WO2018180772A1 - 圧電組成物および圧電素子 - Google Patents

圧電組成物および圧電素子 Download PDF

Info

Publication number
WO2018180772A1
WO2018180772A1 PCT/JP2018/011039 JP2018011039W WO2018180772A1 WO 2018180772 A1 WO2018180772 A1 WO 2018180772A1 JP 2018011039 W JP2018011039 W JP 2018011039W WO 2018180772 A1 WO2018180772 A1 WO 2018180772A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric
piezoelectric composition
composition
composite oxide
copper
Prior art date
Application number
PCT/JP2018/011039
Other languages
English (en)
French (fr)
Inventor
浩輝 加藤
維子 廣瀬
廣瀬 正和
Original Assignee
Tdk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk株式会社 filed Critical Tdk株式会社
Priority to US16/497,090 priority Critical patent/US11239410B2/en
Priority to DE112018001758.3T priority patent/DE112018001758B4/de
Priority to JP2019509596A priority patent/JP7031661B2/ja
Priority to CN201880022703.0A priority patent/CN110494999B/zh
Publication of WO2018180772A1 publication Critical patent/WO2018180772A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G33/00Compounds of niobium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G33/00Compounds of niobium
    • C01G33/006Compounds containing, besides niobium, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G35/00Compounds of tantalum
    • C01G35/006Compounds containing, besides tantalum, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • C04B35/6262Milling of calcined, sintered clinker or ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/638Removal thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8542Alkali metal based oxides, e.g. lithium, sodium or potassium niobates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • C01P2002/34Three-dimensional structures perovskite-type (ABO3)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • C04B2235/3255Niobates or tantalates, e.g. silver niobate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • C04B2235/3267MnO2
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/768Perovskite structure ABO3
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/79Non-stoichiometric products, e.g. perovskites (ABO3) with an A/B-ratio other than 1
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/50Piezoelectric or electrostrictive devices having a stacked or multilayer structure

Definitions

  • the present invention relates to a piezoelectric composition and a piezoelectric element having the piezoelectric composition.
  • Piezoelectric compositions are based on spontaneous polarization caused by charge bias in the crystal, and the effect of generating charge on the surface by receiving external stress (piezoelectric effect) and distortion by applying an electric field from the outside. Effect (inverse piezoelectric effect).
  • Piezoelectric elements to which such a piezoelectric composition capable of mutually converting mechanical displacement and electrical displacement is applied are widely used in various fields.
  • an actuator as a piezoelectric element using the inverse piezoelectric effect can obtain a small displacement with high accuracy in proportion to an applied voltage and has a high response speed. It is used for driving a head of an inkjet printer, driving a fuel injection valve, and the like.
  • the piezoelectric composition is used as a sensor for reading minute force and deformation using the piezoelectric effect. Furthermore, since the piezoelectric composition has excellent responsiveness, it is possible to cause resonance by exciting the piezoelectric composition itself or an elastic body in a bonding relationship with the piezoelectric composition by applying an alternating electric field. They are also used as piezoelectric transformers and ultrasonic motors.
  • a piezoelectric composition is composed of a polycrystalline body, and can be obtained by subjecting a ferroelectric composition after firing to a polarization treatment.
  • the direction of spontaneous polarization in each crystal is random, and the ferroelectric composition as a whole has no charge bias and does not exhibit a piezoelectric effect or an inverse piezoelectric effect. Therefore, by applying a direct current electric field that is higher than the coercive electric field to the fired ferroelectric composition, an operation called polarization treatment is performed to align the direction of spontaneous polarization in a certain direction.
  • the ferroelectric composition after the polarization treatment can exhibit properties as a piezoelectric composition.
  • the piezoelectric composition As the piezoelectric composition, a lead-based piezoelectric composition composed of lead zirconate (PbZrO 3 ) and lead titanate (PbTiO 3 ) is often used.
  • the lead-based piezoelectric composition contains about 60 to 70% by weight of lead oxide (PbO) having a low melting point, and the lead oxide tends to volatilize during firing. Therefore, lead-free piezoelectric compositions are a very important issue from the viewpoint of environmental impact.
  • Bismuth layered ferroelectrics are known as piezoelectric compositions that do not contain lead at all. However, since the bismuth layered ferroelectric has a large crystal anisotropy, it is necessary to orient spontaneous polarization using shear stress applied by the hot forging method, which is problematic in terms of productivity.
  • Patent Document 1 discloses a piezoelectric composition in which copper oxide is added to an alkali metal niobate compound.
  • the piezoelectric composition In order to realize high performance and downsizing of a device on which a piezoelectric element having a piezoelectric composition is mounted, it is necessary to reduce the size of the piezoelectric element while maintaining the performance of the piezoelectric element. In this case, it is necessary to reduce the size of the piezoelectric composition, but when the size of the piezoelectric composition is reduced, the mechanical strength of the piezoelectric composition is reduced. If the mechanical strength decreases, a defective product may be generated during processing of the piezoelectric composition. Therefore, the piezoelectric composition is required to have good mechanical strength.
  • the alkali metal niobate compound disclosed in Patent Document 1 volatilizes the alkali metal element at the time of firing, easily causes voids, defects, etc. in the fired piezoelectric composition, and has low mechanical strength. There was a problem. However, in Patent Document 1, the mechanical strength is not evaluated at all.
  • the present invention has been made in view of such a situation, and an object of the present invention is to provide a piezoelectric composition having good mechanical strength and a piezoelectric element including the piezoelectric composition.
  • the piezoelectric composition of the present invention comprises: [1] A piezoelectric composition comprising a composite oxide having a perovskite structure represented by the general formula ABO 3 and copper,
  • the A site element in ABO 3 is potassium, or potassium and sodium, the B site element is niobium, or niobium and tantalum;
  • Copper is contained in mol% in terms of copper element with respect to 1 mol of the composite oxide,
  • the piezoelectric composition is characterized in that n satisfies a relationship of 0.100 ⁇ n ⁇ 1.000.
  • ABO 3 is represented by a composition formula (K x Na 1-x ) m (Ta y Nb 1-y ) O 3 , and y satisfies a relationship of 0 ⁇ y ⁇ 0.300
  • ABO 3 is represented by a composition formula (K x Na 1-x ) m NbO 3 , and x satisfies a relationship of 0.400 ⁇ x ⁇ 1.000 [1] To [4].
  • the piezoelectric composition contains manganese, Manganese is contained in terms of manganese element in terms of 1 mol% of the complex oxide, The piezoelectric composition according to any one of [1] to [5], wherein z satisfies a relationship of 0.000 ⁇ z ⁇ 1.500.
  • a piezoelectric element including the piezoelectric composition according to any one of [1] to [6].
  • the piezoelectric composition according to the present invention has the above characteristics, it is possible to provide a piezoelectric composition having good mechanical strength and a piezoelectric element including the piezoelectric composition.
  • FIG. 1 is a schematic perspective view of an example of a piezoelectric element according to the present embodiment.
  • FIG. 2 is a schematic cross-sectional view of another example of the piezoelectric element according to the present embodiment.
  • FIG. 3 is a graph showing the relationship between “y”, Qm, and relative permittivity ⁇ for the sample of this example.
  • the piezoelectric element is not particularly limited as long as it is an element to which the piezoelectric composition according to this embodiment can be applied.
  • a piezoelectric transformer, a thin film sensor, a piezoelectric ultrasonic motor, etc. are illustrated, for example.
  • a piezoelectric element 5 shown in FIG. 1 includes a plate-like piezoelectric body portion 1 and a pair of electrodes 2 and 3 formed on a pair of opposing surfaces 1a and 1b which are both main surfaces of the piezoelectric body portion 1. .
  • the piezoelectric body portion 1 is composed of the piezoelectric composition according to this embodiment, and details of the piezoelectric composition will be described later.
  • the electrically conductive material contained in the electrodes 2 and 3 is not specifically limited, It can set arbitrarily according to a desired characteristic, a use, etc. In this embodiment, gold (Au), silver (Ag), palladium (Pd), etc. are illustrated.
  • the piezoelectric body portion 1 has a rectangular parallelepiped shape in FIG. 1, but the shape of the piezoelectric body portion 1 is not particularly limited, and can be arbitrarily set according to desired characteristics, applications, and the like. Further, the dimensions of the piezoelectric body portion 1 are not particularly limited, and can be arbitrarily set according to desired characteristics, applications, and the like.
  • the piezoelectric body portion 1 is polarized in a predetermined direction.
  • a predetermined direction For example, in the piezoelectric element 5 shown in FIG. 1, it is polarized in the thickness direction of the piezoelectric body portion 1, that is, the direction in which the electrodes 2 and 3 are opposed to each other.
  • an external power source (not shown) is electrically connected to the electrodes 2 and 3 via wires or the like (not shown), and a predetermined voltage is applied to the piezoelectric body portion 1 via the electrodes 2 and 3.
  • electrical displacement is converted to mechanical displacement in the piezoelectric body portion 1 by the inverse piezoelectric effect, and the piezoelectric body portion 1 can vibrate longitudinally in the vertical direction and laterally in the lateral direction. Can vibrate.
  • the piezoelectric composition according to the present embodiment contains a composite oxide having a perovskite structure represented by the general formula ABO 3 as a main component.
  • the main component is a component that occupies 90 mol% or more with respect to 100 mol% of the piezoelectric composition.
  • an element having a large ionic radius such as an alkali metal element or an alkaline earth metal element, tends to occupy the A site of ABO 3
  • an element having a small ionic radius such as a transition metal element, is formed of ABO 3 . It tends to occupy the B site.
  • a BO 6 oxygen octahedron composed of a B site element and oxygen constitutes a three-dimensional network in which the vertices of each other are shared, and the perovskite structure is formed by filling the voids of this network with the A site element. It is formed.
  • the general formula ABO 3 can be represented by a composition formula (K x Na 1-x ) m (Ta y Nb 1-y ) O 3 . That is, the A site element is potassium (K) and sodium (Na), and the B site element is niobium (Nb) and tantalum (Ta).
  • “x” indicates the proportion of K existing at the A site, and 0 ⁇ x ⁇ 1.000.
  • “x” preferably satisfies the relationship of 0.400 ⁇ x ⁇ 1.000, and more preferably satisfies the relationship of 0.810 ⁇ x ⁇ 1.000.
  • the A site element is only K.
  • Qm can be increased while maintaining good mechanical strength by increasing the proportion of K in the A site.
  • “y” indicates the abundance ratio of Ta at the B site, and 0 ⁇ y ⁇ 1.000.
  • “y” is preferably 0 ⁇ y ⁇ 0.300, and more preferably 0.030 ⁇ y ⁇ 0.100.
  • the B site element is only Nb.
  • “m” represents the ratio of the total number of atoms of the A site element to the total number of atoms of the B site element, so-called A / B ratio. That is, the ratio of the sum of the number of K atoms and the number of Na atoms to the sum of the number of Ta atoms and the number of Nb atoms.
  • “m” preferably satisfies the relationship of 0.970 ⁇ m ⁇ 0.999, and more preferably satisfies the relationship of 0.991 ⁇ m ⁇ 0.999.
  • the B site element (Ta, Nb) is made to be present in excess of the A site element (K, Na), whereby a good mechanical strength can be obtained.
  • the obtained piezoelectric composition exhibits high deliquescence, so that the strength is remarkably low and it tends to be unable to withstand processing.
  • the density of the obtained piezoelectric composition tends to be low, and the mechanical strength tends to decrease.
  • Qm can be further increased while maintaining good mechanical strength.
  • the piezoelectric composition according to the present embodiment contains copper (Cu).
  • Cu copper
  • the Cu content in terms of Cu element with respect to 1 mol (100 mol%) of the composite oxide is n mol%, “n” satisfies the relationship of 0.100 ⁇ n ⁇ 1.000, It is preferable to satisfy the relationship of 0.200 ⁇ n ⁇ 1.000, and it is more preferable to satisfy the relationship of 0.600 ⁇ n ⁇ 1.000.
  • Cu is contained within the above range, the existence form is not particularly limited, and Cu may be dissolved in the crystal grains constituting the composite oxide or may exist at the grain boundaries. May be. When present at the grain boundaries, compounds with other elements may be formed. However, it is preferable that there are many crystal grains having a crystal phase and a grain boundary composed of the above (K x Na 1-x ) m (Ta y Nb 1-y ) O 3 , and exist as different phases other than the above. It is not preferable to do.
  • the bonding strength between the crystal grains becomes strong, and the mechanical strength of the piezoelectric composition can be increased.
  • the Cu content is related to the above-mentioned “m”, and by setting the Cu content and the range of “m” to the above-described ranges, Cu is dissolved in the crystal grains or the grain boundaries. It becomes difficult to form a heterogeneous phase containing Cu. As a result, the bonding force between crystal grains can be further increased. Furthermore, the deliquescence of the piezoelectric composition can also be suppressed.
  • the mechanical quality factor Qm can be improved by containing Cu.
  • the Cu content is too large, leakage current due to voltage application during the polarization treatment of the piezoelectric composition may occur, and sufficient polarization may not be performed. In this case, the polarization becomes insufficient, and the piezoelectric characteristics exhibited by aligning the direction of the spontaneous polarization in a predetermined direction are conversely reduced. Therefore, in this embodiment, it is possible to suppress the heterogeneous phase that is the main cause of the occurrence of leakage current by including Cu within the above range and setting the range of “m” to the above range, As a result, sufficient polarization processing can be performed. Therefore, since the effect of improving Qm can be obtained, Qm can be improved.
  • the piezoelectric composition according to this embodiment may contain manganese (Mn).
  • Mn manganese
  • the content of Mn in terms of Mn with respect to 1 mol (100 mol%) of the composite oxide is z mol%, “z” satisfies the relationship of 0.000 ⁇ z ⁇ 1.500, It is more preferable to satisfy the relationship of 0.000 ⁇ z ⁇ 0.300.
  • Mn is not particularly limited in the form of Mn, as is Cu, and may be dissolved in the crystal grains constituting the composite oxide, It may exist at the grain boundary.
  • the presence of Mn in the grains and / or grain boundaries increases the bonding strength between the crystal grains, and can increase the mechanical strength of the piezoelectric composition.
  • the piezoelectric composition according to this embodiment may contain other components in addition to the components described above.
  • transition metal elements other than Nb, Cu and Mn described above (elements of groups 3 to 11 in the long-period periodic table), alkaline earth metal elements, group 12 elements in the long-period periodic table and long-periodic periods It may contain at least one of group 13 metal elements in the table. This is because piezoelectric characteristics other than Qm, in particular, the electromechanical coupling coefficient (k) can be improved.
  • transition metal elements excluding rare earth elements include chromium (Cr), iron (Fe), cobalt (Co), nickel (Ni), tungsten (W), molybdenum (Mo) and the like.
  • rare earth elements include yttrium (Y), lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), Examples include dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb), and the like.
  • alkaline earth metal elements examples include magnesium (Mg) and strontium (Sr).
  • group 12 element examples include zinc (Zn).
  • Group 13 metal elements include aluminum (Al), gallium (Ga), and indium (In).
  • the piezoelectric composition concerning this embodiment may contain lead (Pb) as an impurity, it is preferable that the content is 1 weight% or less, and it is more preferable that Pb is not included at all. From the viewpoint of low pollution, environmental friendliness and ecology, after volatilization of Pb at the time of firing, or after electronic equipment equipped with a piezoelectric element containing the piezoelectric composition according to the present embodiment is distributed and discarded in the market This is because the release of Pb into the environment can be minimized.
  • Pb lead
  • the average crystal grain size of the crystal particles constituting the piezoelectric composition according to this embodiment may be controlled from the viewpoints of exhibiting piezoelectric characteristics and mechanical strength.
  • the average crystal grain size is, for example, 0 It is preferably 5 ⁇ m to 20 ⁇ m.
  • a starting material for the piezoelectric composition is prepared.
  • a compound containing K and a compound containing Nb can be used.
  • a compound containing Na and a compound containing Ta can be used.
  • the compound containing K and the compound containing Na include carbonates and hydrogencarbonate compounds.
  • the compound containing Nb and the compound containing Ta include oxides.
  • a starting material for copper copper alone or a compound containing copper may be used. In the present embodiment, an oxide containing copper is preferable. Further, when manganese is contained in the piezoelectric composition, a manganese starting material may be prepared. As a starting material for manganese, like copper, manganese alone or a compound containing manganese may be used. In the present embodiment, an oxide containing manganese is preferable.
  • the prepared composite oxide starting materials are weighed to a predetermined ratio and then mixed for 5 to 20 hours using a ball mill or the like.
  • the mixing method may be wet mixing or dry mixing. In the case of wet mixing, the mixed powder is dried. Subsequently, the mixed powder or a molded body obtained by molding the mixed powder is heat-treated (preliminary firing) in the atmosphere at 750 to 1050 ° C. for 1 to 20 hours to obtain a calcined powder of a composite oxide .
  • the composite oxide constituting the obtained calcined powder has a perovskite structure represented by the general formula KNbO 3 or (K, Na) (Ta, Nb) O 3 .
  • the obtained calcined powder is agglomerated, it is preferable to pulverize the calcined powder for a predetermined time using a ball mill or the like to obtain a pulverized powder.
  • a copper starting material or a copper starting material and a manganese starting material weighed at a predetermined ratio are added, and mixed using a ball mill or the like for 5 to 20 hours, and piezoelectric A mixed powder of the composition is obtained.
  • the mixing method may be wet mixing or dry mixing. In the case of wet mixing, the mixed powder is dried to obtain a mixed powder of the piezoelectric composition.
  • the method for molding the mixed powder of the piezoelectric composition is not particularly limited, and may be appropriately selected depending on the desired shape, dimensions, and the like.
  • a predetermined binder and, if necessary, an additive are added to the mixed powder of the piezoelectric composition and molded into a predetermined shape to obtain a molded body.
  • the holding temperature is preferably 400 to 800 ° C.
  • the temperature holding time is preferably 2 to 8 hours.
  • the holding temperature is preferably 950 ° C. to 1060 ° C.
  • the temperature holding time is preferably 2 hours to 4 hours
  • the temperature rising and cooling rates are preferably about 50 ° C./hour to 300 ° C./hour
  • the atmosphere Is preferably an oxygen-containing atmosphere.
  • the obtained piezoelectric composition as a sintered body is polished as necessary, and an electrode paste is applied and baked to form an electrode.
  • the method for forming the electrode is not particularly limited, and the electrode may be formed by vapor deposition, sputtering, or the like.
  • the sintered body on which the electrode is formed is polarized by applying an electric field of 2 kV / mm to 5 kV / mm for about 5 minutes to 1 hour in oil at a predetermined temperature. After performing the polarization treatment, a piezoelectric composition having spontaneous polarization aligned in a predetermined direction is obtained.
  • the piezoelectric composition after the polarization treatment is processed into a predetermined size as necessary to form the plate-like piezoelectric body portion 1.
  • the electrodes 2 and 3 are formed on the piezoelectric portion 1 by vapor deposition or the like, whereby the piezoelectric element shown in FIG. 1 is obtained.
  • an alkali metal niobate compound having a perovskite structure is employed as the composite oxide contained as a main component in the piezoelectric composition, and copper (Cu) is added to the piezoelectric composition within the above range. It is included. Since Cu contained within the above range is not excessively contained in the composite oxide, it is difficult to form a different phase from the crystal particles constituting the composite oxide. That is, Cu is dissolved in the crystal grains constituting the composite oxide or exists at the grain boundaries formed between the crystal grains. When Cu has such a form of existence, the bonding force between crystal grains becomes strong, and as a result, the mechanical strength as a piezoelectric composition is improved.
  • the baked piezoelectric composition may be processed, for example, at the time of polarization treatment, production of a piezoelectric element, and the like. If the piezoelectric composition does not have good mechanical strength, problems such as chipping, cracking, etc. due to insufficient strength of the piezoelectric composition occur during processing, resulting in defective products. When such a defective product occurs, the yield decreases and high productivity cannot be realized. Moreover, since mechanical displacement and electrical displacement are repeatedly applied to the piezoelectric composition, it is necessary to have strength that can withstand these. Since the piezoelectric composition according to the present embodiment has good mechanical strength, it has good workability, and can increase the yield and increase the production efficiency of the piezoelectric element. Furthermore, the piezoelectric composition according to the present embodiment has sufficient strength to withstand repeated mechanical and electrical displacements.
  • Cu has the effect of improving the mechanical quality factor Qm, when its content increases, the leakage current during the polarization treatment of the piezoelectric composition increases, and the polarization treatment becomes insufficient. Conversely, there is a problem that Qm is lowered. Therefore, in this embodiment, by controlling the “m” of the composite oxide together with the Cu content, the occurrence of heterogeneous phases is suppressed, and the range of the Cu content that can be sufficiently polarized is increased. High Qm can be realized.
  • a part of Nb in the composite oxide is replaced with Ta at a predetermined ratio, thereby further improving Qm while maintaining good mechanical strength.
  • the relative dielectric constant ⁇ can also be improved.
  • the mechanical strength of the piezoelectric composition can be further increased and the yield during polarization can be improved.
  • the piezoelectric element having a single piezoelectric layer has been described.
  • a piezoelectric element having a configuration in which piezoelectric layers are stacked may be used.
  • the piezoelectric element which has the structure which combined these may be sufficient.
  • a piezoelectric element 50 shown in FIG. 2 As a piezoelectric element having a configuration in which piezoelectric body portions are laminated, for example, a piezoelectric element 50 shown in FIG. 2 is exemplified.
  • the piezoelectric element 50 includes a laminate 10 in which a plurality of piezoelectric layers 11 and a plurality of internal electrodes 12 made of the piezoelectric composition according to the present embodiment are alternately laminated.
  • a pair of terminal electrodes 21 and 22 are formed at both ends of the laminated body 10 to be electrically connected to the internal electrode layers 12 arranged alternately in the laminated body 10.
  • the thickness per layer of the piezoelectric layer 11 is not particularly limited, and can be arbitrarily set according to desired characteristics and applications. Usually, the interlayer thickness is preferably about 1 ⁇ m to 100 ⁇ m. The number of stacked piezoelectric layers 11 is not particularly limited, and can be arbitrarily set according to desired characteristics and applications.
  • a known method may be used.
  • a green chip to be the laminate 10 shown in FIG. 2 is manufactured and fired to obtain the laminate 10. Thereafter, the terminal electrode is printed or transferred onto the laminate 10 and fired.
  • the method for producing the green chip include a normal printing method using a paste, a sheet method, and the like.
  • a green chip is formed by using a paste obtained by mixing the raw material powder of the piezoelectric composition described above and a vehicle in which a binder is dissolved in a solvent to form a paint.
  • Example 1 potassium hydrogen carbonate (KHCO 3 ) and sodium hydrogen carbonate are used as starting materials for the composite oxide ((K x Na 1-x ) m (Ta y Nb 1-y ) O 3 ) which is the main component of the piezoelectric composition.
  • Powders of (NaHCO 3 ), tantalum oxide (Ta 2 O 5 ), and niobium oxide (Nb 2 O 5 ) were prepared.
  • powders of copper oxide (CuO) and manganese oxide (MnO 2 ) were prepared as starting materials for copper (Cu) and manganese (Mn) as components contained in the piezoelectric composition.
  • the prepared starting materials were weighed so that the fired piezoelectric composition (sintered body) had the composition shown in Table 1.
  • the weighed KHCO 3 , NaHCO 3 and Nb 2 O 5 powders were mixed by a ball mill for 16 hours and then dried at 120 ° C. to obtain a mixed powder.
  • the obtained mixed powder was press-molded and calcined at 1000 ° C. for 4 hours to obtain a calcined body of a composite oxide. Subsequently, this temporarily fired body was pulverized by a ball mill for 16 hours to obtain a pulverized powder.
  • weighed CuO and MnO 2 powders were added, mixed by a ball mill for 16 hours, and then dried at 120 ° C. to obtain a raw material powder of a piezoelectric composition.
  • PVA as a binder was added to the obtained raw material powder of the piezoelectric composition and granulated by a known method.
  • the obtained granulated powder was press-molded by applying a load of 196 MPa with a press molding machine to obtain a flat molded body.
  • the plate-shaped molded body thus obtained was subjected to binder removal treatment at 550 ° C. for 2 hours.
  • the molded body after the binder removal treatment was fired at 1050 ° C. for 2 hours in an air atmosphere to obtain a piezoelectric composition (sintered body).
  • the obtained sintered body is polished into a parallel plate shape having a thickness of 1.0 mm, and a silver paste is printed on both sides of the parallel plate-like sintered body, followed by baking at 800 ° C. Provided. Finally, an electric field of 3 kV / mm was applied in silicon oil at 150 ° C. for 5 minutes to polarize the piezoelectric composition to obtain piezoelectric composition samples (sample numbers 1 to 24).
  • the mechanical strength of the obtained sample was measured as follows.
  • the piezoelectric composition (sintered body) was processed into a length of 7.2 mm, a width of 2.5 mm, and a thickness of 0.32 mm using a double-sided lapping machine and a dicing saw to obtain a sample for measuring mechanical strength.
  • the maximum load (N) when each sample for measuring mechanical strength was broken by three-point bending with a distance between supporting points of 5 mm was measured for each 20 samples by 5543 manufactured by INSTRON, and the mechanical strength was calculated.
  • a sample having a mechanical strength of 70 MPa or more was judged to be good. The results are shown in Table 1.
  • Example 2 The starting materials were weighed so that the sintered piezoelectric composition (sintered body) had the composition shown in Table 3, and a sintered body was produced in the same manner as in Experimental Example 1, and a sample of the piezoelectric composition (sample number) 25-39) were obtained.
  • FIG. 3 shows the relationship between “y”, Qm, and relative dielectric constant ⁇ for samples Nos. 7, 25 to 28, 31, 32, and 39.
  • the piezoelectric composition according to the present invention has high mechanical strength, it can be suitably used for piezoelectric elements in various fields.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

一般式ABO3で表されるペロブスカイト構造を有する複合酸化物と,銅と,を含む圧電組成物であって,ABO3におけるAサイト元素が,カリウム,または,カリウムおよびナトリウムであり,Bサイト元素がニオブ,または,ニオブおよびタンタルであり,複合酸化物1モルに対して,銅が,銅元素換算で,nモル%含有されており,nが,0.100≦n≦1.000である関係を満足し,良好な機械的強度を有する圧電組成物と,その圧電組成物を備える圧電素子を提供する。

Description

圧電組成物および圧電素子
 本発明は、圧電組成物、および、当該圧電組成物を有する圧電素子に関する。
 圧電組成物は、結晶内の電荷の偏りに起因する自発分極に基づき、外部から応力を受けることにより表面に電荷が発生する効果(圧電効果)と、外部から電界が印加されることにより歪みを発生する効果(逆圧電効果)と、を有している。
 このような機械的変位と電気的変位とを相互に変換できる圧電組成物を適用した圧電素子は各種分野で幅広く用いられている。たとえば、逆圧電効果を利用する圧電素子としてのアクチュエータは、印加電圧に比例して、微少な変位が精度よく得られ、かつ応答速度が速いため、光学系部品の駆動用、HDDのヘッド駆動用、インクジェットプリンタのヘッド駆動用、燃料噴射弁駆動用等に用いられている。
 また、圧電効果を利用して、微少な力や変形量を読み取るためのセンサとしても利用されている。さらに、圧電組成物は優れた応答性を有することから、交流電界を印加することで、圧電組成物自身または圧電組成物と接合関係にある弾性体を励振して共振を起こさせることも可能であり、圧電トランス、超音波モータなどとしても利用されている。
 一般的に、圧電組成物は多結晶体で構成されており、焼成後の強誘電体組成物に分極処理を施すことにより得られる。焼成後の強誘電体組成物では、各結晶における自発分極の向きがランダムであり、強誘電体組成物全体としては、電荷の偏りは生じておらず、圧電効果および逆圧電効果を示さない。そこで、焼成後の強誘電体組成物に抗電界以上の直流電界を印加することで、自発分極の向きを一定の方向に揃える分極処理と呼ばれる操作を行う。分極処理後の強誘電体組成物は圧電組成物としての性質を発現できる。
 圧電組成物としては、ジルコン酸鉛(PbZrO)とチタン酸鉛(PbTiO)とからなる鉛系圧電組成物が多く使用されている。しかしながら、鉛系圧電組成物は、融点の低い酸化鉛(PbO)が60~70重量%程度含まれており、焼成時に酸化鉛が揮発しやすい。そのため、環境負荷の観点から、圧電組成物の無鉛化が極めて重要な課題となっている。
 鉛を全く含有しない圧電組成物としては、ビスマス層状強誘電体等が知られている。しかしながら、ビスマス層状強誘電体は、結晶異方性が大きいためにホットフォージング法により印加されたせん断応力を利用して自発分極を配向させる必要があり、生産性の点で問題がある。
 一方、最近では環境配慮型の新たな圧電組成物として、ニオブ酸アルカリ金属系の化合物について研究が進められている。たとえば、特許文献1には、ニオブ酸アルカリ金属系の化合物に酸化銅が添加された圧電組成物が開示されている。
特許4398635号公報
 圧電組成物を有する圧電素子が搭載される機器の高性能化、小型化を実現するには、圧電素子の性能を維持したまま、圧電素子のサイズを小さくする必要がある。この場合、圧電組成物のサイズも小さくする必要があるが、圧電組成物のサイズが小さくなると、圧電組成物の機械的強度は低下してしまう。機械的強度が低下してしまうと、圧電組成物の加工時に不良品が発生する恐れがある。したがって、圧電組成物には良好な機械的強度を有することが求められる。
 しかしながら、特許文献1に開示されているニオブ酸アルカリ金属系の化合物は、焼成時にアルカリ金属元素が揮発し、焼成後の圧電組成物の内部に空隙、欠陥等が生じやすく、機械的強度が低いという問題があった。ところが、特許文献1では、機械的強度については何ら評価されていない。
 本発明は、このような実状に鑑みてなされ、良好な機械的強度を有する圧電組成物と、その圧電組成物を備える圧電素子を提供することを目的とする。
 上記目的を達成するため、本発明の圧電組成物は、
 [1]一般式ABOで表されるペロブスカイト構造を有する複合酸化物と、銅と、を含む圧電組成物であって、
 ABOにおけるAサイト元素がカリウム、または、カリウムおよびナトリウムであり、Bサイト元素がニオブ、または、ニオブおよびタンタルであり、
 複合酸化物1モルに対して、銅が、銅元素換算で、nモル%含有されており、
 nが、0.100≦n≦1.000である関係を満足することを特徴とする圧電組成物である。
 [2]ABOにおけるBサイト元素の総原子数に対するAサイト元素の総原子数をmとしたときに、mが、0.970≦m≦0.999である関係を満足することを特徴とする[1]に記載の圧電組成物である。
 [3]ABOが、組成式(KNa1-x(TaNb1-y)Oで表され、yが、0<y≦0.300である関係を満足することを特徴とする[1]または[2]に記載の圧電組成物である。
 [4]mが、0.991≦m≦0.999である関係を満足することを特徴とする[2]または[3]に記載の圧電組成物である。
 [5]ABOが、組成式(KNa1-xNbOで表され、xが、0.400≦x≦1.000である関係を満足することを特徴とする[1]から[4]のいずれかに記載の圧電組成物である。
 [6]圧電組成物がマンガンを含み、
 複合酸化物1モルに対して、マンガンが、マンガン元素換算で、zモル%含有されており、
 zが、0.000≦z≦1.500である関係を満足することを特徴とする[1]から[5]のいずれかに記載の圧電組成物である。
 [7][1]から[6]のいずれかに記載の圧電組成物を含む圧電素子である。
 本発明に係る圧電組成物が上記の特徴を有することにより、良好な機械的強度を有する圧電組成物と、その圧電組成物を備える圧電素子を提供することができる。
図1は、本実施形態に係る圧電素子の一例の模式的な斜視図である。 図2は、本実施形態に係る圧電素子の他の例の模式的な断面図である。 図3は、本実施例の試料について、「y」と、Qmおよび比誘電率εと、の関係を示すグラフである。
 以下、本発明を、具体的な実施形態に基づき、以下の順序で詳細に説明する。
1.圧電素子
 1.1 圧電組成物
2.圧電素子の製造方法
3.本実施形態における効果
4.変形例
 (1.圧電素子)
 まず、本実施形態に係る圧電組成物が適用された圧電素子について説明する。圧電素子としては、本実施形態に係る圧電組成物が適用可能な素子であれば特に制限されない。本実施形態では、たとえば、圧電トランス、薄膜センサ、圧電超音波モータ等が例示される。
 図1に示す圧電素子5は、板状の圧電体部1と、圧電体部1の両主面である一対の対向面1a、1bに形成された一対の電極2、3とを備えている。圧電体部1は本実施形態に係る圧電組成物から構成されており、圧電組成物の詳細は後述する。また、電極2、3に含有される導電材は特に限定されず、所望の特性、用途等に応じて任意に設定することができる。本実施形態では、金(Au)、銀(Ag)およびパラジウム(Pd)等が例示される。
 圧電体部1は、図1では直方体形状を有しているが、圧電体部1の形状は特に制限されず、所望の特性、用途等に応じて任意に設定することができる。また、圧電体部1の寸法も特に制限されず、所望の特性、用途等に応じて任意に設定することができる。
 圧電体部1は、所定の方向に分極されている。たとえば、図1に示す圧電素子5においては、圧電体部1の厚み方向、すなわち電極2、3が対向する方向に分極されている。電極2、3には、たとえば、図示しないワイヤ等を介して図示しない外部電源が電気的に接続されており、電極2、3を介して、圧電体部1に所定の電圧が印加される。電圧が印加されると、圧電体部1において、逆圧電効果により電気的な変位が機械的な変位に変換され、圧電体部1が縦方向に縦振動することができ、また横方向に横振動することができる。
 (1.2 圧電組成物)
 本実施形態に係る圧電組成物は、一般式ABOで表されるペロブスカイト構造を有する複合酸化物を主成分として含有している。本実施形態では、主成分は、圧電組成物100mol%に対して、90mol%以上を占める成分である。
 ペロブスカイト構造において、イオン半径の大きい元素、たとえば、アルカリ金属元素、アルカリ土類金属元素等はABOのAサイトを占める傾向にあり、イオン半径の小さい元素、たとえば、遷移金属元素等はABOのBサイトを占める傾向にある。そして、Bサイト元素と酸素とから構成されるBO酸素八面体が互いの頂点を共有した三次元ネットワークを構成しており、このネットワークの空隙にAサイト元素が充填されることによりペロブスカイト構造が形成される。
 本実施形態では、一般式ABOは、組成式(KNa1-x(TaNb1-y)Oで表すことができる。すなわち、Aサイト元素が、カリウム(K)およびナトリウム(Na)であり、Bサイト元素がニオブ(Nb)およびタンタル(Ta)である。
 上記の組成式において、「x」は、AサイトにおけるKの存在割合を示しており、0<x≦1.000である。本実施形態では、「x」は、0.400≦x≦1.000である関係を満足することが好ましく、0.810≦x≦1.000である関係を満足することがより好ましい。なお、「x」が1.000のときは、Aサイト元素はKのみである。
 本実施形態では、Aサイトにおいて、Kが占める割合を大きくすることにより、良好な機械的強度を維持しながら、Qmを高めることができる。
 上記の組成式において、「y」は、BサイトにおけるTaの存在割合を示しており、0≦y<1.000である。本実施形態では、「y」は、0<y≦0.300であることが好ましく、0.030≦y≦0.100であることがさらに好ましい。なお、「y」が1.000のときは、Bサイト元素はNbのみである。
 本実施形態では、Bサイト元素がNbのみである場合においても、良好な機械的強度およびQmが得られるが、Nbの一部をTaにより上述した範囲で置換することにより、良好な機械的強度を維持しながら、Qmをさらに高め、比誘電率εをも向上させることができる。
 上記の組成式において、「m」は、Bサイト元素の総原子数に対するAサイト元素の総原子数の比、いわゆるA/B比を示している。すなわち、Taの原子数およびNbの原子数の和に対するKの原子数およびNaの原子数の和の比である。本実施形態では、「m」は、0.970≦m≦0.999である関係を満足することが好ましく、0.991≦m≦0.999である関係を満足することがより好ましい。
 本実施形態では、特に、Bサイト元素(Ta、Nb)をAサイト元素(K、Na)よりも過剰に存在させることにより、良好な機械的強度を得ることができる。なお、「m」が上記の範囲よりも大きい場合には、得られる圧電組成物が高い潮解性を示すため、強度が著しく低く、加工に耐えることができない傾向にある。一方、「m」が上記の範囲よりも小さい場合には、得られる圧電組成物の密度が低くなり、機械的強度が低下する傾向にある。
 さらに、「m」の範囲を適切に調整することにより、良好な機械的強度を維持しながら、Qmをより高めることができる。
 また、本実施形態に係る圧電組成物は、銅(Cu)を含有している。上記の複合酸化物1モル(100モル%)に対するCu元素換算でのCuの含有量をnモル%とすると、「n」は、0.100≦n≦1.000である関係を満足し、0.200≦n≦1.000である関係を満足することが好ましく、0.600≦n≦1.000である関係を満足することがより好ましい。
 Cuが上記の範囲内で含有されていれば、その存在形態は特に制限されず、Cuは、複合酸化物を構成する結晶粒子の粒内に固溶してもよいし、粒界に存在してもよい。粒界に存在する場合には、他の元素と化合物を形成していてもよい。ただし、上記の(KNa1-x(TaNb1-y)Oから構成される結晶相と粒界を有する結晶粒子が多く存在することが好ましく、上記以外の異相として存在することは好ましくない。
 Cuが粒内および/または粒界に存在することにより結晶粒子間の結合力が強くなり、圧電組成物の機械的強度を高めることができる。また、Cuの含有量は、上述した「m」と関係しており、Cuの含有量と「m」の範囲とを上述した範囲とすることにより、Cuが結晶粒子内に固溶または粒界に留まることが可能となりCuを含む異相が形成されにくくなる。その結果、結晶粒子間の結合力をより高めることができる。さらに、圧電組成物の潮解性も抑制することができる。
 また、Cuを含有させることにより、機械的品質係数Qmを向上させることができる。しかしながら、Cuの含有量が多すぎると、圧電組成物の分極処理時の電圧印加に起因するリーク電流が生じて、十分な分極が行われない場合がある。この場合には、分極が不十分となり、自発分極の向きを所定の方向に揃えることにより発揮される圧電特性は逆に低下してしまう。そこで、本実施形態では、Cuを上記の範囲内で含有させることと「m」の範囲を上述した範囲にすることで、リーク電流の発生の主原因である異相を抑制することが可能となり、結果として十分な分極処理を行うことができる。よってQm向上の効果が得られるため、Qmを向上させることができる。
 さらに、本実施形態に係る圧電組成物は、マンガン(Mn)を含有してもよい。上記の複合酸化物1モル(100モル%)に対するMn元素換算でのMnの含有量をzモル%とすると、「z」は、0.000≦z≦1.500である関係を満足し、0.000≦z≦0.300である関係を満足することがより好ましい。
 Mnが上記の範囲内で含有されていれば、Mnは、Cuと同様に、その存在形態は特に制限されず、複合酸化物を構成する結晶粒子の粒内に固溶してもよいし、粒界に存在してもよい。Mnが粒内および/または粒界に存在することにより結晶粒子間の結合力が強くなり、圧電組成物の機械的強度を高めることができる。
 本実施形態に係る圧電組成物は、上述した成分以外にその他の成分を含有してもよい。たとえば、上述したNb、CuおよびMnを除く遷移金属元素(長周期型周期表における3族~11族の元素)、アルカリ土類金属元素、長周期型周期表における12族元素および長周期型周期表における13族の金属元素の内の少なくとも1種を含有していてもよい。これによりQm以外の他の圧電特性、とりわけ電気機械結合係数(k)を向上させることができるからである。
 具体的には、希土類元素を除く遷移金属元素としては、クロム(Cr)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、タングステン(W)、モリブデン(Mo)等が例示される。希土類元素としては、イットリウム(Y)、ランタン(La)、セリウム(Ce)、プラセオジム(Pr)、ネオジム(Nd)、サマリウム(Sm)、ユウロピウム(Eu)、ガドリニウム(Gd)、テルビウム(Tb)、ジスプロシウム(Dy)、ホルミウム(Ho)、エルビウム(Er)、ツリウム(Tm)、イッテルビウム(Yb)等が例示される。
 アルカリ土類金属元素としては、マグネシウム(Mg)、ストロンチウム(Sr)等が例示される。12族元素としては、亜鉛(Zn)等が例示される。13族の金属元素としては、アルミニウム(Al)、ガリウム(Ga)、インジウム(In)等が例示される。
 なお、本実施形態にかかる圧電組成物は、不純物として鉛(Pb)を含んでいてもよいが、その含有量は1重量%以下であることが好ましく、Pbを全く含まないことがより好ましい。低公害化、対環境性および生態学的見地から、焼成時におけるPbの揮発、または、本実施形態に係る圧電組成物を含む圧電素子を搭載する電子機器が市場に流通し廃棄された後における環境中へのPbの放出を最小限に抑制することができるためである。
 本実施形態に係る圧電組成物を構成する結晶粒子の平均結晶粒径は、圧電特性の発揮、機械的強度の観点から制御すればよく、本実施形態では、平均結晶粒径は、たとえば、0.5μm~20μmであることが好ましい。
 (2.圧電素子の製造方法)
 次に、圧電素子の製造方法の一例について以下に説明する。
 まず、圧電組成物の出発原料を準備する。複合酸化物の出発原料としては、Kを含む化合物、Nbを含む化合物を用いることができ、必要に応じて、Naを含む化合物およびTaを含む化合物を用いることができる。Kを含む化合物およびNaを含む化合物としては、たとえば、炭酸塩、炭酸水素化合物等が例示される。Nbを含む化合物およびTaを含む化合物としては、たとえば、酸化物等が例示される。
 銅の出発原料としては、銅単体でもよいし、銅を含む化合物でもよい。本実施形態では、銅を含む酸化物であることが好ましい。また、圧電組成物にマンガンが含まれる場合には、マンガンの出発原料を準備すればよい。マンガンの出発原料としては、銅と同様に、マンガン単体でもよいし、マンガンを含む化合物でもよい。本実施形態では、マンガンを含む酸化物であることが好ましい。
 準備した複合酸化物の出発原料を、所定の割合に秤量した後、ボールミル等を用いて、5~20時間混合を行う。混合する方法としては湿式混合でもよいし、乾式混合でもよい。湿式混合の場合、混合粉を乾燥する。続いて、混合粉または混合粉を成形して得られる成形体を、大気中において750~1050℃、1~20時間の条件で熱処理(仮焼成)を行い、複合酸化物の仮焼き粉末を得る。
 得られた仮焼き粉末を構成する複合酸化物は、一般式KNbOまたは(K,Na)(Ta,Nb)Oで示されるペロブスカイト構造を有している。
 得られた仮焼き粉末が凝集している場合には、ボールミル等を用いて、所定時間仮焼き粉末の粉砕を行い、粉砕粉とすることが好ましい。仮焼き粉末または粉砕粉に、所定の割合に秤量した銅の出発原料、または、銅の出発原料およびマンガンの出発原料を添加して、ボールミル等を用いて、5~20時間混合を行い、圧電組成物の混合粉を得る。混合する方法としては湿式混合でもよいし、乾式混合でもよい。湿式混合の場合、混合粉を乾燥して、圧電組成物の混合粉を得る。
 圧電組成物の混合粉を成形する方法は特に制限されず、所望の形状、寸法等に応じて適宜選択すればよい。プレス成形を行う場合には、圧電組成物の混合粉に、所定のバインダと、必要に応じて添加物とを添加し、所定の形状に成形して成形体を得る。また、圧電組成物の混合粉に所定のバインダ等を添加し造粒して得られる造粒粉を用いて成形体を得てもよい。必要に応じて、得られた成形体に対し、CIP等によりさらなる加圧処理を行ってもよい。
 得られた成形体に脱バインダ処理を施す。脱バインダ条件としては、保持温度を好ましくは400℃~800℃、温度保持時間を好ましくは2時間~8時間とする。
 続いて、脱バインダ処理後の成形体を焼成する。焼成条件としては、保持温度を好ましくは950℃~1060℃、温度保持時間を好ましくは2時間~4時間、昇温および降温速度は、好ましくは50℃/時間~300℃/時間程度とし、雰囲気を好ましくは酸素含有雰囲気とする。
 得られた焼結体としての圧電組成物を必要に応じて研磨し、電極ペーストを塗布して焼き付けて電極を形成する。電極を形成する方法は特に制限されず、蒸着、スパッタリング等で電極を形成してもよい。
 電極を形成した焼結体を所定の温度のオイル中で2kV/mm~5kV/mmの電界を5分間~1時間程度印加して分極処理する。分極処理を行った後に、自発分極が所定の方向に揃えられた圧電組成物が得られる。
 分極処理後の圧電組成物を、必要に応じて所定の大きさに加工し、板状の圧電体部1を形成する。次に、この圧電体部1に電極2、3を蒸着等により形成することにより、図1に示した圧電素子が得られる。
 (3.本実施形態における効果)
 本実施形態では、圧電組成物に主成分として含まれる複合酸化物として、ペロブスカイト構造を有するニオブ酸アルカリ金属系の化合物を採用し、さらに、圧電組成物に銅(Cu)を上記の範囲内で含有させている。上記の範囲内で含有されたCuは、複合酸化物に対して過剰に含まれないので、複合酸化物を構成する結晶粒子とは異なる異相が形成されにくい。すなわち、Cuは、複合酸化物を構成する結晶粒子の内部に固溶している、または、結晶粒子間に形成される粒界に存在している。Cuがこのような存在形態を有することにより、結晶粒子間の結合力が強くなり、その結果、圧電組成物としての機械的強度が向上する。
 焼成後の圧電組成物は、たとえば、分極処理、圧電素子の製造時等に加工される場合がある。圧電組成物が良好な機械的強度を有していなければ、加工中に圧電組成物の強度不足に起因する欠け、割れ等が生じて不良品が発生する等の問題が生じてしまう。このような不良品が発生すると、歩留まりが低下し高い生産性を実現できない。また、圧電組成物には、機械的変位および電気的変位が繰り返し印加されるので、これらに対して耐えうる強度を有する必要がある。本実施形態に係る圧電組成物は、良好な機械的強度を有しているので、加工性が良好であり、歩留まりを高めて圧電素子の生産効率を高めることができる。さらには、本実施形態に係る圧電組成物は、繰り返し印加される機械的変位および電気的変位に耐えうる十分な強度を有している。
 また、Cuが機械的品質係数Qmを向上させるという効果を有しているものの、その含有量が多くなると、圧電組成物の分極処理時におけるリーク電流が増加して、分極処理が不十分となり、逆にQmが低下してしまうという問題がある。そこで、本実施形態では、Cuの含有量とともに、複合酸化物の「m」を制御することにより、異相の発生を抑制し、十分な分極処理が行えるCuの含有量の範囲を大きくして、高いQmを実現することができる。
 また、「m」を特定の範囲に制御しながら、複合酸化物におけるNbの一部を、Taで所定の割合で置換することにより、良好な機械的強度を維持しながら、Qmをさらに向上させ、比誘電率εをも向上させることができる。
 さらに、複合酸化物に対する副成分として、Cuに加えて、マンガン(Mn)を含有させることにより、圧電組成物の機械的強度をさらに高めることができ、且つ分極時における歩留りを向上させることができる。
 (4.変形例)
 上述した実施形態では、圧電体部が単層である圧電素子について説明したが、圧電体部が積層された構成を有する圧電素子であってもよい。また、これらが組み合わされた構成を有する圧電素子であってもよい。
 圧電体部が積層された構成を有する圧電素子としては、たとえば、図2に示す圧電素子50が例示される。この圧電素子50は、本実施形態に係る圧電組成物よりなる複数の圧電層11と複数の内部電極12とを交互に積層した積層体10を備える。この積層体10の両端部には、積層体10の内部で交互に配置された内部電極層12と各々導通する一対の端子電極21、22が形成してある。
 圧電層11の1層あたりの厚み(層間厚み)は特に限定されず、所望の特性や用途等に応じて任意に設定することができる。通常は、層間厚みは1μm~100μm程度が好ましい。圧電層11の積層数は特に限定されず、所望の特性や用途等に応じて任意に設定することができる。
 図2に示す圧電素子50を製造する方法としては、公知の方法を用いればよく、たとえば、図2に示す積層体10となるグリーンチップを作製し、これを焼成して積層体10を得た後、積層体10に端子電極を印刷又は転写して焼成することにより製造される。グリーンチップを製造する方法としては、たとえば、ペーストを用いた通常の印刷法、シート法等が例示される。印刷法およびシート法では、上述した圧電組成物の原料粉と、バインダを溶剤中に溶解したビヒクルと、を混合して塗料化したペーストを用いてグリーンチップを形成する。
 以上、本発明の実施形態について説明してきたが、本発明は上記の実施形態に何ら限定されるものではなく、本発明の範囲内において種々の態様で改変しても良い。
 以下、実施例及び比較例を用いて、本発明をさらに詳細に説明する。ただし、本発明は以下の実施例に限定されるものではない。
 (実験例1)
 まず、圧電組成物の主成分である複合酸化物((KNa1-x(TaNb1-y)O)の出発原料として、炭酸水素カリウム(KHCO)と炭酸水素ナトリウム(NaHCO)と酸化タンタル(Ta)と酸化ニオブ(Nb)の粉末を準備した。また、圧電組成物に含まれる含有成分としての銅(Cu)およびマンガン(Mn)の出発原料として、酸化銅(CuO)および酸化マンガン(MnO)の粉末を準備した。
 準備した出発原料を、焼成後の圧電組成物(焼結体)が表1に示す組成を有するように秤量した。秤量したKHCOとNaHCOとNbの各粉末を、ボールミルにより16時間混合したのち120℃において乾燥して混合粉を得た。得られた混合粉をプレス成形して、1000℃で4時間仮焼し複合酸化物の仮焼成体を得た。続いて、この仮焼成体をボールミルにより16時間粉砕し、粉砕粉を得た。
 得られた粉砕粉に対し、秤量したCuOおよびMnOの各粉末を添加して、ボールミルにより16時間混合したのち120℃において乾燥して圧電組成物の原料粉を得た。得られた圧電組成物の原料粉にバインダとしてのPVAを加えて公知の方法により造粒した。次に、得られた造粒粉をプレス成形機により196MPaの荷重を加えてプレス成形し、平板状の成形体を得た。
 こうして得られた平板状の成形体に550℃、2時間の条件で脱バインダ処理を施した。脱バインダ処理後の成形体を、大気雰囲気下で1050℃、2時間の条件で焼成し、圧電組成物(焼結体)を得た。
 得られた焼結体を研磨して厚さ1.0mmの平行平板状とし、その平行平板状の焼結体の両面に銀ペーストを印刷後、800℃にて焼き付けを実施し対向銀電極を設けた。最後に、150℃のシリコンオイル中で3kV/mmの電界を5分間印加し、圧電組成物の分極処理を行い、圧電組成物の試料(試料番号1~24)を得た。
 得られた試料について、機械的強度を以下のようにして測定した。
 圧電組成物(焼結体)を両面ラップ盤とダイシングソーにより、長さ7.2mm、幅2.5mm、厚さ0.32mmに加工し、機械的強度測定用試料を得た。INSTRON社製5543により、支点間距離5mmの3点曲げによって機械的強度測定用試料が破壊した時の最大荷重(N)を各試料20個ずつ測定し、機械的強度を算出した。本実施例では、実用上の加工性を考慮して、機械的強度が70MPa以上である試料を良好であると判断した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1より、ニオブ酸アルカリ金属系化合物に対する銅の含有量を上記の範囲内とすることにより、良好な機械的強度が得られることが確認できた。
 続いて、得られた試料について、機械的品質係数Qmを以下のようにして測定した。
 Qmは、4194A IMPEDANCE/GAIN-PHASE ANALYZER(HEWLETT PACKARD製)により測定した。本実施例では、Qmが1500以上である試料を良好であると判断した。結果を表2に示す。
 なお、表2の機械的品質係数Qmの欄において、「-」と表されている場合、圧電組成物の分極処理が十分に行えなかったか分極処理中に絶縁破壊が生じたため、所定の圧電特性が得られず、Qmが測定できなかったことを示す。
Figure JPOXMLDOC01-appb-T000002
 表2より、組成式(KNa1-x(TaNb1-y)Oにおいて、「m」および「x」を上記の範囲内とすることにより、良好な機械的強度を維持しつつ、さらに、Qmを向上できることが確認できた。
 (実験例2)
 焼成後の圧電組成物(焼結体)が表3に示す組成を有するように出発原料を秤量し、実験例1と同様にして、焼結体を製造し、圧電組成物の試料(試料番号25~39)を得た。
 得られた試料について、実験例1と同様にして、機械的強度および機械的品質係数Qmを測定し、さらに、比誘電率εを以下のようにして測定した。
 まず、室温(20℃)において、デジタルLCRメータ(YHP社製4284A)にて、周波数1kHz、入力信号レベル(測定電圧)1Vrmsの信号を入力し、静電容量を測定した。そして、比誘電率εを、圧電組成物の厚みと、電極面積と、測定により得られた静電容量とに基づき算出した。試料番号1および7の試料についても比誘電率εを測定した。結果を表3に示す。また、試料番号7、25~28、31、32および39の試料について、「y」と、Qmおよび比誘電率εと、の関係を図3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3および図3より、組成式(KNa1-x(TaNb1-y)Oにおいて、「y」を上記の範囲内とすることにより、良好な機械的強度を維持しつつ、Qmおよび比誘電率εを向上できることが確認できた。
 本発明に係る圧電組成物は、高い機械的強度を有しているので、種々の分野における圧電素子に好適に用いることができる。
5… 圧電素子
 1… 圧電体部
 2,3… 電極
50… 圧電素子
 10… 積層体
  11… 圧電層
  12… 内部電極層
 21,22… 端子電極

Claims (7)

  1.  一般式ABOで表されるペロブスカイト構造を有する複合酸化物と、銅と、を含む圧電組成物であって、
     前記ABOにおけるAサイト元素がカリウム、または、カリウムおよびナトリウムであり、Bサイト元素がニオブ、または、ニオブおよびタンタルであり、
     前記複合酸化物1モルに対して、前記銅が、銅元素換算で、nモル%含有されており、
     前記nが、0.100≦n≦1.000である関係を満足することを特徴とする圧電組成物。
  2.  前記ABOにおける前記Bサイト元素の総原子数に対する前記Aサイト元素の総原子数をmとしたときに、前記mが、0.970≦m≦0.999である関係を満足することを特徴とする請求項1に記載の圧電組成物。
  3.  前記ABOが、組成式(KNa1-x(TaNb1-y)Oで表され、前記yが、0<y≦0.300である関係を満足することを特徴とする請求項1または2に記載の圧電組成物。
  4.  前記mが、0.991≦m≦0.999である関係を満足することを特徴とする請求項2または3に記載の圧電組成物。
  5.  前記ABOが、組成式(KNa1-x(TaNb1-y)Oで表され、前記xが、0.400≦x≦1.000である関係を満足することを特徴とする請求項1から4のいずれかに記載の圧電組成物。
  6.  前記圧電組成物がマンガンを含み、
     前記複合酸化物1モルに対して、前記マンガンが、マンガン元素換算で、zモル%含有されており、
     前記yが、0.000≦z≦1.500である関係を満足することを特徴とする請求項1から5のいずれかに記載の圧電組成物。
  7.  請求項1から6のいずれかに記載の圧電組成物を含む圧電素子。
PCT/JP2018/011039 2017-03-28 2018-03-20 圧電組成物および圧電素子 WO2018180772A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/497,090 US11239410B2 (en) 2017-03-28 2018-03-20 Piezoelectric composition and piezoelectric element
DE112018001758.3T DE112018001758B4 (de) 2017-03-28 2018-03-20 Piezoelektrische Zusammensetzung und piezoelektrisches Element
JP2019509596A JP7031661B2 (ja) 2017-03-28 2018-03-20 圧電組成物および圧電素子
CN201880022703.0A CN110494999B (zh) 2017-03-28 2018-03-20 压电组合物及压电元件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017062407 2017-03-28
JP2017-062407 2017-03-28

Publications (1)

Publication Number Publication Date
WO2018180772A1 true WO2018180772A1 (ja) 2018-10-04

Family

ID=63675725

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/011039 WO2018180772A1 (ja) 2017-03-28 2018-03-20 圧電組成物および圧電素子

Country Status (5)

Country Link
US (1) US11239410B2 (ja)
JP (1) JP7031661B2 (ja)
CN (1) CN110494999B (ja)
DE (1) DE112018001758B4 (ja)
WO (1) WO2018180772A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7415696B2 (ja) 2020-03-16 2024-01-17 Tdk株式会社 圧電組成物および電子部品

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7491713B2 (ja) * 2020-03-27 2024-05-28 Tdk株式会社 圧電素子、圧電アクチュエータ、および圧電トランス

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000313664A (ja) * 1999-02-24 2000-11-14 Toyota Central Res & Dev Lab Inc アルカリ金属含有ニオブ酸化物系圧電材料組成物
JP2017076730A (ja) * 2015-10-16 2017-04-20 株式会社サイオクス 圧電薄膜付き積層基板、圧電薄膜素子およびその製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4398635B2 (ja) 2002-09-24 2010-01-13 株式会社ノリタケカンパニーリミテド 圧電セラミックス
CN100386291C (zh) * 2004-07-15 2008-05-07 清华大学 铌酸钾钠系无铅压电陶瓷及其制备方法
DE102006015042B4 (de) 2006-03-31 2009-09-24 Siemens Ag Bleifreier piezokeramischer Werkstoff mit Kupferdotierung, Verfahren zum Herstellen eines piezokeramischen Bauteils mit dem Werkstoff und Verwendung des Bauteils
JP2009242167A (ja) 2008-03-31 2009-10-22 Tdk Corp 圧電磁器及びそれを用いた圧電素子
EP2431343B1 (en) * 2009-05-08 2016-09-14 Taiyo Yuden Co., Ltd. Piezoelectric ceramic, method for producing same, and piezoelectric device
CN103492343A (zh) * 2011-02-22 2014-01-01 Fdk株式会社 碱金属铌酸盐基压电材料及其制备方法
CN104529446A (zh) * 2014-12-16 2015-04-22 天津大学 一种氧化铜掺杂的铌酸钾钠电致应变陶瓷及其制备方法
JP6573377B2 (ja) * 2015-07-08 2019-09-11 キヤノン株式会社 放射線撮像装置、その制御方法及びプログラム
CN110282972B (zh) * 2018-03-19 2023-07-25 Tdk株式会社 压电组合物以及压电元件

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000313664A (ja) * 1999-02-24 2000-11-14 Toyota Central Res & Dev Lab Inc アルカリ金属含有ニオブ酸化物系圧電材料組成物
JP2017076730A (ja) * 2015-10-16 2017-04-20 株式会社サイオクス 圧電薄膜付き積層基板、圧電薄膜素子およびその製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LIM, JONG BONG ET AL.: "Effect of K/Na ratio on piezoelectric properties of modified-(K1-xNax)NbO3 ''Hard'' lead-free piezoelectrics", CERAMICS INTERNATIONAL, vol. 38, no. 3, 29 October 2011 (2011-10-29), pages 2605 - 2608, XP055613092 *
MATSUBARA, MASATO ET AL.: "Synthesis and Characterization of (K0. 5Na0. 5) (Nb0. 7Ta0. 3) O3 Piezoelectric Ceramics Sintered with Sintering Aid K5.4Cu1.3Ta10O29", JAPANESE JOURNAL OF APPLIED PHYSICS, vol. 44, no. 9A, 8 September 2005 (2005-09-08), pages 6618 - 6623, XP001237052, DOI: doi:10.1143/JJAP.44.6618 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7415696B2 (ja) 2020-03-16 2024-01-17 Tdk株式会社 圧電組成物および電子部品

Also Published As

Publication number Publication date
US20200295252A1 (en) 2020-09-17
JPWO2018180772A1 (ja) 2020-03-12
DE112018001758B4 (de) 2022-03-17
CN110494999A (zh) 2019-11-22
CN110494999B (zh) 2023-06-20
DE112018001758T5 (de) 2019-12-19
JP7031661B2 (ja) 2022-03-08
US11239410B2 (en) 2022-02-01

Similar Documents

Publication Publication Date Title
US11659769B2 (en) Piezoelectric composition and piezoelectric element
JP6365126B2 (ja) 圧電組成物および圧電素子
JP5842636B2 (ja) 圧電磁器組成物および圧電素子
JP7031661B2 (ja) 圧電組成物および圧電素子
US11005028B2 (en) Piezoelectric composition and piezoelectric element
JP7206925B2 (ja) 圧電組成物および圧電素子
JP7004183B2 (ja) 圧電組成物および圧電素子
JP7077704B2 (ja) 圧電組成物および圧電素子
JP6601151B2 (ja) 圧電組成物および圧電素子
JP7415696B2 (ja) 圧電組成物および電子部品
JP6432329B2 (ja) 圧電組成物および圧電素子
JP6565588B2 (ja) 圧電組成物及び圧電素子
JP6375955B2 (ja) 圧電組成物および圧電素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18777547

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019509596

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18777547

Country of ref document: EP

Kind code of ref document: A1