WO2018180932A1 - 熱交換器又は冷凍装置 - Google Patents

熱交換器又は冷凍装置 Download PDF

Info

Publication number
WO2018180932A1
WO2018180932A1 PCT/JP2018/011532 JP2018011532W WO2018180932A1 WO 2018180932 A1 WO2018180932 A1 WO 2018180932A1 JP 2018011532 W JP2018011532 W JP 2018011532W WO 2018180932 A1 WO2018180932 A1 WO 2018180932A1
Authority
WO
WIPO (PCT)
Prior art keywords
space
heat exchange
upwind
windward
header
Prior art date
Application number
PCT/JP2018/011532
Other languages
English (en)
French (fr)
Inventor
祥志 松本
俊 吉岡
祥太 吾郷
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to CN201880017505.5A priority Critical patent/CN110418931B/zh
Priority to EP18775598.8A priority patent/EP3604995B1/en
Priority to US16/498,776 priority patent/US11168928B2/en
Priority to AU2018245787A priority patent/AU2018245787B2/en
Publication of WO2018180932A1 publication Critical patent/WO2018180932A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/0408Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids
    • F28D1/0426Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids with units having particular arrangement relative to the large body of fluid, e.g. with interleaved units or with adjacent heat exchange units in common air flow or with units extending at an angle to each other or with units arranged around a central element
    • F28D1/0435Combination of units extending one behind the other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • F25B39/028Evaporators having distributing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0018Indoor units, e.g. fan coil units characterised by fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0471Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits having a non-circular cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05391Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits combined with a particular flow pattern, e.g. multi-row multi-stage radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0202Header boxes having their inner space divided by partitions
    • F28F9/0204Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions
    • F28F9/0209Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions having only transversal partitions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/26Arrangements for connecting different sections of heat-exchange elements, e.g. of radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/26Arrangements for connecting different sections of heat-exchange elements, e.g. of radiators
    • F28F9/262Arrangements for connecting different sections of heat-exchange elements, e.g. of radiators for radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
    • F28D2021/007Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
    • F28D2021/0071Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2215/00Fins
    • F28F2215/12Fins with U-shaped slots for laterally inserting conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0243Header boxes having a circular cross-section

Definitions

  • the present invention relates to a heat exchanger or a refrigeration apparatus.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2016-38192
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2016-38192
  • the heat exchange unit having the flat tube group There is disclosed a double-row flat tube heat exchanger that is arranged side by side on the upper side and the leeward side to suppress pressure loss.
  • Patent Document 2 Japanese Patent Laid-Open No. 2012-163319
  • a plurality of flat tubes extending in the horizontal direction are stacked in the vertical direction, and a plurality of heat transfer fins extending in the vertical direction and in contact with the flat tubes are provided.
  • a flat tube heat exchanger for air conditioners arranged in a horizontal direction is disclosed.
  • a superheat region (a flat tube group in which an overheated gas refrigerant is assumed to flow) in the heat exchange section on the windward side and
  • the supercooling region (flat tube group in which the supercooled liquid refrigerant is assumed to flow) in the heat exchange section on the leeward side partially overlaps or is close to the airflow in the flow direction.
  • the air flow that has passed through the superheat zone passes through the supercooling zone in the leeward heat exchange section.
  • an object of the present invention is to provide a flat tube heat exchanger that suppresses performance degradation (or a refrigeration apparatus that suppresses performance degradation).
  • a heat exchanger is a heat exchanger for exchanging heat from a first inlet and a second inlet with an air flow and causing the refrigerant to flow out of the outlet, the upwind heat exchanging unit, the downwind A heat exchange part and a flow path forming part are provided.
  • the leeward heat exchange unit is arranged alongside the leeward heat exchange unit on the leeward side of the windward heat exchange unit.
  • the leeward heat exchange part is formed with a second inlet.
  • the flow path forming unit forms a refrigerant flow path between the upwind heat exchange unit and the downwind heat exchange unit.
  • the upwind heat exchange unit and the downwind heat exchange unit each include a first header, a second header, and a plurality of flat tubes.
  • the first header forms a first header space inside.
  • the second header forms a second header space inside.
  • the flat tube is connected to the first header and the second header.
  • the plurality of flat tubes are arranged in the longitudinal direction of the first header and the second header.
  • the flat tube communicates the first header space and the second header space.
  • the supercooling region is a region where the supercooled liquid refrigerant flows.
  • the windward exit side space is a first header space or a second header space communicating with the exit.
  • the windward upstream space is a first header space or a second header space arranged on the upstream side of the refrigerant flow in the windward outlet side space.
  • the refrigerant flow path includes the leeward downstream space and the windward upstream space. And communicate with each other.
  • the leeward downstream space is a second header space arranged at the most downstream side of the refrigerant flow in the leeward heat exchange unit.
  • a supercooling region which is a region through which the supercooled liquid refrigerant flows, is formed, the windward outlet side space (the first header space or the second header space communicating with the outlet), and the windward upstream side A space (a first header space or a second header space arranged on the upstream side of the refrigerant flow in the windward outlet side space) is formed, and the refrigerant flow path formed between the windward heat exchange unit and the leeward heat exchange unit is The leeward downstream space (second header space arranged at the most downstream side of the refrigerant flow in the leeward heat exchange section) and the upstream upstream space are communicated.
  • the refrigerant that has passed through the leeward heat exchange section is discharged from the outlet after being sent to the leeward heat exchange section.
  • the refrigerant that has passed through the leeward heat exchange section is discharged from the outlet after being sent to the leeward heat exchange section.
  • the leeward heat exchanging section when used as a refrigerant condenser, it is possible to configure the leeward heat exchanging section so that the superheated area and the supercooled area are not vertically adjacent. As a result, heat exchange between the refrigerant passing through the superheated region and the refrigerant passing through the supercooling region is suppressed. In relation to this, it is promoted that the degree of supercooling of the refrigerant in the supercooling region is appropriately secured.
  • first inlet and the “second inlet” here are openings that function as an inlet for a refrigerant (mainly a superheated gas refrigerant) when used as a condenser.
  • exit is an opening that functions as an outlet for a refrigerant (mainly a supercooled liquid refrigerant) when used as a condenser.
  • flow path forming unit is a device that forms a refrigerant flow path between the windward heat exchange unit and the leeward heat exchange unit, and is a space forming member in the refrigerant pipe or the header collecting pipe, for example.
  • the heat exchanger which concerns on the 2nd viewpoint of this invention is a heat exchanger which concerns on a 1st viewpoint, Comprising: A windward heat exchange part WHEREIN: A 1st header space is a windward 1st space and a windward 2nd space. And the upwind third space.
  • the second header space is partitioned into a windward fourth space, a windward fifth space, and a windward sixth space.
  • the upwind fourth space communicates with the upwind first space via the flat tube.
  • the upwind fifth space communicates with the upwind second space via the flat tube.
  • the upwind sixth space communicates with the upwind third space via the flat tube.
  • the windward heat exchange part further includes a communication path forming part.
  • the communication path forming part forms a communication path.
  • the communication path is a flow path that communicates the upwind fourth space and the upwind fifth space.
  • the first inlet communicates with the first windward space.
  • the second inlet communicates with a first header space arranged at the most upstream side of the refrigerant flow in the leeward heat exchange section.
  • the outlet includes a first outlet and a second outlet.
  • the first outlet communicates with the second windward space.
  • the second outlet communicates with the windward outlet side space.
  • One of the windward third space or the windward sixth space corresponds to the windward outlet side space.
  • the other of the windward third space or the windward sixth space corresponds to the windward upstream space.
  • a plurality of paths are formed in the upwind heat exchange section. That is, in the windward heat exchange unit, a path formed by the windward first space, the flat tube, the windward fourth space, the communication path, the windward fifth space, the flat tube, and the windward second space; A path formed by the upper third space, the flat tube, and the upwind sixth space is formed. In addition, a path formed by the upwind third space, the flat tube, and the upwind sixth space communicates with the downwind downstream space via the refrigerant flow path formed by the flow path forming unit.
  • the first windward space, the flat tube, the fourth windward space, the communication path, the fifth windward space, the flat tube, and the second windward space are formed.
  • the upwind fourth space and the upwind fifth space in the second header communicate with each other through a communication path.
  • pass will be return
  • the “communication path forming portion” is a device that forms a communication path that connects the upwind fourth space and the upwind fifth space, for example, a space forming member in the refrigerant pipe or the header collecting pipe. .
  • the “pass” is a refrigerant flow path formed by the internal space of an element included in the heat exchanger communicating with the internal space of another element.
  • the heat exchanger which concerns on the 3rd viewpoint of this invention is a heat exchanger which concerns on a 1st viewpoint, Comprising: A windward heat exchange part WHEREIN: A 1st header space is a windward 1st space and a windward 2nd space. And the upwind third space.
  • the second header space is partitioned into a windward fourth space, a windward fifth space, and a windward sixth space.
  • the upwind fourth space communicates with the upwind first space through the flat tube.
  • the upwind fifth space communicates with the upwind second space via the flat tube.
  • the upwind sixth space communicates with the upwind third space via a flat tube.
  • the windward heat exchange part further includes a second communication path forming part.
  • the second communication path forming part forms a second communication path.
  • a 2nd communicating path is a flow path which connects the windward 2nd space and the windward 4th space.
  • the first inlet communicates with the first windward space.
  • the second inlet communicates with a first header space arranged at the most upstream side of the refrigerant flow in the leeward heat exchange section.
  • the outlet includes a first outlet and a second outlet. The first outlet communicates with the fifth windward space.
  • the second outlet communicates with the windward outlet side space.
  • One of the windward third space or the windward sixth space corresponds to the windward outlet side space.
  • the other of the windward third space or the windward sixth space corresponds to the windward upstream space.
  • a plurality of paths are formed in the upwind heat exchange section. That is, in the windward heat exchange section, a path formed by the windward first space, the flat tube, the windward fourth space, the second communication path, the windward second space, the flat tube, and the windward fifth space And a path formed by the upwind third space, the flat tube, and the upwind sixth space.
  • a path formed by the upwind third space, the flat tube, and the upwind sixth space communicates with the downwind downstream space via the refrigerant flow path formed by the flow path forming unit.
  • the upwind fourth space in the second header and the upwind second space in the first header communicate with each other through a communication path.
  • pass will be return
  • the “second communication path forming portion” is a device that forms a second communication path that connects the windward second space and the windward fourth space, for example, a space in the refrigerant pipe or the header collecting pipe. It is a forming member.
  • a heat exchanger is a heat exchanger according to the first aspect, and includes a plurality of leeward heat exchange units.
  • the first header space is divided into a windward seventh space and a windward eighth space.
  • the second header space is partitioned into a windward ninth space and a windward tenth space.
  • the ninth windward space communicates with the seventh windward space via the flat tube.
  • the upwind tenth space communicates with the upwind eighth space via a flat tube.
  • the second inlet communicates with the leeward first upstream space.
  • the leeward first upstream space is a first header space or a second header space that is disposed on the most upstream side of the leeward heat exchange unit that is disposed on the windward side.
  • the first inlet communicates with the leeward second upstream space.
  • the leeward second upstream space is a first header space or a second header space that is disposed on the most upstream side of the leeward heat exchange unit disposed on the leeward side.
  • the outlet includes a first outlet and a second outlet. The first outlet communicates with any one of the windward seventh space, the windward eighth space, the windward ninth space, and the windward tenth space.
  • the second outlet communicates with any one of the windward seventh space, the windward eighth space, the windward ninth space, and the windward tenth space.
  • each space communicating with the first outlet or the second outlet corresponds to the windward outlet side space.
  • the other spaces correspond to the windward upstream space.
  • the refrigerant flow path includes a first refrigerant flow path and a second refrigerant flow path.
  • coolant flow path connects the leeward downstream space of the leeward heat exchange part arrange
  • coolant flow path connects the leeward downstream space of the leeward heat exchange part arrange
  • a plurality of paths are formed in the upwind heat exchange section. That is, in the windward heat exchange section, a path formed by the windward seventh space, the flat tube and the windward ninth space, and a path formed by the windward eighth space, the flat tube and the windward tenth space Is formed.
  • the refrigerant condenser when three or more rows of flat tube heat exchangers having a plurality of leeward heat exchange units are used as the refrigerant condenser, the supercooling region of the refrigerant flowing through each leeward heat exchange unit is It is facilitated to be formed in a corresponding pass.
  • the refrigerant inlets first inlet and second inlet individually in each leeward heat exchange section
  • the superheat zone and the supercool zone are not adjacent vertically.
  • heat exchange between the refrigerant passing through the superheat zone and the refrigerant passing through the supercool zone is further suppressed.
  • a heat exchanger is the heat exchanger according to any one of the first to fourth aspects, and in the upwind heat exchange unit and the downwind heat exchange unit, the first inlet or the first
  • the superheated region is formed when the superheated gas refrigerant flowing in from the two inlets exchanges heat with the air flow and flows out from the outlet as the supercooled liquid refrigerant.
  • the overheat region is a region through which an overheated gas refrigerant flows. The flow direction of the refrigerant flowing through the superheat region of the windward heat exchange unit is opposed to the flow direction of the refrigerant flowing through the superheat region of the leeward heat exchange unit.
  • the refrigerant in the superheated region of the windward heat exchange unit and the leeward heat exchange unit will flow facing each other.
  • the heat exchanger which concerns on the 6th viewpoint of this invention is a heat exchanger which concerns on either of the 1st viewpoint to the 5th viewpoint, Comprising:
  • a supercooling area is an upwind heat exchange part of the air flow which passes. It is located in a part where the wind speed is smaller than other parts.
  • a heat exchanger is the heat exchanger according to any one of the first to sixth aspects, and in the installed state, the upwind heat exchange unit and the downwind heat exchange unit are the first And a second part.
  • the flat tube extends in the first direction.
  • the flat tube extends in the second direction.
  • the second direction is a direction that intersects the first direction.
  • the first part of the leeward heat exchange part is arranged side by side on the leeward side of the first part of the windward heat exchange part.
  • the second part of the leeward heat exchange part is arranged side by side on the leeward side of the second part of the windward heat exchange part.
  • the air flow that has passed through the superheated area is , Passing through the supercooling region is suppressed, and performance degradation is suppressed.
  • the refrigeration apparatus includes the heat exchanger according to any one of the first to seventh aspects and a casing.
  • the casing houses the heat exchanger.
  • a communication pipe insertion port is formed in the casing.
  • the communication pipe insertion port is a hole for inserting the refrigerant communication pipe.
  • an upwind heat exchange part and a leeward heat exchange part have the 3rd part and the 4th part.
  • the flat tube extends in the third direction.
  • the flat tube extends in the fourth direction.
  • the fourth direction is a direction different from the third direction.
  • one of the first header and the second header is located at the end of the third part.
  • the other of the first header and the second header is located at the tip of the fourth part that is separated from the end of the third part.
  • one of the first header and the second header is located at the end of the third part.
  • the other of the first header and the second header is located at the tip of the fourth part spaced from the end of the third part.
  • the end of the third part is arranged closer to the connecting pipe insertion port than the tip of the third part.
  • the tip of the fourth part is disposed closer to the connecting pipe insertion port than the end of the fourth part.
  • a refrigeration apparatus including a flat tube heat exchanger in which a plurality of heat exchange parts having third and fourth parts extending in different directions are arranged side by side on the windward side and leeward side, in the casing
  • the pipe for example, the refrigerant communication pipe connected to the inlet or the outlet of the heat exchanger or the flow path forming unit.
  • the piping in the casing can be easily handled. In relation to this, the workability, assembly and compactness of the refrigeration apparatus are improved.
  • the air flow that has passed through the superheated region is suppressed from passing through the supercooled region. Therefore, in the supercooling region, a temperature difference between the refrigerant and the air flow is easily ensured, and a situation in which heat exchange is not performed well is suppressed. That is, it becomes easy to ensure a proper degree of supercooling for the refrigerant flowing through the leeward heat exchange unit.
  • the heat exchanger when used as a refrigerant condenser, it is formed in the third windward space, the flat tube, and the sixth windward space of the windward heat exchange unit.
  • a supercooling region is formed for the refrigerant flowing through the leeward heat exchange unit. Therefore, it becomes easy to ensure the degree of supercooling appropriately for the refrigerant flowing through the leeward heat exchange unit. Further, it is further promoted that the degree of supercooling of the refrigerant in the supercooling region is appropriately secured. Therefore, the performance degradation is further suppressed.
  • the heat exchanger according to the fourth aspect of the present invention in particular, in three or more flat tube heat exchangers having a plurality of leeward heat exchange units, it is easy to ensure a proper degree of subcooling for the refrigerant flowing through the leeward heat exchange unit. Become. Further, it is further promoted that the degree of supercooling of the refrigerant in the supercooling region is appropriately secured. Therefore, the performance degradation is further suppressed.
  • the flat tube in which the flow path through which the liquid refrigerant flows is formed in a portion with a low wind speed In the heat exchanger, performance degradation is suppressed.
  • a flat tube heat exchanger in which a plurality of heat exchange parts having a first part and a second part extending in different directions are arranged side by side on the windward side and the leeward side. In this case, the performance degradation is suppressed.
  • FIG. 3 is a schematic diagram showing a cross section taken along line III-III in FIG. 2.
  • the schematic diagram of the VIII-VIII line cross section of FIG. The schematic diagram which showed the structure aspect of the indoor heat exchanger roughly.
  • coolant formed in an indoor heat exchanger The schematic diagram which showed roughly the flow of the refrigerant
  • cooling operation The schematic diagram which showed roughly the flow of the refrigerant
  • cooling operation The schematic diagram which showed roughly the flow of the refrigerant
  • FIG. The schematic diagram which showed schematically the path
  • FIG. The schematic diagram which showed roughly the flow of the refrigerant
  • FIG. The schematic diagram which showed schematically the structure aspect of the upwind heat exchange part which concerns on the modification 3.
  • FIG. which showed schematically the path
  • FIG. The schematic diagram which showed roughly the flow of the refrigerant
  • FIG. The schematic diagram which showed schematically the indoor heat exchanger which concerns on the modification 5 seen from the heat exchanger tube lamination direction.
  • FIG. The schematic diagram which showed schematically the path
  • FIG. The schematic diagram which showed schematically the structure aspect of the upwind heat exchange part which concerns on the modification 5.
  • FIG. The schematic diagram which showed schematically the structure aspect of the 2nd leeward heat exchange part which concerns on the modification 5.
  • FIG. The schematic diagram which showed roughly the flow of the refrigerant
  • FIG. 1 The schematic diagram which showed roughly the flow of the refrigerant
  • FIG. 1 The schematic diagram which showed schematically the path
  • FIG. 1 The schematic diagram which showed roughly the flow of the refrigerant
  • FIG. 1 The schematic diagram which showed schematically the path
  • gas refrigerant includes not only saturated or superheated gas refrigerant but also gas-liquid two-phase refrigerant, and “liquid refrigerant” is saturated. Alternatively, not only a supercooled liquid refrigerant but also a gas-liquid two-phase refrigerant is included.
  • FIG. 1 is a schematic configuration diagram of an air conditioner 100 including an indoor heat exchanger 25 according to an embodiment of the present invention.
  • the air conditioning apparatus 100 is an apparatus that realizes air conditioning in a target space by performing a cooling operation or a heating operation.
  • the air conditioning apparatus 100 includes a refrigerant circuit RC and performs a vapor compression refrigeration cycle.
  • the air conditioner 100 mainly includes an outdoor unit 10 as a heat source unit and an indoor unit 20 as a utilization unit.
  • the refrigerant circuit RC is configured by connecting the outdoor unit 10 and the indoor unit 20 by a gas side connection pipe GP and a liquid side connection pipe LP.
  • coolant enclosed with the refrigerant circuit RC For example, HFC refrigerant
  • Outdoor unit 10 The outdoor unit 10 is installed outdoors.
  • the outdoor unit 10 mainly includes a compressor 11, a four-way switching valve 12, an outdoor heat exchanger 13, an expansion valve 14, and an outdoor fan 15.
  • Compressor 11 is a mechanism that sucks low-pressure gas refrigerant, compresses it, and discharges it.
  • the compressor 11 is inverter-controlled during operation, and the rotation speed is adjusted according to the situation.
  • the four-way switching valve 12 is a switching valve for switching the flow direction of the refrigerant when switching between the cooling operation (forward cycle operation) and the heating operation (reverse cycle operation).
  • the four-way switching valve 12 can be switched in state (refrigerant flow path) according to the operation mode.
  • the outdoor heat exchanger 13 is a heat exchanger that functions as a refrigerant condenser during cooling operation and functions as a refrigerant evaporator during heating operation.
  • the outdoor heat exchanger 13 has a plurality of heat transfer tubes and a plurality of heat transfer fins (not shown).
  • the expansion valve 14 is an electric valve that depressurizes the flowing high-pressure refrigerant.
  • the opening degree of the expansion valve 14 is adjusted as appropriate according to the operating situation.
  • the outdoor fan 15 is a blower that generates an outdoor air flow that flows into the outdoor unit 10 from the outside, passes through the outdoor heat exchanger 13, and flows out of the outdoor unit 10.
  • the indoor unit 20 is installed in a room (more specifically, a target space where air conditioning is performed).
  • the indoor unit 20 mainly includes an indoor heat exchanger 25 and an indoor fan 28.
  • the indoor heat exchanger 25 (corresponding to “heat exchanger” described in claims) is a heat exchanger that functions as a refrigerant evaporator during cooling operation and functions as a refrigerant condenser during heating operation.
  • a gas side communication pipe GP is connected to a gas refrigerant inlet / outlet (gas side inlet / outlet GH), and a liquid side communication pipe LP is connected to a liquid refrigerant inlet / outlet (liquid side inlet / outlet LH). Details of the indoor heat exchanger 25 will be described later.
  • the indoor fan 28 flows into the indoor unit 20 from the outside, passes through the indoor heat exchanger 25, and then flows out of the indoor unit 20 (indoor air flow AF; FIGS. 3-5, 7 and 8). Etc.).
  • the driving of the indoor fan 28 is controlled by a control unit (not shown) during operation, and the number of rotations is appropriately adjusted.
  • Gas side connection pipe GP, liquid side connection pipe LP The gas side communication pipe GP and the liquid side communication pipe LP are pipes installed at a construction site.
  • the pipe diameters and pipe lengths of the gas side connecting pipe GP and the liquid side connecting pipe LP are individually selected according to the design specifications and the installation environment.
  • the gas side communication pipe GP (corresponding to “refrigerant communication pipe” described in the claims) is a pipe for mainly connecting the gas refrigerant between the outdoor unit 10 and the indoor unit 20.
  • the gas side connection pipe GP branches into a first gas side connection pipe GP1 and a second gas side connection pipe GP2 on the indoor unit 20 side (see FIGS. 6 and 9).
  • the liquid side communication pipe LP (corresponding to the “refrigerant communication pipe” described in the claims) is a pipe for mainly connecting the liquid refrigerant between the outdoor unit 10 and the indoor unit 20.
  • the liquid side connection pipe LP branches into a first liquid side connection pipe LP1 and a second liquid side connection pipe LP2 on the indoor unit 20 side (see FIGS. 5 and 6).
  • the low-pressure gas refrigerant is compressed by the compressor 11 to become a high-pressure gas refrigerant.
  • the high-pressure gas refrigerant is sent to the outdoor heat exchanger 13 through the four-way switching valve 12. Thereafter, the high-pressure gas refrigerant is condensed into a high-pressure liquid refrigerant (supercooled liquid refrigerant) by exchanging heat with the outdoor air flow in the outdoor heat exchanger 13.
  • the high-pressure liquid refrigerant that has flowed out of the outdoor heat exchanger 13 is sent to the expansion valve 14.
  • the low-pressure refrigerant decompressed in the expansion valve 14 flows through the liquid side connection pipe LP and flows into the indoor heat exchanger 25 from the liquid side inlet / outlet LH.
  • the refrigerant flowing into the indoor heat exchanger 25 evaporates by exchanging heat with the indoor air flow AF to become a low-pressure gas refrigerant (overheated gas refrigerant) through the gas side inlet / outlet GH. Out of 25.
  • the refrigerant flowing out of the indoor heat exchanger 25 flows through the gas side communication pipe GP and is sucked into the compressor 11.
  • the low-pressure gas refrigerant is compressed by the compressor 11 to become a high-pressure gas refrigerant, and is sent to the indoor heat exchanger 25 through the four-way switching valve 12 and the gas side connection pipe GP. It is done.
  • the high-pressure gas refrigerant sent to the indoor heat exchanger 25 flows into the indoor heat exchanger 25 through the gas side inlet / outlet GH, and is condensed by exchanging heat with the indoor air flow AF (high-pressure liquid refrigerant ( After becoming a supercooled liquid refrigerant, the refrigerant flows out of the indoor heat exchanger 25 via the liquid side inlet / outlet LH (corresponding to “exit” in claims).
  • the refrigerant that has flowed out of the indoor heat exchanger 25 is sent to the expansion valve 14 via the liquid side connection pipe LP.
  • the high-pressure gas refrigerant sent to the expansion valve 14 is depressurized according to the opening degree of the expansion valve 14 when passing through the expansion valve 14.
  • the low-pressure refrigerant that has passed through the expansion valve 14 flows into the outdoor heat exchanger 13.
  • the low-pressure refrigerant flowing into the outdoor heat exchanger 13 evaporates by exchanging heat with the outdoor air flow and becomes low-pressure gas refrigerant, and is sucked into the compressor 11 via the four-way switching valve 12.
  • FIG. 2 is a perspective view of the indoor unit 20.
  • FIG. 3 is a schematic view showing a cross section taken along line III-III in FIG.
  • FIG. 4 is a schematic diagram illustrating a schematic configuration of the indoor unit 20 in a bottom view.
  • the indoor unit 20 is a so-called ceiling-embedded air conditioning indoor unit, and is installed on the ceiling of the target space.
  • the indoor unit 20 has a casing 30 that forms an outer shell.
  • the casing 30 accommodates equipment such as the indoor heat exchanger 25 and the indoor fan 28. As shown in FIG. 3, the casing 30 is installed in a ceiling space CS formed between the ceiling surface CL and the upper floor or roof through an opening formed in the ceiling surface CL of the target space. Has been.
  • the casing 30 includes a top plate 31a, a side plate 31b, a bottom plate 31c, and a decorative panel 32.
  • the top plate 31a is a member constituting the top surface portion of the casing 30, and has a substantially octagonal shape in which long sides and short sides are alternately and continuously formed.
  • the side plate 31b is a member constituting a side surface portion of the casing 30, and includes a surface portion corresponding to the long side and the short valve of the top plate 31a on a one-to-one basis.
  • the side plate 31b is formed with an opening (communication pipe insertion port 30a) for inserting (withdrawing) the gas side connection pipe GP and the liquid side connection pipe LP into the casing 30 (see the one-dot chain line in FIG. 4).
  • the bottom plate 31 c is a member constituting the bottom surface portion of the casing 30, and a substantially rectangular large opening 311 is formed at the center, and a plurality of openings 312 are formed around the large opening 311.
  • the bottom panel 31c has a decorative panel 32 attached to the lower surface side (target space side).
  • the decorative panel 32 is a plate-like member exposed to the target space, and has a substantially rectangular shape in plan view.
  • the decorative panel 32 is installed by being fitted into the opening of the ceiling surface CL.
  • the decorative panel 32 is formed with an inlet 33 and an outlet 34 for indoor airflow AF.
  • the suction port 33 is largely formed in a substantially square shape at a position overlapping the large opening 311 of the bottom plate 31c in a plan view in the central portion of the decorative panel 32.
  • the air outlet 34 is formed so as to surround the air inlet 33 around the air inlet 33.
  • the space in the casing 30 includes a suction flow path FP1 for guiding the indoor air flow AF flowing into the casing 30 through the suction port 33 to the indoor heat exchanger 25, and a room that has passed through the indoor heat exchanger 25.
  • a blowout flow path FP2 for sending the airflow AF to the blowout port 34 is formed.
  • the blowout flow path FP2 is disposed outside the suction flow path FP1 so as to surround the suction flow path FP1.
  • an indoor fan 28 is disposed at the center, and an indoor heat exchanger 25 is disposed so as to surround the indoor fan 28.
  • the indoor fan 28 overlaps with the suction port 33 in plan view.
  • the indoor heat exchanger 25 has a substantially rectangular shape in plan view, and is disposed so as to surround the suction port 33 and to be surrounded by the air outlet 34.
  • the suction port 33, the blowout port 34, the suction flow path FP ⁇ b> 1, and the blowout flow path FP ⁇ b> 2 are formed in the manner described above, and the indoor heat exchanger 25 and the indoor fan 28 are arranged, During operation, the indoor air flow AF generated by the indoor fan 28 flows into the casing 30 via the suction port 33 and is guided to the indoor heat exchanger 25 via the suction flow path FP1. After exchanging heat with the refrigerant inside, it is sent to the blowout port 34 via the blowout flow path FP2 and blown out from the blowout port 34 to the target space.
  • airflow direction dr3 the direction in which the indoor airflow AF flows when passing through the indoor heat exchanger 25.
  • the air flow direction dr3 corresponds to the horizontal direction.
  • FIG. 5 is a schematic view schematically showing the indoor heat exchanger 25 as viewed from the heat transfer tube stacking direction dr2.
  • FIG. 6 is a perspective view of the indoor heat exchanger 25.
  • FIG. 7 is a perspective view showing a part of the heat exchange surface 40.
  • FIG. 8 is a schematic diagram of a section taken along line VIII-VIII in FIG.
  • the indoor heat exchanger 25 allows the refrigerant to flow in or out through the gas side inlet / outlet GH and the liquid side inlet / outlet LH.
  • the gas side inlet / outlet GH functions as an inlet for refrigerant (mainly superheated gas refrigerant)
  • the liquid side inlet / outlet LH is refrigerant (mainly excess refrigerant). It functions as the outlet of the cooled liquid refrigerant.
  • a superheat region (SH3, SH4 shown in FIGS. 15 and 16) in which the superheated refrigerant flows and a supercooling region in which the supercooled refrigerant flows. (SC1, SC2 shown in FIGS. 15 and 16).
  • the indoor heat exchanger 25 is formed with a plurality of (here, two) gas side inlets / outlets GH and a plurality of (here, two) liquid side inlets / outlets LH.
  • a first gas side inlet / outlet GH1 (corresponding to “first inlet” in claims)
  • a second gas side inlet / outlet GH2 (claims) (Corresponding to “second inlet” in the range).
  • the first liquid side inlet / outlet LH1 correspond to the “first outlet” in the claims
  • the second liquid side inlet / outlet LH2 corresponding to “second outlet”.
  • the first gas side inlet / outlet GH1 and the second gas side inlet / outlet GH2 are located above the first liquid side inlet / outlet LH1 and the second liquid side inlet / outlet LH2.
  • the indoor heat exchanger 25 has heat exchange surfaces 40 for performing heat exchange with the indoor airflow AF on the windward side and leeward side of the indoor airflow AF.
  • the indoor heat exchanger 25 exchanges heat between a plurality (19 in this case) of heat transfer tubes 45 (see FIGS. 7 and 8, etc.) through which the refrigerant flows and the refrigerant and the indoor airflow AF on each heat exchange surface 40.
  • a plurality of heat transfer fins 48 (see FIG. 7 and FIG. 8 and the like) to be promoted.
  • Each of the heat transfer tubes 45 is disposed so as to extend in a predetermined heat transfer tube extending direction dr1 (here, the horizontal direction), and is laminated with a gap in a predetermined heat transfer tube stacking direction dr2 (here, the vertical direction).
  • the heat transfer tube extending direction dr1 is a direction intersecting the heat transfer tube stacking direction dr2 and the air flow direction dr3, and corresponds to a direction in which the heat exchange surface 40 including the heat transfer tube 45 extends in a plan view.
  • the heat transfer tube stacking direction dr2 is a direction that intersects the heat transfer tube extending direction dr1 and the air flow direction dr3.
  • the indoor heat exchanger 25 since the indoor heat exchanger 25 has the heat exchange surfaces 40 on the windward side and the leeward side, in the indoor heat exchanger 25, the heat transfer tubes 45 arranged in two rows along the air flow direction dr3. Are stacked in a plurality of stages in the heat transfer tube stacking direction dr2. In addition, about the number of the heat exchanger tubes 45 contained in the heat exchange surface 40, the number of rows, and the number of steps, it can change suitably according to design specifications.
  • the heat transfer tube 45 is a flat tube made of aluminum or aluminum alloy having a flat cross section (that is, the heat transfer tube 45 corresponds to a “flat tube” recited in the claims). . More specifically, the heat transfer tube 45 is a flat multi-hole tube having a plurality of refrigerant channels (heat transfer tube channels 451) extending along the heat transfer tube extending direction dr1 therein (see FIG. 8). The plurality of heat transfer tube passages 451 are arranged in the heat transfer tube 45 along the air flow direction dr3.
  • the heat transfer fins 48 are flat members that increase the heat transfer area between the heat transfer tubes 45 and the indoor airflow AF.
  • the heat transfer fins 48 are made of aluminum or aluminum alloy.
  • the heat transfer fins 48 extend along the heat transfer tube stacking direction dr ⁇ b> 2 so that the longitudinal direction intersects the heat transfer tubes 45.
  • a plurality of slits 48a are formed at intervals along the heat transfer tube stacking direction dr2, and a heat transfer tube 45 is inserted into each slit 48a (see FIG. 8).
  • the heat transfer fins 48 are arranged on the heat exchange surface 40 along with the other heat transfer fins 48 at intervals along the heat transfer tube extending direction dr1.
  • the heat transfer fins 48 extending along the heat transfer tube stacking direction dr2 are provided. These are arranged in two rows along the air flow direction dr3, and many are arranged along the heat transfer tube extending direction dr1.
  • the number of heat transfer fins 48 included in the heat exchange surface 40 is selected according to the length dimension of the heat transfer tube 45 in the heat transfer tube extending direction dr1, and can be appropriately selected and changed according to the design specifications. .
  • FIG. 9 is a schematic diagram schematically showing the configuration of the indoor heat exchanger 25.
  • the indoor heat exchanger 25 mainly includes an upwind heat exchanging unit 50 including a heat exchanging surface 40 disposed on the upwind side, an upwind heat exchanging unit 60 including the heat exchanging surface 40 disposed on the downwind side, And a connection pipe 70 for connecting the heat exchange unit 50 and the leeward heat exchange unit 60.
  • the leeward heat exchange unit 50 is disposed on the leeward side of the leeward heat exchange unit 60 (that is, the leeward heat exchange unit 60 is disposed on the leeward side of the leeward heat exchange unit 50. ing).
  • FIG. 10 is a schematic diagram schematically illustrating the configuration of the upwind heat exchange unit 50.
  • the windward heat exchange unit 50 mainly includes the windward first heat exchange surface 51, the windward second heat exchange surface 52, the windward third heat exchange surface 53, and the windward fourth heat exchange surface as the heat exchange surface 40. 54 (hereinafter collectively referred to as “windward heat exchange surface 55”), a windward first header 56, a windward second header 57, and a return pipe 58.
  • the wind speed is lower on the lower stage side than on the upper stage side.
  • the indoor airflow AF that passes through the portion below the one-dot chain line L1 (see FIG. 10) of the upwind heat exchanger 50
  • the upwind first heat exchange surface 51 (corresponding to “first part” or “third part” in the claims) is located on the most downstream side of the refrigerant flow during the cooling operation in the upwind heat exchange surface 55. However, it is located at the uppermost stream of the refrigerant flow during heating operation.
  • the windward first heat exchange surface 51 is connected to the windward first header 56 at the end of the windward heat exchange surface 55 as viewed from the heat transfer tube stacking direction dr2 (in plan view here), It extends from left to right.
  • the windward first heat exchange surface 51 is located closer to the connecting pipe insertion port 30 a than the windward second heat exchange surface 52 and the windward third heat exchange surface 53. More specifically, the end of the upwind first heat exchange surface 51 is located closer to the connecting pipe insertion port 30a than the tip.
  • the windward second heat exchange surface 52 (corresponding to “second part” in the claims) is upstream of the refrigerant flow on the windward first heat exchange surface 51 of the windward heat exchange surface 55 during the cooling operation. It is located on the downstream side of the refrigerant flow on the upwind first heat exchange surface 51 during the heating operation.
  • the windward second heat exchange surface 52 is connected to the tip of the windward first heat exchange surface 51 while being bent at the end as viewed from the heat transfer tube stacking direction dr2, and extends mainly from the rear to the front.
  • the upwind third heat exchange surface 53 is located on the upstream side of the refrigerant flow of the upwind second heat exchange surface 52 during the cooling operation in the upwind heat exchange surface 55, and the upwind second heat exchange surface during the heating operation. 52 located downstream of the refrigerant flow.
  • the windward third heat exchange surface 53 is connected to the tip of the windward second heat exchange surface 52 while being bent at the end as viewed from the heat transfer tube stacking direction dr2, and mainly extends from right to left.
  • the upwind fourth heat exchange surface 54 (corresponding to “fourth part” recited in the claims) is upstream of the refrigerant flow on the upwind third heat exchange surface 53 of the upwind heat exchange surface 55 during the cooling operation. It is located on the downstream side of the refrigerant flow on the upwind third heat exchange surface 53 during the heating operation.
  • the windward fourth heat exchange surface 54 is connected to the tip of the windward third heat exchange surface 53 while being bent at the end as viewed from the heat transfer tube stacking direction dr2, and mainly extends from the front to the rear.
  • the windward fourth heat exchange surface 54 is connected to the windward second header 57 at the tip thereof.
  • the upwind fourth heat exchange surface 54 is located closer to the connecting pipe insertion port 30 a than the upwind second heat exchange surface 52 and the upwind third heat exchange surface 53. More specifically, the windward fourth heat exchange surface 54 has its tip positioned closer to the connecting pipe insertion port 30a than its end.
  • the upwind heat exchange unit 50 By including such an upwind first heat exchange surface 51, an upwind second heat exchange surface 52, an upwind third heat exchange surface 53, and an upwind fourth heat exchange surface 54, the upwind heat exchange unit 50
  • the windward heat exchange surface 55 is bent or curved at three or more locations as viewed from the heat transfer tube stacking direction dr2 and has a substantially rectangular shape. That is, the windward heat exchange unit 50 has four windward heat exchange surfaces 55.
  • the upwind first header 56 (corresponding to “first header” described in the claims) is a diversion header that diverts the refrigerant to each heat transfer tube 45, a merge header that merges the refrigerant flowing out from each heat transfer tube 45, or It is a header collecting tube that functions as a folded header or the like for folding the refrigerant flowing out from each heat transfer tube 45 to another heat transfer tube 45.
  • the longitudinal direction of the first windward header 56 is the vertical direction (vertical direction) in the installed state.
  • the windward first header 56 is formed in a cylindrical shape, and forms a space (hereinafter referred to as “windward first header space Sa1”) inside (the windward first header space Sa1 is a claim). This corresponds to the “first header space” described in the range).
  • the windward first header 56 is connected to the end of the windward first heat exchange surface 51.
  • the windward first header 56 is connected to one end of each heat transfer tube 45 included in the windward first heat exchange surface 51, and makes these heat transfer tubes 45 communicate with the windward first header space Sa1.
  • a plurality (here, two) horizontal partition plates 561 are arranged in the windward first header 56, and the windward first header space Sa1 is a plurality (here, three) spaces in the heat transfer tube stacking direction dr2. (Specifically, the windward first space A1, the windward second space A2, and the windward third space A3) are partitioned. In other words, in the windward first header 56, the windward first space A1, the windward second space A2, and the windward third space A3 are formed so as to be lined up and down.
  • the upwind first space A1 is the upwind first header space Sa1 arranged in the uppermost stage.
  • the windward second space A2 is the windward first header space Sa1 arranged in the middle stage (the lower stage of the windward first space A1 and the upper stage of the windward third space A3).
  • the upwind third space A3 is the upwind first header space Sa1 arranged at the lowest level.
  • a first gas side entrance GH1 is formed in the upwind first header 56.
  • the first gas side inlet / outlet GH1 communicates with the upwind first space A1.
  • a first gas side communication pipe GP1 is connected to the first gas side inlet / outlet GH1.
  • a first liquid side inlet / outlet LH1 and a second liquid side inlet / outlet LH2 are formed in the windward first header 56.
  • the first liquid side inlet / outlet LH1 communicates with the upwind second space A2.
  • a first liquid side communication pipe LP1 is connected to the first liquid side inlet / outlet LH1.
  • the second liquid side inlet / outlet LH2 communicates with the third upwind space A3.
  • a second liquid side communication pipe LP2 is connected to the second liquid side inlet / outlet LH2.
  • the upwind third space A3 communicating with the liquid side inlet / outlet LH corresponds to the “upward outlet side space” recited in the claims.
  • Upwind second header 57 (corresponding to “second header” described in claims) is a diversion header that diverts the refrigerant to each heat transfer tube 45, a merge header that merges the refrigerant flowing out from each heat transfer tube 45, or It is a header collecting tube that functions as a folded header or the like for folding the refrigerant flowing out from each heat transfer tube 45 to another heat transfer tube 45.
  • the longitudinal direction of the second windward header 57 in the installed state is the vertical direction (vertical direction).
  • the windward second header 57 is formed in a cylindrical shape, and forms a space (hereinafter referred to as “windward second header space Sa2”) inside (the windward second header space Sa2 is claimed). This corresponds to the “second header space” described in the range).
  • the windward second header 57 is connected to the tip of the windward fourth heat exchange surface 54.
  • the windward second header 57 is connected to one end of each heat transfer tube 45 included in the windward fourth heat exchange surface 54, and makes the heat transfer tubes 45 communicate with the windward second header space Sa2.
  • a plurality (here, two) horizontal partition plates 571 are arranged in the windward second header 57, and the windward second header space Sa2 is a plurality (here, three) spaces in the heat transfer tube stacking direction dr2.
  • the windward fourth space A4, the windward fifth space A5, and the windward sixth space A6) are partitioned.
  • the windward second header 57 is formed so that the windward fourth space A4, the windward fifth space A5, and the windward sixth space A6 are arranged in the vertical direction.
  • the upwind fourth space A4 is the upwind second header space Sa2 arranged in the uppermost stage.
  • the upwind fourth space A4 communicates with the upwind first space A1 through the heat transfer tube 45.
  • the upwind fifth space A5 is the upwind second header space Sa2 arranged in the middle stage (the lower stage of the upwind fourth space A4 and the upper stage of the upwind sixth space A6).
  • the upwind fifth space A5 communicates with the upwind second space A2 via the heat transfer tube 45.
  • the upwind fifth space A5 communicates with the upwind fourth space A4 via the turn-back pipe 58.
  • the upwind sixth space A6 is the upwind second header space Sa2 arranged at the lowest level.
  • the upwind sixth space A6 communicates with the upwind third space A3 via the heat transfer tube 45.
  • a first connection hole H1 for connecting one end of the folded pipe 58 is formed in the upwind second header 57.
  • the first connection hole H1 communicates with the upwind fourth space A4.
  • a second connection hole H2 for connecting the other end of the folded pipe 58 is formed in the upwind second header 57.
  • the second connection hole H2 communicates with the upwind fifth space A5.
  • a third connection hole H3 for connecting one end of the connection pipe 70 is formed in the upwind second header 57.
  • the third connection hole H3 communicates with the upwind sixth space A6.
  • One end of a connection pipe 70 is connected to the third connection hole H3 so that the upwind sixth space A6 and the downwind second header space Sb2 (described later) communicate with each other.
  • the sixth upwind space A6 communicating with the connection pipe 70 corresponds to the “upward upstream space” recited in the claims.
  • the folded pipe 58 is connected to the windward second header 57 so that one end communicates with the windward fourth space A4, and the windward first pipe 58 has the other end communicated with the windward fifth space A5. 2 is connected to the header 57. That is, the return flow path JP communicates the upwind fourth space A4 and the upwind fifth space A5.
  • FIG. 11 is a schematic diagram schematically illustrating a configuration aspect of the leeward heat exchange unit 60.
  • the leeward heat exchange unit 60 mainly includes a leeward first heat exchange surface 61, a leeward second heat exchange surface 62, a leeward third heat exchange surface 63, and a leeward fourth heat exchange surface 64 (hereinafter referred to as these heat exchange surfaces 40).
  • These heat exchange surfaces 40 are also referred to as “leeward heat exchange surface 65”), a leeward first header 66, and a leeward second header 67.
  • the wind speed is lower on the lower stage side than on the upper stage side.
  • the indoor airflow AF that passes through the portion below the one-dot chain line L1 (see FIG. 12) of the leeward heat exchanger 60
  • the indoor airflow AF that passes through the portion above the one-dot chain line L1 is smaller than.
  • the leeward first heat exchange surface 61 (corresponding to “third part” described in the claims) is located on the most downstream side of the refrigerant flow during the cooling operation in the leeward heat exchange surface 65, and the refrigerant flow during the heating operation. Located on the most upstream.
  • the leeward first heat exchange surface 61 is connected to the leeward first header 66 at the end when viewed from the heat transfer tube stacking direction dr2 (in plan view here), and extends mainly from the rear to the front.
  • the leeward first heat exchange surface 61 has substantially the same area as the upwind fourth heat exchange surface 54 as viewed from the air flow direction dr3 and is adjacent to the leeward side of the upwind fourth heat exchange surface 54 in the air flow direction dr3. is doing.
  • the leeward first heat exchange surface 61 is located closer to the connecting pipe insertion port 30a than the leeward second heat exchange surface 62 and the leeward third heat exchange surface 63. More specifically, the end of the leeward first heat exchange surface 61 is located closer to the connecting pipe insertion port 30a than the tip.
  • the leeward second heat exchange surface 62 is located on the upstream side of the refrigerant flow of the leeward first heat exchange surface 61 during the cooling operation in the leeward heat exchange surface 65, and the refrigerant flow of the leeward first heat exchange surface 61 during the heating operation. Located on the downstream side.
  • the leeward second heat exchange surface 62 is connected to the tip of the leeward first heat exchange surface 61 while being bent at the end as viewed from the heat transfer tube stacking direction dr2, and mainly extends from left to right.
  • the leeward second heat exchange surface 62 has substantially the same area as viewed from the upwind third heat exchange surface 53 in the air flow direction dr3 and is adjacent to the leeward side of the upwind third heat exchange surface 53 in the air flow direction dr3. is doing.
  • the leeward third heat exchange surface 63 (corresponding to “second part” in the claims) is located on the upstream side of the refrigerant flow on the leeward second heat exchange surface 62 in the leeward heat exchange surface 65 during the cooling operation. And it is located in the downstream of the refrigerant
  • the leeward third heat exchanging surface 63 is connected to the tip of the leeward second heat exchanging surface 62 while being bent at the end as viewed from the heat transfer tube stacking direction dr2, and mainly extends from the front to the rear.
  • the leeward third heat exchange surface 63 has substantially the same area as viewed from the upwind second heat exchange surface 52 in the air flow direction dr3 and is adjacent to the leeward side of the upwind second heat exchange surface 52 in the air flow direction dr3. is doing.
  • the leeward fourth heat exchange surface 64 (corresponding to “first part” and “fourth part” in the claims) is a refrigerant of the leeward third heat exchange surface 63 during the cooling operation of the leeward heat exchange surface 65. It is located on the upstream side of the flow and is located on the downstream side of the refrigerant flow on the leeward third heat exchange surface 63 during the heating operation.
  • the leeward fourth heat exchange surface 64 is connected to the tip of the leeward third heat exchange surface 63 while being bent at the end as viewed from the heat transfer tube stacking direction dr2, and mainly extends from right to left.
  • the leeward fourth heat exchange surface 64 is connected to the leeward second header 67 at the tip thereof.
  • the leeward fourth heat exchange surface 64 has substantially the same area as viewed from the upwind first heat exchange surface 51 in the air flow direction dr3 and is adjacent to the leeward side of the upwind first heat exchange surface 51 in the air flow direction dr3. is doing.
  • the leeward fourth heat exchange surface 64 is located closer to the communication pipe insertion port 30a than the leeward second heat exchange surface 62 and the leeward third heat exchange surface 63. More specifically, the leeward fourth heat exchange surface 64 has its tip positioned closer to the connecting pipe insertion port 30a than its end.
  • the leeward heat exchange surface 65 of the leeward heat exchange unit 60 is provided. Is bent or curved at three or more locations as viewed from the heat transfer tube stacking direction dr2, and has a substantially rectangular shape. That is, the leeward heat exchange part 60 has four leeward heat exchange surfaces 65.
  • the leeward first header 66 (corresponding to the “first header” in the claims) is a diversion header that diverts the refrigerant to each heat transfer tube 45, a merge header that merges the refrigerant flowing out from each heat transfer tube 45, or each This is a header collecting tube that functions as a folded header for folding the refrigerant flowing out from the heat transfer tube 45 to another heat transfer tube 45.
  • the longitudinal direction of the leeward first header 66 is the vertical direction (vertical direction) in the installed state.
  • the leeward first header 66 is formed in a cylindrical shape and forms a space (hereinafter referred to as “leeward first header space Sb1”) (the leeward first header space Sb1 is defined in the claims). Corresponds to “first header space”).
  • the leeward first header space Sb1 is located on the most downstream side of the refrigerant flow in the leeward heat exchange unit 60 during the cooling operation, and is located on the most upstream side of the refrigerant flow in the leeward heat exchange unit 60 during the heating operation.
  • the leeward first header 66 is connected to the end of the leeward first heat exchange surface 61.
  • the leeward first header 66 is connected to one end of each heat transfer tube 45 included in the leeward first heat exchange surface 61, and makes the heat transfer tubes 45 communicate with the leeward first header space Sb1.
  • the leeward first header 66 is adjacent to the leeward side of the windward second header 57 in the air flow direction dr3.
  • a second gas side entrance / exit GH2 is formed in the leeward first header 66.
  • the second gas side inlet / outlet GH2 communicates with the leeward first header space Sb1.
  • a second gas side communication pipe GP2 is connected to the second gas side inlet / outlet GH2.
  • the leeward second header 67 (corresponding to the “second header” described in the claims) is a diversion header that diverts the refrigerant to each heat transfer tube 45, a merge header that merges the refrigerant flowing out from each heat transfer tube 45, or each This is a header collecting tube that functions as a folded header for folding the refrigerant flowing out from the heat transfer tube 45 to another heat transfer tube 45.
  • the longitudinal direction of the second leeward header 67 in the installed state is the vertical direction (up and down direction).
  • the leeward second header 67 is formed in a cylindrical shape and forms a space (hereinafter referred to as “leeward second header space Sb2”) (the leeward second header space Sb2 is described in the claims). Corresponds to “second header space”).
  • the leeward second header space Sb2 is located most upstream of the refrigerant flow in the leeward heat exchange unit 60 during the cooling operation, and is located most downstream of the refrigerant flow in the leeward heat exchange unit 60 during the heating operation.
  • the leeward second header 67 is connected to the tip of the leeward fourth heat exchange surface 64.
  • the leeward second header 67 is connected to one end of each heat transfer tube 45 included in the leeward fourth heat exchange surface 64, and makes the heat transfer tubes 45 communicate with the leeward second header space Sb2.
  • the leeward second header 67 is adjacent to the leeward side of the first windward header 56 in the air flow direction dr3.
  • a fourth connection hole H4 for connecting the other end of the connection pipe 70 is formed in the leeward second header 67.
  • the fourth connection hole H4 communicates with the leeward second header space Sb2.
  • the other end of the connection pipe 70 is connected to the fourth connection hole H4 so that the leeward second header space Sb2 and the windward sixth space A6 communicate with each other.
  • the leeward second header space Sb2 communicating with the connection pipe 70 corresponds to the “leeward downstream space” recited in the claims.
  • connection pipe 70 is a refrigerant pipe that forms a connection flow path RP between the upwind heat exchange unit 50 and the downwind heat exchange unit 60.
  • the connection flow path RP is a refrigerant flow path that allows the leeward second header space Sb2 and the windward sixth space A6 to communicate with each other.
  • connection flow path RP By forming the connection flow path RP by the connection pipe 70, the refrigerant flows from the upwind sixth space A6 toward the downwind second header space Sb2 during the cooling operation, and upwind from the downwind second header space Sb2 during the heating operation. The refrigerant flows toward the sixth space A6.
  • FIG. 12 is a schematic diagram schematically showing a refrigerant path formed in the indoor heat exchanger 25.
  • the “pass” is a refrigerant flow path formed by communication of each element included in the indoor heat exchanger 25.
  • the indoor heat exchanger 25 has a plurality of paths. Specifically, in the indoor heat exchanger 25, a first path P1, a second path P2, a third path P3, and a fourth path P4 are formed. That is, in the indoor heat exchanger 25, the refrigerant flow path is branched into four.
  • the first path P1 is formed in the windward heat exchange unit 50.
  • the first path P1 is formed above the one-dot chain line L1 (FIG. 9, FIG. 10, FIG.
  • the first gas side inlet / outlet GH1 communicates with the windward first space A1
  • the windward first space A1 enters the windward fourth space A4 via the heat transfer pipe channel 451 (heat transfer pipe 45).
  • This is a refrigerant flow path formed by communicating the upwind fourth space A4 with the first connection hole H1.
  • the first path P ⁇ b> 1 includes the first gas side inlet / outlet GH ⁇ b> 1, the windward first space A ⁇ b> 1 in the windward first header 56, the heat transfer tube channel 451 in the heat transfer tube 45, and the windward second header 57.
  • the alternate long and short dash line L1 is located between the 12th heat transfer tube 45 and the 13th heat transfer tube 45 as counted from above. That is, in this embodiment, the 1st path
  • the second path P2 is formed in the windward heat exchange unit 50.
  • the second path P ⁇ b> 2 is formed below the one-dot chain line L ⁇ b> 1 and above the one-dot chain line L ⁇ b> 2 (FIGS. 9, 10, and 12) of the windward heat exchange unit 50.
  • the second connection hole H2 communicates with the upwind fifth space A5, and the upwind fifth space A5 communicates with the upwind second space A2 via the heat transfer tube channel 451 (heat transfer tube 45).
  • the upwind second space A2 is a refrigerant flow path formed by communicating with the first liquid side inlet / outlet LH1.
  • the second path P2 includes the second connection hole H2, the upwind fifth space A5 in the upwind second header 57, the heat transfer tube flow path 451 in the heat transfer tube 45, and the upwind in the upwind first header 56. It is a refrigerant flow path including the second space A2 and the first liquid side inlet / outlet LH1.
  • the second path P2 communicates with the first path P1 via the folded flow path JP (folded piping 58). For this reason, it is possible to interpret the second path P2 as one path together with the first path P1.
  • the alternate long and short dash line L2 is located between the 16th heat transfer tube 45 and the 17th heat transfer tube 45 as counted from above.
  • the second path P2 includes the heat transfer tube channel 451 of the 13th to 16th heat transfer tubes 45 (in other words, the four heat transfer tubes 45) counted from the top.
  • the third path P3 is formed in the windward heat exchange unit 50.
  • the third path P3 is formed below the one-dot chain line L2 of the windward heat exchange unit 50.
  • the third connection hole H3 communicates with the upwind sixth space A6, and the upwind sixth space A6 communicates with the upwind third space A3 via the heat transfer tube channel 451 (heat transfer tube 45).
  • the upwind third space A3 is a refrigerant flow path formed by communicating with the second liquid side inlet / outlet LH2.
  • the third path P3 includes the third connection hole H3, the upwind sixth space A6 in the upwind second header 57, the heat transfer tube flow path 451 in the heat transfer tube 45, and the upwind in the upwind first header 56.
  • the third path P3 communicates with the fourth path P4 via the connection flow path RP (connection pipe 70).
  • the third path P3 includes the heat transfer tube flow paths 451 of the 17th to 19th heat transfer tubes 45 counted from the top (in other words, the three heat transfer tubes 45 counted from the bottom).
  • the fourth path P4 is formed in the leeward heat exchange unit 60.
  • the second gas side inlet / outlet GH2 communicates with the leeward first header space Sb1, and the leeward first header space Sb1 enters the leeward second header space Sb2 via the heat transfer pipe channel 451 (heat transfer pipe 45).
  • the fourth path P4 includes the second gas side inlet / outlet GH2, the leeward first header space Sb1 in the leeward first header 66, the heat transfer tube channel 451 in the heat transfer tube 45, and the leeward second in the leeward second header 67. It is a refrigerant flow path including the header space Sb2 and the fourth connection hole H4.
  • the fourth path P4 communicates with the third path P3 via the connection flow path RP (connection pipe 70).
  • FIG. 13 is a schematic diagram schematically showing the flow of refrigerant in the upwind heat exchange unit 50 during the cooling operation. It is.
  • FIG. 14 is a schematic diagram schematically showing the refrigerant flow in the leeward heat exchange unit 60 during the cooling operation. In FIG. 13 and FIG. 14, broken line arrows indicate the flow direction of the refrigerant.
  • the refrigerant that has flowed through the first liquid side communication pipe LP1 flows into the second path P2 of the upwind heat exchange unit 50 through the first liquid side inlet / outlet LH1.
  • the refrigerant that has flowed into the second path P2 passes through the second path P2 while being heat-exchanged and heated with the indoor airflow AF, and flows into the first path P1 through the folded flow path JP (folded pipe 58).
  • the refrigerant flowing into the first path P1 passes through the first path P1 while being heat-exchanged and heated with the indoor airflow AF, and flows out to the first gas-side connecting pipe GP1 through the first gas-side inlet / outlet GH1.
  • the refrigerant that has flowed through the second liquid side connection pipe LP2 flows into the third path P3 of the windward heat exchange unit 50 through the second liquid side inlet / outlet LH2.
  • the refrigerant flowing into the third path P3 passes through the third path P3 while being heat-exchanged and heated with the indoor airflow AF, and passes through the third path P3 through the connection flow path RP (connection pipe 70).
  • connection flow path RP connection pipe 70
  • the refrigerant flowing into the fourth path P4 passes through the fourth path P4 while being heat-exchanged with the indoor airflow AF and heated, and flows out to the second gas-side connecting pipe GP2 through the second gas-side inlet / outlet GH2.
  • the refrigerant flow that flows into the second path P2 and flows out through the first path P1 that is, the refrigerant flow formed by the first path P1 and the second path P2.
  • a refrigerant flow that flows into the third path P3 and flows out through the fourth path P4 that is, a refrigerant flow formed by the third path P3 and the fourth path P4.
  • the refrigerant will flow in the order of the side doorway GH1.
  • the indoor heat exchanger 25 is overheated in the heat transfer tube channel 451 in the first path P1 (particularly, the heat transfer tube channel 451 included in the first path P1 of the upwind first heat exchange surface 51).
  • a region where the refrigerant flows (superheated region SH1) is formed.
  • a region where the superheated refrigerant flows in the heat transfer tube channel 451 in the fourth path P4 (particularly, the heat transfer tube channel 451 included in the fourth path P4 of the leeward first heat exchange surface 61) (superheat region SH2). Will be formed.
  • FIG. 15 is a schematic diagram schematically showing the refrigerant flow in the upwind heat exchange unit 50 during the heating operation.
  • FIG. 16 is a schematic diagram schematically illustrating the refrigerant flow in the leeward heat exchange unit 60 during heating operation.
  • broken line arrows indicate the flow direction of the refrigerant.
  • the superheated gas refrigerant that has flowed through the first gas side communication pipe GP1 flows into the first path P1 of the upwind heat exchange unit 50 through the first gas side inlet / outlet GH1.
  • the refrigerant that has flowed into the first path P1 passes through the first path P1 while being heat-exchanged with the indoor airflow AF and cooled, and then flows into the second path P2 through the folded flow path JP (folded pipe 58).
  • the refrigerant that has flowed into the second path P2 exchanges heat with the indoor airflow AF, passes through the second path P2 while being in a supercooled state, and flows out to the first liquid side connection pipe LP1 through the first liquid side inlet / outlet LH1. .
  • the superheated gas refrigerant that has flowed through the second gas side communication pipe GP2 flows into the fourth path P4 of the leeward heat exchanger 60 through the second gas side inlet / outlet GH2.
  • the refrigerant that has flowed into the fourth path P4 passes through the fourth path P4 while being heat-exchanged with the indoor airflow AF and being cooled, and passes through the fourth flow path RP (connection pipe 70), and the third of the upwind heat exchange unit 50. It flows into the path P3.
  • the refrigerant flowing into the third path P3 passes through the third path P3 while exchanging heat with the indoor airflow AF and enters a supercooled state, and flows out to the second liquid side connection pipe LP2 through the second liquid side inlet / outlet LH2. .
  • the refrigerant flow that flows into the first path P1 and flows out through the second path P2 that is, the refrigerant flow formed by the first path P1 and the second path P2.
  • a refrigerant flow that flows into the fourth path P4 and flows out through the third path P3 that is, a refrigerant flow formed by the third path P3 and the fourth path P4).
  • the first gas side inlet / outlet GH1 In the refrigerant flow formed by the first path P1 and the second path P2, the first gas side inlet / outlet GH1, the upwind first space A1, the heat transfer pipe channel 451 (heat transfer pipe 45) in the first path P1, the wind Upper fourth space A4, folded flow path JP (folded piping 58), upwind fifth space A5, heat transfer tube flow path 451 (heat transfer tube 45) in second path P2, upwind second space A2, first liquid The refrigerant will flow in the order of the side doorway LH1.
  • a region that does not correspond to the supercooling region during the heating operation is a main heat exchange region.
  • the main heat exchange area has a larger amount of heat exchange between the refrigerant and the indoor airflow AF than the supercooling area.
  • the main heat exchange area has a larger heat transfer area than the supercooling area.
  • the leeward heat exchange unit 60 In the leeward heat exchange unit 60, The temperature difference between the refrigerant and the indoor airflow AF is reduced, and the amount of heat exchange is reduced. As a result, the difference value between the refrigerant flow rate in the windward heat exchange unit 50 and the refrigerant flow rate in the leeward heat exchange unit 60 increases.
  • the main heat exchange region is formed by forming the supercooling region (SC2) for the refrigerant flowing through the leeward heat exchange unit 60 in the upwind heat exchange unit 50. It is getting smaller. As a result, the amount of heat exchange between the refrigerant and the indoor airflow AF in the windward heat exchange unit 50 is reduced, and in this connection, the temperature difference between the refrigerant and the indoor airflow AF is reduced in the leeward heat exchange unit 60. Can be suppressed, and the amount of heat exchange can be improved.
  • SC2 supercooling region
  • the indoor heat exchanger 25 has a function of bringing the flow rates of the upwind heat exchange unit 50 and the downwind heat exchange unit 60 close to each other during the heating operation.
  • the supercooling region SC2 is formed in the upwind heat exchange unit 50 for the refrigerant that has passed through the downwind heat exchange unit 60 during the heating operation, so that the entire downwind heat exchange surface 65 can function as the main heat exchange region.
  • the amount of heat exchange between the refrigerant and the indoor airflow AF on the leeward heat exchange surface 65 can be increased, and the performance of the indoor heat exchanger 25 can be improved.
  • the indoor heat exchanger 25 exchanges heat between the refrigerant on the leeward heat exchange surface 65 and the indoor airflow AF in association with the fact that the main heat exchange area of the leeward heat exchange unit 60 can be formed larger during the heating operation. Has the function of increasing the amount.
  • the “windward outlet side space” (here, the windward sixth space A6) and the “windward upstream side space” (here, the windward third space A3) are formed, and the windward heat exchange section is formed. 50 and the leeward heat exchanging section 60, the leeward downstream space (here, the leeward second header space Sb2) and the leeward upstream space (the leeward third space A3) Has come to communicate.
  • the refrigerant that has passed through the leeward heat exchange unit 60 is sent to the leeward heat exchange unit 50 and then discharged from the second liquid side inlet / outlet LH2.
  • the supercooling zones (SC1, SC2) in the windward heat exchanger 50 are concentrated in the windward heat exchanger 50 on the windward side. For this reason, it is avoided that the superheat zone on the leeward side and the supercooling zone on the leeward side overlap or approach in the air flow direction dr3.
  • the supercooling region that is conventionally formed in the leeward heat exchange unit 60 is the subcooling region SC2 and the upwind heat exchange unit 50.
  • the leeward superheat region SH3 and the leeward supercooling region are not overlapped or approached in the air flow direction dr3. For this reason, the indoor airflow AF that has passed through the superheated area (SH3, SH4) on the windward side is suppressed from passing through the supercooled areas (SC1, SC2).
  • the temperature difference between the refrigerant and the indoor airflow AF is easily secured, and the degree of supercooling is appropriate for the refrigerant passing through the leeward heat exchange unit 60. It is promoted to be secured. That is, the performance deterioration of the heat exchanger is suppressed and the performance improvement is promoted.
  • the supercooling region SC2 that has been conventionally formed in the leeward heat exchange unit 60 is referred to as the supercooling region SC2. It is formed in the upper heat exchange part 50.
  • the superheating region and the supercooling region are not adjacent to each other in the vertical direction, and the refrigerant passing through the superheating region (SH3, SH4) and the supercooling region (SC2) are passed. Heat exchange with the refrigerant is suppressed. In connection with this, it is promoted that the degree of supercooling of the refrigerant in the supercooling region (SC2) is appropriately secured. That is, the performance deterioration of the heat exchanger is suppressed and the performance improvement is promoted.
  • a plurality of paths are formed in the upwind heat exchanging unit 50. That is, in the windward heat exchange unit 50, the windward first space A1, the heat transfer tube flow path 451 of the first path P1, the windward fourth space A4, the return flow path JP, the windward fifth space A5, the second path.
  • a path formed by the heat transfer pipe flow path 451 of P2 and the second windward space A2 that is, a path formed by the first path P1 and the second path P2), the third windward space A3, and the heat transfer pipe 45.
  • a path (third path P3) formed in the upwind sixth space A6 is formed in the upwind sixth space A6.
  • the path (third path P3) formed by the upwind third space A3, the heat transfer tube 45, and the upwind sixth space A6 is connected to the downwind downstream space via the connection flow path RP formed by the connection pipe 70. It communicates with (leeward second header space Sb2).
  • pass will be return
  • the refrigerant superheat region SH3 flowing through the windward heat exchange unit 50 and the refrigerant supercooling region SC2 flowing through the leeward heat exchange unit 60 are not vertically adjacent to each other. It is possible. For this reason, heat exchange between the refrigerant passing through the superheat region SH3 and the refrigerant passing through the supercooling region SC2 is suppressed. In connection with this, it is promoted that the degree of supercooling of the refrigerant in the supercooling region SC2 is appropriately secured.
  • the superheated gas refrigerant flowing from the first gas side inlet / outlet GH1 or the second gas side inlet / outlet GH2 performs heat exchange with the indoor air flow AF during the heating operation.
  • the flow direction of the refrigerant flowing through the superheated region SH3 of the windward heat exchanger 50 is the flow of the refrigerant flowing through the superheated region SH4 of the leeward heat exchanger 60 Opposite direction.
  • the refrigerant flowing in the superheat region SH3 of the windward heat exchange unit 50 and the refrigerant flowing in the superheat region SH4 of the leeward heat exchange unit 60 flow so as to face each other.
  • the ratio of the air that has been sufficiently exchanged with the refrigerant and the air that does not greatly varies depending on the passage part. Is suppressed. Therefore, temperature unevenness of the air that has passed through the indoor heat exchanger 25 is suppressed.
  • the supercooling region (SC1, SC2) is a portion of the upwind heat exchanging portion 50 where the wind speed of the passing indoor airflow AF is smaller than the other portions (lower portion). ).
  • the wind speed of the passing indoor airflow AF is smaller than the other portions (lower portion).
  • the windward heat exchange unit 50 in the installed state, includes the windward first heat exchange surface 51 (“first”) in which the heat transfer tube 45 extends in the left-right direction (first direction). 1 part ") and the heat transfer tube 45 has an upwind second heat exchange surface 52 (" second part ") extending in the front-rear direction (second direction).
  • the leeward fourth heat exchange surface 64 in which the heat transfer tube 45 extends in the left-right direction (first direction), and the leeward third heat in which the heat transfer tube 45 extends in the front-rear direction (second direction).
  • an exchange surface 63 (“second part").
  • the leeward fourth heat exchange surface 64 of the leeward heat exchange unit 60 is arranged side by side on the leeward side of the leeward first heat exchange surface 51 of the windward heat exchange unit 50, and the leeward third heat exchange of the leeward heat exchange unit 60.
  • the surface 63 is arranged side by side on the leeward side of the second windward heat exchange surface 52 of the windward heat exchange unit 50.
  • the indoor heat exchanger 25 in which a plurality of heat exchange parts having heat exchange surfaces 40 ("first part” and "second part") extending in different directions are arranged side by side on the windward side and leeward side. ,
  • the indoor airflow AF that has passed through the superheat region (SH3) of the upwind heat exchange unit (upstream heat exchange unit 50) is suppressed from passing through the supercooling region, and performance degradation is suppressed. Yes.
  • the indoor heat exchanger 25 is accommodated in the casing 30, and the casing 30 is formed with a communication pipe insertion port 30 a.
  • the windward heat exchange unit 50 includes a windward first heat exchange surface 51 ("third part") in which the heat transfer tube 45 extends in the right direction, and the heat transfer tube 45 in the rearward direction. And an upwind fourth heat exchange surface 54 ("fourth part”).
  • the leeward heat exchanging unit 60 includes a leeward first heat exchange surface 61 (“third portion”) in which the heat transfer tubes 45 extend in the forward direction and a leeward fourth heat exchange in which the heat transfer tubes 45 extend in the left direction.
  • Surface 64 (“fourth part").
  • the windward first header 56 is located at the end of the windward first heat exchange surface 51, and the windward second header 57 is separated from the terminal of the windward first heat exchange surface 51. It is located at the tip of the upper fourth heat exchange surface 54.
  • the leeward first header 66 is positioned at the end of the leeward first heat exchange surface 61, and the leeward second header 67 is separated from the end of the leeward first heat exchange surface 61. Located at the tip of 64.
  • the end of the windward first heat exchange surface 51 and the windward first heat exchange surface 61 are arranged near the connecting pipe insertion port 30a rather than the tip. Further, in the windward heat exchange unit 50 and the leeward heat exchange unit 60, the windward fourth heat exchange surface 54 and the windward fourth heat exchange surface 64 are arranged in the vicinity of the connecting pipe insertion port 30a rather than the ends. Yes.
  • each pipe for example, the gas side connecting pipe GP and the liquid side connecting pipe LP connected to the indoor heat exchanger 25, and the connecting pipe 70 extending between the upwind heat exchange section 50 and the downwind heat exchange section 60
  • the length of each pipe is shortened. It is possible to do.
  • the piping in the casing 30 can be easily handled. In connection with this, improvement of workability, assembling property and compactness of the refrigeration apparatus is promoted.
  • the first path P1 is formed by the first gas side inlet / outlet GH1 communicating with the upwind first space A1 and the first connection hole H1 communicating with the upwind fourth space A4.
  • the first path P1 may be formed by other modes.
  • the first path P1 may be formed by the first gas side inlet / outlet GH1 communicating with the upwind fourth space A4 and the first connection hole H1 communicating with the upwind first space A1. Even in such a case, it is possible to achieve the same operation and effect as the above embodiment.
  • the second path P2 is formed by the second connection hole H2 communicating with the upwind fifth space A5 and the first liquid side inlet / outlet LH1 communicating with the upwind second space A2.
  • the second path P2 may be formed by other modes.
  • the second path P2 may be formed by the second connection hole H2 communicating with the windward second space A2, and the first liquid side inlet / outlet LH1 communicating with the windward fifth space A5.
  • the windward heat exchange unit 50 may be configured like the windward heat exchange unit 50a shown in FIG.
  • FIG. 17 is a schematic diagram schematically showing a configuration aspect of the upwind heat exchange unit 50a.
  • FIG. 18 is a schematic diagram schematically showing a refrigerant path formed in the indoor heat exchanger 25a including the upwind heat exchange unit 50a.
  • the windward heat exchange unit 50 a has a folded pipe 59 instead of the folded pipe 58.
  • the return pipe 59 (corresponding to the “second communication path forming portion” described in the claims) is a return flow path JP ′ for connecting the upwind fourth space A4 and the upwind second space A2 (claims). (Corresponding to the “second communication path”). That is, in the windward heat exchange section 50a, the windward fourth space A4 communicates with the windward second space A2 instead of the windward fifth space A5 via the return flow path JP ′ (turnback pipe 59). Yes. Further, in the windward heat exchange unit 50a, the first liquid side inlet / outlet LH1 communicates with the windward fifth space A5, not the windward second space A2.
  • the other configuration of the windward heat exchange unit 50a is substantially the same as that of the windward heat exchange unit 50.
  • FIG. 19 is a schematic diagram schematically showing the flow of the refrigerant in the upwind heat exchange section 50a during the heating operation.
  • the indoor heat exchanger 25a having the upwind heat exchange unit 50a in the refrigerant flow formed by the first path P1 and the second path P2, the first gas side inlet / outlet GH1, the upwind first space A1.
  • the refrigerant flows in the order of the heat pipe channel 451 (heat transfer pipe 45), the upwind fifth space A5, and the first liquid side inlet / outlet LH1.
  • the heat transfer tube channel 451 in the second path P2 (particularly, the heat transfer tube channel 451 included in the second path P2 of the upwind fourth heat exchange surface 54).
  • a region in which the supercooled refrigerant flows (supercooling region SC1) is formed, and is included in the heat transfer tube channel 451 in the third path P3 (particularly, in the third path P3 of the upwind first heat exchange surface 51).
  • a region (supercooling region SC2) through which the supercooled refrigerant flows is formed in the heat transfer tube channel 451).
  • the indoor heat exchanger 25a including such an upwind heat exchanging part 50a, the upwind first space A1, the heat transfer tube 45, the upwind fourth space A4, the return flow path JP ', the upwind second space A2,
  • the upwind fourth space A4 in the upwind second header 57
  • the upwind second space A2 in the upwind first header 56 is communicated with the return flow path JP ′.
  • the refrigeration area SH3 of the refrigerant flowing through the upwind heat exchanging section 50a and the subcooling area SC2 of the refrigerant flowing through the leeward heat exchange section 60 are prevented from adjoining up and down.
  • the construction of the heat exchange part 60 is promoted. For this reason, heat exchange between the refrigerant passing through the superheat region SH3 and the refrigerant passing through the supercooling region SC2 is suppressed. In connection with this, it is promoted that the degree of supercooling of the refrigerant in the supercooling region SC2 is appropriately secured.
  • the refrigerant superheat region SH3 flowing through the windward heat exchange unit 50a and the refrigerant supercooling region SC1 flowing through the windward heat exchange unit 50a are vertically moved. It is also promoted to configure the leeward heat exchange unit 60 so as not to be adjacent. For this reason, it is also suppressed that heat exchange is performed between the refrigerant passing through the superheat region SH3 and the refrigerant passing through the supercooling region SC1. In connection with this, it is also promoted that the degree of supercooling of the refrigerant in the supercooling region SC1 is appropriately secured. Therefore, in the indoor heat exchanger 25a including the upwind heat exchange unit 50a, it can further contribute to performance improvement.
  • the third path P3 is formed by the third connection hole H3 communicating with the upwind sixth space A6 and the second liquid side inlet / outlet LH2 communicating with the upwind third space A3.
  • the third path P3 may be formed by other modes.
  • the third path P3 may be formed by the third connection hole H3 communicating with the upwind third space A3 and the second liquid side inlet / outlet LH2 communicating with the upwind sixth space A6.
  • the windward heat exchange unit 50 may be configured like the windward heat exchange unit 50b shown in FIG.
  • FIG. 20 is a schematic diagram schematically illustrating a configuration aspect of the upwind heat exchange unit 50b.
  • FIG. 21 is a schematic diagram schematically showing a refrigerant path formed in the indoor heat exchanger 25b including the windward heat exchange unit 50b.
  • the second liquid side inlet / outlet LH2 is formed not in the windward sixth space A6 but in the windward third space A3.
  • the third connection hole H3 is formed not in the windward third space A3 but in the windward sixth space A6.
  • the other configuration of the windward heat exchange unit 50b is substantially the same as that of the windward heat exchange unit 50.
  • connection pipe RP ′ is formed by the connection pipe 70 to communicate the downwind second header space Sb2 and the upwind third space A3.
  • FIG. 22 is a schematic diagram schematically showing the flow of the refrigerant in the upwind heat exchange section 50b during the heating operation.
  • the second gas side inlet / outlet GH2 and the leeward first header space Sb1 in the refrigerant flow formed by the third path P3 and the fourth path P4 during the heating operation.
  • the heat transfer tube flow path 451 (heat transfer pipe 45) in the fourth path P4, the leeward second header space Sb2, the connection flow path RP ′ (connection pipe 70), the windward third space A3, and the heat transfer in the third path P3.
  • the refrigerant flows in the order of the heat pipe channel 451 (heat transfer pipe 45), the upwind sixth space A6, and the second liquid side inlet / outlet LH2.
  • the same operation and effect as in the above embodiment can be realized. Further, in the indoor heat exchanger 25b having the upwind heat exchange section 50b, the heat transfer pipe flow path 451 in the second path P2 (particularly included in the second path P2 of the upwind first heat exchange surface 51) during the heating operation.
  • the heat transfer tube channel 451) a region (supercooling region SC2) through which the supercooled refrigerant flows is formed, and the heat transfer tube channel 451 in the third path P3 (particularly, the third of the leeward fourth heat exchange surface 64).
  • a region (supercooling region SC2) in which the supercooled refrigerant flows is formed in the heat transfer tube channel 451 included in the path P3, a region (supercooling region SC2) in which the supercooled refrigerant flows is formed.
  • the refrigerant flowing in the supercooling region SC1 and the refrigerant flowing in the supercooling region SC2 are opposed in the flowing direction ( That is, the counter flow). In relation to this, temperature unevenness of the indoor airflow AF passing through the indoor heat exchanger 25b during the heating operation is suppressed.
  • the windward first header space Sa1 in the windward first header 56 extends from the top to the bottom of the windward first space A1, the windward second space A2, and the windward third space A3. They were arranged in order.
  • the windward second header space Sa2 is arranged in order of the windward fourth space A4, the windward fifth space A5, and the windward sixth space A6 from the top to the bottom. It was configured as follows. That is, the path formed in the upwind heat exchanging unit 50 is formed such that the first path P1 is located at the uppermost stage, the second path P2 is located at the middle stage, and the third path P3 is located at the lowermost stage. It was.
  • the formation mode of the windward first header space Sa1 and the windward second header space Sa2 and the path formation mode in the windward heat exchange unit 50 are not necessarily limited to this, and the same operation as the above embodiment. As long as the effect can be realized, it can be appropriately changed according to the design specifications and installation environment.
  • the windward first header space Sa1 may be configured so that the windward first space A1, the windward second space A2, and the windward third space A3 are arranged in this order from bottom to top.
  • the windward second header space Sa2 extends from the bottom upward to the windward fourth space A4, the windward fifth space A5, and the windward sixth space A6. It is configured to be arranged in order.
  • the paths formed in the upwind heat exchanging unit 50 are formed such that the first path P1 is located at the lowermost stage, the second path P2 is located at the middle stage, and the third path P3 is located at the uppermost stage. Will be.
  • the windward first header space Sa1 may be configured so that the windward second space A2, the windward first space A1, and the windward third space A3 are arranged in this order from top to bottom. Good.
  • the windward second header space Sa2 extends from the top to the bottom of the windward fifth space A5, the windward fourth space A4, and the windward sixth space A6. It is configured to be arranged in order.
  • the paths formed in the upwind heat exchanging unit 50 are formed such that the second path P2 is located at the uppermost stage, the first path P1 is located at the middle stage, and the third path P3 is located at the lowermost stage. Will be.
  • the indoor heat exchanger 25 may be configured as an indoor heat exchanger 25c shown in FIGS.
  • the indoor heat exchanger 25c will be described.
  • omits description below can be interpreted as substantially the same as the indoor heat exchanger 25 unless there is particular notice.
  • FIG. 23 is a schematic diagram schematically showing the indoor heat exchanger 25c viewed from the heat transfer tube stacking direction dr2.
  • FIG. 24 is a schematic diagram schematically showing the configuration of the indoor heat exchanger 25c.
  • FIG. 25 is a schematic diagram schematically showing a refrigerant path formed in the indoor heat exchanger 25c.
  • the indoor heat exchanger 25c has an upwind heat exchange unit 50c instead of the upwind heat exchange unit 50.
  • the indoor heat exchanger 25 c includes a second leeward heat exchange unit 80 in addition to the leeward heat exchange unit 60.
  • the indoor heat exchanger 25 c has a second connection pipe 75 in addition to the connection pipe 70.
  • FIG. 26 is a schematic diagram schematically showing a configuration aspect of the upwind heat exchange unit 50c.
  • the windward heat exchange unit 50c only one horizontal partition plate 561 is disposed in the windward first header 56, and the windward first space A1 is omitted.
  • the upwind heat exchanging unit 50c only one horizontal partition plate 571 is arranged in the upwind second header 57, and the upwind fourth space A4 is omitted.
  • the first path P1 is omitted in the upwind heat exchanger 50c.
  • the second path P2 is formed above the one-dot chain line L3 (FIGS. 23 and 24), and the third path P3 is formed below the one-dot chain line L3. .
  • the one-dot chain line L3 is located between the eleventh heat transfer tube 45 and the twelfth heat transfer tube 45 as counted from above. That is, in the upwind heat exchanging unit 50c, the second path P2 includes the heat transfer pipe flow paths 451 of the eleventh or more heat transfer pipes 45 counted from the top, and the third path P3 counts the twelve or less heat transfer pipes counted from the top. It is formed so as to include 45 heat transfer tube channels 451.
  • the position of the alternate long and short dash line L3 can be changed as appropriate (that is, the number of heat transfer tubes 45 included in the second path P2 and the third path P3 can be changed as appropriate).
  • the first connection hole H1 and the return pipe 58 are omitted. Further, in the upwind heat exchanging part 50c, the first gas side inlet / outlet GH1 is omitted (the first gas side inlet / outlet GH1 is formed in the second downwind heat exchanging part 80). In the upwind heat exchanging section 50c, the second connection hole H2 is formed so as to communicate with the vicinity of the upper end of the upwind fifth space A5, and one end of the second connection pipe 75 is connected to the second connection hole H2. Yes.
  • FIG. 27 is a schematic diagram schematically showing a configuration aspect of the second leeward heat exchange unit 80.
  • the second leeward heat exchange unit 80 is a heat exchange unit disposed on the leeward side of the leeward heat exchange unit 60 (that is, the most downstream side in the air flow direction dr3).
  • the second leeward heat exchange unit 80 mainly includes the most downstream first heat exchange surface 81, the most downstream second heat exchange surface 82, the most downstream third heat exchange surface 83, and the most downstream fourth heat exchange as the heat exchange surface 40. It has a surface 84 (hereinafter collectively referred to as “the most downstream heat exchange surface 85”), a most downstream first header 86, and a most downstream second header 87.
  • the most downstream first heat exchange surface 81 (corresponding to “first part” or “third part” in the claims) is located on the most downstream heat exchange surface 85 at the most downstream side of the refrigerant flow during the cooling operation. However, it is located at the uppermost stream of the refrigerant flow during heating operation.
  • the most downstream first heat exchange surface 81 is connected to the most downstream first header 86 at the end when viewed from the heat transfer tube stacking direction dr2 (in plan view here), and mainly extends from left to right. .
  • the most downstream first heat exchange surface 81 is adjacent to the leeward side of the leeward fourth heat exchange surface 64 in the air flow direction dr3.
  • the most downstream first heat exchange surface 81 is located closer to the communication pipe insertion port 30a than the most downstream second heat exchange surface 82 and the most downstream third heat exchange surface 83. More specifically, the end of the most downstream first heat exchange surface 81 is located closer to the connecting pipe insertion port 30a than the tip.
  • the most downstream second heat exchange surface 82 (corresponding to “second part” in the claims) is the most downstream heat exchange surface 85, upstream of the refrigerant flow on the most downstream first heat exchange surface 81 during cooling operation. And located on the downstream side of the refrigerant flow on the most downstream first heat exchange surface 81 during heating operation.
  • the most downstream second heat exchange surface 82 is connected to the tip of the most downstream first heat exchange surface 81 while being bent at the end as viewed from the heat transfer tube stacking direction dr2, and mainly extends from the rear to the front.
  • the most downstream second heat exchange surface 82 is adjacent to the leeward side of the leeward third heat exchange surface 63 in the air flow direction dr3.
  • the most downstream third heat exchange surface 83 is located on the upstream side of the refrigerant flow of the most downstream second heat exchange surface 82 during the cooling operation among the most downstream heat exchange surfaces 85, and the most downstream second heat exchange surface during the heating operation. 82 located downstream of the refrigerant flow.
  • the most downstream third heat exchange surface 83 is connected to the tip of the most downstream second heat exchange surface 82 while being bent at the end as viewed from the heat transfer tube stacking direction dr2, and mainly extends from right to left.
  • the most downstream third heat exchange surface 83 is adjacent to the leeward side of the leeward second heat exchange surface 62 in the air flow direction dr3.
  • the most downstream fourth heat exchange surface 84 (corresponding to “fourth part” recited in the claims) is the upstream of the refrigerant flow on the most downstream third heat exchange surface 83 during the cooling operation in the most downstream heat exchange surface 85. It is located on the downstream side and is located on the downstream side of the refrigerant flow on the most downstream third heat exchange surface 83 during the heating operation.
  • the most downstream fourth heat exchange surface 84 is connected to the tip of the most downstream third heat exchange surface 83 while being bent at the end thereof when viewed from the heat transfer tube stacking direction dr2, and mainly extends from the front to the rear.
  • the most downstream fourth heat exchange surface 84 is connected to the most downstream second header 87 at the tip thereof.
  • the most downstream fourth heat exchange surface 84 is adjacent to the leeward side of the leeward first heat exchange surface 61 in the air flow direction dr3.
  • the most downstream fourth heat exchange surface 84 is located closer to the connection pipe insertion port 30a than the most downstream second heat exchange surface 82 and the most downstream third heat exchange surface 83. More specifically, the most downstream fourth heat exchange surface 84 has its tip positioned closer to the connecting pipe insertion port 30a than its end.
  • the second leeward heat exchange unit 80 By including the most downstream first heat exchange surface 81, the most downstream second heat exchange surface 82, the most downstream third heat exchange surface 83, and the most downstream fourth heat exchange surface 84, the second leeward heat exchange unit 80.
  • the most downstream heat exchange surface 85 is bent or curved at three or more positions as viewed from the heat transfer tube stacking direction dr2 and has a substantially rectangular shape. That is, the second leeward heat exchange unit 80 has four most downstream heat exchange surfaces 85.
  • the most downstream first header 86 (corresponding to the “first header” in the claims) is a diversion header that diverts the refrigerant to each heat transfer tube 45, a merge header that merges the refrigerant flowing out from each heat transfer tube 45, or It is a header collecting tube that functions as a folded header or the like for folding the refrigerant flowing out from each heat transfer tube 45 to another heat transfer tube 45.
  • the most downstream first header 86 has a vertical direction (vertical direction) in the longitudinal direction in the installed state.
  • the most downstream first header 86 is configured in a cylindrical shape and forms a space (hereinafter, referred to as “the most downstream first header space Sc1”) (the most downstream first header space Sc1 is a claim).
  • the most downstream first header 86 is located on the most downstream side of the refrigerant flow in the second leeward heat exchange unit 80 during the cooling operation, and is located on the most upstream side of the refrigerant flow in the second leeward heat exchange unit 80 during the heating operation.
  • the most downstream first header 86 is connected to the end of the most downstream first heat exchange surface 81.
  • the most downstream first header 86 is connected to one end of each heat transfer tube 45 included in the most downstream first heat exchange surface 81, and makes these heat transfer tubes 45 communicate with the most downstream first header space Sc1.
  • the most downstream first header 86 is adjacent to the leeward side of the leeward second header 67 in the air flow direction dr3.
  • a first gas side inlet / outlet GH ⁇ b> 1 is formed in the most downstream first header 86.
  • the first gas side inlet / outlet GH1 communicates with the most downstream first header space Sc1.
  • a first gas side communication pipe GP1 is connected to the first gas side inlet / outlet GH1.
  • the most downstream second header 87 (corresponding to “second header” in the claims) is a diversion header that diverts the refrigerant to each heat transfer tube 45, a merge header that merges the refrigerant flowing out from each heat transfer tube 45, or It is a header collecting tube that functions as a folded header or the like for folding the refrigerant flowing out from each heat transfer tube 45 to another heat transfer tube 45.
  • the most downstream second header 87 has a vertical direction (vertical direction) in the longitudinal direction in the installed state.
  • the most downstream second header 87 is formed in a cylindrical shape and forms a space (hereinafter referred to as “the most downstream second header space Sc2”) inside (the most downstream second header space Sc2 is claimed). This corresponds to the “second header space” described in the range).
  • the most downstream second header space Sc2 is located most upstream of the refrigerant flow in the second leeward heat exchange unit 80 during the cooling operation, and is located most downstream of the refrigerant flow in the second leeward heat exchange unit 80 during the heating operation. .
  • the most downstream second header 87 is connected to the tip of the most downstream fourth heat exchange surface 84.
  • the most downstream second header 87 is connected to one end of each heat transfer tube 45 included in the most downstream fourth heat exchange surface 84, and makes these heat transfer tubes 45 communicate with the most downstream second header space Sc2.
  • the most downstream second header 87 is adjacent to the leeward side of the leeward first header 66 in the air flow direction dr3.
  • a fifth connection hole H5 for connecting the other end of the second connection pipe 75 is formed in the most downstream second header 87.
  • the fifth connection hole H5 communicates with the most downstream second header space Sc2.
  • the other end of the second connection pipe 75 is connected to the fifth connection hole H5 so that the most downstream second header space Sc2 and the upwind fifth space A5 communicate with each other.
  • the most downstream second header space Sc2 communicating with the second connection pipe 75 corresponds to a “leeward downstream space” recited in the claims.
  • the second connection pipe 75 is a refrigerant pipe that forms the second connection flow path RP2 between the upwind heat exchange section 50c and the second downwind heat exchange section 80.
  • the second connection flow path RP2 (corresponding to the “second refrigerant flow path” recited in the claims) is a refrigerant flow path that communicates the most downstream second header space Sc2 and the upwind fifth space A5. is there.
  • the second connection pipe 75 has one end connected to the second connection hole H2 and the other end connected to the fifth connection hole H5.
  • a fifth path P5 is formed in addition to the second path P2, the third path P3, and the fourth path P4.
  • the fifth path P5 is formed in the second leeward heat exchange unit 80.
  • the first gas side inlet / outlet GH1 communicates with the most downstream first header space Sc1
  • the most downstream first header space Sc1 passes through the heat transfer tube flow path 451 (heat transfer tube 45), and the most downstream second header.
  • This is a refrigerant flow path formed by communicating with the space Sc2 and the most downstream second header space Sc2 communicating with the fifth connection hole H5.
  • the fifth path P5 includes the first gas side inlet / outlet GH1, the most downstream first header space Sc1 in the most downstream first header 86, the heat transfer tube flow path 451 in the heat transfer tube 45, and the most downstream second header 87.
  • the fifth path P5 communicates with the second path P2 via the second connection flow path RP2 (second connection pipe 75).
  • FIG. 28 is a schematic diagram schematically showing the flow of the refrigerant in the upwind heat exchange unit 50c during the heating operation.
  • FIG. 29 is a schematic diagram schematically showing the flow of the refrigerant in the second leeward heat exchange unit 80 during the heating operation.
  • the indoor heat exchanger 25c during the heating operation, in the refrigerant flow formed by the second path P2 and the fifth path P5, the first gas side inlet / outlet GH1, the most downstream first header space Sc1, and the fifth path P5 Heat transfer pipe flow path 451 (heat transfer pipe 45), most downstream second header space Sc2, second connection flow path RP2 (second connection pipe 75), upwind fifth space A5, heat transfer pipe flow path in the second path P2.
  • the refrigerant flows in the order of 451 (heat transfer tube 45), upwind second space A2, and first liquid side inlet / outlet LH1.
  • the leeward heat exchangers (60, 80) In the indoor heat exchanger 25c, when three rows of flat tube heat exchangers having a plurality of leeward heat exchangers (60, 80) are used as refrigerant condensers, the leeward heat exchangers (60, 80) The supercooling region of the flowing refrigerant is intensively arranged in the windward heat exchange unit 50c. Therefore, in a three-row flat tube heat exchanger having a plurality of leeward heat exchange units (60, 80), it is promoted that the degree of supercooling is appropriately ensured for the refrigerant flowing through the leeward heat exchange unit (60, 80). Has been.
  • the refrigerant inlet first gas side inlet / outlet GH1 and second gas side inlet / outlet GH2
  • the indoor heat exchanger 25c can be configured so that the area and the supercooling area do not adjoin vertically.
  • heat exchange between the refrigerant passing through the superheated region and the refrigerant passing through the supercooling region is particularly suppressed.
  • it is further promoted that the degree of supercooling of the refrigerant in the supercooling region is appropriately secured. Therefore, the performance degradation is further suppressed.
  • the overheat area is not formed in the upwind heat exchanger 50c, so that the overheat area and the overcool area are not vertically adjacent to each other.
  • the heat exchange between the refrigerant passing through and the refrigerant passing through the supercooling zone is particularly suppressed.
  • connection flow path RP corresponds to “a first refrigerant flow path” recited in the claims.
  • the positions of the fifth connection hole H5 and the first liquid side inlet / outlet LH1 in the upwind heat exchanger 50c are changed, or the positions of the third connection hole H3 and the second liquid side inlet / outlet LH2 are changed.
  • the second connection hole H2 is formed in the windward second space A2 in the windward heat exchange section 50c, and the second liquid side inlet / outlet LH2 is formed in the windward fifth space A5.
  • the refrigerant flowing through the supercooling region SC1 and the refrigerant flowing through the supercooling region SC2 can be configured to face each other.
  • the ratio between the air that has been sufficiently heat-exchanged with the refrigerant and the air that is not so much is suppressed from greatly differing depending on the passage portion, and the indoor heat exchange The temperature unevenness of the air that has passed through the vessel 25c is suppressed.
  • the space that communicates with the fifth connection hole H5 and the space that communicates with the first liquid side inlet / outlet LH1 may be appropriately switched.
  • the space where the third connection hole H3 communicates and the space where the second liquid side inlet / outlet LH2 communicates may be appropriately switched.
  • the space where the fourth connection hole H4 communicates and the space where the second gas side inlet / outlet GH2 communicates may be appropriately switched.
  • the space in which the fifth connection hole H5 communicates with the space in which the first gas side inlet / outlet GH1 communicates may be appropriately replaced.
  • the 2nd leeward heat exchange part 80 was arrange
  • the indoor heat exchanger 25c may be configured as four or more rows of flat tube heat exchangers having new leeward heat exchangers other than the leeward heat exchanger 60 and the second leeward heat exchanger 80.
  • the number of passes is increased in the leeward heat exchange unit 50c and a further second connection pipe 75 is newly installed, and a further second connection flow path RP2 is newly installed.
  • the supercooling zone for the refrigerant passing through the new leeward heat exchange section is connected to the leeward heat exchange section 50c. It becomes possible to form. That is, even when configured as four or more rows of flat tube heat exchangers, the same effects as those of the above-described embodiment can be realized.
  • connection flow path RP is formed by the connection pipe 70.
  • the formation mode of the connection channel RP is not necessarily limited to this, and can be appropriately changed according to the design specifications and the installation environment.
  • the header collecting pipe (the upwind second header 57 in the above embodiment) that forms a space (the upwind sixth space A6 in the above embodiment) communicating with the connection flow path RP in the upwind heat exchange unit 50
  • the downwind A header collecting pipe (a leeward second header 67 in the above embodiment) that forms a space (in the above embodiment, a leeward second header space Sb2) that communicates with the connection flow path RP in the heat exchanging unit 60 is configured integrally.
  • both internal spaces are partitioned through a partition plate extending along the longitudinal direction of the header, both spaces may be communicated with each other through an opening formed in the partition plate.
  • the opening formed in the partition plate corresponds to the “refrigerant flow path” recited in the claims, and the partition plate forming the opening corresponds to the “refrigerant flow path forming portion” recited in the claims.
  • the same change can be made for the second connection flow path RP2 described in the “Modification 5”.
  • the same change can be made for the return flow path JP ′ described in “Modification 2”.
  • the folded flow path JP is formed by the folded pipe 58.
  • the formation mode of the folded flow path JP is not necessarily limited to this, and can be appropriately changed according to the design specifications and the installation environment.
  • a partition plate (horizontal partition plate 571 in the above embodiment) that partitions both spaces (the upwind fourth space A4 and the upwind fifth space A5 in the above embodiment) that communicate with each other in the return flow path JP in the upwind heat exchange unit 50. ) May be formed, and both spaces may be communicated with each other through the opening.
  • the opening formed in the partition plate corresponds to the “communication path” recited in the claims
  • the partition plate forming the opening corresponds to the “communication path forming portion” recited in the claims.
  • the windward heat exchange unit 50 and the leeward heat exchange unit 60 may each be configured to have two heat exchange surfaces 40. Even in such a case, the same effect as that of the above-described embodiment can be realized.
  • the effect described in (5-8) above can be realized by being configured to have a substantially V shape in plan view or side view (in such a case, the windward heat exchange unit 50 and the leeward In the heat exchanging part 60, one heat exchanging surface 40 corresponds to "first part" and the other heat exchanging surface 40 corresponds to "second part").
  • the upwind heat exchange unit 50 and the downwind heat exchange unit 60 may be configured to have three heat exchange surfaces 40, respectively. Even in such a case, the same effect as that of the above-described embodiment can be realized.
  • the windward heat exchange unit 50 and the leeward In the heat exchange part 60 the heat exchange surface 40 connected to one header collecting pipe corresponds to “first part”, and the heat exchange surface 40 connected to the other header collecting pipe corresponds to “second part”. To do).
  • upwind heat exchange unit 50 and the downwind heat exchange unit 60 may be configured to have only one heat exchange surface 40. Even in such a case, the same effects as those in the above embodiment can be realized (except for the effects described in (5-7) above).
  • the gas side communication pipe GP (GP1, GP2) is individually connected to the first gas side inlet / outlet GH1 of the windward heat exchange unit 50 and the second gas side inlet / outlet GH2 of the leeward heat exchange unit 60.
  • the liquid side communication pipes LP (LP1, LP2) were individually connected to the first liquid side inlet / outlet LH1 of the windward heat exchange unit 50 and the second liquid side inlet / outlet LH2 of the leeward heat exchange unit 60.
  • the connection mode of the gas side communication pipe GP and the liquid side communication pipe LP in the indoor heat exchanger 25 is not necessarily limited to this, and can be changed as appropriate.
  • a shunt may be arranged between the indoor heat exchanger 25 and the gas side connecting pipe GP or the liquid side connecting pipe LP, and both may be communicated with each other via the shunt.
  • the upwind heat exchange unit 50 and the downwind heat exchange unit 60 have a header set different from the header set pipe (56, 57, 66, 67) described in the above embodiment as long as there is no contradiction in the refrigerant flow. You may have a pipe
  • pass P1 was comprised so that the 12 heat exchanger tubes 45 (heat exchanger tube flow path 451) might be included.
  • the formation mode of the first path P1 is not necessarily limited to this, and can be changed as appropriate. That is, the first path P1 may include 11 or less heat transfer tubes 45 or 13 or more heat transfer tubes 45 (heat transfer tube flow paths 451).
  • the second path P2 is configured to include four heat transfer tubes 45 (heat transfer tube flow paths 451).
  • the formation form of the second path P2 is not necessarily limited to this, and can be changed as appropriate. That is, the second path P2 may be configured to include three or less or five or more heat transfer tubes 45 (heat transfer channel 451).
  • the third path P3 is configured to include three heat transfer tubes 45 (heat transfer tube flow paths 451).
  • the formation mode of the third path P3 is not necessarily limited to this, and can be changed as appropriate. That is, the third path P3 may be configured to include two or less heat transfer tubes 45 (four heat transfer tube channels 451).
  • the indoor heat exchanger 25 has 19 heat transfer tubes 45.
  • the number of heat transfer tubes 45 included in the indoor heat exchanger 25 can be changed as appropriate according to design specifications and installation environment.
  • the indoor heat exchanger 25 may have 18 or less or 20 or more heat transfer tubes 45.
  • the heat transfer tube 45 is a flat multi-hole tube having a plurality of heat transfer tube channels 451 formed therein.
  • the configuration of the heat transfer tube 45 can be changed as appropriate.
  • a flat tube in which one refrigerant channel is formed may be adopted as the heat transfer tube 45.
  • a heat transfer tube having a shape other than a plate shape may be employed as the heat transfer tube 45.
  • the heat transfer tube 45 is not necessarily made of aluminum or aluminum alloy, and the material can be appropriately changed.
  • the heat transfer tube 45 may be made of copper.
  • the heat transfer fins 48 do not have to be made of aluminum or aluminum alloy, and the material can be appropriately changed.
  • the indoor heat exchanger 25 is arranged so as to surround the indoor fan 28.
  • the indoor heat exchanger 25 does not necessarily have to be arranged so as to surround the indoor fan 28, and the arrangement mode can be appropriately changed as long as heat exchange between the indoor air flow AF and the refrigerant is possible. It is.
  • the indoor heat exchanger 25 demonstrated the case where the heat exchanger tube extending
  • the present invention is not necessarily limited to this, and in the installed state, the indoor heat exchanger 25 may be configured and arranged such that the heat transfer tube extending direction dr1 is the vertical direction and the heat transfer tube stacking direction dr2 is the horizontal direction. .
  • the air flow direction dr3 is the horizontal direction.
  • the present invention is not necessarily limited to this, and the air flow direction dr3 can be appropriately changed according to the configuration mode and installation mode of the indoor heat exchanger 25.
  • the air flow direction dr3 may be a vertical direction that intersects the heat transfer tube extending direction dr1.
  • the supercooling area (SC1, SC2) is located in the part (lower stage part) of the windward heat exchange part 50 where the wind speed of the indoor airflow AF to pass is smaller than another part. It was.
  • the present invention is not necessarily limited to this, and the supercooling region may be formed in a portion of the upwind heat exchanging unit 50 where the wind speed of the passing indoor airflow AF is the same as or larger than other portions. Good.
  • the upwind first header 56 and the downwind second header 67 arranged adjacent to the air flow direction dr3 are configured separately, and similarly the upwind second header 57 and the downwind first header 66. It was constructed separately.
  • the present invention is not necessarily limited to this, and in the indoor heat exchanger 25, a plurality of header collecting pipes (here, the windward first header 56 and the windward second header 67, or The upwind second header 57 and the downwind first header 66) may be integrally formed.
  • a plurality of header collecting pipes arranged adjacent to the air flow direction dr3 are configured by a single header collecting pipe, and the internal space of the header collecting pipe is divided into two spaces by a longitudinal partition plate that partitions in the longitudinal direction.
  • the windward first header space Sa1 and the windward second header space Sb2 or the windward second header space Sa2 and the windward first header space Sb1 may be formed.
  • a refrigerant flow path that communicates each space can be formed.
  • the leeward first heat exchange surface 61 is configured to have substantially the same area as viewed from the upwind fourth heat exchange surface 54 and the air flow direction dr3.
  • the leeward first heat exchange surface 61 does not necessarily need to be configured in this manner, and may be configured such that the areas viewed from the windward fourth heat exchange surface 54 and the air flow direction dr3 are different.
  • the leeward second heat exchange surface 62 is configured to have substantially the same area as viewed from the windward third heat exchange surface 53 in the air flow direction dr3.
  • the leeward second heat exchange surface 62 does not necessarily have to be configured in such a manner, and may be configured such that the areas viewed from the windward third heat exchange surface 53 and the air flow direction dr3 are different.
  • the leeward 3rd heat exchange surface 63 was comprised so that the area seen from the windward 2nd heat exchange surface 52 and the air flow direction dr3 might be substantially the same.
  • the leeward third heat exchange surface 63 does not necessarily have to be configured in such a manner, and may be configured such that the areas viewed from the windward second heat exchange surface 52 and the air flow direction dr3 are different.
  • the leeward 4th heat exchange surface 64 was comprised so that the area seen from the windward 1st heat exchange surface 51 and the air flow direction dr3 might be substantially the same.
  • the leeward fourth heat exchange surface 64 does not necessarily need to be configured in such a manner, and may be configured such that the areas viewed from the windward first heat exchange surface 51 and the air flow direction dr3 are different.
  • the indoor heat exchanger 25 was applied to the ceiling embedded type indoor unit 20 installed in the ceiling back space CS of the object space.
  • the type of the indoor unit 20 to which the indoor heat exchanger 25 is applied is not particularly limited.
  • the indoor heat exchanger 25 includes a ceiling hanging type fixed to the ceiling surface CL of the target space, a wall hanging type installed on the side wall, a floor-standing type installed on the floor surface, and a floor installed on the floor.
  • the present invention may be applied to an indoor unit such as an embedded type.
  • the refrigerant circuit RC in the said embodiment, it can change suitably according to installation environment or design specification. Specifically, some of the circuit elements in the refrigerant circuit RC may be replaced with other devices, and may be omitted as appropriate when not necessary. For example, the four-way switching valve 12 may be omitted as appropriate and configured as an air conditioner for heating operation. Further, the refrigerant circuit RC may include devices (for example, a supercooling heat exchanger and a receiver) that are not illustrated in FIG. 1 and a refrigerant flow path (a circuit that bypasses the refrigerant). Further, for example, in the above embodiment, a plurality of compressors 11 may be arranged in series or in parallel.
  • the refrigerant circuit RC was comprised by connecting with the one outdoor unit 10, the one indoor unit 20, and the connection piping (LP, GP).
  • the number of outdoor units 10 and indoor units 20 can be changed as appropriate.
  • the air conditioning apparatus 100 may have a plurality of outdoor units 10 connected in series or in parallel.
  • the air conditioning apparatus 100 may have a plurality of indoor units 20 connected in series or in parallel, for example.
  • the present invention may be applied to a heat exchanger that functions only as either a condenser or an evaporator.
  • the present invention may be applied to a heat exchanger that is mounted on a refrigeration apparatus that performs only reverse cycle operation (for example, heating operation) and functions only as a refrigerant condenser.
  • the present invention may be applied to a heat exchanger that is mounted on a refrigeration apparatus that performs only a positive cycle operation (for example, cooling operation) and functions only as a refrigerant evaporator.
  • the supercooling region corresponds to a region through which a refrigerant having a low dryness flows among the gas-liquid two-phase refrigerant.
  • the superheat region corresponds to a region through which a refrigerant having a high dryness flows out of a superheated refrigerant or a gas-liquid two-phase refrigerant.
  • this invention was applied to the air conditioning apparatus 100 as a freezing apparatus.
  • the present invention may be applied to refrigeration apparatuses other than the air conditioner 100.
  • the present invention may be applied to other refrigeration apparatuses having a refrigerant circuit and a heat exchanger such as a low-temperature refrigeration apparatus used in a refrigeration / refrigeration container, a warehouse, a showcase, etc., a hot water supply apparatus, or a heat pump chiller. Good.
  • the present invention may be applied to a refrigeration apparatus that performs only reverse cycle operation (for example, heating operation) or a refrigeration apparatus that performs only normal cycle operation (for example, cooling operation).
  • the present invention can be used for a heat exchanger or a refrigeration apparatus.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Geometry (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

室内熱交換器(25)は、第1ガス側出入口(GH1)を形成される風上熱交換部(50)と、第2ガス側出入口(GH2)を形成される風下熱交換部(60)と、接続流路(RP)を形成する接続配管(70)とを備える。風上熱交換部(50)は風上第1ヘッダ(56)と風上第2ヘッダ(57)と伝熱管(45)とを含み、風下熱交換部(60)は風下第1ヘッダ(66)と風下第2ヘッダ(67)と伝熱管(45)とを含む。暖房運転時には、風上熱交換部(50)において、過冷却域(SC1、SC2)、液側出入口(LH)に連通する「風上出口側空間」(風上第6空間(A6))、及び「風上出口側空間」の冷媒流れ上流側の「風上上流側空間」(風上第3空間(A3))が形成される。接続流路(RP)は、「風下下流側空間」(風下熱交換部(60)の冷媒流れの最も下流側の風下第2ヘッダ空間(Sb2))と「風上上流側空間」とを連通させる。

Description

熱交換器又は冷凍装置
 本発明は、熱交換器又は冷凍装置に関する。
 従来、冷媒が流れる扁平管が積層される扁平管熱交換器が知られている。例えば、特許文献1(特開2016-38192号公報)には、扁平管熱交換器では配管長が大きくなるほど冷媒の圧力損失が生じやすいことに鑑みて、扁平管群を有する熱交換部を風上側及び風下側に並べて配置することで圧力損失の抑制を図った、二列扁平管熱交換器が開示されている。
 また、例えば、特許文献2(特開2012-163319号公報)には、水平方向に延びる複数の扁平管が鉛直方向に積層され、鉛直方向に延び各扁平管に当接する複数の伝熱フィンが水平方向に並べられた空調機用の扁平管熱交換器が開示されている。
 しかし、特許文献1の二列扁平管熱交換器が冷媒の凝縮器として用いられる場合、風上側の熱交換部における過熱域(過熱状態のガス冷媒が流れることが想定される扁平管群)と、風下側の熱交換部における過冷却域(過冷却状態の液冷媒が流れることが想定される扁平管群)と、が空気流の流れ方向から見て部分的に重畳あるいは近接しているため、過熱域を通過した空気流が、風下側の熱交換部における過冷却域を通過することとなる。このことから、風下側の熱交換部における過冷却域において、冷媒と空気流との温度差が適正に確保されにくくなり熱交換が良好に行われないケースが想定される。すなわち、風下側の熱交換部を流れる冷媒の過冷却度が適正に確保されにくいことが想定され、これに関連して熱交換器の性能低下(又は当該熱交換器を有する冷凍装置の性能低下)が生じることが懸念される。
 また、特許文献2の扁平管熱交換器が冷媒の凝縮器として用いられる場合、過熱域と過冷却域とが上下に隣接することとなるため、場合によっては、過熱域を通過する冷媒と過冷却域を通過する冷媒との間で伝熱フィンを介した熱交換が行われることとなる。これに関連して、冷媒の過冷却度が適正に確保されないケースが想定される。
 そこで、本発明の課題は、性能低下を抑制する扁平管熱交換器(又は性能低下を抑制する冷凍装置)を提供することである。
 本発明の第1観点に係る熱交換器は、第1入口及び第2入口から流入する冷媒を空気流と熱交換させ出口から流出させる熱交換器であって、風上熱交換部と、風下熱交換部と、流路形成部と、を備える。風下熱交換部は、設置状態において、風上熱交換部の風下側で風上熱交換部と並んで配置される。風下熱交換部は、第2入口を形成される。流路形成部は、風上熱交換部及び風下熱交換部間で冷媒流路を形成する。風上熱交換部及び風下熱交換部は、第1ヘッダと、第2ヘッダと、複数の扁平管と、をそれぞれ含む。第1ヘッダは、第1ヘッダ空間を内部に形成する。第2ヘッダは、第2ヘッダ空間を内部に形成する。扁平管は、第1ヘッダ及び第2ヘッダに接続される。複数の扁平管は、第1ヘッダ及び第2ヘッダの長手方向に並ぶ。扁平管は、第1ヘッダ空間及び第2ヘッダ空間を連通させる。第1入口及び第2入口から流入した冷媒が空気流と熱交換して過冷却状態の液冷媒として出口から流出する場合には、風上熱交換部において、過冷却域が形成されるとともに、風上出口側空間及び風上上流側空間が形成される。過冷却域は、過冷却状態の液冷媒が流れる領域である。風上出口側空間は、出口に連通する第1ヘッダ空間又は第2ヘッダ空間である。風上上流側空間は、風上出口側空間の冷媒流れの上流側に配置される第1ヘッダ空間又は第2ヘッダ空間である。第1入口及び第2入口から流入した冷媒が空気流と熱交換して過冷却状態の液冷媒として出口から流出する場合には、冷媒流路は、風下下流側空間と、風上上流側空間と、を連通させる。風下下流側空間は、風下熱交換部において冷媒流れの最も下流側に配置される第2ヘッダ空間である。
 本発明の第1観点に係る熱交換器では、第1入口及び第2入口から流入した冷媒が空気流と熱交換して過冷却状態の液冷媒として出口から流出する場合には、風上熱交換部において、過冷却状態の液冷媒が流れる領域である過冷却域が形成されるとともに、風上出口側空間(出口に連通する第1ヘッダ空間又は第2ヘッダ空間)、及び風上上流側空間(風上出口側空間の冷媒流れの上流側に配置される第1ヘッダ空間又は第2ヘッダ空間)が形成され、風上熱交換部及び風下熱交換部間で形成される冷媒流路は風下下流側空間(風下熱交換部において冷媒流れの最も下流側に配置される第2ヘッダ空間)と風上上流側空間とを連通させる。
 これにより、冷媒の凝縮器として用いられる場合に、風下熱交換部を通過した冷媒が風上熱交換部に送られた後に出口から排出されることとなる。その結果、過冷却域を風上側の風上熱交換部に集中的に配置することが可能となる。このため、風上側の過熱域(過熱状態のガス冷媒が流れることが想定される領域)と、風下側の過冷却域(過冷却状態の液冷媒が流れることが想定される領域)と、が空気流の流れ方向から見て部分的に重畳あるいは近接することが抑制される。このことから、過熱域を通過した空気流が、過冷却域を通過することが抑制される。よって、過冷却域において、冷媒と空気流との温度差が適正に確保されやすくなり、熱交換が良好に行われない事態が抑制される。すなわち、風下熱交換部を流れる冷媒に関し過冷却度が適正に確保されやすくなる。
 また、冷媒の凝縮器として用いられる場合に、過熱域と過冷却域とが上下に隣接しないように風下熱交換部を構成することが可能となる。その結果、過熱域を通過する冷媒と過冷却域を通過する冷媒との間で熱交換が行われることが抑制される。これに関連して、過冷却域における冷媒の過冷却度が適正に確保されることが促進される。
 したがって、性能低下が抑制される。
 なお、ここでの「第1入口」及び「第2入口」は、凝縮器として使用される場合に冷媒(主として過熱状態のガス冷媒)の入口として機能する開口である。また、「出口」は、凝縮器として使用される場合に冷媒(主として、過冷却状態の液冷媒)の出口として機能する開口である。また、「流路形成部」は、風上熱交換部及び風下熱交換部間で冷媒流路を形成する機器であり、例えば冷媒配管やヘッダ集合管内の空間形成部材である。
 本発明の第2観点に係る熱交換器は、第1観点に係る熱交換器であって、風上熱交換部において、第1ヘッダ空間は、風上第1空間と、風上第2空間と、風上第3空間と、に仕切られる。風上熱交換部において、第2ヘッダ空間は、風上第4空間と、風上第5空間と、風上第6空間と、に仕切られる。風上第4空間は、扁平管を介して、風上第1空間と連通する。風上第5空間は、扁平管を介して、風上第2空間と連通する。風上第6空間は、扁平管を介して、風上第3空間と連通する。風上熱交換部は、連通路形成部をさらに含む。連通路形成部は、連通路を形成する。連通路は、風上第4空間と風上第5空間とを連通させる流路である。第1入口は、風上第1空間に連通する。第2入口は、風下熱交換部において冷媒流れの最も上流側に配置される第1ヘッダ空間に連通する。出口には、第1出口と、第2出口と、が含まれる。第1出口は、風上第2空間に連通する。第2出口は、風上出口側空間に連通する。風上第3空間又は風上第6空間の一方は、風上出口側空間に該当する。風上第3空間又は風上第6空間の他方は、風上上流側空間に該当する。
 本発明の第2観点に係る熱交換器では、風上熱交換部において複数のパスが形成される。すなわち、風上熱交換部において、風上第1空間、扁平管、風上第4空間、連通路、風上第5空間、扁平管、及び風上第2空間で形成されるパスと、風上第3空間、扁平管及び風上第6空間で形成されるパスと、が形成される。そのうえで、風上第3空間、扁平管及び風上第6空間で形成されるパスが、流路形成部によって形成される冷媒流路を介して風下下流側空間と連通する。これにより、冷媒の凝縮器として用いられる場合に、風上熱交換部の、風上第3空間、扁平管及び風上第6空間で形成されるパスにおいて、風下熱交換部を流れる冷媒に関し過冷却域が形成されることが促進される。よって、風下熱交換部を流れる冷媒に関して過冷却度が適正に確保されやすくなる。
 また、本発明の第2観点に係る熱交換器では、風上第1空間、扁平管、風上第4空間、連通路、風上第5空間、扁平管、及び風上第2空間で形成されるパスにおいて、第2ヘッダ内の風上第4空間と風上第5空間とが連通路で連通される。これにより、係るパスを流れる冷媒は、風上第4空間及び風上第5空間の間で折り返されることとなる。その結果、冷媒の凝縮器として用いられる場合に、過熱域と過冷却域とが上下に隣接しないように熱交換器を構成することが促進される。このため、過熱域を通過する冷媒と過冷却域を通過する冷媒との間で熱交換が行われることがさらに抑制される。これに関連して、過冷却域における冷媒の過冷却度が適正に確保されることがさらに促進される。
 よって、性能低下がさらに抑制される。
 なお、ここでの「連通路形成部」は、風上第4空間と風上第5空間とを連通させる連通路を形成する機器であり、例えば冷媒配管やヘッダ集合管内の空間形成部材である。
 また、「パス」とは、熱交換器に含まれる要素の内部空間が他の要素の内部空間と連通することによって形成される冷媒の流路である。
 本発明の第3観点に係る熱交換器は、第1観点に係る熱交換器であって、風上熱交換部において、第1ヘッダ空間は、風上第1空間と、風上第2空間と、風上第3空間と、に仕切られる。風上熱交換部において、第2ヘッダ空間は、風上第4空間と、風上第5空間と、風上第6空間と、に仕切られる。風上第4空間は、扁平管を介して風上第1空間と連通する。風上第5空間は、扁平管を介して風上第2空間と連通する。風上第6空間は、扁平管を介して風上第3空間と連通する。風上熱交換部は、第2連通路形成部をさらに含む。第2連通路形成部は、第2連通路を形成する。第2連通路は、風上第2空間と風上第4空間とを連通させる流路である。第1入口は、風上第1空間に連通する。第2入口は、風下熱交換部において冷媒流れの最も上流側に配置される第1ヘッダ空間に連通する。出口には、第1出口と、第2出口と、が含まれる。第1出口は、風上第5空間に連通する。第2出口は、風上出口側空間に連通する。風上第3空間又は風上第6空間の一方は、風上出口側空間に該当する。風上第3空間又は風上第6空間の他方は、風上上流側空間に該当する。
 本発明の第3観点に係る熱交換器では、風上熱交換部において複数のパスが形成される。すなわち、風上熱交換部において、風上第1空間、扁平管、風上第4空間、第2連通路、風上第2空間、扁平管、及び風上第5空間で形成されるパスと、風上第3空間、扁平管及び風上第6空間で形成されるパスと、が形成される。そのうえで、風上第3空間、扁平管及び風上第6空間で形成されるパスが、流路形成部によって形成される冷媒流路を介して風下下流側空間と連通する。これにより、冷媒の凝縮器として用いられる場合に、風上熱交換部の、風上第3空間、扁平管及び風上第6空間で形成されるパスにおいて、風下熱交換部を流れる冷媒に関し過冷却域が形成されることが促進される。よって、風下熱交換部を流れる冷媒に関して過冷却度が適正に確保されやすくなる。
 また、本発明の第3観点に係る熱交換器では、風上第1空間、扁平管、風上第4空間、第2連通路、風上第2空間、扁平管、及び風上第5空間で形成されるパスにおいて、第2ヘッダ内の風上第4空間と第1ヘッダ内の風上第2空間とが連通路で連通される。これにより、係るパスを流れる冷媒は、風上第4空間及び風上第2空間の間で折り返されることとなる。その結果、冷媒の凝縮器として用いられる場合に、過熱域と過冷却域とが上下に隣接しないように熱交換器を構成することが促進される。このため、過熱域を通過する冷媒と過冷却域を通過する冷媒との間で熱交換が行われることがさらに抑制される。これに関連して、過冷却域における冷媒の過冷却度が適正に確保されることがさらに促進される。
 よって、性能低下がさらに抑制される。
 なお、ここでの「第2連通路形成部」は、風上第2空間と風上第4空間とを連通させる第2連通路を形成する機器であり、例えば冷媒配管やヘッダ集合管内の空間形成部材である。
 本発明の第4観点に係る熱交換器は、第1観点に係る熱交換器であって、風下熱交換部を複数備える。風上熱交換部において、第1ヘッダ空間は、風上第7空間と、風上第8空間と、に仕切られる。風上熱交換部において、第2ヘッダ空間は、風上第9空間と、風上第10空間と、に仕切られる。風上第9空間は、扁平管を介して、風上第7空間と連通する。風上第10空間は、扁平管を介して、風上第8空間と連通する。第2入口は、風下第1上流側空間に連通する。風下第1上流側空間は、風上側に配置される風下熱交換部の、最も上流側に配置される第1ヘッダ空間又は第2ヘッダ空間である。第1入口は、風下第2上流側空間に連通する。風下第2上流側空間は、風下側に配置される風下熱交換部の、最も上流側に配置される第1ヘッダ空間又は第2ヘッダ空間である。出口には、第1出口と、第2出口と、が含まれる。第1出口は、風上第7空間、風上第8空間、風上第9空間及び風上第10空間のうち、いずれかに連通する。第2出口は、風上第7空間、風上第8空間、風上第9空間及び風上第10空間のうち、他のいずれかに連通する。風上第7空間、風上第8空間、風上第9空間及び風上第10空間のうち、第1出口又は第2出口に連通する各空間が、風上出口側空間に該当する。風上第7空間、風上第8空間、風上第9空間及び風上第10空間のうち、他の各空間が風上上流側空間に該当する。冷媒流路には、第1冷媒流路及び第2冷媒流路が含まれる。第1冷媒流路は、風上側に配置される風下熱交換部の風下下流側空間と、いずれかの風上上流側空間と、を連通させる。第2冷媒流路は、風下側に配置される風下熱交換部の風下下流側空間と、他の風上上流側空間とを連通させる。
 本発明の第4観点に係る熱交換器では、風上熱交換部において複数のパス(冷媒流路)が形成される。すなわち、風上熱交換部において、風上第7空間、扁平管及び風上第9空間で形成されるパスと、風上第8空間、扁平管及び風上第10空間で形成されるパスと、が形成される。これにより、複数の風下熱交換部を有する3列以上の扁平管熱交換器が冷媒の凝縮器として用いられる場合に、各風下熱交換部を流れる冷媒の過冷却域が風上熱交換部の対応するパスにおいて形成されることが促進される。すなわち、過冷却域を風上側の風上熱交換部に集中的に配置することが促進される。よって、特に複数の風下熱交換部を有する3列以上の扁平管熱交換器において、風下熱交換部を流れる冷媒に関して過冷却度が適正に確保されやすくなる。
 また、冷媒の入口(第1入口及び第2入口)を各風下熱交換部において個別に形成することにより、冷媒の凝縮器として用いられる場合に、過熱域と過冷却域とが上下に隣接しないように熱交換器を構成することが促進される。その結果、過熱域を通過する冷媒と過冷却域を通過する冷媒との間で熱交換が行われることがさらに抑制される。これに関連して、過冷却域における冷媒の過冷却度が適正に確保されることがさらに促進される。よって、性能低下がさらに抑制される。
 本発明の第5観点に係る熱交換器は、第1観点から第4観点のいずれかに係る熱交換器であって、風上熱交換部及び風下熱交換部においては、第1入口又は第2入口から流入した過熱状態のガス冷媒が空気流と熱交換を行って出口から過冷却状態の液冷媒として流出する場合に、過熱域が形成される。過熱域は、過熱状態のガス冷媒が流れる領域である。風上熱交換部の過熱域を流れる冷媒の流れ方向は、風下熱交換部の過熱域を流れる冷媒の流れ方向に対向する。
 これにより、風上熱交換部及び風下熱交換部の過熱域の冷媒が互いに対向して流れることとなる。その結果、風上熱交換部及び風下熱交換部を通過した空気流のうち、冷媒と熱交換が十分になされた空気とそうでない空気との割合が、通過部分によって大きく異なることが抑制される。よって、熱交換器を通過した空気の温度ムラが抑制される。
 本発明の第6観点に係る熱交換器は、第1観点から第5観点のいずれかに係る熱交換器であって、過冷却域は、風上熱交換部のうち、通過する空気流の風速が他の部分よりも小さい部分に位置する。これにより、設置状態において、通過する空気流に関して風速分布がある場合に、液冷媒の流れる流路が風速の小さい部分に形成される扁平管熱交換器において、過熱域を通過した空気流が過冷却域を通過することが抑制され、性能低下が抑制される。
 本発明の第7観点に係る熱交換器は、第1観点から第6観点のいずれかに係る熱交換器であって、設置状態において、風上熱交換部及び風下熱交換部は、第1部と、第2部と、を有する。第1部では、扁平管が第1方向に向かって延びる。第2部では、扁平管が第2方向に向かって延びる。第2方向は、第1方向に交差する方向である。設置状態において、風下熱交換部の第1部は、風上熱交換部の第1部の風下側に並んで配置される。設置状態において、風下熱交換部の第2部は、風上熱交換部の第2部の風下側に並んで配置される。
 これにより、互いに異なる方向に向かって延びる第1部及び第2部を有する複数の熱交換部が風上側及び風下側に並べて配置される扁平管熱交換器において、過熱域を通過した空気流が、過冷却域を通過することが抑制され、性能低下が抑制される。
 本発明の第8観点に係る冷凍装置は、第1観点から第7観点のいずれかに係る熱交換器と、ケーシングと、を備える。ケーシングは、熱交換器を収容する。ケーシングには、連絡配管挿入口が形成される。連絡配管挿入口は、冷媒連絡配管を挿入するための孔である。熱交換器において、風上熱交換部及び風下熱交換部は、第3部と、第4部と、を有する。第3部は、扁平管が第3方向に向かって延びる。第4部は、扁平管が第4方向に向かって延びる。第4方向は、第3方向とは異なる方向である。風上熱交換部において、第1ヘッダ及び第2ヘッダのうち、一方は第3部の末端に位置する。風上熱交換部において、第1ヘッダ及び第2ヘッダのうち、他方は第3部の末端と離間する第4部の先端に位置する。風下熱交換部において、第1ヘッダ及び第2ヘッダのうち、一方は第3部の末端に位置する。風下熱交換部において、第1ヘッダ及び第2ヘッダのうち、他方は第3部の末端と離間する第4部の先端に位置する。風上熱交換部及び風下熱交換部において、第3部の末端は、第3部の先端よりも連絡配管挿入口の近傍に配置される。風上熱交換部及び風下熱交換部において、第4部の先端は、第4部の末端よりも連絡配管挿入口の近傍に配置される。
 これにより、互いに異なる方向に向かって延びる第3部及び第4部を有する複数の熱交換部が風上側及び風下側に並べて配置される扁平管熱交換器、を含む冷凍装置において、ケーシング内における配管(例えば熱交換器の入口又は出口に接続される冷媒連絡配管、又は流路形成部等)の長さを短くすることが可能となる。その結果、ケーシング内における配管の取り回しが容易となる。これに関連して、冷凍装置の施工性、組立性及びコンパクト性が向上する。
 本発明の第1観点に係る熱交換器では、冷媒の凝縮器として用いられる場合に、過熱域を通過した空気流が、過冷却域を通過することが抑制される。よって、過冷却域において、冷媒と空気流との温度差が適正に確保されやすくなり、熱交換が良好に行われない事態が抑制される。すなわち、風下熱交換部を流れる冷媒に関し過冷却度が適正に確保されやすくなる。また、冷媒の凝縮器として用いられる場合に、過熱域と過冷却域とが上下に隣接しないように風下熱交換部を構成することが可能となる。その結果、過熱域を通過する冷媒と過冷却域を通過する冷媒との間で熱交換が行われることが抑制される。これに関連して、過冷却域における冷媒の過冷却度が適正に確保されることが促進される。したがって、性能低下が抑制される。
 本発明の第2観点又は第3観点に係る熱交換器では、冷媒の凝縮器として用いられる場合に、風上熱交換部の、風上第3空間、扁平管及び風上第6空間で形成されるパスにおいて、風下熱交換部を流れる冷媒に関して過冷却域が形成されることが促進される。よって、風下熱交換部を流れる冷媒に関して過冷却度が適正に確保されやすくなる。また、過冷却域における冷媒の過冷却度が適正に確保されることがさらに促進される。よって、性能低下がさらに抑制される。
 本発明の第4観点に係る熱交換器では、特に複数の風下熱交換部を有する3列以上の扁平管熱交換器において、風下熱交換部を流れる冷媒に関して過冷却度が適正に確保されやすくなる。また、過冷却域における冷媒の過冷却度が適正に確保されることがさらに促進される。よって、性能低下がさらに抑制される。
 本発明の第5観点に係る熱交換器では、熱交換器を通過した空気の温度ムラが抑制される。
 本発明の第6観点に係る熱交換器では、設置状態において、熱交換器を通過する空気流に関して風速分布がある場合に、液冷媒の流れる流路が風速の小さい部分に形成される扁平管熱交換器において、性能低下が抑制される。
 本発明の第7観点に係る熱交換器では、互いに異なる方向に向かって延びる第1部及び第2部を有する複数の熱交換部が風上側及び風下側に並べて配置される扁平管熱交換器において、性能低下が抑制される。
 本発明の第8観点に係る冷凍装置では、施工性、組立性及びコンパクト性が向上する。
本発明の一実施形態に係る空気調和装置の概略構成図。 室内ユニットの斜視図。 図2のIII-III線断面を示した模式図。 下面視において室内ユニットの概略構成を示した模式図。 伝熱管積層方向から見た、本発明の一実施形態に係る室内熱交換器を概略的に示した模式図。 室内熱交換器の斜視図。 熱交換部の一部を示した斜視図。 図5のVIII-VIII線断面の模式図。 室内熱交換器の構成態様を概略的に示した模式図。 風上熱交換部の構成態様を概略的に示した模式図。 風下熱交換部の構成態様を概略的に示した模式図。 室内熱交換器において形成される冷媒のパスを概略的に示した模式図。 冷房運転時の風上熱交換部における冷媒の流れを概略的に示した模式図。 冷房運転時の風下熱交換部における冷媒の流れを概略的に示した模式図。 暖房運転時の風上熱交換部における冷媒の流れを概略的に示した模式図。 暖房運転時の風下熱交換部における冷媒の流れを概略的に示した模式図。 変形例2に係る風上熱交換部の構成態様を概略的に示した模式図。 変形例2に係る風上熱交換部を含む室内熱交換器において形成される冷媒のパスを概略的に示した模式図。 変形例2に係る風上熱交換部における暖房運転時の冷媒の流れを概略的に示した模式図。 変形例3に係る風上熱交換部の構成態様を概略的に示した模式図。 変形例3に係る風上熱交換部を含む室内熱交換器において形成される冷媒のパスを概略的に示した模式図。 変形例3に係る風上熱交換部における暖房運転時の冷媒の流れを概略的に示した模式図。 伝熱管積層方向から見た、変形例5に係る室内熱交換器を概略的に示した模式図。 変形例5に係る室内熱交換器の構成態様を概略的に示した模式図。 変形例5に係る室内熱交換器において形成される冷媒のパスを概略的に示した模式図。 変形例5に係る風上熱交換部の構成態様を概略的に示した模式図。 変形例5に係る第2風下熱交換部の構成態様を概略的に示した模式図。 変形例5に係る風上熱交換部における暖房運転時の冷媒の流れを概略的に示した模式図。 変形例5に係る第2風下熱交換部における暖房運転時の冷媒の流れを概略的に示した模式図。 変形例5に係る室内熱交換器において形成されうる他の冷媒のパスを概略的に示した模式図。
 以下、図面を参照しながら、本発明の一実施形態に係る室内熱交換器25(熱交換器)及び空気調和装置100(冷凍装置)について説明する。なお、以下の実施形態は、本発明の具体例であって、本発明の技術的範囲を限定するものではなく、発明の要旨を逸脱しない範囲で適宜変更が可能である。また、以下の実施形態において、上、下、左、右、前又は後といった方向は、図2から図6に示す方向を意味する。
 また、以下の説明においては、特にことわりのない限り、「ガス冷媒」には飽和状態又は過熱状態のガス冷媒のみならず気液二相状態の冷媒も含まれ、「液冷媒」には飽和状態又は過冷却状態の液冷媒のみならず気液二相状態の冷媒も含まれる。
 (1)空気調和装置100
 図1は、本発明の一実施形態に係る室内熱交換器25を含む空気調和装置100の概略構成図である。
 空気調和装置100は、冷房運転又は暖房運転を行って、対象空間の空気調和を実現する装置である。具体的に、空気調和装置100は、冷媒回路RCを有し、蒸気圧縮式の冷凍サイクルを行う。空気調和装置100は、主として、熱源ユニットとしての室外ユニット10と、利用ユニットとしての室内ユニット20と、を有している。空気調和装置100においては、室外ユニット10と室内ユニット20とが、ガス側連絡配管GP及び液側連絡配管LPによって接続されることで、冷媒回路RCが構成されている。冷媒回路RCに封入される冷媒については、特に限定されないが、例えば、R32やR410AのようなHFC冷媒が封入されている。
 (1-1)室外ユニット10
 室外ユニット10は、室外に設置される。室外ユニット10は、主として、圧縮機11と、四路切換弁12と、室外熱交換器13と、膨張弁14と、室外ファン15と、を有している。
 圧縮機11は、低圧のガス冷媒を吸入し、圧縮して吐出する機構である。圧縮機11は、運転中、インバータ制御され、状況に応じて回転数を調整される。
 四路切換弁12は、冷房運転(正サイクル運転)と暖房運転(逆サイクル運転)との切換時に、冷媒の流れる方向を切り換えるための切換弁である。四路切換弁12は、運転モードに応じて状態(冷媒流路)を切り換えられる。
 室外熱交換器13は、冷房運転時には冷媒の凝縮器として機能し、暖房運転時には冷媒の蒸発器として機能する熱交換器である。室外熱交換器13は、複数の伝熱管及び複数の伝熱フィンを有する(図示省略)。
 膨張弁14は、流入する高圧の冷媒を減圧する電動弁である。膨張弁14は、運転状況に応じて開度を適宜調整される。
 室外ファン15は、外部から室外ユニット10内に流入し室外熱交換器13を通過してから室外ユニット10外へ流出する室外空気流を生成する送風機である。
 (1-2)室内ユニット20
 室内ユニット20は、室内(より詳細には空気調和が行われる対象空間)に設置される。室内ユニット20は、主として、室内熱交換器25及び室内ファン28を有している。
 室内熱交換器25(特許請求の範囲記載の「熱交換器」に相当)は、冷房運転時には冷媒の蒸発器として機能し、暖房運転時には冷媒の凝縮器として機能する熱交換器である。室内熱交換器25は、ガス冷媒の出入口(ガス側出入口GH)にガス側連絡配管GPが接続され、液冷媒の出入口(液側出入口LH)に液側連絡配管LPが接続されている。室内熱交換器25の詳細については後述する。
 室内ファン28は、外部から室内ユニット20内に流入し室内熱交換器25を通過してから室内ユニット20外へ流出する空気流(室内空気流AF;図3-図5、図7及び図8等参照)を生成する送風機である。室内ファン28は、運転中、図示しない制御部によって、駆動を制御され、回転数を適宜調整される。
 (1-3)ガス側連絡配管GP、液側連絡配管LP
 ガス側連絡配管GP及び液側連絡配管LPは、施工現場において設置される配管である。ガス側連絡配管GP及び液側連絡配管LPの配管径や配管長は、設計仕様や設置環境に応じて、個別に選択される。
 ガス側連絡配管GP(特許請求の範囲記載の「冷媒連絡配管」に相当)は、室外ユニット10及び室内ユニット20間で主としてガス冷媒を連絡するための配管である。ガス側連絡配管GPは、室内ユニット20側において第1ガス側連絡配管GP1と第2ガス側連絡配管GP2とに分岐している(図6及び図9等参照)。
 液側連絡配管LP(特許請求の範囲記載の「冷媒連絡配管」に相当)は、室外ユニット10及び室内ユニット20間で主として液冷媒を連絡するための配管である。液側連絡配管LPは、室内ユニット20側において第1液側連絡配管LP1と第2液側連絡配管LP2とに分岐している(図5及び図6等参照)。
 (2)空気調和装置100における冷媒の流れ
 空気調和装置100では、冷房運転(正サイクル運転)時又は暖房運転(逆サイクル運転)時には冷媒回路RCにおいて以下に示すような流れで冷媒が循環する。
 (2-1)冷房運転時
 冷房運転時には、四路切換弁12が図1の実線で示される状態となり、圧縮機11の吐出側が室外熱交換器13のガス側と連通し、且つ圧縮機11の吸入側が室内熱交換器25のガス側と連通する。
 係る状態で圧縮機11が駆動すると、低圧のガス冷媒は、圧縮機11で圧縮されて高圧のガス冷媒となる。高圧のガス冷媒は、四路切換弁12を経て室外熱交換器13に送られる。その後、高圧のガス冷媒は、室外熱交換器13において、室外空気流と熱交換を行うことで、凝縮して高圧の液冷媒(過冷却状態の液冷媒)となる。室外熱交換器13から流出した高圧の液冷媒は、膨張弁14に送られる。膨張弁14において減圧された低圧の冷媒は、液側連絡配管LPを流れ液側出入口LHから室内熱交換器25に流入する。室内熱交換器25に流入した冷媒は、室内空気流AFと熱交換を行うことで蒸発して低圧のガス冷媒(過熱状態のガス冷媒)となってガス側出入口GHを介して室内熱交換器25から流出する。室内熱交換器25から流出した冷媒は、ガス側連絡配管GPを流れて圧縮機11に吸入される。
 (2-2)暖房運転時
 暖房運転時には、四路切換弁12が図1の破線で示される状態となり、圧縮機11の吐出側が室内熱交換器25のガス側と連通し、且つ圧縮機11の吸入側が室外熱交換器13のガス側と連通する。
 係る状態で圧縮機11が駆動すると、低圧のガス冷媒は、圧縮機11で圧縮されて高圧のガス冷媒となり、四路切換弁12及びガス側連絡配管GPを経て、室内熱交換器25に送られる。室内熱交換器25に送られた高圧のガス冷媒は、ガス側出入口GHを介して室内熱交換器25に流入し、室内空気流AFと熱交換を行うことで凝縮して高圧の液冷媒(過冷却状態の液冷媒)となった後、液側出入口LH(特許請求の範囲記載の「出口」に相当)を介して室内熱交換器25から流出する。室内熱交換器25から流出した冷媒は、液側連絡配管LPを経由して膨張弁14に送られる。膨張弁14に送られた高圧のガス冷媒は、膨張弁14を通過する際に、膨張弁14の弁開度に応じて減圧される。膨張弁14を通過した低圧の冷媒は、室外熱交換器13に流入する。室外熱交換器13に流入した低圧の冷媒は、室外空気流と熱交換を行って蒸発して低圧のガス冷媒となり、四路切換弁12を経由して圧縮機11に吸入される。
 (3)室内ユニット20の詳細
 図2は、室内ユニット20の斜視図である。図3は、図2のIII-III線断面を示した模式図である。図4は、下面視において室内ユニット20の概略構成を示した模式図である。
 室内ユニット20は、いわゆる天井埋込型の空調室内機であり、対象空間の天井に設置されている。室内ユニット20は、外郭を構成するケーシング30を有している。
 ケーシング30は、室内熱交換器25や室内ファン28等の機器を収容している。ケーシング30は、図3に示されるように、対象空間の天井面CLに形成された開口を介して天井面CLと上階の床面又は屋根との間に形成される天井裏空間CSに設置されている。ケーシング30は、天板31a、側板31b、及び底板31c及び化粧パネル32を含んでいる。
 天板31aは、ケーシング30の天面部分を構成する部材であり、長辺と短辺とが交互に連続して形成された略8角形状を呈している。
 側板31bは、ケーシング30の側面部分を構成する部材であり、天板31aの長辺及び短弁に1対1に対応する面部分を含んでいる。側板31bには、ガス側連絡配管GP及び液側連絡配管LPをケーシング30内に挿入する(引き込む)ための開口(連絡配管挿入口30a)が形成されている(図4の1点鎖線参照)
 底板31cは、ケーシング30の底面部分を構成する部材であり、中央に略四角形の大開口311が形成されるとともに当該大開口311の周囲に複数の開口312が形成されている。底板31cは、下面側(対象空間側)に化粧パネル32を取り付けられている。
 化粧パネル32は、対象空間に露出する板状部材であり、平面視で略四角形状を呈している。化粧パネル32は、天井面CLの開口に嵌め込まれて設置されている。化粧パネル32には、室内空気流AFの吸込口33や吹出口34が形成されている。吸込口33は、化粧パネル32の中央部分において、平面視で底板31cの大開口311と重畳する位置に略四角形状に大きく形成されている。吹出口34は、吸込口33の周囲において吸込口33を囲むように形成されている。
 ケーシング30内の空間には、吸込口33を介してケーシング30内に流入した室内空気流AFを室内熱交換器25へと導くための吸込流路FP1と、室内熱交換器25を通過した室内空気流AFを吹出口34へと送る吹出流路FP2と、が形成されている。吹出流路FP2は、吸込流路FP1の外側において吸込流路FP1を囲むように配置されている。
 ケーシング30内においては、中央部分に室内ファン28が配置され、室内ファン28を囲むように室内熱交換器25が配置されている。室内ファン28は、平面視において、吸込口33と重畳している。室内熱交換器25は、平面視において、略四角形状を呈し、吸込口33を囲み且つ吹出口34に囲まれるように配置されている。
 室内ユニット20では、上述のような態様で吸込口33、吹出口34、吸込流路FP1、及び吹出流路FP2が形成されるとともに室内熱交換器25及び室内ファン28が配置されることで、運転中、室内ファン28によって生成された室内空気流AFが、吸込口33を介してケーシング30内に流入し、吸込流路FP1を介して室内熱交換器25へ導かれて室内熱交換器25内の冷媒と熱交換を行った後、吹出流路FP2を介して吹出口34へと送られ、吹出口34から対象空間へ吹き出されるようになっている。
 以下の説明においては、室内空気流AFが室内熱交換器25を通過する際に流れる方向を「空気流れ方向dr3」と称する。本実施形態において、空気流れ方向dr3は、水平方向に相当する。
 (4)室内熱交換器25の詳細
 (4-1)室内熱交換器25の構成
 図5は、伝熱管積層方向dr2から見た室内熱交換器25を概略的に示した模式図である。図6は、室内熱交換器25の斜視図である。図7は、熱交換面40の一部を示した斜視図である。図8は、図5のVIII-VIII線断面の模式図である。
 室内熱交換器25は、上述のように、ガス側出入口GHと液側出入口LHを介して冷媒を流入又は流出させる。暖房運転時(すなわち室内熱交換器25が凝縮器として使用される時)に、ガス側出入口GHは冷媒(主として過熱状態のガス冷媒)の入口として機能し、液側出入口LHは冷媒(主として過冷却状態の液冷媒)の出口として機能する。
 室内熱交換器25においては、暖房運転時に、過熱状態の冷媒が流れる領域である過熱域(図15及び図16に示すSH3、SH4)と、過冷却状態の冷媒が流れる領域である過冷却域(図15及び図16に示すSC1、SC2)とが形成される。
 室内熱交換器25には、複数(ここでは2つ)のガス側出入口GHと、複数(ここでは2つ)の液側出入口LHが形成されている。具体的に、室内熱交換器25には、ガス側出入口GHとして、第1ガス側出入口GH1(特許請求の範囲記載の「第1入口」に相当)及び第2ガス側出入口GH2(特許請求の範囲記載の「第2入口」に相当)が形成されている。また、室内熱交換器25には、液側出入口LHとして、第1液側出入口LH1(特許請求の範囲記載の「第1出口」に相当)及び第2液側出入口LH2(特許請求の範囲記載の「第2出口」に相当)が形成されている。第1ガス側出入口GH1及び第2ガス側出入口GH2は、第1液側出入口LH1及び第2液側出入口LH2よりも上方に位置している。
 室内熱交換器25は、室内空気流AFと熱交換を行うための熱交換面40を、室内空気流AFの風上側及び風下側に有している。室内熱交換器25は、各熱交換面40において、冷媒が流れる複数(ここでは19本)の伝熱管45(図7及び図8等参照)と、冷媒と室内空気流AFとの熱交換を促進させる複数の伝熱フィン48(図7及び図8等参照)と、を有する。
 各伝熱管45は、所定の伝熱管延伸方向dr1(ここでは水平方向)に延びるように配置され、所定の伝熱管積層方向dr2(ここでは鉛直方向)に間隔を置いて積層されている。伝熱管延伸方向dr1は、伝熱管積層方向dr2及び空気流れ方向dr3に交差する方向であり、平面視において、当該伝熱管45が含まれる熱交換面40が延びる方向に対応している。伝熱管積層方向dr2は、伝熱管延伸方向dr1及び空気流れ方向dr3に交差する方向である。本実施形態において、室内熱交換器25は熱交換面40を風上側及び風下側に有しているため、室内熱交換器25においては、空気流れ方向dr3に沿って2列に並ぶ伝熱管45が伝熱管積層方向dr2に複数段に積層されている。なお、熱交換面40に含まれる伝熱管45の本数、列数、段数については、設計仕様に応じて適宜変更が可能である。
 伝熱管45は、断面が扁平形状を呈するように構成された、アルミニウム製若しくはアルミニウム合金製の扁平管である(すなわち、伝熱管45は、特許請求の範囲記載の「扁平管」に相当する)。より詳細には、伝熱管45は、内部に、伝熱管延伸方向dr1に沿って延びる複数の冷媒流路(伝熱管流路451)を形成された扁平多穴管である(図8参照)。複数の伝熱管流路451は、伝熱管45内において、空気流れ方向dr3に沿って並んでいる。
 伝熱フィン48は、伝熱管45と室内空気流AFとの伝熱面積を増大させる平板状の部材である。伝熱フィン48は、アルミニウム製もしくはアルミニウム合金製である。伝熱フィン48は、長手方向が、伝熱管45に交差するように伝熱管積層方向dr2に沿って延びている。伝熱フィン48には、伝熱管積層方向dr2に沿って複数のスリット48aが間隔を空けて並べて形成されており、各スリット48aに伝熱管45が挿入されている(図8参照)。
 各伝熱フィン48は、熱交換面40において、他の伝熱フィン48とともに伝熱管延伸方向dr1に沿って間隔を空けて並べられている。本実施形態において、室内熱交換器25は熱交換面40を風上側及び風下側に有しているため、室内熱交換器25においては、伝熱管積層方向dr2に沿って延びる伝熱フィン48が、空気流れ方向dr3に沿って2列に並べられ、伝熱管延伸方向dr1に沿って多数並べられている。なお、熱交換面40に含まれる伝熱フィン48の数については、伝熱管45の伝熱管延伸方向dr1の長さ寸法に応じて選択され、設計仕様に応じて適宜選択、変更が可能である。
 図9は、室内熱交換器25の構成態様を概略的に示した模式図である。室内熱交換器25は、主として、風上側に配置される熱交換面40を含む風上熱交換部50と、風下側に配置される熱交換面40を含む風下熱交換部60と、風上熱交換部50及び風下熱交換部60を接続する接続配管70と、を有している。空気流れ方向dr3から見て、風上熱交換部50は風下熱交換部60よりも風上側に配置されている(すなわち風下熱交換部60は風上熱交換部50よりも風下側に配置されている)。
 (4-1-1)風上熱交換部50
 図10は、風上熱交換部50の構成態様を概略的に示した模式図である。風上熱交換部50は、主として、熱交換面40としての風上第1熱交換面51、風上第2熱交換面52、風上第3熱交換面53及び風上第4熱交換面54(以下、これらを併せて「風上熱交換面55」と称する)と、風上第1ヘッダ56と、風上第2ヘッダ57と、折返し配管58と、を有している。なお、設置状態における風上熱交換部50を通過する室内空気流AFに関する風速分布においては、上段側よりも下段側のほうが風速が小さい。具体的には、風上熱交換部50のうち1点鎖線L1(図10参照)より下方の部分を通過する室内空気流AFについては、1点鎖線L1より上方の部分を通過する室内空気流AFよりも風速が小さい。
 (4-1-1-1)風上熱交換面55
 風上第1熱交換面51(特許請求の範囲記載の「第1部」又は「第3部」に相当)は、風上熱交換面55のうち、冷房運転時に冷媒流れの最下流に位置し、暖房運転時に冷媒流れの最上流に位置する。風上第1熱交換面51は、風上熱交換面55のうち、伝熱管積層方向dr2から見て(ここでは平面視で)、末端において風上第1ヘッダ56を接続されており、主として左から右に向かって延びている。風上第1熱交換面51は、風上第2熱交換面52及び風上第3熱交換面53よりも連絡配管挿入口30aの近傍に位置している。より詳細には、風上第1熱交換面51は、その末端がその先端よりも連絡配管挿入口30aの近傍に位置している。
 風上第2熱交換面52(特許請求の範囲記載の「第2部」に相当)は、風上熱交換面55のうち、冷房運転時に風上第1熱交換面51の冷媒流れの上流側に位置し、暖房運転時に風上第1熱交換面51の冷媒流れの下流側に位置する。風上第2熱交換面52は、伝熱管積層方向dr2から見て、その末端が湾曲しながら風上第1熱交換面51の先端に接続され、主として後から前に向かって延びている。
 風上第3熱交換面53は、風上熱交換面55のうち、冷房運転時に風上第2熱交換面52の冷媒流れの上流側に位置し、暖房運転時に風上第2熱交換面52の冷媒流れの下流側に位置する。風上第3熱交換面53は、伝熱管積層方向dr2から見て、その末端が湾曲しながら風上第2熱交換面52の先端に接続され、主として右から左に向かって延びている。
 風上第4熱交換面54(特許請求の範囲記載の「第4部」に相当)は、風上熱交換面55のうち、冷房運転時に風上第3熱交換面53の冷媒流れの上流側に位置し、暖房運転時に風上第3熱交換面53の冷媒流れの下流側に位置する。風上第4熱交換面54は、伝熱管積層方向dr2から見て、その末端が湾曲しながら風上第3熱交換面53の先端に接続され、主として前から後に向かって延びている。風上第4熱交換面54は、その先端において風上第2ヘッダ57を接続されている。風上第4熱交換面54は、風上第2熱交換面52及び風上第3熱交換面53よりも連絡配管挿入口30aの近傍に位置している。より詳細には、風上第4熱交換面54は、その先端がその末端よりも連絡配管挿入口30aの近傍に位置している。
 このような風上第1熱交換面51、風上第2熱交換面52、風上第3熱交換面53及び風上第4熱交換面54を含むことで、風上熱交換部50の風上熱交換面55は、伝熱管積層方向dr2から見て、3箇所以上で屈曲若しくは湾曲し略四角形状を呈している。すなわち、風上熱交換部50は、4つの風上熱交換面55を有している。
 (4-1-1-2)風上第1ヘッダ56
 風上第1ヘッダ56(特許請求の範囲記載の「第1ヘッダ」に相当)は、冷媒を各伝熱管45に分流させる分流ヘッダ、各伝熱管45から流出する冷媒を合流させる合流ヘッダ、又は各伝熱管45から流出する冷媒を他の伝熱管45に折り返すための折返しヘッダ等として機能するヘッダ集合管である。風上第1ヘッダ56は、設置状態において長手方向が鉛直方向(上下方向)である。
 風上第1ヘッダ56は、筒状に構成され、内部において空間(以下、「風上第1ヘッダ空間Sa1」と称する)を形成している(風上第1ヘッダ空間Sa1は、特許請求の範囲記載の「第1ヘッダ空間」に相当する)。風上第1ヘッダ56は、風上第1熱交換面51の末端に接続されている。風上第1ヘッダ56は、風上第1熱交換面51に含まれる各伝熱管45の一端と接続され、これらの伝熱管45と風上第1ヘッダ空間Sa1とを連通させている。
 風上第1ヘッダ56内には複数(ここでは2つ)の水平仕切板561が配置されており、風上第1ヘッダ空間Sa1は伝熱管積層方向dr2に複数(ここでは3つ)の空間(具体的には風上第1空間A1、風上第2空間A2及び風上第3空間A3)に仕切られている。換言すると、風上第1ヘッダ56内には、風上第1空間A1、風上第2空間A2及び風上第3空間A3が上下方向に並ぶように形成されている。
 風上第1空間A1は、最も上段に配置される風上第1ヘッダ空間Sa1である。風上第2空間A2は、中段(風上第1空間A1の下段であって風上第3空間A3の上段)に配置される風上第1ヘッダ空間Sa1である。風上第3空間A3は、最も下段に配置される風上第1ヘッダ空間Sa1である。
 風上第1ヘッダ56には、第1ガス側出入口GH1が形成されている。第1ガス側出入口GH1は、風上第1空間A1に連通している。第1ガス側出入口GH1には、第1ガス側連絡配管GP1が接続されている。
 風上第1ヘッダ56には、第1液側出入口LH1及び第2液側出入口LH2が形成されている。第1液側出入口LH1は、風上第2空間A2に連通している。第1液側出入口LH1には、第1液側連絡配管LP1が接続されている。第2液側出入口LH2は、風上第3空間A3に連通している。第2液側出入口LH2には、第2液側連絡配管LP2が接続されている。なお、液側出入口LHに連通する風上第3空間A3は、特許請求の範囲記載の「風上出口側空間」に相当する。
 (4-1-1-3)風上第2ヘッダ57
 風上第2ヘッダ57(特許請求の範囲記載の「第2ヘッダ」に相当)は、冷媒を各伝熱管45に分流させる分流ヘッダ、各伝熱管45から流出する冷媒を合流させる合流ヘッダ、又は各伝熱管45から流出する冷媒を他の伝熱管45に折り返すための折返しヘッダ等として機能するヘッダ集合管である。風上第2ヘッダ57は、設置状態において長手方向が鉛直方向(上下方向)である。
 風上第2ヘッダ57は、筒状に構成され、内部において空間(以下、「風上第2ヘッダ空間Sa2」と称する)を形成している(風上第2ヘッダ空間Sa2は、特許請求の範囲記載の「第2ヘッダ空間」に相当する)。風上第2ヘッダ57は、風上第4熱交換面54の先端に接続されている。風上第2ヘッダ57は、風上第4熱交換面54に含まれる各伝熱管45の一端と接続され、これらの伝熱管45と風上第2ヘッダ空間Sa2とを連通させている。
 風上第2ヘッダ57内には複数(ここでは2つ)の水平仕切板571が配置されており、風上第2ヘッダ空間Sa2は伝熱管積層方向dr2に複数(ここでは3つ)の空間(具体的には風上第4空間A4、風上第5空間A5及び風上第6空間A6)に仕切られている。換言すると、風上第2ヘッダ57内には、風上第4空間A4、風上第5空間A5及び風上第6空間A6が上下方向に並ぶように形成されている。
 風上第4空間A4は、最も上段に配置される風上第2ヘッダ空間Sa2である。風上第4空間A4は、伝熱管45を介して風上第1空間A1と連通している。
 風上第5空間A5は、中段(風上第4空間A4の下段であって風上第6空間A6の上段)に配置される風上第2ヘッダ空間Sa2である。風上第5空間A5は、伝熱管45を介して風上第2空間A2と連通している。風上第5空間A5は、折返し配管58を介して風上第4空間A4と連通している。
 風上第6空間A6は、最も下段に配置される風上第2ヘッダ空間Sa2である。風上第6空間A6は、伝熱管45を介して風上第3空間A3と連通している。
 風上第2ヘッダ57には、折返し配管58の一端を接続するための第1接続孔H1が形成されている。第1接続孔H1は、風上第4空間A4に連通している。
 また、風上第2ヘッダ57には、折返し配管58の他端を接続するための第2接続孔H2が形成されている。第2接続孔H2は、風上第5空間A5に連通している。
 また、風上第2ヘッダ57には、接続配管70の一端を接続するための第3接続孔H3が形成されている。第3接続孔H3は、風上第6空間A6に連通している。第3接続孔H3には、風上第6空間A6と風下第2ヘッダ空間Sb2(後述)が連通するように、接続配管70の一端が接続されている。なお、接続配管70に連通する風上第6空間A6は、特許請求の範囲記載の「風上上流側空間」に相当する。
 (4-1-1-4)折返し配管58
 折返し配管58(特許請求の範囲記載の「連通路形成部」に相当)は、伝熱管45を通過して風上第2ヘッダ57のいずれかの風上第2ヘッダ空間Sa2(ここでは風上第4空間A4又は風上第5空間A5)に流入した冷媒を折り返して他の風上第2ヘッダ空間Sa2(ここでは風上第5空間A5又は風上第4空間A4)へ流入させる折返し流路JP(特許請求の範囲記載の「連通路」に相当)を形成するための配管である。本実施形態において、折返し配管58は、一端が風上第4空間A4に連通するように風上第2ヘッダ57に接続され、他端が風上第5空間A5に連通するように風上第2ヘッダ57に接続されている。すなわち、折返し流路JPは、風上第4空間A4及び風上第5空間A5を連通させている。
 (4-1-2)風下熱交換部60
 図11は、風下熱交換部60の構成態様を概略的に示した模式図である。風下熱交換部60は、主として、熱交換面40としての風下第1熱交換面61、風下第2熱交換面62、風下第3熱交換面63及び風下第4熱交換面64(以下、これらを併せて「風下熱交換面65」と称する)と、風下第1ヘッダ66と、風下第2ヘッダ67と、を有している。なお、設置状態における風下熱交換部60を通過する室内空気流AFに関する風速分布においては、上段側よりも下段側のほうが風速が小さい。具体的には、風下熱交換部60のうち1点鎖線L1(図12参照)より下方の部分を通過する室内空気流AFについては、1点鎖線L1より上方の部分を通過する室内空気流AFよりも風速が小さい。
 (4-1-2-1)風下熱交換面65
 風下第1熱交換面61(特許請求の範囲記載の「第3部」に相当)は、風下熱交換面65のうち、冷房運転時に冷媒流れの最下流に位置し、暖房運転時に冷媒流れの最上流に位置する。風下第1熱交換面61は、伝熱管積層方向dr2から見て(ここでは平面視で)、末端において風下第1ヘッダ66を接続されており、主として後から前に向かって延びている。風下第1熱交換面61は、風上第4熱交換面54と空気流れ方向dr3から見た面積が略同一であり、風上第4熱交換面54の空気流れ方向dr3の風下側に隣接している。風下第1熱交換面61は、風下第2熱交換面62及び風下第3熱交換面63よりも連絡配管挿入口30aの近傍に位置している。より詳細には、風下第1熱交換面61は、その末端がその先端よりも連絡配管挿入口30aの近傍に位置している。
 風下第2熱交換面62は、風下熱交換面65のうち、冷房運転時に風下第1熱交換面61の冷媒流れの上流側に位置し、暖房運転時に風下第1熱交換面61の冷媒流れの下流側に位置する。風下第2熱交換面62は、伝熱管積層方向dr2から見て、その末端が湾曲しながら風下第1熱交換面61の先端に接続され、主として左から右に向かって延びている。風下第2熱交換面62は、風上第3熱交換面53と空気流れ方向dr3から見た面積が略同一であり、風上第3熱交換面53の空気流れ方向dr3の風下側に隣接している。
 風下第3熱交換面63(特許請求の範囲記載の「第2部」に相当)は、風下熱交換面65のうち、冷房運転時に風下第2熱交換面62の冷媒流れの上流側に位置し、暖房運転時に風下第2熱交換面62の冷媒流れの下流側に位置する。風下第3熱交換面63は、伝熱管積層方向dr2から見て、その末端が湾曲しながら風下第2熱交換面62の先端に接続され、主として前から後に向かって延びている。風下第3熱交換面63は、風上第2熱交換面52と空気流れ方向dr3から見た面積が略同一であり、風上第2熱交換面52の空気流れ方向dr3の風下側に隣接している。
 風下第4熱交換面64(特許請求の範囲記載の「第1部」及び「第4部」に相当)は、風下熱交換面65のうち、冷房運転時に風下第3熱交換面63の冷媒流れの上流側に位置し、暖房運転時に風下第3熱交換面63の冷媒流れの下流側に位置する。風下第4熱交換面64は、伝熱管積層方向dr2から見て、その末端が湾曲しながら風下第3熱交換面63の先端に接続され、主として右から左に向かって延びている。風下第4熱交換面64は、その先端において風下第2ヘッダ67を接続されている。風下第4熱交換面64は、風上第1熱交換面51と空気流れ方向dr3から見た面積が略同一であり、風上第1熱交換面51の空気流れ方向dr3の風下側に隣接している。風下第4熱交換面64は、風下第2熱交換面62及び風下第3熱交換面63よりも連絡配管挿入口30aの近傍に位置している。より詳細には、風下第4熱交換面64は、その先端がその末端よりも連絡配管挿入口30aの近傍に位置している。
 このような風下第1熱交換面61、風下第2熱交換面62、風下第3熱交換面63及び風下第4熱交換面64を含むことで、風下熱交換部60の風下熱交換面65は、伝熱管積層方向dr2から見て、3箇所以上で屈曲若しくは湾曲し略四角形状を呈している。すなわち、風下熱交換部60は、4つの風下熱交換面65を有している。
 (4-1-2-2)風下第1ヘッダ66
 風下第1ヘッダ66(特許請求の範囲記載の「第1ヘッダ」に相当)は、冷媒を各伝熱管45に分流させる分流ヘッダ、各伝熱管45から流出する冷媒を合流させる合流ヘッダ、又は各伝熱管45から流出する冷媒を他の伝熱管45に折り返すための折返しヘッダ等として機能するヘッダ集合管である。風下第1ヘッダ66は、設置状態において長手方向が鉛直方向(上下方向)である。
 風下第1ヘッダ66は、筒状に構成され、内部において空間(以下、「風下第1ヘッダ空間Sb1」と称する)を形成している(風下第1ヘッダ空間Sb1は、特許請求の範囲記載の「第1ヘッダ空間」に相当する)。風下第1ヘッダ空間Sb1は、冷房運転時には風下熱交換部60において最も冷媒流れの下流側に位置し、暖房運転時には風下熱交換部60において最も冷媒流れの上流側に位置する。風下第1ヘッダ66は、風下第1熱交換面61の末端に接続されている。風下第1ヘッダ66は、風下第1熱交換面61に含まれる各伝熱管45の一端と接続され、これらの伝熱管45と風下第1ヘッダ空間Sb1とを連通させている。風下第1ヘッダ66は、風上第2ヘッダ57の空気流れ方向dr3の風下側に隣接している。
 風下第1ヘッダ66には、第2ガス側出入口GH2が形成されている。第2ガス側出入口GH2は、風下第1ヘッダ空間Sb1に連通している。第2ガス側出入口GH2には、第2ガス側連絡配管GP2が接続されている。
 (4-1-2-3)風下第2ヘッダ67
 風下第2ヘッダ67(特許請求の範囲記載の「第2ヘッダ」に相当)は、冷媒を各伝熱管45に分流させる分流ヘッダ、各伝熱管45から流出する冷媒を合流させる合流ヘッダ、又は各伝熱管45から流出する冷媒を他の伝熱管45に折り返すための折返しヘッダ等として機能するヘッダ集合管である。風下第2ヘッダ67は、設置状態において長手方向が鉛直方向(上下方向)である。
 風下第2ヘッダ67は、筒状に構成され、内部において空間(以下、「風下第2ヘッダ空間Sb2」と称する)を形成している(風下第2ヘッダ空間Sb2は、特許請求の範囲記載の「第2ヘッダ空間」に相当する)。風下第2ヘッダ空間Sb2は、冷房運転時には風下熱交換部60において最も冷媒流れの上流側に位置し、暖房運転時には風下熱交換部60において最も冷媒流れの下流側に位置する。
 風下第2ヘッダ67は、風下第4熱交換面64の先端に接続されている。風下第2ヘッダ67は、風下第4熱交換面64に含まれる各伝熱管45の一端と接続され、これらの伝熱管45と風下第2ヘッダ空間Sb2とを連通させている。風下第2ヘッダ67は、風上第1ヘッダ56の空気流れ方向dr3の風下側に隣接している。
 また、風下第2ヘッダ67には、接続配管70の他端を接続するための第4接続孔H4が形成されている。第4接続孔H4は、風下第2ヘッダ空間Sb2に連通している。第4接続孔H4には、風下第2ヘッダ空間Sb2及び風上第6空間A6が連通するように、接続配管70の他端が接続されている。なお、接続配管70に連通する風下第2ヘッダ空間Sb2は、特許請求の範囲記載の「風下下流側空間」に相当する。
 (4-1-3)接続配管70
 接続配管70は、風上熱交換部50及び風下熱交換部60間で接続流路RPを形成する冷媒配管である。接続流路RPは、風下第2ヘッダ空間Sb2と、風上第6空間A6と、を連通させる冷媒の流路である。
 接続配管70によって接続流路RPが形成されることで、冷房運転時には風上第6空間A6から風下第2ヘッダ空間Sb2へ向かって冷媒が流れ、暖房運転時には風下第2ヘッダ空間Sb2から風上第6空間A6へ向かって冷媒が流れる。
 (4-2)室内熱交換器25における冷媒のパス
 図12は、室内熱交換器25において形成される冷媒のパスを概略的に示した模式図である。なお、ここでの「パス」は、室内熱交換器25に含まれる各要素が連通することで形成される冷媒の流路である。
 本実施形態において、室内熱交換器25では、複数のパスが形成されている。具体的に、室内熱交換器25では、第1パスP1、第2パスP2、第3パスP3及び第4パスP4が形成される。すなわち、室内熱交換器25では、冷媒の流路が4つに分岐している。
 (4-2-1)第1パスP1
 第1パスP1は、風上熱交換部50において形成される。本実施形態では、第1パスP1は、風上熱交換部50の1点鎖線L1(図9、図10及び図12等)より上方において形成される。第1パスP1は、第1ガス側出入口GH1が風上第1空間A1に連通し、風上第1空間A1が伝熱管流路451(伝熱管45)を介して風上第4空間A4に連通し、風上第4空間A4が第1接続孔H1と連通することで形成される冷媒の流路である。換言すると、第1パスP1は、第1ガス側出入口GH1、風上第1ヘッダ56内の風上第1空間A1、伝熱管45内の伝熱管流路451、風上第2ヘッダ57内の風上第4空間A4、及び第1接続孔H1を含む冷媒の流路である。
 なお、図10及び図12に示されるように、1点鎖線L1は、上から数えて12本目の伝熱管45と13本目の伝熱管45の間に位置している。すなわち、本実施形態において、第1パスP1は、上から数えて12本の伝熱管45の伝熱管流路451を含む。
 (4-2-2)第2パスP2
 第2パスP2は、風上熱交換部50において形成される。本実施形態では、第2パスP2は、風上熱交換部50の1点鎖線L1より下方であって1点鎖線L2(図9、図10及び図12等)より上方において形成される。第2パスP2は、第2接続孔H2が風上第5空間A5に連通し、風上第5空間A5が伝熱管流路451(伝熱管45)を介して風上第2空間A2に連通し、風上第2空間A2が第1液側出入口LH1に連通することで形成される冷媒の流路である。すなわち、第2パスP2は、第2接続孔H2、風上第2ヘッダ57内の風上第5空間A5、伝熱管45内の伝熱管流路451、風上第1ヘッダ56内の風上第2空間A2、及び第1液側出入口LH1を含む冷媒の流路である。
 なお、第2パスP2は、折返し流路JP(折返し配管58)を介して第1パスP1に連通している。このため、第2パスP2を第1パスP1と併せて1本のパスと解釈することも可能である。
 また、図10及び図12に示されるように、1点鎖線L2は、上から数えて16本目の伝熱管45と17本目の伝熱管45の間に位置している。すなわち、本実施形態において、第2パスP2は、上から数えて13本目から16本目の伝熱管45(換言すると4本の伝熱管45)の伝熱管流路451を含む。
 (4-2-3)第3パスP3
 第3パスP3は、風上熱交換部50において形成される。本実施形態では、第3パスP3は、風上熱交換部50の1点鎖線L2より下方において形成される。第3パスP3は、第3接続孔H3が風上第6空間A6に連通し、風上第6空間A6が伝熱管流路451(伝熱管45)を介して風上第3空間A3に連通し、風上第3空間A3が第2液側出入口LH2に連通することで形成される冷媒の流路である。すなわち、第3パスP3は、第3接続孔H3、風上第2ヘッダ57内の風上第6空間A6、伝熱管45内の伝熱管流路451、風上第1ヘッダ56内の風上第3空間A3、及び第2液側出入口LH2を含む冷媒の流路である。第3パスP3は、接続流路RP(接続配管70)を介して第4パスP4に連通している。
 本実施形態において、第3パスP3は、上から数えて17本目から19本目の伝熱管45(換言すると下から数えて3本の伝熱管45)の伝熱管流路451を含んでいる。
 (4-2-4)第4パスP4
 第4パスP4は、風下熱交換部60において形成される。第4パスP4は、第2ガス側出入口GH2が風下第1ヘッダ空間Sb1に連通し、風下第1ヘッダ空間Sb1が伝熱管流路451(伝熱管45)を介して風下第2ヘッダ空間Sb2に連通し、風下第2ヘッダ空間Sb2が第4接続孔H4に連通することで形成される冷媒の流路である。すなわち、第4パスP4は、第2ガス側出入口GH2、風下第1ヘッダ66内の風下第1ヘッダ空間Sb1、伝熱管45内の伝熱管流路451、風下第2ヘッダ67内の風下第2ヘッダ空間Sb2、及び第4接続孔H4を含む冷媒の流路である。第4パスP4は、接続流路RP(接続配管70)を介して第3パスP3に連通している。
 (4-3)室内熱交換器25における冷媒の流れ
 (4-3-1)冷房運転時
 図13は、冷房運転時の風上熱交換部50における冷媒の流れを概略的に示した模式図である。図14は、冷房運転時の風下熱交換部60における冷媒の流れを概略的に示した模式図である。なお、図13及び図14において破線矢印は冷媒の流れ方向を示している。
 冷房運転時には、第1液側連絡配管LP1を流れた冷媒が第1液側出入口LH1を介して風上熱交換部50の第2パスP2に流入する。第2パスP2に流入した冷媒は、室内空気流AFと熱交換し加熱されながら第2パスP2を通過し、折返し流路JP(折返し配管58)を介して第1パスP1に流入する。第1パスP1に流入した冷媒は、室内空気流AFと熱交換し加熱されながら第1パスP1を通過し、第1ガス側出入口GH1を介して第1ガス側連絡配管GP1へ流出する。
 また、冷房運転時には、第2液側連絡配管LP2を流れた冷媒が第2液側出入口LH2を介して風上熱交換部50の第3パスP3に流入する。第3パスP3に流入した冷媒は、室内空気流AFと熱交換し加熱されながら第3パスP3を通過し、接続流路RP(接続配管70)を介して風下熱交換部60の第4パスP4に流入する。第4パスP4に流入した冷媒は、室内空気流AFと熱交換し加熱されながら第4パスP4を通過し、第2ガス側出入口GH2を介して第2ガス側連絡配管GP2へ流出する。
 このように冷房運転時には、室内熱交換器25では、第2パスP2に流入し第1パスP1を経て流出する冷媒の流れ(すなわち第1パスP1及び第2パスP2によって形成される冷媒の流れ)と、第3パスP3に流入し第4パスP4を経て流出する冷媒の流れ(すなわち第3パスP3及び第4パスP4によって形成される冷媒の流れ)と、が生じる。
 第1パスP1及び第2パスP2によって形成される冷媒の流れでは、第1液側出入口LH1、風上第2空間A2、第2パスP2内の伝熱管流路451(伝熱管45)、風上第5空間A5、折返し流路JP(折返し配管58)、風上第4空間A4、第1パスP1内の伝熱管流路451(伝熱管45)、風上第1空間A1、第1ガス側出入口GH1、の順に冷媒が流れることとなる。
 第3パスP3及び第4パスP4によって形成される冷媒の流れでは、第2液側出入口LH2、風上第3空間A3、第3パスP3内の伝熱管流路451(伝熱管45)、風上第6空間A6、接続流路RP(接続配管70)、風下第2ヘッダ空間Sb2、第4パスP4内の伝熱管流路451(伝熱管45)、風下第1ヘッダ空間Sb1、第2ガス側出入口GH2、の順に冷媒が流れることとなる。
 冷房運転時には、室内熱交換器25では、第1パスP1内の伝熱管流路451(特に、風上第1熱交換面51の第1パスP1に含まれる伝熱管流路451)において過熱状態の冷媒が流れる領域(過熱域SH1)が形成される。また、第4パスP4内の伝熱管流路451(特に、風下第1熱交換面61の第4パスP4に含まれる伝熱管流路451)において過熱状態の冷媒が流れる領域(過熱域SH2)が形成されることとなる。
 (4-3-2)暖房運転時
 図15は、暖房運転時の風上熱交換部50における冷媒の流れを概略的に示した模式図である。図16は、暖房運転時の風下熱交換部60における冷媒の流れを概略的に示した模式図である。なお、図15及び図16において破線矢印は冷媒の流れ方向を示している。
 暖房運転時には、第1ガス側連絡配管GP1を流れた過熱状態のガス冷媒が第1ガス側出入口GH1を介して風上熱交換部50の第1パスP1に流入する。第1パスP1に流入した冷媒は、室内空気流AFと熱交換し冷却されながら第1パスP1を通過し、折返し流路JP(折返し配管58)を介して第2パスP2に流入する。第2パスP2に流入した冷媒は、室内空気流AFと熱交換し過冷却状態となりながら第2パスP2を通過し、第1液側出入口LH1を介して第1液側連絡配管LP1へ流出する。
 また、暖房運転時には、第2ガス側連絡配管GP2を流れた過熱状態のガス冷媒が第2ガス側出入口GH2を介して風下熱交換部60の第4パスP4に流入する。第4パスP4に流入した冷媒は、室内空気流AFと熱交換し冷却されながら第4パスP4を通過し、接続流路RP(接続配管70)を介して風上熱交換部50の第3パスP3に流入する。第3パスP3に流入した冷媒は、室内空気流AFと熱交換し過冷却状態となりながら第3パスP3を通過し、第2液側出入口LH2を介して第2液側連絡配管LP2へ流出する。
 このように暖房運転時には、室内熱交換器25では、第1パスP1に流入し第2パスP2を経て流出する冷媒の流れ(すなわち第1パスP1及び第2パスP2によって形成される冷媒の流れ)と、第4パスP4に流入し第3パスP3を経て流出する冷媒の流れ(すなわち第3パスP3及び第4パスP4によって形成される冷媒の流れ)と、が生じる。
 第1パスP1及び第2パスP2によって形成される冷媒の流れでは、第1ガス側出入口GH1、風上第1空間A1、第1パスP1内の伝熱管流路451(伝熱管45)、風上第4空間A4、折返し流路JP(折返し配管58)、風上第5空間A5、第2パスP2内の伝熱管流路451(伝熱管45)、風上第2空間A2、第1液側出入口LH1、の順に冷媒が流れることとなる。
 第3パスP3及び第4パスP4によって形成される冷媒の流れでは、第2ガス側出入口GH2、風下第1ヘッダ空間Sb1、第4パスP4内の伝熱管流路451(伝熱管45)、風下第2ヘッダ空間Sb2、接続流路RP(接続配管70)、風上第6空間A6、第3パスP3内の伝熱管流路451(伝熱管45)、風上第3空間A3、第2液側出入口LH2、の順に冷媒が流れることとなる。
 また、暖房運転時には、室内熱交換器25では、第1パスP1内の伝熱管流路451(特に、風上第1熱交換面51の第1パスP1に含まれる伝熱管流路451)において過熱状態の冷媒が流れる領域(過熱域SH3)が形成される。また、第4パスP4内の伝熱管流路451(特に、風下第1熱交換面61の第4パスP4に含まれる伝熱管流路451)において過熱状態の冷媒が流れる領域(過熱域SH4)が形成されることとなる。なお、図15及び図16に示されるように、風上熱交換部50の過熱域SH3を流れる冷媒と、風下熱交換部60の過熱域SH4を流れる冷媒とは、流れる方向が対向している(すなわち対向流である)。
 また、暖房運転時には、室内熱交換器25では、第2パスP2内の伝熱管流路451(特に、風上第1熱交換面51の第2パスP2に含まれる伝熱管流路451)において、過冷却状態の冷媒が流れる領域(過冷却域SC1)が形成されている。また、第3パスP3内の伝熱管流路451(特に、風上第1熱交換面51の第3パスP3に含まれる伝熱管流路451)において過冷却状態の冷媒が流れる領域(過冷却域SC2)が形成されることとなる。図15及び図16に示されるように、風上熱交換部50の過冷却域SC1及びSC2と、風下熱交換部60の過熱域SH4とは、空気流れ方向dr3において完全に若しくは大部分において重畳していない。
 なお、風上熱交換面55及び風下熱交換面65のうち、暖房運転時に、過冷却域に該当しない領域は、メイン熱交換領域である。メイン熱交換領域は、過冷却域と比較して、冷媒と室内空気流AFとの熱交換量が大きい。風上熱交換面55及び風下熱交換面65において、メイン熱交換領域は過冷却域よりも伝熱面積が大きい。
 (4-4)室内熱交換器25による機能
 室内熱交換器25では、風上熱交換面55及び風下熱交換面65の空気流れ方向dr3から見た面積が略同一に構成されている。また、風上熱交換部50及び風下熱交換部60に流れる冷媒の流量を調整するための流量調整弁を個別に有していない。そのうえで、暖房運転時に、風下熱交換部60を通過した冷媒に関して過冷却域SC2が風上熱交換部50に形成されている。その結果、風上熱交換部50におけるメイン熱交換領域が小さくなっている。これにより、風上熱交換部50の冷媒流量と、風下熱交換部60における冷媒流量と、をより近づけることが可能となっている。
 すなわち、風上熱交換部50におけるメイン熱交換領域が大きくなるほど、風上熱交換部50における冷媒と室内空気流AFとの熱交換量が大きくなり、これに関連して風下熱交換部60において冷媒と室内空気流AFとの温度差が小さくなって熱交換量が低減することとなる。その結果、風上熱交換部50の冷媒流量と、風下熱交換部60における冷媒流量と、の差分値が大きくなる。
 これに対し、上記実施形態に係る室内熱交換器25では、風上熱交換部50において、風下熱交換部60を流れる冷媒に関して過冷却域(SC2)が形成されることでメイン熱交換領域が小さくなっている。これにより、風上熱交換部50における冷媒と室内空気流AFとの熱交換量が小さくなり、これに関連して風下熱交換部60において冷媒と室内空気流AFとの温度差が小さくなることが抑制され、熱交換量を向上させうる。その結果、風上熱交換部50の冷媒流量と、風下熱交換部60における冷媒流量と、の差分値が増大することが抑制され、両者をより近づけることが可能となっている。このように室内熱交換器25は、暖房運転時における風上熱交換部50及び風下熱交換部60の流量を近づける機能を有している。
 また、暖房運転時に、風下熱交換部60を通過した冷媒に関して過冷却域SC2が風上熱交換部50に形成されることで、風下熱交換面65をすべてメイン熱交換領域として機能させうる。これにより、風下熱交換面65における冷媒と室内空気流AFとの熱交換量を増大させることが可能となり、室内熱交換器25の性能向上に寄与しうる。このように室内熱交換器25は、暖房運転時に風下熱交換部60のメイン熱交換領域を大きく形成しうることと関連して、風下熱交換面65における冷媒と室内空気流AFとの熱交換量を増大させる機能を有している。
 (5)特徴
 (5-1)
 上記実施形態に係る室内熱交換器25では、暖房運転時(すなわち第1ガス側出入口GH1及び第2ガス側出入口GH2から流入した冷媒が室内空気流AFと熱交換して過冷却状態の液冷媒として第1液側出入口LH1及び第2液側出入口LH2から流出する時)には、風上熱交換部50において、過冷却状態の液冷媒が流れる領域である過冷却域(SC1、SC2)が形成されるとともに、「風上出口側空間」(ここでは風上第6空間A6)、及び「風上上流側空間」(ここでは風上第3空間A3)が形成され、風上熱交換部50及び風下熱交換部60間で形成される接続流路RPにより「風下下流側空間」(ここでは風下第2ヘッダ空間Sb2)と「風上上流側空間」(風上第3空間A3)とが連通するようになっている。
 これにより、冷媒の凝縮器として用いられる場合に、風下熱交換部60を通過した冷媒が風上熱交換部50に送られた後に第2液側出入口LH2から排出されることとなる。その結果、過冷却域(SC1、SC2)を風上側の風上熱交換部50に集中的に配置することが可能となっている。このため、風上側の過熱域と、風下側の過冷却域と、が空気流れ方向dr3において重畳又は近接することが回避されている。
 具体的に、上記実施形態では、暖房運転時に、風下熱交換部60を流れる冷媒に関して、従来において風下熱交換部60に形成されていた過冷却域が過冷却域SC2として風上熱交換部50に形成されており、風上側の過熱域SH3と、風下側の過冷却域と、が空気流れ方向dr3において重畳又は近接しないように構成されている。このことから、風上側の過熱域(SH3、SH4)を通過した室内空気流AFが、過冷却域(SC1、SC2)を通過することが抑制されている。よって、過冷却域(SC1、SC2)において、冷媒と室内空気流AFとの温度差が適正に確保されやすいように構成されており、風下熱交換部60を通過する冷媒に関し過冷却度が適正に確保されることが促進されている。すなわち、熱交換器の性能低下が抑制され、性能向上が促進されている。
 (5-2)
 また、上記実施形態に係る室内熱交換器25では、暖房運転時に、風下熱交換部60を流れる冷媒に関して、従来において風下熱交換部60に形成されていた過冷却域が過冷却域SC2として風上熱交換部50に形成されている。その結果、風下熱交換部60においては、過熱域と過冷却域とが上下に隣接しないようになっており、過熱域(SH3、SH4)を通過する冷媒と過冷却域(SC2)を通過する冷媒との間で熱交換が行われることが抑制されている。これに関連して、過冷却域(SC2)における冷媒の過冷却度が適正に確保されることが促進されている。すなわち、熱交換器の性能低下が抑制され、性能向上が促進されている。
 (5-3)
 上記実施形態に係る室内熱交換器25では、風上熱交換部50において複数のパス(P1-P3)が形成されている。すなわち、風上熱交換部50において、風上第1空間A1、第1パスP1の伝熱管流路451、風上第4空間A4、折返し流路JP、風上第5空間A5、第2パスP2の伝熱管流路451、及び風上第2空間A2で形成されるパス(すなわち第1パスP1及び第2パスP2とで形成されるパス)と、風上第3空間A3、伝熱管45及び風上第6空間A6で形成されるパス(第3パスP3)と、が形成されている。そのうえで、風上第3空間A3、伝熱管45及び風上第6空間A6で形成されるパス(第3パスP3)が、接続配管70によって形成される接続流路RPを介して風下下流側空間(風下第2ヘッダ空間Sb2)と連通している。
 これにより、冷媒の凝縮器として用いられる場合に、風上熱交換部50の、風上第3空間A3、伝熱管45及び風上第6空間A6で形成されるパス(第3パスP3)において、風下熱交換部60を流れた冷媒に関し過冷却域SC2が形成されることが促進されている。よって、風下熱交換部60を流れる冷媒に関して過冷却度が適正に確保されることが促進されている。
 (5-4)
 上記実施形態に係る室内熱交換器25では、風上第1空間A1、伝熱管45、風上第4空間A4、折返し流路JP、風上第5空間A5、伝熱管45、及び風上第2空間A2で形成されるパス(すなわち第1パスP1及び第2パスP2とで形成されるパス)において、風上第2ヘッダ57内の風上第4空間A4と風上第5空間A5とが折返し流路JPで連通される。これにより、係るパスを流れる冷媒は、風上第4空間A4及び風上第5空間A5の間で折り返されることとなる。その結果、冷媒の凝縮器として用いられる場合に、風上熱交換部50を流れる冷媒の過熱域SH3と、風下熱交換部60を流れる冷媒の過冷却域SC2とが上下に隣接しないように構成可能となっている。このため、過熱域SH3を通過する冷媒と過冷却域SC2を通過する冷媒との間で熱交換が行われることが抑制されている。これに関連して、過冷却域SC2における冷媒の過冷却度が適正に確保されることが促進されている。
 (5-5)
 上記実施形態に係る室内熱交換器25では、暖房運転時(すなわち、第1ガス側出入口GH1又は第2ガス側出入口GH2から流入した過熱状態のガス冷媒が室内空気流AFと熱交換を行って液側出入口LHから過冷却状態の液冷媒として流出する時)に、風上熱交換部50の過熱域SH3を流れる冷媒の流れ方向は、風下熱交換部60の過熱域SH4を流れる冷媒の流れ方向に対向している。
 これにより、風上熱交換部50の過熱域SH3を流れる冷媒と、風下熱交換部60の過熱域SH4を流れる冷媒と、が互いに対向して流れるようになっている。その結果、風上熱交換部50及び風下熱交換部60を通過した室内空気流AFのうち、冷媒と熱交換が十分になされた空気とそうでない空気との割合が、通過部分によって大きく異なることが抑制されている。よって、室内熱交換器25を通過した空気の温度ムラが抑制されている。
 (5-6)
 上記実施形態に係る室内熱交換器25では、過冷却域(SC1、SC2)は、風上熱交換部50のうち、通過する室内空気流AFの風速が他の部分よりも小さい部分(下段部分)に位置している。すなわち、通過する空気流(室内空気流AF)に関して風速分布がある場合に、液冷媒の流れる流路が風速の小さい部分に形成される室内熱交換器25において、性能低下が抑制されている。
 (5-7)
 上記実施形態に係る室内熱交換器25では、設置状態において、風上熱交換部50は、伝熱管45が左右方向(第1方向)に向かって延びる風上第1熱交換面51(「第1部」)と、伝熱管45が前後方向(第2方向)に向かって延びる風上第2熱交換面52(「第2部」)とを有しており、風下熱交換部60は、伝熱管45が左右方向(第1方向)に向かって延びる風下第4熱交換面64(「第1部」)と、伝熱管45が前後方向(第2方向)に向かって延びる風下第3熱交換面63(「第2部」)とを有している。風下熱交換部60の風下第4熱交換面64は、風上熱交換部50の風上第1熱交換面51の風下側に並んで配置され、風下熱交換部60の風下第3熱交換面63は、風上熱交換部50の風上第2熱交換面52の風下側に並んで配置されている。
 これにより、互いに異なる方向に向かって延びる熱交換面40(「第1部」及び「第2部」)を有する複数の熱交換部が風上側及び風下側に並べて配置される室内熱交換器25において、風上側の熱交換部(風上熱交換部50)の過熱域(SH3)を通過した室内空気流AFが、過冷却域を通過することが抑制されており、性能低下が抑制されている。
 (5-8)
 上記実施形態に係る空気調和装置100では、室内熱交換器25はケーシング30に収容され、ケーシング30には連絡配管挿入口30aが形成されている。室内熱交換器25において、風上熱交換部50は、伝熱管45が右方向に向かって延びる風上第1熱交換面51(「第3部」)と、伝熱管45が後方向に向かって延びる風上第4熱交換面54(「第4部」)と、を有している。また、風下熱交換部60は、伝熱管45が前方向に向かって延びる風下第1熱交換面61(「第3部」)と、伝熱管45が左方向に向かって延びる風下第4熱交換面64(「第4部」)と、を有している。風上熱交換部50において、風上第1ヘッダ56は風上第1熱交換面51の末端に位置し、風上第2ヘッダ57は風上第1熱交換面51の末端と離間する風上第4熱交換面54の先端に位置する。風下熱交換部60において、風下第1ヘッダ66は風下第1熱交換面61の末端に位置し、風下第2ヘッダ67は風下第1熱交換面61の末端と離間する風下第4熱交換面64の先端に位置する。風上熱交換部50及び風下熱交換部60において、風上第1熱交換面51及び風下第1熱交換面61は、末端が先端よりも連絡配管挿入口30aの近傍に配置されている。また、風上熱交換部50及び風下熱交換部60において、風上第4熱交換面54及び風下第4熱交換面64は、先端が末端よりも連絡配管挿入口30aの近傍に配置されている。
 これにより、互いに異なる方向に向かって延びる複数の熱交換面40を有する熱交換部が風上側及び風下側に並べて配置される室内熱交換器25、を含む空気調和装置100において、ケーシング30内における各配管(例えば室内熱交換器25に接続されるガス側連絡配管GPや液側連絡配管LP、及び風上熱交換部50及び風下熱交換部60間で延びる接続配管70)の長さを短くすることが可能となっている。その結果、ケーシング30内における配管の取り回しが容易となっている。これに関連して、冷凍装置の施工性や組立性及びコンパクト性の向上が促進されている。
 (6)変形例
 上記実施形態は、以下の変形例に示すように適宜変形が可能である。なお、各変形例は、矛盾が生じない範囲で他の変形例と組み合わせて適用されてもよい。
 (6-1)変形例1
 上記実施形態では、第1パスP1は、第1ガス側出入口GH1が風上第1空間A1に連通し、第1接続孔H1が風上第4空間A4に連通することで形成された。しかし、第1パスP1は、他の態様によって形成されてもよい。例えば、第1パスP1は、第1ガス側出入口GH1が風上第4空間A4に連通し、第1接続孔H1が風上第1空間A1に連通することで形成されてもよい。係る場合でも、上記実施形態と同様の作用効果を実現しうる。
 (6-2)変形例2
 上記実施形態では、第2パスP2は、第2接続孔H2が風上第5空間A5に連通し、第1液側出入口LH1が風上第2空間A2に連通することで、形成されていた。しかし、第2パスP2は、他の態様によって形成されてもよい。例えば、第2パスP2は、第2接続孔H2が風上第2空間A2に連通し、第1液側出入口LH1が風上第5空間A5に連通することで、形成されてもよい。
 係る場合、風上熱交換部50は、図17に示す風上熱交換部50aのように構成されてもよい。図17は、風上熱交換部50aの構成態様を概略的に示した模式図である。図18は、風上熱交換部50aを含む室内熱交換器25aにおいて形成される冷媒のパスを概略的に示した模式図である。
 風上熱交換部50aは、折返し配管58に代えて折返し配管59を有している。折返し配管59(特許請求の範囲記載の「第2連通路形成部」に相当)は、風上第4空間A4と風上第2空間A2とを連通させる折返し流路JP´(特許請求の範囲記載の「第2連通路」に相当)を形成する。すなわち、風上熱交換部50aでは、風上第4空間A4は、折返し流路JP´(折返し配管59)を介して、風上第5空間A5ではなく風上第2空間A2と連通している。また、風上熱交換部50aでは、第1液側出入口LH1は、風上第2空間A2ではなく、風上第5空間A5に連通している。風上熱交換部50aの他の構成については、風上熱交換部50と略同一である。
 図19は、暖房運転時の風上熱交換部50aにおける冷媒の流れを概略的に示した模式図である。風上熱交換部50aを有する室内熱交換器25aでは、暖房運転時に、第1パスP1及び第2パスP2により形成される冷媒の流れにおいて、第1ガス側出入口GH1、風上第1空間A1、第1パスP1内の伝熱管流路451(伝熱管45)、風上第4空間A4、折返し流路JP´(折返し配管59)、風上第2空間A2、第2パスP2内の伝熱管流路451(伝熱管45)、風上第5空間A5、第1液側出入口LH1、の順に冷媒が流れることとなる。
 これにより、風上熱交換部50aでは、暖房運転時に、第2パスP2内の伝熱管流路451(特に、風上第4熱交換面54の第2パスP2に含まれる伝熱管流路451)において、過冷却状態の冷媒が流れる領域(過冷却域SC1)が形成され、第3パスP3内の伝熱管流路451(特に、風上第1熱交換面51の第3パスP3に含まれる伝熱管流路451)において過冷却状態の冷媒が流れる領域(過冷却域SC2)が形成されることとなる。
 このような風上熱交換部50aを含む室内熱交換器25aでは、風上第1空間A1、伝熱管45、風上第4空間A4、折返し流路JP´、風上第2空間A2、伝熱管45、及び風上第5空間A5で形成されるパス(すなわち第1パスP1及び第2パスP2とで形成されるパス)において、風上第2ヘッダ57内の風上第4空間A4と風上第1ヘッダ56内の風上第2空間A2とが折返し流路JP´で連通される。これにより、係るパスを流れる冷媒は、風上第4空間A4及び風上第2空間A2の間で折り返されることとなる。その結果、冷媒の凝縮器として用いられる場合に、風上熱交換部50aを流れる冷媒の過熱域SH3と、風下熱交換部60を流れる冷媒の過冷却域SC2とが上下に隣接しないように風下熱交換部60を構成することが促進されている。このため、過熱域SH3を通過する冷媒と過冷却域SC2を通過する冷媒との間で熱交換が行われることが抑制されている。これに関連して、過冷却域SC2における冷媒の過冷却度が適正に確保されることが促進されている。
 さらに、風上熱交換部50aを含む室内熱交換器25aでは、風上熱交換部50aを流れる冷媒の過熱域SH3と、風上熱交換部50aを流れる冷媒の過冷却域SC1とが上下に隣接しないように風下熱交換部60を構成することについても促進されている。
このため、過熱域SH3を通過する冷媒と過冷却域SC1を通過する冷媒との間で熱交換が行われることについても抑制されている。これに関連して、過冷却域SC1における冷媒の過冷却度が適正に確保されることについても促進されている。よって、風上熱交換部50aを含む室内熱交換器25aでは、性能向上にさらに寄与しうる。
 (6-3)変形例3
 上記実施形態では、第3パスP3は、第3接続孔H3が風上第6空間A6に連通し、第2液側出入口LH2が風上第3空間A3に連通することで、形成されていた。しかし、第3パスP3は、他の態様によって形成されてもよい。例えば、第3パスP3は、第3接続孔H3が風上第3空間A3に連通し、第2液側出入口LH2が風上第6空間A6に連通することで、形成されてもよい。
 係る場合、風上熱交換部50は、図20に示す風上熱交換部50bのように構成されてもよい。図20は、風上熱交換部50bの構成態様を概略的に示した模式図である。図21は、風上熱交換部50bを含む室内熱交換器25bにおいて形成される冷媒のパスを概略的に示した模式図である。
 風上熱交換部50bでは、第2液側出入口LH2が、風上第6空間A6ではなく風上第3空間A3に形成されている。また、風上熱交換部50bでは、第3接続孔H3が、風上第3空間A3ではなく、風上第6空間A6に形成されている。風上熱交換部50bの他の構成については、風上熱交換部50と略同一である。
 風上熱交換部50bを有する室内熱交換器25bでは、接続配管70によって、風下第2ヘッダ空間Sb2と風上第3空間A3とを連通させる接続流路RP´が形成される。
 図22は、暖房運転時の風上熱交換部50bにおける冷媒の流れを概略的に示した模式図である。風上熱交換部50bを有する室内熱交換器25bでは、暖房運転時に、第3パスP3及び第4パスP4によって形成される冷媒の流れにおいて、第2ガス側出入口GH2、風下第1ヘッダ空間Sb1、第4パスP4内の伝熱管流路451(伝熱管45)、風下第2ヘッダ空間Sb2、接続流路RP´(接続配管70)、風上第3空間A3、第3パスP3内の伝熱管流路451(伝熱管45)、風上第6空間A6、第2液側出入口LH2、の順に冷媒が流れることとなる。
 このような風上熱交換部50bを有する室内熱交換器25bにおいても、上記実施形態と同様の作用効果を実現しうる。また、風上熱交換部50bを有する室内熱交換器25bでは、暖房運転時に、第2パスP2内の伝熱管流路451(特に、風上第1熱交換面51の第2パスP2に含まれる伝熱管流路451)において過冷却状態の冷媒が流れる領域(過冷却域SC2)が形成され、第3パスP3内の伝熱管流路451(特に、風下第4熱交換面64の第3パスP3に含まれる伝熱管流路451)において過冷却状態の冷媒が流れる領域(過冷却域SC2)が形成されることとなる。風上熱交換部50bを有する室内熱交換器25bでは、図22に示されるように、過冷却域SC1を流れる冷媒と、過冷却域SC2を流れる冷媒とは、流れる方向が対向している(すなわち対向流である)。これに関連して、暖房運転時に室内熱交換器25bを通過する室内空気流AFの温度ムラが抑制されるようになっている。
 (6-4)変形例4
 上記実施形態では、風上第1ヘッダ56内において風上第1ヘッダ空間Sa1は、上から下に向かって、風上第1空間A1、風上第2空間A2、風上第3空間A3の順に並ぶように構成された。また、風上第2ヘッダ57内において、風上第2ヘッダ空間Sa2は、上から下に向かって、風上第4空間A4、風上第5空間A5、風上第6空間A6の順に並ぶように構成された。すなわち、風上熱交換部50において形成されるパスは、第1パスP1が最上段に位置し、第2パスP2が中段に位置し、第3パスP3が最下段に位置するように形成された。
 しかし、風上第1ヘッダ空間Sa1及び風上第2ヘッダ空間Sa2の形成態様、並びに風上熱交換部50におけるパスの形成態様については、必ずしもこれに限定されず、上記実施形態と同様の作用効果を実現可能である限り、設計仕様や設置環境に応じて適宜変更が可能である。
 例えば、風上第1ヘッダ空間Sa1は、下から上に向かって、風上第1空間A1、風上第2空間A2、風上第3空間A3の順に並ぶように構成されてもよい。係る場合、風上第2ヘッダ57内においても、風上第2ヘッダ空間Sa2が、下から上に向かって、風上第4空間A4、風上第5空間A5、風上第6空間A6の順に並ぶように構成される。その結果、風上熱交換部50において形成されるパスは、第1パスP1が最下段に位置し、第2パスP2が中段に位置し、第3パスP3が最上段に位置するように形成されることとなる。
 また、例えば、風上第1ヘッダ空間Sa1は、上から下に向かって、風上第2空間A2、風上第1空間A1、風上第3空間A3、の順に並ぶように構成されてもよい。係る場合、風上第2ヘッダ57内においても、風上第2ヘッダ空間Sa2が、上から下に向かって、風上第5空間A5、風上第4空間A4、風上第6空間A6の順に並ぶように構成される。その結果、風上熱交換部50において形成されるパスは、第2パスP2が最上段に位置し、第1パスP1が中段に位置し、第3パスP3が最下段に位置するように形成されることとなる。
 なお、パスの位置が変更される場合、パスに連通する開口(GH1、GH2、LH1、LH2、H1-H4)の形成位置についても、対応するように適宜変更される。
 (6-5)変形例5
 上記実施形態に係る室内熱交換器25は、図23及び図24に示す室内熱交換器25cのように構成されてもよい。以下、室内熱交換器25cについて説明する。なお、以下において説明を省略する部分は、特にことわりのない限り、室内熱交換器25と略同一と解釈しうる。
 図23は、伝熱管積層方向dr2から見た室内熱交換器25cを概略的に示した模式図である。図24は、室内熱交換器25cの構成態様を概略的に示した模式図である。図25は、室内熱交換器25cにおいて形成される冷媒のパスを概略的に示した模式図である。
 室内熱交換器25cは、風上熱交換部50に代えて、風上熱交換部50cを有している。また、室内熱交換器25cは、風下熱交換部60に加えて、第2風下熱交換部80を有している。また、室内熱交換器25cは、接続配管70に加えて、第2接続配管75を有している。
 図26は、風上熱交換部50cの構成態様を概略的に示した模式図である。風上熱交換部50cでは、風上第1ヘッダ56において、水平仕切板561が一枚しか配置されておらず、風上第1空間A1が省略されている。また、風上熱交換部50cでは、風上第2ヘッダ57においても、水平仕切板571が一枚しか配置されておらず、風上第4空間A4が省略されている。これに関連して、風上熱交換部50cでは、第1パスP1が省略されている。具体的に、風上熱交換部50cでは、第2パスP2が1点鎖線L3(図23及び図24)より上方に形成され、第3パスP3が1点鎖線L3より下方に形成されている。
 本実施形態において1点鎖線L3は、上から数えて11本目の伝熱管45と12本目の伝熱管45の間に位置している。すなわち、風上熱交換部50cでは、第2パスP2が上から数えて11本目以上の伝熱管45の伝熱管流路451を含み、第3パスP3が上から数えて12本目以下の伝熱管45の伝熱管流路451を含むように形成されている。但し、1点鎖線L3の位置は適宜変更が可能である(すなわち、第2パスP2及び第3パスP3に含まれる伝熱管45の本数は適宜変更が可能である)。
 また、風上熱交換部50cでは、第1接続孔H1及び折返し配管58が省略されている。また、風上熱交換部50cでは、第1ガス側出入口GH1が省略されている(第1ガス側出入口GH1は、第2風下熱交換部80に形成されている)。また、風上熱交換部50cでは、第2接続孔H2が風上第5空間A5の上端近傍に連通するように形成され、第2接続孔H2に第2接続配管75の一端が接続されている。
 図27は、第2風下熱交換部80の構成態様を概略的に示した模式図である。第2風下熱交換部80は、風下熱交換部60の風下側(すなわち空気流れ方向dr3において最下流)に配置される熱交換部である。第2風下熱交換部80は、主として、熱交換面40としての最下流第1熱交換面81、最下流第2熱交換面82、最下流第3熱交換面83及び最下流第4熱交換面84(以下、これらを併せて「最下流熱交換面85」と称する)と、最下流第1ヘッダ86と、最下流第2ヘッダ87と、を有している。
 最下流第1熱交換面81(特許請求の範囲記載の「第1部」又は「第3部」に相当)は、最下流熱交換面85のうち、冷房運転時に冷媒流れの最下流に位置し、暖房運転時に冷媒流れの最上流に位置する。最下流第1熱交換面81は、伝熱管積層方向dr2から見て(ここでは平面視で)、末端において最下流第1ヘッダ86を接続されており、主として左から右に向かって延びている。最下流第1熱交換面81は、風下第4熱交換面64の空気流れ方向dr3の風下側に隣接している。最下流第1熱交換面81は、最下流第2熱交換面82及び最下流第3熱交換面83よりも連絡配管挿入口30aの近傍に位置している。より詳細には、最下流第1熱交換面81は、その末端がその先端よりも連絡配管挿入口30aの近傍に位置している。
 最下流第2熱交換面82(特許請求の範囲記載の「第2部」に相当)は、最下流熱交換面85のうち、冷房運転時に最下流第1熱交換面81の冷媒流れの上流側に位置し、暖房運転時に最下流第1熱交換面81の冷媒流れの下流側に位置する。最下流第2熱交換面82は、伝熱管積層方向dr2から見て、その末端が湾曲しながら最下流第1熱交換面81の先端に接続され、主として後から前に向かって延びている。最下流第2熱交換面82は、風下第3熱交換面63の空気流れ方向dr3の風下側に隣接している。
 最下流第3熱交換面83は、最下流熱交換面85のうち、冷房運転時に最下流第2熱交換面82の冷媒流れの上流側に位置し、暖房運転時に最下流第2熱交換面82の冷媒流れの下流側に位置する。最下流第3熱交換面83は、伝熱管積層方向dr2から見て、その末端が湾曲しながら最下流第2熱交換面82の先端に接続され、主として右から左に向かって延びている。最下流第3熱交換面83は、風下第2熱交換面62の空気流れ方向dr3の風下側に隣接している。
 最下流第4熱交換面84(特許請求の範囲記載の「第4部」に相当)は、最下流熱交換面85のうち、冷房運転時に最下流第3熱交換面83の冷媒流れの上流側に位置し、暖房運転時に最下流第3熱交換面83の冷媒流れの下流側に位置する。最下流第4熱交換面84は、伝熱管積層方向dr2から見て、その末端が湾曲しながら最下流第3熱交換面83の先端に接続され、主として前から後に向かって延びている。最下流第4熱交換面84は、その先端において最下流第2ヘッダ87を接続されている。最下流第4熱交換面84は、風下第1熱交換面61の空気流れ方向dr3の風下側に隣接している。最下流第4熱交換面84は、最下流第2熱交換面82及び最下流第3熱交換面83よりも連絡配管挿入口30aの近傍に位置している。より詳細には、最下流第4熱交換面84は、その先端がその末端よりも連絡配管挿入口30aの近傍に位置している。
 このような最下流第1熱交換面81、最下流第2熱交換面82、最下流第3熱交換面83及び最下流第4熱交換面84を含むことで、第2風下熱交換部80の最下流熱交換面85は、伝熱管積層方向dr2から見て、3箇所以上で屈曲若しくは湾曲し略四角形状を呈している。すなわち、第2風下熱交換部80は、4つの最下流熱交換面85を有している。
 最下流第1ヘッダ86(特許請求の範囲記載の「第1ヘッダ」に相当)は、冷媒を各伝熱管45に分流させる分流ヘッダ、各伝熱管45から流出する冷媒を合流させる合流ヘッダ、又は各伝熱管45から流出する冷媒を他の伝熱管45に折り返すための折返しヘッダ等として機能するヘッダ集合管である。最下流第1ヘッダ86は、設置状態において長手方向が鉛直方向(上下方向)である。最下流第1ヘッダ86は、筒状に構成され、内部において空間(以下、「最下流第1ヘッダ空間Sc1」と称する)を形成している(最下流第1ヘッダ空間Sc1は、特許請求の範囲記載の「第1ヘッダ空間」に相当する)。最下流第1ヘッダ86は、冷房運転時には第2風下熱交換部80において最も冷媒流れの下流側に位置し、暖房運転時には第2風下熱交換部80において最も冷媒流れの上流側に位置する。最下流第1ヘッダ86は、最下流第1熱交換面81の末端に接続されている。最下流第1ヘッダ86は、最下流第1熱交換面81に含まれる各伝熱管45の一端と接続され、これらの伝熱管45と最下流第1ヘッダ空間Sc1とを連通させている。最下流第1ヘッダ86は、風下第2ヘッダ67の空気流れ方向dr3の風下側に隣接している。最下流第1ヘッダ86には、第1ガス側出入口GH1が形成されている。第1ガス側出入口GH1は、最下流第1ヘッダ空間Sc1に連通している。第1ガス側出入口GH1には、第1ガス側連絡配管GP1が接続されている。
 最下流第2ヘッダ87(特許請求の範囲記載の「第2ヘッダ」に相当)は、冷媒を各伝熱管45に分流させる分流ヘッダ、各伝熱管45から流出する冷媒を合流させる合流ヘッダ、又は各伝熱管45から流出する冷媒を他の伝熱管45に折り返すための折返しヘッダ等として機能するヘッダ集合管である。最下流第2ヘッダ87は、設置状態において長手方向が鉛直方向(上下方向)である。最下流第2ヘッダ87は、筒状に構成され、内部において空間(以下、「最下流第2ヘッダ空間Sc2」と称する)を形成している(最下流第2ヘッダ空間Sc2は、特許請求の範囲記載の「第2ヘッダ空間」に相当する)。最下流第2ヘッダ空間Sc2は、冷房運転時には第2風下熱交換部80において最も冷媒流れの上流側に位置し、暖房運転時には第2風下熱交換部80において最も冷媒流れの下流側に位置する。最下流第2ヘッダ87は、最下流第4熱交換面84の先端に接続されている。最下流第2ヘッダ87は、最下流第4熱交換面84に含まれる各伝熱管45の一端と接続され、これらの伝熱管45と最下流第2ヘッダ空間Sc2とを連通させている。最下流第2ヘッダ87は、風下第1ヘッダ66の空気流れ方向dr3の風下側に隣接している。また、最下流第2ヘッダ87には、第2接続配管75の他端を接続するための第5接続孔H5が形成されている。第5接続孔H5は、最下流第2ヘッダ空間Sc2に連通している。第5接続孔H5には、最下流第2ヘッダ空間Sc2及び風上第5空間A5が連通するように、第2接続配管75の他端が接続されている。なお、第2接続配管75に連通する最下流第2ヘッダ空間Sc2は、特許請求の範囲記載の「風下下流側空間」に相当する。
 第2接続配管75は、風上熱交換部50c及び第2風下熱交換部80間で第2接続流路RP2を形成する冷媒配管である。第2接続流路RP2(特許請求の範囲記載の「第2冷媒流路」に相当)は、最下流第2ヘッダ空間Sc2と、風上第5空間A5と、を連通させる冷媒の流路である。第2接続配管75は、一端が第2接続孔H2に接続され、他端が第5接続孔H5に接続されている。第2接続配管75によって第2接続流路RP2が形成されることで、冷房運転時には風上第5空間A5から最下流第2ヘッダ空間Sc2へ向かって冷媒が流れ、暖房運転時には最下流第2ヘッダ空間Sc2から風上第5空間A5へ向かって冷媒が流れる。
 室内熱交換器25cでは、第2パスP2、第3パスP3、第4パスP4に加えて第5パスP5が形成される。第5パスP5は、第2風下熱交換部80において形成される。第5パスP5は、第1ガス側出入口GH1が最下流第1ヘッダ空間Sc1に連通し、最下流第1ヘッダ空間Sc1が伝熱管流路451(伝熱管45)を介して最下流第2ヘッダ空間Sc2に連通し、最下流第2ヘッダ空間Sc2が第5接続孔H5に連通することで形成される冷媒の流路である。すなわち、第5パスP5は、第1ガス側出入口GH1、最下流第1ヘッダ86内の最下流第1ヘッダ空間Sc1、伝熱管45内の伝熱管流路451、最下流第2ヘッダ87内の最下流第2ヘッダ空間Sc2、及び第5接続孔H5を含む冷媒の流路である。第5パスP5は、第2接続流路RP2(第2接続配管75)を介して第2パスP2に連通している。
 図28は、暖房運転時の風上熱交換部50cにおける冷媒の流れを概略的に示した模式図である。図29は、暖房運転時の第2風下熱交換部80における冷媒の流れを概略的に示した模式図である。室内熱交換器25cでは、暖房運転時に、第2パスP2及び第5パスP5によって形成される冷媒の流れにおいて、第1ガス側出入口GH1、最下流第1ヘッダ空間Sc1、第5パスP5内の伝熱管流路451(伝熱管45)、最下流第2ヘッダ空間Sc2、第2接続流路RP2(第2接続配管75)、風上第5空間A5、第2パスP2内の伝熱管流路451(伝熱管45)、風上第2空間A2、第1液側出入口LH1、の順に冷媒が流れることとなる。
 室内熱交換器25cでは、暖房運転時に、第2パスP2内の伝熱管流路451(特に、風上第1熱交換面51の第2パスP2に含まれる伝熱管流路451)において過冷却状態の冷媒が流れる領域(過冷却域SC1)が形成され、第3パスP3内の伝熱管流路451(特に、風上第1熱交換面51の第3パスP3に含まれる伝熱管流路451)において過冷却状態の冷媒が流れる領域(過冷却域SC2)が形成されることとなる。)。
 室内熱交換器25cでは、複数の風下熱交換部(60、80)を有する3列の扁平管熱交換器が冷媒の凝縮器として用いられる場合に、各風下熱交換部(60、80)を流れる冷媒の過冷却域が風上熱交換部50cにおいてに集中的に配置されている。よって、複数の風下熱交換部(60、80)を有する3列の扁平管熱交換器において、風下熱交換部(60、80)を流れる冷媒に関して過冷却度が適正に確保されることが促進されている。
 また、冷媒の入口(第1ガス側出入口GH1及び第2ガス側出入口GH2)を各風下熱交換部(60、80)において個別に形成することにより、冷媒の凝縮器として用いられる場合に、過熱域と過冷却域とが上下に隣接しないように室内熱交換器25cを構成可能となっている。その結果、過熱域を通過する冷媒と過冷却域を通過する冷媒との間で熱交換が行われることが特に抑制されている。これに関連して、過冷却域における冷媒の過冷却度が適正に確保されることがさらに促進されている。よって、性能低下がさらに抑制される。
 また、室内熱交換器25cでは、暖房運転時に、風上熱交換部50cにおいては、過熱域が形成されないことから、過熱域と過冷却域とが上下に隣接しないようになっており、過熱域を通過する冷媒と過冷却域を通過する冷媒との間で熱交換が行われることが特に抑制されている。これに関連して、過冷却域(SC1、SC2)における冷媒の過冷却度が適正に確保されることが特に促進されている。
 なお、室内熱交換器25cでは、接続流路RPは、特許請求の範囲記載の「第1冷媒流路に相当する。
 また、室内熱交換器25cでは、風上熱交換部50cにおける第5接続孔H5及び第1液側出入口LH1の位置を変更する、又は第3接続孔H3及び第2液側出入口LH2の位置を変更することで、過冷却域SC1を流れる冷媒と、過冷却域SC2を流れる冷媒とが、流れる方向が対向するように構成することも可能である。
 例えば、図30に示されるように、風上熱交換部50cにおいて第2接続孔H2を風上第2空間A2に形成するとともに、第2液側出入口LH2を風上第5空間A5に形成することで、過冷却域SC1を流れる冷媒と、過冷却域SC2を流れる冷媒とが、流れる方向が対向するように構成しうる。その結果、室内熱交換器25cを通過した室内空気流AFのうち、冷媒と熱交換が十分になされた空気とそうでない空気との割合が、通過部分によって大きく異なることが抑制され、室内熱交換器25cを通過した空気の温度ムラが抑制される。
 このように、室内熱交換器25cでは、第2パスP2において、第5接続孔H5が連通する空間と、第1液側出入口LH1が連通する空間と、は適宜入れ換えられてもよい。また、室内熱交換器25cでは、第3パスP3において、第3接続孔H3が連通する空間と、第2液側出入口LH2が連通する空間と、は適宜入れ換えられてもよい。
また、室内熱交換器25cでは、第4パスP4において、第4接続孔H4が連通する空間と、第2ガス側出入口GH2が連通する空間と、は適宜入れ換えられてもよい。また、室内熱交換器25cでは、第5パスP5において、第5接続孔H5が連通する空間と、第1ガス側出入口GH1が連通する空間と、は適宜入れ換えられてもよい。
 なお、室内熱交換器25cでは、第2風下熱交換部80が配置されることで、3列の扁平管熱交換器として構成された。しかし、室内熱交換器25cは、風下熱交換部60及び第2風下熱交換部80以外の新たな風下熱交換部を有する、4列以上の扁平管熱交換器として構成されてもよい。係る場合、風下熱交換部の増加分に応じて、風上熱交換部50cにおいてパス数を増加させるとともに更なる第2接続配管75を新たに設置し、更なる第2接続流路RP2を新たに形成することで、新たな風下熱交換部と風上熱交換部50c内のパスを連通させることで、新たな風下熱交換部を通過する冷媒に関して過冷却域を風上熱交換部50cに形成することが可能となる。すなわち、4列以上の扁平管熱交換器として構成される場合においても、上記実施形態と同様の作用効果を実現しうる。
 (6-6)変形例6
 上記実施形態では、接続配管70によって接続流路RPが形成された。しかし、接続流路RPの形成態様については、必ずしもこれに限定されず、設計仕様や設置環境に応じて適宜変更が可能である。
 例えば、風上熱交換部50において接続流路RPと連通する空間(上記実施形態では風上第6空間A6)を形成するヘッダ集合管(上記実施形態では風上第2ヘッダ57)と、風下熱交換部60において接続流路RPと連通する空間(上記実施形態では風下第2ヘッダ空間Sb2)を形成するヘッダ集合管(上記実施形態では風下第2ヘッダ67)と、が一体に構成され、両者の内部空間がヘッダの長手方向に沿って延びる仕切板を介して仕切られるような場合には、仕切板に形成される開口を介して両空間を連通させてもよい。係る場合、仕切板に形成される開口が特許請求の範囲記載の「冷媒流路」に相当し、当該開口を形成する仕切板が特許請求の範囲記載の「冷媒流路形成部」に相当する。また、上記「変形例5」に記載の第2接続流路RP2についても、同様の変更が可能である。また、上記「変形例2」に記載の折返し流路JP´についても、同様の変更が可能である。
 (6-7)変形例7
 上記実施形態では、折返し配管58によって折返し流路JPが形成された。しかし、折返し流路JPの形成態様については、必ずしもこれに限定されず、設計仕様や設置環境に応じて適宜変更が可能である。
 例えば、風上熱交換部50において折返し流路JPで連通する両空間(上記実施形態では風上第4空間A4と風上第5空間A5)を仕切る仕切板(上記実施形態では水平仕切板571)に開口を形成し、係る開口を介して両空間を連通させてもよい。係る場合、仕切板に形成される開口が特許請求の範囲記載の「連通路」に相当し、当該開口を形成する仕切板が特許請求の範囲記載の「連通路形成部」に相当する。
 (6-8)変形例8
 上記実施形態では、風上熱交換部50及び風下熱交換部60が、4つの熱交換面40(風上熱交換面55又は風下熱交換面65)を有する場合について説明した。しかし、風上熱交換部50及び風下熱交換部60が有する熱交換面40の数については、特に限定されず、設計仕様や設置環境に応じて適宜変更が可能であり、3つ以下であってもよいし5つ以上であってもよい。
 例えば、風上熱交換部50及び風下熱交換部60は、それぞれ2つの熱交換面40を有するように構成されてもよい。係る場合でも、上記実施形態と同様の効果を実現しうる。特に、平面視又は側面視において略V字状を呈するように構成されることで、上記(5-8)で記載した作用効果についても実現しうる(係る場合、風上熱交換部50及び風下熱交換部60において、一方の熱交換面40が「第1部」に相当し、他方の熱交換面40が「第2部」に相当する)。
 また、風上熱交換部50及び風下熱交換部60は、それぞれ3つの熱交換面40を有するように構成されてもよい。係る場合でも、上記実施形態と同様の効果を実現しうる。特に、平面視又は側面視において略U字状を呈するように構成されることで、上記(5-8)で記載した作用効果についても実現しうる(係る場合、風上熱交換部50及び風下熱交換部60において、一方のヘッダ集合管を接続される熱交換面40が「第1部」に相当し、他方のヘッダ集合管を接続される熱交換面40が「第2部」に相当する)。
 また、風上熱交換部50及び風下熱交換部60は、1つの熱交換面40のみを有するように構成されてもよい。係る場合でも、上記実施形態と同様の効果を実現しうる(上記(5-7)で記載した作用効果については除く)。
 (6-9)変形例9
 上記実施形態では、風上熱交換部50の第1ガス側出入口GH1及び風下熱交換部60の第2ガス側出入口GH2にガス側連絡配管GP(GP1、GP2)が個別に接続されていた。また、風上熱交換部50の第1液側出入口LH1及び風下熱交換部60の第2液側出入口LH2に液側連絡配管LP(LP1、LP2)が個別に接続されていた。しかし、室内熱交換器25におけるガス側連絡配管GP及び液側連絡配管LPの接続態様は、必ずしもこれに限定されず、適宜変更が可能である。例えば、室内熱交換器25と、ガス側連絡配管GP又は液側連絡配管LPと、の間に分流器を配置し、分流器を介して両者を連通させるように構成してもよい。
 また、風上熱交換部50及び風下熱交換部60は、冷媒の流れに矛盾が生じない限り、上記実施形態において説明したヘッダ集合管(56、57、66、67)とは別のヘッダ集合管を更に有していてもよい。
 (6-10)変形例10
 上記実施形態では、第1パスP1は12本の伝熱管45(伝熱管流路451)を含むように構成された。しかし、第1パスP1の形成態様は、必ずしもこれに限定されず、適宜変更が可能である。すなわち、第1パスP1は11本以下又は13本以上の伝熱管45(伝熱管流路451)を含むように構成されてもよい。
 また、上記実施形態では、第2パスP2は、4本の伝熱管45(伝熱管流路451)を含むように構成された。しかし、第2パスP2の形成態様は、必ずしもこれに限定されず、適宜変更が可能である。すなわち、第2パスP2は3本以下又は5本以上の伝熱管45(伝熱管流路451)を含むように構成されてもよい。
 また、上記実施形態では、第3パスP3は、3本の伝熱管45(伝熱管流路451)を含むように構成された。しかし、第3パスP3の形成態様は、必ずしもこれに限定されず、適宜変更が可能である。すなわち、第3パスP3は2本以下又は4本以上の伝熱管45(伝熱管流路451)を含むように構成されてもよい。
 (6-11)変形例11
 上記実施形態では、室内熱交換器25は、19本の伝熱管45を有していた。しかし、室内熱交換器25に含まれる伝熱管45の本数については、設計仕様や設置環境に応じて、適宜変更が可能である。例えば、室内熱交換器25は、18本以下又は20本以上の伝熱管45を有していてもよい。
 (6-12)変形例12
 上記実施形態では、伝熱管45は、内部に複数の伝熱管流路451を形成された扁平多穴管であった。しかし、伝熱管45の構成態様については適宜変更が可能である。例えば、内部に1つの冷媒流路が形成された扁平管を伝熱管45として採用してもよい。また、板状以外の形状を有する伝熱管(扁平管以外の伝熱管)を伝熱管45として採用してもよい。
 また、伝熱管45は、必ずしもアルミニウム製若しくはアルミニウム合金製である必要はなく、素材については適宜変更が可能である。例えば伝熱管45は、銅製であってもよい。また、伝熱フィン48についても同様に、アルミニウム製若しくはアルミニウム合金製である必要はなく、素材については適宜変更が可能である。
 (6-13)変形例13
 上記実施形態では、室内熱交換器25は、室内ファン28を囲むように配置された。しかし、室内熱交換器25は、必ずしも室内ファン28を囲むように配置される必要はなく、室内空気流AFと冷媒との熱交換が可能な態様である限り、配置態様については適宜変更が可能である。
 (6-14)変形例14
 上記実施形態では、室内熱交換器25が、設置状態において、伝熱管延伸方向dr1が水平方向であり伝熱管積層方向dr2が鉛直方向(上下方向)である場合について説明した。しかし、必ずしもこれに限定されず、室内熱交換器25は、設置状態において、伝熱管延伸方向dr1が鉛直方向であり、伝熱管積層方向dr2が水平方向であるように構成・配置されてもよい。
 また、上記実施形態では、空気流れ方向dr3が水平方向である場合について説明した。しかし、必ずしもこれに限定されず、空気流れ方向dr3は、室内熱交換器25の構成態様及び設置態様に応じて適宜変更されうる。例えば、空気流れ方向dr3は、伝熱管延伸方向dr1に交差する鉛直方向であってもよい。
 また、上記実施形態では、過冷却域(SC1、SC2)は、風上熱交換部50のうち、通過する室内空気流AFの風速が他の部分よりも小さい部分(下段部分)に位置していた。しかし、必ずしもこれに限定されず、過冷却域は、風上熱交換部50のうち、通過する室内空気流AFの風速が他の部分と同一又は他の部分よりも大きい部分に形成されてもよい。
 (6-15)変形例15
 上記実施形態では、空気流れ方向dr3に隣接して配置される風上第1ヘッダ56と風下第2ヘッダ67とは別体に構成され、同様に風上第2ヘッダ57と風下第1ヘッダ66とは別体に構成された。しかし、必ずしもこれに限定されず、室内熱交換器25において、空気流れ方向dr3に隣接して配置される複数のヘッダ集合管(ここでは、風上第1ヘッダ56と風下第2ヘッダ67、又は風上第2ヘッダ57と風下第1ヘッダ66)は一体に構成されてもよい。すなわち、空気流れ方向dr3に隣接して配置される複数のヘッダ集合管を1本のヘッダ集合管で構成し、係るヘッダ集合管の内部空間を、長手方向に仕切る長手仕切板によって2つの空間に分割することで、風上第1ヘッダ空間Sa1及び風下第2ヘッダ空間Sb2、又は風上第2ヘッダ空間Sa2及び風下第1ヘッダ空間Sb1が形成されてもよい。係る場合、ヘッダ集合管内に配置される長手仕切板等の流路形成部材に開口を形成することで、各空間を連通させる冷媒流路を形成しうる。
 (6-16)変形例16
 上記実施形態では、風下第1熱交換面61は、風上第4熱交換面54と空気流れ方向dr3から見た面積が略同一であるように構成された。しかし、風下第1熱交換面61は、必ずしも係る態様で構成される必要はなく、風上第4熱交換面54と空気流れ方向dr3から見た面積が相違するように構成されてもよい。
 また、上記実施形態では、風下第2熱交換面62は、風上第3熱交換面53と空気流れ方向dr3から見た面積が略同一であるように構成された。しかし、風下第2熱交換面62は、必ずしも係る態様で構成される必要はなく、風上第3熱交換面53と空気流れ方向dr3から見た面積が相違するように構成されてもよい。
 また、上記実施形態では、風下第3熱交換面63は、風上第2熱交換面52と空気流れ方向dr3から見た面積が略同一であるように構成された。しかし、風下第3熱交換面63は、必ずしも係る態様で構成される必要はなく、風上第2熱交換面52と空気流れ方向dr3から見た面積が相違するように構成されてもよい。
 また、上記実施形態では、風下第4熱交換面64は、風上第1熱交換面51と空気流れ方向dr3から見た面積が略同一であるように構成された。しかし、風下第4熱交換面64は、必ずしも係る態様で構成される必要はなく、風上第1熱交換面51と空気流れ方向dr3から見た面積が相違するように構成されてもよい。
 (6-17)変形例17
 上記実施形態では、室内熱交換器25は、対象空間の天井裏空間CSに設置される天井埋込み型の室内ユニット20に適用された。しかし、室内熱交換器25が適用される室内ユニット20の型式については、特に限定されない。例えば、室内熱交換器25は、対象空間の天井面CLに固定される天井吊下げ型や、側壁に設置される壁掛け型、床面に設置される床置き型、床裏に設置される床埋込み型等の室内ユニットに適用されてもよい。
 (6-18)変形例18
 上記実施形態における冷媒回路RCの構成態様については、設置環境や設計仕様に応じて適宜変更が可能である。具体的に、冷媒回路RCにおいて回路要素の一部が、他の機器に置き換えられてもよいし、必ずしも必要でない場合には適宜省略されてもよい。例えば、四路切換弁12については適宜省略され暖房運転用の空気調和装置として構成されてもよい。また、冷媒回路RCには、図1において図示されない機器(例えば、過冷却熱交換器やレシーバ等)や冷媒流路(冷媒をバイパスする回路等)が含まれていてもよい。また、例えば、上記実施形態においては、圧縮機11が直列或いは並列に複数台配置されてもよい。
 (6-19)変形例19
 上記実施形態では、冷媒回路RCを循環する冷媒としてR32やR410AのようなHFC冷媒が用いられる場合について説明した。しかし、冷媒回路RCで用いられる冷媒は、特に限定されない。例えば、冷媒回路RCでは、HFO1234yf、HFO1234ze(E)やこれらの冷媒の混合冷媒などが用いられてもよい。また、冷媒回路RCでは、R407C等のHFC系冷媒が用いられてもよい。
 (6-20)変形例20
 上記実施形態では、1台の室外ユニット10と、1台の室内ユニット20と、連絡配管(LP、GP)で接続されることで冷媒回路RCが構成されていた。しかし、室外ユニット10及び室内ユニット20の台数については、適宜変更が可能である。例えば、空気調和装置100は、直列又は並列に接続される複数台の室外ユニット10を有していてもよい。また、空気調和装置100は、例えば、直列又は並列に接続される複数台の室内ユニット20を有していてもよい。
 (6-21)変形例21
 上記実施形態では、本発明は、室内熱交換器25に適用されたが、これに限定されず、他の熱交換器に適用されてもよい。例えば、本発明は、室外熱交換器13に適用されてもよい。係る場合、室外ファン15によって生成される室外空気流が上記実施形態における室内空気流AFに相当する。
 また、本発明は、凝縮器又は蒸発器のいずれかのみとして機能する熱交換器に適用されてもよい。
 例えば、本発明は、逆サイクル運転(例えば暖房運転)のみを行う冷凍装置に搭載され冷媒の凝縮器としてのみ機能する熱交換器に適用されてもよい。
 また、例えば、本発明は、正サイクル運転(例えば冷房運転)のみを行う冷凍装置に搭載され冷媒の蒸発器としてのみ機能する熱交換器に適用されてもよい。係る場合、過冷却域は、気液二相冷媒のうち乾き度の小さい冷媒が流れる領域に対応する。また、過熱域は、過熱状態の冷媒、若しくは気液二相冷媒のうち乾き度の大きい冷媒が流れる領域に対応する。
 (6-22)変形例22
 上記実施形態では、本発明は、冷凍装置としての空気調和装置100に適用された。しかし、本発明は、空気調和装置100以外の冷凍装置に適用されてもよい。例えば、本発明は、冷凍・冷蔵コンテナや倉庫・ショーケース等において用いられる低温用の冷凍装置や、給湯装置又はヒートポンプチラー等、冷媒回路及び熱交換器を有する他の冷凍装置に適用されてもよい。
 また、例えば、本発明は、逆サイクル運転(例えば暖房運転)のみを行う冷凍装置、又は正サイクル運転(例えば冷房運転)のみを行う冷凍装置に適用されてもよい。
 本発明は、熱交換器又は冷凍装置に利用可能である。
10  :室外ユニット
13  :室外熱交換器
20  :室内ユニット
25、25a、25b、25c:室内熱交換器(熱交換器)
28  :室内ファン
30  :ケーシング
30a :連絡配管挿入口
40  :熱交換面
45  :伝熱管(扁平管)
48  :伝熱フィン
50、50a、50b、50c:風上熱交換部
51  :風上第1熱交換面(第1部、第3部)
52  :風上第2熱交換面(第2部)
53  :風上第3熱交換面
54  :風上第4熱交換面(第4部)
55  :風上熱交換面
56  :風上第1ヘッダ(第1ヘッダ)
57  :風上第2ヘッダ(第2ヘッダ)
58、59:折返し配管(連通路形成部)
60  :風下熱交換部
61  :風下第1熱交換面(第3部)
62  :風下第2熱交換面
63  :風下第3熱交換面(第2部)
64  :風下第4熱交換面(第1部、第4部)
65  :風下熱交換面
66  :風下第1ヘッダ(第1ヘッダ)
67  :風下第2ヘッダ(第2ヘッダ)
70  :接続配管(流路形成部)
75  :第2接続配管(流路形成部)
80  :第2風下熱交換部
81  :最下流第1熱交換面(第1部、第3部)
82  :最下流第2熱交換面(第2部)
83  :最下流第3熱交換面
84  :最下流第4熱交換面(第4部)
85  :最下流熱交換面
86  :最下流第1ヘッダ(第1ヘッダ)
87  :最下流第2ヘッダ(第2ヘッダ)
100 :空気調和装置(冷凍装置)
451 :伝熱管流路
561、571:水平仕切板
A1  :風上第1空間
A2  :風上第2空間(風上第7空間)
A3  :風上第3空間(風上出口側空間/風上上流側空間、風上第8空間)
A4  :風上第4空間
A5  :風上第5空間(風上第9空間)
A6  :風上第6空間(風上上流側空間/風上出口側空間、風上第10空間)
AF  :室内空気流(空気流)
GH  :ガス側出入口
GH1 :第1ガス側出入口(第1入口)
GH2 :第2ガス側出入口(第2入口)
GP  :ガス側連絡配管(連絡配管)
GP1 :第1ガス側連絡配管(連絡配管)
GP2 :第2ガス側連絡配管(連絡配管)
H1-H5  :第1接続孔-第5接続孔
JP、JP´:折返し流路(連通路)
LH  :液側出入口(出口)
LH1 :第1液側出入口(第1出口)
LH2 :第2液側出入口(第2出口)
LP  :液側連絡配管(連絡配管)
LP1 :第1液側連絡配管(連絡配管)
LP2 :第2液側連絡配管(連絡配管)
P1-P5:第1パス-第5パス
RC  :冷媒回路
RP、RP´:接続流路(冷媒流路、第1冷媒流路)
RP2 :第2接続流路(第2冷媒流路)
SC1、SC2:過冷却域
SH1―SH4:過熱域
Sa1 :風上第1ヘッダ空間(第1ヘッダ空間)
Sa2 :風上第2ヘッダ空間(第2ヘッダ空間)
Sb1 :風下第1ヘッダ空間(第1ヘッダ空間、風下第1上流側空間)
Sb2 :風下第2ヘッダ空間(第2ヘッダ空間)
Sc1 :最下流第1ヘッダ空間(第1ヘッダ空間、風下第2上流側空間))
Sc2 :最下流第2ヘッダ空間(第2ヘッダ空間)
dr1 :伝熱管延伸方向
dr2 :伝熱管積層方向
dr3 :空気流れ方向
特開2016-38192号公報 特開2012-163319号公報

Claims (8)

  1.  第1入口(GH1)及び第2入口(GH2)から流入する冷媒を空気流(AF)と熱交換させ出口(LH)から流出させる熱交換器(25)であって、
     風上熱交換部(50、50a、50b、50c)と、
     設置状態において前記風上熱交換部の風下側で前記風上熱交換部と並んで配置され、前記第2入口を形成される風下熱交換部(60、80)と、
     前記風上熱交換部及び前記風下熱交換部間で冷媒流路(RP、RP2)を形成する流路形成部(70、75)と、
    を備え、
     前記風上熱交換部及び前記風下熱交換部は、
      第1ヘッダ空間(Sa1、Sb1、Sc1)を内部に形成する第1ヘッダ(56、66、86)と、
      第2ヘッダ空間(Sa2、Sb2、Sc2)を内部に形成する第2ヘッダ(57、67、87)と、
      前記第1ヘッダ及び前記第2ヘッダに接続され前記第1ヘッダ及び前記第2ヘッダの長手方向に並び、前記第1ヘッダ空間及び前記第2ヘッダ空間を連通させる複数の扁平管(45)と、
    をそれぞれ含み、
     前記第1入口及び前記第2入口から流入した冷媒が前記空気流と熱交換して過冷却状態の液冷媒として前記出口から流出する場合には、
      前記風上熱交換部において、過冷却状態の液冷媒が流れる領域である過冷却域(SC1、SC2)が形成されるとともに、前記出口に連通する前記第1ヘッダ空間又は前記第2ヘッダ空間である風上出口側空間(A3/A6)、及び前記風上出口側空間の冷媒流れの上流側に配置される前記第1ヘッダ空間又は前記第2ヘッダ空間である風上上流側空間(A6/A3)が形成され、
      前記冷媒流路は、前記風下熱交換部において冷媒流れの最も下流側に配置される前記第2ヘッダ空間である風下下流側空間(Sb2、Sc2)と、前記風上上流側空間と、を連通させる、
    熱交換器(25、25a、25b、25c)。
  2.  前記風上熱交換部(50、50b)において、前記第1ヘッダ空間は風上第1空間(A1)と風上第2空間(A2)と風上第3空間(A3)とに仕切られ、前記第2ヘッダ空間は、前記扁平管を介して前記風上第1空間と連通する風上第4空間(A4)と、前記扁平管を介して前記風上第2空間と連通する風上第5空間(A5)と、前記扁平管を介して前記風上第3空間と連通する風上第6空間(A6)と、に仕切られ、
     前記風上熱交換部は、前記風上第4空間と前記風上第5空間とを連通させる連通路(JP)を形成する連通路形成部(58)をさらに含み、
     前記第1入口は、前記風上第1空間に連通し、
     前記第2入口は、前記風下熱交換部において冷媒流れの最も上流側に配置される前記第1ヘッダ空間(Sb1)に連通し、
     前記出口には、前記風上第2空間に連通する第1出口(LH1)と、前記風上出口側空間に連通する第2出口(LH2)と、が含まれ、
     前記風上第3空間又は前記風上第6空間の一方が前記風上出口側空間に該当し、他方が前記風上上流側空間に該当する、
    請求項1に記載の熱交換器(25、25b)。
  3.  前記風上熱交換部(50a)において、前記第1ヘッダ空間は風上第1空間(A1)と風上第2空間(A2)と風上第3空間(A3)とに仕切られ、前記第2ヘッダ空間は、前記扁平管を介して前記風上第1空間と連通する風上第4空間(A4)と、前記扁平管を介して前記風上第2空間と連通する風上第5空間(A5)と、前記扁平管を介して前記風上第3空間と連通する風上第6空間(A6)と、に仕切られ、
     前記風上熱交換部は、前記風上第2空間と前記風上第4空間とを連通させる第2連通路(JP1´)を形成する第2連通路形成部(59)をさらに含み、
     前記第1入口は、前記風上第1空間に連通し、
     前記第2入口は、前記風下熱交換部において冷媒流れの最も上流側に配置される前記第1ヘッダ空間(Sb1)に連通し、
     前記出口には、前記風上第5空間に連通する第1出口(LH1)と、前記風上出口側空間に連通する第2出口(LH2)と、が含まれ、
     前記風上第3空間又は前記風上第6空間の一方が前記風上出口側空間に該当し、他方が前記風上上流側空間に該当する、
    請求項1に記載の熱交換器(25a)。
  4.  前記風下熱交換部(60、80)を複数備え、
     前記風上熱交換部(50c)において、前記第1ヘッダ空間は風上第7空間(A2)と風上第8空間(A3)とに仕切られ、前記第2ヘッダ空間は、前記扁平管を介して前記風上第7空間と連通する風上第9空間(A5)と、前記扁平管を介して前記風上第8空間と連通する風上第10空間(A6)と、に仕切られ、
     前記第2入口(GH2)は、風上側に配置される前記風下熱交換部の最も上流側に配置される前記第1ヘッダ空間又は前記第2ヘッダ空間である風下第1上流側空間(Sb1/Sb2)に連通し、
     前記第1入口(GH1)は、風下側に配置される前記風下熱交換部の最も上流側に配置される前記第1ヘッダ空間又は前記第2ヘッダ空間である風下第2上流側空間(Sc1/Sc2)に連通し、
     前記出口には、前記風上第7空間、前記風上第8空間、前記風上第9空間及び前記風上第10空間のうち、いずれかに連通する第1出口(LH1)と、他のいずれかに連通する第2出口(LH2)と、が含まれ、
     前記風上第7空間、前記風上第8空間、前記風上第9空間及び前記風上第10空間のうち、前記第1出口又は前記第2出口に連通する各空間が前記風上出口側空間に該当し、他の各空間が前記風上上流側空間に該当し、
     前記冷媒流路には、風上側に配置される前記風下熱交換部の前記風下下流側空間といずれかの前記風上上流側空間とを連通させる第1冷媒流路(RP)、及び風下側に配置される前記風下熱交換部の前記風下下流側空間と他の前記風上上流側空間とを連通させる第2冷媒流路(RP2)が含まれる、
    請求項1に記載の熱交換器(25c)。
  5.  前記風上熱交換部及び前記風下熱交換部においては、前記第1入口又は前記第2入口から流入した過熱状態のガス冷媒が前記空気流と熱交換を行って前記出口から過冷却状態の液冷媒として流出する場合に、過熱状態のガス冷媒が流れる領域である過熱域が形成され、
     前記風上熱交換部の前記過熱域を流れる冷媒の流れ方向は、前記風下熱交換部の前記過熱域を流れる冷媒の流れ方向に対向する、
    請求項1から4のいずれか1項に記載の熱交換器(25、25a、25b、25c)。
  6.  前記過冷却域は、前記風上熱交換部のうち、通過する前記空気流の風速が他の部分よりも小さい部分に位置する、
    請求項1から5のいずれか1項に記載の熱交換器(25、25a、25b、25c)。
  7.  設置状態において、
      前記風上熱交換部及び前記風下熱交換部は、前記扁平管が第1方向に向かって延びる第1部(51、64、81)と、前記扁平管が前記第1方向に交差する第2方向(dr2)に向かって延びる第2部(52、63、82)と、を有し、
      前記風下熱交換部の前記第1部は、前記風上熱交換部の前記第1部の風下側に並んで配置され、
      前記風下熱交換部の前記第2部は、前記風上熱交換部の前記第2部の風下側に並んで配置される、
    請求項1から6のいずれか1項に記載の熱交換器(25、25a、25b、25c)。
  8.  前記請求項1から7のいずれか1項に記載の熱交換器(25、25a、25b、25c)と、
     前記熱交換器を収容するケーシング(30)と、
    を備え、
     前記ケーシングには、冷媒連絡配管(LP、GP)を挿入するための連絡配管挿入口(30a)が形成され、
     前記熱交換器において、前記風上熱交換部及び前記風下熱交換部は、前記扁平管が第3方向に向かって延びる第3部(51、61、81)と、前記扁平管が前記第3方向とは異なる第4方向に向かって延びる第4部(54、64、84)と、を有し、
     前記風上熱交換部において、前記第1ヘッダ及び前記第2ヘッダのうち、一方は前記第3部の末端に位置し、他方は前記第3部の末端と離間する前記第4部の先端に位置し、
     前記風下熱交換部において、前記第1ヘッダ及び前記第2ヘッダのうち、一方は前記第3部の末端に位置し、他方は前記第3部の末端と離間する前記第4部の先端に位置し、
     前記風上熱交換部及び前記風下熱交換部において、前記第3部の末端は前記第3部の先端よりも前記連絡配管挿入口の近傍に配置され、前記第4部の先端は前記第4部の末端よりも前記連絡配管挿入口の近傍に配置される、
    冷凍装置(100)。
PCT/JP2018/011532 2017-03-27 2018-03-22 熱交換器又は冷凍装置 WO2018180932A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880017505.5A CN110418931B (zh) 2017-03-27 2018-03-22 热交换器或冷冻装置
EP18775598.8A EP3604995B1 (en) 2017-03-27 2018-03-22 Heat exchanger and refrigeration device
US16/498,776 US11168928B2 (en) 2017-03-27 2018-03-22 Heat exchanger or refrigeration apparatus
AU2018245787A AU2018245787B2 (en) 2017-03-27 2018-03-22 Heat Exchanger or Refrigeration Apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-061234 2017-03-27
JP2017061234A JP6766723B2 (ja) 2017-03-27 2017-03-27 熱交換器又は冷凍装置

Publications (1)

Publication Number Publication Date
WO2018180932A1 true WO2018180932A1 (ja) 2018-10-04

Family

ID=63675669

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/011532 WO2018180932A1 (ja) 2017-03-27 2018-03-22 熱交換器又は冷凍装置

Country Status (6)

Country Link
US (1) US11168928B2 (ja)
EP (1) EP3604995B1 (ja)
JP (1) JP6766723B2 (ja)
CN (1) CN110418931B (ja)
AU (1) AU2018245787B2 (ja)
WO (1) WO2018180932A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111536717A (zh) * 2020-05-22 2020-08-14 南京工程学院 一种制冷用壳管冷凝器高效过冷增焓室
EP3859265A4 (en) * 2018-11-07 2021-11-24 Daikin Industries, Ltd. HEAT EXCHANGER AND AIR CONDITIONER

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020101934A1 (en) * 2018-11-12 2020-05-22 Carrier Corporation Compact heat exchanger assembly for a refrigeration system
JPWO2023281656A1 (ja) * 2021-07-07 2023-01-12

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002372383A (ja) * 2001-06-18 2002-12-26 Calsonic Kansei Corp 炭酸ガス用放熱器
JP2010107102A (ja) * 2008-10-30 2010-05-13 Sharp Corp 空気調和機の室外機
JP2012163319A (ja) 2011-01-21 2012-08-30 Daikin Industries Ltd 熱交換器および空気調和機
JP2012193872A (ja) * 2011-03-15 2012-10-11 Daikin Industries Ltd 熱交換器および空気調和機
JP2014215011A (ja) * 2013-04-30 2014-11-17 ダイキン工業株式会社 空気調和機の室内ユニット
JP2015017738A (ja) * 2013-07-10 2015-01-29 日立アプライアンス株式会社 熱交換器
JP2016038192A (ja) 2014-08-11 2016-03-22 東芝キヤリア株式会社 パラレルフロー型熱交換器および空気調和機

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2252064A (en) * 1938-10-22 1941-08-12 Jr Edward S Cornell Heat exchange unit and system
US2820617A (en) * 1955-11-07 1958-01-21 Trane Co Heat exchanger
US4173998A (en) * 1978-02-16 1979-11-13 Carrier Corporation Formed coil assembly
DE3938842A1 (de) * 1989-06-06 1991-05-29 Thermal Waerme Kaelte Klima Verfluessiger fuer ein kaeltemittel einer fahrzeugklimaanlage
US5529116A (en) * 1989-08-23 1996-06-25 Showa Aluminum Corporation Duplex heat exchanger
US5509272A (en) * 1991-03-08 1996-04-23 Hyde; Robert E. Apparatus for dehumidifying air in an air-conditioned environment with climate control system
US5267610A (en) * 1992-11-09 1993-12-07 Carrier Corporation Heat exchanger and manufacturing method
DE69719489T2 (de) * 1996-12-04 2003-12-24 Toyo Radiator Co., Ltd. Wärmetauscher
KR100264815B1 (ko) * 1997-06-16 2000-09-01 신영주 다단기액분리형응축기
JP3367467B2 (ja) 1999-05-17 2003-01-14 松下電器産業株式会社 フィン付き熱交換器
US6273182B1 (en) * 2000-05-19 2001-08-14 Delphi Technologies, Inc. Heat exchanger mounting
JP3866905B2 (ja) 2000-05-30 2007-01-10 松下電器産業株式会社 熱交換器および冷凍サイクル装置
JP2002350002A (ja) 2001-05-25 2002-12-04 Japan Climate Systems Corp 凝縮器
US6672375B1 (en) * 2002-07-02 2004-01-06 American Standard International Inc. Fin tube heat exchanger with divergent tube rows
JP3972894B2 (ja) * 2003-11-27 2007-09-05 ダイキン工業株式会社 空気調和装置
JP2006329511A (ja) 2005-05-25 2006-12-07 Denso Corp 熱交換器
AU2007303268B2 (en) * 2006-09-29 2011-02-10 Daikin Industries, Ltd. Indoor unit for air conditioner
US7921904B2 (en) * 2007-01-23 2011-04-12 Modine Manufacturing Company Heat exchanger and method
US20090084131A1 (en) * 2007-10-01 2009-04-02 Nordyne Inc. Air Conditioning Units with Modular Heat Exchangers, Inventories, Buildings, and Methods
JP4959756B2 (ja) * 2009-07-22 2012-06-27 中国電力株式会社 熱交換器の補修方法
JP4715971B2 (ja) * 2009-11-04 2011-07-06 ダイキン工業株式会社 熱交換器及びそれを備えた室内機
JP4991904B2 (ja) * 2010-04-26 2012-08-08 シャープ株式会社 熱交換装置
KR101872784B1 (ko) * 2012-02-03 2018-06-29 엘지전자 주식회사 실외 열교환기
KR20130092249A (ko) * 2012-02-10 2013-08-20 엘지전자 주식회사 히트 펌프
CN103256757B (zh) 2013-03-28 2015-07-15 广东美的制冷设备有限公司 换热器及空气调节装置
EP3015808B1 (en) 2013-06-28 2018-08-29 Mitsubishi Heavy Industries Thermal Systems, Ltd. Heat exchanger, heat exchanger structure, and fin for heat exchanger
WO2015025365A1 (ja) * 2013-08-20 2015-02-26 三菱電機株式会社 熱交換器、空調機及び冷凍サイクル装置
CN105683639B (zh) * 2013-10-29 2018-01-19 三菱电机株式会社 管接头、换热器和空调装置
US10337799B2 (en) * 2013-11-25 2019-07-02 Carrier Corporation Dual duty microchannel heat exchanger
JP6388670B2 (ja) * 2015-01-30 2018-09-12 三菱電機株式会社 冷凍サイクル装置
JP6641721B2 (ja) * 2015-04-27 2020-02-05 ダイキン工業株式会社 熱交換器および空気調和機
KR20160131577A (ko) * 2015-05-08 2016-11-16 엘지전자 주식회사 공기조화기의 열교환기
JP2016217565A (ja) 2015-05-15 2016-12-22 株式会社ケーヒン・サーマル・テクノロジー コンデンサ
US10788243B2 (en) * 2016-08-29 2020-09-29 Advanced Distributor Products Llc Refrigerant distributor for aluminum coils

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002372383A (ja) * 2001-06-18 2002-12-26 Calsonic Kansei Corp 炭酸ガス用放熱器
JP2010107102A (ja) * 2008-10-30 2010-05-13 Sharp Corp 空気調和機の室外機
JP2012163319A (ja) 2011-01-21 2012-08-30 Daikin Industries Ltd 熱交換器および空気調和機
JP2012193872A (ja) * 2011-03-15 2012-10-11 Daikin Industries Ltd 熱交換器および空気調和機
JP2014215011A (ja) * 2013-04-30 2014-11-17 ダイキン工業株式会社 空気調和機の室内ユニット
JP2015017738A (ja) * 2013-07-10 2015-01-29 日立アプライアンス株式会社 熱交換器
JP2016038192A (ja) 2014-08-11 2016-03-22 東芝キヤリア株式会社 パラレルフロー型熱交換器および空気調和機

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3859265A4 (en) * 2018-11-07 2021-11-24 Daikin Industries, Ltd. HEAT EXCHANGER AND AIR CONDITIONER
CN111536717A (zh) * 2020-05-22 2020-08-14 南京工程学院 一种制冷用壳管冷凝器高效过冷增焓室

Also Published As

Publication number Publication date
AU2018245787B2 (en) 2019-11-21
CN110418931A (zh) 2019-11-05
US20200386453A1 (en) 2020-12-10
EP3604995A1 (en) 2020-02-05
JP6766723B2 (ja) 2020-10-14
EP3604995A4 (en) 2020-04-08
US11168928B2 (en) 2021-11-09
CN110418931B (zh) 2020-10-30
EP3604995B1 (en) 2021-02-17
JP2018162938A (ja) 2018-10-18

Similar Documents

Publication Publication Date Title
JP6180338B2 (ja) 空気調和機
US10591192B2 (en) Heat exchange apparatus and air conditioner using same
WO2018180932A1 (ja) 熱交換器又は冷凍装置
JP4827882B2 (ja) 熱交換器モジュール、熱交換器、室内ユニット及び空調冷凍装置、並びに熱交換器の製造方法
WO2007017969A1 (ja) 空気調和機及び空気調和機の製造方法
EP3604975B1 (en) Heat exchanger unit
JP7257106B2 (ja) 熱交換器
JP6533257B2 (ja) 空気調和機
JP5295207B2 (ja) フィンチューブ型熱交換器、およびこれを用いた空気調和機
JP6198976B2 (ja) 熱交換器、及び冷凍サイクル装置
WO2018180931A1 (ja) 熱交換器又は冷凍装置
AU2021229135B2 (en) Heat exchanger and refrigeration apparatus
JP6974720B2 (ja) 熱交換器及び冷凍装置
WO2019155571A1 (ja) 熱交換器および冷凍サイクル装置
WO2023233572A1 (ja) 熱交換器及び冷凍サイクル装置
JP6698196B2 (ja) 空気調和機
EP3742082B1 (en) Heat exchanger, outdoor unit, and refrigeration cycle device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18775598

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018775598

Country of ref document: EP

Effective date: 20191028