the production of multi-component oxide glass. In view of this, it is preferably 0.05 ppm by mass or more, and more preferably 0.1 ppm by mass or more.
  • content of Fe ⁇ 2+> of the glass used as a glass plate of the glass structure 12 can be adjusted with the quantity of the oxidizing agent added at the time of glass manufacture, or a melting temperature. Specific types of oxidizers added during glass production and their addition amounts will be described later.
  • the content A of Fe 2 O 3 was determined by fluorescent X-ray measurement, a content of total iron as calculated as Fe 2 O 3 (mass ppm).
  • the Fe 2+ content B was measured according to ASTM C169-92 (2011). The measured Fe 2+ content was expressed in terms of Fe 2 O 3 .
  • composition of the glass used as the glass plate of the glass structure 12 are shown below. However, the composition of the glass used as the glass plate of the glass structure 12 is not limited to these.
  • One structural example (Structural Example A) of the glass used as the glass plate of the glass structural body 12 is an oxide-based mass percentage display, with SiO 2 60-60%, Al 2 O 3 0-7%, MgO 0-10%, CaO 0-20%, SrO 0-15%, BaO 0-15%, Na 2 O 3-20%, K 2 O 0-10%, Fe 2 O 3 Contains 5 to 100 ppm by mass.
  • FIG. 1 Another structural example (Structural Example B) of the glass used as the glass plate of the glass structural body 12 is an oxide-based mass percentage display with 45 to 80% of SiO 2 and more than 7% of Al 2 O 3 30 %, B 2 O 3 0-15%, MgO 0-15%, CaO 0-6%, SrO 0-5%, BaO 0-5%, Na 2 O 7-20%, It contains 0 to 10% of K 2 O, 0 to 10% of ZrO 2 and 5 to 100 ppm by mass of Fe 2 O 3 .
  • Still another structural example (Structural Example C) of the glass used as the glass plate of the glass structural body 12 is an oxide-based mass percentage display, with SiO 2 being 45 to 70% and Al 2 O 3 being 10 to 30. %, B 2 O 3 0 to 15%, MgO, CaO, SrO and BaO in total 5 to 30%, Li 2 O, Na 2 O and K 2 O in total 0% to less than 3%, Fe the 2 O 3 containing 5 to 100 mass ppm.
  • the glass used as the glass plate of the glass structure 12 is not limited to these.
  • composition range of each component of the glass composition of the glass plate of the glass structure 12 of the present embodiment having the above-described components will be described below.
  • the unit of the content of each composition is expressed in terms of mass percentage based on oxide or expressed in ppm by mass, and is simply expressed as “%” or “ppm”, respectively.
  • SiO 2 is a main component of glass.
  • the content of SiO 2 is preferably 60% or more, more preferably 63% or more in the configuration example A, and preferably 45% in the configuration example B. As mentioned above, it is more preferably 50% or more, and in the configuration example C, it is preferably 45% or more, more preferably 50% or more.
  • the content of SiO 2 is easy to dissolve and the foam quality is good, and the content of divalent iron (Fe 2+ ) in the glass is kept low, and the optical properties are good. Therefore, in the configuration example A, preferably 80% or less, more preferably 75% or less, in the configuration example B, preferably 80% or less, more preferably 70% or less, and in the configuration example C , Preferably 70% or less, more preferably 65% or less.
  • Al 2 O 3 is an essential component that improves the weather resistance of the glass in Structural Examples B and C.
  • the content of Al 2 O 3 is preferably 1% or more, more preferably 2% or more in the configuration example A.
  • Example B it is preferably more than 7%, more preferably 10% or more
  • Structural Example C it is preferably 10% or more, more preferably 13% or more.
  • the content of Al 2 O 3 is preferably Is 7% or less, more preferably 5% or less.
  • the configuration example B preferably 30% or less, more preferably 23% or less
  • the configuration example C preferably 30% or less, more preferably 20% or less.
  • B 2 O 3 is a component that promotes melting of the glass raw material and improves mechanical properties and weather resistance, but it does not cause inconveniences such as generation of striae due to volatilization and furnace wall erosion.
  • the content of B 2 O 3 is preferably 15% or less, more preferably 12% or less.
  • Alkali metal oxides such as Li 2 O, Na 2 O, and K 2 O are useful components for accelerating melting of glass raw materials and adjusting thermal expansion, viscosity, and the like.
  • the content of Na 2 O is preferably 3% or more, more preferably 8% or more.
  • the content of Na 2 O is preferably 7% or more, and more preferably 10% or more.
  • the content of Na 2 O is preferably 20% or less in the structural examples A and B in order to maintain the clarity during melting and maintain the foam quality of the produced glass, and 15% More preferably, the content is less than 3% in the configuration example C, and more preferably 1% or less.
  • the content of K 2 O is preferably 10% or less, more preferably 7% or less in the structural examples A and B, and preferably 2% or less, more preferably in the structural example C. 1% or less.
  • Li 2 O is an optional component, but in the structural examples A, B, and C in order to facilitate vitrification, to keep the iron content contained as impurities derived from the raw material low, and to keep the batch cost low. , Li 2 O can be contained at 2% or less.
  • the total content of these alkali metal oxides maintains the clarification at the time of melting, and maintains the foam quality of the produced glass.
  • it is 5% to 20%, more preferably 8% to 15%.
  • it is preferably 0% to 2%, more preferably 0% to 1%.
  • Alkaline earth metal oxides such as MgO, CaO, SrO, and BaO are useful components for accelerating melting of glass raw materials and adjusting thermal expansion, viscosity, and the like.
  • MgO has the effect of lowering the viscosity during glass melting and promoting melting. Moreover, since there exists an effect
  • CaO is a component that promotes melting of the glass raw material and adjusts viscosity, thermal expansion, and the like, and therefore can be contained in the structural examples A, B, and C.
  • the content of CaO is preferably 3% or more, more preferably 5% or more.
  • it is preferably 20% or less, more preferably 10% or less, and in the configuration example B, preferably 6% or less, more preferably 4% or less.
  • SrO has the effect of increasing the thermal expansion coefficient and lowering the high temperature viscosity of the glass.
  • SrO can be contained in the structural examples A, B, and C.
  • the content of SrO is preferably 15% or less in the structural examples A and C, more preferably 10% or less, and in the structural example B It is preferably 5% or less, and more preferably 3% or less.
  • BaO like SrO, has the effect of increasing the coefficient of thermal expansion and lowering the high temperature viscosity of the glass. In order to obtain the above effect, BaO can be contained. However, in order to keep the thermal expansion coefficient of the glass low, it is preferably 15% or less in Configuration Examples A and C, more preferably 10% or less, and 5% or less in Configuration Example B. Of these, 3% or less is more preferable.
  • the total content of these alkaline earth metal oxides is preferably 10 in the configuration example A in order to keep the coefficient of thermal expansion low, to improve the devitrification characteristics, and to maintain the strength.
  • % To 30% more preferably 13% to 27%.
  • In the configuration example B preferably 1% to 15%, more preferably 3% to 10%, and in the configuration example C, preferably 5%.
  • % To 30% more preferably 10% to 20%.
  • ZrO 2 is used as an optional component in order to improve the heat resistance and surface hardness of the glass, and in the structural examples A, B and C, 10% Hereinafter, it may be contained preferably 5% or less. It becomes difficult to devitrify glass by setting it as 10% or less.
  • the glass composition of the glass of the glass plate of the glass structure 12 of the present embodiment 5 to 100 ppm of Fe 2 O 3 may be contained in the structural examples A, B, and C in order to improve the solubility of the glass. .
  • the preferable range of the amount of Fe 2 O 3 is as described above.
  • the glass of the glass plate of the glass structure 12 of this embodiment may contain SO 3 as a fining agent.
  • the SO 3 content is preferably more than 0% and 0.5% or less in terms of mass percentage. 0.4% or less is more preferable, 0.3% or less is more preferable, and 0.25% or less is further preferable.
  • the glass of the glass plate of the glass structure 12 of this embodiment may contain one or more of Sb 2 O 3 , SnO 2 and As 2 O 3 as an oxidant and a fining agent.
  • the content of Sb 2 O 3 , SnO 2 or As 2 O 3 is preferably 0 to 0.5% in terms of mass percentage. 0.2% or less is more preferable, 0.1% or less is more preferable, and it is further more preferable not to contain substantially.
  • Sb 2 O 3 , SnO 2 and As 2 O 3 act as an oxidizing agent for glass, they may be added within the above range depending on the purpose of adjusting the amount of Fe 2+ in the glass. However, from the environmental aspect, it is preferable that As 2 O 3 is not substantially contained.
  • the glass of the glass plate of the glass structure 12 of this embodiment may contain NiO.
  • NiO functions also as a coloring component
  • the content of NiO is preferably 10 ppm or less with respect to the total amount of the glass composition described above.
  • NiO is preferably 1.0 ppm or less, and more preferably 0.5 ppm or less, from the viewpoint of not reducing the internal transmittance of the glass plate of the glass structure at a wavelength of 400 to 700 nm.
  • the glass of the glass plate of the glass structure 12 of the present embodiment may contain Cr 2 O 3 .
  • Cr 2 O 3 also functions as a coloring component. Therefore, the content of Cr 2 O 3 is preferably 10 ppm or less with respect to the total amount of the glass composition described above.
  • Cr 2 O 3 is preferably 1.0 ppm or less, more preferably 0.5 ppm or less, from the viewpoint of not reducing the internal transmittance of the glass plate of the glass structure at a wavelength of 400 to 700 nm. .
  • the glass of the glass plate of the glass structure 12 of the present embodiment may contain MnO 2 .
  • MnO 2 is contained, since MnO 2 functions also as a component that absorbs visible light, the content of MnO 2 is preferably 50 ppm or less with respect to the total amount of the glass composition described above.
  • MnO 2 is preferably 10 ppm or less from the viewpoint of not reducing the internal transmittance of the glass plate of the glass structure 12 at a wavelength of 400 to 700 nm.
  • Glass of the glass plate of the glass structure 12 of the present embodiment may include TiO 2.
  • TiO 2 When TiO 2 is contained, TiO 2 also functions as a component that absorbs visible light. Therefore, the content of TiO 2 is preferably 1000 ppm or less with respect to the total amount of the glass composition described above.
  • the content of TiO 2 is more preferably 500 ppm or less, and particularly preferably 100 ppm or less, from the viewpoint of not reducing the internal transmittance of the glass plate of the glass structure 12 at a wavelength of 400 to 700 nm.
  • the glass of the glass plate of the glass structure 12 of the present embodiment may include CeO 2 .
  • the CeO 2 content is more preferably 500 ppm or less, further preferably 400 ppm or less, particularly preferably 300 ppm or less, and most preferably 250 ppm or less.
  • the glass of the glass plate of the glass structure 12 of this embodiment may contain at least one component selected from the group consisting of CoO, V 2 O 5 and CuO.
  • these components When these components are contained, they also function as components that absorb visible light, and therefore the content of the components is preferably 10 ppm or less with respect to the total amount of the glass composition described above. In particular, it is preferable that these components are not substantially contained so as not to lower the internal transmittance of the glass plate of the glass structure 12 at a wavelength of 400 to 700 nm.
  • the liquid layer 50 preferably has a viscosity coefficient of 1 ⁇ 10 ⁇ 4 to 1 ⁇ 10 3 Pa ⁇ s at 25 ° C. and a surface tension of 15 to 80 mN / m at 25 ° C. If the viscosity is too low, it becomes difficult to transmit the vibration, and if it is too high, the pair of plates located on both sides of the liquid layer 50 are fixed to each other and show vibration behavior as a single plate. It becomes difficult to be attenuated. On the other hand, if the surface tension is too low, the adhesion between the plates is reduced, making it difficult to transmit vibration. If the surface tension is too high, the pair of plates located on both sides of the liquid layer 50 are easily fixed to each other, and the vibration behavior as a single plate is exhibited, so that the resonance vibration is hardly attenuated.
  • the viscosity coefficient of the liquid layer 50 at 25 ° C. is more preferably 1 ⁇ 10 ⁇ 3 Pa ⁇ s or more, and further preferably 1 ⁇ 10 ⁇ 2 Pa ⁇ s or more. Further, it is more preferably 1 ⁇ 10 2 Pa ⁇ s or less, and further preferably 1 ⁇ 10 2 Pa ⁇ s or less.
  • the surface tension of the liquid layer 50 at 25 ° C. is more preferably 20 mN / m or more, and further preferably 30 mN / m or more.
  • the viscosity coefficient of the liquid layer 50 can be measured with a rotational viscometer or the like.
  • the surface tension of the liquid layer 50 can be measured by a ring method or the like.
  • the liquid layer 50 has a vapor pressure of 1 ⁇ 10 4 Pa or less, preferably 5 ⁇ 10 3 Pa or less, more preferably 1 ⁇ 10 3 Pa or less at 25 ° C. and 1 atm.
  • the thickness of the liquid layer 50 is 1 of the total thickness of the two plates. / 10 or less, more preferably 1/20 or less, even more preferably 1/30 or less, even more preferably 1/50 or less, even more preferably 1/70 or less, and particularly preferably 1/100 or less.
  • the thickness of the liquid layer 50 is preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less, further preferably 30 ⁇ m or less, still more preferably 20 ⁇ m or less, and more preferably 15 ⁇ m or less. More preferably, it is 10 ⁇ m or less.
  • the lower limit of the thickness of the liquid layer 50 is preferably 0.01 ⁇ m or more from the viewpoint of film forming properties and durability.
  • the liquid layer 50 is chemically stable and the liquid layer 50 and the two plates located on both sides of the liquid layer 50 do not react.
  • “Chemically stable” means, for example, a material that is hardly altered (deteriorated) by light irradiation, or that does not undergo solidification, vaporization, decomposition, discoloration, chemical reaction with glass, etc. in a temperature range of at least ⁇ 20 to 70 ° C. To do.
  • liquid layer 50 As the components of the liquid layer 50, as described above, water, oil, organic solvent, liquid polymer, ionic liquid, or a mixture thereof may be used.
  • silicone oil dimethyl silicone oil, methylphenyl silicone oil, methyl hydrogen silicone oil
  • modified silicone oil acrylic acid polymer, liquid polybutadiene, glycerin
  • pastes fluorine-based solvents, fluorine-based resins, acetone, ethanol, xylene, toluene, water, mineral oil, and mixtures thereof.
  • the main component is propylene glycol or silicone oil. More preferred.
  • the liquid layer 50 is preferably a uniform liquid.
  • the slurry is effective when the glass component 12 is provided with designability and functionality such as coloring and fluorescence. is there.
  • the content of the powder in the liquid layer 50 is preferably 0 to 10% by volume, and more preferably 0 to 5% by volume.
  • the particle size of the powder is preferably 10 nm to 10 ⁇ m, more preferably 0.5 ⁇ m or less, from the viewpoint of preventing sedimentation.
  • the liquid layer 50 may contain a fluorescent material.
  • the slurry-like liquid layer 50 in which the fluorescent material is dispersed as a powder or the uniform liquid layer 50 in which the fluorescent material is mixed as a liquid may be used. Thereby, optical functions such as light absorption and light emission can be imparted to the glass structure 12.
  • the glass structure 12 according to the present embodiment can be obtained by forming the liquid layer 50 between the first plate 51a and the second plate 51b.
  • the glass structure 12 can be made into a desired size by cutting a glass material having a thickness corresponding to the glass structure thickness of the first plate 51a and the second plate 51b, for example.
  • a method for cutting the glass material for example, a scribe cleaving method or a laser cutting method can be performed.
  • the method for forming the liquid layer 50 between the first plate 51a and the second plate 51b is not particularly limited.
  • the liquid layer 50 is formed on the surface of the first plate 51a, and the second layer is formed thereon.
  • the mirror surface processing is performed on the light receiving surface 28. Thereby, the light-receiving surface 28 having a surface roughness Ra of 0.1 ⁇ m or less can be formed.
  • polishing is performed between the light receiving surface 28 and the light emitting surface 26 and between the light receiving surface 28 and the light reflecting surface 32 as necessary.
  • the inclined surface 52 and the inclined surface 62 as shown in FIG. 3 are formed.
  • the polishing process for forming the inclined surface 52 and the inclined surface 62 may be performed before the mirror surface processing for the light receiving surface 28 or may be performed simultaneously with the mirror surface processing for the light receiving surface 28.
  • a grindstone may be used as a tool for performing a grinding process or a polishing process, and a buff or brush made of cloth, leather, rubber, or the like is used in addition to the grindstone.
  • an abrasive such as cerium oxide, alumina, carborundum, colloidal silica, or the like may be used.
  • a grindstone it is preferable to use as the polishing tool.
  • the glass structure 12 is manufactured by the above process.
  • the transparent resin layer 21 can be formed on the light emitting surface 26 or the light reflecting surface 32 after the glass structure 12 is manufactured by a coating method, a printing method, or the like, or the reflecting sheet 20 or the optical sheet.
  • the transparent resin layer 21 can be formed on 22, and can be formed by bonding with the glass structure 12 later.
  • the reflective dots 24 can be formed on the light reflecting surface 32 by a printing method or the like after the glass structure 12 is manufactured.
  • an edge between the surfaces for example, between the light emitting surface 26 and each of the end surfaces 34, 36 and 38, between the light reflecting surface 32 and each of the end surfaces 34, 36 and 38, and further, an end surface 34 is provided.
  • the edges of the glass structure 12 between 36 and 38 may be appropriately chamfered.
  • the planar light-emitting device 14 when used as a light guide plate having a function as a vibration plate, it has a predetermined luminance distribution and the entire device. It is possible to provide the glass structure 12 as a speaker or microphone diaphragm that achieves space saving and improvement in timbre.
  • SYMBOLS 10 Liquid crystal display device, 12 ... Glass structure, 14 ... Planar light-emitting device, 16 ... Liquid crystal panel, 18 ... Light source, 20 ... Reflective sheet, 21 ... Transparent resin layer, 22 ... Various optical sheets, 24 ... Reflective dot, 26 ... light emitting surface, 28 ... light receiving surface, 32 ... light reflecting surface, 34, 36 and 38 ... end surface, 50 ... liquid layer, 51a ... first plate, 51b ... second plate, 52 and 62 ... tilted surface 53 ... Sealing material 54 ... Vibrator 55 ... Locking part 60 ... Housing

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Planar Illumination Modules (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Liquid Crystal (AREA)
  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)
  • Diaphragms For Electromechanical Transducers (AREA)

Abstract

本発明は、ガラス板である第1の板と、ガラス板又は樹脂板である第2の板と、前記第1の板と前記第2の板との間に封止して形成される液体層と、前記第1の板又は前記第2の板に直接又は間接的に取り付けられた振動子と、を有する、振動板として機能する導光板に関する。

Description

振動板として機能する導光板
 本発明は、バックライトを構成する導光板として機能し、かつ良好な音響性能を有するスピーカ又はマイクロフォンの振動板として機能する導光板に関する。
 液晶テレビ、デジタルサイネージ等に代表される液晶表示装置は、バックライトを構成する面状発光装置と、面状発光装置の光出射面に対向して配置される液晶パネルとを備える。面状発光装置は直下型とエッジライト型とがあるが、光源の小型化を図ることができるエッジライト型が多用されている。エッジライト型の面状発光装置は、光源、導光板、反射シート、及び各種光学シート(拡散シート・輝度向上シート等)等を有している。
 エッジライト型の導光板に導光板以外の特性を持たせて装置のコンパクト化を図った開発も行われており、特許文献1には、エッジライト型の導光板に振動板としての機能を持たせたガラス構成体が開示されている。導光板に振動板としての機能を持たせる場合、振動板としてそれ専用の部材を用いる必要が無いので、装置全体の厚さの低減を図ることができる。
 また、特許文献2には、スピーカ又はマイクロフォン用の振動板として、ガラス板を用いたガラススピーカが記載されている。特許文献2に記載の構成によれば、ガラス板を用いたスピーカ用の振動板により、可聴帯域全体をカバーすることができるとされている。
日本国特開2007-72018号公報 日本国特開平5-227590号公報
 しかし、特許文献1に記載されるように、導光板に振動板としての機能を持たせた場合に、導光板として必要な輝度を維持しつつ、共振振動による音の劣化を改善することができない、といった課題があった。
 本発明は、面状発光装置に用いられる導光板であって、良好な音響性能を有し、音色の向上を達成することができるスピーカ又はマイクロフォンの振動板として機能する導光板を提供することを目的とする。
 本発明のある態様によれば、
 ガラス板である第1の板と、
 ガラス板である第2の板と、
 前記第1の板と前記第2の板との間に封止して形成される液体層と、
 前記第1の板又は前記第2の板に直接又は間接的に取り付けられた振動子と、
を有する、振動板として機能する導光板が提供される。
 また、本発明のある態様によれば、
 ガラス板である第1の板と、
 樹脂板である第2の板と、
 前記第1の板と前記第2の板との間に封止して形成される液体層と、
 前記第1の板又は前記第2の板に直接又は間接的に取り付けられた振動子と、
を有する、振動板として機能する導光板が提供される。
 本発明によれば、面状発光装置に用いられる導光板であって、良好な音響性能を有し、音色の向上を達成することができるスピーカ又はマイクロフォンの振動板として機能する導光板を提供することができる。
図1は本実施形態における液晶表示装置の構成の一例を示す側面図である。 図2はガラス構成体の一例を示す図である。 図3はガラス構成体の他の例を示す側面図である。 図4はガラス構成体の他の例を示す側面図である。 図5はガラス構成体の他の例を示す側面図である。 図6は本実施形態における液晶表示装置の構成の他の例を示す側面図である。
 次に、添付図面を参照しながら、本発明の好ましい実施形態について説明する。なお、図面中の記載において、同一又は対応する部材又は部品には、同一又は対応する符号を付すことにより、重複する説明を省略する。また、図面は、特に指定しない限り、部材又は部品間の相対比を示すことを目的としない。よって、具体的な寸法は、以下の限定的でない実施形態に照らし、当業者により決定することができる。
 〈液晶表示装置10〉
 図1は、本実施形態における液晶表示装置10の構成の一例を示す側面図である。
 液晶表示装置10は、面状発光装置14と、液晶パネル16とを含む。液晶表示装置10は、例えば液晶テレビ、デジタルサイネージ等の薄型化が図られた電子機器に搭載される。面状発光装置14は、ガラス構成体12(振動板として機能する導光板)を含む。本実施形態において、ガラス構成体12は、ガラス導光板として用いることができる。なお、図1において、後述する液体層50は、液晶パネル16と平行となる位置に配置しているが、垂直となる位置に配置してもよい。
 〈液晶パネル16〉
 液晶パネル16は、厚さ方向の中央に配設される液晶層を挟むように配向層、透明電極、ガラス基板及び偏光フィルターが積層されて構成される。また、液晶層の片面には、カラーフィルターが配設されている。液晶層の分子は、透明電極に駆動電圧を印加することにより配光軸周りに回転し、これにより所定の表示を行う。
 〈面状発光装置14〉
 本実施形態の面状発光装置14は、エッジライト型とすることができる。これにより、薄型化を図ることができる。面状発光装置14は、光源18、ガラス構成体12、反射シート20、透明樹脂層21、各種光学シート22及び反射ドット24を含む。また、透明樹脂層21は片面のみでなく両面に形成されていてもよく、また透明樹脂層21は、反射シート20、又は光学シート22の一部と接着されても良い。
 〈光源18〉
 光源18は、特に限定されるものではないが、LED(Light Emitting Diode)、熱陰極管、又は冷陰極管を用いることができる。光源18は、ガラス構成体12の受光面28と対向する位置に配置される。また、光源18の背面側にリフレクタ(不図示)が設けられることによって、光源18から放射状に発射される光のガラス構成体12への入射効率が高められている。
 〈ガラス構成体12〉
 ガラス構成体12について、図2を参照して説明する。図2の(a)は、本実施形態におけるガラス構成体12の構成の一例を示す側面図である。図2の(b)は、ガラス構成体12の構成の一例を示す斜視図である。
 ガラス構成体12は、第1の板51aと、第1の板51aに対向する対向板である第2の板51bと、液体層50と、シール材53と、振動子54とを含む。第1の板51a及び第2の板51bのいずれか一方は、ガラス板とすることができ、他方はガラス板又は樹脂板とすることができる。ここでは、第1の板51aがガラス板、第2の板51bがガラス板又は樹脂板である場合を例として説明するが、逆であってもよい。ガラス構成体12は、第1の板51a及び第2の板51bで液体層50を挟み、シール材53で液体層50を封止した構成を有する。ガラス構成体12は、光出射面26と光反射面32との間に、光出射面26及び光反射面32に対して略垂直に設けられ、光源18から照射される光を受光する受光面28と、端面34、36及び38とを含む。なお、図2の(b)では、シール材53の図示を省略している。第2の板51bを樹脂板で構成する場合、樹脂板は、アクリル系樹脂、ポリイミド樹脂、ポリカーボネート樹脂及びPET樹脂のいずれかから適宜選択されることが好ましい。
 光出射面26は、液晶パネル16と対向する面である。本実施形態では、光出射面26を平面視において矩形状としているが、光出射面26の形状はこれに限定されるものではない。また、光出射面26の大きさは、液晶パネル16に対応して決定されるため、特に限定されるものではない。ガラス構成体12は高い剛性を有するため、サイズが大きいほどその効果を発揮する。
 光反射面32は、光出射面26の反対側の面である。光反射面32は、光出射面26に対して略平行となるよう構成されている。また、光反射面32の形状及びサイズは、光出射面26と同一となるよう構成されている。
 ただし、光反射面32は光出射面26に対して必ずしも平行とする必要はなく、例えば、後述するように、傾斜面52や傾斜面62を設けた構成としてもよい。また、光反射面32のサイズも光出射面26と異なるサイズとしてもよい。
 受光面28は、光源18と対向する、ガラス構成体12の入光端面である。端面34、36及び38は、受光面28を除くガラス構成体12の非入光端面である。端面38は、受光面28の反対側の面である。端面34及び36は、互いに対向し、それぞれ光出射面26と光反射面32との間に設けられる。
 受光面28は、ガラス構成体12を構成するガラス板の製造時に鏡面加工される。受光面28の表面粗さRaは、光源18からの光をガラス構成体12の内部に有効に入光させるために0.1μm以下であり、好ましくは0.03μm未満であり、さらに好ましくは0.001μm以下であり、特に好ましくは0.0005μm以下である。これにより、光源18からガラス構成体12の内部に入光される光の入光効率が高められている。
 ガラス構成体12の端面34、36及び38は、光源18からの光が入光されないため、その表面を受光面28ほどに高精度に加工する必要はなく、その表面粗さRaは、0.8μm以下であればよい。ただし、端面で光が散乱されて輝度ムラが生じるのを抑制するために、端面34、36及び38の表面粗さRaは、好ましくは0.4μm以下であり、さらに好ましくは0.1μm以下である。ただし、端面34、36及び38の表面粗さRaは、生産効率を向上させる観点から受光面28の表面粗さRaと同等としてもよい。なお、本明細書において、表面粗さRaと記載した場合、JIS B 0601―2001およびJIS B 0031―2003による算術平均粗さ(中心線平均粗さ)を指すものとする。
 また、図3に示すように、受光面28と光出射面26との間、及び受光面28と光反射面32との間に傾斜面が設けられても良い。すなわち、受光面28と光出射面26との間で、受光面28及び光出射面26に隣接して傾斜面52が設けられる。同様に、光反射面32と受光面28との間で、受光面28及び光反射面32に隣接して傾斜面62が設けられる。このような傾斜面を設けることにより、ガラス構成体12に入射する入射光を所定の領域に進行させることができる。
 ガラス構成体12を構成するガラス板としては、物理強化ガラス板や化学強化ガラス板を用いることもできる。これは、ガラス構成体12の破壊を防ぐのに有用である。ガラス構成体12の強度を高めたい場合には、ガラス構成体12の最表面に位置するガラス板を物理強化ガラス板又は化学強化ガラス板とすることが好ましく、構成するガラス板の全てが物理強化ガラス板又は化学強化ガラス板であることがより好ましい。
 また、ガラス板として、結晶化ガラスや分相ガラスを用いることも、縦波音速値や強度を高める点から有用である。特に、ガラス構成体12の強度を高めたい場合には、ガラス構成体12の最表面に位置するガラス板を結晶化ガラス又は分相ガラスとすることが好ましい。
 ガラス構成体12を構成する液体層50は、第1の板51aと第2の板51bの間にシール材53によって封止して形成される。液体層50の成分としては、具体的には、水、オイル、有機溶剤、液状ポリマー、イオン性液体又はそれらの混合物等が挙げられる。
 第1の板51aと第2の板51bとの間を封止するシール材53は、液体層50をこれら2枚の板の間に封止するように設けられる。
 シール材53は、ポリ酢酸ビニル系、ポリ塩化ビニル系、ポリビニルアルコール系、エチレン共重合体系、ポリアクリル酸エステル系、シアノアクリレート系、飽和ポリエステル系、ポリアミド系、線状ポリイミド系、メラミン樹脂、尿素樹脂、フェノール樹脂、エポキシ系、ポリウレタン系、不飽和ポリエステル系、反応性アクリル系、ゴム系、シリコーン系、変性シリコーン系からなる群より選ばれる少なくとも1種を含むことが好ましい。
 ガラス構成体12は、少なくとも1枚以上のガラス板によって構成されるが、2枚以上のガラス板を用いてもよく、3枚以上のガラス板を用いてもよい。2枚の場合はガラス板A及びガラス板Bが、3枚以上の場合は例えばガラス板A、ガラス板B及びガラス板Cが、すべて異なる組成のガラス板を用いてもよく、またすべて同じ組成のガラス板を用いてもよく、同じ組成のガラス板と異なる組成のガラス板を組み合わせてもよい。中でも異なる組成からなる2種類以上のガラス板を用いることが振動減衰性の点から好ましく用いられる。
 ガラス板の質量や厚みについても同様に、すべて異なっても、すべて同一でも、一部が異なっていてもよい。中でも、構成するガラス板の質量が全て同一であることが振動減衰 性の点から好ましく用いられる。
 ガラス構成体12は、液体層50をガラス板等の板表面に対して平行のみでなく、垂直、斜め又はねじれの位置に配置してもよい。図4は、液体層50を第1の板51a及び第2の板51bに対して斜めに設けた例を示す。また、図5に示すように、ガラス構成体12は、液体層50を複数有する構成をとることもできる。例えば、図5の(a)に示した構成では、ガラス構成体12は、第1の板51a及び第2の板51bに加えて、第3の板51cを有することができる。この場合、第1の板51a、第2の板51b及び第3の板51cのいずれか一つはガラス板とすることができ、残りはガラス板又は樹脂板とすることができる。また、図5の(b)に示した構成では、ガラス板等の板表面に垂直な方向に複数の液体層50が設けられている。さらに、図5の(c)に示した構成では、ガラス板等の板表面に斜め方向に複数の液体層50が設けられている。
 ガラス構成体12は、係止部55によって1か所、あるいは複数箇所で係止されうる。また、図5の(c)に示すように、係止部55は、ガラス構成体12のみを係止するだけでなく、ガラス構成体12及び光源18を合わせて支持する支持部材として構成されてもよい。係止部55は液晶表示装置10を構成するハウジング60(図1参照)の一部に取り付けられ、ガラス構成体12を支持する。ガラス構成体12は、係止部55を介して、ハウジング60に直接又は間接的に係止されることが好ましい。
 図1及び図2に戻り、ガラス構成体12は、振動子54によって振動する機能を有する。振動子54は、第1の板51a又は第2の板51bに直接取り付けられてもよいし、係止部55に取り付けられてもよい。またガラス構成体12は、振動周波数を検出して振動を抑制する振動抑制機能を有しても良い。振動抑制機能によってガラス構成体12の振動の減衰を防ぎ、所定の振動数を維持できる構造とすることができる。振動子54は、電磁アクチュエーターのほか、ピエゾ素子や水晶振動子、セラミック発振子、圧電素子、磁歪素子等、所定の可聴帯域の振動数を安定して発振するものであればよい。
 図6は、液晶表示装置10の構成の他の例を示す図である。図6の(a)及び(b)に示すように、ガラス構成体12は、受光面28を有する第1の板51aと、受光面28の外に追加された第2の板51bとを含み、液体層50を第1の板51aと第2の板51bとの間に封止して形成されるものであってもよい。すなわち、液体層50を有しない導光板(第1の板51a)がガラス板であれば、液体層50を介して新たにガラス板又は樹脂板(第2の板51b)を配置してもよく、液体層50を有しない導光板(第1の板51a)が樹脂板であれば、液体層50を介して新たにガラス板(第2の板51b)を配置してもよい。
 〈反射シート20〉
 反射シート20は、アクリル樹脂等の樹脂シートの表面に光反射部材を被膜することにより構成される。反射シート20は、ガラス構成体12の光反射面32に対向するように配設される。加えて、反射シート20は、端面34、36及び38に配設されてもよい。反射シート20は、いずれも、ガラス構成体12から空間を空けて配設されてもよいし、ガラス構成体12に粘着性の透明樹脂層によって貼合されてもよい。
 なお、反射シート20を端面34、36及び38に配設する場合は、端面34、36及び38のうち、少なくとも受光面28に対向する端面38に配設すればよい。これにより、受光面28から入射した光は、ガラス構成体12の内部で繰り返し全反射されながら光源18から離れる方向へ(図1における右方向に向けて)進行し、端面38に到達した際に、反射シート20によってガラス構成体12の内部に再度反射される。また、反射シート20を端面34及び36にも配設した場合には、ガラス構成体12の内部で散乱した光を、端面34及び36に到達した際に、反射シート20によってガラス構成体12の内部に再度反射させることができる。これにより、光源18の光量を有効利用することができる。
 反射シート20を構成する樹脂シートの材質として、アクリル樹脂を例示するが、これに限定されず、例えば、PET樹脂等のポリエステル樹脂、ウレタン樹脂、及びそれらを組み合わせてなる材料等を用いることができる。反射シート20を構成する光反射部材としては、例えば、樹脂に気泡や粒子を内包させた膜や、金属蒸着膜等を用いることができる。
 反射シート20には粘着性の透明樹脂層が設けられ、ガラス構成体12に貼合されてもよい。反射シート20に設けられる粘着性の透明樹脂層としては、例えば、アクリル樹脂、シリコーン樹脂、ウレタン樹脂、合成ゴム等を用いることができる。反射シート20の厚さは特に限定されないが、例えば0.01~0.50mmのものを用いることができる。
 〈透明樹脂層21〉
 透明樹脂層21は、ガラス構成体12の表面を傷から保護するためのハードコート層、反射防止膜(ARコート)、粘着層、レンチキュラー層、又は帯電防止膜(帯電防止コート)等とすることができる。透明樹脂層21は、スプレーコート等のコート法により塗布、又は、スキージ法により塗布、又は、インプリント法によりモールドを押圧、又は、グラビア印刷等の印刷法により印刷した後、紫外線照射、又は、加熱することにより形成されるものであってもよい。
 〈各種光学シート22〉
 各種光学シート22は、拡散シート、輝度向上シート、又はレンチキュラーシート等とすることができる。各種光学シート22としては、乳白色のアクリル樹脂製フィルム等を用いることができる。各種光学シート22は、ガラス構成体12の光出射面26から出射した光を拡散するため、液晶パネル16の背面側には輝度ムラのない均一な光が照射される。なお、各種光学シート22は、ガラス構成体12に当接しないよう所定位置に対向して配設されていても良いし、ガラス構成体12に透明樹脂層21を介して貼合されてもよい。
 〈反射ドット24〉
 光反射面32には、複数の円形状の反射ドット24が備えられる。図1では、反射ドット24をまとめて記載しているが、複数の反射ドットは、碁盤目状に配置してもよく、その他の任意のパターンに配置してもよいし、ランダムに配置してもよいが、光出射面26から出射する光の輝度の分布が均一になるよう、適宜調整される。反射ドット24は、樹脂をドット状に印刷等の方法で形成したものであり、散乱粒子又は気泡を含有していてもよい。
 なお、受光面28から入射した光の輝度は、ガラス構成体12の内部で繰り返し反射しながら進行するに従い漸次低下していく。そのため、本実施形態において、受光面28から端面38に向けて、反射ドット24の大きさを異ならせてもよい。具体的には、受光面28に近い領域における反射ドット24の直径は小さく設定し、これより光の進行方向に向かうに従い反射ドット24の直径が大きくなるよう設定することができる。反射ドット24の直径は、光出射面26から出射する光の輝度の分布が均一になるよう、適宜調整される。
 このように、反射ドット24の大きさをガラス構成体12の内部の光の進行方向に向けて変化させることにより、光出射面26から出射する出射光の輝度を均一化でき、輝度ムラの発生を抑制することができる。なお、反射ドット24の大きさを変えることに代えて、反射ドット24の数密度をガラス構成体12の内部の光の進行方向に向けて変化させることによっても、同等の効果を得ることができる。また、反射ドット24に代えて、入射した光を反射するような溝を光反射面32に形成することによっても、同等の効果を得ることができる。
 以上のように構成された面状発光装置14において、光源18からガラス構成体12の内部に入射した光は、ガラス構成体12の光出射面26の内面、及び光反射面32の内面にて繰り返し全反射されながら進行する。また、反射ドット24及び反射シート20によって進行方向を変えた光が、ガラス構成体12の液晶パネル16と対向した光出射面26から外部に出射される。外部に出射された光は、各種光学シート22によって拡散された後、液晶パネル16に入射する。そして振動子54によってガラス構成体12は所定の振動数で振動し、スピーカ又はマイクロフォン用の振動板として作用する。なお、図示していないが、液晶表示装置10は、スピーカ又はマイクロフォンの機能を有する。
 〈ガラス構成体12の物性〉
 次に、ガラス構成体12の物性について説明する。
 ガラス構成体12は2枚の板(少なくとも1枚をガラス板とする)によって液体層50を封止する構造をとるが、ガラス構成体12は、2枚の板の各々の端面をずらして配置することにより、断面視において階段状を呈する段差部を構成していてもよい。この構成により、低共振特性を確保しつつ、強度に優れたガラス構成体12が実現される。一方の板を板A、他方を板Bとすると板Aが共振した場合に、液体層50の存在により、板Bが共振しない、又は板Bの共振の揺れを減衰することができる。
 本実施形態に係るガラス構成体12は、25℃における損失係数が1×10-2以上、かつ、板厚方向の縦波音速値が5.5×10m/s以上であることが好ましい。なお、損失係数が大きいとは振動減衰能が大きいことを意味する。
 損失係数とは、半値幅法により算出したものを用いる。材料の共振周波数f、振幅hであるピーク値から-3dB下がった点(すなわち、最大振幅-3[dB]における点)の周波数幅をWとしたときに、{W/f}で表される値を損失係数と定義する。
 共振を抑えるには、損失係数を大きくすればよく、すなわち、振幅hに対し相対的に周波数幅Wは大きくなり、ピークがブロードとなることを意味する。
 損失係数は材料等の固有の値であり、例えばガラス板単体の場合にはその組成や相対密度等によって異なる。なお、損失係数は共振法などの動的弾性率試験法により測定することができる。
 縦波音速値とは、振動板中で縦波が伝搬する速度をいう。縦波音速値及びヤング率は、日本工業規格(JIS-R1602-1995)に記載された超音波パルス法により測定することができる。
 本実施形態に係るガラス構成体12は、少なくとも2枚の板の間に液体からなる層(液体層50)を設けることで、高い損失係数を実現することができる。中でも、液体層50の粘性や表面張力を好適な範囲にすることで、より損失係数を高くすることができる。
 ガラス構成体12を構成する2枚の板のうち、一方の板Aと他方の板Bの共振周波数のピークトップの値は異なることが好ましく、共振周波数の範囲が重なっていないものがより好ましい。ただし、板A及び板Bの共振周波数の範囲が重複していたり、ピークトップの値が同じであっても、液体層50の存在によって、一方の板が共振しても、他方の板の振動が同期しないことで、ある程度共振が相殺されることから、ガラス板単独の場合に比べて高い損失係数を得ることができる。
 すなわち、板Aの共振周波数(ピークトップ)をQa、共振振幅の半値幅をwa、他方の板Bの共振周波数(ピークトップ)をQb、共振振幅の半値幅をwbとした時に、下記[式1]の関係を満たすことが好ましい。
(wa+wb)/4<|Qa-Qb|・・・[式1]
 上記[式1]における左辺の値が大きくなるほど板Aと板Bとの共振周波数の差異(|Qa-Qb|)が大きくなり、高い損失係数が得られるようになることから好ましい。
 そのため、下記[式1’]を満たすことがより好ましく、下記[式1”]を満たすことがより好ましい。
(wa+wb)/2<|Qa-Qb|・・・[式1’]
(wa+wb)/1<|Qa-Qb|・・・[式1”]
 なお、ガラス板の共振周波数(ピークトップ)及び共振振幅の半値幅は、ガラス構成体12における損失係数と同様の方法で測定することができる。
 板A及び板Bは、質量差が小さいほど好ましく、質量差がないことがより好ましい。板の質量差がある場合、軽い方の板の共振は重い方の板で抑制することはできるが、重い方の板の共振を軽い方の板で抑制することは困難である。すなわち、質量比に偏りがあると、慣性力の差異により原理的に共振振動を互いに打ち消せなくなるためである。
 (板A/板B)で表される板A及び板Bの質量比は0.8~1.25(8/10~10/8)が好ましく、0.9~1.1(9/10~10/9) がより好ましく、1.0(10/10)がさらに好ましい。
 板A及び板Bの少なくともいずれか一方の板は、損失係数が大きい方が、ガラス構成体12としての振動減衰も大きくなり、振動板用途として好ましい。具体的には、25℃における損失係数は1×10-4以上が好ましく、3×10-4以上がより好ましく、5×10-4以上がさらに好ましい。上限は特に限定されないが、生産性や製造コストの観点から5×10-3以下であることが好ましい。また、板A及び板Bの両方が、上記損失係数を有することがより好ましい。なお、ガラス板の損失係数は、ガラス構成体12における損失係数と同様の方法で測定することができる。
 また、振動減衰を大きくするためにガラス構成体12における損失係数を大きくすることが好ましい。本実施形態に係るガラス構成体12の25℃における損失係数は1×10-2以上であり、好ましくは2×10-2以上、より好ましくは5×10-2以上である。
 また、ガラス構成体12の板厚方向の縦波音速値は、音速が速いほど振動板とした際に高周波音の再現性が向上することから、好ましくは5.5×10m/s以上であり、より好ましくは5.7×10m/s以上、さらにより好ましくは6.0×10m/s以上である。上限は特に限定されないが、7.0×10m/s以下が好ましい。
 ガラス構成体12の直線透過率が高いと、透光性の部材としての適用が可能となる。そのため、日本工業規格(JIS―R3106-1998)に準拠して求められた可視光透過率が70%以上であることが好ましく、80%以上がより好ましく、90%以上がさらに好ましい。
 ガラス構成体12の透過率を高めるために、屈折率を整合させることも有用である。すなわち、ガラス構成体12を構成するガラス板等の板と液体層50との屈折率は近いほど、界面における反射及び干渉が防止されることから好ましい。中でも液体層50の屈折率と液体層50に接する一対の板の屈折率との差(液体層50の屈折率と板Aの屈折率との差、及び、液体層50の屈折率と板Bの屈折率との差)がいずれも0.2以下が好ましく、0.1以下がより好ましく、0.01以下であることがさらにより好ましい。
 ガラス構成体12を構成するガラス板の少なくとも1枚及び液体層50の少なくともいずれか一方に着色することも可能である。これは、ガラス構成体12に意匠性を持たせたい場合や、IRカット、UVカット等の光学的機能性を持たせたい場合に有用である。
 板A及び板Bの少なくともいずれか一方の板は、板厚方向の縦波音速値が高い方が高周波領域の音の再現性が向上することから、振動板用途として好ましい。具体的には、ガラス板の縦波音速値が5.0×10m/s以上が好ましく、5.5×10m/s以上がより好ましく、6.0×10m/s以上がさらに好ましい。上限は特に限定されないが、ガラス板の生産性や原料コストの観点から7.0×10m/s以下が好ましい。また、板A及び板Bの少なくともどちらかが、上記音速値を満たすことがより好ましい。なお、ガラス板の音速値は、ガラス構成体12における縦波音速値と同様の方法で測定することができる。
 ガラス構成体12の第1の板51a及び第2の板51bの少なくとも一方は、透明度の高いガラス板又は樹脂板によって構成されている。実施形態では、ガラス構成体12のガラス板として用いられるガラスの材料として、多成分系の酸化物ガラスが用いられている。
 具体的には、ガラス構成体12のガラス板として、50mm長での、波長400~700nmにおける平均内部透過率が90%以上であるガラスを用いることが好ましい。これにより、ガラス構成体12に入射した光の減衰を極力抑えることができる。50mm長での透過率は、ガラス構成体12を主平面に垂直な方向で割断することにより、当該ガラス構成体12の中心部分から、縦50mm×横50mmの寸法で採取され、相互に対向する第1及び第2の割断面が、算術平均粗さRa≦0.03μmとなるようにされたサンプルAにおいて、前記第1の割断面から法線方向の50mm長で、50mm長での測定が可能な分光測定装置(たとえば、UH4150:日立ハイテクノロジーズ社製)によって、スリット等で入射光のビーム幅を板厚よりも狭くしたうえで、測定する。このようにして得られた50mm長での透過率から、表面での反射による損失を除去することにより、50mm長での内部透過率が得られる。50mm長での、波長400~700nmにおける平均内部透過率は、92%以上が好ましく、95%以上がより好ましく、98%以上が更に好ましく、99%以上が特に好ましい。
 ガラス構成体12のガラス板として用いられるガラスの鉄の含有量の総量Aは、100質量ppm以下であることが、上述した50mm長での波長400~700nmにおける平均内部透過率を満たすうえで好ましく、40質量ppm以下であることがより好ましく、20質量ppm以下であることがさらに好ましい。一方、ガラス構成体12のガラス板として用いられるガラスの鉄の含有量の総量Aは、5質量ppm以上であることが、多成分系の酸化物ガラス製造時において、ガラスの溶解性を向上させるうえで好ましく、8質量ppm以上であることがより好ましく、10質量ppm以上であることがさらに好ましい。なお、ガラス構成体12のガラス板として用いられるガラスの鉄の含有量の総量Aは、ガラス製造時に添加する鉄の量により調節できる。
 本明細書においては、ガラスの鉄の含有量の総量Aを、Feの含有量として表しているが、ガラス中に存在する鉄がすべてFe3+(3価の鉄)として存在しているわけではない。通常、ガラス中にはFe3+とFe2+(2価の鉄)が同時に存在している。Fe2+及びFe3+は、波長400~700nmの範囲に吸収が存在するが、Fe2+の吸収係数(11cm-1 Mol-1)はFe3+の吸収係数(0.96cm-1 Mol-1)よりも1桁大きいため、波長400~700nmにおける内部透過率をより低下させる。そのため、Fe2+の含有量が少ないことが、波長400~700nmにおける内部透過率を高めるうえで好ましい。
 ガラス構成体12のガラス板として用いられるガラスのFe2+の含有量Bは、20質量ppm以下であることが、有効光路長で上述した可視光域の平均内部透過率を満たすうえで好ましく、10質量ppm以下であることがより好ましく、5質量ppm以下であることがさらに好ましい。一方、ガラス構成体12のガラス板として用いられるガラスのFe2+の含有量Bは、0.01質量ppm以上であることが、多成分系の酸化物ガラス製造時において、ガラスの溶解性を向上させるうえで好ましく、0.05質量ppm以上であることがより好ましく、0.1質量ppm以上であることがさらに好ましい。
 なお、ガラス構成体12のガラス板として用いられるガラスのFe2+の含有量は、ガラス製造時に添加する酸化剤の量、又は溶解温度等により調節できる。ガラス製造時に添加する酸化剤の具体的な種類とそれらの添加量については後述する。Feの含有量Aは、蛍光X線測定によって求めた、Feに換算した全鉄の含有量(質量ppm)である。Fe2+の含有量BはASTM C169-92(2011)に準じて測定した。なお、測定したFe2+の含有量はFeに換算して表記した。
 ガラス構成体12のガラス板として用いられるガラスの組成の具体例を以下に示す。但し、ガラス構成体12のガラス板として用いられるガラスの組成はこれらに限定されない。
 ガラス構成体12のガラス板として用いられるガラスの一構成例(構成例A)は、酸化物基準の質量百分率表示で、SiOを60~80%、Alを0~7%、MgOを0~10%、CaOを0~20%、SrOを0~15%、BaOを0~15%、NaOを3~20%、KOを0~10%、Feを5~100質量ppm含む。
 ガラス構成体12のガラス板として用いられるガラスの別の一構成例(構成例B)は、酸化物基準の質量百分率表示で、SiOを45~80%、Alを7%超30%以下、Bを0~15%、MgOを0~15%、CaOを0~6%、SrOを0~5%、BaOを0~5%、NaOを7~20%、KOを0~10%、ZrOを0~10%、Feを5~100質量ppm含む。
 ガラス構成体12のガラス板として用いられるガラスのさらに別の一構成例(構成例C)は、酸化物基準の質量百分率表示で、SiOを45~70%、Alを10~30%、Bを0~15%、MgO、CaO、SrO及びBaOを合計で5~30%、LiO、NaO及びKOを合計で0%以上、3%未満、Feを5~100質量ppm含む。
 しかしながら、ガラス構成体12のガラス板として用いられるガラスはこれらに限定されるものではない。
 上記した成分を有する本実施形態のガラス構成体12のガラス板のガラスの組成の各成分の組成範囲について、以下に説明する。なお、各組成の含有量の単位はいずれも酸化物基準の質量百分率表示又は質量ppm表示であり、それぞれ単に「%」、「ppm」と表す。
 SiOは、ガラスの主成分である。
 SiOの含有量は、ガラスの耐候性、失透特性を保つため、構成例Aにおいては、好ましくは60%以上、より好ましくは63%以上であり、構成例Bにおいては、好ましくは45%以上、より好ましくは50%以上であり、構成例Cにおいては、好ましくは45%以上、より好ましくは50%以上である。
 一方、SiOの含有量は、溶解を容易にし、泡品質を良好なものとするために、またガラス中の二価鉄(Fe2+)の含有量を低く抑え、光学特性を良好なものとするため、構成例Aにおいては、好ましくは80%以下、より好ましくは75%以下であり、構成例Bにおいては、好ましくは80%以下、より好ましくは70%以下であり、構成例Cにおいては、好ましくは70%以下、より好ましくは65%以下である。
 Alは、構成例B及びCにおいてはガラスの耐候性を向上させる必須成分である。本実施形態のガラスにおいて実用上必要な耐候性を維持するためには、Alの含有量は、構成例Aにおいては、好ましくは1%以上、より好ましくは2%以上であり、構成例Bにおいては、好ましくは7%超、より好ましくは10%以上であり、構成例Cにおいては、好ましくは10%以上、より好ましくは13%以上である。
 但し、二価鉄(Fe2+)の含有量を低く抑え、光学特性を良好なものとし、泡品質を良好なものとするため、Alの含有量は、構成例Aにおいては、好ましくは7%以下、より好ましくは5%以下であり、構成例Bにおいては、好ましくは30%以下、より好ましくは23%以下であり、構成例Cにおいては、好ましくは30%以下、より好ましくは20%以下である。
 Bは、ガラス原料の溶融を促進し、機械的特性や耐候性を向上させる成分であるが、揮発による脈理(ream)の生成、炉壁の侵食等の不都合が生じないために、Bの含有量は、構成例B及びCにおいては、好ましくは15%以下、より好ましくは、12%以下である。
 LiO、NaO、及び、KOといったアルカリ金属酸化物は、ガラス原料の溶融を促進し、熱膨張、粘性等を調整するのに有用な成分である。
 そのため、NaOの含有量は、構成例Aにおいては、好ましくは3%以上、より好ましくは、8%以上である。NaOの含有量は、構成例Bにおいては、好ましくは7%以上、より好ましくは、10%以上である。但し、溶解時の清澄性を保持し、製造されるガラスの泡品質を保つために、NaOの含有量は、構成例A及びBにおいては、20%以下とするのが好ましく、15%以下とするのがさらに好ましく、構成例Cにおいては、3%未満とするのが好ましく、1%以下とするのがより好ましい。
 また、KOの含有量は、構成例A及びBにおいては、好ましくは10%以下、より好ましくは、7%以下であり、構成例Cにおいては、好ましくは2%以下、より好ましくは、1%以下である。
 また、LiOは、任意成分であるが、ガラス化を容易にし、原料に由来する不純物として含まれる鉄含有量を低く抑え、バッチコストを低く抑えるために、構成例A、B及びCにおいて、LiOを2%以下含有させることができる。
 また、これらアルカリ金属酸化物の合計含有量(LiO+NaO+KO)は、溶解時の清澄性を保持し、製造されるガラスの泡品質を保つために、構成例A及びBにおいては、好ましくは5%~20%、より好ましくは8%~15%であり、構成例Cにおいては、好ましくは0%~2%、より好ましくは、0%~1%である。
 MgO、CaO、SrO、及びBaOといったアルカリ土類金属酸化物は、ガラス原料の溶融を促進し、熱膨張、粘性等を調整するのに有用な成分である。
 MgOは、ガラス溶解時の粘性を下げ、溶解を促進する作用がある。また、比重を低減させ、ガラス構成体12のガラス板に疵をつきにくくする作用があるために、構成例A、B及びCにおいて、含有させることができる。また、ガラスの熱膨張係数を低く、失透特性を良好なものとするために、MgOの含有量は、構成例Aにおいては、好ましくは10%以下、より好ましくは8%以下であり、構成例Bにおいては、好ましくは15%以下、より好ましくは12%以下であり、構成例Cにおいては、好ましくは10%以下、より好ましくは5%以下である。
 CaOは、ガラス原料の溶融を促進し、また粘性、熱膨張等を調整する成分であるので、構成例A、B及びCにおいて含有させることができる。上記の作用を得るためには、構成例Aにおいては、CaOの含有量は、好ましくは3%以上、より好ましくは5%以上である。また、失透を良好にするためには、構成例Aにおいては、好ましくは20%以下、より好ましくは10%以下であり、構成例Bにおいては、好ましくは6%以下であり、より好ましくは4%以下である。
 SrOは、熱膨張係数の増大及びガラスの高温粘度を下げる効果がある。かかる効果を得るために、構成例A、B及びCにおいて、SrOを含有させることができる。但し、ガラスの熱膨張係数を低く抑えるため、SrOの含有量は、構成例A及びCにおいては、15%以下とするのが好ましく、10%以下とするのがより好ましく、構成例Bにおいては、5%以下とするのが好ましく、3%以下とするのがより好ましい。
 BaOは、SrO同様に熱膨張係数の増大及びガラスの高温粘度を下げる効果がある。上記の効果を得るためにBaOを含有させることができる。但し、ガラスの熱膨張係数を低く抑えるため、構成例A及びCにおいては、15%以下とするのが好ましく、10%以下とするのがより好ましく、構成例Bにおいては、5%以下とするのが好ましく、3%以下とするのがより好ましい。
 また、これらアルカリ土類金属酸化物の合計含有量(MgO+CaO+SrO+BaO)は、熱膨張係数を低く抑え、失透特性を良好なものとし、強度を維持するために、構成例Aにおいては、好ましくは10%~30%、より好ましくは13%~27%であり、構成例Bにおいては、好ましくは1%~15%、より好ましくは3%~10%であり、構成例Cにおいては、好ましくは5%~30%、より好ましくは10%~20%である。
 本実施形態のガラス構成体12のガラス板のガラスのガラス組成においては、ガラスの耐熱性及び表面硬度の向上のために、任意成分としてZrOを、構成例A、B及びCにおいて、10%以下、好ましくは5%以下含有させてもよい。10%以下とすることでガラスが失透しにくくなる。
 本実施形態のガラス構成体12のガラス板のガラスのガラス組成においては、ガラスの溶解性向上のため、Feを、構成例A、B及びCにおいて、5~100ppm含有させてもよい。なお、Fe量の好ましい範囲は上述のとおりである。
 また、本実施形態のガラス構成体12のガラス板のガラスは、清澄剤としてSOを含有してもよい。この場合、SO含有量は、質量百分率表示で0%超、0.5%以下が好ましい。0.4%以下がより好ましく、0.3%以下がさらに好ましく、0.25%以下であることがさらに好ましい。
 また、本実施形態のガラス構成体12のガラス板のガラスは、酸化剤及び清澄剤としてSb、SnO及びAsのうちの一つ以上を含有してもよい。この場合、Sb、SnO又はAsの含有量は、質量百分率表示で0~0.5%が好ましい。0.2%以下がより好ましく、0.1%以下がさらに好ましく、実質的に含有しないことがさらに好ましい。
 ただし、Sb、SnO及びAsは、ガラスの酸化剤として作用するため、ガラスのFe2+の量を調節する目的により上記範囲内で添加してもよい。ただし、環境面からはAsを実質的に含有しないことが好ましい。
 また、本実施形態のガラス構成体12のガラス板のガラスは、NiOを含有してもよい。NiOを含有する場合、NiOは、着色成分としても機能するので、NiOの含有量は、上記したガラス組成の合量に対し、10ppm以下とするのが好ましい。特に、NiOは、波長400~700nmにおけるガラス構成体のガラス板の内部透過率を低下させないという観点から、1.0ppm以下とするのが好ましく、0.5ppm以下とすることがより好ましい。
 本実施形態のガラス構成体12のガラス板のガラスは、Crを含有してもよい。Crを含有する場合、Crは、着色成分としても機能するので、Crの含有量は、上記したガラス組成の合量に対し、10ppm以下とするのが好ましい。特に、Crは、波長400~700nmにおけるガラス構成体のガラス板の内部透過率を低下させないという観点から、1.0ppm以下とするのが好ましく、0.5ppm以下とすることがより好ましい。
 本実施形態のガラス構成体12のガラス板のガラスは、MnOを含有してもよい。MnOを含有する場合、MnOは、可視光を吸収する成分としても機能するので、MnOの含有量は、上記したガラス組成の合量に対し、50ppm以下とするのが好ましい。特に、MnOは、波長400~700nmにおけるガラス構成体12のガラス板の内部透過率を低下させないという観点から、10ppm以下とするのが好ましい。
 本実施形態のガラス構成体12のガラス板のガラスは、TiOを含んでいてもよい。TiOを含有する場合、TiOは、可視光を吸収する成分としても機能するので、TiOの含有量は、上記したガラス組成の合量に対し、1000ppm以下とするのが好ましい。TiOは、波長400~700nmにおけるガラス構成体12のガラス板の内部透過率を低下させないという観点から、含有量を500ppm以下とすることがより好ましく、100ppm以下とすることが特に好ましい。
 本実施形態のガラス構成体12のガラス板のガラスは、CeOを含んでいてもよい。また、CeOの含有量は、500ppm以下とするのがより好ましく、400ppm以下とするのがさらに好ましく、300ppm以下とするのが特に好ましく、250ppm以下とするのが最も好ましい。
 本実施形態のガラス構成体12のガラス板のガラスは、CoO、V及びCuOからなる群より選ばれる少なくとも1種の成分を含んでいてもよい。これらの成分を含有する場合、可視光を吸収する成分としても機能するので、前記成分の含有量は、上記したガラス組成の合量に対し、10ppm以下とするのが好ましい。特に、これら成分は、波長400~700nmにおけるガラス構成体12のガラス板の内部透過率を低下させないように、実質的に含有しないことが好ましい。
 〈液体層の物性〉
 液体層50は25℃における粘性係数が1×10-4~1×10Pa・sであり、かつ、25℃における表面張力が15~80mN/mであることが好ましい。粘性が低すぎると振動を伝達しにくくなり、高すぎると液体層50の両側に位置する一対の板同士が固着して1枚の板としての振動挙動を示すようになることから、共振振動が減衰されにくくなる。また、表面張力が低すぎると板間の密着力が低下し、振動を伝達しにくくなる。表面張力が高すぎると、液体層50の両側に位置する一対の板同士が固着しやすくなり、1枚の板としての振動挙動を示すようになることから、共振振動が減衰されにくくなる。
 液体層50の25℃における粘性係数は1×10-3Pa・s以上がより好ましく、1×10-2Pa・s以上がさらに好ましい。また、1×10Pa・s以下がより好ましく、1×10Pa・s以下がさらに好ましい。液体層50の25℃における表面張力は20mN/m以上がより好ましく、30mN/m以上がさらに好ましい。
 液体層50の粘性係数は回転粘度計などにより測定することができる。液体層50の表面張力はリング法などにより測定することができる。
 液体層50は、蒸気圧が高すぎると液体層50が蒸発してガラス構成体12としての機能を果たさなくなるおそれがある。そのため、液体層50は、25℃、1atmにおける蒸気圧が1×10Pa以下が好ましく、5×10Pa以下がより好ましく、1×10Pa以下がさらに好ましい。
 液体層50の厚みは薄いほど、高剛性の維持及び振動伝達の点から好ましい。具体的には、2枚の板(第1の板51a及び第2の板51b)の合計の厚みが1mm以下の場合は、液体層50の厚みは、2枚の板の合計の厚みの1/10以下が好ましく、1/20以下がより好ましく、1/30以下がさらに好ましく、1/50以下がよりさらに好ましく、1/70以下がことさらに好ましく、1/100以下が特に好ましい。また2枚の板の合計の厚みが1mm超の場合は、液体層50の厚みは、100μm以下が好ましく、50μm以下がより好ましく、30μm以下がさらに好ましく、20μm以下がよりさらに好ましく、15μm以下がことさらに好ましく、10μm以下が特に好ましい。液体層50の厚みの下限は、製膜性及び耐久性の点から0.01μm以上が好ましい。
 液体層50は化学的に安定であり、液体層50と液体層50の両側に位置する2枚の板とが、反応しないことが好ましい。化学的に安定とは、例えば光照射により変質(劣化)が少ないものや、少なくとも-20~70℃の温度領域で凝固、気化、分解、変色、ガラスとの化学反応等が生じないものを意味する。
 液体層50の成分としては、前述したとおり、水、オイル、有機溶剤、液状ポリマー、イオン性液体又はそれらの混合物等が挙げられる。
 より具体的には、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、ストレートシリコーンオイル(ジメチルシリコーンオイル、メチルフェニルシリコーンオイル、メチルハイドロジェンシリコーンオイル)、変性シリコーンオイル、アクリル酸系ポリマー、液状ポリブタジエン、グリセリンペースト、フッ素系溶剤、フッ素系樹脂、アセトン、エタノール、キシレン、トルエン、水、鉱物油、及びそれらの混合物、等が挙げられる。中でも、プロピレングリコール、ジメチルシリコーンオイル、メチルフェニルシリコーンオイル、メチルハイドロジェンシリコーンオイル及び変性シリコーンオイルからなる群より選ばれる少なくとも1種を含むことが好ましく、プロピレングリコール又はシリコーンオイルを主成分とすることがより好ましい。
 上記の他に、粉体を分散させたスラリーを液体層50として使用することもできる。損失係数の向上といった観点からは、液体層50は均一な液体であることが好ましいが、ガラス構成体12に着色や蛍光等といった意匠性や機能性を付与する場合には、該スラリーは有効である。液体層50における粉体の含有量は0~10体積%が好ましく、0~5体積%がより好ましい。また、粉体の粒径は沈降を防ぐ観点から10nm~10μmが好ましく、0.5μm以下がより好ましい。
 また、意匠性・機能性付与の観点から、液体層50に蛍光材料を含んでもよい。蛍光材料を粉体として分散させたスラリー状の液体層50でも、蛍光材料を液体として混合させた均一な液体層50でもよい。これにより、ガラス構成体12に光の吸収及び発光といった光学的機能を付与することができる。
 〈ガラス構成体12の製造方法〉
 次に、ガラス構成体12の製造方法の一例を説明する。
 本実施形態に係るガラス構成体12は第1の板51aと第2の板51bの間に液体層50を形成することにより得ることができる。
 また、ガラス構成体12は、例えば、第1の板51aや第2の板51bのガラス構成体厚に対応する厚さのガラス素材を切断することにより所望のサイズとすることができる。ガラス素材の切断方法としては、例えばスクライブ割断法やレーザー切断法などを実施することができる。
 第1の板51aと第2の板51bとの間に液体層50を形成する方法は特に限定されず、例えば、第1の板51a表面に液体層50を形成し、その上に第2の板51bを設置する方法、それぞれ液体層50を表面に形成した第1の板51aと第2の板51bとを貼り合わせる方法、第1の板51aと第2の板51bとの隙間から液体層50を流し入れる方法、第1の板51a又は第2の板51bの表面に液体層50を構成する液体を塗布、噴霧する方法等が挙げられる。
 その後、受光面28に対して鏡面加工を行う。これにより、表面粗さRaが0.1μm以下の受光面28を形成することができる。
 つづいて、必要に応じて、受光面28と光出射面26との間、及び受光面28と光反射面32との間を研削処理又は研磨処理する。これにより、図3に示したような傾斜面52及び傾斜面62が形成される。なお、傾斜面52及び傾斜面62を形成する研磨処理は、受光面28に対する鏡面加工よりも前に行ってもよく、また、受光面28に対する鏡面加工と同時に行ってもよい。
 傾斜面52及び傾斜面62を形成する際、研削処理又は研磨処理を実施する工具としては砥石を用いてもよく、また砥石の他に、布、皮、ゴム等からなるバフやブラシ等を用いてもよく、その際、酸化セリウム、アルミナ、カーボランダム、コロイダルシリカ等の研磨剤を用いてもよい。中でも寸法安定性の観点から、研磨具としては砥石を用いることが好ましい。
 以上の処理により、ガラス構成体12が製造される。なお、透明樹脂層21は、ガラス構成体12が製造された後に光出射面26、又は光反射面32に対してコート法や印刷法等により形成することができるほか、反射シート20又は光学シート22上に透明樹脂層21を形成し、後にガラス構成体12と貼合して形成することができる。また、反射ドット24は、ガラス構成体12が製造された後に光反射面32に対して印刷法等により形成することができる。
 なお、ガラス構成体12において、面間のエッジ、例えば光出射面26と端面34、36及び38それぞれとの間、及び光反射面32と端面34、36及び38それぞれとの間、さらに端面34、36及び38間それぞれの間のガラス構成体12のエッジは、適宜面取り処理を行ってもよい。
 以上から、本実施形態におけるガラス構成体12によれば、例えば面状発光装置14に振動板としての機能を備えた導光板として用いた場合に、所定の輝度分布を有しつつ、装置全体の省スペース化、及び音色の向上を達成するスピーカ又はマイクロフォンの振動板としてのガラス構成体12を提供することができる。
 以上、本発明の好ましい実施形態について詳述したが、本発明は上記した特定の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能なものである。本出願は、2017年3月30日出願の日本国特許出願(特願2017-067831)に基づくものであり、その内容はここに参照として取り込まれる。
 10…液晶表示装置、12…ガラス構成体、14…面状発光装置、16…液晶パネル、18…光源、20…反射シート、21…透明樹脂層、22…各種光学シート、24…反射ドット、26…光出射面、28…受光面、32…光反射面、34、36及び38…端面、50…液体層、51a…第1の板、51b…第2の板、52及び62…傾斜面、53…シール材、54…振動子、55…係止部、60…ハウジング

Claims (11)

  1.  ガラス板である第1の板と、
     ガラス板である第2の板と、
     前記第1の板と前記第2の板との間に封止して形成される液体層と、
     前記第1の板又は前記第2の板に直接又は間接的に取り付けられた振動子と、
    を有する、振動板として機能する導光板。
  2.  ガラス板である第1の板と、
     樹脂板である第2の板と、
     前記第1の板と前記第2の板との間に封止して形成される液体層と、
     前記第1の板又は前記第2の板に直接又は間接的に取り付けられた振動子と、
    を有する、振動板として機能する導光板。
  3.  前記樹脂板が、アクリル系樹脂、ポリイミド樹脂、ポリカーボネート樹脂及びPET樹脂からなる群より選ばれる少なくとも1種を含む請求項2に記載の振動板として機能する導光板。
  4.  係止部を介してハウジングに直接又は間接的に係止される、請求項1~3のいずれかに記載の振動板として機能する導光板。
  5.  25℃における損失係数が1×10-2以上である、請求項1~4のいずれかに記載の振動板として機能する導光板。
  6.  前記液体層の25℃における粘性係数が1×10-4~1×10Pa・sであり、かつ、25℃における表面張力が15~80mN/mである、請求項1~5のいずれかに記載の振動板として機能する導光板。
  7.  前記第1の板の共振周波数をQa、共振振幅の半値幅をwa、前記第2の板の共振周波数をQb、共振振幅の半値幅をwbとした時に、下記[式1]の関係を満たす、請求項1~6のいずれかに記載の振動板として機能する導光板。
     (wa+wb)/4<|Qa-Qb|・・・[式1]
  8.  前記液体層が、プロピレングリコール、ジメチルシリコーンオイル、メチルフェニルシリコーンオイル、メチルハイドロジェンシリコーンオイル及び変性シリコーンオイルからなる群より選ばれる少なくとも1種を含む請求項1~7のいずれかに記載の振動板として機能する導光板。
  9.  少なくとも1枚の前記ガラス板が物理強化ガラス板及び化学強化ガラス板のいずれかのガラス板である、請求項1~8のいずれかに記載の振動板として機能する導光板。
  10.  前記液体層に蛍光材料を含む、請求項1~9のいずれかに記載の振動板として機能する導光板。
  11.  前記液体層の屈折率と前記第1の板との屈折率の差、及び、前記液体層の屈折率と前記第2の板との屈折率の差が、いずれも0.2以下である、請求項1~10のいずれかに記載の振動板として機能する導光板。
PCT/JP2018/013055 2017-03-30 2018-03-28 振動板として機能する導光板 WO2018181622A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019510074A JP6969607B2 (ja) 2017-03-30 2018-03-28 振動板として機能する導光板

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-067831 2017-03-30
JP2017067831 2017-03-30

Publications (1)

Publication Number Publication Date
WO2018181622A1 true WO2018181622A1 (ja) 2018-10-04

Family

ID=63677834

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/013055 WO2018181622A1 (ja) 2017-03-30 2018-03-28 振動板として機能する導光板

Country Status (2)

Country Link
JP (1) JP6969607B2 (ja)
WO (1) WO2018181622A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021200068A1 (ja) * 2020-03-30 2021-10-07

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003062912A1 (en) * 2002-01-25 2003-07-31 Koninklijke Philips Electronics N.V. Display device
JP2013197085A (ja) * 2012-03-23 2013-09-30 Sumitomo Chemical Co Ltd 導光板
WO2015194476A1 (ja) * 2014-06-20 2015-12-23 シャープ株式会社 照明装置及び表示装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003062912A1 (en) * 2002-01-25 2003-07-31 Koninklijke Philips Electronics N.V. Display device
JP2013197085A (ja) * 2012-03-23 2013-09-30 Sumitomo Chemical Co Ltd 導光板
WO2015194476A1 (ja) * 2014-06-20 2015-12-23 シャープ株式会社 照明装置及び表示装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021200068A1 (ja) * 2020-03-30 2021-10-07
WO2021200068A1 (ja) * 2020-03-30 2021-10-07 パナソニックIpマネジメント株式会社 照明装置
JP7262089B2 (ja) 2020-03-30 2023-04-21 パナソニックIpマネジメント株式会社 照明装置

Also Published As

Publication number Publication date
JPWO2018181622A1 (ja) 2020-05-14
JP6969607B2 (ja) 2021-11-24

Similar Documents

Publication Publication Date Title
JP6260741B2 (ja) ガラス板
JP6296201B2 (ja) ガラス導光板
US10082616B2 (en) Glass plate, light guide plate unit, planar light-emitting device, and liquid crystal display device
JPWO2013031547A1 (ja) ガラス板、およびガラス板の製造方法
CN107922245B (zh) 玻璃导光板
CN207067439U (zh) 玻璃导光板
JP2019530162A (ja) エッジライト式導光板、および、それを備えた装置
WO2018181622A1 (ja) 振動板として機能する導光板
WO2016129559A1 (ja) ガラス部材及びガラス
TW201835621A (zh) 包含光學操作特徵的光導組件
TW201817692A (zh) 具有鹼土金屬氧化物作為改質劑的高透射性玻璃
JP2019106287A (ja) 光学部材、面状発光装置およびディスプレイ装置
JP6249142B2 (ja) ガラス板
WO2017018420A1 (ja) ガラス板の製造方法及びガラス板
WO2017018421A1 (ja) ガラス板
WO2019014013A1 (en) BACKLIGHT UNITS COMPRISING A GLASS LIGHT GUIDE PLATE AND A COUPLING MEDIUM
JP2018508035A (ja) 角度フィルタ、およびそれを含むディスプレイ装置
WO2018159385A1 (ja) 導光板
JP2020030885A (ja) ガラス板
JP2021523080A (ja) 低アルカリ高透過率ガラス
JP2018145016A (ja) ガラス板
US20240134174A1 (en) Optical component
US20240231063A9 (en) Optical component
JP2017091725A (ja) エッジライト方式の表示装置用の導光板
JP4076529B2 (ja) 液晶表示装置およびそれを備えた携帯型電子機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18775503

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019510074

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18775503

Country of ref document: EP

Kind code of ref document: A1