WO2018180425A1 - 車両用電源装置 - Google Patents

車両用電源装置 Download PDF

Info

Publication number
WO2018180425A1
WO2018180425A1 PCT/JP2018/009534 JP2018009534W WO2018180425A1 WO 2018180425 A1 WO2018180425 A1 WO 2018180425A1 JP 2018009534 W JP2018009534 W JP 2018009534W WO 2018180425 A1 WO2018180425 A1 WO 2018180425A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
voltage
value
rectification control
conductive path
Prior art date
Application number
PCT/JP2018/009534
Other languages
English (en)
French (fr)
Inventor
永典 蒲原
直也 甲田
Original Assignee
株式会社オートネットワーク技術研究所
住友電装株式会社
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社オートネットワーク技術研究所, 住友電装株式会社, 住友電気工業株式会社 filed Critical 株式会社オートネットワーク技術研究所
Priority to CN201880017330.8A priority Critical patent/CN110402534B/zh
Priority to US16/495,497 priority patent/US10868470B2/en
Publication of WO2018180425A1 publication Critical patent/WO2018180425A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1588Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load comprising at least one synchronous rectifier element
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • B60L53/22Constructional details or arrangements of charging converters specially adapted for charging electric vehicles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • B60L2210/12Buck converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • B60L2210/14Boost converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/527Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/529Current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0016Control circuits providing compensation of output voltage deviations using feedforward of disturbance parameters
    • H02M1/0019Control circuits providing compensation of output voltage deviations using feedforward of disturbance parameters the disturbance parameters being load current fluctuations
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0025Arrangements for modifying reference values, feedback values or error values in the control loop of a converter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/92Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present invention relates to a vehicle power supply device.
  • Patent Document 1 discloses a configuration for switching between synchronous rectification control and asynchronous rectification control according to a load state as a technique related to a DC-DC converter that boosts or lowers a DC voltage by driving a switching element.
  • This DC-DC converter is configured to detect the absolute value of the off-period of the high-side switching element and switch between synchronous rectification and asynchronous rectification based on the detected absolute value of the off-period.
  • the DC-DC converter disclosed in Patent Document 1 is configured to switch to synchronous rectification control when the duty of the high-side switching element is increased due to a heavy load in order to suppress power loss caused by the diode during execution of asynchronous rectification control. ing.
  • the present invention has been made based on the above-described circumstances, and can execute by switching between asynchronous rectification control and synchronous rectification control.
  • the output voltage value is a target voltage value.
  • An object of the present invention is to provide a vehicular power supply device capable of suppressing a situation that greatly deviates from the above.
  • the vehicle power supply device includes: A voltage converter that steps down the input voltage applied to the first conductive path and outputs the voltage to the second conductive path; A detection unit for detecting at least one of an output voltage value or an output current value output to the second conductive path by the voltage conversion unit; A signal generating circuit for generating a signal to be supplied to the voltage converter; With The voltage converter is A first switch unit and a second switch unit connected in series between the first conductive path and a reference conductive path maintained at a predetermined reference potential lower than the potential of the first conductive path; An inductor provided between a connection part of the first switch part and the second switch part and the second conductive path, and a cathode connected to the connection part side in parallel with the second switch part A diode portion having an anode connected to the reference conductive path side; Have The signal generation circuit includes: A feedback calculation unit for performing a feedback calculation for calculating a duty of a PWM signal applied to the first switch unit based on an output voltage target value of
  • a drive unit that switches and executes synchronous rectification control to be performed and asynchronous rectification control to turn on and off the first switch unit while the second switch unit is turned off.
  • a determination unit for determining whether the second conductive path is in a predetermined current increasing state or a predetermined voltage decreasing state; Have When the determination unit determines that the predetermined current increase state or the predetermined voltage decrease state occurs during execution of the asynchronous rectification control, the drive unit outputs a PWM signal having a predetermined set value duty. After switching to the synchronous rectification control given to one switch unit, the PWM signal having a duty calculated by the feedback calculation unit based on the output voltage target value and the detection result of the detection unit is given to the first switch unit Synchronous rectification control is performed.
  • the vehicle power supply device includes: A voltage converter that boosts an input voltage applied to the first conductive path and outputs the boosted voltage to the second conductive path; A detection unit for detecting at least one of an output voltage value or an output current value output to the second conductive path by the voltage conversion unit; A signal generating circuit for generating a signal to be supplied to the voltage converter; With The voltage converter is An inductor and a first switch unit connected in series between the first conductive path and a reference conductive path maintained at a predetermined reference potential lower than the potential of the first conductive path, and the inductor and the first switch A second switch part provided between the connection part of the part and the second conductive path; and a second switch part connected in parallel with the second switch part; an anode connected to the connection part side; and a cathode connected to the second conductive part A diode portion connected to the roadside, A detection unit for detecting at least one of an output voltage value or an output current value output to the second conductive path by the voltage
  • a drive unit that switches and executes synchronous rectification control to be performed and asynchronous rectification control to turn on and off the first switch unit while the second switch unit is turned off.
  • a determination unit for determining whether the second conductive path is in a predetermined current increasing state or a predetermined voltage decreasing state; Have When the determination unit determines that the predetermined current increase state or the predetermined voltage decrease state occurs during execution of the asynchronous rectification control, the drive unit outputs a PWM signal having a predetermined set value duty. After switching to the synchronous rectification control given to one switch unit, the PWM signal having a duty calculated by the feedback calculation unit based on the output voltage target value and the detection result of the detection unit is given to the first switch unit Synchronous rectification control is performed.
  • the vehicle power supply device is configured so that the drive unit can switch between the synchronous rectification control and the asynchronous rectification control.
  • Asynchronous rectification control can be used properly.
  • the determination unit can detect the state and switch to synchronous rectification control accordingly. It becomes easy to suppress loss when the output current value increases.
  • synchronous rectification control in which a PWM signal having a duty calculated by the feedback calculation unit is applied to the first switch unit is executed. That is, when switching from asynchronous rectification control to synchronous rectification control, the degree of dependence on duty during asynchronous rectification control is suppressed, and the duty can be quickly changed to a predetermined set value. Therefore, it is possible to suppress an output deviation (deviation from the output voltage target value) due to an inappropriate duty (duty deviating from the set value) continuing immediately after switching to the synchronous rectification control.
  • FIG. 1 is a circuit diagram schematically illustrating a vehicle power supply system including a vehicle power supply device according to a first embodiment.
  • FIG. 2 is a block diagram conceptually illustrating functions executed by the control circuit of FIG. 1 and peripheral configurations thereof. It is a flowchart which shows the flow of control performed with the control circuit of FIG. 3 is a timing chart illustrating changes in an output voltage value, an output current value, a first switch unit, a second switch unit, and a voltage conversion unit (converter) in the vehicle power supply device of FIG. 1.
  • FIG. 6 is a circuit diagram schematically illustrating a vehicle power supply system including a vehicle power supply device according to a second embodiment. It is a flowchart which shows the flow of control performed with the control circuit of FIG.
  • the set value may be a value based on the output voltage target value and the voltage value of the input voltage.
  • the set value can be set to a value related to the output voltage target value and the voltage value of the input voltage, and the setting that reflects the relationship between the output voltage target value and the voltage value of the input voltage can be set. It becomes possible.
  • the set value may be a value obtained by dividing the output voltage target value by the voltage value of the input voltage.
  • a value obtained by dividing the output voltage target value by the voltage value of the input voltage that is, a theoretical value in the step-down converter (output of the magnitude of the output voltage target value) (Theoretical duty value for voltage output) makes it easier to prevent a situation where the output voltage value deviates significantly from the output voltage target value when switching from asynchronous rectification control to synchronous rectification control while continuing step-down operation.
  • the set value may be a value based on the output voltage target value and the voltage value of the input voltage.
  • the set value can be set to a value related to the output voltage target value and the voltage value of the input voltage, and the setting that reflects the relationship between the output voltage target value and the voltage value of the input voltage can be set. It becomes possible.
  • the set value may be a value obtained by dividing the difference between the output voltage target value and the voltage value of the input voltage by the output voltage target value.
  • a value obtained by dividing the difference between the output voltage target value and the voltage value of the input voltage by the output voltage target value that is, a theoretical value ( The theoretical value of the duty for outputting the output voltage with the magnitude of the output voltage target value is used, and when switching from asynchronous rectification control to synchronous rectification control while continuing the boosting operation, the output voltage value is This makes it easier to prevent situations that deviate significantly.
  • the detection unit may be configured to detect an output current value.
  • the determination unit may function to determine whether or not the output current value detected by the detection unit is greater than or equal to a predetermined threshold value.
  • the drive unit switches to the synchronous rectification control that gives the PWM signal having the set value duty to the first switch unit. After that, it may function to execute synchronous rectification control in which a PWM signal having a duty calculated by the feedback calculation unit based on the output voltage target value and the detection result of the detection unit is given to the first switch unit.
  • This vehicle power supply device can switch to synchronous rectification control more quickly when the current increases so that the output current value output from the voltage converter exceeds a predetermined threshold, and asynchronous rectification control continues when the current increases. It becomes easy to suppress the power loss resulting from too much.
  • a vehicle power supply system 100 shown in FIG. 1 mainly includes a vehicle power supply device 90 (hereinafter also simply referred to as a power supply device 90) constituted by a signal generation circuit 1 and a voltage conversion device 2, and a battery 3 as a power supply unit. And a load 4 as a power supply target, and is configured as a vehicle power supply system that supplies power to the vehicle load 4 based on the power from the battery 3.
  • a vehicle power supply device 90 hereinafter also simply referred to as a power supply device 90
  • a load 4 as a power supply target, and is configured as a vehicle power supply system that supplies power to the vehicle load 4 based on the power from the battery 3.
  • the battery 3 is constituted by known power storage means such as a lead storage battery, and generates a predetermined voltage.
  • the high potential type terminal of the battery 3 is electrically connected to the first conductive path 31, and the low potential side terminal of the battery 3 is a predetermined reference potential (specifically, lower than the potential of the first conductive path 31. Is electrically connected to a reference conductive path 33 maintained at 0V ground potential).
  • the load 4 is used in a vehicle such as a lighting electric load such as a headlamp, an accessory electric load such as an audio, a navigation device, and a wiper, or a driving load such as an electric brake and an electric power steering device. Applicable to all electrical loads.
  • the voltage converter 2 is connected to an external battery 3 and a load 4 and has a function of stepping down a DC voltage from the battery 3 and supplying it to the load 4.
  • the voltage converter 2 includes a step-down voltage converter (converter) CV that steps down a DC voltage, a drive unit 27 that drives the voltage converter CV, and a capacitor 26 that smoothes the voltage stepped down by the voltage converter CV. And a detection unit 35 that detects an output voltage and an output current output to the second conductive path 32 by the voltage conversion unit CV.
  • the voltage conversion unit CV is a so-called single-phase converter, and is provided between the first conductive path 31 and the second conductive path 32.
  • the voltage conversion unit CV includes MOSFETs 21 and 22 and an inductor 24.
  • the MOSFET 21 is a high-side switching element that functions as an N-channel MOSFET, and includes a first switch portion 21A and a diode portion 21B.
  • the diode portion 21B is a body diode formed between the source and the drain in the MOSFET 21.
  • the first switch portion 21A is a portion other than the body diode in the MOSFET 21.
  • the MOSFET 22 is a low-side switching element that functions as an N-channel MOSFET and includes a second switch portion 22A and a diode portion 22B.
  • the diode portion 22B is a body diode formed between the source and the drain in the MOSFET 22.
  • the second switch portion 22A is a portion other than the body diode in the MOSFET 22.
  • the first switch unit 21A and the second switch unit 22A are connected in series between the first conductive path 31 and the reference conductive path 33, and the connection unit 23 (the first switch unit 21A and the second switch).
  • the inductor 24 is provided between the second conductive path 32 and the conductive portion connecting the portion 22A.
  • the second switch portion 22A and the diode portion 22B are connected in parallel, and the diode portion 22B has a cathode connected to the connection portion 23 side and an anode connected to the reference conductive path 33 side.
  • the voltage conversion unit CV configured as described above steps down the input voltage applied to the first conductive path 31 by switching between the ON operation and the OFF operation of the first switch unit 21A and outputs the voltage to the second conductive path 32. To function.
  • a first conductive path 31 as an input-side conductive path is connected to the drain of the first switch section 21A on the high side, and the drain of the second switch section 22A on the low side and one end of the inductor 24 are connected to the source. It is connected.
  • a drive signal (ON signal) and a non-drive signal (OFF signal) from the drive unit 27 are input to the gate of the first switch unit 21A.
  • the switch unit 21A is switched between an on state and an off state.
  • the driving signal (ON signal) and the non-driving signal (OFF signal) from the driving unit 27 are input to the gate of the second switch unit 22A, and the second switching unit 22A corresponds to the signal from the driving unit 27.
  • the second switch portion 22A is switched between an on state and an off state.
  • the detection unit 35 includes a current detection circuit 29 and a conductive path 18.
  • the current detection circuit 29 functions to detect an output current value output to the second conductive path 32 by the voltage conversion unit CV, and specifically, a value (output) that reflects the output current value from the voltage conversion unit CV. It functions to generate an analog voltage value that can specify a current value.
  • the current detection circuit 29 includes a resistor 25 and a differential amplifier 28. The voltage drop generated in the resistor 25 due to the output current from the voltage conversion unit CV is amplified by the differential amplifier 28 to become a detection voltage (analog voltage signal) corresponding to the output current, and is input to the signal generation circuit 1.
  • the conductive path 18 is a signal path to which an analog voltage signal is applied, and is a value reflecting the output voltage value from the voltage conversion unit CV (specifically, the voltage at the connection position of the conductive path 18 in the second conductive path 32). Value) is generated and input to the signal generation circuit 1.
  • the conductive path 17 is a signal path to which an analog voltage signal is applied, generates a value reflecting a voltage value (input voltage value to the voltage conversion unit CV) applied to the first conductive path 31, and generates a signal generation circuit. Functions to input to 1.
  • the voltage at the connection position of the conductive path 17 in the first conductive path 31 is applied to the conductive path 17, and the voltage value at this connection position is input to the signal generation circuit 1.
  • the signal generation circuit 1 is configured to output a PWM signal to the voltage conversion device 2, and based on the set output voltage target value, the duty of the PWM signal output to the voltage conversion device 2 is determined by a predetermined calculation method. It is configured as a circuit that can be calculated and set. Further, the signal generation circuit 1 functions to perform a feedback calculation for calculating the duty of the PWM signal to be given to the first switch unit 21A based on the output voltage target value and the detection result of the detection unit 35. Furthermore, the signal generation circuit 1 functions to switch and execute synchronous rectification control and asynchronous rectification control.
  • the control circuit 10 includes a microcomputer having a CPU 11.
  • the CPU 11 is bus-connected to a ROM 12 that stores information such as programs, a RAM 13 that stores temporarily generated information, an A / D converter 14 that converts an analog voltage into a digital value, and the like.
  • a generator 16 is connected to the CPU 11 by a bus.
  • the A / D converter 14 is supplied with a detection voltage (analog voltage according to the output current) from the current detection circuit 29 and a detection voltage (analog voltage according to the output voltage) from the conductive path 18. Each detection voltage input via the current detection circuit 29 and the conductive path 18 is converted into a digital value by the A / D converter 14.
  • the conductive path 17 functions as a voltage detection circuit, and the voltage of the first conductive path 31 on the input side is input to the A / D converter 14 via the conductive path 17.
  • the voltage detection circuit may be configured to divide the voltage of the first conductive path 31 and input the divided voltage to the A / D converter 14.
  • the conductive path 18 functions as a voltage detection circuit, and the voltage of the second conductive path 32 on the output side is input to the A / D converter 14 via the conductive path 18.
  • the voltage detection circuit may be configured to divide the voltage and input to the A / D converter 14.
  • FIG. 2 is a functional block diagram for explaining the relationship between the functions executed by the signal generation circuit 1.
  • Each function executed by the signal generation circuit 1 may be realized by software processing using an information processing apparatus, or may be realized by a hardware circuit.
  • Each function may be realized by a separate device, and a plurality of functions may be realized by a common device.
  • the determination unit 41 shown in FIG. 2 determines whether or not the second conductive path 32 is in a predetermined current increasing state based on the detection result detected by the detection unit 35.
  • the determination unit 41 determines that the current is in a predetermined current increase state. Otherwise, it functions to determine “not in a predetermined current increase state”.
  • a predetermined voltage threshold value voltage threshold value corresponding to the threshold value I1
  • the feedback calculation unit 42 functions to execute a feedback calculation for calculating the duty of the PWM signal to be given to the first switch unit 21A based on the output voltage target value and the detection result of the detection unit 35. Specifically, the feedback calculation unit 42 determines the operation amount (that is, the first switch unit 21A) according to a preset gain based on the deviation between the voltage value of the output voltage detected by the detection unit 35 and the output voltage target value. And the ON operation time of the second switch unit 22A), and the duty reflecting this operation amount is calculated. A known method can be used for the feedback calculation that calculates the duty based on the deviation between the voltage value of the output voltage and the output voltage target value. The feedback calculation unit 42 repeats the duty update by executing such a feedback calculation.
  • the feedback calculation unit 42 updates the duty by executing the feedback calculation except for a predetermined time, and operates to give a new duty to the generation unit 16 every time the duty is updated.
  • a predetermined time a time immediately after the determination unit 41 determines that the second conductive path 32 is in the current increasing state when the drive unit 27 is performing asynchronous rectification control
  • a predetermined calculation method is used. Using the set value calculated in step (2) as the duty, the duty is applied to the generator 16.
  • the generation unit 16 is configured as a known PWM signal generation circuit, and generates a PWM signal having a duty set by the feedback calculation unit 42.
  • the generating unit 16 includes, for example, an internal clock (not shown), and generates a PWM signal having an on time that is an integral multiple of the period of the internal clock.
  • the PWM signal generated by the generating unit 16 is given to the driving unit 27.
  • the drive unit 27 is configured to output the PWM signal (duty PWM signal calculated by the feedback calculation unit 42 described later) supplied from the generation unit 16 to the first switch unit 21A.
  • the first switch unit 21A is controlled while the second switch unit 22A is turned off while the second switch unit 22A is turned off and the second switch unit 22A is turned off in response to the on and off operations of the first switch unit 21A. Control to switch on / off operation).
  • the drive unit 27 is supplied with a switching signal for switching between synchronous rectification control and asynchronous rectification control of the voltage conversion unit CV from the control circuit 10, and based on the switching signal, the first switch unit 21A and the second switch unit An ON signal is applied to 22A.
  • the drive unit 27 controls each of the first switch unit 21A and the second switch unit 22A based on the PWM signal given from the generation unit 16 when the synchronous rectification control is instructed from the control circuit 10.
  • An on signal for alternately turning on each control cycle is applied to the gates of the first switch unit 21A and the second switch unit 22A.
  • the driving unit 27 does not apply the ON signal to the second switch unit 22A, and maintains the second switch unit 22A in the ON state.
  • An on signal for turning on the switch unit 21A in each control cycle is applied to the gate of the first switch unit 21A.
  • the power supply device 90 configured as described above functions as a step-down converter capable of switching between synchronous rectification control and asynchronous rectification control.
  • the switching between the ON operation and the OFF operation of the second switch unit 22A on the low side is executed in synchronization with the operation of the first switch unit 21A on the high side,
  • the DC voltage applied to the first conductive path 31 is stepped down and output to the second conductive path 32.
  • the switching operation between the ON operation and the OFF operation of the first switch unit 21A on the high side is performed while the second switch unit 22A on the low side is maintained in the OFF state. Due to the operation, the DC voltage applied to the first conductive path 31 is stepped down and output to the second conductive path 32.
  • the signal generation circuit 1 starts control as shown in FIG. 3 when a predetermined first condition is established, and first executes asynchronous rectification control in step S11.
  • “When the first condition is satisfied” is not particularly limited, but is preferably a time when the execution of the asynchronous rectification control should be started. For example, when the ignition switch is switched from the OFF state to the ON state, When the first condition is satisfied, the output current may be less than a certain value for a certain time or more. Or it may be other than these times.
  • the signal generation circuit 1 causes the drive unit 27 to perform the above-described asynchronous rectification control (control to turn on and off the first switch unit 21A while keeping the second switch unit 22A turned off).
  • the step-down operation is performed so that the voltage of the predetermined output target voltage value (V1) is output to the second conductive path 32.
  • the feedback calculation unit 42 performs the above-described feedback calculation and repeats the duty update.
  • the generating unit 16 generates a PWM signal having the duty given from the feedback calculating unit 42, and the driving unit 27 is based on the PWM signal generated by the generating unit 16 with the second switch unit 22A turned off.
  • the first switch portion 21A is turned on / off. For example, if such asynchronous rectification control is selected when the output current is small, current consumption can be suppressed.
  • the signal generation circuit 1 After starting asynchronous rectification control in step S11, the signal generation circuit 1 confirms the output current detected by the current detection circuit 29 in step S12, and whether the output current is “current increasing state” in step S13. Determine whether or not. Specifically, whether or not the voltage value input from the current detection circuit 29 is greater than or equal to a predetermined voltage threshold by the function as the determination unit 41 described above (the current value of the output current is greater than or equal to the predetermined threshold I1). If the voltage value input from the current detection circuit 29 is not equal to or greater than the predetermined voltage threshold value, the process returns to step S12 to continue the asynchronous rectification control.
  • step S13 when it determines with the voltage value input from the current detection circuit 29 being more than a predetermined voltage threshold value in step S13, it progresses to step S14 and switches from asynchronous rectification control to synchronous rectification control.
  • the function as the determination unit 41 that performs the process of step S13 may be executed by the CPU 11, for example, or may be executed by a hardware circuit other than this.
  • step S14 is executed and switched to synchronous rectification control.
  • the signal generation circuit 1 executes synchronous rectification control in which a PWM signal having a predetermined set value duty is supplied to the first switch unit 21A. Specifically, immediately after the determination unit 41 determines in step S13 that the voltage value input from the current detection circuit 29 is equal to or greater than a predetermined voltage threshold, the feedback calculation unit 42 switches the duty to a predetermined set value. Then, the generator 16 generates a PWM signal with the set value duty, and the drive unit 27 executes the synchronous rectification control with the set value duty.
  • the set value for example, a value Vt / Vin obtained by dividing the output voltage target value Vt by the voltage value Vin of the input voltage at the time of step S14 (voltage value detected via the conductive path 17) can be used. .
  • the feedback calculation unit 42 performs one feedback calculation or a predetermined plurality of times.
  • the set value Vt / Vin is used as the duty for the feedback calculation.
  • a PWM signal is output from the generator 16 with a duty of the set value Vt / Vin.
  • the drive unit 27 since the drive unit 27 switches from the asynchronous rectification control to the synchronous rectification control immediately after the determination unit 41 determines that the voltage value input from the current detection circuit 29 is equal to or greater than the predetermined voltage threshold in step S13, the drive unit 27 Synchronous rectification control is executed such that the PWM signal is output with the duty of the set value Vt / Vin for one feedback calculation or a predetermined plurality of feedback calculations from the time point 27 starts synchronous rectification control.
  • the duty of the PWM signal given to the switching element is different.
  • the degree of duty when outputting the output voltage target value Vt during execution of synchronous rectification control is smaller than the degree of duty when outputting the output voltage target value Vt during execution of asynchronous rectification control. If the duty at the time of asynchronous rectification control is continued as it is after switching to synchronous rectification control, the output voltage may be greatly reduced immediately after switching to synchronous rectification control.
  • step S15 the process of step S15 is executed.
  • the feedback calculation unit 42 uses the set value Vt / Vin as a duty for one feedback calculation or a predetermined plurality of feedback calculations in step S14, and in step S15, A feedback calculation (that is, a feedback calculation for calculating the duty by a known method based on the deviation between the voltage value Vout of the output voltage detected via the conductive path 18 and the output voltage target value Vt) is performed. Accordingly, at this time, the duty obtained by the normal feedback calculation is given to the generator 16.
  • the drive unit 27 switches to synchronous rectification control in which a PWM signal having a duty of the set value Vt / Vin is supplied to the first switch unit 21A at step S14, and such control is performed after switching.
  • a predetermined cycle one cycle or a plurality of cycles
  • the duty switch PWM signal calculated by the feedback calculation unit 42 based on the output voltage target value Vt and the detection result of the detection unit 35 is the first switch. It operates so as to execute the synchronous rectification control given to the unit 21A.
  • the vehicle power supply device 90 has a configuration in which the drive unit 27 can switch between synchronous rectification control and asynchronous rectification control. Therefore, the vehicle power supply device 90 can be selectively used for either synchronous rectification control or asynchronous rectification control without being fixed to one of the controls. .
  • the determination unit 41 can detect the state and switch to synchronous rectification control accordingly, so that the output current value is It becomes easy to suppress loss at the time of increase.
  • 2 synchronous rectification control (synchronous rectification control in which a PWM signal having a duty calculated by the feedback calculation unit 42 based on the output voltage target value and the detection result of the detection unit 35 is given to the first switch unit 21A) is executed. It has become. That is, when switching from asynchronous rectification control to synchronous rectification control, the degree of dependence on the duty during asynchronous rectification control is suppressed, and the duty can be quickly changed to a predetermined set value. Therefore, it is possible to suppress an output deviation (deviation from the output voltage target value) due to an inappropriate duty (duty deviating from the set value) continuing immediately after switching to the synchronous rectification control.
  • a simple function of adding a predetermined function (a function for setting a duty of a predetermined set value) to the control circuit 10 without adding a new circuit configuration or the like can reduce the output voltage when switching the control method. Can be suppressed.
  • the set value is a value Vt / Vin obtained by dividing the output voltage target value Vt by the voltage value Vin of the input voltage.
  • the value Vt / Vin obtained by dividing the output voltage target value by the voltage value of the input voltage as a set value when switching from asynchronous rectification control to synchronous rectification control that is, a theoretical value in the step-down converter (the magnitude of the output voltage target value The theoretical value of the duty for outputting the output voltage) is used, and the output voltage value greatly deviates from the output voltage target value Vt when switching from asynchronous rectification control to synchronous rectification control while continuing the step-down operation. It becomes easier to prevent.
  • the detection unit 35 is configured to detect the current value of the output current flowing through the second conductive path 32.
  • the determination unit 41 functions to determine whether or not the current value of the output current detected by the detection unit 35 is equal to or greater than a predetermined threshold value I1, and the drive unit 27 outputs the output current during the asynchronous rectification control.
  • the first synchronous rectification control (synchronous rectification control that gives a PWM signal having a set value duty to the first switch unit 21A) is switched.
  • second synchronous rectification control (synchronous rectification control in which the PWM signal having the duty calculated by the feedback calculation unit 42 based on the output voltage target value Vt and the detection result of the detection unit 35 is given to the first switch unit 21A) is executed.
  • the vehicle power supply device 90 can switch to synchronous rectification control more quickly when the current increases such that the current value of the output current output from the voltage converter CV is equal to or greater than a predetermined threshold value I1, and is asynchronous when the current increases. It becomes easier to suppress power loss due to excessive rectification control.
  • the response of the output voltage value to the increase in input current value is lower than in synchronous rectification control, and when the output current value increases quickly, the output voltage value cannot follow the output voltage value.
  • the value may decrease.
  • the asynchronous rectification control can be switched to the synchronous rectification control at a predetermined timing (time t1 in FIG. 4) when the output current value increases, the response of the output voltage value to the increase of the input current value. And a decrease in the output voltage value can be more effectively suppressed.
  • Example 2 Next, Example 2 will be described.
  • the vehicle power supply device 90 according to the second embodiment is different from the first embodiment in that the voltage conversion device 2 includes a step-up voltage conversion unit CV2 instead of the step-down voltage conversion unit CV. Further, the set value calculation method is different from that of the vehicle power supply device 90 of the first embodiment.
  • Other configurations and processes are the same as those in the first embodiment. Therefore, in the following, portions having the same configurations as those of the first embodiment are denoted by the same reference numerals as those of the first embodiment, detailed description thereof is omitted, and differences from the first embodiment are mainly described.
  • the power supply system 100 shown in FIG. 5 is the same as the power supply system 100 of FIG. 1 except for the vehicle power supply device 90.
  • the voltage conversion unit CV2 is a so-called single-phase converter, and is provided between the first conductive path 31 and the second conductive path 32.
  • the voltage conversion unit CV2 includes MOSFETs 121 and 122 and an inductor 124.
  • the MOSFET 121 is a switching element that functions as an N-channel MOSFET and includes a first switch part 121A and a diode part 121B.
  • the diode part 121B is a body diode formed between the source and the drain in the MOSFET 121.
  • the first switch portion 121A is a portion other than the body diode in the MOSFET 121.
  • the MOSFET 122 is a switching element that functions as an N-channel MOSFET and includes a second switch unit 122A and a diode unit 122B.
  • the diode portion 122B is a body diode formed between the source and the drain in the MOSFET 122.
  • the second switch portion 122A is a portion other than the body diode in the MOSFET 122.
  • the inductor 124 and the first switch unit 121A are connected in series between the first conductive path 31 and the reference conductive path 33, and the connection unit 123 (the conductive unit that connects the inductor 124 and the first switch unit 121A).
  • the connection unit 123 the conductive unit that connects the inductor 124 and the first switch unit 121A.
  • Part) and the second conductive path 32 are provided with a second switch part 122A.
  • the second switch section 122A and the diode section 122B are connected in parallel, and the diode section 122B has a cathode connected to the second conductive path 32 side and an anode connected to the connection section 123 side.
  • the voltage conversion unit CV2 configured as described above boosts the input voltage applied to the first conductive path 31 by switching between the ON operation and the OFF operation of the first switch unit 121A and outputs the boosted voltage to the second conductive path 32. To function.
  • a drive signal (ON signal) and a non-drive signal (OFF signal) from the drive unit 27 are input to the gate of the first switch unit 121A, and the first switch unit 121A receives the first signal according to the signal from the drive unit 27.
  • the switch unit 121A is switched between an on state and an off state.
  • the driving signal (ON signal) and the non-driving signal (OFF signal) from the driving unit 27 are input to the gate of the second switch unit 122A, and the second switching unit 122A corresponds to the signal from the driving unit 27.
  • the second switch section 122A is switched between an on state and an off state.
  • the power supply device 90 configured as described above functions as a boost converter capable of switching between synchronous rectification control and asynchronous rectification control.
  • synchronous rectification control switching between the ON operation and the OFF operation of the second switch unit 122A is performed in synchronization with the operation of the first switch unit 121A, and is applied to the first conductive path 31 by such a switching operation.
  • the DC voltage thus boosted is output to the second conductive path 32.
  • the first switch 121A is switched between the on operation and the off operation while the second switch unit 122A is maintained in the off state.
  • the DC voltage applied to 31 is boosted and output to the second conductive path 32.
  • the signal generating circuit 1 starts control as shown in FIG. 6 when a predetermined first condition is established, and first executes asynchronous rectification control in step S21.
  • “When the first condition is satisfied” is not particularly limited, but is preferably a time when the execution of the asynchronous rectification control should be started. For example, when the ignition switch is switched from the OFF state to the ON state, When the first condition is satisfied, the output current may be less than a certain value for a certain time or more. Or it may be other than these times.
  • the drive unit 27 performs the above-described asynchronous rectification control (control to turn on and off the first switch unit 121A while the second switch unit 122A is turned off). And a boosting operation is performed so that a voltage having a predetermined output target voltage value (V1) is output to the second conductive path 32. While this asynchronous rectification control is continued, the feedback calculation unit 42 performs the same feedback calculation as in the first embodiment and repeats the duty update.
  • the generating unit 16 generates a PWM signal having a duty given from the feedback calculating unit 42, and the driving unit 27 is based on the PWM signal generated by the generating unit 16 while the second switch unit 122A is turned off.
  • the first switch unit 121A is turned on / off. For example, if such asynchronous rectification control is selected when the output current is small, current consumption can be suppressed.
  • the signal generation circuit 1 After starting asynchronous rectification control in step S21, the signal generation circuit 1 confirms the output current detected by the current detection circuit 29 in step S22, and whether the output current is “current increasing state” in step S23. Determine whether or not. Specifically, the function as the determination unit 41 similar to that of the first embodiment is used to determine whether or not the voltage value input from the current detection circuit 29 is equal to or greater than a predetermined voltage threshold value (the current value of the output current is equal to the predetermined threshold value). If the voltage value input from the current detection circuit 29 is not equal to or greater than the predetermined voltage threshold value, the process returns to step S22 to continue the asynchronous rectification control.
  • step S23 when it determines with the voltage value input from the electric current detection circuit 29 being more than a predetermined voltage threshold value in step S23, it progresses to step S24 and switches from asynchronous rectification control to synchronous rectification control.
  • the function as the determination unit 41 that performs the process of step S23 may be executed by the CPU 11, for example, or may be executed by a hardware circuit other than this.
  • the signal generation circuit 1 executes synchronous rectification control in which a PWM signal having a predetermined set value duty is supplied to the first switch unit 121A. Specifically, immediately after the determination unit 41 determines in step S23 that the voltage value input from the current detection circuit 29 is greater than or equal to a predetermined voltage threshold, the feedback calculation unit 42 switches the duty to a predetermined set value. Then, the generator 16 generates a PWM signal with the set value duty, and the drive unit 27 executes the synchronous rectification control with the set value duty.
  • the set value for example, a value obtained by dividing the difference between the output voltage target value Vt and the input voltage value Vout by the output voltage target value Vt ((Vt ⁇ Vin) / Vt) can be used.
  • the feedback calculation unit 42 performs one feedback calculation or a predetermined plurality of times.
  • the set value ((Vt ⁇ Vin) / Vt) is used as the duty for the feedback calculation.
  • a PWM signal is output from the generator 16 with a duty of a set value ((Vt ⁇ Vin) / Vt).
  • the drive unit 27 switches from the asynchronous rectification control to the synchronous rectification control immediately after the determination unit 41 determines that the voltage value input from the current detection circuit 29 is equal to or greater than the predetermined voltage threshold value in step S23.
  • the PWM signal is output with the duty of the set value ((Vt ⁇ Vin) / Vt) for one feedback calculation or a predetermined plurality of feedback calculations from the time point 27 starts synchronous rectification control. Synchronous rectification control is executed.
  • step S25 the process of step S25 is executed. Specifically, after the feedback calculation unit 42 uses the set value ((Vt ⁇ Vin) / Vt) as a duty for one feedback calculation or a predetermined plurality of feedback calculations in step S24, In step S25, normal feedback calculation (that is, feedback calculation for calculating the duty by a known method based on the deviation between the voltage value Vout of the output voltage detected via the conductive path 18 and the output voltage target value Vt) is performed. Do. Accordingly, at this time, the duty obtained by the normal feedback calculation is given to the generator 16.
  • the set value is a value ((Vt ⁇ Vin) / Vt) obtained by dividing the difference between the output voltage target value Vt and the input voltage value Vin by the output voltage target value Vt.
  • a value obtained by dividing the difference between the output voltage target value and the voltage value of the input voltage by the output voltage target value ((Vt ⁇ Vin) / Vt) That is, when the theoretical value (theoretical value of the duty for outputting the output voltage having the magnitude of the output voltage target value Vt) is used in the boost converter, the asynchronous rectification control is switched to the synchronous rectification control while continuing the boost operation. It is easier to prevent a situation in which the output voltage value deviates significantly from the output voltage target value Vt.
  • Example 1 exemplifies a configuration in which a value obtained by dividing the output voltage target value Vt by the voltage value Vin of the input voltage is used as a set value used when the control circuit 10 switches from synchronous rectification control to asynchronous rectification control.
  • the set value may be calculated using another calculation formula (for example, a calculation formula that corrects the above-described theoretical value). For example, as shown in the equation (Vt + ⁇ ) / (Vin + ⁇ ), a fixed duty including the predetermined elements ⁇ and ⁇ may be calculated.
  • the duty of the set value may be calculated by another calculation formula.
  • Vin + ⁇ The duty of a fixed value including predetermined elements ⁇ and ⁇ may be calculated as in the equation Vin + ⁇ ) / (Vt + ⁇ ).
  • the configuration when the output current of the voltage conversion unit CV (in the second embodiment, the voltage conversion unit CV2) becomes a current increasing state, the configuration is switched from asynchronous rectification control to synchronous rectification control (S14 in FIG. 3). , See S24 in FIG. 6).
  • a configuration to switch from asynchronous rectification control to synchronous rectification control when the output voltage from the voltage converter CV2 enters a predetermined voltage reduction state It may be.
  • the determination unit 41 illustrated in FIG. 2 may determine whether or not the voltage value detected by the detection unit 35 is in a predetermined voltage decrease state.
  • the determination unit 41 compares the voltage value of the conductive path 18 input to the A / D converter 14 with the predetermined value V1 in step S13 or step S23 described above, and determines the voltage value of the conductive path 18. Is equal to or lower than the predetermined value V1 (that is, when the voltage value of the output voltage output from the voltage conversion unit CV2 to the second conductive path 32 is equal to or lower than the predetermined threshold value), What is necessary is just to determine that there exists and to perform the process of step S14 or step S24.
  • the determination unit 41 may determine that “the predetermined voltage decrease state” when the magnitude of the duty calculated by the control circuit 10 is equal to or greater than a predetermined threshold in step S13 or step S23. Alternatively, in step S13 or step S23, the determination unit 41 has a predetermined rate of increase in the output current value output from the voltage conversion unit CV (voltage conversion unit CV2 in the second embodiment) (for example, an increase amount in a predetermined time).
  • predetermined current increase state May be determined as a “predetermined current increase state”
  • the decrease rate of the output voltage value from the voltage conversion unit CV (voltage conversion unit CV2 in the second embodiment) (for example, a predetermined time)
  • the (decrease amount) becomes equal to or greater than a predetermined threshold value, it may be determined as a “predetermined voltage decrease state”.
  • the signal generation circuit 1 is configured to perform a feedback calculation that calculates the duty of the PWM signal based on the output voltage target value Vt and the output voltage value Vout detected by the detection unit 35 (S11 in FIG. 3). S15, see S21 and S25 in FIG. 6).
  • the signal generation circuit 1 may be configured to perform a known feedback calculation for calculating the duty of the PWM signal based on the preset output current target value and the output current value detected by the detection unit 35.
  • a known method for approaching the output voltage target value or the output current target value based on the preset output voltage target value and output current target value and the output current value and output voltage value detected by the detector 35 The feedback calculation may be performed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

非同期整流制御と同期整流制御とを切り替えて実行することができ、非同期整流制御から同期整流制御に切り替える際に出力電圧値が目標電圧値から大きく外れる事態を抑制し得る車両用電源装置を提供する。 駆動部(27)は、非同期整流制御の実行中に判定部(41)が電流増大状態であると判定した場合、固定値のデューティのPWM信号を第1スイッチ部(21A)に与える同期整流制御に切り替えた後、出力電圧目標値と検出部(35)の検出結果とに基づいてフィードバック演算部(42)によって算出されるデューティのPWM信号を第1スイッチ部(21A)に与える同期整流制御を行う。

Description

車両用電源装置
 本発明は、車両用電源装置に関するものである。
 特許文献1には、スイッチング素子の駆動によって直流電圧を昇圧又は降圧するDC-DCコンバータに関する技術として、同期整流制御と非同期整流制御とを負荷状態に応じて切り替える構成が開示されている。このDC-DCコンバータは、ハイサイドスイッチング素子のオフ期間の絶対値を検出し、検出されたオフ期間の絶対値に基づいて同期整流と非同期整流との切り替えを行う構成となっている。
特開2011-78212号公報
 特許文献1のDC-DCコンバータでは、非同期整流制御の実行時にダイオードで生じる電力損失を抑制するために、重負荷によりハイサイドスイッチング素子のデューティが大きくなる場合に、同期整流制御に切り替える構成となっている。
 しかし、非同期整流制御と同期整流制御とでは、同じ大きさの電圧を出力する場合でもスイッチング素子に与えるPWM信号のデューティが異なることになる。このため、非同期整流制御から同期整流制御へ切り替える際に非同期整流制御のときのデューティのまま同期整流制御に切り替えてしまうと、切り替えた直後に出力電圧が目標電圧から大きくずれる事態が生じる虞がある。
 本発明は上述した事情に基づいてなされたものであり、非同期整流制御と同期整流制御とを切り替えて実行することができ、非同期整流制御から同期整流制御に切り替える際に出力電圧値が目標電圧値から大きく外れる事態を抑制し得る車両用電源装置を提供することを目的とする。
 本発明の第1態様の車両用電源装置は、
 第1導電路に印加された入力電圧を降圧して第2導電路に出力する電圧変換部と、
 前記電圧変換部によって前記第2導電路に出力される出力電圧値又は出力電流値の少なくとも一方を検出する検出部と、
 前記電圧変換部に与える信号を発生させる信号発生回路と、
を備え、
 前記電圧変換部は、
 前記第1導電路と前記第1導電路の電位よりも低い所定の基準電位に保たれる基準導電路との間に直列に接続された第1スイッチ部及び第2スイッチ部と、
 前記第1スイッチ部及び前記第2スイッチ部の接続部と前記第2導電路との間に設けられたインダクタと、前記第2スイッチ部と並列に接続されるとともにカソードが前記接続部側に接続されアノードが前記基準導電路側に接続されたダイオード部と、
を有し、
 前記信号発生回路は、
 前記電圧変換部の出力電圧目標値と前記検出部の検出結果とに基づいて前記第1スイッチ部に与えるPWM信号のデューティを算出するフィードバック演算を行うフィードバック演算部と、
 前記フィードバック演算部で算出されたデューティのPWM信号を前記第1スイッチ部に与える構成をなし、前記第1スイッチ部のオン動作及びオフ動作に対応させて前記第2スイッチ部をオフ動作及びオン動作させる同期整流制御と、前記第2スイッチ部をオフ動作させたまま前記第1スイッチ部をオンオフ動作させる非同期整流制御と、を切り替えて実行する駆動部と、
 前記第2導電路が所定の電流増大状態又は所定の電圧減少状態であるか否かを判定する判定部と、
を有し、
 前記駆動部は、前記非同期整流制御の実行中に前記判定部が前記所定の電流増大状態又は前記所定の電圧減少状態であると判定した場合、所定の設定値のデューティを有するPWM信号を前記第1スイッチ部に与える前記同期整流制御に切り替えた後、前記出力電圧目標値と前記検出部の検出結果とに基づき前記フィードバック演算部によって算出されるデューティのPWM信号を前記第1スイッチ部に与える前記同期整流制御を行う。
 本発明の第2態様の車両用電源装置は、
 第1導電路に印加された入力電圧を昇圧して第2導電路に出力する電圧変換部と、
 前記電圧変換部によって前記第2導電路に出力される出力電圧値又は出力電流値の少なくとも一方を検出する検出部と、
 前記電圧変換部に与える信号を発生させる信号発生回路と、
を備え、
 前記電圧変換部は、
 前記第1導電路と前記第1導電路の電位よりも低い所定の基準電位に保たれる基準導電路との間に直列に接続されたインダクタ及び第1スイッチ部と、インダクタ及び前記第1スイッチ部の接続部と前記第2導電路との間に設けられた第2スイッチ部と、前記第2スイッチ部と並列に接続されるとともにアノードが前記接続部側に接続されカソードが前記第2導電路側に接続されたダイオード部と、を有し、
 前記電圧変換部によって前記第2導電路に出力される出力電圧値又は出力電流値の少なくとも一方を検出する検出部と、
 前記電圧変換部の出力電圧目標値と前記検出部の検出結果とに基づいて前記第1スイッチ部に与えるPWM信号のデューティを算出するフィードバック演算を行うフィードバック演算部と、
 前記フィードバック演算部で算出されたデューティのPWM信号を前記第1スイッチ部に与える構成をなし、前記第1スイッチ部のオン動作及びオフ動作に対応させて前記第2スイッチ部をオフ動作及びオン動作させる同期整流制御と、前記第2スイッチ部をオフ動作させたまま前記第1スイッチ部をオンオフ動作させる非同期整流制御と、を切り替えて実行する駆動部と、
 前記第2導電路が所定の電流増大状態又は所定の電圧減少状態であるか否かを判定する判定部と、
を有し、
 前記駆動部は、前記非同期整流制御の実行中に前記判定部が前記所定の電流増大状態又は前記所定の電圧減少状態であると判定した場合、所定の設定値のデューティを有するPWM信号を前記第1スイッチ部に与える前記同期整流制御に切り替えた後、前記出力電圧目標値と前記検出部の検出結果とに基づき前記フィードバック演算部によって算出されるデューティのPWM信号を前記第1スイッチ部に与える前記同期整流制御を行う。
 本発明の第1態様及び第2態様の車両用電源装置は、駆動部が同期整流制御と非同期整流制御とを切り替え得る構成であるため、いずれか一方の制御に固定されずに同期整流制御と非同期整流制御とを使い分けることができる。特に、非同期整流制御の実行中に所定の電流増大状態又は所定の電圧減少状態となった場合には、判定部がその状態を検出し、これに応じて、同期整流制御に切り替えることができるため、出力電流値が増大する時期に損失を抑えやすくなる。更に、非同期整流制御から同期整流制御に切り替える際には、所定の設定値のデューティを有するPWM信号を第1スイッチ部に与える同期整流制御に切り替えた後、出力電圧目標値と検出部の検出結果とに基づきフィードバック演算部によって算出されるデューティを有するPWM信号を第1スイッチ部に与える同期整流制御を実行するようになっている。つまり、非同期整流制御から同期整流制御に切り替える際には、非同期整流制御時のデューティに依存する度合いが抑えられ、デューティを所定の設定値に迅速に変化させることができる。従って、同期整流制御に切り替えられた直後に不適切なデューティ(設定値よりも外れたデューティ)が継続することに起因する出力のずれ(出力電圧目標値からのずれ)を抑えることができる。
実施例1の車両用電源装置を備えた車両用電源システムを概略的に例示する回路図である。 図1の制御回路が実行する機能及びその周辺構成を概念的に例示するブロック図である。 図1の制御回路で実行される制御の流れを示すフローチャートである。 図1の車両用電源装置における出力電圧値、出力電流値、第1スイッチ部、第2スイッチ部、電圧変換部(コンバータ)の変化を例示するタイミングチャートである。 実施例2の車両用電源装置を備えた車両用電源システムを概略的に例示する回路図である。 図5の制御回路で実行される制御の流れを示すフローチャートである。
 ここで、発明の望ましい例を示す。
 第1態様の車両用電源装置において、設定値は、出力電圧目標値と入力電圧の電圧値とに基づく値であってもよい。
 このようにすれば、設定値を、出力電圧目標値と入力電圧の電圧値とに関係する値に設定することができ、出力電圧目標値と入力電圧の電圧値との関係を反映した設定が可能となる。
 第1態様の車両用電源装置において、設定値は、出力電圧目標値を入力電圧の電圧値で除した値であってもよい。
 このように、非同期整流制御から同期整流制御へ切り替える際の設定値として出力電圧目標値を入力電圧の電圧値で除した値、即ち、降圧コンバータにおける理論値(出力電圧目標値の大きさの出力電圧を出力するためのデューティの理論値)を用いれば、降圧動作を継続しながら非同期整流制御から同期整流制御に切り替える場合に出力電圧値が出力電圧目標値から大きく外れるような事態を一層防ぎやすくなる。
 第2態様の車両用電源装置において、設定値は、出力電圧目標値と入力電圧の電圧値とに基づく値であってもよい。
 このようにすれば、設定値を、出力電圧目標値と入力電圧の電圧値とに関係する値に設定することができ、出力電圧目標値と入力電圧の電圧値との関係を反映した設定が可能となる。
 第2態様の車両用電源装置において、設定値は、出力電圧目標値と入力電圧の電圧値との差を出力電圧目標値で除した値であってもよい。
 このように、非同期整流制御から同期整流制御へ切り替える際の設定値として、出力電圧目標値と入力電圧の電圧値との差を出力電圧目標値で除した値、即ち、昇圧コンバータにおける理論値(出力電圧目標値の大きさの出力電圧を出力するためのデューティの理論値)を用いれば、昇圧動作を継続しながら非同期整流制御から同期整流制御に切り替える場合に出力電圧値が出力電圧目標値から大きく外れるような事態を一層防ぎやすくなる。
 検出部は、出力電流値を検出する構成であってもよい。判定部は、検出部によって検出された出力電流値が所定の閾値以上であるか否かを判定するように機能してもよい。駆動部は、非同期整流制御の実行中において出力電流値が所定の閾値以上であると判定部が判定した場合、設定値のデューティを有するPWM信号を第1スイッチ部に与える同期整流制御に切り替えた後、出力電圧目標値と検出部の検出結果とに基づきフィードバック演算部によって算出されるデューティを有するPWM信号を第1スイッチ部に与える同期整流制御を実行するように機能してもよい。
 この車両用電源装置は、電圧変換部から出力される出力電流値が所定の閾値以上になるような電流増大時に、より迅速に同期整流制御に切り替えることができ、電流増大時に非同期整流制御が継続しすぎることに起因する電力損失をより抑制しやすくなる。
 <実施例1>
 以下、本発明を具体化した実施例1について説明する。
 図1で示す車両用電源システム100は、主に、信号発生回路1及び電圧変換装置2によって構成される車両用電源装置90(以下、単に電源装置90ともいう)と、電源部としてのバッテリ3と、電力供給対象としての負荷4とを備え、バッテリ3からの電力に基づいて車両用の負荷4に電力を供給する車両用の電源システムとして構成される。
 バッテリ3は、例えば、鉛蓄電池等の公知の蓄電手段によって構成され、所定電圧を発生させる。バッテリ3の高電位型の端子は、第1導電路31に電気的に接続され、バッテリ3の低電位側の端子は、第1導電路31の電位よりも低い所定の基準電位(具体的には0Vのグランド電位)に保たれる基準導電路33に電気的に接続される。
 負荷4は、例えば、ヘッドランプなどの灯火系の電気負荷、オーディオ、ナビゲーション装置、ワイパーなどのアクセサリー系の電気負荷、電動ブレーキ、電動パワーステアリング装置などの駆動系の電気負荷など、車両で使用する電気負荷全般が相当する。
 電圧変換装置2は、外部のバッテリ3及び負荷4に接続されており、バッテリ3からの直流電圧を降圧して負荷4に供給する機能を有する。この電圧変換装置2は、直流電圧を降圧する降圧型の電圧変換部(コンバータ)CVと、電圧変換部CVを駆動する駆動部27と、電圧変換部CVが降圧した電圧を平滑化するコンデンサ26と、電圧変換部CVによって第2導電路32に出力される出力電圧および出力電流を検出する検出部35と、を備える。
 電圧変換部CVは所謂単相コンバータであり、第1導電路31と第2導電路32との間に設けられている。この電圧変換部CVは、MOSFET21,22と、インダクタ24と、を備える。
 MOSFET21は、Nチャネル型のMOSFETとして機能するハイサイド側のスイッチング素子であり、第1スイッチ部21Aと、ダイオード部21Bとを備える。ダイオード部21Bは、MOSFET21においてソースとドレインの間に形成されたボディダイオードである。第1スイッチ部21Aは、MOSFET21におけるボディダイオード以外の部分である。
 MOSFET22は、Nチャネル型のMOSFETとして機能するローサイド側のスイッチング素子であり、第2スイッチ部22Aと、ダイオード部22Bとを備える。ダイオード部22Bは、MOSFET22においてソースとドレインの間に形成されたボディダイオードである。第2スイッチ部22Aは、MOSFET22におけるボディダイオード以外の部分である。
 電圧変換部CVは、第1導電路31と基準導電路33との間に第1スイッチ部21A及び第2スイッチ部22Aが直列に接続され、接続部23(第1スイッチ部21Aと第2スイッチ部22Aとを接続する導電部)と第2導電路32との間にインダクタ24が設けられている。そして、第2スイッチ部22Aとダイオード部22Bとが並列に接続され、ダイオード部22Bは、カソードが接続部23側に接続されアノードが基準導電路33側に接続されている。このように構成された電圧変換部CVは、第1スイッチ部21Aのオン動作とオフ動作との切り替えによって第1導電路31に印加された入力電圧を降圧して第2導電路32に出力するように機能する。
 ハイサイド側の第1スイッチ部21Aのドレインには、入力側の導電路としての第1導電路31が接続され、ソースには、ローサイド側の第2スイッチ部22Aのドレイン及びインダクタ24の一端が接続されている。第1スイッチ部21Aのゲートには、駆動部27からの駆動信号(オン信号)及び非駆動信号(オフ信号)が入力されるようになっており、駆動部27からの信号に応じて第1スイッチ部21Aがオン状態とオフ状態とに切り替わるようになっている。同様に、第2スイッチ部22Aのゲートには、駆動部27からの駆動信号(オン信号)及び非駆動信号(オフ信号)が入力されるようになっており、駆動部27からの信号に応じて第2スイッチ部22Aがオン状態とオフ状態とに切り替わるようになっている。
 検出部35は、電流検出回路29と、導電路18とを備える。電流検出回路29は、電圧変換部CVによって第2導電路32に出力される出力電流値を検出するように機能し、具体的には電圧変換部CVからの出力電流値を反映した値(出力電流値を特定し得るアナログ電圧値)を生成するように機能する。電流検出回路29は、抵抗器25及び差動増幅器28を有する。電圧変換部CVからの出力電流によって抵抗器25に生じた電圧降下は、差動増幅器28で増幅されて出力電流に応じた検出電圧(アナログ電圧信号)となり、信号発生回路1に入力される。導電路18は、アナログ電圧信号が印加される信号路であり、電圧変換部CVからの出力電圧値を反映した値(具体的には、第2導電路32における導電路18の接続位置の電圧値)を生成し、信号発生回路1に入力するように機能する。
 導電路17は、アナログ電圧信号が印加される信号路であり、第1導電路31に印加される電圧値(電圧変換部CVへの入力電圧値)を反映した値を生成し、信号発生回路1に入力するように機能する。導電路17には、第1導電路31における導電路17の接続位置の電圧が印加され、この接続位置の電圧値が信号発生回路1に入力される。
 信号発生回路1は、電圧変換装置2に対してPWM信号を出力する構成をなし、設定された出力電圧目標値に基づき、電圧変換装置2に出力するPWM信号のデューティを、所定の算出方法で算出して設定し得る回路として構成されている。また、信号発生回路1は、出力電圧目標値と検出部35の検出結果とに基づいて第1スイッチ部21Aに与えるPWM信号のデューティを算出するフィードバック演算を行うように機能する。さらに、信号発生回路1は、同期整流制御と非同期整流制御とを切り替えて実行するように機能する。
 制御回路10は、CPU11を有するマイクロコンピュータを含んでなる。CPU11は、プログラム等の情報を記憶するROM12、一時的に発生した情報を記憶するRAM13、アナログの電圧をデジタル値に変換するA/D変換器14などと互いにバス接続されている。CPU11には、更に、発生部16がバス接続されている。A/D変換器14には、電流検出回路29による検出電圧(出力電流に応じたアナログ電圧)と、導電路18による検出電圧(出力電圧に応じたアナログ電圧)とが与えられる。電流検出回路29及び導電路18を介して入力される各検出電圧は、A/D変換器14でデジタル値に変換される。
 なお、図1の例は、導電路17が電圧検出回路として機能し、入力側の第1導電路31の電圧を導電路17によってA/D変換器14に入力する構成となっているが、第1導電路31の電圧を分圧してA/D変換器14に入力するように電圧検出回路を構成してもよい。同様に、導電路18が電圧検出回路として機能し、出力側の第2導電路32の電圧を導電路18によってA/D変換器14に入力する構成となっているが、第2導電路32の電圧を分圧してA/D変換器14に入力するように電圧検出回路を構成してもよい。
 次に、信号発生回路1で実行される機能を詳述する。
 図2は、信号発生回路1で実行される各機能の関係について説明する機能ブロック図である。なお、信号発生回路1で実行される各機能は、情報処理装置を用いたソフトウェア処理によって実現されてもよく、ハードウェア回路によって実現されてもよい。また、各機能は別々の装置によって実現されてもよく、共通の装置によって複数の機能が実現されてもよい。
 図2に示す判定部41は、検出部35によって検出された検出結果に基づき、第2導電路32が所定の電流増大状態であるか否かを判定する。この判定部41は、電流検出回路29から入力された信号によって特定される電流値(出力電流の値)が所定の閾値I1以上である場合に「所定の電流増大状態である」と判定し、そうでない場合に、「所定の電流増大状態でない」と判定するように機能する。具体的には、電流検出回路29から入力される電圧値が所定の電圧閾値(閾値I1に対応する電圧閾値)以上である場合に「所定の電流増大状態である」と判定し、所定の電流増大状態であることをフィードバック演算部42及び駆動部27に伝達する。逆に、電流検出回路29から入力される電圧値が所定の電圧閾値未満である場合に「所定の電流増大状態でない」と判定し、所定の電流増大状態でないことをフィードバック演算部42及び駆動部27に伝達する。
 フィードバック演算部42は、出力電圧目標値と検出部35の検出結果とに基づいて第1スイッチ部21Aに与えるPWM信号のデューティを算出するフィードバック演算を実行するように機能する。具体的には、フィードバック演算部42は、検出部35によって検出された出力電圧の電圧値と出力電圧目標値との偏差に基づき、予め設定されたゲインに従って操作量(すなわち、第1スイッチ部21A及び第2スイッチ部22Aのオン動作時間)を算出し、この操作量が反映されたデューティを算出する。出力電圧の電圧値と出力電圧目標値との偏差に基づいてデューティを算出するフィードバック演算は、公知の方法を用いることができる。フィードバック演算部42は、このようなフィードバック演算を実行することによりデューティの更新を繰り返す。
 フィードバック演算部42は、所定の時期を除き、フィードバック演算を実行することでデューティの更新を行い、デューティを更新する毎に、新たなデューティを発生部16に与えるように動作する。一方、所定の時期(駆動部27が非同期整流制御を実行しているときに判定部41によって第2導電路32が電流増大状態であると判定された直後の時期)には、所定の演算方法で算出された設定値をデューティとして用い、このデューティを発生部16に与えるように動作する。
 発生部16は、公知のPWM信号発生回路として構成されており、フィードバック演算部42で設定されたデューティのPWM信号を生成する。発生部16は、例えば、不図示の内部クロックを備え、内部クロックの周期の整数倍のオン時間を有するPWM信号を生成する。発生部16が生成したPWM信号は、駆動部27に与えられる。
 駆動部27は、発生部16から与えられたPWM信号(後述するフィードバック演算部42で算出されたデューティのPWM信号)を第1スイッチ部21Aに出力する構成をなし、更に、同期整流制御(第1スイッチ部21Aのオン動作及びオフ動作に対応させて第2スイッチ部22Aをオフ動作及びオン動作させる制御)と、非同期整流制御(第2スイッチ部22Aをオフ動作させたまま第1スイッチ部21Aをオンオフ動作させる制御)とを切り替えて行うように機能する。この駆動部27は、電圧変換部CVの同期整流制御と非同期整流制御とを切り替えるための切替信号を制御回路10から与えられ、この切替信号に基づいて、第1スイッチ部21A及び第2スイッチ部22Aにオン信号を印加する。具体的には、駆動部27は、制御回路10から同期整流制御が指示されているときに発生部16から与えられたPWM信号に基づいて、第1スイッチ部21A及び第2スイッチ部22A夫々を各制御周期で交互にオンするためのオン信号を、第1スイッチ部21A及び第2スイッチ部22Aのゲートに印加する。一方、駆動部27は、制御回路10から非同期整流制御が指示されているときには、第2スイッチ部22Aにはオン信号を印加せず、第2スイッチ部22Aをオン状態で維持したまま、第1スイッチ部21Aを各制御周期でオンするためのオン信号を第1スイッチ部21Aのゲートに印加する。
 このように構成される電源装置90は、同期整流制御と非同期整流制御を切替可能な降圧型コンバータとして機能する。同期整流制御の選択時には、ローサイド側の第2スイッチ部22Aのオン動作とオフ動作との切り替えが、ハイサイド側の第1スイッチ部21Aの動作と同期して実行され、このようなスイッチング動作により第1導電路31に印加された直流電圧が降圧され、第2導電路32に出力される。一方で、非同期整流制御の選択時には、ローサイド側の第2スイッチ部22Aがオフ状態で維持されつつ、ハイサイド側の第1スイッチ部21Aのオン動作とオフ動作の切り替えがなされ、このようなスイッチング動作により、第1導電路31に印加された直流電圧が降圧され、第2導電路32に出力される。
 次に、信号発生回路1の各機能がどのように実現されるかについて、図3で示すフローチャート、及び図4に示すタイミングチャートを参照しつつ説明する。
 信号発生回路1は、所定の第1条件の成立時に図3のような制御を開始し、まずステップS11にて非同期整流制御を実行する。「第1条件の成立時」は、特に限定されないが、非同期整流制御の実行を開始すべき時であることが望ましく、例えば、イグニッションスイッチがオフ状態からオン状態に切り替わった時を第1条件の成立時としてもよく、出力電流が一定時間以上一定値未満となったことを第1条件の成立時としてもよい。或いはこれら以外の時であってもよい。
 信号発生回路1は、ステップS11にて非同期整流制御を開始した場合、駆動部27が上述した非同期整流制御(第2スイッチ部22Aをオフ動作させたまま第1スイッチ部21Aをオンオフ動作させる制御)を行い、所定の出力目標電圧値(V1)の電圧を第2導電路32に出力するように降圧動作を行う。この非同期整流制御の継続中には、フィードバック演算部42は、上述したフィードバック演算を行い、デューティの更新を繰り返す。そして、発生部16は、フィードバック演算部42から与えられたデューティのPWM信号を発生させ、駆動部27は、第2スイッチ部22Aをオフ動作させたまま、発生部16で発生したPWM信号に基づいて第1スイッチ部21Aをオンオフ動作させる。例えば出力電流が小さいときにこのような非同期整流制御を選択すると、消費電流を抑制することができる。
 信号発生回路1は、ステップS11で非同期整流制御を開始した後、ステップS12にて電流検出回路29によって検出される出力電流を確認し、ステップS13にて出力電流が「電流増大状態」であるか否かを判定する。具体的には、上述した判定部41としての機能により、電流検出回路29から入力される電圧値が所定の電圧閾値以上であるか否か(出力電流の電流値が所定の閾値I1以上であるか否か)を判定し、電流検出回路29から入力される電圧値が所定の電圧閾値以上でない場合、ステップS12に戻って非同期整流制御を継続する。一方、ステップS13において電流検出回路29から入力される電圧値が所定の電圧閾値以上であると判定した場合、ステップS14に進み、非同期整流制御から同期整流制御に切り替える。ステップS13の処理を行う判定部41としての機能は、例えばCPU11によって実行してもよく、これ以外のハードウェア回路などによって実行してもよい。
 例えば、図4のように電圧変換部CV(コンバータ)が非同期整流制御を実行しているときに負荷4の駆動(例えばヘッドランプの駆動など)によって出力電流値が上昇し、閾値I1以上となる場合、出力電流値が閾値I1以上となった直後にステップS14の処理が実行され、同期整流制御に切り替えられることになる。
 そして、信号発生回路1は、ステップS14で非同期整流制御から同期整流制御に切り替える場合、所定の設定値のデューティのPWM信号を第1スイッチ部21Aに与える同期整流制御を実行する。具体的には、判定部41がステップS13において電流検出回路29から入力される電圧値が所定の電圧閾値以上であると判定した直後に、フィードバック演算部42はデューティを所定の設定値に切り替える。そして、発生部16は、その設定値のデューティでPWM信号を発生させ、駆動部27は、その設定値のデューティで同期整流制御を実行する。設定値は、例えば、出力電圧目標値Vtを、ステップS14の時点での入力電圧の電圧値Vin(導電路17を介して検出される電圧値)で除した値Vt/Vinを用いることができる。フィードバック演算部42は、判定部41がステップS13において電流検出回路29から入力される電圧値が所定の電圧閾値以上であると判定した直後に、1回のフィードバック演算分、又は所定の複数回のフィードバック演算分だけ、デューティとして設定値Vt/Vinを用いる。従って、判定部41がステップS13において電流検出回路29から入力される電圧値が所定の電圧閾値以上であると判定した直後に1回のフィードバック演算分、又は所定の複数回のフィードバック演算分だけ、発生部16から設定値Vt/VinのデューティでPWM信号が出力される。一方、駆動部27は、判定部41がステップS13において電流検出回路29から入力される電圧値が所定の電圧閾値以上であると判定した直後に非同期整流制御から同期整流制御に切り替えるため、駆動部27が同期整流制御を開始した時点から1回のフィードバック演算分、又は所定の複数回のフィードバック演算分だけ、設定値Vt/VinのデューティでPWM信号が出力されるような同期整流制御が実行される。
 一般に、非同期整流制御と同期整流制御とでは、同じ大きさの電圧を出力する場合でもスイッチング素子に与えるPWM信号のデューティが異なることになる。例えば、非同期整流制御の実行時に出力電圧目標値Vtを出力する場合のデューティの度合いよりも同期整流制御の実行時に出力電圧目標値Vtを出力する場合のデューティの度合いのほうが小さくなるような構成では、同期整流制御への切替後に非同期整流制御のときのデューティをそのまま継続させてしまうと、同期整流制御への切り替え直後に出力電圧が大きく減少してしまう虞がある。これに対し、上述した方法では、切替時点での入力電圧値Vinと出力電圧目標値Vtとに基づく理論値(設定値Vt/Vin)が切り替え直後に用いられるため、デューティの乖離が抑えられやすく、上述したような電圧減少を防ぎ易くなる。
 信号発生回路1では、ステップS14の後、ステップS15の処理が実行される。具体的には、フィードバック演算部42は、ステップS14において1回のフィードバック演算分、又は所定の複数回のフィードバック演算分だけ、デューティとして設定値Vt/Vinを用いた後、ステップS15において、通常のフィードバック演算(即ち、導電路18を介して検出される出力電圧の電圧値Voutと出力電圧目標値Vtとの偏差に基づいて公知の方法でデューティを算出するフィードバック演算)を行う。従って、このときには通常のフィードバック演算によって得られたデューティが発生部16に与えられる。
 このような制御がなされるため、駆動部27は、ステップS14のときには設定値Vt/VinのデューティのPWM信号を第1スイッチ部21Aに与える同期整流制御に切り替え、このような制御を切替後の所定周期(1周期、又は複数周期)実行した後、ステップS15のときには、出力電圧目標値Vtと検出部35の検出結果とに基づきフィードバック演算部42によって算出されるデューティのPWM信号を第1スイッチ部21Aに与える同期整流制御を実行するように動作する。
 次に、上記構成の効果を例示する。
 車両用電源装置90は、駆動部27が同期整流制御と非同期整流制御とを切り替え得る構成であるため、いずれか一方の制御に固定されずに同期整流制御と非同期整流制御とを使い分けることができる。特に、非同期整流制御の実行中に所定の電流増大状態となった場合には、判定部41がその状態を検出し、これに応じて、同期整流制御に切り替えることができるため、出力電流値が増大する時期に損失を抑えやすくなる。更に、非同期整流制御から同期整流制御に切り替える際には、第1の同期整流制御(所定の設定値のデューティを有するPWM信号を第1スイッチ部21Aに与える同期整流制御)に切り替えた後、第2の同期整流制御(出力電圧目標値と検出部35の検出結果とに基づきフィードバック演算部42によって算出されるデューティを有するPWM信号を第1スイッチ部21Aに与える同期整流制御)を実行するようになっている。つまり、非同期整流制御から同期整流制御に切り替える際には、非同期整流制御時のデューティに依存ずる度合いが抑えられ、デューティを所定の設定値に迅速に変化させることができる。従って、同期整流制御に切り替えられた直後に不適切なデューティ(設定値よりも外れたデューティ)が継続することに起因する出力のずれ(出力電圧目標値からのずれ)を抑えることができる。
 しかも、新たに回路構成などを追加することなく、制御回路10に所定機能(所定の設定値のデューティを設定する機能)を付加するという簡易な構成で制御方法の切り替え時の出力電圧の減少を抑制することができる。
 また、車両用電源装置90では、設定値は、出力電圧目標値Vtを入力電圧の電圧値Vinで除した値Vt/Vinとしている。このように、非同期整流制御から同期整流制御へ切り替える際の設定値として出力電圧目標値を入力電圧の電圧値で除した値Vt/Vin、即ち、降圧コンバータにおける理論値(出力電圧目標値の大きさの出力電圧を出力するためのデューティの理論値)を用いれば、降圧動作を継続しながら非同期整流制御から同期整流制御に切り替える場合に出力電圧値が出力電圧目標値Vtから大きく外れるような事態を一層防ぎやすくなる。
 検出部35は、第2導電路32を流れる出力電流の電流値を検出する構成となっている。判定部41は、検出部35によって検出された出力電流の電流値が所定の閾値I1以上であるか否かを判定するように機能し、駆動部27は、非同期整流制御の実行中において出力電流の電流値が所定の閾値I1以上であると判定部41が判定した場合、第1の同期整流制御(設定値のデューティを有するPWM信号を第1スイッチ部21Aに与える同期整流制御)に切り替えた後、第2の同期整流制御(出力電圧目標値Vtと検出部35の検出結果とに基づきフィードバック演算部42によって算出されるデューティのPWM信号を第1スイッチ部21Aに与える同期整流制御)を実行するように機能する。この車両用電源装置90は、電圧変換部CVから出力される出力電流の電流値が所定の閾値I1以上になるような電流増加時により迅速に同期整流制御に切り替えることができ、電流増加時に非同期整流制御が継続しすぎることに起因する電力損失をより抑制しやすくなる。
 特に、非同期整流制御では、同期整流制御に比べて入力電流値の増加に対する出力電圧値の応答性が低く、出力電流値の増加が早い場合に、出力電圧値の増加が追従できずに出力電圧値が減少してしまう虞がある。しかしながら、上述した例では、出力電流値が増加する所定のタイミング(図4では時間t1)で非同期整流制御から同期整流制御に切り替えることができるため、入力電流値の増加に対する出力電圧値の応答性を高めることができ、出力電圧値の減少をより効果的に抑制することができる。
 また、非同期整流制御と同期整流制御とを切り替えるコンバータでは、出力電流が低レベル状態のときに同期整流制御を実行してしまうと、出力電流の逆流が生じる虞があった。しかし、上述した例のように、出力電流値が相対的に小さい時期に非同期整流制御を実行し、出力電流値が相対的に大きい時期に同期整流制御を実行すれば、このような逆流を防ぎ易くなる。
 <実施例2>
 次に、実施例2について説明する。
 実施例2の車両用電源装置90は、電圧変換装置2が降圧型の電圧変換部CVの代わりに昇圧型の電圧変換部CV2を備える点が実施例1と異なっている。更に、設定値の計算方法が実施例1の車両用電源装置90とは異なっている。なお、これら以外の構成及び処理は、実施例1と同様である。したがって、以下では実施例1と同一の構成をなす部分については実施例1と同一の符号を付して詳細な説明を省略し、実施例1と相違する点を重点的に説明する。なお、図5で示す電源システム100は、車両用電源装置90以外は図1の電源システム100と同一である。
 電圧変換部CV2は所謂単相コンバータであり、第1導電路31と第2導電路32との間に設けられている。この電圧変換部CV2は、MOSFET121,122と、インダクタ124と、を備える。
 MOSFET121は、Nチャネル型のMOSFETとして機能するスイッチング素子であり、第1スイッチ部121Aと、ダイオード部121Bとを備える。ダイオード部121Bは、MOSFET121においてソースとドレインの間に形成されたボディダイオードである。第1スイッチ部121Aは、MOSFET121におけるボディダイオード以外の部分である。
 MOSFET122は、Nチャネル型のMOSFETとして機能するスイッチング素子であり、第2スイッチ部122Aと、ダイオード部122Bとを備える。ダイオード部122Bは、MOSFET122においてソースとドレインの間に形成されたボディダイオードである。第2スイッチ部122Aは、MOSFET122におけるボディダイオード以外の部分である。
 電圧変換部CV2は、第1導電路31と基準導電路33との間にインダクタ124及び第1スイッチ部121Aが直列に接続され、接続部123(インダクタ124及び第1スイッチ部121Aを接続する導電部)と第2導電路32との間に第2スイッチ部122Aが設けられている。そして、第2スイッチ部122Aとダイオード部122Bとが並列に接続され、ダイオード部122Bは、カソードが第2導電路32側に接続され、接続部123側にアノードが接続されている。このように構成された電圧変換部CV2は、第1スイッチ部121Aのオン動作とオフ動作との切り替えによって第1導電路31に印加された入力電圧を昇圧して第2導電路32に出力するように機能する。
 第1スイッチ部121Aのゲートには、駆動部27からの駆動信号(オン信号)及び非駆動信号(オフ信号)が入力されるようになっており、駆動部27からの信号に応じて第1スイッチ部121Aがオン状態とオフ状態とに切り替わるようになっている。同様に、第2スイッチ部122Aのゲートには、駆動部27からの駆動信号(オン信号)及び非駆動信号(オフ信号)が入力されるようになっており、駆動部27からの信号に応じて第2スイッチ部122Aがオン状態とオフ状態とに切り替わるようになっている。
 このように構成される電源装置90は、同期整流制御と非同期整流制御を切替可能な昇圧型コンバータとして機能する。同期整流制御の選択時には、第2スイッチ部122Aのオン動作とオフ動作との切り替えが、第1スイッチ部121Aの動作と同期して実行され、このようなスイッチング動作により第1導電路31に印加された直流電圧が昇圧され、第2導電路32に出力される。一方で、非同期整流制御の選択時には、第2スイッチ部122Aがオフ状態で維持されつつ、第1スイッチ部121Aのオン動作とオフ動作の切り替えがなされ、このようなスイッチング動作により、第1導電路31に印加された直流電圧が昇圧され、第2導電路32に出力される。
 次に、信号発生回路1の各機能がどのように実現されるかについて、図6で示すフローチャートを参照しつつ説明する。
 信号発生回路1は、所定の第1条件の成立時に図6のような制御を開始し、まずステップS21にて非同期整流制御を実行する。「第1条件の成立時」は、特に限定されないが、非同期整流制御の実行を開始すべき時であることが望ましく、例えば、イグニッションスイッチがオフ状態からオン状態に切り替わった時を第1条件の成立時としてもよく、出力電流が一定時間以上一定値未満となったことを第1条件の成立時としてもよい。或いはこれら以外の時であってもよい。
 信号発生回路1は、ステップS21にて非同期整流制御を開始した場合、駆動部27が上述した非同期整流制御(第2スイッチ部122Aをオフ動作させたまま第1スイッチ部121Aをオンオフ動作させる制御)を行い、所定の出力目標電圧値(V1)の電圧を第2導電路32に出力するように昇圧動作を行う。この非同期整流制御の継続中には、フィードバック演算部42は、実施例1と同様のフィードバック演算を行い、デューティの更新を繰り返す。そして、発生部16は、フィードバック演算部42から与えられたデューティのPWM信号を発生させ、駆動部27は、第2スイッチ部122Aをオフ動作させたまま、発生部16で発生したPWM信号に基づいて第1スイッチ部121Aをオンオフ動作させる。例えば出力電流が小さいときにこのような非同期整流制御を選択すると、消費電流を抑制することができる。
 信号発生回路1は、ステップS21で非同期整流制御を開始した後、ステップS22にて電流検出回路29によって検出される出力電流を確認し、ステップS23にて出力電流が「電流増大状態」であるか否かを判定する。具体的には、実施例1と同様の判定部41としての機能により、電流検出回路29から入力される電圧値が所定の電圧閾値以上であるか否か(出力電流の電流値が所定の閾値I1以上であるか否か)を判定し、電流検出回路29から入力される電圧値が所定の電圧閾値以上でない場合、ステップS22に戻って非同期整流制御を継続する。一方、ステップS23において電流検出回路29から入力される電圧値が所定の電圧閾値以上であると判定した場合、ステップS24に進み、非同期整流制御から同期整流制御に切り替える。ステップS23の処理を行う判定部41としての機能は、例えばCPU11によって実行してもよく、これ以外のハードウェア回路などによって実行してもよい。
 そして、信号発生回路1は、ステップS24で非同期整流制御から同期整流制御に切り替える場合、所定の設定値のデューティのPWM信号を第1スイッチ部121Aに与える同期整流制御を実行する。具体的には、判定部41がステップS23において電流検出回路29から入力される電圧値が所定の電圧閾値以上であると判定した直後に、フィードバック演算部42はデューティを所定の設定値に切り替える。そして、発生部16は、その設定値のデューティでPWM信号を発生させ、駆動部27は、その設定値のデューティで同期整流制御を実行する。設定値は、例えば、出力電圧目標値Vtと入力電圧の電圧値Voutとの差を出力電圧目標値Vtで除した値((Vt-Vin)/Vt)を用いることができる。フィードバック演算部42は、判定部41がステップS23において電流検出回路29から入力される電圧値が所定の電圧閾値以上であると判定した直後に、1回のフィードバック演算分、又は所定の複数回のフィードバック演算分だけ、デューティとして設定値((Vt-Vin)/Vt)を用いる。従って、判定部41がステップS23において電流検出回路29から入力される電圧値が所定の電圧閾値以上であると判定した直後に1回のフィードバック演算分、又は所定の複数回のフィードバック演算分だけ、発生部16から設定値((Vt-Vin)/Vt)のデューティでPWM信号が出力される。一方、駆動部27は、判定部41がステップS23において電流検出回路29から入力される電圧値が所定の電圧閾値以上であると判定した直後に非同期整流制御から同期整流制御に切り替えるため、駆動部27が同期整流制御を開始した時点から1回のフィードバック演算分、又は所定の複数回のフィードバック演算分だけ、設定値((Vt-Vin)/Vt)のデューティでPWM信号が出力されるような同期整流制御が実行される。
 信号発生回路1では、ステップS24の後、ステップS25の処理が実行される。具体的には、フィードバック演算部42は、ステップS24において1回のフィードバック演算分、又は所定の複数回のフィードバック演算分だけ、デューティとして設定値((Vt-Vin)/Vt)を用いた後、ステップS25において、通常のフィードバック演算(即ち、導電路18を介して検出される出力電圧の電圧値Voutと出力電圧目標値Vtとの偏差に基づいて公知の方法でデューティを算出するフィードバック演算)を行う。従って、このときには通常のフィードバック演算によって得られたデューティが発生部16に与えられる。
 このような実施例2の車両用電源装置90でも、実施例1と同様の効果が得られる。
 車両用電源装置90において、設定値は、出力電圧目標値Vtと入力電圧値Vinの差を出力電圧目標値Vtで除した値((Vt-Vin)/Vt)となっている。このように、非同期整流制御から同期整流制御へ切り替える際の設定値として、出力電圧目標値と入力電圧の電圧値との差を出力電圧目標値で除した値((Vt-Vin)/Vt)、即ち、昇圧コンバータにおける理論値(出力電圧目標値Vtの大きさの出力電圧を出力するためのデューティの理論値)を用いれば、昇圧動作を継続しながら非同期整流制御から同期整流制御に切り替える場合に出力電圧値が出力電圧目標値Vtから大きく外れるような事態を一層防ぎやすくなる。
 <他の実施例>
 本発明は上記記述及び図面によって説明した実施例に限定されるものではなく、例えば次のような実施例も本発明の技術的範囲に含まれる。また、上述した実施例や後述する実施例は矛盾しない範囲で組み合わせることが可能である。
 実施例1では、制御回路10によって同期整流制御から非同期整流制御への切り替え時に用いる設定値として、出力電圧目標値Vtを入力電圧の電圧値Vinで除した値を用いる構成を例示した。しかしながら、出力電圧目標値Vt、及び入力電圧値Vinを用いる構成であれば、その他の計算式(例えば、上述の理論値を補正した計算式など)によって設定値を算出してもよい。例えば、(Vt+α)/(Vin+β)の式ように、所定の要素α,βが含まれる固定値のデューティを算出してもよい。また、同様に、実施例2においても、出力電圧目標値Vt、及び入力電圧値Vinを用いる構成であれば、その他の計算式で設定値のデューティを算出してもよく、例えば、(Vt-Vin+α)/(Vt+β)の式ように、所定の要素α,βが含まれる固定値のデューティを算出してもよい。
 実施例1,2では、電圧変換部CV(実施例2では、電圧変換部CV2)の出力電流が電流増大状態となったときに、非同期整流制御から同期整流制御に切り替える構成(図3のS14、図6のS24参照)を示した。しかしながら、出力電流の状態に基づいて非同期整流制御から同期整流制御に切り替える代わりに、電圧変換部CV2からの出力電圧が所定の電圧減少状態となったときに非同期整流制御から同期整流制御に切り替える構成であってもよい。この場合、図2に示す判定部41は、検出部35によって検出された電圧値が所定の電圧減少状態であるか否かを判定すればよい。具体的には、判定部41は、上述したステップS13又はステップS23において、A/D変換器14に入力される導電路18の電圧値と所定値V1とを比較し、導電路18の電圧値が所定値V1以下である場合(即ち、電圧変換部CV2から第2導電路32に出力される出力電圧の電圧値が所定の閾値以下である場合)に、出力電圧が所定の電圧減少状態であると判定し、ステップS14又はステップS24の処理を行うようにすればよい。
 判定部41は、ステップS13又はステップS23において、制御回路10で算出されるデューティの大きさが所定の閾値以上となったときを「所定の電圧減少状態」と判定してもよい。或いは、判定部41は、ステップS13又はステップS23において、電圧変換部CV(実施例2では、電圧変換部CV2)から出力される出力電流値の増加率(例えば、所定時間における増加量)が所定の閾値以上となったときを「所定の電流増加状態」と判定してもよく、電圧変換部CV(実施例2では、電圧変換部CV2)からの出力電圧値の減少率(例えば、所定時間における減少量)が所定の閾値以上となったときを「所定の電圧減少状態」と判定してもよい。
 実施例1では、信号発生回路1は、出力電圧目標値Vtと検出部35によって検出した出力電圧値Voutとに基づいて、PWM信号のデューティを算出するフィードバック演算を行う構成(図3のS11、S15、図6のS21、S25参照)を例示した。しかしながら、信号発生回路1は、予め設定された出力電流目標値と検出部35によって検出した出力電流値とに基づいて、PWM信号のデューティを算出する公知のフィードバック演算を行う構成であってもよく、予め設定された出力電圧目標値及び出力電流目標値と、検出部35によって検出される出力電流値及び出力電圧値に基づいて、出力電圧目標値又は出力電流目標値に近づけるように公知の方法でフィードバック演算を行う構成であってもよい。
 1…信号発生回路
 21A,121A…第1スイッチ部
 22A,122A…第2スイッチ部
 22B,122B…ダイオード部
 27…駆動部
 31…第1導電路
 32…第2導電路
 33…基準導電路
 35…検出部
 41…判定部
 42…フィードバック演算部
 90…車両用電源装置
 CV,CV2…電圧変換部

Claims (7)

  1.  第1導電路に印加された入力電圧を降圧して第2導電路に出力する電圧変換部と、
     前記電圧変換部によって前記第2導電路に出力される出力電圧値又は出力電流値の少なくとも一方を検出する検出部と、
     前記電圧変換部に与える信号を発生させる信号発生回路と、
    を備え、
     前記電圧変換部は、
     前記第1導電路と前記第1導電路の電位よりも低い所定の基準電位に保たれる基準導電路との間に直列に接続された第1スイッチ部及び第2スイッチ部と、
     前記第1スイッチ部及び前記第2スイッチ部の接続部と前記第2導電路との間に設けられたインダクタと、前記第2スイッチ部と並列に接続されるとともにカソードが前記接続部側に接続されアノードが前記基準導電路側に接続されたダイオード部と、
    を有し、
     前記信号発生回路は、
     前記電圧変換部の出力電圧目標値と前記検出部の検出結果とに基づいて前記第1スイッチ部に与えるPWM信号のデューティを算出するフィードバック演算を行うフィードバック演算部と、
     前記フィードバック演算部で算出されたデューティのPWM信号を前記第1スイッチ部に与える構成をなし、前記第1スイッチ部のオン動作及びオフ動作に対応させて前記第2スイッチ部をオフ動作及びオン動作させる同期整流制御と、前記第2スイッチ部をオフ動作させたまま前記第1スイッチ部をオンオフ動作させる非同期整流制御と、を切り替えて実行する駆動部と、
     前記第2導電路が所定の電流増大状態又は所定の電圧減少状態であるか否かを判定する判定部と、
    を有し、
     前記駆動部は、前記非同期整流制御の実行中に前記判定部が前記所定の電流増大状態又は前記所定の電圧減少状態であると判定した場合、所定の設定値のデューティを有するPWM信号を前記第1スイッチ部に与える前記同期整流制御に切り替えた後、前記出力電圧目標値と前記検出部の検出結果とに基づき前記フィードバック演算部によって算出されるデューティのPWM信号を前記第1スイッチ部に与える前記同期整流制御を行う車両用電源装置。
  2.  前記設定値は、前記出力電圧目標値と前記入力電圧の電圧値とに基づく値である請求項1に記載の車両用電源装置。
  3.  前記設定値は、前記出力電圧目標値を前記入力電圧の電圧値で除した値である請求項2に記載の車両用電源装置。
  4.  第1導電路に印加された入力電圧を昇圧して第2導電路に出力する電圧変換部と、
     前記電圧変換部によって前記第2導電路に出力される出力電圧値又は出力電流値の少なくとも一方を検出する検出部と、
     前記電圧変換部に与える信号を発生させる信号発生回路と、
    を備え、
     前記電圧変換部は、
     前記第1導電路と前記第1導電路の電位よりも低い所定の基準電位に保たれる基準導電路との間に直列に接続されたインダクタ及び第1スイッチ部と、インダクタ及び前記第1スイッチ部の接続部と前記第2導電路との間に設けられた第2スイッチ部と、前記第2スイッチ部と並列に接続されるとともにアノードが前記接続部側に接続されカソードが前記第2導電路側に接続されたダイオード部と、を有し、
     前記電圧変換部によって前記第2導電路に出力される出力電圧値又は出力電流値の少なくとも一方を検出する検出部と、
     前記電圧変換部の出力電圧目標値と前記検出部の検出結果とに基づいて前記第1スイッチ部に与えるPWM信号のデューティを算出するフィードバック演算を行うフィードバック演算部と、
     前記フィードバック演算部で算出されたデューティのPWM信号を前記第1スイッチ部に与える構成をなし、前記第1スイッチ部のオン動作及びオフ動作に対応させて前記第2スイッチ部をオフ動作及びオン動作させる同期整流制御と、前記第2スイッチ部をオフ動作させたまま前記第1スイッチ部をオンオフ動作させる非同期整流制御と、を切り替えて実行する駆動部と、
     前記第2導電路が所定の電流増大状態又は所定の電圧減少状態であるか否かを判定する判定部と、
    を有し、
     前記駆動部は、前記非同期整流制御の実行中に前記判定部が前記所定の電流増大状態又は前記所定の電圧減少状態であると判定した場合、所定の設定値のデューティを有するPWM信号を前記第1スイッチ部に与える前記同期整流制御に切り替えた後、前記出力電圧目標値と前記検出部の検出結果とに基づき前記フィードバック演算部によって算出されるデューティのPWM信号を前記第1スイッチ部に与える前記同期整流制御を行う車両用電源装置。
  5.  前記設定値は、前記出力電圧目標値と前記入力電圧の電圧値とに基づく値である請求項4に記載の車両用電源装置。
  6.  前記設定値は、前記出力電圧目標値と前記入力電圧の電圧値との差を前記出力電圧目標値で除した値である請求項5に記載の車両用電源装置。
  7.  前記検出部は、前記出力電流値を検出し、
     前記判定部は、前記検出部によって検出された前記出力電流値が所定の閾値以上であるか否かを判定し、
     前記駆動部は、前記非同期整流制御の実行中において前記出力電流値が前記所定の閾値以上であると前記判定部が判定した場合、前記設定値のデューティを有するPWM信号を前記第1スイッチ部に与える前記同期整流制御に切り替えた後、前記出力電圧目標値と前記検出部の検出結果とに基づき前記フィードバック演算部によって算出されるデューティを有するPWM信号を前記第1スイッチ部に与える前記同期整流制御を実行する請求項1から請求項6のいずれか一項に記載の車両用電源装置。
PCT/JP2018/009534 2017-03-31 2018-03-12 車両用電源装置 WO2018180425A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880017330.8A CN110402534B (zh) 2017-03-31 2018-03-12 车辆用电源装置
US16/495,497 US10868470B2 (en) 2017-03-31 2018-03-12 Power supply device for vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017070383A JP6708156B2 (ja) 2017-03-31 2017-03-31 車両用電源装置
JP2017-070383 2017-03-31

Publications (1)

Publication Number Publication Date
WO2018180425A1 true WO2018180425A1 (ja) 2018-10-04

Family

ID=63675367

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/009534 WO2018180425A1 (ja) 2017-03-31 2018-03-12 車両用電源装置

Country Status (4)

Country Link
US (1) US10868470B2 (ja)
JP (1) JP6708156B2 (ja)
CN (1) CN110402534B (ja)
WO (1) WO2018180425A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI690143B (zh) * 2019-04-02 2020-04-01 瑞昱半導體股份有限公司 電壓轉換器

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110356262B (zh) * 2019-07-24 2022-09-16 重庆中涪科瑞工业技术研究院有限公司 一种电动汽车无线充电系统异物检测方法
WO2021039433A1 (ja) * 2019-08-29 2021-03-04 日立オートモティブシステムズ株式会社 電子制御装置
CN111596715A (zh) * 2020-05-29 2020-08-28 北京集创北方科技股份有限公司 电压调整装置、芯片、电源及电子设备
CN114172347B (zh) * 2021-12-14 2024-04-09 广州合成材料研究院有限公司 一种输出功率控制装置及方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003143846A (ja) * 2001-10-31 2003-05-16 Fujitsu Ltd 電源装置及びその制御方法
JP2007015474A (ja) * 2005-07-06 2007-01-25 Toyota Motor Corp 電動パワーステアリング装置
JP2010161915A (ja) * 2009-01-09 2010-07-22 Sanyo Electric Co Ltd スイッチング制御回路

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001298945A (ja) * 2000-04-17 2001-10-26 Taiyo Yuden Co Ltd 電源回路の駆動方法並びに電源回路及び電源用電子部品
TWI263395B (en) * 2001-11-02 2006-10-01 Delta Electronics Inc Power supply device
JP2007252137A (ja) * 2006-03-17 2007-09-27 Ricoh Co Ltd 非絶縁降圧型dc−dcコンバータ
CN101572485B (zh) * 2008-04-30 2012-06-06 杭州茂力半导体技术有限公司 用于副边同步整流管的智能驱动控制方法及装置
WO2010047422A2 (en) * 2008-10-24 2010-04-29 Honda Motor Co., Ltd. Power supply device and power supply system for fuel cell vehicle
CN102396140B (zh) * 2009-04-14 2015-05-13 株式会社村田制作所 开关电源装置
JP5428713B2 (ja) 2009-09-30 2014-02-26 サンケン電気株式会社 Dc−dcコンバータ、及びその制御方法
JP6024356B2 (ja) * 2012-10-03 2016-11-16 株式会社ソシオネクスト Ac−dcコンバータ
JP5872502B2 (ja) * 2013-03-28 2016-03-01 株式会社豊田中央研究所 電源システム
JP5878495B2 (ja) * 2013-06-11 2016-03-08 株式会社豊田中央研究所 電動車両の電源システム
JP5624176B1 (ja) * 2013-06-13 2014-11-12 株式会社豊田中央研究所 電源システム
WO2017221421A1 (ja) * 2016-06-24 2017-12-28 本田技研工業株式会社 電源装置、機器及び制御方法
JP6772980B2 (ja) * 2017-07-14 2020-10-21 株式会社オートネットワーク技術研究所 車載用の信号発生回路及び車載用電源装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003143846A (ja) * 2001-10-31 2003-05-16 Fujitsu Ltd 電源装置及びその制御方法
JP2007015474A (ja) * 2005-07-06 2007-01-25 Toyota Motor Corp 電動パワーステアリング装置
JP2010161915A (ja) * 2009-01-09 2010-07-22 Sanyo Electric Co Ltd スイッチング制御回路

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI690143B (zh) * 2019-04-02 2020-04-01 瑞昱半導體股份有限公司 電壓轉換器

Also Published As

Publication number Publication date
CN110402534A (zh) 2019-11-01
JP2018174632A (ja) 2018-11-08
US20200099306A1 (en) 2020-03-26
CN110402534B (zh) 2021-02-26
JP6708156B2 (ja) 2020-06-10
US10868470B2 (en) 2020-12-15

Similar Documents

Publication Publication Date Title
WO2018180425A1 (ja) 車両用電源装置
JP6536466B2 (ja) 電源装置
US11084438B2 (en) Power supply apparatus for vehicles
CN110266189B (zh) 车载用的dcdc转换器
US11005471B2 (en) Signal generating circuit and power supply device
US11121630B2 (en) In-vehicle DC-DC converter
JP2010057242A (ja) モータ駆動回路及び電動式パワーステアリング装置
JP2013126335A (ja) マルチフェーズ型dc−dcコンバータ
WO2016121702A1 (ja) 電圧変換装置及び電圧変換方法
WO2020202967A1 (ja) 車載用電圧変換装置
JP5167733B2 (ja) 昇圧型dc/dcコンバータ
TWI482403B (zh) 可運作於脈波寬度調變模式或脈波省略模式下的電壓轉換器及其切換方法
JP2007020327A (ja) Dc−dcコンバータの制御装置
JP6693385B2 (ja) Dc−dcコンバータ及び電子制御装置
JP5104064B2 (ja) Dc−dcコンバータおよびその制御方法
CN110168889B (zh) 车载用控制装置及车载用电源装置
WO2019150900A1 (ja) 車載用のdcdcコンバータ
US10103646B2 (en) Control device for power converter
WO2022124020A1 (ja) 車載用電源装置
JP6544483B2 (ja) 電源装置
US11180097B2 (en) In-vehicle power supply device
JP2020198701A (ja) 電力変換器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18775709

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18775709

Country of ref document: EP

Kind code of ref document: A1