WO2018180695A1 - シリコーンコート布 - Google Patents
シリコーンコート布 Download PDFInfo
- Publication number
- WO2018180695A1 WO2018180695A1 PCT/JP2018/010778 JP2018010778W WO2018180695A1 WO 2018180695 A1 WO2018180695 A1 WO 2018180695A1 JP 2018010778 W JP2018010778 W JP 2018010778W WO 2018180695 A1 WO2018180695 A1 WO 2018180695A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- silicone
- resin
- coated
- thermoplastic resin
- coated cloth
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/12—Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R21/00—Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
- B60R21/02—Occupant safety arrangements or fittings, e.g. crash pads
- B60R21/16—Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags
- B60R21/23—Inflatable members
- B60R21/235—Inflatable members characterised by their material
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M15/00—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
- D06M15/19—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
- D06M15/21—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- D06M15/227—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of hydrocarbons, or reaction products thereof, e.g. afterhalogenated or sulfochlorinated
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M15/00—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
- D06M15/19—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
- D06M15/21—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- D06M15/327—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated alcohols or esters thereof
- D06M15/333—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated alcohols or esters thereof of vinyl acetate; Polyvinylalcohol
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M15/00—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
- D06M15/19—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
- D06M15/37—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- D06M15/507—Polyesters
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M15/00—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
- D06M15/19—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
- D06M15/37—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- D06M15/59—Polyamides; Polyimides
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M15/00—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
- D06M15/19—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
- D06M15/37—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- D06M15/643—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon in the main chain
Definitions
- the present invention relates to a silicone-coated cloth in which a thermoplastic resin is adhered to a silicone-coated surface of a silicone-coated cloth, and an airbag using the same.
- the air bag is housed in the steering handle, dashboard part, etc. during steady operation.
- the sensor detects the shock and generates high-pressure gas.
- the inflated airbag prevents the occupant from colliding with the handle or the like.
- the cloth used for the airbag is required to have high airtightness capable of preventing gas leakage as much as possible.
- appropriate strength is required.
- the airbag is stored in a limited small space in the vehicle as described above, it is required to be folded in a compact manner.
- it is required to be excellent in responsiveness such as quickly inflating when the bag is inflated, and to be lightweight.
- a coated cloth which is a cloth in which an elastomer such as chloroprene, chlorosulfonated olefin, or silicone is applied and laminated on one side of a plain fabric using nylon 6/6 filament yarn of 400 to 1100 dtex, is used. I came.
- Prior Document 1 describes an airbag fabric in which a nylon 6/6 woven fabric is coated with a silicone rubber composition containing a thermoplastic resin powder in silicone rubber.
- the thermoplastic resin powder is used in a mixture with silicone rubber, and the thermoplastic resin powder exists in a state of being embedded in the silicone rubber.
- the purpose of the inclusion of the thermoplastic resin powder in the prior art document 1 is to reduce the surface tackiness of the silicone rubber and improve the tactile sensation.
- An object of the present invention is to provide a silicone-coated cloth for an air bag that has high folding characteristics by heating and pressurization and can be stored compactly.
- the present invention is as follows. 1. A silicone-coated cloth in which one surface of a synthetic fiber fabric is coated with a silicone resin, and the thermoplastic resin is attached to the surface coated with the silicone resin, and the residual ratio of the thermoplastic resin is 70%. This is a silicone-coated cloth. 2. 2. The silicone-coated cloth according to 1 above, wherein the thermoplastic resin has a melting point of 50 to 200 ° C. 3. 3. The silicone-coated cloth according to 1 or 2 above, wherein the adhesion amount of the thermoplastic resin is 3 to 100 g / m 2 . 4). 4.
- the airbag using the silicone-coated cloth to which the thermoplastic resin of the present invention is attached is excellent in fold forming property by heating and pressure treatment, and can be stored compactly. Like conventional airbags made of silicone-coated cloth, it is excellent in airtightness, and an airbag that can be stored in a compact manner can be obtained.
- the attached thermoplastic resin has an advantage that it is difficult to fall off when the silicone-coated cloth is processed into an airbag.
- thermoplastic resin It is the figure of the upper side view and the side view of the friction jig which measures the residual rate of a thermoplastic resin. It is a figure of the sample for the residual rate measurement of a thermoplastic resin. It is the figure which described the measuring method of the residual rate of a thermoplastic resin. It is a figure explaining the sampling method of compactness evaluation. It is a figure which shows an example of a compactness evaluation result.
- a synthetic fiber fabric means a fabric woven using synthetic fiber yarns.
- the woven fabric is excellent in that it is excellent in mechanical strength and can be reduced in thickness.
- the structure of the woven fabric is not particularly limited, and plain weave, twill weave, satin weave and their changed weave, multiaxial weave, and the like can be used. Among these, a plain fabric having excellent mechanical strength is preferable.
- Synthetic fiber yarns include aliphatic polyamide fibers such as nylon 6,6, nylon 6, nylon 4,6, nylon 1 and 2, aromatic polyamide fibers such as aramid fiber, polyethylene terephthalate, polymethylene terephthalate and poly Threads made of polyester fibers such as butylene terephthalate can be used.
- Other synthetic fiber yarns include yarns made of wholly aromatic polyester fibers, polyparaphenine / benzobis / oxazole fibers (PBO fibers), ultrahigh molecular weight polyethylene fibers, polyphenylene sulfide fibers, polyether ketone fibers, and the like.
- PBO fibers polyparaphenine / benzobis / oxazole fibers
- ultrahigh molecular weight polyethylene fibers polyphenylene sulfide fibers
- polyether ketone fibers polyether ketone fibers
- a yarn made of polyester fiber or polyamide fiber is preferable, and polyamide 6/6 fiber yarn is particularly preferable. These fibers may be obtained from raw materials that are partially or wholly reused.
- the synthetic fibers used for these synthetic fiber yarns may contain various additives in order to improve process passability in the raw yarn manufacturing process and the post-processing process.
- the additive include an antioxidant, a heat stabilizer, a smoothing agent, an antistatic agent, a thickener, a flame retardant, and the like.
- the synthetic fiber may be an original yarn or dyed after yarn production.
- the cross section of the single yarn may be any one of irregular cross sections typified by a triangular cross section in addition to a normal round cross section.
- the synthetic fiber yarn is preferably a multifilament yarn of 72 filaments or more from the viewpoint of flexibility and smoothness of the silicone-coated surface.
- the upper limit is not particularly defined, but if the number of filaments is too large, it is difficult to produce yarn, and 216 filaments or less is preferable.
- the fineness per single yarn of the obtained yarn is preferably in the range of 0.1 to 10 dpf.
- the synthetic fiber fabric of the present invention preferably has an oil agent adhesion amount of 0.20% by mass or less.
- the oil agent adhesion amount is more than 0.20% by mass, the adhesiveness with the silicone resin is lowered. More preferably, it is 0.15 mass% or less, More preferably, it is 0.10 mass% or less. Although a minimum in particular is not restrict
- the silicone resin include addition polymerization type silicone rubber.
- dimethyl silicone rubber, methyl vinyl silicone rubber, methyl phenyl silicone rubber, trimethyl silicone rubber, fluoro silicone rubber, methyl silicone resin, methyl phenyl silicone resin, methyl vinyl silicone resin, epoxy modified silicone resin, acrylic modified silicone resin, polyester modified A silicone resin etc. are mentioned.
- addition polymerization type methyl vinyl silicone rubber is preferable because it has rubber elasticity after curing, is excellent in strength and elongation, and is advantageous in terms of cost.
- a reaction curing agent may be used.
- platinum compounds such as platinum powder, chloroplatinic acid and tetrachloroplatinic acid, palladium compounds, rhodium compounds, benzoyl peroxide, para Organic peroxides such as chlorobenzoyl peroxide and orthochloroperoxide can be used.
- the silicone resin contains an adhesion aid.
- an adhesion assistant for example, at least selected from the group consisting of an amino silane coupling agent, an epoxy-modified silane coupling agent, a vinyl silane coupling agent, a chloro silane coupling agent, and a mercapto silane coupling agent 1 type or more is mentioned.
- an inorganic filler to the silicone resin.
- an inorganic filler to be added conventionally used as a filler for the purpose of reinforcing silicone resin, adjusting viscosity, improving heat resistance, improving flame retardancy, etc.
- the most representative filler is silica particles. preferable.
- the specific surface area of the silica particles is preferably 50 cm 2 / g or more, more preferably 50 to 400 m 2 / g, still more preferably 100 to 300 m 2 / g. When the specific surface area is in this range, it is easy to impart excellent tear strength characteristics to the obtained cured silicone resin.
- the specific surface area is measured by the BET method.
- Silica particles may be used alone or in combination of two or more.
- silica particles examples include natural products such as quartz, quartz, quartz sand, and diatomaceous earth, and synthetic products such as dry silica, silica fume, wet silica, silica gel, and colloidal silica.
- silica particles In order to make the above silica particles easy to impart better fluidity to a resin composition containing a silicone resin and an additive, methyl chlorosilanes such as trimethylchlorosilane, dimethyldichlorosilane, and methyltrichlorosilane, Hydrophobic silica particles are preferred in which the surface of the particles is hydrophobized using an organosilicon compound such as siloxane, hexamethyldisilazane, divinyltetramethyldisilazane, dimethyltetravinyldisilazane, or the like.
- organosilicon compound such as siloxane, hexamethyldisilazane, divinyltetramethyldisilazane, dimethyltetravinyldisilazane, or the like.
- the content of silica particles is preferably 10 to 20% by mass, more preferably 12 to 20% by mass, based on the total silicone resin.
- the content of the silica particles is less than 10% by mass, the mechanical strength of the silicone resin tends to be lowered.
- the content of the silica particles exceeds 20% by mass, the fluidity of the resin composition tends to be lowered and the coating workability is deteriorated, and the resin becomes brittle and the adhesiveness tends to be lowered.
- the resin viscosity of the silicone resin used is preferably 10,000 to 50,000 mPa ⁇ sec, more preferably 13,000 to 40,000 mPa ⁇ sec, and further preferably 20,000 to 35,000 mPa ⁇ sec. preferable.
- the resin viscosity is less than 10,000 mPa ⁇ sec, since the resin enters the fabric, it is difficult to secure the resin thickness necessary for ensuring heat resistance and airtightness.
- the resin viscosity exceeds 50,000 mPa ⁇ sec, it becomes difficult to adjust the coating amount to 50 g / m 2 or less.
- a solvent system or a solventless system may be used, but a solventless system is preferable in consideration of environmental influences.
- the coating amount of the silicone resin is coated on one surface of the synthetic fiber woven fabric is preferably 10 ⁇ 200g / m 2, more preferably 15 ⁇ 100g / m 2, 20 ⁇ 50g / m 2 and more preferable.
- the coating amount of the silicone resin is thin thickness of the coating layer in the case of less than 10 g / m 2, the damage to susceptible coat layer at the time of peeling of the bonding by the thermoplastic resin, if it exceeds 200 g / m 2, the coated fabric Since the rigidity of the film is too high, the adhesion with the thermoplastic resin cannot sufficiently provide the folded moldability.
- a silicone resin is coated on one surface of a synthetic fiber fabric, and a thermoplastic resin needs to be further attached to the surface.
- the surface of the uncoated synthetic fiber fabric may be coated with a silicone resin. That is, a silicone-coated cloth in which a silicone-based resin is coated on both surfaces of a synthetic fiber fabric and a thermoplastic resin is attached to one surface thereof is also one embodiment of the present invention.
- thermoplastic resin adhering to the surface coated with the silicone resin in the present invention examples include ethylene-vinyl acetate copolymer (hereinafter referred to as EVA) system, polyamide system, polyester system, and polyvinyl alcohol (PVA) system. , Polyurethane-based and ionomer-based resins.
- EVA ethylene-vinyl acetate copolymer
- PVA polyvinyl alcohol
- the melting point of the thermoplastic resin is preferably 50 to 200 ° C, more preferably 70 to 150 ° C, and further preferably 90 to 120 ° C.
- the melting point of the thermoplastic resin is less than 50 ° C., it is difficult to handle in a high temperature environment, and when the melting point exceeds 200 ° C., it is high temperature to melt the thermoplastic resin by heating when folding the airbag. Therefore, there is a problem that the synthetic fiber fabric is thermally deteriorated and the strength of the airbag is lowered.
- thermoplastic resin is preferably attached only to one surface of the surface of the silicone-coated cloth coated with the silicone-based resin in consideration of cost and ease of manufacture.
- the state of the thermoplastic resin when the thermoplastic resin is attached to the surface of the silicone-coated cloth coated with the silicone resin is either a solid state, a state melted by heat, or a state dissolved in a solvent. Although it may adhere, a solid state that does not require melting energy or dissolving solvent is particularly preferable.
- the method of adhering the thermoplastic resin to the surface of the silicone-coated cloth coated with the silicone resin is, as long as it is solid, spraying using vibration or the like, spraying using compressed air, dot type or gravure roll, etc.
- Examples include pattern processing and print processing. As long as it is in a hot melt or solution state, coating with a knife, roll, T-die, etc., resin extrusion laminating method, dry laminating method, spraying by ink jet method, spray method, curtain spray method, etc. may be mentioned.
- the pattern in which the thermoplastic resin adheres to the silicone-coated surface of the silicone-coated cloth is arranged uniformly on the entire surface, arranged in any pattern such as random, dot-like, slit-like, lattice-like, or staggered arrangement.
- random or dot shape is preferable because the increase in rigidity of the coated fabric can be suppressed and the pressure energy during folding can be reduced.
- the dot shape is not particularly specified, and a round shape, a diamond shape, or the like can be used.
- the adhesion area ratio when adhering randomly or in the form of dots is 1% or more and 90% or less, more preferably 3% or more and 70% or less, and further preferably 5% or more and 50% or less with respect to the area of the silicone-coated cloth. .
- the adhesion area ratio is less than 1%, the adhesive strength between the silicone-coated cloths at the time of heat molding is not sufficient, and the shape retention is poor. Further, if the adhesion area ratio is larger than 90%, the cloth has high rigidity, and it is difficult to make it compact even by heat molding.
- thermoplastic resin As a method of adhering and fixing the thermoplastic resin to the surface of the silicone-coated cloth coated with the silicone-based resin, it may be fixed by an adhesive previously attached to the coated surface, or melted by heat after placing the resin. Then, it may be physically bonded by being cooled and then solidified. In the molten state, it is preferably fixed by cooling. In the solution state, in addition to the above-described immobilization method, a method of melting and physically immobilizing the solvent with heat, or a method of immobilizing the solvent itself by curing with heat or ultraviolet light may be selected.
- thermoplastic resin In order to improve the residual ratio of the thermoplastic resin, it is preferable to apply the thermoplastic resin to the surface of the silicone resin before curing the silicone resin on the synthetic fiber fabric. It is preferable to apply the thermoplastic resin before the silicone resin is cured, because it becomes difficult to be detached from the surface of the coated cloth due to the anchor effect, and the residual rate is improved.
- Adhesion amount of the thermoplastic resin varies depending on the kind of the thermoplastic resin, in particular are not limited to, 3 preferably ⁇ 100 g / m 2, more preferably 5 ⁇ 50g / m 2.
- thermoplastic resin When the thermoplastic resin is rubbed and detached with the jig shown in FIG. 1, it is preferable that 70% or more remains on the surface of the silicone-coated cloth. More preferably, it is 75% or more. When the residual ratio of the thermoplastic resin is less than 70%, the thermoplastic resin is detached due to friction or the like during the process of processing the silicone-coated cloth into an airbag, and the process is contaminated. There exists a problem that sufficient adhesive strength by processing cannot be expressed.
- thermoplastic resin Melting point of thermoplastic resin
- the silicone-coated cloth to which the thermoplastic resin is adhered is cut out to be within 5 cm in width and 10 cm in length or more.
- the weight (A) of the sample is measured.
- the sample is fixed to the stage with double-sided tape, and the tip of the jig (weight 375 g) shown in FIG. Hang the yarn on the tip of the jig and let the yarn run on the pulley, then grip it with the chuck (grip part) of the universal tensile tester (see Fig. 3) and pull it up at a speed of 100 mm / min.
- a silicone coated cloth with a thermoplastic resin attached is cut into a 15cm warp x 30cm weft, and a sample (see Fig. 4) that is folded 6 times parallel to the warp so that the coated surfaces overlap each other in a bellows shape is a metal container with a diameter of 45mm.
- 1 kg of metal weight with a diameter of 45 mm from above let stand in an oven at 150 ° C. for 30 minutes, then take out from the oven, then cool it at 20 ° C. for 30 minutes with the weight on it, The sample was taken out from the metal container and then allowed to stand at 20 ° C. for 30 minutes. The widest part of the sample after standing was measured to evaluate its compactness.
- Example 1 A nylon 6/6 multifilament fiber having a total fineness of 470 dtex and 72 filaments was woven in a plain jet weave in a water jet loom, shrunk with boiling water, and dried at 110 ° C. The resulting woven fabric had a weaving density in the warp and weft directions of 46 / 2.54 cm.
- an addition polymerization type methyl vinyl silicone resin was applied to one side of the woven fabric once by knife coating. Thereafter, before the silicone resin is cured, EVA resin (Tokyo Ink Co., Ltd., 2030, M30PASS) is arranged in a staggered arrangement in a dot shape with a diameter of 6 mm and a thickness of 1 mm on the coated surface (see FIG.
- Example 2 An addition polymerization type methyl vinyl silicone resin was applied to the same fabric as in Example 1 once by knife coating. After that, before the silicone resin is cured, a polyamide resin (F915, L type, manufactured by Tokyo Ink Co., Ltd.) is arranged in a staggered arrangement in a dot shape with a diameter of 6 mm and a thickness of 1 mm on the coated surface (see FIG. 2). Curing treatment was performed at 195 ° C. for 1.5 hours, and the polyamide-based resin was immobilized on the surface of the coat layer. Table 1 shows the physical properties and the like of the obtained silicone-coated cloth. The residual ratio of the thermoplastic resin in the obtained silicone-coated cloth was 100%, the compactness was 45 mm, and the folds were well held by heating and pressing.
- a polyamide resin F915, L type, manufactured by Tokyo Ink Co., Ltd.
- Example 3 An addition polymerization type methyl vinyl silicone resin was applied to the same fabric as in Example 1 once by knife coating. After that, before the silicone resin is cured, a polyester resin (G170, Z type, manufactured by Tokyo Ink Co., Ltd.) is arranged in a staggered pattern in a dot shape with a diameter of 6 mm and a thickness of 1 mm on the coated surface (see FIG. 2). Curing treatment was performed at 195 ° C. for 1.5 minutes to immobilize the polyester resin on the surface of the coat layer. Table 1 shows the physical properties and the like of the obtained silicone-coated cloth. The residual rate of the thermoplastic resin in the obtained silicone-coated cloth was 93%, the compactness was 48 mm, and the folds were well held by heating and pressurization.
- a polyester resin (G170, Z type, manufactured by Tokyo Ink Co., Ltd.) is arranged in a staggered pattern in a dot shape with a diameter of 6 mm and a thickness of 1 mm on the coated
- Example 1 An addition polymerization type methyl vinyl silicone resin was applied once by knife coating to the same fabric as in Example 1, and the silicone resin was cured at 190 ° C. for 1 minute. After that, EVA resin (Tokyo Ink Co., Ltd., 2030, M30PASS) is arranged in a staggered arrangement in a dot shape with a diameter of 6 mm and a thickness of 1 mm on the coated surface (see FIG. 2), and cured at 195 ° C. for 1.5 hours Then, the EVA resin was immobilized on the surface of the coat layer. Table 1 shows the physical properties and the like of the obtained silicone-coated cloth. The residual rate of the thermoplastic resin in the obtained silicone-coated cloth was 14%, the compactness was 60 mm, the adhesion between the coated cloth and the thermoplastic resin was weak, and it was difficult to hold the folds by heating and pressing.
- EVA resin Tokyo Ink Co., Ltd., 2030, M30PASS
- ⁇ Comparative example 2> An addition polymerization type methyl vinyl silicone resin was applied once by knife coating to the same fabric as in Example 1, and the silicone resin was cured at 190 ° C. for 1 minute. Thereafter, a polyamide resin (F915, L type, manufactured by Tokyo Ink Co., Ltd.) is arranged in a staggered arrangement in a dot shape with a diameter of 6 mm and a thickness of 1 mm on the coated surface (see FIG. 2), and cured at 195 ° C. for 1.5 hours The polyamide-based resin was fixed to the surface of the coat layer by treatment. Table 1 shows the physical properties and the like of the obtained silicone-coated cloth. The residual ratio of the thermoplastic resin of the obtained silicone coated cloth was 50%, the compactness was 60 mm, the adhesiveness between the coated cloth and the thermoplastic resin was weak, and it was difficult to hold the folds by heating and pressing.
- a polyamide resin F915, L type, manufactured by Tokyo Ink Co., Ltd.
- LDPE low-density polyethylene
- M30PASS low-density polyethylene
- Table 1 shows the physical properties and the like of the obtained silicone-coated cloth.
- the silicone-coated cloth had a thermoplastic resin residual ratio of 7%, a compactness of 60 mm, and was well held by heat and pressure.
- a polyester resin LDPE resin manufactured by Tokyo Ink Co., Ltd.
- the airbag In order to fold the airbag in a compact manner, it is a silicone-coated cloth suitable for a storage method in which the base fabric is pressurized simultaneously with heating, and is folded in a more compact manner by attaching the folding gusset. Since a silicone-coated cloth that can provide an air bag that is easy to stick and can be stored compactly can be obtained, restrictions on the interior design can be reduced and the industrial contribution is significant.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Mechanical Engineering (AREA)
- Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
- Air Bags (AREA)
- Chemical Or Physical Treatment Of Fibers (AREA)
- Laminated Bodies (AREA)
Abstract
本願発明は、加熱と加圧により折グセ成型性が高く、コンパクトに収納できるエアバッグ用シリコーンコート布を提供することを目的とし、合成繊維製織物の一方の面にシリコーン系樹脂がコートされており、シリコーン系樹脂がコートされた面に熱可塑性樹脂が付着しており、熱可塑性樹脂の残存率が70%以上であるシリコーンコート布とすることで達成される。
Description
本発明は、シリコーンコート布のシリコーンコート面に熱可塑性樹脂を付着させたシリコーンコート布およびそれを用いたエアバッグに関する。
エアバッグは、定常運転中にはステアリングハンドルやダッシュボード部分等に収納されており、自動車が衝突した時には、そのショックをセンサーが感知して高圧ガスを発生させ、該ガスで上記エアバッグを瞬時に膨らませるというものであり、この膨らんだエアバッグによって、乗員がハンドル等に衝突するのを防いでいる。
したがって、上記エアバッグに使用される布としては、まず第1にガス漏れを極力防ぐことのできる高気密性が要求される。第2に適切な強度が必要である。第3に上述の如くエアバッグは車内の限られた小さなスペースに収納されることから、コンパクトに折り畳むことが要求される。第4にバッグが膨張する際に素早く膨らむといった応答性に優れ、軽量であることが要求される。
そこで従来、エアバッグは400~1100デシテックスのナイロン6・6フィラメント糸を用いた平織物の片面に、クロロプレン、クロルスルホン化オレフィン、シリコーンなどのエラストマーを塗布、積層した布であるコート布が用いられてきた。
先行文献1には、シリコーンゴムに熱可塑性樹脂粉末を含有させたシリコーンゴム組成物をナイロン6・6織布にコーティングしたエアバッグ用布が記載されている。先行文献1において、熱可塑性樹脂粉末はシリコーンゴムと混合して使用されており、熱可塑性樹脂粉末はシリコーンゴム中に埋没した状態で存在しているものである。また、先行文献1において熱可塑性樹脂粉末を含有させるのは、シリコーンゴムの表面粘着性を低減させること、触感を向上させることをその目的としている。
エアバッグ用基布をコンパクトに折り畳むために、基布に加熱と同時に加圧を行い、折グセを付けてよりコンパクトに折り畳むという収納方法が近年、採用されている。この加熱と加圧により折グセを付ける収納方法は、基布としてノンコート布にのみ適用されており、現在、エアバッグ用基布の主流となっているシリコーンコート布には適用されていない。これは、シリコーンコート布に使用されているシリコーン系樹脂は熱硬化性樹脂であり、すでに基布上で硬化したシリコーンコート層は加熱により折グセが付きにくく、加熱と加圧で折グセを付与する処理を行ってもコンパクトに折り畳み成型できないという課題があったためである。
本発明は、加熱と加圧により折グセ成型性が高く、コンパクトに収納できるエアバッグ用シリコーンコート布を提供することを目的とする。
本発明者は上記課題を解決するため、鋭意研究した結果、ついに本発明を完成するに到った。すなわち本発明は以下の通りである。
1.合成繊維製織物の一方の面にシリコーン系樹脂がコートされたシリコーンコート布であって、シリコーン系樹脂がコートされた面に熱可塑性樹脂が付着しており、熱可塑性樹脂の残存率が70%以上であるシリコーンコート布。
2.熱可塑性樹脂の融点が50~200℃である上記1に記載のシリコーンコート布。
3.熱可塑性樹脂の付着量が3~100g/m2である上記1または2に記載のシリコーンコート布。
4.シリコーン系樹脂の塗布量が10~200g/m2である上記1~3のいずれかに記載のシリコーンコート布。
5.シリコーン系樹脂を合成繊維製織物にコートし、シリコーン系樹脂の硬化前に熱可塑性樹脂をシリコーン系樹脂に付着した上記1~4のいずれかに記載のシリコーンコート布。
6.上記1~5のいずれかに記載のシリコーンコート布の、シリコーン系樹脂がコートされた合成繊維製織物の面の他方の面にもシリコーン系樹脂がコートされたシリコーンコート布。
7.上記1~6のいずれかに記載のシリコーンコート布を用いたエアバッグ。
1.合成繊維製織物の一方の面にシリコーン系樹脂がコートされたシリコーンコート布であって、シリコーン系樹脂がコートされた面に熱可塑性樹脂が付着しており、熱可塑性樹脂の残存率が70%以上であるシリコーンコート布。
2.熱可塑性樹脂の融点が50~200℃である上記1に記載のシリコーンコート布。
3.熱可塑性樹脂の付着量が3~100g/m2である上記1または2に記載のシリコーンコート布。
4.シリコーン系樹脂の塗布量が10~200g/m2である上記1~3のいずれかに記載のシリコーンコート布。
5.シリコーン系樹脂を合成繊維製織物にコートし、シリコーン系樹脂の硬化前に熱可塑性樹脂をシリコーン系樹脂に付着した上記1~4のいずれかに記載のシリコーンコート布。
6.上記1~5のいずれかに記載のシリコーンコート布の、シリコーン系樹脂がコートされた合成繊維製織物の面の他方の面にもシリコーン系樹脂がコートされたシリコーンコート布。
7.上記1~6のいずれかに記載のシリコーンコート布を用いたエアバッグ。
本発明の熱可塑性樹脂が付着したシリコーンコート布を使用したエアバッグは、加熱と加圧処理による折グセ成型性に優れており、コンパクトに収納できる。従来のシリコーンコート布からなるエアバッグ同様に気密性に優れる上、コンパクトに収納することができるエアバッグを得ることができるため、車内デザインの制約を少なくできるという利点がある。また、付着させた熱可塑性樹脂が、シリコーンコート布をエアバッグに加工する際に脱落しにくいという利点も有する。
以下、本発明について詳細に説明する。
本発明において、合成繊維製織物とは、合成繊維糸条を用いて製織される織物を意味する。織物は、機械的強度に優れ、厚さを薄くできるという点で優れている。織物の組織は、特に限定されるものでなく、平織、綾織、朱子織およびこれらの変化織、多軸織などを用いることができる。これらの中でも、優れた機械的強度を有する平織物が好ましい。
合成繊維糸条としては、特にナイロン6・6、ナイロン6、ナイロン4・6、ナイロン1・2等の脂肪族ポリアミド繊維、アラミド繊維のような芳香族ポリアミド繊維、ポリエチレンテレフタレート、ポリメチレンテレフタレートやポリブチレンテレフタレートなどのポリエステル繊維からなる糸条が使用できる。
他の合成繊維糸条としては、全芳香族ポリエステル繊維、ポリパラフェニン・ベンゾビス・オキサゾール繊維(PBO繊維)、超高分子量ポリエチレン繊維、ポリフェニレンサルファイド繊維、ポリエーテルケトン繊維等からなる糸条が挙げられる。ただし、経済性を勘案すると、ポリエステル繊維、ポリアミド繊維からなる糸条が好ましく、特に好ましくはポリアミド6・6繊維糸条である。また、これらの繊維は一部または全部が再利用された原材料より得られるものでよい。
また、これらの合成繊維糸条に使用する合成繊維には、原糸製造工程や後加工工程での工程通過性を向上させるために、各種添加剤を含有させてもよい。添加剤としては、例えば、酸化防止剤、熱安定剤、平滑剤、帯電防止剤、増粘剤、難燃剤等が挙げられる。また、この合成繊維は原着糸や製糸後染色したものでもよい。また、単糸の断面は、通常の丸断面のほか、三角断面等に代表される異形断面のどのようなものであってもよい。合成繊維糸条は、72フィラメント以上のマルチフィラメント糸を用いることが、柔軟性、シリコーンコート面の平滑性の点から好ましい。上限は特に規定されないが、フィラメント数が多すぎる場合は糸の製造が困難となるため、216フィラメント以下が好ましい。得られる糸の単糸1本あたりの繊度は0.1~10dpfの範囲が好ましい。
本発明の合成繊維製織物は、油剤付着量が0.20質量%以下であることが好ましい。油剤付着量が0.20質量%より多くなると、シリコーン系樹脂との接着性が低下する。より好ましくは0.15質量%以下、さらに好ましくは0.10質量%以下である。下限は特に制限しないが、0.005質量%以上、より好ましくは0.01質量%以上である。
シリコーン系樹脂の具体例としては、付加重合型シリコーンゴム等が挙げられる。例えば、ジメチルシリコーンゴム、メチルビニルシリコーンゴム、メチルフェニルシリコーンゴム、トリメチルシリコーンゴム、フロロシリコーンゴム、メチルシリコーンレジン、メチルフェニルシリコーンレジン、メチルビニルシリコーンレジン、エポキシ変性シリコーンレジン、アクリル変性シリコーンレジン、ポリエステル変性シリコーンレジン等が挙げられる。なかでも、硬化後にゴム弾性を有し、強度や伸びに優れ、コスト面でも有利な、付加重合型メチルビニルシリコーンゴムが好ましい。
シリコーン系樹脂を使用する場合には、反応硬化剤を用いてもよく、例えば、白金粉末、塩化白金酸、四塩化白金酸等の白金系化合物や、パラジウム化合物、ロジウム化合物、ベンゾイルパーオキサイド、パラクロルベンゾイルパーオキサイド、オルソクロロパーオキサイドなどの有機過酸化物等を用いることができる。
シリコーン系樹脂と合成繊維製織物との接着性を向上させるために、シリコーン系樹脂に接着助剤を含有させることが好ましい。接着助剤としては、例えば、アミノ系シランカップリング剤、エポキシ変性シランカップリング剤、ビニル系シランカップリング剤、クロル系シランカップリング剤、およびメルカプト系シランカップリング剤よりなる群から選ばれる少なくとも1種以上が挙げられる。
シリコーン系樹脂には無機質充填剤を加えることも好ましい実施形態である。加える無機質充填剤としては、従来からシリコーン系樹脂の補強、粘度調整、耐熱性向上、難燃性向上などを目的とする充填剤として使用されており、最も代表的な充填剤であるシリカ粒子が好ましい。シリカ粒子の比表面積は、50cm2/g以上が好ましく、より好ましくは50~400m2/g、さらに好ましくは100~300m2/gである。比表面積がこの範囲にあると、得られたシリコーン系樹脂硬化物に優れた引裂強度特性を付与しやすい。比表面積はBET法により測定される。シリカ粒子は、単独で用いても2種以上を併用してもよい。本発明で使用できるシリカ粒子としては、例えば、石英、水晶、珪砂、珪藻土等の天然品、乾式シリカ、シリカヒューム、湿式シリカ、シリカゲル、コロイダルシリカ等の合成品が挙げられる。
上記のシリカ粒子は、シリコーン系樹脂と添加剤を含む樹脂組成物に対してより良好な流動性を付与させやすくするため、トリメチルクロロシラン、ジメチルジクロロシラン、メチルトリクロロシラン等のメチルクロロシラン類、ジメチルポリシロキサン、ヘキサメチルジシラザン、ジビニルテトラメチルジシラザン、ジメチルテトラビニルジシラザン等のヘキサオルガノジシラザン等の有機ケイ素化合物を用いて、粒子の表面を疎水化処理した、疎水性シリカ粒子が好ましい。
シリカ粒子の含有量は、全シリコーン系樹脂に対して10~20質量%が好ましく、より好ましくは12~20質量%である。シリカ粒子の含有量が10質量%未満の場合、シリコーン系樹脂の機械的強度が低下しやすくなる。一方、シリカ粒子の含有量が20質量%を超える場合、樹脂組成物の流動性が低下しやすくなり、コーティング作業性が悪化するばかりか、樹脂が脆くなり、接着性が低下する傾向がある。
本発明において、使用するシリコーン系樹脂の樹脂粘度は、10,000~50,000mPa・secが好ましく、13,000~40,000mPa・secがより好ましく、20,000~35,000mPa・secがさらに好ましい。樹脂粘度が10,000mPa・sec未満の場合、樹脂が織物内部に入り込むために、耐熱性、気密性を確保するのに必要な樹脂厚みを確保することが困難となる。一方、樹脂粘度が50,000mPa・secを超える場合、50g/m2以下の塗布量に調整することが困難になる。上記の粘度の範囲内に調整できるのであれば、溶剤系、無溶剤系どちらでもかまわないが、環境への影響を考慮すると、無溶剤系が好ましい。
本発明において、合成繊維製織物の一方の面にコートされるシリコーン系樹脂の塗布量は10~200g/m2が好ましく、15~100g/m2がより好ましく、20~50g/m2がさらに好ましい。シリコーン系樹脂の塗布量が10g/m2未満の場合にはコート層の厚みが薄く、熱可塑性樹脂による接着の剥離時にコート層のダメージを受けやすく、200g/m2を超える場合は、コート布の剛性が高すぎるために、熱可塑性樹脂による接着では折グセ成型性を充分に付与することができない。
なお、本発明のシリコーンコート布は、シリコーン系樹脂が合成繊維製織物の一方の面にコートされており、その面にさらに熱可塑性樹脂が付着している必要があるが、前記シリコーン系樹脂がコートされていない合成繊維製織物の面にシリコーン系樹脂がコートされているものであっても良い。すなわち、合成繊維製織物の両面にシリコーン系樹脂がコートされており、その一方の面に熱可塑性樹脂が付着しているシリコーンコート布も本発明の実施形態の1つである。
本発明におけるシリコーン系樹脂がコートされた面に付着している熱可塑性樹脂としては、エチレン-酢酸ビニル共重合(以下、EVAと記載する)系、ポリアミド系、ポリエステル系、ポリビニルアルコール(PVA)系、ポリウレタン系、アイオノマー系樹脂等が挙げられる。
前記熱可塑性樹脂の融点は50~200℃が好ましく、70~150℃がより好ましく、90~120℃がさらに好ましい。熱可塑性樹脂の融点が50℃未満の場合は、高温環境での取扱性に難があり、融点が200℃を超える場合は、エアバッグを折り畳む際の加熱により熱可塑性樹脂を溶融させるのに高温を要するため、合成繊維製織物が熱劣化してしまい、エアバッグの強度が低下してしまうという問題がある。
熱可塑性樹脂はコストや製造の容易さを考慮してシリコーンコート布のシリコーン系樹脂がコートされた面の一方の面のみに付着されていることが好ましい。
熱可塑性樹脂をシリコーンコート布のシリコーン系樹脂がコートされた面に付着する際の熱可塑性樹脂の状態は、固形の状態、熱で溶融した状態、または溶媒に溶解させた状態のいずれの状態で付着してもかまわないが、特に溶融するエネルギーや溶解する溶媒を必要としない固形の状態が好ましい。
熱可塑性樹脂をシリコーンコート布のシリコーン系樹脂がコートされた面に付着する方法は、固形状態であれば、振動等を利用した撒布、圧縮空気等を利用した噴霧、ドット型やグラビアロール等を利用したパターン加工、プリント加工が挙げられる。熱溶融や溶液状態であれば、ナイフやロール、Tダイ等によるコーティング、樹脂押し出しラミネート法、ドライラミネート法、インクジェット方式やスプレー方式、カーテンスプレー方式による噴霧等が挙げられる。
熱可塑性樹脂をシリコーンコート布のシリコーン系樹脂がコートされた面に付着するパターンは、全面に均一に配置、ランダム、ドット状、スリット状、格子状、千鳥配列等、任意のパターンで配置してよいが、ランダムまたはドット状がコート布の剛性の増大が抑制でき、折り畳み時の加圧エネルギーが少なくてすむため好ましい。ドット形状に特に指定はなく、丸型や菱形などを用いることができる。
ランダムまたはドット状に付着する場合の付着面積率は、シリコーンコート布の面積に対し、1%以上90%以下、より好ましくは3%以上70%以下、さらに好ましくは5%以上50%以下である。付着面積率が1%未満になると加熱成型時のシリコーンコート布同士の接着強度が充分ではなく、形状保持性に劣る。また付着面積率が90%より大きくなると、布の剛性が高くなり、加熱成型でもコンパクト化することが困難になる。
熱可塑性樹脂をシリコーンコート布のシリコーン系樹脂がコートされた面に付着固定化する方法としては、予めコート面に付着させた接着剤により固定化してもよいし、樹脂を配置後、熱により溶融し、その後冷却することで凝固させた物理的に接着してもよい。溶融状態では冷却により固定化することが好ましい。溶液状態では上記の固定化方法に加え、熱で溶媒を飛ばしながら溶融させて物理的に固定化する方法、溶媒自体を熱や紫外線などで硬化させて固定化する方法を選択してもよい。
熱可塑性樹脂の残存率を向上させるには、熱可塑性樹脂をシリコーン系樹脂を合成繊維製織物上で硬化させる前にシリコーン系樹脂表面に付与することが好ましい。シリコーン系樹脂が硬化する前に熱可塑性樹脂を付与することでアンカー効果によりコート布表面から脱離しにくくなり、残存率が向上するため好ましい。
熱可塑性樹脂の付着量は、熱可塑性樹脂の種類によって異なり、特に限定されることはないが、3~100g/m2が好ましく、5~50g/m2がより好ましい。
熱可塑性樹脂を図1の冶具で摩擦し、脱離させた際、シリコーンコート布表面に70%以上残存していることが好ましい。より好ましくは75%以上である。熱可塑性樹脂の残存率が70%未満の場合には、シリコーンコート布をエアバッグに加工する工程中の摩擦等により熱可塑性樹脂が脱離してしまい、工程を汚染してしまう、加熱と加圧処理による充分な接着強度を発現できないといった問題がある。
以下に実施例を挙げて本発明をより具体的に説明するが、本発明は、下記実施例によって限定されるものではない。実施例において用いた測定方法は下記の通りである。
(熱可塑性樹脂の融点)
シリコーンコート布のシリコーン系樹脂がコートされた面に付着している熱可塑性樹脂を約5mgサンプリングパンに投入した。DSC-Q100(TAInstruments製)にて空気流100ml/分の雰囲気下で5℃/分の昇温速度で溶融させ吸熱曲線を得て、最大の吸熱ピークを融点とした。
シリコーンコート布のシリコーン系樹脂がコートされた面に付着している熱可塑性樹脂を約5mgサンプリングパンに投入した。DSC-Q100(TAInstruments製)にて空気流100ml/分の雰囲気下で5℃/分の昇温速度で溶融させ吸熱曲線を得て、最大の吸熱ピークを融点とした。
(通気度)
JIS L1096 8.27.1 A法 フラジール形法により測定した。
JIS L1096 8.27.1 A法 フラジール形法により測定した。
(熱可塑性樹脂の残存率)
熱可塑性樹脂が付着したシリコーンコート布を幅5cm以内、長さ10cm以上となる切出す。20℃65%RHで1晩調湿した後、サンプルの重量(A)を測定する。サンプルの長さ方向両端から5mmに線を記入する。ステージにサンプルを両面テープで固定し、図1に示す冶具(重量375g)の先端をサンプルに記入した線に合わせて乗せる。冶具先端に糸を掛け、その糸を滑車に這わせた後、万能引張試験機のチャック(掴み部)で掴み(図3参照)、速度100mm/minで上に引き上げることでサンプル上のもう片方の線まで滑らせる。脱落した熱可塑性樹脂を軽くはらった後、線の位置でサンプルを3分割に裁断し、両側5mmの重量(B)と線と線の間の重量(C)を測定する。測定後、線と線の間のサンプルを50℃のクロロホルム中に4.5時間浸漬し、40℃で15時間減圧乾燥した後の重量(D)を測定する。樹脂の残存率は下式により算出した。
熱可塑性樹脂の残存率(%)=100-{(A-B-C)/(A-B-D)×100}
熱可塑性樹脂が付着したシリコーンコート布を幅5cm以内、長さ10cm以上となる切出す。20℃65%RHで1晩調湿した後、サンプルの重量(A)を測定する。サンプルの長さ方向両端から5mmに線を記入する。ステージにサンプルを両面テープで固定し、図1に示す冶具(重量375g)の先端をサンプルに記入した線に合わせて乗せる。冶具先端に糸を掛け、その糸を滑車に這わせた後、万能引張試験機のチャック(掴み部)で掴み(図3参照)、速度100mm/minで上に引き上げることでサンプル上のもう片方の線まで滑らせる。脱落した熱可塑性樹脂を軽くはらった後、線の位置でサンプルを3分割に裁断し、両側5mmの重量(B)と線と線の間の重量(C)を測定する。測定後、線と線の間のサンプルを50℃のクロロホルム中に4.5時間浸漬し、40℃で15時間減圧乾燥した後の重量(D)を測定する。樹脂の残存率は下式により算出した。
熱可塑性樹脂の残存率(%)=100-{(A-B-C)/(A-B-D)×100}
(コンパクト性)
熱可塑性樹脂が付着したシリコーンコート布を経15cm×緯30cmに切出し、蛇腹状にコート面同士が重なるように経糸と平行に6回折り返したサンプル(図4参照)を、直径45mmの金属製容器に詰め込み、上から直径45mmの1kgの金属製錘を乗せて、150℃のオーブン内に30分静置し、その後オーブンから取出した後、錘を乗せたままで20℃で30分間冷却したのち、サンプルを金属製容器から取出し、引き続き20℃で30分間静置した。静置後のサンプルの最も幅が広い部分を測長し、コンパクト性を評価した。
熱可塑性樹脂が付着したシリコーンコート布を経15cm×緯30cmに切出し、蛇腹状にコート面同士が重なるように経糸と平行に6回折り返したサンプル(図4参照)を、直径45mmの金属製容器に詰め込み、上から直径45mmの1kgの金属製錘を乗せて、150℃のオーブン内に30分静置し、その後オーブンから取出した後、錘を乗せたままで20℃で30分間冷却したのち、サンプルを金属製容器から取出し、引き続き20℃で30分間静置した。静置後のサンプルの最も幅が広い部分を測長し、コンパクト性を評価した。
<実施例1>
トータル繊度470dtex、72フィラメントのナイロン6・6マルチフィラメント繊維を平織にてウォータジェットルームにて製織後、沸水にて収縮加工し、110℃で乾燥仕上げを行った。得られた織物は、経糸および緯糸方向の織密度が46本/2.54cmであった。
次にこの織物の片面に、付加重合型のメチルビニルシリコーン樹脂を、ナイフコートにて1回、塗布した。その後、前記シリコーン樹脂が硬化する前に、コート面に直径6mm、厚さ1mmのドット状にEVA系樹脂(東京インキ株式会社製、2030、M30PASS)を千鳥配列で配置(図2参照)し、190℃で1分間硬化処理し、EVA系樹脂をコート層表面に固定化した。
得られたシリコーンコート布の物性等を表1に示す。得られたシリコーンコート布の熱可塑性樹脂の残存率は79%で、コンパクト性が50mmであり、加熱と加圧により折グセがよく保持されていた。
トータル繊度470dtex、72フィラメントのナイロン6・6マルチフィラメント繊維を平織にてウォータジェットルームにて製織後、沸水にて収縮加工し、110℃で乾燥仕上げを行った。得られた織物は、経糸および緯糸方向の織密度が46本/2.54cmであった。
次にこの織物の片面に、付加重合型のメチルビニルシリコーン樹脂を、ナイフコートにて1回、塗布した。その後、前記シリコーン樹脂が硬化する前に、コート面に直径6mm、厚さ1mmのドット状にEVA系樹脂(東京インキ株式会社製、2030、M30PASS)を千鳥配列で配置(図2参照)し、190℃で1分間硬化処理し、EVA系樹脂をコート層表面に固定化した。
得られたシリコーンコート布の物性等を表1に示す。得られたシリコーンコート布の熱可塑性樹脂の残存率は79%で、コンパクト性が50mmであり、加熱と加圧により折グセがよく保持されていた。
<実施例2>
実施例1と同じ織物に、付加重合型のメチルビニルシリコーン樹脂をナイフコートにて1回、塗布した。その後、前記シリコーン樹脂が硬化する前に、コート面に直径6mm、厚さ1mmのドット状にポリアミド系樹脂(東京インキ株式会社製、F915、Lタイプ)を千鳥配列で配置(図2参照)し、195℃で1.5間硬化処理し、ポリアミド系樹脂をコート層表面に固定化した。
得られたシリコーンコート布の物性等を表1に示す。得られたシリコーンコート布の熱可塑性樹脂の残存率は100%で、コンパクト性が45mmであり、加熱と加圧により折グセがよく保持されていた。
実施例1と同じ織物に、付加重合型のメチルビニルシリコーン樹脂をナイフコートにて1回、塗布した。その後、前記シリコーン樹脂が硬化する前に、コート面に直径6mm、厚さ1mmのドット状にポリアミド系樹脂(東京インキ株式会社製、F915、Lタイプ)を千鳥配列で配置(図2参照)し、195℃で1.5間硬化処理し、ポリアミド系樹脂をコート層表面に固定化した。
得られたシリコーンコート布の物性等を表1に示す。得られたシリコーンコート布の熱可塑性樹脂の残存率は100%で、コンパクト性が45mmであり、加熱と加圧により折グセがよく保持されていた。
<実施例3>
実施例1と同じ織物に、付加重合型のメチルビニルシリコーン樹脂をナイフコートにて1回、塗布した。その後、前記シリコーン樹脂が硬化する前に、コート面に直径6mm、厚さ1mmのドット状にポリエステル系樹脂(東京インキ株式会社製、G170、Zタイプ)を千鳥配列で配置(図2参照)し、195℃で1.5分間硬化処理し、ポリエステル系樹脂をコート層表面に固定化した。
得られたシリコーンコート布の物性等を表1に示す。得られたシリコーンコート布の熱可塑性樹脂の残存率は93%で、コンパクト性が48mmであり、加熱と加圧により折グセがよく保持されていた。
実施例1と同じ織物に、付加重合型のメチルビニルシリコーン樹脂をナイフコートにて1回、塗布した。その後、前記シリコーン樹脂が硬化する前に、コート面に直径6mm、厚さ1mmのドット状にポリエステル系樹脂(東京インキ株式会社製、G170、Zタイプ)を千鳥配列で配置(図2参照)し、195℃で1.5分間硬化処理し、ポリエステル系樹脂をコート層表面に固定化した。
得られたシリコーンコート布の物性等を表1に示す。得られたシリコーンコート布の熱可塑性樹脂の残存率は93%で、コンパクト性が48mmであり、加熱と加圧により折グセがよく保持されていた。
<比較例1>
実施例1と同じ織物に、付加重合型のメチルビニルシリコーン樹脂をナイフコートにて1回、塗布し、190℃で1分間シリコーン樹脂を硬化させた。その後、コート面に直径6mm、厚さ1mmのドット状にEVA系樹脂(東京インキ株式会社製、2030、M30PASS)を千鳥配列で配置(図2参照)し、195℃で1.5間硬化処理し、EVA系樹脂をコート層表面に固定化した。
得られたシリコーンコート布の物性等を表1に示す。得られたシリコーンコート布の熱可塑性樹脂の残存率は14%で、コンパクト性が60mmであり、コート布と熱可塑性樹脂の接着性が弱く、加熱と加圧により折グセが保持されにくかった。
実施例1と同じ織物に、付加重合型のメチルビニルシリコーン樹脂をナイフコートにて1回、塗布し、190℃で1分間シリコーン樹脂を硬化させた。その後、コート面に直径6mm、厚さ1mmのドット状にEVA系樹脂(東京インキ株式会社製、2030、M30PASS)を千鳥配列で配置(図2参照)し、195℃で1.5間硬化処理し、EVA系樹脂をコート層表面に固定化した。
得られたシリコーンコート布の物性等を表1に示す。得られたシリコーンコート布の熱可塑性樹脂の残存率は14%で、コンパクト性が60mmであり、コート布と熱可塑性樹脂の接着性が弱く、加熱と加圧により折グセが保持されにくかった。
<比較例2>
実施例1と同じ織物に、付加重合型のメチルビニルシリコーン樹脂をナイフコートにて1回、塗布し、190℃で1分間シリコーン樹脂を硬化させた。その後、コート面に直径6mm、厚さ1mmのドット状にポリアミド系樹脂(東京インキ株式会社製、F915、Lタイプ)を千鳥配列で配置(図2参照)し、195℃で1.5間硬化処理し、ポリアミド系樹脂をコート層表面に固定化した。
得られたシリコーンコート布の物性等を表1に示す。得られたシリコーンコート布の熱可塑性樹脂の残存率は50%で、コンパクト性が60mmであり、コート布と熱可塑性樹脂の接着性が弱く、加熱と加圧により折グセが保持されにくかった。
実施例1と同じ織物に、付加重合型のメチルビニルシリコーン樹脂をナイフコートにて1回、塗布し、190℃で1分間シリコーン樹脂を硬化させた。その後、コート面に直径6mm、厚さ1mmのドット状にポリアミド系樹脂(東京インキ株式会社製、F915、Lタイプ)を千鳥配列で配置(図2参照)し、195℃で1.5間硬化処理し、ポリアミド系樹脂をコート層表面に固定化した。
得られたシリコーンコート布の物性等を表1に示す。得られたシリコーンコート布の熱可塑性樹脂の残存率は50%で、コンパクト性が60mmであり、コート布と熱可塑性樹脂の接着性が弱く、加熱と加圧により折グセが保持されにくかった。
<比較例3>
実施例1と同じ織物に、付加重合型のメチルビニルシリコーン樹脂をナイフコートにて1回、塗布し、190℃で1分間シリコーン樹脂を硬化させた。その後、コート面に直径6mm、厚さ1mmのドット状にポリエステル系樹脂(東京インキ株式会社製、G170、Zタイプ)を千鳥配列で配置(図2参照)し、195℃で1.5間硬化処理し、ポリエステル系樹脂をコート層表面に固定化した。
得られたシリコーンコート布の物性等を表1に示す。得られたシリコーンコート布の熱可塑性樹脂の残存率は29%で、コンパクト性が60mmであり、コート布と熱可塑性樹脂の接着性が弱く、加熱と加圧により折グセが保持されにくかった。
実施例1と同じ織物に、付加重合型のメチルビニルシリコーン樹脂をナイフコートにて1回、塗布し、190℃で1分間シリコーン樹脂を硬化させた。その後、コート面に直径6mm、厚さ1mmのドット状にポリエステル系樹脂(東京インキ株式会社製、G170、Zタイプ)を千鳥配列で配置(図2参照)し、195℃で1.5間硬化処理し、ポリエステル系樹脂をコート層表面に固定化した。
得られたシリコーンコート布の物性等を表1に示す。得られたシリコーンコート布の熱可塑性樹脂の残存率は29%で、コンパクト性が60mmであり、コート布と熱可塑性樹脂の接着性が弱く、加熱と加圧により折グセが保持されにくかった。
<比較例4>
実施例1と同じ織物に、付加重合型のメチルビニルシリコーン樹脂をナイフコートにて1回、塗布した。その後、前記シリコーン樹脂が硬化する前に、コート面に直径6mm、厚さ1mmのドット状に低密度ポリエチレン(以下、LDPEと記載)系樹脂(東京インキ株式会社製、1050、M30PASS)を千鳥配列で配置(図2参照)し、195℃で1.5間硬化処理し、LDPE系樹脂をコート層表面に固定化した。
得られたシリコーンコート布の物性等を表1に示す。得られたシリコーンコート布の熱可塑性樹脂の残存率は7%で、コンパクト性が60mmであり、加熱と加圧により折グセがよく保持されていた。
実施例1と同じ織物に、付加重合型のメチルビニルシリコーン樹脂をナイフコートにて1回、塗布した。その後、前記シリコーン樹脂が硬化する前に、コート面に直径6mm、厚さ1mmのドット状に低密度ポリエチレン(以下、LDPEと記載)系樹脂(東京インキ株式会社製、1050、M30PASS)を千鳥配列で配置(図2参照)し、195℃で1.5間硬化処理し、LDPE系樹脂をコート層表面に固定化した。
得られたシリコーンコート布の物性等を表1に示す。得られたシリコーンコート布の熱可塑性樹脂の残存率は7%で、コンパクト性が60mmであり、加熱と加圧により折グセがよく保持されていた。
<比較例5>
実施例1と同じ織物に、付加重合型のメチルビニルシリコーン樹脂をナイフコートにて1回、塗布し、190℃で1分間シリコーン樹脂を硬化させた。その後、コート面に直径6mm、厚さ1mmのドット状にポリエステル系樹脂LDPE系樹脂(東京インキ株式会社製、1050、M30PASS)を千鳥配列で配置(図2参照)し、195℃で1.5間硬化処理し、LDPE系樹脂をコート層表面に固定化した。
得られたシリコーンコート布の物性等を表1に示す。得られたシリコーンコート布の熱可塑性樹脂の残存率は0%で、コンパクト性が60mmであり、コート布と熱可塑性樹脂の接着性が弱く、加熱と加圧により折グセが保持されにくかった。
実施例1と同じ織物に、付加重合型のメチルビニルシリコーン樹脂をナイフコートにて1回、塗布し、190℃で1分間シリコーン樹脂を硬化させた。その後、コート面に直径6mm、厚さ1mmのドット状にポリエステル系樹脂LDPE系樹脂(東京インキ株式会社製、1050、M30PASS)を千鳥配列で配置(図2参照)し、195℃で1.5間硬化処理し、LDPE系樹脂をコート層表面に固定化した。
得られたシリコーンコート布の物性等を表1に示す。得られたシリコーンコート布の熱可塑性樹脂の残存率は0%で、コンパクト性が60mmであり、コート布と熱可塑性樹脂の接着性が弱く、加熱と加圧により折グセが保持されにくかった。
エアバッグをコンパクトに折り畳むために、基布に加熱と同時に加圧を行い、折グセを付けてよりコンパクトに折り畳むという収納方法に好適なシリコーンコート布であって、加熱と加圧により折グセがつきやすくコンパクトに収納できるエアバッグを得ることができるシリコーンコート布が得られるため、車内デザインの制約を少なくでき、産業上の寄与は大である。
1:熱可塑性樹脂の残存率測定用冶具
2:熱可塑性樹脂
3:シリコーンコート布のシリコーンコート面
4:サンプル両端の線
5:滑車
6:万能引張試験機のチャック
7:谷折線
8:山折線
9:実施例1のコンパクト性評価後サンプル
10:比較例1のコンパクト性評価後サンプル
2:熱可塑性樹脂
3:シリコーンコート布のシリコーンコート面
4:サンプル両端の線
5:滑車
6:万能引張試験機のチャック
7:谷折線
8:山折線
9:実施例1のコンパクト性評価後サンプル
10:比較例1のコンパクト性評価後サンプル
Claims (7)
- 合成繊維製織物の一方の面にシリコーン系樹脂がコートされており、シリコーン系樹脂がコートされた面に熱可塑性樹脂が付着しており、熱可塑性樹脂の残存率が70%以上であるシリコーンコート布。
- 熱可塑性樹脂の融点が50~200℃である請求項1に記載のシリコーンコート布。
- 熱可塑性樹脂の付着量が3~100g/m2である請求項1または2に記載のシリコーンコート布。
- シリコーン系樹脂の塗布量が10~200g/m2である請求項1~3のいずれかに記載のシリコーンコート布。
- シリコーン系樹脂を合成繊維製織物にコートし、シリコーン系樹脂の硬化前に熱可塑性樹脂をシリコーン系樹脂に付着した請求項1~4のいずれかに記載のシリコーンコート布。
- 請求項1~5のいずれかに記載のシリコーンコート布の、シリコーン系樹脂がコートされた合成繊維製織物の面の他方の面にもシリコーン系樹脂がコートされたシリコーンコート布。
- 請求項1~6のいずれかに記載のシリコーンコート布を用いたエアバッグ。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019509344A JP7120217B2 (ja) | 2017-03-27 | 2018-03-19 | シリコーンコート布 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-060790 | 2017-03-27 | ||
JP2017060790 | 2017-03-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018180695A1 true WO2018180695A1 (ja) | 2018-10-04 |
Family
ID=63677345
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/010778 WO2018180695A1 (ja) | 2017-03-27 | 2018-03-19 | シリコーンコート布 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7120217B2 (ja) |
WO (1) | WO2018180695A1 (ja) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6239046B1 (en) * | 1999-06-07 | 2001-05-29 | Bradford Industries, Inc. | Polysiloxane coated fabrics for use in air bags |
JP2003526557A (ja) * | 1999-06-17 | 2003-09-09 | ミリケン・アンド・カンパニー | エアバッグファブリックのための2層コーティングシステム |
JP2004522003A (ja) * | 2000-08-30 | 2004-07-22 | ミリケン・アンド・カンパニー | 耐摩耗性および/または耐破壊性の布、エアバッグクッションおよび方法 |
JP2006082443A (ja) * | 2004-09-16 | 2006-03-30 | Dow Corning Toray Co Ltd | エアバッグ用布およびその製造方法 |
WO2018074572A1 (ja) * | 2016-10-21 | 2018-04-26 | 東洋紡株式会社 | シリコーンコート布 |
-
2018
- 2018-03-19 WO PCT/JP2018/010778 patent/WO2018180695A1/ja active Application Filing
- 2018-03-19 JP JP2019509344A patent/JP7120217B2/ja active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6239046B1 (en) * | 1999-06-07 | 2001-05-29 | Bradford Industries, Inc. | Polysiloxane coated fabrics for use in air bags |
JP2003526557A (ja) * | 1999-06-17 | 2003-09-09 | ミリケン・アンド・カンパニー | エアバッグファブリックのための2層コーティングシステム |
JP2004522003A (ja) * | 2000-08-30 | 2004-07-22 | ミリケン・アンド・カンパニー | 耐摩耗性および/または耐破壊性の布、エアバッグクッションおよび方法 |
JP2006082443A (ja) * | 2004-09-16 | 2006-03-30 | Dow Corning Toray Co Ltd | エアバッグ用布およびその製造方法 |
WO2018074572A1 (ja) * | 2016-10-21 | 2018-04-26 | 東洋紡株式会社 | シリコーンコート布 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2018180695A1 (ja) | 2020-05-14 |
JP7120217B2 (ja) | 2022-08-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5472189B2 (ja) | エアバッグ用コーティング基布及びその製造方法 | |
JP5994792B2 (ja) | エアバッグ用コーティング基布及びエアバッグ用コーティング基布の製造方法 | |
JP5403150B2 (ja) | エアバッグ用コーティング基布 | |
JP2019173262A (ja) | エアバッグ用コート布 | |
JP2003526552A (ja) | エアバッグ用の積層布 | |
WO2018074572A1 (ja) | シリコーンコート布 | |
WO2018074573A1 (ja) | シリコーンコート布 | |
WO2018180695A1 (ja) | シリコーンコート布 | |
JP2011080158A (ja) | エアバッグ用コート布 | |
WO2019177033A1 (ja) | コートエアバッグ用基布、その製造方法、及びその製造方法のために用いられるコーティング組成物 | |
JP2018534204A (ja) | 自動車用エアバッグ組立体のためのインフレーション用ガス | |
CN104066877A (zh) | 芳族聚酰胺织物和包含它的机动车用气囊 | |
JPH04151344A (ja) | エアーバッグ用シート |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18777692 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019509344 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18777692 Country of ref document: EP Kind code of ref document: A1 |