WO2018181162A1 - 電気導体の接合方法及びその装置 - Google Patents

電気導体の接合方法及びその装置 Download PDF

Info

Publication number
WO2018181162A1
WO2018181162A1 PCT/JP2018/012106 JP2018012106W WO2018181162A1 WO 2018181162 A1 WO2018181162 A1 WO 2018181162A1 JP 2018012106 W JP2018012106 W JP 2018012106W WO 2018181162 A1 WO2018181162 A1 WO 2018181162A1
Authority
WO
WIPO (PCT)
Prior art keywords
leg
joining
stator core
electromagnetic coil
peripheral side
Prior art date
Application number
PCT/JP2018/012106
Other languages
English (en)
French (fr)
Inventor
斉藤正史
小林崇
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to JP2019509790A priority Critical patent/JP6826188B2/ja
Publication of WO2018181162A1 publication Critical patent/WO2018181162A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/04Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of windings, prior to mounting into machines

Definitions

  • the present invention relates to an electric conductor joining method and an apparatus for joining electric conductor legs inserted in slots formed in a stator core.
  • a stator is configured by inserting electrical conductors into two of a plurality of slots formed along the circumferential direction of an annular stator core.
  • the electrical conductor is substantially U-shaped or substantially I-shaped, and therefore has at least one leg.
  • the leg is inserted into the slot, and the tip protrudes from the slot. Since the plurality of slots are formed radially, for example, one leg protrudes from the slot on the outer peripheral side, and the leg of another electric conductor extends from the slot on the inner peripheral side adjacent in the diameter direction. Protruding.
  • a general object of the present invention is to provide an electric conductor joining method capable of improving the production efficiency of a stator.
  • the main object of the present invention is to provide a method of joining electric conductors that can simplify the joining work.
  • Another object of the present invention is to provide a joining device for joining electrical conductors.
  • two leg portions of an electric conductor inserted into a plurality of slots provided in the circumferential direction of a ring-shaped stator core and projecting from the stator core and adjacent to each other in the diametrical direction.
  • a method of joining electrical conductors A step of arranging electromagnetic coils circumferentially on at least one of the inner peripheral side or the outer peripheral side of the stator core; The step of bringing the two adjacent leg portions into contact with each other by energizing the electromagnetic coil, and joining the two legs in contact with each other; A method for joining electrical conductors is provided.
  • two legs of an electric conductor inserted into a plurality of slots provided in the circumferential direction of an annular stator core projecting from the stator core and adjacent in the diametrical direction.
  • An electrical conductor joining device for joining parts An electromagnetic coil disposed on at least one of an inner peripheral side or an outer peripheral side of the stator core; A current supply unit for supplying current to the electromagnetic coil; An electrical conductor joining device is provided.
  • an electromagnetic coil is circumferentially arranged on at least one of the inner peripheral side and the outer peripheral side of the stator core, and the electromagnetic coil is energized.
  • a strong magnetic field is generated in the vicinity of the electromagnetic coil and the leg.
  • an electromagnetic force is generated in a direction in which the leg is pushed toward another leg adjacent to the leg close to the electromagnetic coil.
  • the leg that receives the electromagnetic force bends and comes into contact with another leg adjacent to the leg at supersonic speed.
  • the oxide film is scattered from the surfaces to be joined, and atoms are diffused from the exposed base metal to each other. Thereby, metallurgical joining is performed.
  • This phenomenon occurs at the same time between all the legs where the electromagnetic force is applied and all the legs adjacent to it. That is, by configuring as described above, a plurality of legs can be joined simultaneously. Moreover, the bending and contact, and further, the joining proceeds quickly in a short time. For this reason, since the time required for joining is remarkably shortened, the stator can be efficiently produced. Eventually, the stator production efficiency can be improved.
  • the magnitude of the magnetic field generated in the vicinity of each leg and the magnitude of the electromagnetic force acting on each leg are substantially the same. For this reason, since the concern that the quality varies for each joint location is eliminated, it is not necessary to perform repair. Accordingly, the joining work is simplified.
  • the legs can be brought into contact with each other by, for example, generating an induced current in one of the two adjacent legs, and bringing the one close to the other by the electromagnetic force generated by the induced current.
  • a movable member may be provided between the electromagnetic coil and the electric conductor, and the leg portions may be pressed by displacing the movable member, thereby bringing the legs into contact with each other.
  • the electromagnetic coil is arranged circumferentially on at least one of the inner peripheral side or the outer peripheral side of the stator core and energized to the electromagnetic coil.
  • An electromagnetic force is generated in a direction in which the leg is pushed out toward another adjacent leg.
  • the leg part which received this electromagnetic force bends and abuts and joins with another leg part adjacent to the leg part.
  • FIG. 2 is an overall schematic partial longitudinal sectional view showing a state in which an outer side magnetic flux concentrator constituting the joining device of FIG. 1 is lowered and entered into an outer side electromagnetic coil.
  • FIG. 3 is a schematic horizontal cross-sectional view of a main part showing a positional relationship among a stator core, an outer side magnetic flux concentrator, and an outer side electromagnetic coil in the state of FIG. 2. It is a principal part expansion partial longitudinal cross-sectional view which shows the state which has contacted the outermost leg part and the leg part adjacent on the inner peripheral side, and is joining.
  • FIG. 6 is an overall schematic partial longitudinal sectional view illustrating a state in which an inner side magnetic flux concentrator constituting the joining apparatus of FIG. 5 is lowered and an inner side electromagnetic coil is surrounded.
  • FIG. 7 is a schematic horizontal cross-sectional view of a main part showing a positional relationship among an inner electromagnetic coil, an inner magnetic flux concentrator, and a stator core in the state of FIG. 6. It is a principal part enlarged front view which shows the state which has contacted the innermost leg part and the leg part adjacent on the outer peripheral side, and is joining.
  • the outermost leg and the adjacent leg on the inner circumference are brought into contact with each other, and the outermost leg and the adjacent leg on the outer circumference are brought into contact with each other.
  • It is a principal part enlarged front view which shows the state currently performed.
  • the principal part which shows the positional relationship of the stator core, outer side magnetic flux concentrator, and outer side electromagnetic coil when the outer side magnetic flux concentrator which comprises the joining apparatus which concerns on 4th Embodiment of this invention is made to approach in an outer side electromagnetic coil.
  • It is a schematic horizontal sectional view.
  • It is a principal part enlarged front view which shows the state which has contacted the leg part of an outer peripheral side, and the leg part adjacent on the inner peripheral side, and is joining.
  • FIG. 1 is an overall schematic partial longitudinal sectional view showing a stator core 12a through which a segment 10 is passed and a joining device 14a according to the first embodiment.
  • the segment 10 and the stator core 12a will be described in brief.
  • the segment 10 is formed by connecting two leg portions 16 via a turn portion 18 that is curved by approximately 180 °, and thus has a substantially U shape.
  • the stator core 12a has an annular shape (see FIG. 3), and two slots 20 are formed along the diameter direction at each of the inner peripheral edge and the outer peripheral edge. That is, four slots 20 are arranged along the diameter direction. If these four are defined as one set of slot groups 22a, in the first embodiment, for example, 24 sets of slot groups 22a are arranged radially.
  • leg portions 16 of the four segments 10 are individually inserted into the four slots 20 constituting one set of the slot group 22a, and protrude upward in FIG. That is, the segment 10 is held by the stator core 12a in a posture with the turn portion 18 downward and the leg portion 16 upward.
  • the joining device 14a is guided when the support base 24a that houses and supports the stator core 12a, the outer electromagnetic coil 26 that constitutes the joining mechanism, and the outer electromagnetic coil 26 is energized.
  • An outer-side magnetic flux concentrator 28 that generates current and generates electromagnetic force F1.
  • the support base 24a is a hollow body in which a large-diameter receiving hole 30 is formed, and a stator step 32 for supporting the outer peripheral edge of the lower end surface of the stator core 12a is formed inside the receiving hole 30. .
  • the step between the stator step 32 and the bottom surface of the accommodation hole 30 is set to be slightly larger than the protruding height of the turn portion 18. For this reason, it is avoided that the turn part 18 contact
  • the outer side coil step 34 is formed in the vicinity of the opening of the accommodation hole 30 in the support base 24a.
  • the outer electromagnetic coil 26 is supported by the outer coil step 34.
  • the outer electromagnetic coil 26 is electrically connected to a current supply unit 48 (see FIG. 4) in which a capacitor 40, a switch 42, a resistor 44, and an inductance 46 are connected in series.
  • a current supply unit 48 see FIG. 4 in which a capacitor 40, a switch 42, a resistor 44, and an inductance 46 are connected in series.
  • the switch 42 When the switch 42 is turned on, the electrons accumulated in the capacitor 40 move and current is supplied to the outer electromagnetic coil 26. That is, the outer electromagnetic coil 26 is energized.
  • the outer side magnetic flux concentrator 28 has an annular shape (see FIG. 3), and its outer diameter is slightly smaller than the inner diameter of the outer side electromagnetic coil 26. Further, the height of the outer side magnetic flux concentrator 28 is substantially equal to the height of the outer side electromagnetic coil 26. For this reason, the outer side magnetic flux concentrator 28 can enter the hollow inside of the outer side electromagnetic coil 26 and is surrounded by the outer side electromagnetic coil 26 when it enters.
  • An outer annular protrusion 50 is formed at the lower end of the outer side magnetic flux concentrator 28 so as to protrude toward the inner peripheral side. As will be described later, the outer annular protrusion 50 is opposed to the outermost leg 16 and the opposed leg 16 is bent by the electromagnetic force F1.
  • the outer side magnetic flux concentrator 28 configured in this manner is held by the concentrator holder 56a together with the block body 54a (support member) having the support portion 52.
  • the block body 54a support member
  • FIG. 1 Although two block bodies 54a are shown in FIG. 1, actually, one block body 54a is assigned to one set of slot groups 22a (see FIG. 3). That is, in this case, 24 block bodies 54a are arranged on the same circumference.
  • the lower end of the block body 54a is substantially H-shaped in plan view (see FIG. 3), and the two long sides extend from the inner peripheral side to the outer peripheral side of the stator core 12a, and a set of slot groups 22a. Opposed across (four slots 20). These two long side portions serve as guide portions.
  • the short side portion interposed between the two long side portions and extending in the direction perpendicular to the longitudinal direction of these long side portions constitutes the support portion 52, and the outer side of the set of slot groups 22a. It is interposed between the two on the peripheral edge side and the two on the inner peripheral edge side.
  • the concentrator holder 56a is further held by a disk-shaped holder 58 having a substantially inverted T-shaped cross section having a disk-shaped base.
  • the disk-shaped holder 58 is connected to, for example, an elevating rod (not shown) of a hydraulic cylinder, and descends or rises as the elevating rod moves forward (down) or retracts (up). Accordingly, the concentrator holder 56a, the outer side magnetic flux concentrator 28 and the block body 54a are integrally lowered or raised.
  • the joining apparatus 14a according to the first embodiment is basically configured as described above. Next, the function and effect will be described in relation to the joining method of the segment 10 according to the present embodiment. To do.
  • stator To obtain a stator, first, two different ones (typically, one selected from an arbitrary slot group 22a and another slot group 22a are selected from among a plurality of slots 20 provided in the stator core 12a. The two legs 16 of one segment 10 are individually inserted into one). This is repeated and insertion of the predetermined number of segments 10 into the slot 20 is completed. Of course, a plurality of segments 10 may be inserted into the slot 20 at a time.
  • the stator core 12a is inserted into the receiving hole 30 of the support base 24a so that the turn portion 18 faces downward and the leg portion 16 faces upward. To support. As described above, at this time, the turn portion 18 does not contact the inner bottom surface of the accommodation hole 30. Thus, after the stator core 12a is accommodated in the accommodation hole 30, or before that, the outer side electromagnetic coil 26 is supported by the outer side coil step 34.
  • the hydraulic cylinder is energized to advance the lifting rod.
  • the concentrator holder 56a, the outer side magnetic flux concentrator 28, and the block body 54a are lowered integrally with the disc-shaped holder 58.
  • the outer side magnetic flux concentrator 28 enters the outer side electromagnetic coil 26. That is, as shown in FIGS. 2 and 3, the outer side magnetic flux concentrator 28 is surrounded by the outer side electromagnetic coil 26.
  • the guide portion of the block body 54a sandwiches the four leg portions 16 protruding from the pair of slot groups 22a (four slots 20), and the outer peripheral edge portion of the support portion 52 protruding from the same slot group 22a. It is interposed between the two leg portions 16 on the side and the two leg portions 16 on the inner peripheral edge side.
  • the outer electromagnetic coil 26 is energized. Specifically, the switch 42 (see FIG. 4) is switched ON. Thereby, the electric charge accumulated in the capacitor 40 moves, and as a result, the current (i) flows. In the current supply unit 48 shown in FIG. 4, the current flows from the resistor 44 to the inductance 46 side. Accordingly, the current in the outer electromagnetic coil 26 is directed from the back of the sheet to the front on the left side of FIG. 4, and from the front of the sheet to the back on the right side.
  • an induced current is generated in the outer peripheral portion of the outer magnetic flux concentrator 28 that faces the inner periphery of the outer electromagnetic coil 26.
  • the direction of the induced current is opposite to that in the outer electromagnetic coil 26.
  • the direction of the induction current is from the front of the paper to the back on the left side of FIG.
  • an induced current is generated in the inner peripheral portion of the outer side magnetic flux concentrator 28, in other words, in the outer annular protrusion 50 in the direction opposite to the outer peripheral portion of the outer side magnetic flux concentrator 28. Further, an induced current in the opposite direction to the outer annular projection 50 is generated in the outermost leg portion 16 facing the outer annular projection 50. That is, the direction of the induced current in the inner peripheral portion of the outer side magnetic flux concentrator 28 is the same as the direction of the current in the outer side electromagnetic coil 26, and the direction of the induced current in the outermost leg portion 16 is the outer side magnetic flux concentrator. It is the same as the outer peripheral portion of 28.
  • a strong magnetic field is formed in the vicinity of the outermost leg 16.
  • the induced current flowing through the outer annular protrusion 50 is increased, and as a result, a strong magnetic field is formed in the outermost leg portion 16, which is preferable.
  • a large electromagnetic force F1 is generated from the outer peripheral side to the inner peripheral side of the stator core 12a in accordance with Fleming's left-hand rule. .
  • the outermost leg 16 is bent so as to approach toward the inner peripheral leg 16 adjacent to the leg 16. At the time of this approach, the leg portion 16 is guided to the long side portion of the block body 54a sandwiching the leg portion 16.
  • the support part 52 of the block body 54a supports the inner peripheral wall side of the leg part 16 on the inner peripheral side. That is, the support part 52 supports the inner peripheral side wall on the opposite side to the outer peripheral side wall that comes into contact with the inner peripheral leg part 16 as the outermost leg part 16 approaches. For this reason, the leg 16 on the inner peripheral side maintains the original position before and after contact.
  • the oxide film is scattered from the inner peripheral side wall of the outermost leg 16 and the outer peripheral side wall of the inner peripheral leg 16 that are in contact at supersonic speed. As a result, the base metal is exposed, and atoms diffuse from the base metal toward each other. In addition, since an induced current is generated in the outermost leg portion 16, Joule heat is generated at a contact portion between the leg portions 16. Further, since the outermost leg portion 16 is bent and approaches the inner leg portion 16 at a high speed, collision energy is generated at the time of contact, and the collision energy is converted into heat energy. In addition, since the support portion 52 of the block body 54a supports the inner peripheral leg portion 16, the impact at the time of contact is not reduced. For this reason, the conversion efficiency from collision energy to thermal energy increases.
  • the oxide film is scattered at the contact portion, and Joule heat and large heat energy are generated. For this reason, the leg portions 16 are metallurgically joined substantially simultaneously with the contact. The bending, contact and joining are completed in 1 second or less, typically 0.5 seconds or less.
  • the joining device 14 b includes a support base 24 b that houses and supports the stator core 12 a, an inner electromagnetic coil 70 that constitutes a joining mechanism, and the inner electromagnetic coil 70.
  • An inner magnetic flux concentrator 72 that generates an electromagnetic force F2 when an induced current is generated when energization is performed.
  • An annular recess 73 is formed in the support base 24b, and a stator step 32 is formed in the vicinity of the opening of the annular recess 73.
  • the step between the stator step 32 and the inner bottom surface of the annular recess 73 is set slightly larger than the protruding height of the turn portion 18. For this reason, it is avoided that the turn part 18 contact
  • An inner coil step 76 is formed at the center of the annular recess 73.
  • the inner electromagnetic coil 70 is supported by the inner coil step 76.
  • the inner electromagnetic coil 70 has a current in which a capacitor 40, a switch 42, a resistor 44, and an inductance 46 are connected in series as in the first embodiment.
  • the supply part 48 is electrically connected (refer FIG. 4).
  • the inner magnetic flux concentrator 72 has an annular shape (see FIG. 7), and its outer diameter is slightly larger than the inner diameter of the inner electromagnetic coil 70.
  • the height of the inner side magnetic flux concentrator 72 is substantially equal to the height of the inner side electromagnetic coil 70. For this reason, the inner side electromagnetic coil 70 can enter the hollow inside of the lowered inner side magnetic flux concentrator 72 and is surrounded by the inner side magnetic flux concentrator 72 when entering.
  • an inner annular protrusion 74 is formed protruding toward the outer peripheral side.
  • the inner annular protrusion 74 is opposed to the innermost leg 16, and the opposite leg 16 is bent by the electromagnetic force F2 in the same manner as described above.
  • the inner side magnetic flux concentrator 72 is held by the concentrator holder 56b together with the block body 54a.
  • two block bodies 54a are shown, but in actuality, 24 block bodies 54a are arranged on the same circumference.
  • the joining device 14b according to the second embodiment is basically configured as described above. Next, the operation and effect will be described.
  • the turn portion 18 is positioned downward and the leg portion 16 faces upward, as shown in FIG.
  • the stator core 12a is supported by the stator step 32 of the support base 24b.
  • the stator core 12a is positioned to cover the annular recess 73.
  • the turn portion 18 does not contact the inner bottom surface of the annular recess 73.
  • the hydraulic cylinder is energized to advance the lifting rod.
  • the concentrator holder 56b, the inner side magnetic flux concentrator 72, and the block body 54a are lowered integrally with the disc-shaped holder 58.
  • the inner side magnetic flux concentrator 72 surrounds the inner side electromagnetic coil 70. That is, as shown in FIGS. 6 and 7, the inner electromagnetic coil 70 enters the inner side magnetic flux concentrator 72.
  • the long side portion of the block body 54a serving as a guide wall sandwiches the four leg portions 16 projecting from one set of the slot group 22a (four slots 20), and the support portion 52 extends from the same slot group 22a. It is interposed between the two leg portions 16 on the outer peripheral edge side and the two leg portions 16 on the inner peripheral edge side.
  • the switch 42 constituting the current supply unit 48 is turned ON, and the inner electromagnetic coil 70 is energized.
  • an induced current is applied to the inner peripheral portion of the inner-side magnetic flux concentrator 72, the outer peripheral portion of the inner-side magnetic flux concentrator 72 (the inner annular protrusion 74), and the innermost leg portion 16 facing the inner annular protrusion 74.
  • a strong magnetic field is formed in the vicinity of the innermost leg 16.
  • the outer peripheral side wall of the innermost leg 16 abuts the inner peripheral side wall of the outer peripheral leg 16 at supersonic speed, and the outer peripheral side wall of the innermost leg 16 and the outer peripheral leg 16
  • the oxide film is scattered from the inner peripheral side wall and the atoms are diffused toward each other.
  • the support part 52 of the block body 54a supports the outer peripheral wall side of the leg part 16 on the outer peripheral side. That is, the support part 52 supports the inner peripheral side wall on the opposite side to the inner peripheral side wall in which the innermost leg part 16 approaches and contacts the outer peripheral leg part 16. For this reason, the leg 16 on the outer peripheral side maintains the original position before and after contact.
  • the joining device 14c includes a support base 24c that houses and supports the stator core 12a, an outer side electromagnetic coil 26 and an inner side electromagnetic coil 70 that constitute a joining mechanism, and the outer side electromagnetic coil 26 and the inner side electromagnetic coil 70. It has an outer side magnetic flux concentrator 28 and an inner side magnetic flux concentrator 72 that express electromagnetic force.
  • a housing hole 30 is formed in the support base 24 c, and a stator step 32 is formed near the inner bottom surface of the housing hole 30. Similar to the first embodiment, the step between the stator step 32 and the inner bottom surface of the accommodation hole 30 is set slightly larger than the protruding height of the turn portion 18. For this reason, it is avoided that the turn part 18 contact
  • an inner coil stepped portion 76 that protrudes from the inner bottom surface and extends is provided.
  • the inner electromagnetic coil 70 is supported by the inner coil step 76.
  • an outer coil step 34 for supporting the outer electromagnetic coil 26 is formed in the vicinity of the opening of the accommodation hole 30.
  • the outer side electromagnetic coil 26 and the inner side electromagnetic coil 70 are supplied with a current connected by a capacitor 40, a switch 42, a resistor 44, and an inductance 46 connected in series.
  • the part 48 is electrically connected.
  • the current supply unit 48 may be common to the outer electromagnetic coil 26 and the inner electromagnetic coil 70 or may be separate.
  • the concentrator holder 56c is positioned on the first annular wall 80 holding the outer magnetic flux concentrator 28 and the inner peripheral side of the first annular wall 80, and the inner magnetic flux concentrator 72 is And a second annular wall portion 82 to be held.
  • the outer annular protrusion 50 of the outer side magnetic flux concentrator 28 held by the first annular wall portion 80 and the inner annular protrusion 74 of the inner side magnetic flux concentrator 72 held by the second annular wall portion 82. Are located at substantially the same height.
  • the block body 54a is disposed between the first annular wall portion 80 and the second annular wall portion 82.
  • two block bodies 54a are shown in FIG. 9, 24 block bodies 54a are actually arranged on the same circumference in the same manner as described above.
  • the joining device 14c according to the third embodiment is basically configured as described above. Next, the operation and effect will be described.
  • the turn portion 18 is in the downward posture and the leg portion 16 is in the upward posture as shown in FIG.
  • the stator core 12 a is inserted into the accommodation hole 30 and supported by the stator step 32.
  • the stator core 12 a is positioned to cover the accommodation hole 30.
  • the turn portion 18 does not come into contact with the inner bottom surface of the accommodation hole 30.
  • the outer side electromagnetic coil 26 and the inner side electromagnetic coil 70 are supported by the inner side coil step 76 and the outer side electromagnetic coil 26, respectively.
  • the hydraulic cylinder is energized to advance the lifting rod.
  • the concentrator holder 56c, the outer side magnetic flux concentrator 28, the inner side magnetic flux concentrator 72, and the block body 54a are lowered integrally with the disc-shaped holder 58.
  • the outer side electromagnetic coil 26 surrounds the outer side magnetic flux concentrator 28
  • the inner side magnetic flux concentrator 72 surrounds the inner side electromagnetic coil 70. That is, as shown in FIGS. 10 and 11, the outer side magnetic flux concentrator 28 enters the outer side electromagnetic coil 26 and the inner side electromagnetic coil 70 enters the inner side magnetic flux concentrator 72.
  • the guide portion of the block body 54a sandwiches the four leg portions 16 protruding from the pair of slot groups 22a (four slots 20), and the outer peripheral edge portion of the support portion 52 protruding from the same slot group 22a. It is interposed between the two leg portions 16 on the side and the two leg portions 16 on the inner peripheral edge side.
  • the switch 42 constituting the current supply unit 48 is turned ON, and the outer side electromagnetic coil 26 and the inner side electromagnetic coil 70 are energized.
  • an induced current is generated in the outer peripheral portion of the outer side magnetic flux concentrator 28, the inner peripheral portion of the outer side magnetic flux concentrator 28 (outer annular projection 50), and the outermost leg portion 16 facing the outer annular projection 50.
  • the induced current also flows through the inner peripheral portion of the inner side magnetic flux concentrator 72, the outer peripheral portion of the inner side magnetic flux concentrator 72 (the inner annular protrusion 74), and the innermost leg portion 16 facing the inner annular protrusion 74.
  • strong magnetic fields are formed in the vicinity of the outermost leg 16 and the innermost leg 16, respectively.
  • the inner peripheral side wall of the outermost leg portion 16 abuts the outer peripheral side wall of the inner peripheral leg portion 16 at supersonic speed, and the outer peripheral side wall of the innermost leg portion 16 contacts the outer peripheral leg portion 16. It abuts at the supersonic speed on the inner peripheral side wall.
  • the support part 52 supports the leg part 16 adjacent to the inner peripheral side of the outermost leg part 16 and the leg part 16 adjacent to the outer peripheral side of the innermost leg part 16. For this reason, these two leg parts 16 maintain the original position before and after contact.
  • the number of turns of the outer side electromagnetic coil 26 and the inner side electromagnetic coil 70 is such that the impact at the time of contact acting on the outermost leg portion 16 and the impact at the time of contact acting on the adjacent leg portion 16 on the inner peripheral side thereof. Are set to cancel each other. For this reason, the load on the equipment due to the impact is reduced.
  • FIG. 13 is a schematic horizontal cross-sectional view of the main part showing the stator core 12b through which the segment 10 is passed and the joining device 14d according to the fourth embodiment.
  • FIG. 14 is an enlarged front view of the main part. is there.
  • the stator core 12b has an annular shape (see FIG. 13), and has a slight phase difference between the inner peripheral edge, the inner peripheral edge and the outer peripheral edge, and the outer peripheral edge.
  • Two slots 20 are formed so as to have two. In the fourth embodiment, these six are used as one set of slot group 22b. That is, in these cases, 18 sets of slot groups 22b are arranged radially.
  • leg portions 16 of the six segments 10 are individually inserted into the six slots 20 forming one set of slot groups 22b one by one, and project upward in FIG. 14 (front side in FIG. 13). Accordingly, in this case as well, the segment 10 is held by the stator core 12b with the turn portion 18 downward and the leg portion 16 upward.
  • the joining device 14d includes a support base 24a (see FIG. 1) that accommodates and supports the stator core 12b, an outer electromagnetic coil 26 that constitutes a joining mechanism, and an outer magnetic flux that generates an electromagnetic force by the outer electromagnetic coil 26. And a concentrator 28. Since these components, the concentrator holder 56a, and the disc-shaped holder 58 are the same as those in the first embodiment, detailed description thereof is omitted.
  • the joining device 14d has an annular guide board (not shown) provided in the vicinity of the outer annular protrusion 50 of the outer side magnetic flux concentrator 28.
  • a plurality of wall portions are formed radially on the annular guide board, and thereby, 18 guide parts are sectioned on the annular guide board.
  • a retaining wall portion for preventing the converging member 90 from falling off the guide portion is provided.
  • a focusing member 90 shown in FIG. 14 is slidably accommodated.
  • a first pressing bar 92, a second pressing bar 94, and a third pressing bar 96 that are substantially T-shaped in plan view are provided on the inner peripheral side of the focusing member 90. That is, the converging member 90 collectively supports the first pressing bar 92, the second pressing bar 94, and the third pressing bar 96.
  • the focusing member 90, the first pressing bar 92, the second pressing bar 94, and the third pressing bar 96 are made of a material capable of generating an induced current.
  • the first pressing bar 92 has the shortest length, and the tip thereof faces the outermost leg 16 in the set of slot groups 22b. Further, the tip of the longest third pressing bar 96 faces the fifth leg 16 from the outermost (second from the innermost) in the same slot group 22b.
  • the tip of the second pressing bar 94 which is an intermediate length between the first pressing bar 92 and the third pressing bar 96, is the third leg from the outermost (fourth from the innermost) leg in the same slot group 22b. Opposite the part 16.
  • tip of the 1st press bar 92, the 2nd press bar 94, and the 3rd press bar 96 protrudes from the opening formed in the said retaining wall part.
  • the lower end portion of the block body 54b is set to have a shape in which the length from the inner peripheral side toward the outer peripheral side differs stepwise.
  • the block body 54b has a first stepped support portion 98a facing the second (from the innermost) leg 16 in the same slot group 22b, and the fourth from the outermost ( It has a second stepped support portion 98 b that faces the third leg portion 16 from the innermost side and a third stepped support portion 98 c that faces the innermost leg portion 16.
  • the stator core 12b is inserted into the accommodation hole 30 of the support base 24a and supported by the stator step 32 so that the portion 16 faces upward.
  • the outer side electromagnetic coil 26 is supported by the outer side coil step 34 after or before the stator core 12b is received in the receiving hole 30.
  • the lifting rod connected to the disk-shaped holder 58 is advanced by energizing the hydraulic cylinder.
  • the concentrator holder 56a, the outer side magnetic flux concentrator 28, the annular guide plate and the block body 54b are lowered integrally with the disc-shaped holder 58.
  • the outer side magnetic flux concentrator 28 enters the outer side electromagnetic coil 26. That is, as shown in FIG. 13, the outer side magnetic flux concentrator 28 is surrounded by the outer side electromagnetic coil 26.
  • first stepped support portion 98a, the second stepped support portion 98b, and the third stepped support portion 98c of the block body 54b are respectively second from the outermost (from the innermost in the set of slot groups 22b.
  • the tips of the first pressing bar 92, the second pressing bar 94, and the third pressing bar 96 are the outermost leg 16 in the same slot group 22b, the third from the outermost (the fourth from the innermost).
  • the leg 16 is opposed to the fifth leg 16 from the outermost (second from the innermost).
  • first stepped support part 98a and the first pressing bar 92 face each other with the outermost leg part 16 and the leg part 16 adjacent to the outermost leg part 16 on the inner peripheral side.
  • second stepped support portion 98b and the second pressing bar 94 are opposed to each other with the third leg portion 16 from the outermost side and the leg portion 16 adjacent to the third leg portion 16 on the inner peripheral side, and are opposed to each other.
  • the support part 98c and the third pressing bar 96 face each other with the fifth leg part 16 from the outermost part and the leg part 16 (the innermost leg part 16) adjacent to the leg part 16 on the inner peripheral side.
  • the outer side electromagnetic coil 26 is energized. That is, the switch 42 (see FIG. 4) is turned ON, and the electric charge accumulated in the capacitor 40 moves at this time, so that a current is supplied from the current supply unit 48 to the outer electromagnetic coil 26. That is, the outer electromagnetic coil 26 is energized.
  • the electromagnetic force F1 causes the converging member 90 to move inward in the diameter direction of the stator core 12b while being guided by the guide portion. Accordingly, the first pressing bar 92, the second pressing bar 94, and the third pressing bar 96 supported by the converging member 90 are displaced integrally with the converging member 90 in the same direction. That is, the 1st press bar 92, the 2nd press bar 94, and the 3rd press bar 96 move toward the diameter direction inner side of the stator core 12b. As understood from this, the converging member 90, the first pressing bar 92, the second pressing bar 94, and the third pressing bar 96 are movable members.
  • the outermost leg part 16, the third leg part 16 from the outermost part, and the fifth leg part 16 from the outermost part are respectively moved by the first pressing bar 92, the second pressing bar 94, and the third pressing bar 96.
  • the outer peripheries of the legs 16 (the second leg 16 from the outermost, the fourth leg 16 from the outermost, the innermost leg 16) adjacent to each other on the inner peripheral side are pressed. Bends toward the side wall and abuts at supersonic speed. At this time, the oxide film scatters from the contact portion, and diffusion of atoms from the exposed base metal to each other occurs.
  • the first stepped support portion 98a, the second stepped support portion 98b, and the third stepped support portion 98c of the block body 54b are the second leg portion 16 from the outermost side and the fourth stepped portion from the outermost side.
  • the leg 16 and the innermost leg 16 of the innermost leg 16 are supported on the inner peripheral wall side of the inner leg 16. That is, also in the fourth embodiment, the leg 16 on the outer peripheral side approaches the leg 16 on the inner peripheral side by the first stepped support part 98a, the second stepped support part 98b, and the third stepped support part 98c.
  • the inner peripheral side wall on the opposite side to the outer peripheral side wall in contact with is supported. For this reason, the leg 16 on the inner peripheral side maintains the original position before and after contact.
  • the leg portions 16 are metallurgically joined substantially simultaneously with the contact.
  • the time required for the bending, contact and joining is 1 second or less, typically 0.5 seconds or less.
  • the above phenomenon proceeds simultaneously in all of the 18 sets of slot groups 22b. That is, according to the fourth embodiment, even when the number of slots 20 constituting one set of slot groups 22b exceeds four, all the leg portions 16 positioned on the outer peripheral side and the inner peripheral side thereof All the adjacent leg portions 16 can be joined simultaneously in one operation. For this reason, since the time until obtaining the stator is remarkably shortened, the production efficiency of the stator can be improved.
  • the present invention is not particularly limited to the first to fourth embodiments described above, and various modifications can be made without departing from the gist of the present invention.
  • a joining device having a configuration according to the joining device 14b (see FIG. 5) or the joining device 14c (see FIG. 9) is used. May be joined together.
  • an I-shaped segment may be used.
  • the materials of the first pressing bar 92, the second pressing bar 94, and the third pressing bar 96 are not particularly required to generate an induced current in the leg portion 16, and the displaced first The legs may be simply pressed by the pressing bar 92, the second pressing bar 94, and the third pressing bar 96.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

電気導体であるセグメント(10)は、ステータコア(12a)のスロット(20)に脚部(16)が通されることで該ステータコア(12a)に保持される。例えば、ステータコア(12a)の外周側にアウタ側電磁コイル(26)が配置されると、該アウタ側電磁コイル(26)に通電がなされる。この通電に伴い、最外に位置する脚部(16)に誘導電流が生じ。該脚部(16)と、これに隣り合う脚部(16)とが当接して接合される。

Description

電気導体の接合方法及びその装置
 本発明は、ステータコアに形成されたスロットに挿入された電気導体の脚部同士を接合する電気導体の接合方法及びその装置に関する。
 従来、円環形状のステータコアの周方向に沿って形成された複数個のスロット中の2個に、電気導体を挿入することでステータを構成することが知られている。ここで、電気導体は略U字形状又は略I字形状をなし、このため、少なくとも1本の脚部を有する。この脚部が前記スロットに挿入され、且つ先端部が該スロットから突出する。複数個のスロットは放射状に形成されているので、例えば、1個の脚部が外周側のスロットから突出するとともに、直径方向に隣り合う内周側のスロットから、別の電気導体の脚部が突出する。
 この突出した脚部同士が接合されることにより、電気導体同士の間に電気的経路が形成される。接合手法としては、例えば、特開2000-350422号公報に記載されるようにアーク溶接が採用される。
 アーク溶接の場合、1回の接合作業で2本の脚部同士を接合することしかできない。すなわち、全ての接合を行うためにはアーク溶接を繰り返し行わなければならない。しかも、この場合、打点毎に品質にバラツキが生じる可能性があるので、これを回避して品質を略同等にするべく加修を行う必要がある。以上のように、アーク溶接には、ステータを効率よく得ることが容易ではなく、しかも、煩雑であるという不具合が顕在化している。
 本発明の一般的な目的は、ステータの生産効率を向上させることが可能な電気導体の接合方法を提供することにある。
 本発明の主たる目的は、接合作業の簡素化を図り得る電気導体の接合方法を提供することにある。
 本発明の別の目的は、電気導体を接合するための接合装置を提供することにある。
 本発明の一実施形態によれば、円環形状をなすステータコアの周方向に複数個設けられたスロットに挿入された電気導体の、前記ステータコアから突出して直径方向に隣り合う2本の脚部同士を接合する電気導体の接合方法であって、
 前記ステータコアの内周側又は外周側の少なくとも一方に、電磁コイルを円周状に配置する工程と、
 前記電磁コイルに通電することで、前記隣り合う2本の脚部同士を当接させるとともに、当接した前記2本の脚部同士を接合する工程と、
 を有する電気導体の接合方法が提供される。
 本発明の別の一実施形態によれば、円環形状をなすステータコアの周方向に複数個設けられたスロットに挿入された電気導体の、前記ステータコアから突出して直径方向に隣り合う2本の脚部同士を接合する電気導体の接合装置であって、
 前記ステータコアの内周側又は外周側の少なくとも一方に配置される電磁コイルと、
 前記電磁コイルに電流を供給する電流供給部と、
 を有する電気導体の接合装置が提供される。
 すなわち、本発明においては、ステータコアの内周側又は外周側の少なくとも一方に電磁コイルを円周状に配置し、該電磁コイルに通電を行うようにしている。この際、電磁コイルや脚部の近傍に強磁界が発生する。従って、電磁コイルに近接する脚部に対し、この脚部を、隣り合う別の脚部に向かって押し出す方向の電磁力が生じる。電磁力を受けた脚部が曲がり、この脚部に隣り合う別の脚部と超音速で当接する。このようにして超音速で当接した脚部同士では、接合すべき面から酸化膜が飛散するとともに、露呈した下地金属から互いへの原子の拡散が生じる。これにより、冶金的接合がなされる。
 この現象は、電磁力が作用した脚部全てと、これに隣り合う脚部全てとの間で同時に起こる。すなわち、上記のように構成することにより、複数本の脚部同士を同時に接合することが可能である。しかも、前記の曲がり及び当接、さらには、接合が短時間で速やかに進行する。このため、接合に要する時間が著しく短縮されるので、ステータを効率よく生産することが可能となる。結局、ステータの生産効率の向上を図ることができる。
 しかも、各脚部の近傍で発生する磁界の大きさや、各脚部に作用する電磁力の大きさは略同等である。このため、接合箇所毎に品質にバラツキが生じる懸念が払拭されるので、加修を行う必要もない。この分、接合作業が簡素となる。
 脚部同士は、例えば、隣り合う2個の脚部の一方に誘導電流を生じさせ、この誘導電流により生じる電磁力で該一方を他方に接近させることで当接させることができる。
 又は、電磁コイルと電気導体との間に可動部材を設け、この可動部材を変位させることで脚部を押圧し、これにより脚部同士を当接させるようにしてもよい。
 なお、2個の脚部の一方が他方に向かって接近する際に、前記他方を、前記一方が当接する箇所と反対側から支持する支持部材を設けることが好ましい。これにより、接合される脚部同士が位置決めされる。すなわち、各接合箇所の位置を揃えることができる。また、支持部材が脚部同士の当接箇所を支持するので、同士が当接したときの衝撃が緩和されることがない。このため、当接の際の衝突エネルギが、接合を行う熱エネルギに変換され且つ有効に消費される。
 本発明によれば、ステータコアの内周側又は外周側の少なくとも一方に電磁コイルを円周状に配置し、該電磁コイルに通電を行うようにしているので、電磁コイルに近接する脚部に対し、この脚部を、隣り合う別の脚部に向かって押し出す方向の電磁力が生じる。この電磁力を受けた脚部が曲がり、該脚部に隣り合う別の脚部と当接して接合する。
 この現象が、電磁力が作用した脚部全てと、これに隣り合う脚部全てとの間で同時に起こるため、複数本の脚部同士を同時に接合することが可能となる。このために接合に要する時間が著しく短縮されるので、ステータの生産効率が向上する。
 しかも、各脚部の近傍で発生する磁界の大きさや、各脚部に作用する電磁力の大きさが略同等であるため、接合箇所毎に品質にバラツキが生じることが回避される。従って、加修が不要となる。この分、接合作業の簡素化を図ることができる。
セグメントが通されたステータコアと、本発明の第1実施形態に係る接合装置とを併せて示した全体概略一部縦断面図である。 図1の接合装置を構成するアウタ側磁束集中器を下降し、アウタ側電磁コイル内に進入させた状態を示す全体概略一部縦断面図である。 図2の状態であるときのステータコア、アウタ側磁束集中器、アウタ側電磁コイルの位置関係を示す要部概略水平方向断面図である。 最外の脚部と、その内周側で隣り合う脚部とを当接させて接合を行っている状態を示す要部拡大一部縦断面図である。 セグメントが通されたステータコアと、本発明の第2実施形態に係る接合装置とを併せて示した全体概略一部縦断面図である。 図5の接合装置を構成するインナ側磁束集中器を下降し、インナ側電磁コイルを囲繞した状態を示す全体概略一部縦断面図である。 図6の状態であるときのインナ側電磁コイル、インナ側磁束集中器、ステータコアの位置関係を示す要部概略水平方向断面図である。 最内の脚部と、その外周側で隣り合う脚部とを当接させて接合を行っている状態を示す要部拡大正面図である。 セグメントが通されたステータコアと、本発明の第3実施形態に係る接合装置とを併せて示した全体概略一部縦断面図である。 図9の接合装置を構成するインナ側磁束集中器、アウタ側磁束集中器を下降し、インナ側磁束集中器でインナ側電磁コイルを囲繞し且つアウタ側磁束集中器をアウタ側電磁コイル内に進入させた状態を示す全体概略一部縦断面図である。 図10の状態であるときのインナ側電磁コイル、インナ側磁束集中器、ステータコア、アウタ側磁束集中器、アウタ側電磁コイルの位置関係を示す要部概略水平方向断面図である。 最外の脚部と、その内周側で隣り合う脚部とを当接させて接合を行うとともに、最内の脚部と、その外周側で隣り合う脚部とを当接させて接合を行っている状態を示す要部拡大正面図である。 本発明の第4実施形態に係る接合装置を構成するアウタ側磁束集中器をアウタ側電磁コイル内に進入させたときのステータコア、アウタ側磁束集中器、アウタ側電磁コイルの位置関係を示す要部概略水平方向断面図である。 外周側の脚部と、その内周側で隣り合う脚部とを当接させて接合を行っている状態を示す要部拡大正面図である。
 以下、本発明に係る電気導体の接合方法につき、それを実施するための接合装置との関係で好適な実施の形態を挙げ、添付の図面を参照して詳細に説明する。なお、以下においては、電気導体を「セグメント」とも表記する。
 図1は、セグメント10が通されたステータコア12aと、第1実施形態に係る接合装置14aとを併せて示した全体概略一部縦断面図である。セグメント10及びステータコア12aにつき概略説明すると、先ず、セグメント10は、2本の脚部16が略180°湾曲したターン部18を介して連なることで形成され、このために略U字形状をなす。
 一方、ステータコア12aは円環形状をなし(図3参照)、且つ内周側縁部及び外周側縁部のそれぞれに直径方向に沿って2個ずつスロット20が形成されている。すなわち、スロット20は、直径方向に沿って4個が並ぶ。この4個を1組のスロット群22aとすると、第1実施形態では、例えば、24組のスロット群22aが放射状に配置される。
 1組のスロット群22aを構成する4個のスロット20には、4個のセグメント10の脚部16が1本ずつ個別に挿入され、図1における上方に突出する。すなわち、セグメント10は、ターン部18を下方、脚部16を上方とした姿勢でステータコア12aに保持されている。
 第1実施形態に係る接合装置14aは、ステータコア12aを収容して支持する支持台24aと、接合機構を構成するアウタ側電磁コイル26と、前記アウタ側電磁コイル26に通電がなされた際に誘導電流が生じて電磁力F1が発現するアウタ側磁束集中器28とを有する。
 支持台24aは大径の収容孔30が形成された中空体であり、前記収容孔30の内部には、ステータコア12aの下端面の外周縁部を支持するステータ用段部32が形成されている。このステータ用段部32と収容孔30の底面との間の段差は、ターン部18の突出高さよりも若干大きく設定されている。このため、ターン部18が内部底面に当接することが回避される。
 支持台24aには、収容孔30の開口近傍にアウタ側コイル用段部34が形成される。前記アウタ側電磁コイル26は、このアウタ側コイル用段部34に支持される。
 アウタ側電磁コイル26には、キャパシタ40、スイッチ42、抵抗44、インダクタンス46が直列接続されてなる電流供給部48(いずれも図4参照)が電気的に接続される。スイッチ42をONとすることにより、前記キャパシタ40に蓄積されていた電子が移動してアウタ側電磁コイル26に電流が供給される。すなわち、アウタ側電磁コイル26に通電がなされる。
 アウタ側磁束集中器28は円環形状をなし(図3参照)、その外径は、アウタ側電磁コイル26の内径に比して若干小径である。また、アウタ側磁束集中器28の高さは、アウタ側電磁コイル26の高さに略等しい。このため、アウタ側磁束集中器28は、アウタ側電磁コイル26の中空内部に進入可能であるとともに、進入したときにはアウタ側電磁コイル26で囲繞される。
 アウタ側磁束集中器28の下端部には、アウタ用環状突部50が内周側に指向して突出形成される。後述するように、アウタ用環状突部50は最外の脚部16に対向するとともに、この対向した脚部16を電磁力F1によって折曲する。
 このように構成されるアウタ側磁束集中器28は、支持部52を有するブロック体54a(支持部材)とともに集中器ホルダ56aに保持されている。なお、図1では2個のブロック体54aを示しているが、実際には、ブロック体54aは、1組のスロット群22aに対して1個が割り当てられる(図3参照)。すなわち、この場合、ブロック体54aは、同一円周上に24個が配置されている。
 ブロック体54aの下端は、平面視で略H字形状をなし(図3参照)、2個の長辺部は、ステータコア12aの内周側から外周側にわたって延在し、1組のスロット群22a(4個のスロット20)を挟んで対向する。これら2個の長辺部は、ガイド部としての役割を果たす。一方、2個の長辺部の間に介在し且つこれら長辺部の長手方向に直交する方向に延在する短辺部は前記支持部52を構成し、1組のスロット群22aの、外周縁部側の2個と内周縁部側の2個との間に介在する。
 集中器ホルダ56aは、さらに、円盤形状の基部を有する断面略逆T字形状の円盤状ホルダ58に保持されている。この円盤状ホルダ58は、例えば、油圧シリンダの昇降ロッド(いずれも図示せず)に連結されており、該昇降ロッドが前進(下降)又は後退(上昇)することに伴って下降又は上昇する。これに伴って集中器ホルダ56a、アウタ側磁束集中器28及びブロック体54aが一体的に下降又は上昇する。
 第1実施形態に係る接合装置14aは、基本的には以上のように構成されるものであり、次に、その作用効果につき、本実施の形態に係るセグメント10の接合方法との関係で説明する。
 ステータを得るには、はじめに、ステータコア12aに設けられた複数個のスロット20中の異なる2個(典型的には、任意のスロット群22aから選択された1個と、別のスロット群22aから選択された1個)に、1個のセグメント10の2本の脚部16を個別に挿入する。これを繰り返し、所定数のセグメント10のスロット20への挿入を終了する。勿論、複数個のセグメント10を一度にスロット20に挿入するようにしてもよい。
 次に、ターン部18が下方、脚部16が上方を臨む姿勢となるようにして、図2に示すように、ステータコア12aを支持台24aの収容孔30に挿入してステータ用段部32で支持する。上記したように、この際、ターン部18が収容孔30の内部底面に当接することはない。このようにステータコア12aを収容孔30に収容した後、又はその前に、アウタ側電磁コイル26をアウタ側コイル用段部34で支持する。
 次に、前記油圧シリンダを付勢し、その昇降ロッドを前進させる。これにより、円盤状ホルダ58と一体的に集中器ホルダ56a、アウタ側磁束集中器28及びブロック体54aが下降する。円盤状ホルダ58が下死点まで下降した際、アウタ側磁束集中器28がアウタ側電磁コイル26の内部に進入する。すなわち、図2及び図3に示すように、アウタ側磁束集中器28がアウタ側電磁コイル26で囲繞される。また、ブロック体54aのガイド部が1組のスロット群22a(4個のスロット20)から突出した4本の脚部16を挟持するとともに、支持部52が同一スロット群22aから突出した外周縁部側の2個の脚部16と、内周縁部側の2個の脚部16との間に介在する。
 次に、アウタ側電磁コイル26に通電がなされる。具体的には、スイッチ42(図4参照)がONに切り替えられる。これにより、キャパシタ40に蓄積されていた電荷が移動し、その結果として電流(i)が流れる。図4に示す電流供給部48では、電流は、抵抗44からインダクタンス46側に流れる。従って、アウタ側電磁コイル26内の電流は、図4の左方では紙面の奥から手前に向かい、右方では紙面の手前から奥に向かう。
 アウタ側電磁コイル26内にこのような電流が流れることに伴い、アウタ側磁束集中器28の、アウタ側電磁コイル26の内周に臨む外周部に誘導電流が生じる。誘導電流の向きは、アウタ側電磁コイル26内とは逆であり、例えば、図4の左方では紙面の手前から奥に向かい、右方では紙面の奥から手前に向かう。
 また、アウタ側磁束集中器28の内周部、換言すれば、アウタ用環状突部50には、アウタ側磁束集中器28の外周部と逆向きの誘導電流が生じる。さらに、アウタ用環状突部50に対向する最外の脚部16には、アウタ用環状突部50と逆向きの誘導電流が生じる。すなわち、アウタ側磁束集中器28の内周部における誘導電流の向きはアウタ側電磁コイル26内の電流の向きと同じであり、最外の脚部16における誘導電流の向きはアウタ側磁束集中器28の外周部と同じである。
 そして、最外の脚部16の近傍には、強磁界が形成される。アウタ側電磁コイル26の高さが大であるほど、アウタ用環状突部50に流れる誘導電流が大きくなり、その結果、最外の脚部16に強力な磁界が形成されるようになるので好ましい。この強磁界と、上記のようにして最外の脚部16内に生じた誘導電流とにより、フレミングの左手の法則に従って、ステータコア12aの外周側から内周側に向かう大きな電磁力F1が発生する。この電磁力F1により、最外の脚部16が、該脚部16に隣り合う内周側の脚部16に向かって接近するように曲がる。この接近の際、脚部16は、該脚部16を挟持したブロック体54aの長辺部に案内される。
 その結果、最外の脚部16の内周側壁が、内周側の脚部16の外周側壁に超音速で当接する。このとき、ブロック体54aの支持部52は、内周側の脚部16の内周壁側を支持している。すなわち、支持部52は、最外の脚部16が接近して内周側の脚部16に当接する外周側壁とは反対側の内周側壁を支持する。このため、内周側の脚部16が当接前後で元の位置を保つ。
 超音速で当接した最外の脚部16の内周側壁と内周側の脚部16の外周側壁からは、酸化膜が飛散する。これにより下地金属が露呈するとともに、該下地金属から原子が互いに向かって拡散する。また、最外の脚部16に誘導電流が生じているため、脚部16同士の接触箇所にジュール熱が発生する。さらに、最外の脚部16が曲がって内周側の脚部16に接近する速度が大きいので、当接の際に衝突エネルギが発生し、この衝突エネルギが熱エネルギに変換される。しかも、ブロック体54aの支持部52が内周側の脚部16を支持しているので、当接の際の衝撃が緩和されることがない。このため、衝突エネルギから熱エネルギへの変換効率が大きくなる。このように、当接箇所では、酸化膜が飛散するとともに、ジュール熱や大きな熱エネルギが発生する。このため、脚部16同士が当接と略同時に、冶金的接合されるに至る。前記の曲がり、当接及び接合は、1秒以下、典型的には0.5秒以下で終了する。
 以上の現象は、24組のスロット群22aの全てにおいて同時に進行する。すなわち、第1実施形態によれば、最外の脚部16全てと、その内周側で隣り合う脚部16全てとを、一度の作業で同時に接合することができる。このため、ステータを得るまでの時間が著しく短縮されるので、ステータの生産効率を向上させることができる。
 しかも、誘導電流が全体にわたって略同等に生じるので、接合箇所毎に品質が大きく相違することが回避される。このため、加修が不要となるので、接合作業が簡素化される。
 次に、第2実施形態に係る接合装置14bにつき説明する。なお、図1~図4に示される構成要素と同一の構成要素については同一の参照符号を付し、その詳細な説明を省略する。以降の第3実施形態、第4実施形態においても同様である。
 図5に示すように、第2実施形態に係る接合装置14bは、ステータコア12aを収容して支持する支持台24bと、接合機構を構成するインナ側電磁コイル70と、前記インナ側電磁コイル70に通電がなされた際に誘導電流が生じて電磁力F2が発現するインナ側磁束集中器72とを有する。
 支持台24bには環状凹部73が形成されるとともに、該環状凹部73の開口近傍にステータ用段部32が形成されている。第1実施形態と同様に、ステータ用段部32と環状凹部73の内部底面との間の段差は、ターン部18の突出高さよりも若干大きく設定されている。このため、ターン部18が内部底面に当接することが回避される。
 環状凹部73の中心には、インナ側コイル用段部76が形成される。前記インナ側電磁コイル70は、このインナ側コイル用段部76に支持される。
 図面を簡素化して理解を容易にするべく図示していないが、インナ側電磁コイル70には、第1実施形態と同様にキャパシタ40、スイッチ42、抵抗44、インダクタンス46が直列接続されてなる電流供給部48が電気的に接続される(図4参照)。スイッチ42をONとすることにより、前記キャパシタ40に蓄積されていた電子が移動してインナ側電磁コイル70に電流が流れる。
 インナ側磁束集中器72は円環形状をなし(図7参照)、その外径は、インナ側電磁コイル70の内径に比して若干大径である。また、インナ側磁束集中器72の高さは、インナ側電磁コイル70の高さに略等しい。このため、インナ側電磁コイル70は、下降したインナ側磁束集中器72の中空内部に進入可能であるとともに、進入したときにはインナ側磁束集中器72で囲繞される。
 インナ側磁束集中器72の高さ方向略中間には、インナ用環状突部74が外周側に指向して突出形成される。第2実施形態では、このインナ用環状突部74は最内の脚部16に対向し、上記と同様にこの対向した脚部16を電磁力F2によって折曲する。
 インナ側磁束集中器72は、ブロック体54aとともに集中器ホルダ56bに保持されている。なお、図5では2個のブロック体54aを示しているが、実際には、ブロック体54aは、同一円周上に24個が配置されている。
 ブロック体54a及び円盤状ホルダ58は第1実施形態と同様であるので、詳細な説明は省略する。
 第2実施形態に係る接合装置14bは、基本的には以上のように構成されるものであり、次に、その作用効果につき説明する。
 第1実施形態と同様に、所定数のセグメント10の脚部16を各スロット20に挿入した後、ターン部18が下方、脚部16が上方を臨む姿勢となるようにして、図5に示すように、ステータコア12aを支持台24bのステータ用段部32で支持する。これにより、ステータコア12aが環状凹部73を覆う位置となる。なお、上記したように、ターン部18が環状凹部73の内部底面に当接することはない。このようにステータコア12aを支持台24bで支持した後、又はその前に、インナ側電磁コイル70をインナ側コイル用段部76で支持する。
 次に、前記油圧シリンダを付勢し、その昇降ロッドを前進させる。これにより、円盤状ホルダ58と一体的に集中器ホルダ56b、インナ側磁束集中器72及びブロック体54aが下降する。円盤状ホルダ58が下死点まで下降することに伴い、インナ側磁束集中器72がインナ側電磁コイル70を囲繞する。すなわち、図6及び図7に示すように、インナ側電磁コイル70がインナ側磁束集中器72の内部に進入する。また、ガイド壁となるブロック体54aの長辺部が1組のスロット群22a(4個のスロット20)から突出した4本の脚部16を挟持するとともに、支持部52が同一スロット群22aから突出した外周縁部側の2個の脚部16と、内周縁部側の2個の脚部16との間に介在する。
 次に、電流供給部48を構成するスイッチ42がONに切り替えられ、インナ側電磁コイル70に通電がなされる。これにより、インナ側磁束集中器72の内周部、インナ側磁束集中器72の外周部(インナ用環状突部74)、インナ用環状突部74に対向する最内の脚部16に誘導電流がそれぞれ生じる。同時に、最内の脚部16の近傍に強磁界が形成される。
 この強磁界と、最内の脚部16内に生じた誘導電流とにより、フレミングの左手の法則に従って、図8に示すように、ステータコア12aの内周側から外周側に向かう大きな電磁力F2が発生する。この電磁力F2により、最内の脚部16が、該脚部16に隣り合う外周側の脚部16に向かって接近するように曲がる。この接近の際、脚部16は、該脚部16を挟持したブロック体54aの長辺部に案内される。
 その結果、最内の脚部16の外周側壁が、外周側の脚部16の内周側壁に超音速で当接するとともに、最内の脚部16の外周側壁と、外周側の脚部16の内周側壁から酸化膜が飛散し且つ原子が互いに向かって拡散する。このとき、ブロック体54aの支持部52は、外周側の脚部16の外周壁側を支持している。すなわち、支持部52は、最内の脚部16が接近して外周側の脚部16に当接する内周側壁とは反対側の内周側壁を支持する。このため、外周側の脚部16が当接前後で元の位置を保つ。
 また、最内の脚部16に誘導電流が生じているため、脚部16同士の接触箇所にジュール熱や熱エネルギが発生する。酸化膜の飛散や原子の拡散、さらにはジュール熱及び熱エネルギによって、脚部16同士が当接と略同時に冶金的接合されるに至る。上記と同様に、最内の脚部16の曲がり、2本の脚部16同士の当接及び接合は、1秒以下、典型的には0.5秒以下で終了する。
 勿論、24組のスロット群22aの全てにおいて以上の現象が同時に進行する。すなわち、第2実施形態によれば、最内の脚部16全てと、その外周側で隣り合う脚部16全てとを、一度の作業で同時に接合することができる。しかも、接合箇所毎に品質が大きく相違することが回避される。すなわち、ステータの生産効率を向上させることができるとともに、接合作業の簡素化を図ることができる。
 次に、図9に示す第3実施形態に係る接合装置14cにつき説明する。この接合装置14cは、ステータコア12aを収容して支持する支持台24cと、接合機構を構成するアウタ側電磁コイル26及びインナ側電磁コイル70と、前記アウタ側電磁コイル26、インナ側電磁コイル70によって電磁力を発現するアウタ側磁束集中器28、インナ側磁束集中器72とを有する。
 支持台24cには収容孔30が形成されるとともに、該収容孔30の内部底面近傍にステータ用段部32が形成されている。第1実施形態と同様に、ステータ用段部32と収容孔30の内部底面との間の段差は、ターン部18の突出高さよりも若干大きく設定されている。このため、ターン部18が内部底面に当接することが回避される。
 収容孔30の中心には、内部底面から突出して延在するインナ側コイル用段部76が設けられる。前記インナ側電磁コイル70は、このインナ側コイル用段部76に支持される。また、収容孔30の開口近傍には、アウタ側電磁コイル26を支持するアウタ側コイル用段部34が形成されている。
 図面を簡素化して理解を容易にするべく図示していないが、アウタ側電磁コイル26及びインナ側電磁コイル70には、キャパシタ40、スイッチ42、抵抗44、インダクタンス46が直列接続されてなる電流供給部48が電気的に接続される。電流供給部48は、アウタ側電磁コイル26とインナ側電磁コイル70で共通であってもよいし、別個であってもよい。
 この場合、集中器ホルダ56cは、アウタ側磁束集中器28を保持する第1円環壁部80と、該第1円環壁部80の内周側に位置し、インナ側磁束集中器72を保持する第2円環壁部82とを有する。第1円環壁部80に保持されたアウタ側磁束集中器28のアウタ用環状突部50と、第2円環壁部82に保持されたインナ側磁束集中器72のインナ用環状突部74は、略同一高さに位置する。
 また、この場合、ブロック体54aは、第1円環壁部80と第2円環壁部82との間に配設される。なお、図9では2個のブロック体54aを示しているが、上記と同様に、ブロック体54aは、実際には同一円周上に24個が配置されている。
 ブロック体54a及び円盤状ホルダ58は第1実施形態及び第2実施形態と同様であるので、詳細な説明は省略する。
 第3実施形態に係る接合装置14cは、基本的には以上のように構成されるものであり、次に、その作用効果につき説明する。
 第1実施形態と同様に、所定数のセグメント10の脚部16を各スロット20に挿入した後、ターン部18が下方、脚部16が上方を臨む姿勢となるようにして、図9に示すように、ステータコア12aを収容孔30に挿入するとともにステータ用段部32で支持する。これにより、ステータコア12aが収容孔30を覆う位置となる。なお、上記したように、ターン部18が収容孔30の内部底面に当接することはない。このようにステータコア12aを収容孔30に収容した後、又はその前に、アウタ側電磁コイル26、インナ側電磁コイル70をインナ側コイル用段部76、アウタ側電磁コイル26でそれぞれ支持する。
 次に、前記油圧シリンダを付勢し、その昇降ロッドを前進させる。これにより、円盤状ホルダ58と一体的に集中器ホルダ56c、アウタ側磁束集中器28、インナ側磁束集中器72、及びブロック体54aが下降する。円盤状ホルダ58が下死点まで下降することに伴い、アウタ側電磁コイル26がアウタ側磁束集中器28を囲繞し、且つインナ側磁束集中器72がインナ側電磁コイル70を囲繞する。すなわち、図10及び図11に示すように、アウタ側磁束集中器28がアウタ側電磁コイル26の内部に進入するとともに、インナ側電磁コイル70がインナ側磁束集中器72の内部に進入する。
 また、ブロック体54aのガイド部が1組のスロット群22a(4個のスロット20)から突出した4本の脚部16を挟持するとともに、支持部52が同一スロット群22aから突出した外周縁部側の2個の脚部16と、内周縁部側の2個の脚部16との間に介在する。
 次に、電流供給部48を構成するスイッチ42がONに切り替えられ、アウタ側電磁コイル26及びインナ側電磁コイル70に通電がなされる。これにより、アウタ側磁束集中器28の外周部、アウタ側磁束集中器28の内周部(アウタ用環状突部50)、アウタ用環状突部50に対向する最外の脚部16に誘導電流がそれぞれ生じる。同時に、インナ側磁束集中器72の内周部、インナ側磁束集中器72の外周部(インナ用環状突部74)、インナ用環状突部74に対向する最内の脚部16にも誘導電流がそれぞれ生じる。その一方で、最外の脚部16、最内の脚部16の近傍に強磁界がそれぞれ形成される。
 以降は第1実施形態及び第2実施形態と同様に、フレミングの左手の法則に従って、ステータコア12aの外周側から内周側に向かう大きな電磁力F1と、内周側から外周側に向かう大きな電磁力F2とが同時に発生する。これらの電磁力F1、F2により、図12に示すように、最外の脚部16が、該脚部16に隣り合う内周側の脚部16に向かって接近するように曲がるとともに、最内の脚部16が、該脚部16に隣り合う外周側の脚部16に向かって接近するように曲がる。この接近の際、脚部16は、該脚部16を挟持したブロック体54aの長辺部に案内される。
 その結果、最外の脚部16の内周側壁が、内周側の脚部16の外周側壁に超音速で当接するとともに、最内の脚部16の外周側壁が、外周側の脚部16の内周側壁に超音速で当接する。このとき、最外の脚部16の内周側に隣り合う脚部16、及び最内の脚部16の外周側に隣り合う脚部16を支持部52が支持する。このため、これら2本の脚部16が当接前後で元の位置を保つ。
 また、最外の脚部16及び最内の脚部16に誘導電流がそれぞれ生じているため、脚部16同士の接触箇所にジュール熱及び熱エネルギが発生する。超音速での当接に伴う酸化膜の飛散と原子の拡散、さらには、ジュール熱及び熱エネルギによって、隣り合う2本の脚部16同士が当接と略同時に冶金的接合されるに至る。上記と同様に、最外の脚部16及び最内の脚部16の曲がり、隣り合う2本の脚部16同士の当接及び接合は、1秒以下、典型的には0.5秒以下で終了する。
 勿論、24組のスロット群22aの全てにおいて以上の現象が同時に進行する。すなわち、第3実施形態によれば、最外の脚部16の全てとその内周側で隣り合う脚部16全て、及び、最内の脚部16全てとその外周側で隣り合う脚部16全てとを、一度の作業で同時に接合することができる。しかも、接合箇所毎に品質が大きく相違することが回避される。すなわち、ステータの生産効率を一層向上させることができるとともに、接合作業の一層の簡素化を図ることができる。
 アウタ側電磁コイル26、インナ側電磁コイル70の巻き数は、最外の脚部16に作用する当接時の衝撃と、その内周側で隣り合う脚部16に作用する当接時の衝撃とが相殺されるように設定されている。このため、衝撃による設備への負荷が低減される。
 次に、可動部材を有する接合装置につき、第4実施形態として説明する。
 図13は、セグメント10が通されたステータコア12bと、第4実施形態に係る接合装置14dとを併せて示した要部概略水平方向断面図であり、図14は、その要部拡大正面図である。この場合、ステータコア12bは円環形状をなし(図13参照)、且つ内周側縁部、内周側縁部と外周側縁部との間、外周側縁部のそれぞれに、若干の位相差を有するようにして2個ずつスロット20が形成されている。第4実施形態では、この6個を1組のスロット群22bとする。すなわち、これらの場合、18組のスロット群22bが放射状に配置される。
 1組のスロット群22bをなす6個のスロット20には、6個のセグメント10の脚部16が1本ずつ個別に挿入され、図14における上方(図13における紙面手前側)に突出する。従って、この場合においても、セグメント10は、ターン部18を下方、脚部16を上方としてステータコア12bに保持されている。
 接合装置14dは、ステータコア12bを収容して支持する支持台24a(図1参照)と、接合機構を構成するアウタ側電磁コイル26と、前記アウタ側電磁コイル26によって電磁力を発現するアウタ側磁束集中器28とを有する。これらの構成要素と、集中器ホルダ56a及び円盤状ホルダ58については第1実施形態と同様であるので、詳細な説明は省略する。
 接合装置14dは、アウタ側磁束集中器28のアウタ用環状突部50の近傍に設けられた図示しない円環状案内盤を有する。該円環状案内盤には複数個の壁部が放射状に形成され、これにより、円環状案内盤に18個の案内部が区分形成されている。案内部の内周側には、集束部材90が案内部から脱落することを防止するための抜け止め壁部が設けられる。
 各案内部には、特に図14に示す集束部材90が摺動自在に収容される。集束部材90の内周側には、平面視で略T字形状をなす第1押圧バー92、第2押圧バー94及び第3押圧バー96が設けられる。すなわち、集束部材90は、第1押圧バー92、第2押圧バー94及び第3押圧バー96を纏めて支持している。これら集束部材90、第1押圧バー92、第2押圧バー94及び第3押圧バー96は、誘導電流が生じることが可能な素材からなる。
 第1押圧バー92は最も短尺であり、その先端は、1組のスロット群22b中の最外の脚部16に対向する。また、最も長尺な第3押圧バー96の先端は、同一のスロット群22b中、最外から5番目(最内から2番目)の脚部16に対向する。そして、第1押圧バー92と第3押圧バー96の中間の長さである第2押圧バー94の先端は、同一のスロット群22b中、最外から3番目(最内から4番目)の脚部16に対向する。なお、第1押圧バー92、第2押圧バー94及び第3押圧バー96の先端は、前記抜け止め壁部に形成された開口から突出している。
 ブロック体54bの下端部は、内周側から外周側に向かう長さが段階的に相違するような形状に設定されている。具体的には、ブロック体54bは、同一のスロット群22b中の最外から2番目(最内から5番目)の脚部16に対向する第1段状支持部98a、最外から4番目(最内から3番目)の脚部16に対向する第2段状支持部98b、最内の脚部16に対向する第3段状支持部98cを有する。
 次に、第4実施形態に係る接合装置14dを用いたセグメント10の接合方法につき説明する。
 第1実施形態に準拠し、ステータコア12bに設けられた複数個のスロット20に対して所定数のセグメント10の脚部16を挿入した後、図14に示すように、ターン部18が下方、脚部16が上方を臨む姿勢となるようにして、ステータコア12bを支持台24aの収容孔30に挿入してステータ用段部32で支持する。ステータコア12bを収容孔30に収容した後、又はその前に、アウタ側電磁コイル26をアウタ側コイル用段部34で支持することは勿論である。
 さらに、円盤状ホルダ58を下降させるべく、該円盤状ホルダ58に連結された昇降ロッドを、油圧シリンダを付勢することで前進させる。これにより、円盤状ホルダ58と一体的に集中器ホルダ56a、アウタ側磁束集中器28、円環状案内盤及びブロック体54bが下降する。円盤状ホルダ58が下死点まで下降した際、アウタ側磁束集中器28がアウタ側電磁コイル26の内部に進入する。すなわち、図13に示すように、アウタ側磁束集中器28がアウタ側電磁コイル26で囲繞される。
 また、ブロック体54bの第1段状支持部98a、第2段状支持部98b及び第3段状支持部98cが、それぞれ、1組のスロット群22b中の最外から2番目(最内から5番目)の脚部16、最外から4番目(最内から3番目)の脚部16、最内の脚部16に対向する。また、第1押圧バー92、第2押圧バー94、第3押圧バー96の各先端は、同一のスロット群22b中の最外の脚部16、最外から3番目(最内から4番目)の脚部16、最外から5番目(最内から2番目)の脚部16に対向する。
 結局、第1段状支持部98aと第1押圧バー92は、最外の脚部16と、これと内周側で隣り合う脚部16とを挟んで対向する。また、第2段状支持部98bと第2押圧バー94は、最外から3番目の脚部16と、これと内周側で隣り合う脚部16とを挟んで対向し、第3段状支持部98cと第3押圧バー96は、最外から5番目の脚部16と、これと内周側で隣り合う脚部16(最内の脚部16)とを挟んで対向する。
 この状態で、次に、アウタ側電磁コイル26に通電がなされる。すなわち、スイッチ42(図4参照)がONに切り替えられるとともに、この際にキャパシタ40に蓄積されていた電荷が移動することで、電流供給部48からアウタ側電磁コイル26に電流が供給される。すなわち、アウタ側電磁コイル26に通電がなされる。
 これにより、アウタ側磁束集中器28の外周部、アウタ側電磁コイル26の内周部(アウタ用環状突部50)、さらには、集束部材90、第1押圧バー92、第2押圧バー94及び第3押圧バー96に誘導電流が生じる。そして、最外、最外から3番目、最外から5番目の各脚部16の近傍には、強磁界が形成される。その結果、フレミングの左手の法則に従い、集束部材90を内周側に押し出す電磁力F1が発生する。
 この電磁力F1により、集束部材90が前記案内部に案内されながら、ステータコア12bの直径方向内方に向かって移動する。これに伴い、集束部材90に支持された第1押圧バー92、第2押圧バー94及び第3押圧バー96が集束部材90と一体的に同一方向に変位する。すなわち、第1押圧バー92、第2押圧バー94及び第3押圧バー96がステータコア12bの直径方向内方に向かって移動する。このことから諒解されるように、集束部材90、第1押圧バー92、第2押圧バー94及び第3押圧バー96は可動部材である。
 その結果、最外の脚部16、最外から3番目の脚部16、最外から5番目の脚部16が、第1押圧バー92、第2押圧バー94、第3押圧バー96によってそれぞれ押圧され、各内周側壁が、各々の内周側で隣接する脚部16(最外から2番目の脚部16、最外から4番目の脚部16、最内の脚部16)の外周側壁に向かって曲がり、超音速で当接する。この際、当接箇所から酸化膜が飛散するとともに、露呈した下地金属から原子の互いへの拡散が生じる。なお、このとき、ブロック体54bの第1段状支持部98a、第2段状支持部98b、第3段状支持部98cは、最外から2番目の脚部16、最外から4番目の脚部16、最内の脚部16の、内周側の脚部16の内周壁側を支持している。すなわち、第4実施形態でも、第1段状支持部98a、第2段状支持部98b及び第3段状支持部98cにより、外周側の脚部16が接近して内周側の脚部16に当接する外周側壁とは反対側の内周側壁を支持する。このため、内周側の脚部16が当接前後で元の位置を保つ。
 また、押圧によって曲げられた脚部16に誘導電流が生じているため、脚部16同士の当接箇所にジュール熱や熱エネルギが発生する。以上のような理由から、脚部16同士が当接と略同時に冶金的接合されるに至る。第1実施形態~第3実施形態と同様に、前記の曲がり、当接及び接合に要する時間は1秒以下、典型的には0.5秒以下である。
 以上の現象は、18組のスロット群22bの全てにおいて同時に進行する。すなわち、第4実施形態によれば、1組のスロット群22bを構成するスロット20の個数が4個を上回るときであっても、外周側に位置する脚部16全てと、その内周側で隣り合う脚部16全てとを、一度の作業で同時に接合することができる。このため、ステータを得るまでの時間が著しく短縮されるので、ステータの生産効率を向上させることができる。
 しかも、誘導電流が全体にわたって略同等に生じるので、接合箇所毎に品質が大きく相違することが回避される。このため、加修が不要となるので、接合作業が簡素化される。すなわち、1組のスロット群22bを構成するスロット20の個数が4個を上回るときであっても、第1実施形態~第3実施形態と同様の作用効果が得られる。
 本発明は、上記した第1実施形態~第4実施形態に特に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の変更が可能である。
 例えば、図13及び図14に示したステータコア12bのスロット20に挿入されたセグメント10に対し、接合装置14b(図5参照)又は接合装置14c(図9参照)に準じた構成の接合装置を用いて接合を行うようにしてもよい。
 また、略U字形状のセグメント10に代替し、I字形状のセグメントを用いるようにしてもよい。
 さらに、第4実施形態では、第1押圧バー92、第2押圧バー94及び第3押圧バー96の素材を、脚部16に誘導電流を生じさせるものとする必要は特になく、変位した第1押圧バー92、第2押圧バー94及び第3押圧バー96で脚部を押圧するのみとしてもよい。
10…セグメント            12a、12b…ステータコア
14a~14d…接合装置        16…脚部
18…ターン部             20…スロット
22a、22b…スロット群       26…アウタ側電磁コイル
28…アウタ側磁束集中器        32…ステータ用段部
34…アウタ側コイル用段部       48…電流供給部
50…アウタ用環状突部         52…支持部
54a、54b…ブロック体       70…インナ側電磁コイル
72…インナ側磁束集中器        74…インナ用環状突部
76…インナ側コイル用段部       90…集束部材
92…第1押圧バー           94…第2押圧バー
96…第3押圧バー           98a…第1段状支持部
98b…第2段状支持部         98c…第3段状支持部

Claims (8)

  1.  円環形状をなすステータコア(12a)の周方向に複数個設けられたスロット(20)に挿入された電気導体(10)の、前記ステータコア(12a)から突出して直径方向に隣り合う2本の脚部(16)同士を接合する電気導体(10)の接合方法であって、
     前記ステータコア(12a)の内周側又は外周側の少なくとも一方に、電磁コイル(26、70)を円周状に配置する工程と、
     前記電磁コイル(26、70)に通電することで、前記隣り合う2本の脚部(16)同士を当接させるとともに、当接した前記2本の脚部(16)同士を接合する工程と、
     を有することを特徴とする電気導体(10)の接合方法。
  2.  請求項1記載の接合方法において、前記隣り合う2本の脚部(16)の一方に誘導電流を生じさせ、前記誘導電流により生じる電磁力で前記2本の脚部(16)の一方を他方に接近させて該脚部(16)同士を当接させることを特徴とする電気導体(10)の接合方法。
  3.  請求項1又は2記載の接合方法において、前記ステータコア(12a)の内周側及び外周側の双方に、電磁コイル(26、70)を円周状に配置することを特徴とする電気導体(10)の接合方法。
  4.  請求項1記載の接合方法において、電磁力が発生した可動部材(90、92、94、96)の移動により前記隣り合う2本の脚部(16)の一方を他方に接近させて該脚部(16)同士を当接させることを特徴とする電気導体(10)の接合方法。
  5.  円環形状をなすステータコア(12a)の周方向に複数個設けられたスロット(20)に挿入された電気導体(10)の、前記ステータコア(12a)から突出して直径方向に隣り合う2本の脚部(16)同士を接合する電気導体(10)の接合装置であって、
     前記ステータコア(12a)の内周側又は外周側の少なくとも一方に円周上に配置される電磁コイル(26、70)と、
     前記電磁コイル(26、70)に電流を供給する電流供給部(48)と、
     を有することを特徴とする電気導体(10)の接合装置(14a)。
  6.  請求項5記載の接合装置(14d)において、前記電磁コイル(26、70)と前記電気導体(10)の間に配置される可動部材(90、92、94、96)をさらに有することを特徴とする電気導体(10)の接合装置(14d)。
  7.  請求項5又は6記載の接合装置(14a)において、前記2本の脚部(16)の一方が他方に向かって接近する際に、前記他方の脚部(16)を、前記一方の脚部(16)が当接する箇所と反対側から支持する支持部材(54a)をさらに有することを特徴とする電気導体(10)の接合装置(14a)。
  8.  請求項5記載の接合装置(14a)において、前記ステータコア(12a)の内周側に配置されるインナ側電磁コイル(70)と、外周側に配置されるアウタ側電磁コイル(26)とを有することを特徴とする電気導体(10)の接合装置(14a)。
PCT/JP2018/012106 2017-03-31 2018-03-26 電気導体の接合方法及びその装置 WO2018181162A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019509790A JP6826188B2 (ja) 2017-03-31 2018-03-26 電気導体の接合方法及びその装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-071097 2017-03-31
JP2017071097 2017-03-31

Publications (1)

Publication Number Publication Date
WO2018181162A1 true WO2018181162A1 (ja) 2018-10-04

Family

ID=63675775

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/012106 WO2018181162A1 (ja) 2017-03-31 2018-03-26 電気導体の接合方法及びその装置

Country Status (2)

Country Link
JP (1) JP6826188B2 (ja)
WO (1) WO2018181162A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001054263A (ja) * 1999-08-06 2001-02-23 Denso Corp 導体セグメント接合型の回転電機及びその製造方法
JP2008193875A (ja) * 2007-02-08 2008-08-21 Toyota Motor Corp 固定子の加熱方法、及び加熱装置
JP2012029393A (ja) * 2010-07-21 2012-02-09 Honda Motor Co Ltd 導線結合方法および誘導加熱装置
JP2015004624A (ja) * 2013-06-21 2015-01-08 トヨタ自動車株式会社 温度計測装置
WO2015001745A1 (ja) * 2013-07-01 2015-01-08 パナソニックIpマネジメント株式会社 給電装置及び給電方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5868913B2 (ja) * 2013-08-27 2016-02-24 本田技研工業株式会社 ステータワーク加熱装置、ステータワーク加熱方法及びステータコイル製造方法
WO2015174509A1 (ja) * 2014-05-16 2015-11-19 本田技研工業株式会社 導線溶接方法、ステータ、及び高周波誘導加熱装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001054263A (ja) * 1999-08-06 2001-02-23 Denso Corp 導体セグメント接合型の回転電機及びその製造方法
JP2008193875A (ja) * 2007-02-08 2008-08-21 Toyota Motor Corp 固定子の加熱方法、及び加熱装置
JP2012029393A (ja) * 2010-07-21 2012-02-09 Honda Motor Co Ltd 導線結合方法および誘導加熱装置
JP2015004624A (ja) * 2013-06-21 2015-01-08 トヨタ自動車株式会社 温度計測装置
WO2015001745A1 (ja) * 2013-07-01 2015-01-08 パナソニックIpマネジメント株式会社 給電装置及び給電方法

Also Published As

Publication number Publication date
JP6826188B2 (ja) 2021-02-03
JPWO2018181162A1 (ja) 2019-11-07

Similar Documents

Publication Publication Date Title
KR102339603B1 (ko) 다이나모 전기 기계의 부품을 제조하기 위한 장치 및 방법
JP4829798B2 (ja) 駆動シャフトを製造する装置と方法
JP5284882B2 (ja) 電磁継電器
JP6065743B2 (ja) 高周波誘導加熱ロウ付け用の加熱コイル、加熱装置及び方法
KR20210100114A (ko) 헤어핀 도체의 레그의 적어도 제 1 쌍의 단부를 위치시키기 위한 장치 및 방법
US20190252957A1 (en) Manufacturing method of stator, stator, and bending process machine
KR20070120561A (ko) 금속 부품들을 조립하는 공구 및 방법
JP2015035922A (ja) 回転電機のコイル接合方法
US20130106231A1 (en) Conductor weld-end length control forming
WO2018181162A1 (ja) 電気導体の接合方法及びその装置
JP2018142529A (ja) 電磁継電器
US5332939A (en) Electrical stator
JP2003134754A (ja) 溶接の位置決め治具およびコイル形成方法
JP5173617B2 (ja) ステータ
JP2004243333A (ja) 溶接装置および溶接方法
CA2137594A1 (en) Welding apparatus for studs of annular cross-section
US6198064B1 (en) Terminal for electric wire welding and welding torch suitable for electric wire welding to the terminal
KR101839147B1 (ko) 저항 용접 장치
JP2019140819A (ja) ステータの製造方法
JP2019140822A (ja) 曲げ加工装置
JP2018081901A (ja) 電磁継電器
US20060055251A1 (en) Tubular linear motor for electrical discharge machine
JP2022126906A (ja) ステータ製造装置およびステータ製造方法
JP2023507723A (ja) 作動工具
US20210090771A1 (en) Electromagnetic forming coil unit and formed-article producing method using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18775484

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019509790

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18775484

Country of ref document: EP

Kind code of ref document: A1