WO2019150900A1 - 車載用のdcdcコンバータ - Google Patents

車載用のdcdcコンバータ Download PDF

Info

Publication number
WO2019150900A1
WO2019150900A1 PCT/JP2019/000454 JP2019000454W WO2019150900A1 WO 2019150900 A1 WO2019150900 A1 WO 2019150900A1 JP 2019000454 W JP2019000454 W JP 2019000454W WO 2019150900 A1 WO2019150900 A1 WO 2019150900A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive path
frequency
voltage
output
current
Prior art date
Application number
PCT/JP2019/000454
Other languages
English (en)
French (fr)
Inventor
一輝 増田
Original Assignee
株式会社オートネットワーク技術研究所
住友電装株式会社
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社オートネットワーク技術研究所, 住友電装株式会社, 住友電気工業株式会社 filed Critical 株式会社オートネットワーク技術研究所
Publication of WO2019150900A1 publication Critical patent/WO2019150900A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only

Definitions

  • the present invention relates to an in-vehicle DCDC converter.
  • DCDC converter components for in-vehicle use there are a coil and a capacitor as parts having a large physique.
  • a plurality of DCDC converters of PWM switching system (hereinafter also referred to as voltage converters) are connected in parallel, and a plurality of PWM controls are used.
  • the ripple current of the output smoothing capacitor has a frequency that is double the number of phases of each DCDC converter, and the effective current of the capacitor is reduced, so that the output smoothing capacitor can be downsized.
  • Patent Document 1 in order to reduce the influence of the parasitic impedance of the path connecting the output smoothing capacitor and the output side terminal of the inductor of the DCDC converter configured in parallel, the connection bus bar and the inductance of the inductor are adjusted. A method is disclosed.
  • Patent Document 1 does not solve the downsizing of the inductor.
  • the size of the inductor needs to be designed so that the core does not magnetically saturate when the DCDC converter is operating.
  • the magnetic flux density B of the core in the inductor is expressed by the following equation.
  • L is the inductance of the inductor
  • I is the value of the current flowing through the inductor
  • n is the number of turns (number of turns) of the inductor coil
  • A is the cross-sectional area of the inductor core.
  • Equation 1 when the value I of the current flowing through the inductor is increased, in order to suppress the magnetic saturation of the core, the inductance L is reduced, the number n of turns of the inductor coil or the cross-sectional area A of the core is set. There is no choice but to take measures to increase it. Decreasing the inductance L causes an increase in ripple current and increases the size of the capacitor. Further, increasing the number of turns n of the inductor coil or the cross-sectional area A of the core leads to an increase in the size of the inductor.
  • the present invention has been made to solve at least one of the above-described problems.
  • An object of the present invention is to realize a configuration capable of suppressing the peak value of the current flowing through the inductor when the output current increases while suppressing the size of the inductor.
  • the first invention is The input that is electrically connected to the first conductive path and the second conductive path, and one of the first conductive path and the second conductive path is an input side conductive path, and the other is an output side conductive path.
  • An in-vehicle DCDC converter that boosts or lowers a voltage applied to a side conductive path and outputs the voltage to the output side conductive path;
  • a voltage converter that includes a switching element that is turned on and off in response to a PWM signal, and that steps up or down a voltage applied to the input-side conductive path by the on-off operation of the switching element and outputs the voltage to the output-side conductive path And
  • a voltage detector for detecting a voltage value of the output-side conductive path;
  • a current detection unit for detecting a current value of the output-side conductive path;
  • a calculation unit that repeats a feedback calculation that calculates the duty of the PWM signal so that the voltage of the output-side conductive path approaches a target voltage value based on at
  • a frequency setting unit for setting the frequency of the PWM signal to a second frequency larger than the first frequency when in a high current state;
  • a driving unit that outputs a PWM signal of a duty calculated by the calculation unit to the switching element at a frequency set by the frequency setting unit;
  • the second invention is The input that is electrically connected to the first conductive path and the second conductive path, and one of the first conductive path and the second conductive path is an input side conductive path, and the other is an output side conductive path.
  • An in-vehicle DCDC converter that boosts or lowers a voltage applied to a side conductive path and outputs the voltage to the output side conductive path;
  • a voltage converter that includes a switching element that is turned on and off in response to a PWM signal, and that steps up or down a voltage applied to the input-side conductive path by the on-off operation of the switching element and outputs the voltage to the output-side conductive path And
  • a voltage detector for detecting a voltage value of the output-side conductive path;
  • a calculation unit that repeats a feedback calculation that calculates the duty of the PWM signal so that the voltage of the output-side conductive path approaches a target voltage value based on at least the voltage value detected by the voltage detection unit;
  • the frequency of the PWM signal is set
  • the on-vehicle DCDC converter sets the frequency of the PWM signal to a relatively small first frequency when the output side conductive path is in a normal current state, and the output side conductive path is in a large current state.
  • the frequency of the PWM signal is set to a relatively large second frequency.
  • the peak current of the inductor can be suppressed even if the average current of the inductor increases with a large current state.
  • the peak current in the inductor can be suppressed without increasing the inductor size or increasing the size of the accompanying capacitor.
  • the on-vehicle DCDC converter sets the frequency of the PWM signal to the first frequency in a predetermined normal period, and a predetermined end condition is satisfied after a predetermined current increase condition is satisfied outside the normal period.
  • the frequency of the PWM signal is set to a second frequency larger than the first frequency during the specific period until. In this manner, the frequency of the PWM signal can be set to a relatively small frequency (first frequency) during the normal period to suppress the operation load, and a relatively large frequency (second frequency) during the specific period. ) To suppress ripples in the inductor.
  • the peak of the inductor current can be suppressed as compared with the case where the ripple is not suppressed (in the case of the first frequency).
  • the suppression effect increases.
  • the peak of the inductor current can be suppressed without increasing the inductor size or increasing the size of the accompanying capacitor.
  • FIG. 1 is a circuit diagram schematically illustrating an in-vehicle power supply system including an in-vehicle step-down DCDC converter according to a first embodiment.
  • 3 is a flowchart illustrating a control flow of a voltage conversion unit in the in-vehicle step-down DCDC converter according to the first embodiment.
  • (A) is a graph which shows the relationship between the output electric current value and time in the step-down DCDC converter for vehicles of Example 1
  • (B) is a graph which shows the relationship between the frequency of PWM signal, and time.
  • FIG. 6 is a graph schematically showing changes in output currents Iave and Ipeak when the switching speed of the first element and the second element is changed in a step-down DCDC converter for in-vehicle use of another embodiment. .
  • the frequency setting unit may set the frequency of the PWM signal so that the frequency increases as the value of the current detected by the current detection unit increases. In this way, as the output current increases, the degree of ripple suppression increases and the effect of suppressing the peak current in the inductor increases.
  • the specific period may include a period during which a specific load operates. In this way, the ripple in the inductor can be suppressed during the period when the specific load operates, so even if the average current of the inductor increases as the specific load operates, the peak of the inductor current Is suppressed.
  • An in-vehicle power supply system 100 shown in FIG. 1 includes a first power supply unit 91 and a second power supply unit 92 configured as an in-vehicle power supply unit, and an in-vehicle step-down DCDC converter 1 (hereinafter also referred to as a DCDC converter 1). ) And is configured as a system capable of supplying power to a load 94 mounted on the vehicle.
  • the load 94 is a vehicle-mounted electrical component, and the type and number thereof are not limited.
  • the first power supply unit 91 is constituted by power storage means such as a lithium ion battery or an electric double layer capacitor, for example, and generates a first predetermined voltage.
  • the terminal on the high potential side of the first power supply unit 91 is kept at a predetermined voltage (for example, 24 V or 48 V), and the terminal on the low potential side is kept at the ground potential (0 V).
  • a terminal on the high potential side of the first power supply unit 91 is electrically connected to a wiring unit 81 provided in the vehicle, and the first power supply unit 91 applies a predetermined voltage to the wiring unit 81.
  • the terminal on the low potential side of the first power supply unit 91 is electrically connected to a reference conductive path 83 configured as a ground part in the vehicle.
  • the wiring portion 81 is connected to the input side terminal 51 of the DCDC converter 1 and is electrically connected to the first conductive path 21 via the input side terminal 51.
  • the second power supply unit 92 is constituted by power storage means such as a lead storage battery, for example, and generates a second predetermined voltage lower than the first predetermined voltage generated by the first power supply unit 91.
  • the terminal on the high potential side of the second power supply unit 92 is maintained at 12V, and the terminal on the low potential side is maintained at the ground potential (0V).
  • a terminal on the high potential side of the second power supply unit 92 is electrically connected to a wiring unit 82 provided in the vehicle, and the second power supply unit 92 applies a predetermined voltage to the wiring unit 82.
  • a terminal on the low potential side of the second power supply unit 92 is electrically connected to the reference conductive path 83.
  • the wiring part 82 is connected to the output side terminal 52 of the DCDC converter 1, and is electrically connected to the second conductive path 22 via the output side terminal 52.
  • the reference conductive path 83 is configured as a vehicle ground and is maintained at a constant ground potential (0 V).
  • the reference conductive path 83 is electrically connected to the low potential side terminal of the first power supply unit 91 and the low potential side terminal of the second power supply unit 92, and the source of the second element 12 to be described later is connected to the reference conductive path 83.
  • the third conductive path 23 and the ground terminal 53 are electrically connected.
  • the DCDC converter 1 is configured as an in-vehicle step-down DCDC converter that is mounted and used in a vehicle.
  • the DCDC converter 1 uses the first conductive path 21 as an input side conductive path, the second conductive path 22 as an output side conductive path, and steps down the DC voltage applied to the first conductive path 21.
  • An example of operation to output to the second conductive path 22 will be described.
  • the DCDC converter 1 mainly includes a first conductive path 21, a second conductive path 22, a third conductive path 23, a voltage conversion unit 10, a control unit 30, a voltage detection unit 40, a current detection unit 44, an input side terminal 51, and an output.
  • a side terminal 52, a ground terminal 53, and the like are provided.
  • the first conductive path 21 is configured as a primary (high voltage side) power supply line to which a relatively high voltage is applied.
  • the first conductive path 21 is electrically connected to a high potential side terminal of the first power supply unit 91 via the wiring unit 81 and is configured to be applied with a predetermined DC voltage from the first power supply unit 91.
  • an input side terminal 51 is provided at an end of the first conductive path 21, and a wiring portion 81 is electrically connected to the input side terminal 51.
  • the second conductive path 22 is configured as a secondary (low voltage side) power supply line to which a relatively low voltage is applied.
  • the second conductive path 22 is electrically connected to the high potential side terminal of the second power supply unit 92 via the wiring unit 82 and is smaller than the output voltage of the first power supply unit 91 from the second power supply unit 92. It is configured to apply a DC voltage.
  • an output side terminal 52 is provided at the end of the second conductive path 22, and a wiring portion 82 is electrically connected to the output side terminal 52.
  • the voltage conversion unit 10 is provided between the first conductive path 21 and the second conductive path 22 and is configured as a high-side first element configured as a semiconductor switching element electrically connected to the first conductive path 21. 11 and a semiconductor switching element electrically connected between the first conductive path 21 and the reference conductive path 83 (a conductive path maintained at a predetermined reference potential lower than the potential of the first conductive path 21).
  • the second element 12 on the low side, and the inductor 14 electrically connected between the first element 11 and the second element 12 and the second conductive path 22.
  • the voltage conversion unit 10 is a main part of a switching-type step-down DCDC converter, and steps down the voltage applied to the first conductive path 21 by switching on / off operation of the first element 11 corresponding to an example of a switching element.
  • the step-down operation output to the second conductive path 22 can be performed.
  • an input-side capacitor (not shown) is provided between the first conductive path 21 and the third conductive path 23, and is illustrated between the second conductive path 22 and the third conductive path 23.
  • An output side capacitor is not provided.
  • Both the first element 11 and the second element 12 are configured as N-channel MOSFETs, and one end of the first conductive path 21 is connected to the drain of the first element 11 on the high side.
  • the drain of the first element 11 is electrically connected to an electrode on one side of an input side capacitor (not shown), and also to the high potential side terminal of the first power supply unit 91 via the first conductive path 21 and the wiring unit 81. It is electrically connected and can conduct between them.
  • the drain of the second element 12 on the low side and one end of the inductor 14 are electrically connected to the source of the first element 11, and can be conducted between them.
  • a drive signal and a non-drive signal (specifically, a PWM signal) from the drive unit 34 provided in the control unit 30 are input to the gate of the first element 11.
  • the first element 11 is switched between an on state and an off state according to the signal.
  • the third conductive path 23 is connected to the source of the second element 12 on the low side.
  • the third conductive path 23 is a conductive path between the source of the second element 12 and the ground terminal 53, and is electrically connected to the reference conductive path 83 via the ground terminal 53, and the potential of the reference conductive path 83 ( 0V).
  • the third conductive path 23 is electrically connected to electrodes on the other side of the input side capacitor and the output side capacitor (not shown).
  • a drive signal and a non-drive signal from the control unit 30 are also input to the gate of the second element 12 on the low side, and the second element 12 is turned on according to the signal from the control unit 30. It switches to the off state.
  • the inductor 14 has one end connected to a connection portion between the first element 11 and the second element 12, and one end thereof is electrically connected to the source of the first element 11 and the drain of the second element 12.
  • the other end of the inductor 14 is connected to the second conductive path 22 (specifically, a portion of the second conductive path 22 closer to the voltage conversion unit 10 than the current detection unit 44).
  • the current detection unit 44 includes a resistor 44A and a differential amplifier 44B and has a value indicating the current flowing through the second conductive path 22 (specifically, an analog voltage corresponding to the value of the current flowing through the second conductive path 22). ) Is output.
  • the voltage drop generated in the resistor 44A due to the output current from the voltage converter 10 is amplified by the differential amplifier 44B to become a detection voltage (analog voltage) corresponding to the output current, and is input to the control circuit 32.
  • the detected voltage (analog voltage) is converted into a digital value by an A / D converter (not shown) provided in the control circuit 32.
  • the voltage detection circuit 41 is connected to the first conductive path 21 and is configured to input a value corresponding to the voltage of the first conductive path 21 to the control circuit 32.
  • the voltage detection circuit 41 is a known voltage that can input a value indicating the voltage of the first conductive path 21 (a value specifying a potential difference between the potential of the first conductive path 21 and the potential of the reference conductive path 83) to the control circuit 32.
  • the detection circuit may be configured as a voltage dividing circuit that divides the voltage of the first conductive path 21 and inputs the divided voltage to the control circuit 32.
  • the voltage detection circuit 42 is connected to the second conductive path 22 and specifies a value corresponding to the voltage of the second conductive path 22 (the potential difference between the potential of the second conductive path 22 and the potential of the reference conductive path 83). A value to be input) to the control circuit 32.
  • the voltage detection circuit 42 may be a known voltage detection circuit that can input a value indicating the voltage of the second conductive path 22 to the control circuit 32.
  • the voltage detection circuit 42 divides the voltage of the second conductive path 22 and controls the control circuit 32. It is configured as a voltage dividing circuit that inputs to the input.
  • the voltage detection circuits 41 and 42 and the control circuit 32 function as the voltage detection unit 40.
  • the voltage detection unit 40 uses the potential at a predetermined position (specifically, the third conductive path 23) between the second element 12 and the reference conductive path 83 as a reference, and the potential at the predetermined position and the first conductive path 21. Is detected as the voltage of the first conductive path 21.
  • the voltage detection unit 40 uses the potential at a predetermined position (specifically, the third conductive path 23) between the second element 12 and the reference conductive path 83 as a reference, and the potential at the predetermined position and the second conductive path. A potential difference from the potential of the path 22 is detected as a voltage of the second conductive path 22.
  • the control unit 30 includes a control circuit 32 and a drive unit 34.
  • the control circuit 32 is configured as a microcomputer, for example, a CPU that performs various arithmetic processes, a ROM that stores information such as programs, a RAM that stores temporarily generated information, and an analog voltage that is input into a digital value.
  • An A / D converter or the like for conversion is provided. In the A / D converter, each detection signal (analog voltage signal corresponding to the detection voltage) from the voltage detection circuits 41 and 42 and a detection signal (analog voltage signal corresponding to the detection current) from the current detection unit 44 are received. Given.
  • the control circuit 32 causes the voltage conversion unit 10 to perform a step-down operation, the voltage value detected by the voltage detection circuit 42 (the voltage value applied to the second conductive path 22) and a predetermined target voltage value.
  • the feedback calculation for calculating the duty by a known feedback calculation method (such as a known PI calculation method or a known PID calculation method) is periodically repeated based on the deviation from Is output.
  • the drive unit 34 is configured as, for example, a known driver circuit, and is a PWM signal corresponding to the PWM signal output from the control circuit 32 (a PWM signal having the same cycle and the same duty as the PWM signal output from the control circuit 32). , A signal whose ON signal is set to a voltage level capable of driving the first element 11) is output to the first element 11.
  • the DCDC converter 1 configured as described above functions as a synchronous rectification step-down DCDC converter, which turns on and off the high-side first element 11 and turns on and off the low-side second element 12 according to the PWM signal.
  • the DC voltage applied to the first conductive path 21 is stepped down and output to the second conductive path 22.
  • the voltage (output voltage) applied to the second conductive path 22 is determined according to the duty of the PWM signal applied to the gate of the first element 11.
  • the control unit 30 of the DCDC converter 1 drives the voltage conversion unit 10 according to the establishment of a predetermined start condition, and performs a voltage conversion operation. Specifically, when the ignition switch is in an on state, an ignition on signal is given from the external device to the control unit 30, and when the ignition switch is in an off state, the control unit 30 is transmitted from the external device. Is provided with an ignition-off signal. For example, the control unit 30 gives a control signal to the voltage conversion unit 10 on the condition that the ignition switch is switched from the off state to the on state, and causes the voltage conversion unit 10 to perform a voltage conversion operation.
  • the control unit 30 controls the voltage conversion unit 10 in the flow as shown in FIG.
  • the voltage conversion control shown in FIG. 2 is started by the control unit 30 when, for example, the ignition switch is switched from an off state to an on state.
  • the control unit 30 starts a predetermined switching condition in step S1 after the voltage conversion control starts. It is determined whether or not is established.
  • the predetermined switching condition is a condition that “the output-side conductive path is in a predetermined large current state”, and “the state in which the current value of the output-side conductive path exceeds the threshold” is “predetermined The case of “high current state” will be described as an example.
  • the control unit 30 determines whether or not the current value of the second conductive path 22 (output-side conductive path) exceeds the threshold value in step S1, and the current value of the second conductive path 22 is the threshold value. If it is determined that the frequency does not exceed, the frequency of the PWM signal is set to the first frequency f1 in step S2, and the operation of outputting the PWM signal at the first frequency f1 (first control operation) is performed. On the other hand, when it is determined in step S1 that the current value of the second conductive path 22 (output-side conductive path) exceeds the threshold value, the control unit 30 sets the frequency of the PWM signal to the second frequency f2 in step S3.
  • step S2 the control unit 30 performs the control operation of step S2 (the PWM signal at the first frequency f1) until the next step S3 is executed or a predetermined voltage conversion end condition is satisfied.
  • the first control operation for outputting the Similarly, when the control operation of step S3 is started, the control unit 30 performs the control operation (second frequency f2) of step S3 until step S2 is executed next or until a predetermined voltage conversion end condition is satisfied.
  • the second control operation for outputting the PWM signal is continued.
  • the “predetermined voltage conversion end condition” is a condition that, for example, the ignition switch is switched from an on state to an off state.
  • FIG. 3A is a graph illustrating a change in inductor current when the first element 11 is driven by a PWM signal in which the duty is set to a predetermined value and the frequency is set to the first frequency f1.
  • FIG. 3B is a graph illustrating a change in inductor current when the first element 11 is driven by a PWM signal in which the duty is set to a predetermined value and the frequency is set to the second frequency f2.
  • the maximum current value Imax that can be passed through the coil of the inductor 14 (hereinafter also referred to as the maximum coil current value Imax) can be expressed by the following equation (2).
  • Equation 2 L is the inductance of the inductor 14, n is the number of turns (number of turns) of the coil of the inductor 14, A is the cross-sectional area of the core of the inductor 14, and Bmax is the core of the inductor 14. The maximum magnetic flux density. The maximum value Imax of the coil current is determined to be a predetermined value by these four variables.
  • the maximum value Ipeak (hereinafter also referred to as the maximum value Ipeak) of the coil current when the DCDC converter 1 is operating can be expressed by the following equation (3).
  • Equation 4 VH is the voltage value of the first conductive path 21 detected by the voltage detection unit 40, VL is the voltage value of the second conductive path 22 detected by the voltage detection unit 40, and f is The frequency of the PWM signal given from the drive unit 34 to the first element 11.
  • the ripple current ⁇ IL is larger than that at the second frequency f2 (a frequency larger than the first frequency f1).
  • the average current Iave is also reduced.
  • the ripple current ⁇ IL is smaller than that at the first frequency f1, and the average The current Iave also increases. Because of this relationship, in a scene where the average current of the inductor 14 increases from the state of FIG. 3A to the state of FIG.
  • Ith is the maximum value of current that can be continuously passed through the coil of the inductor 14.
  • Iave becomes equal to or less than Ith by setting the frequency f of the PWM signal to the first frequency f1
  • the coil of the inductor 14 has a current having a magnitude equal to the average current Iave. Can flow continuously.
  • Ipeak can be kept below Imax.
  • the loss that occurs during switching in the first element 11 (during step-down) or the second element 12 (during step-up) is generally proportional to the drive frequency. Therefore, if the second frequency f2 is maintained for a predetermined time or longer, the first element 11 In addition, the second element 12 may not allow self-heating and may fail. For this reason, it is necessary to limit the operation of making the average current Iave larger than Ith as shown in FIG.
  • the frequency f of the PWM signal can be expressed as in the following equations 3 and 4 to 5. From Equation 5, the frequency f of the PWM signal is inversely proportional to the difference between the maximum value Imax (maximum value Ipeak) of the coil current and the average current Iave, and the difference between the maximum value Imax of the coil current and the average current Iave. It can be seen that the value increases as becomes smaller.
  • the effect of this configuration will be exemplified.
  • the PWM signal I when the second conductive path 22 (output-side conductive path) is in a normal current state (specifically, when the current value of the second conductive path 22 is equal to or less than a threshold value), the PWM signal Is set to a relatively small first frequency f1, and the second conductive path 22 (output-side conductive path) is in a large current state (specifically, the current value of the second conductive path 22 is a threshold value).
  • the frequency of the PWM signal is set to a relatively large second frequency f2.
  • the operation load can be suppressed by setting the frequency to a relatively small frequency (first frequency).
  • first frequency a relatively high frequency
  • second frequency a relatively high frequency
  • ripples can be suppressed in the inductor 14.
  • Example 2 Next, Example 2 will be described.
  • the second embodiment is different from the first embodiment only in that the determination method in step S1 in FIG. 2 is changed, and is otherwise the same as the first embodiment. Therefore, detailed description of points that are the same as the first embodiment will be omitted, and FIGS. 1 to 3 will be referred to as appropriate.
  • the predetermined switching condition is a condition that “a specific period from when the predetermined current increase condition is satisfied until the predetermined end condition is satisfied”.
  • the “specific period” is a period during which a specific load operates will be described.
  • the “specific load” is a starter
  • a predetermined first condition before the starter for example, when the ignition switch is switched from the off state to the on state, or when a predetermined starter driving signal is generated
  • a predetermined second condition after the starter is operated is satisfied (for example, when the starter is switched from the operation state to the operation stop state, when a predetermined time elapses after the predetermined start condition is satisfied).
  • a predetermined end condition is satisfied.
  • the control unit 30 determines whether or not the execution time of step S1 corresponds to the above-mentioned “specific period” in step S1, and determines that the execution time of step S1 does not correspond to the specific period.
  • the frequency of the PWM signal is set to the first frequency f1, and the operation of outputting the PWM signal at the first frequency f1 (first control operation) is performed.
  • the control unit 30 sets the frequency of the PWM signal to the second frequency f2 in step S3, and the second frequency An operation (second control operation) for outputting a PWM signal is performed at f2.
  • step S2 When the control operation of step S2 is started, the control unit 30 performs the control operation of step S2 (the PWM signal at the first frequency f1) until the next step S3 is executed or a predetermined voltage conversion end condition is satisfied. The first control operation for outputting the Similarly, when the control operation of step S3 is started, the control unit 30 performs the control operation (second frequency f2) of step S3 until step S2 is executed next or until a predetermined voltage conversion end condition is satisfied. The second control operation for outputting the PWM signal is continued. In addition, the control part 30 complete
  • the “predetermined voltage conversion end condition” is a condition that, for example, the ignition switch is switched from an on state to an off state.
  • a period that is not a “specific period” in a period for example, a period in which the ignition switch is in an on state
  • a “normal period” is a “normal period”. It corresponds to an example.
  • the DCDC converter 1 sets the frequency of the PWM signal to the first frequency f1 in the “normal period”, and the “specific period” (a predetermined end condition after a predetermined current increase condition is established outside the normal period). The period of time until the above is established), the frequency of the PWM signal is set to the second frequency f2 larger than the first frequency f1. In this manner, the frequency of the PWM signal can be set to a relatively small frequency (first frequency f1) in the normal period to suppress the operation load, and a relatively large frequency (second frequency) can be suppressed in the specific period.
  • the ripple can be suppressed in the inductor 14 by setting the frequency f2).
  • the peak of the inductor current can be suppressed as compared with the case where the ripple is not suppressed (in the case of the first frequency f1).
  • the suppression effect of increases.
  • the peak of the inductor current can be suppressed without increasing the inductor size or increasing the size of the accompanying capacitor.
  • Specific period includes a period during which a specific load (for example, a starter) operates.
  • a specific load for example, a starter
  • the ripple in the inductor 14 can be reliably suppressed during the operation of a specific load (for example, a starter), so that the average current of the inductor increases as the specific load operates.
  • the peak of the inductor current can be suppressed.
  • the DCDC converter 1 having only one voltage conversion unit is illustrated, but a polyphase type in which a plurality of voltage conversion units are connected in parallel between the first conductive path and the second conductive path.
  • the DCDC converter may be used. In this case, the number of phases should just be two or more. Further, it may be a step-down type multi-phase converter, a step-up type multi-phase converter, or a step-up / step-down type multi-phase converter.
  • the unidirectional DCDC converter in which the first conductive path is the input side conductive path and the second conductive path is the output side conductive path is illustrated. However, the first conductive path is the input side conductive path.
  • a bidirectional converter capable of switching between control using the second conductive path as the output side conductive path and control using the second conductive path as the input side conductive path and the first conductive path as the output side conductive path It may be configured.
  • the configuration in which the second power supply unit is electrically connected to the second conductive path on the output side is illustrated.
  • the second power supply unit is not electrically connected to the second conductive path. May be.
  • the synchronous rectification step-down DCDC converter in which the second element is configured as a switching element is illustrated, but the second element is a diode (a cathode is connected to the first element side and an anode is connected to the reference conductive path side). It may be a diode type step-down DCDC converter configured as a diode connected to the other. Alternatively, a diode type step-up DCDC converter may be used.
  • the “specific load” is a starter, but the “specific load” may be another load (for example, an air conditioner or a heater).
  • the heater is a “specific load”
  • the case where the predetermined first condition before the heater is operated corresponds to an example of “the case where the predetermined current increase condition is satisfied”.
  • the case where the predetermined second condition after the heater is operated corresponds to an example of “when the predetermined end condition is satisfied”.
  • a period from when the first condition is satisfied until the second condition is satisfied corresponds to an example of a “specific period”.
  • the first condition for example, the operation of the heater has actually started, or that a predetermined condition for operating the heater has been established (for example, a temperature detected by a temperature sensor provided in the vehicle is set). Etc.) and the like.
  • the second condition is, for example, that the heater operation has actually stopped, or that a predetermined condition for stopping the heater operation has been established (for example, the temperature detected by the temperature sensor provided in the vehicle is Etc.) and the like.
  • FIG. 4 is a graph for explaining the relationship between the output current and the frequency for such a configuration.
  • the graph of FIG. 4A shows that in the DCDC converter 1 shown in FIG.
  • the voltage Vin of the first conductive path 21 is 24V
  • the voltage Vout of the second conductive path 22 is 12V
  • the inductance L of the inductor 14 is
  • the maximum value Imax of the coil current that can be passed through the inductor 14 is 40 A
  • the ripple current ⁇ IL at the inductor 14 is 20 A
  • the maximum value of the current that can be continuously passed through the coil of the inductor 14 is 3 ⁇ H.
  • the graph of FIG. 4B is a graph showing the relationship between the frequency and time with the time axis corresponding to the graph of FIG. In the example of FIG.
  • the frequency of the PWM signal when the output current value is within the first range (within 30 A or less), the frequency of the PWM signal is set to 100 Hz, which is the first frequency (normal frequency), and the output current value is When the frequency is greater than 1, the frequency of the PWM signal is set to the second frequency (a specific frequency greater than 100 Hz).
  • PWM is provided when a plurality of types of second frequencies are prepared and the output current value is within a second range (greater than 30 A and less than or equal to 32 A), which is a current value range larger than the first range.
  • the frequency of the signal is set to 125 Hz, which is the first specific frequency, and the output current value is within a third range (a range of greater than 32 A and less than 34 A) that is a current value greater than the second range.
  • the frequency of the PWM signal is set to 166 Hz which is the second specific frequency, and the output current value is within the fourth range (the range larger than 34A) which is the current value range larger than the third range.
  • the frequency of the PWM signal is set to 500 Hz, which is the third specific frequency.
  • the output current value (a value approximately equal to the average current Iave) is 38 A from time T1 to T2, and during this period, the frequency f of the PWM signal is set to 500 Hz, which is the third specific frequency. Is set.
  • the output current value (average current Iave) decreases, and when passing through time T4, it becomes smaller than 30A (Ith) and is within the first range described above.
  • the frequency f is set to 100 Hz which is the first frequency (normal frequency).
  • the output current value (average current Iave) rises from time T5 to T6, and the output current value (average current Iave) falls within the third range described above during the period from time T6 to T7.
  • the frequency f is set to 166 Hz, which is the second specific frequency.
  • the frequency setting unit 32B can switch the frequency of the PWM signal in three steps or more so that the frequency increases as the current value of the second conductive path 22 (output-side conductive path) increases. ing.
  • the ripple current is suppressed, and in any case, the peak current Ipeak of the inductor 14 does not exceed the maximum value Imax (40 A in FIG. 4). .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

出力電流の増大時にインダクタに流れる電流のピーク値を抑制し得る構成を、インダクタのサイズを抑えて実現する。 車載用のDCDCコンバータ(1)は、演算部(32A)と、周波数設定部(32B)とを備える。周波数設定部(32B)は、電流検出部(44)で検出される電流の値に基づき、出力側導電路が所定の通常電流状態である場合にPWM信号の周波数を第1周波数に設定し、出力側導電路が所定の大電流状態である場合にPWM信号の周波数を第1周波数よりも大きい第2周波数に設定する。

Description

車載用のDCDCコンバータ
 本発明は、車載用のDCDCコンバータに関するものである。
 車載用のDCDCコンバータの構成部品のうち、体格が大きい部品として、コイル、及びコンデンサがある。昨今の車載用のDCDCコンバータに対する小型化と高出力の要求に応じるために、PWMスイッチング方式の複数のDCDC変換部(以下、電圧変換部ともいう)を並列に接続し、且つ複数のPWM制御に位相差を設けたインターリーブ方式を利用する方法がある。これにより、出力平滑コンデンサのリップル電流は、周波数が各DCDC変換部の相数倍になり、コンデンサの実効電流が低下するため、出力平滑コンデンサの小型化が可能になる。特に、特許文献1では、並列に構成されたDCDC変換部のインダクタの出力側端子と出力平滑コンデンサを接続する経路の寄生インピーダンスの影響を小さくするため、接続用のバスバーや、インダクタのインダクタンスを調節する方法が開示されている。
特開2015-56912号公報
 しかし、特許文献1の技術では、インダクタの小型化が解決されていない。インダクタの大きさは、DCDCコンバータが動作しているときにコアが磁気飽和しないように設計する必要がある。ここで、インダクタにおけるコアの磁束密度Bは以下の式にて表される。
Figure JPOXMLDOC01-appb-M000001
 ただし、数1において、Lはインダクタのインダクタンスであり、Iはインダクタに流れる電流の値であり、nはインダクタのコイルのターン数(巻数)であり、Aはインダクタのコアの断面積である。
 数1に示すように、インダクタに流れる電流の値Iが大きくなる場合、コアの磁気飽和を抑えるためには、インダクタンスLを小さくしたり、インダクタのコイルのターン数nやコアの断面積Aを大きくするといった手段をとらざるを得ない。インダクタンスLを小さくすると、リップル電流の増加を招き、コンデンサのサイズを増大させる要因となる。また、インダクタのコイルのターン数nやコアの断面積Aを大きくするとインダクタの大型化を招いてしまう。
 本発明は、上述した課題の少なくとも一つを解決するためになされたものであり、入力側導電路に印加された電圧を昇圧又は降圧して出力側導電路に出力する車載用のDCDCコンバータにおいて出力電流の増大時にインダクタに流れる電流のピーク値を抑制し得る構成を、インダクタのサイズを抑えて実現することを目的とするものである。
 第1の発明は、
 第1導電路及び第2導電路に電気的に接続されるとともに前記第1導電路及び前記第2導電路のいずれか一方を入力側導電路とし、他方を出力側導電路とする、前記入力側導電路に印加された電圧を昇圧又は降圧して前記出力側導電路に出力する車載用のDCDCコンバータであって、
 PWM信号が与えられることに応じてオンオフ動作するスイッチング素子を備え、前記スイッチング素子のオンオフ動作により前記入力側導電路に印加された電圧を昇圧又は降圧して前記出力側導電路に出力する電圧変換部と、
 前記出力側導電路の電圧の値を検出する電圧検出部と、
 前記出力側導電路の電流の値を検出する電流検出部と、
 少なくとも前記電圧検出部で検出された電圧の値に基づいて前記出力側導電路の電圧を目標電圧値に近づけるように前記PWM信号のデューティを演算するフィードバック演算を繰り返す演算部と、
 前記電流検出部で検出される電流の値に基づき、前記出力側導電路が所定の通常電流状態である場合に前記PWM信号の周波数を第1周波数に設定し、前記出力側導電路が所定の大電流状態である場合に前記PWM信号の周波数を前記第1周波数よりも大きい第2周波数に設定する周波数設定部と、
 前記スイッチング素子に対し、前記演算部で演算されるデューティのPWM信号を前記周波数設定部で設定される周波数で出力する駆動部と、
を有する。
 第2の発明は、
 第1導電路及び第2導電路に電気的に接続されるとともに前記第1導電路及び前記第2導電路のいずれか一方を入力側導電路とし、他方を出力側導電路とする、前記入力側導電路に印加された電圧を昇圧又は降圧して前記出力側導電路に出力する車載用のDCDCコンバータであって、
 PWM信号が与えられることに応じてオンオフ動作するスイッチング素子を備え、前記スイッチング素子のオンオフ動作により前記入力側導電路に印加された電圧を昇圧又は降圧して前記出力側導電路に出力する電圧変換部と、
 前記出力側導電路の電圧の値を検出する電圧検出部と、
 少なくとも前記電圧検出部で検出された電圧の値に基づいて前記出力側導電路の電圧を目標電圧値に近づけるように前記PWM信号のデューティを演算するフィードバック演算を繰り返す演算部と、
 所定の通常期間において前記PWM信号の周波数を第1周波数に設定し、前記通常期間外において所定の電流増加条件が成立してから所定の終了条件が成立するまでの特定期間に前記PWM信号の周波数を前記第1周波数よりも大きい第2周波数に設定する周波数設定部と、
 前記スイッチング素子に対し、前記演算部で演算されるデューティのPWM信号を前記周波数設定部で設定される周波数で出力する駆動部と、
を有する。
 第1の発明の車載用のDCDCコンバータは、出力側導電路が通常電流状態である場合にPWM信号の周波数を相対的に小さい第1周波数に設定し、出力側導電路が大電流状態である場合にPWM信号の周波数を相対的に大きい第2周波数に設定する。
 この構成によれば、出力側導電路が通常電流状態のときには相対的に小さい周波数(第1周波数)に設定して動作負荷を抑えることができ、出力側導電路が大電流状態のときには相対的に大きい周波数(第2周波数)に設定し、インダクタにおいてリップルを抑制することができる。このようにリップルを抑制すれば、大電流状態に伴ってインダクタの平均電流が増大しても、インダクタのピーク電流は抑えられる。しかも、インダクタサイズを増大させたり、付随するキャパシタのサイズを増大させたりすることなく、インダクタでのピーク電流を抑えることができる。
 第2の発明の車載用のDCDCコンバータは、所定の通常期間においてPWM信号の周波数を第1周波数に設定し、通常期間外において所定の電流増加条件が成立してから所定の終了条件が成立するまでの特定期間にPWM信号の周波数を第1周波数よりも大きい第2周波数に設定する。
 このようにすれば、通常期間にはPWM信号の周波数を相対的に小さい周波数(第1周波数)に設定して動作負荷を抑えることができ、特定期間には相対的に大きい周波数(第2周波数)に設定し、インダクタにおいてリップルを抑制することができる。特定期間にリップルを抑制すれば、リップルを抑制しない場合(第1周波数の場合)と比較してインダクタ電流のピークを抑えることができ、ピーク電流の上昇が懸念される特定期間において、ピーク電流の抑制効果が高まる。しかも、インダクタサイズを増大させたり、付随するキャパシタのサイズを増大させたりすることなく、インダクタ電流のピークを抑えることができる。
実施例1の車載用の降圧型DCDCコンバータを備えた車載用電源システムを概略的に示す回路図である。 実施例1の車載用の降圧型DCDCコンバータにおける電圧変換部の制御の流れを例示するフローチャートである。 (A)は、実施例1の車載用の降圧型DCDCコンバータにおける出力電流値と時間との関係を示すグラフであり、(B)は、PWM信号の周波数と時間との関係を示すグラフである。 他の実施例の車載用の降圧型DCDCコンバータにおいて、第1素子、及び第2素子の切り替わる速さを変化させた場合に、出力電流のIave、及びIpeakの変化を模式的に示すグラフである。
 ここで、発明の望ましい例を示す。
 上記第1の発明において、周波数設定部は、電流検出部で検出される電流の値が大きいほど周波数を大きくするようにPWM信号の周波数を設定してもよい。
 このようにすれば、出力電流が大きくなるほどリップルの抑制度合いが大きくなり、インダクタにおいてピーク電流を抑制する効果が高まる。
 上記第2の発明において、特定期間は、特定の負荷が動作する期間を含んでいてもよい。
 このようにすれば、特定の負荷が動作する期間に、インダクタでのリップルを抑えることができるため、特定の負荷が動作することに応じてインダクタの平均電流が上昇しても、インダクタ電流のピークは抑えられる。
 <実施例1>
 以下、本発明を具体化した実施例1について説明する。
 図1で示す車載用の電源システム100は、車載用の電源部として構成される第1電源部91及び第2電源部92と、車載用の降圧型DCDCコンバータ1(以下、DCDCコンバータ1ともいう)とを備え、車両に搭載された負荷94に電力を供給し得るシステムとして構成されている。負荷94は、車載用電気部品であり、その種類や数は限定されない。
 第1電源部91は、例えば、リチウムイオン電池、電気二重層キャパシタ等の蓄電手段によって構成され、第1の所定電圧を発生させるものである。例えば、第1電源部91の高電位側の端子は所定電圧(例えば、24V、或いは48Vなど)に保たれ、低電位側の端子はグラウンド電位(0V)に保たれている。第1電源部91の高電位側の端子は、車両内に設けられた配線部81に電気的に接続されており、第1電源部91は、配線部81に対して所定電圧を印加する。第1電源部91の低電位側の端子は、車両内のグラウンド部として構成される基準導電路83に電気的に接続されている。配線部81は、DCDCコンバータ1の入力側端子51に接続されており、入力側端子51を介して第1導電路21と電気的に接続されている。
 第2電源部92は、例えば、鉛蓄電池等の蓄電手段によって構成され、第1電源部91で発生する第1の所定電圧よりも低い第2の所定電圧を発生させるものである。例えば、第2電源部92の高電位側の端子は12Vに保たれ、低電位側の端子はグラウンド電位(0V)に保たれている。第2電源部92の高電位側の端子は、車両内に設けられた配線部82に電気的に接続されており、第2電源部92は、配線部82に対して所定電圧を印加する。第2電源部92の低電位側の端子は基準導電路83に電気的に接続されている。配線部82は、DCDCコンバータ1の出力側端子52に接続されており、出力側端子52を介して第2導電路22と電気的に接続されている。
 基準導電路83は、車両のグラウンドとして構成され、一定のグラウンド電位(0V)に保たれている。この基準導電路83には、第1電源部91の低電位側の端子と第2電源部92の低電位側の端子とが電気的に接続され、更に、後述する第2素子12のソースが第3導電路23及びグラウンド端子53を介して電気的に接続されている。
 DCDCコンバータ1は、車両内に搭載されて使用される車載用の降圧型DCDCコンバータとして構成されている。なお、以下の説明では、DCDCコンバータ1が、第1導電路21を入力側導電路とし、第2導電路22を出力側導電路とし、第1導電路21に印加された直流電圧を降圧して第2導電路22に出力するように動作する例について説明する。
 DCDCコンバータ1は、主として、第1導電路21、第2導電路22、第3導電路23、電圧変換部10、制御部30、電圧検出部40、電流検出部44、入力側端子51、出力側端子52、グラウンド端子53等を備える。
 第1導電路21は、相対的に高い電圧が印加される一次側(高圧側)の電源ラインとして構成されている。第1導電路21は、配線部81を介して第1電源部91の高電位側の端子に電気的に接続されるとともに、第1電源部91から所定の直流電圧が印加される構成をなす。図1の構成では、第1導電路21の端部に入力側端子51が設けられ、この入力側端子51に配線部81が電気的に接続されている。
 第2導電路22は、相対的に低い電圧が印加される二次側(低圧側)の電源ラインとして構成されている。第2導電路22は、配線部82を介して第2電源部92の高電位側の端子に電気的に接続されるとともに、第2電源部92から第1電源部91の出力電圧よりも小さい直流電圧が印加される構成をなす。図1の構成では、第2導電路22の端部に出力側端子52が設けられ、この出力側端子52に配線部82が電気的に接続されている。
 電圧変換部10は、第1導電路21と第2導電路22との間に設けられ、第1導電路21に電気的に接続された半導体スイッチング素子として構成されるハイサイド側の第1素子11と、第1導電路21と基準導電路83(第1導電路21の電位よりも低い所定の基準電位に保たれる導電路)との間に電気的に接続された半導体スイッチング素子として構成されるローサイド側の第2素子12と、第1素子11及び第2素子12と第2導電路22との間に電気的に接続されたインダクタ14とを備える。電圧変換部10は、スイッチング方式の降圧型DCDCコンバータの要部をなし、スイッチング素子の一例に相当する第1素子11のオンオフ動作の切り替えによって第1導電路21に印加された電圧を降圧して第2導電路22に出力する降圧動作を行い得る。なお、図示は省略するが、第1導電路21と第3導電路23との間には図示しない入力側コンデンサが設けられ、第2導電路22と第3導電路23との間には図示しない出力側コンデンサが設けられている。
 第1素子11及び第2素子12のいずれも、Nチャネル型のMOSFETとして構成され、ハイサイド側の第1素子11のドレインには、第1導電路21の一端が接続されている。第1素子11のドレインは、図示しない入力側コンデンサの一方側の電極に電気的に接続されるとともに第1導電路21及び配線部81を介して第1電源部91の高電位側端子にも電気的に接続され、これらとの間で導通し得る。また、第1素子11のソースには、ローサイド側の第2素子12のドレイン及びインダクタ14の一端が電気的に接続され、これらとの間で導通し得る。第1素子11のゲートには、制御部30に設けられた駆動部34からの駆動信号及び非駆動信号(具体的にはPWM信号)が入力されるようになっており、制御部30からの信号に応じて第1素子11がオン状態とオフ状態とに切り替わるようになっている。
 ローサイド側の第2素子12のソースには、第3導電路23が接続されている。第3導電路23は、第2素子12のソースとグラウンド端子53との間の導電路であり、グラウンド端子53を介して基準導電路83に電気的に接続され、基準導電路83の電位(0V)と同程度の電位に保たれている。この第3導電路23には、図示しない入力側コンデンサ及び出力側コンデンサのそれぞれの他方側の電極が電気的に接続されている。ローサイド側の第2素子12のゲートにも、制御部30からの駆動信号及び非駆動信号が入力されるようになっており、制御部30からの信号に応じて第2素子12がオン状態とオフ状態とに切り替わるようになっている。
 インダクタ14は、第1素子11と第2素子12との間の接続部に一端が接続され、その一端は第1素子11のソース及び第2素子12のドレインに電気的に接続されている。インダクタ14の他端は、第2導電路22(具体的には、第2導電路22において、電流検出部44よりも電圧変換部10側の部分)に接続されている。
 電流検出部44は、抵抗器44A及び差動増幅器44Bを有し、第2導電路22を流れる電流を示す値(具体的には、第2導電路22を流れる電流の値に応じたアナログ電圧)を出力する。電圧変換部10からの出力電流によって抵抗器44Aに生じた電圧降下は、差動増幅器44Bで増幅されて出力電流に応じた検出電圧(アナログ電圧)となり、制御回路32に入力される。そして、この検出電圧(アナログ電圧)は、制御回路32に設けられた図示しないA/D変換器によってデジタル値に変換される。
 電圧検出回路41は、第1導電路21に接続されるとともに第1導電路21の電圧に応じた値を制御回路32に入力する構成をなす。電圧検出回路41は、第1導電路21の電圧を示す値(第1導電路21の電位と基準導電路83の電位との電位差を特定する値)を制御回路32に入力し得る公知の電圧検出回路であればよく、例えば、第1導電路21の電圧を分圧して制御回路32に入力するような分圧回路として構成されていている。同様に、電圧検出回路42は、第2導電路22に接続されるとともに第2導電路22の電圧に応じた値(第2導電路22の電位と基準導電路83の電位との電位差を特定する値)を制御回路32に入力する構成をなす。電圧検出回路42は、第2導電路22の電圧を示す値を制御回路32に入力し得る公知の電圧検出回路であればよく、例えば、第2導電路22の電圧を分圧して制御回路32に入力するような分圧回路として構成されている。
 本構成では、電圧検出回路41,42及び制御回路32が電圧検出部40として機能する。電圧検出部40は、第2素子12と基準導電路83との間の所定位置(具体的には、第3導電路23)の電位を基準とし、この所定位置の電位と第1導電路21の電位との電位差を第1導電路21の電圧として検出する。また、電圧検出部40は、第2素子12と基準導電路83との間の所定位置(具体的には、第3導電路23)の電位を基準とし、この所定位置の電位と第2導電路22の電位との電位差を第2導電路22の電圧として検出する。
 制御部30は、制御回路32と駆動部34とを備える。制御回路32は、例えば、マイクロコンピュータとして構成され、様々な演算処理を行うCPU、プログラム等の情報を記憶するROM、一時的に発生した情報を記憶するRAM、入力されたアナログ電圧をデジタル値に変換するA/D変換器等を備える。A/D変換器には、電圧検出回路41,42からの各検出信号(検出電圧に対応したアナログ電圧信号)や、電流検出部44からの検出信号(検出電流に対応したアナログ電圧信号)が与えられる。
 制御回路32は、電圧変換部10に降圧動作を行わせる場合、電圧検出回路42によって検出される電圧の値(第2導電路22に印加される電圧の値)と予め定められた目標電圧値との偏差に基づいて公知のフィードバック演算方式(公知のPI演算方式や公知のPID演算方式など)でデューティを算出するフィードバック演算を周期的に繰り返し、デューティを算出する毎に、新たなデューティでPWMを出力する。
 駆動部34は、例えば公知のドライバ回路として構成され、制御回路32から出力されるPWM信号に対応するPWM信号(制御回路32から出力されるPWM信号と同周期及び同デューティのPWM信号であって、オン信号が第1素子11を駆動し得る電圧レベルに設定された信号)を第1素子11に出力する。
 このように構成されるDCDCコンバータ1は、同期整流方式の降圧型DCDCコンバータとして機能し、PWM信号に応じてハイサイド側の第1素子11をオンオフさせるとともにローサイド側の第2素子12のオンオフをハイサイド側の第1素子11の動作と同期させて行うことで、第1導電路21に印加された直流電圧を降圧し、第2導電路22に出力する。第2導電路22に印加される電圧(出力電圧)は、第1素子11のゲートに与えるPWM信号のデューティに応じて定まる。
 次に、DCDCコンバータ1で行われる制御について、図2等を参照しつつ説明する。
 DCDCコンバータ1の制御部30は、所定の開始条件の成立に応じて電圧変換部10を駆動し、電圧変換動作を行わせる。具体的には、イグニッションスイッチがオン状態である場合に外部装置から制御部30に対してイグニッションオン信号が与えられるようになっており、イグニッションスイッチがオフ状態である場合に外部装置から制御部30に対してイグニッションオフ信号が与えられるようになっている。制御部30は、例えばイグニッションスイッチがオフ状態からオン状態に切り替わったことを開始条件として電圧変換部10に制御信号を与え、電圧変換部10に電圧変換動作を行わせる。
 具体的には、制御部30は、図2のような流れで電圧変換部10を制御する。図2で示す電圧変換制御は、例えば、イグニッションスイッチがオフ状態からオン状態に切り替わった場合に制御部30によって開始され、制御部30は、電圧変換制御の開始後、ステップS1において所定の切替条件が成立したか否かを判定する。なお、以下の説明では、所定の切替条件が、「出力側導電路が所定の大電流状態である」という条件であり、「出力側導電路の電流の値が閾値を超える状態」が「所定の大電流状態」である場合を例に挙げて説明する。
 この例では、制御部30は、ステップS1において第2導電路22(出力側導電路)の電流の値が閾値を超えている否かを判定し、第2導電路22の電流の値が閾値を超えていないと判定した場合には、ステップS2においてPWM信号の周波数を第1周波数f1に設定し、第1周波数f1でPWM信号を出力する動作(第1の制御動作)を行う。一方、制御部30は、ステップS1において第2導電路22(出力側導電路)の電流の値が閾値を超えていると判定した場合には、ステップS3においてPWM信号の周波数を第2周波数f2に設定し、第2周波数f2でPWM信号を出力する動作(第2の制御動作)を行う。制御部30は、ステップS2の制御動作を開始した場合、次にステップS3が実行されるか、所定の電圧変換終了条件が成立するまでは、ステップS2の制御動作(第1周波数f1でPWM信号を出力する第1の制御動作)を継続する。同様に、制御部30は、ステップS3の制御動作を開始した場合、次にステップS2が実行されるか、所定の電圧変換終了条件が成立するまでは、ステップS3の制御動作(第2周波数f2でPWM信号を出力する第2の制御動作)を継続する。なお、制御部30は、第1の制御動作又は第2の制御動作の実行中に所定の電圧変換終了条件が成立した場合、ステップS4でYesに進み、図2の制御を終了する。「所定の電圧変換終了条件」は、例えばイグニッションスイッチがオン状態からオフ状態に切り替わるという条件である。
 次に、デューティが所定値に設定されたPWM信号について、周波数を相対的に低い第1周波数f1に設定した場合と、相対的に高い第2周波数f2に設定した場合とを比較して説明する。なお、図3(A)は、デューティが所定値に設定され且つ周波数が第1周波数f1に設定されたPWM信号によって第1素子11が駆動される場合のインダクタ電流の変化を例示するグラフであり、図3(B)は、デューティが所定値に設定され且つ周波数が第2周波数f2に設定されたPWM信号によって第1素子11が駆動される場合のインダクタ電流の変化を例示するグラフである。
 インダクタ14のコイルに流すことができる電流の最大値Imax(以下、コイル電流の最大値Imaxともいう)は、以下の数2の式で表すことができる。
Figure JPOXMLDOC01-appb-M000002
 数2の式において、Lは、インダクタ14のインダクタンスであり、nはインダクタ14のコイルのターン数(巻数)であり、Aはインダクタ14のコアの断面積であり、Bmaxは、インダクタ14のコアの最大磁束密度である。コイル電流の最大値Imaxは、これら4つの変数によって、所定の値に決定されるものである。
 また、DCDCコンバータ1が動作しているときのコイル電流の最大値Ipeak(以下、最大値Ipeakともいう)は以下の数3の式で表すことができる。
Figure JPOXMLDOC01-appb-M000003
 ここで、Iaveは、DCDCコンバータ1の出力電流Ioutを電圧変換部10の相数で除した値である。以下、平均電流Iaveともいう。図1で示す本実施例のDCDCコンバータ1は電圧変換部10が1つ(すなわち、相数が1つ)であるため、Iave=Ioutである。数3の式で表される最大値Ipeakは、コイル電流の最大値Imaxより大きいとインダクタ14が磁気飽和し、電圧・電流リップルの増加や、これに伴うコンバータの故障を
生じるおそれがある。従って、Ipeak≦Imaxとなる必要がある。インダクタ14が許容する最大限の電流を流す場合、Ipeak=Imaxとなる。また、ΔILはインダクタ14におけるリップル電流であり、以下の数4の式で表すことができる。
Figure JPOXMLDOC01-appb-M000004
 数4の式において、VHは電圧検出部40が検出した第1導電路21の電圧の値であり、VLは電圧検出部40が検出した第2導電路22の電圧の値であり、fは、駆動部34から第1素子11に与えるPWM信号の周波数である。
 数4の式から、PWM信号の周波数fが大きくなるとリップル電流ΔILが小さくなり、PWM信号の周波数fが小さくなるとリップル電流ΔILが大きくなることがわかる。
 図3(A)のようにPWM信号の周波数fを相対的に小さい第1周波数f1にした場合、リップル電流ΔILは、第2周波数f2(第1周波数f1よりも大きい周波数)のときに比べて大きくなり、平均電流Iaveも小さくなる。一方、図3(B)のように、PWM信号の周波数fを第1周波数f1よりも大きい第2周波数f2にした場合、リップル電流ΔILは、第1周波数f1のときに比べて小さくなり、平均電流Iaveも大きくなる。このような関係があるため、インダクタ14の平均電流が図3(A)の状態から図3(B)の状態に上昇するような場面では、周波数を増大させれば、平均電流Iaveの上昇度合いに比べてピーク電流の上昇度合いを抑えることができ、図3(A)(B)の例では、PWM信号の周波数fを第1周波数f1から第2周波数f2に変化させることで、図3(B)の場合でもピーク電流を図3(A)の場合と同程度(Ipeak=Imax)としている。
 図3の例では、Ithはインダクタ14のコイルに連続して流すことができる電流の最大値である。図3(A)に示すように、PWM信号の周波数fを第1周波数f1にすることによって平均電流IaveがIth以下になる場合には、インダクタ14のコイルには平均電流Iaveの大きさの電流を連続して流すことができる。これに対して、図3(B)に示すように、PWM信号の周波数fを第2周波数f2にすることによって平均電流IaveがIthより大きくなる場合でも、IpeakをImax以下に留めることができる。しかし、第1素子11(降圧時)や第2素子12(昇圧時)でスイッチング時に生じる損失は、一般に駆動周波数に比例するため、所定時間以上にわたって第2周波数f2を維持すると、第1素子11や第2素子12が自己発熱を許容できず故障するおそれがある。このため、図3(B)のように平均電流IaveをIthよりも大きくする動作は、所定時間未満の短時間に制限する必要がある。
 また、PWM信号の周波数fは、数3及び数4から数5のように表すことができる。また、数5から、PWM信号の周波数fは、コイル電流の最大値Imax(最大値Ipeak)と平均電流Iaveとの差に反比例しており、コイル電流の最大値Imaxと平均電流Iaveとの差が小さくなるとその値は大きくなることがわかる。
Figure JPOXMLDOC01-appb-M000005
 以下、本構成の効果を例示する。
 上述したDCDCコンバータ1では、第2導電路22(出力側導電路)が通常電流状態である場合(具体的には、第2導電路22の電流の値が閾値以下である場合)にPWM信号の周波数を相対的に小さい第1周波数f1に設定し、第2導電路22(出力側導電路)が大電流状態である場合(具体的には、第2導電路22の電流の値が閾値を超える場合)にPWM信号の周波数を相対的に大きい第2周波数f2に設定する。この構成によれば、第2導電路22(出力側導電路)が通常電流状態のときには相対的に小さい周波数(第1周波数)に設定して動作負荷を抑えることができ、第2導電路22(出力側導電路)が大電流状態のときには相対的に大きい周波数(第2周波数)に設定し、インダクタ14においてリップルを抑制することができる。このようにリップルを抑制すれば、大電流状態に伴ってインダクタ14の平均電流が増大しても、インダクタ14のピーク電流は抑えられる。しかも、インダクタサイズを増大させたり、付随するキャパシタのサイズを増大させたりすることなく、インダクタ14のピーク電流を抑えることができる。
 <実施例2>
 次に、実施例2について説明する。
 実施例2は、図2におけるステップS1の判定方法を変更した点のみが実施例1と異なり、それ以外は実施例1と同一である。よって、実施例1と同一である点については詳細な説明は省略し、適宜、図1~図3等を参照することとする。
 実施例2では、図2で示す制御のステップS1において、所定の切替条件が、「所定の電流増加条件が成立してから所定の終了条件が成立するまでの特定期間である」という条件であり、「特定期間」が、特定の負荷が動作する期間である例を挙げて説明する。
 以下の説明では、「特定の負荷」がスタータである場合を代表例として説明する。この例では、例えば、スタータが動作する前の所定の第1条件が成立した場合(例えば、イグニッションスイッチがオフ状態からオン状態に切り替わった場合、所定のスタータ駆動信号が発生した場合等)が「所定の電流増加条件が成立した場合」の一例に相当する。また、スタータが動作した後の所定の第2条件が成立した場合(例えば、スタータが動作状態から動作停止状態に切り替わった場合、所定の開始条件が成立してから一定時間が経過した場合など)が「所定の終了条件が成立した場合」の一例に相当する。
 この例では、制御部30は、ステップS1においてステップS1の実行時期が上述の「特定期間」に該当するか否かを判定し、ステップS1の実行時期が特定期間に該当しないと判定した場合には、ステップS2においてPWM信号の周波数を第1周波数f1に設定し、第1周波数f1でPWM信号を出力する動作(第1の制御動作)を行う。一方、制御部30は、ステップS1においてステップS1の実行時期が上述の「特定期間」に該当すると判定した場合には、ステップS3においてPWM信号の周波数を第2周波数f2に設定し、第2周波数f2でPWM信号を出力する動作(第2の制御動作)を行う。制御部30は、ステップS2の制御動作を開始した場合、次にステップS3が実行されるか、所定の電圧変換終了条件が成立するまでは、ステップS2の制御動作(第1周波数f1でPWM信号を出力する第1の制御動作)を継続する。同様に、制御部30は、ステップS3の制御動作を開始した場合、次にステップS2が実行されるか、所定の電圧変換終了条件が成立するまでは、ステップS3の制御動作(第2周波数f2でPWM信号を出力する第2の制御動作)を継続する。なお、制御部30は、第1の制御動作又は第2の制御動作の実行中に所定の電圧変換終了条件が成立した場合、図2の制御を終了する。「所定の電圧変換終了条件」は、例えばイグニッションスイッチがオン状態からオフ状態に切り替わるという条件である。なお、この例では、電圧変換部10を動作させるべき期間として予め定められた期間(例えば、イグニッションスイッチがオン状態となっている期間)のうち、「特定期間」ではない期間が「通常期間」の一例に相当する。
 実施例2のDCDCコンバータ1は、「通常期間」においてPWM信号の周波数を第1周波数f1に設定し、「特定期間」(通常期間外において所定の電流増加条件が成立してから所定の終了条件が成立するまでの期間)にPWM信号の周波数を第1周波数f1よりも大きい第2周波数f2に設定する。このようにすれば、通常期間にはPWM信号の周波数を相対的に小さい周波数(第1周波数f1)に設定して動作負荷を抑えることができ、特定期間には相対的に大きい周波数(第2周波数f2)に設定し、インダクタ14においてリップルを抑制することができる。特定期間にリップルを抑制すれば、リップルを抑制しない場合(第1周波数f1の場合)と比較してインダクタ電流のピークを抑えることができ、ピーク電流の上昇が懸念される特定期間において、ピーク電流の抑制効果が高まる。しかも、インダクタサイズを増大させたり、付随するキャパシタのサイズを増大させたりすることなく、インダクタ電流のピークを抑えることができる。
 「特定期間」は、特定の負荷(例えば、スタータ)が動作する期間を含んでいる。このようにすれば、特定の負荷(例えばスタータ)が動作する期間に、インダクタ14でのリップルを確実に抑えることができるため、特定の負荷が動作することに応じてインダクタの平均電流が上昇しても、インダクタ電流のピークは抑えられる。
 <他の実施例>
 本発明は上記記述及び図面によって説明した実施例に限定されるものではなく、例えば次のような実施例も本発明の技術的範囲に含まれる。また、上述した実施例や後述する実施例は矛盾しない範囲で組み合わせることが可能である。
 実施例1、2では、電圧変換部が1つのみのDCDCコンバータ1を例示したが、第1導電路と第2導電路との間に電圧変換部が複数個並列に接続された多相式のDCDCコンバータとしてもよい。この場合、相数は、2以上の数であればよい。また、降圧型の多相コンバータでもよく、昇圧型の多相コンバータでもよく、昇降圧型の多相コンバータであってもよい。また、実施例1では、第1導電路を入力側導電路とし、第2導電路を出力側導電路とする一方向型のDCDCコンバータを例示したが、第1導電路を入力側導電路とし、第2導電路を出力側導電路とする制御と、第2導電路を入力側導電路とし、第1導電路を出力側導電路とする制御とを切り替えることができる双方向型のコンバータとして構成されていてもよい。
 実施例1、2では、出力側となる第2導電路に第2電源部が電気的に接続された構成を例示したが、第2導電路に第2電源部が電気的に接続されていなくてもよい。
 実施例1、2では、第2素子がスイッチング素子として構成された同期整流方式の降圧型DCDCコンバータを例示したが、第2素子がダイオード(第1素子側にカソードが接続され基準導電路側にアノードが接続されたダイオード)として構成されたダイオード方式の降圧型DCDCコンバータであってもよい。或いは、ダイオード方式の昇圧型DCDCコンバータとしてもよい。
 実施例2では、「特定の負荷」をスタータとしているが、「特定の負荷」を他の負荷(例えばエアコンやヒータなど)としてもよい。例えば、ヒータを「特定の負荷」とする例では、ヒータが動作する前の所定の第1条件が成立した場合が「所定の電流増加条件が成立した場合」の一例に相当する。また、ヒータが動作した後の所定の第2条件が成立した場合が「所定の終了条件が成立した場合」の一例に相当する。そして、第1条件が成立してから第2条件が成立するまでの期間が「特定期間」の一例に相当する。この場合の第1条件としては、例えば、ヒータの動作が実際に開始したこと、或いは、ヒータを動作させるための所定条件が成立したこと(例えば、車内に設けられた温度センサによる検出温度が設定された閾値以下に低下したこと等)などが挙げられる。また、第2条件としては、例えば、ヒータの動作が実際に停止したこと、或いは、ヒータの動作を停止させるための所定条件が成立したこと(例えば、車内に設けられた温度センサによる検出温度が設定された閾値以上となったこと等)などが挙げられる。
 実施例1では、周波数設定部32Bが周波数を2段階に切り替え得る例を示したが、周波数設定部32Bは、電流検出部で検出される電流の値に基づき、出力側導電路の電流の値が大きいほど周波数を大きくするようにPWM信号の周波数を連続的に又は3段階以上に段階的に切り替え得るようにしてもよい。図4は、このような構成のものについて、出力電流と周波数との関係について説明するグラフである。
 図4(A)のグラフは、図1で示すDCDCコンバータ1において、第1導電路21の電圧Vinが24Vであり、第2導電路22の電圧Voutが12Vであり、インダクタ14のインダクタンスLが3μHであり、インダクタ14に流すことができるコイル電流の最大値Imaxが40Aであり、インダクタ14でのリップル電流ΔILが20Aであり、インダクタ14のコイルに連続して流すことができる電流の最大値Ithが30Aであり、周波数設定部32Bが周波数を3段階以上に切り替え得る場合についての、出力電流値と時間との関係を示すグラフである。図4(B)のグラフは、時間軸を図4(A)のグラフに対応させ、周波数と時間との関係を示したグラフである。図4の例では、出力電流値が第1の範囲内(30A以下の範囲内)である場合にPWM信号の周波数が第1周波数(通常周波数)である100Hzに設定され、出力電流値が第1の範囲よりも大きい場合にPWM信号の周波数が第2周波数(100Hzよりも大きい特定周波数)に設定される。第2周波数は、複数種類用意されており、出力電流値が第1の範囲よりも大きい電流の値の範囲である第2の範囲内(30Aより大きく32A以下の範囲内)である場合にPWM信号の周波数が第1特定周波数である125Hzに設定され、出力電流値が第2の範囲よりも大きい電流の値の範囲である第3の範囲内(32Aより大きく34A以下の範囲内)である場合にPWM信号の周波数が第2特定周波数である166Hzに設定され、出力電流値が第3の範囲よりも大きい電流の値の範囲である第4の範囲内(34Aよりも大きい範囲内)である場合にPWM信号の周波数が第3特定周波数である500Hzに設定されるようになっている。
 図4の例では、時刻T1~T2に出力電流値(平均電流Iaveと同程度の値)が38Aとなっており、この期間では、PWM信号の周波数fが第3の特定周波数である500Hzに設定されている。また、時刻T3~T4の期間では、出力電流値(平均電流Iave)が下降しており、時刻T4を通過すると30A(Ith)より小さくなり、上述の第1の範囲内となっている。この時刻T4~T5の期間では、周波数fが第1周波数(通常周波数)である100Hzに設定されている。更に、時刻T5~T6において、出力電流値(平均電流Iave)が上昇し、時刻T6~T7の期間では、出力電流値(平均電流Iave)が上述の第3の範囲内となっている。この時刻T6~T7の期間では、周波数fが第2の特定周波数である166Hzに設定されている。更に、時刻T8~T9の期間では、出力電流値(平均電流Iave)が上述の第2の範囲内となっている。従って、時刻T8~T9の期間では、周波数fが第1の特定周波数である125Hzに設定されている。このように、周波数設定部32Bは、第2導電路22(出力側導電路)の電流の値が大きいほど周波数を大きくするようにPWM信号の周波数を3段階以上に段階的に切り替え得るようにしている。この例では、出力電流値(平均電流Iave)が大きいほどリップル電流が抑えられ、いずれの場合でも、インダクタ14のピーク電流Ipeakは最大値Imax(図4では40A)を超えないようになっている。
 1…車載用のDCDCコンバータ
 10…電圧変換部
 11…第1素子(スイッチング素子)
 21…第1導電路(入力側導電路)
 22…第2導電路(出力側導電路)
 32A…演算部
 32B…周波数設定部
 34…駆動部
 42…電圧検出部
 44…電流検出部
 94…負荷

Claims (6)

  1.  第1導電路及び第2導電路に電気的に接続されるとともに前記第1導電路及び前記第2導電路のいずれか一方を入力側導電路とし、他方を出力側導電路とする、前記入力側導電路に印加された電圧を昇圧又は降圧して前記出力側導電路に出力する車載用のDCDCコンバータであって、
     PWM信号が与えられることに応じてオンオフ動作するスイッチング素子を備え、前記スイッチング素子のオンオフ動作により前記入力側導電路に印加された電圧を昇圧又は降圧して前記出力側導電路に出力する電圧変換部と、
     前記出力側導電路の電圧の値を検出する電圧検出部と、
     前記出力側導電路の電流の値を検出する電流検出部と、
     少なくとも前記電圧検出部で検出された電圧の値に基づいて前記出力側導電路の電圧を目標電圧値に近づけるように前記PWM信号のデューティを演算するフィードバック演算を繰り返す演算部と、
     前記電流検出部で検出される電流の値に基づき、前記出力側導電路が所定の通常電流状態である場合に前記PWM信号の周波数を第1周波数に設定し、前記出力側導電路が所定の大電流状態である場合に前記PWM信号の周波数を前記第1周波数よりも大きい第2周波数に設定する周波数設定部と、
     前記スイッチング素子に対し、前記演算部で演算されるデューティのPWM信号を前記周波数設定部で設定される周波数で出力する駆動部と、
    を有する車載用のDCDCコンバータ。
  2.  前記周波数設定部は、前記電流検出部で検出される電流の値に基づき、前記出力側導電路の電流の値が大きいほど周波数を大きくするように前記PWM信号の周波数を設定する請求項1に記載の車載用のDCDCコンバータ。
  3.  第1導電路及び第2導電路に電気的に接続されるとともに前記第1導電路及び前記第2導電路のいずれか一方を入力側導電路とし、他方を出力側導電路とする、前記入力側導電路に印加された電圧を昇圧又は降圧して前記出力側導電路に出力する車載用のDCDCコンバータであって、
     PWM信号が与えられることに応じてオンオフ動作するスイッチング素子を備え、前記スイッチング素子のオンオフ動作により前記入力側導電路に印加された電圧を昇圧又は降圧して前記出力側導電路に出力する電圧変換部と、
     前記出力側導電路の電圧の値を検出する電圧検出部と、
     少なくとも前記電圧検出部で検出された電圧の値に基づいて前記出力側導電路の電圧を目標電圧値に近づけるように前記PWM信号のデューティを演算するフィードバック演算を繰り返す演算部と、
     所定の通常期間において前記PWM信号の周波数を第1周波数に設定し、前記通常期間外において所定の電流増加条件が成立してから所定の終了条件が成立するまでの特定期間に前記PWM信号の周波数を前記第1周波数よりも大きい第2周波数に設定する周波数設定部と、
     前記スイッチング素子に対し、前記演算部で演算されるデューティのPWM信号を前記周波数設定部で設定される周波数で出力する駆動部と、
    を有する車載用のDCDCコンバータ。
  4.  前記特定期間は、特定の負荷が動作する期間を含む請求項3に記載の車載用のDCDCコンバータ。
  5.  前記特定の負荷は、スタータを含む請求項4に記載の車載用のDCDCコンバータ。
  6.  前記特定の負荷は、ヒータを含む請求項4に記載の車載用のDCDCコンバータ。
PCT/JP2019/000454 2018-01-30 2019-01-10 車載用のdcdcコンバータ WO2019150900A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018013178A JP2019134533A (ja) 2018-01-30 2018-01-30 車載用のdcdcコンバータ
JP2018-013178 2018-06-14

Publications (1)

Publication Number Publication Date
WO2019150900A1 true WO2019150900A1 (ja) 2019-08-08

Family

ID=67478984

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/000454 WO2019150900A1 (ja) 2018-01-30 2019-01-10 車載用のdcdcコンバータ

Country Status (2)

Country Link
JP (1) JP2019134533A (ja)
WO (1) WO2019150900A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7218704B2 (ja) * 2019-10-10 2023-02-07 株式会社オートネットワーク技術研究所 電圧変換装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016140168A (ja) * 2015-01-27 2016-08-04 株式会社オートネットワーク技術研究所 電圧変換装置及び電圧変換方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016140168A (ja) * 2015-01-27 2016-08-04 株式会社オートネットワーク技術研究所 電圧変換装置及び電圧変換方法

Also Published As

Publication number Publication date
JP2019134533A (ja) 2019-08-08

Similar Documents

Publication Publication Date Title
JP6536466B2 (ja) 電源装置
JP6904051B2 (ja) 車両用電源装置
WO2018180425A1 (ja) 車両用電源装置
US10601315B2 (en) DC-DC converter
JP6962233B2 (ja) 車載用のdcdcコンバータ
WO2019188166A1 (ja) 車載用のdcdcコンバータ
WO2019150900A1 (ja) 車載用のdcdcコンバータ
JP2008172979A (ja) スイッチング電源装置
JP2018082506A (ja) Dcdcコンバータ
JP7276064B2 (ja) Dcdcコンバータ
JP6748921B2 (ja) 車載用電源回路及び車載用電源装置
WO2018135330A1 (ja) 車載用電源装置
WO2018235438A1 (ja) Dc-dcコンバータ、これを用いた電源システム及び当該電源システムを用いた自動車
WO2019225394A1 (ja) 車載用電源装置
JP4361334B2 (ja) Dc/dcコンバータ
CN113809910A (zh) 开关控制电路及电源电路
US11716025B2 (en) In-vehicle power supply device
WO2019225396A1 (ja) 車載用電源装置
WO2019225395A1 (ja) 車載用電源装置
JP6668056B2 (ja) 電力変換装置、これを用いた電源システム及び自動車
WO2022234784A1 (ja) 電力変換装置
US11180097B2 (en) In-vehicle power supply device
WO2022124020A1 (ja) 車載用電源装置
WO2018135331A1 (ja) 車載用制御装置及び車載用電源装置
JP2008099471A (ja) 昇降圧コンバータ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19747215

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19747215

Country of ref document: EP

Kind code of ref document: A1