WO2018176663A1 - 一种制备电极材料的方法、电极材料及电池 - Google Patents
一种制备电极材料的方法、电极材料及电池 Download PDFInfo
- Publication number
- WO2018176663A1 WO2018176663A1 PCT/CN2017/090377 CN2017090377W WO2018176663A1 WO 2018176663 A1 WO2018176663 A1 WO 2018176663A1 CN 2017090377 W CN2017090377 W CN 2017090377W WO 2018176663 A1 WO2018176663 A1 WO 2018176663A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- silicon core
- silicon
- quantum dots
- graphene quantum
- layered
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/04—Coating on selected surface areas, e.g. using masks
- C23C16/045—Coating cavities or hollow spaces, e.g. interior of tubes; Infiltration of porous substrates
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/26—Deposition of carbon only
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/4417—Methods specially adapted for coating powder
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1393—Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1395—Processes of manufacture of electrodes based on metals, Si or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/386—Silicon or alloys based on silicon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
- H01M4/587—Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/027—Negative electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present application relates to the field of material technology, and in particular, to a method for preparing an electrode material, an electrode material, and a battery.
- Lithium-ion batteries usually use graphite as the anode material.
- the theoretical gram capacity of graphite is 372 mAh/g, and the current gram capacity of graphite has exceeded 360 mAh/g, which is close to the theoretical limit value. It is difficult to have any room for further increase. A further increase in the energy density of the battery.
- the theoretical gram capacity of silicon is much larger than that of graphite, reaching 4200 mAh/g, and it is promising to be used as a battery anode material.
- the bulk expansion of the silicon negative electrode in the state of full lithium is as high as 300%-400%, which causes the solid electrolyte interface (SEI) to rupture, and causes the silicon negative electrode material to be powdered, which greatly reduces the cycle life.
- SEI solid electrolyte interface
- the present application provides a method for preparing an electrode material, an electrode material, and a battery, which are used to solve the problem that the silicon negative electrode material in the battery existing in the prior art is easily pulverized in a fully embedded state.
- inventions of the present application provide an electrode material comprising a layered silicon core and graphene quantum dots.
- the layered silicon core comprises at least two layers of silicon-based material having inter-layer voids between adjacent two layers of at least two layers of silicon-based material, the silicon-based material comprising at least one of silicon or silicon oxides, for example
- the silicon-based material may be any one of silicon, silicon dioxide, and silicon monoxide, or the silicon-based material includes two of silicon, silicon dioxide, and silicon monoxide, or both; the graphite
- the ene quantum dots are located in the interlayer spaces of the layered silicon core.
- the electrode material in the present embodiment can effectively suppress the expansion pressure of the negative electrode material during lithium insertion by using the interlayer void of the layered silicon core, and reduce the volume change of the battery negative electrode material during charge and discharge. Improve the service life of the battery anode material.
- the interlaminar voids of the layered silicon core are filled with graphene quantum dots, and the layers of the silicon core are supported by the graphene quantum dots to increase the strength of the layered silicon core and prevent the layered silicon core from expanding repeatedly. Structural collapse occurs after shrinkage.
- the graphene quantum dots have excellent electrical conductivity, contribute to electron transport, and can improve the electrical conductivity of the electrode material.
- the graphene quantum dots are further located on an outer surface of the layered silicon core.
- the graphene quantum dots on the outer surface of the layered silicon core can further improve the conductivity of the layered silicon core, and the flexibility of the graphene quantum dots can also provide a good buffer for the expansion of the layered silicon core.
- the electrode material further includes a cladding layer overlying the outer surface of the layered silicon core.
- the coating layer may be an amorphous carbon coating layer, or may be an inorganic compound coating layer such as a lithium titanate coating layer, or may be an organic coating layer such as a polyaniline coating layer.
- the outer surface of the layered silicon core is coated to form a cladding layer, which can cure the layered silicon core, avoiding direct contact between the layered silicon core and the electrolyte, reducing side reactions and preventing long-term circulation. The pulverization of silicon further improves the cycle performance.
- the coating layer when it is a carbon coating layer, it can also provide a stable graphitization interface, provide more channels for lithium ion deintercalation, reduce the electrochemical reaction resistance of the interface, and reduce the amount of the negative film forming additive, thereby improving Power performance.
- the graphene quantum dot is located at an interlayer gap and a surface of the layered silicon core, and the electrode material further includes a cladding layer coated on the layered silicon core
- the outer surface of the graphene quantum dots on the outer surface of the layered silicon core is also covered by the cladding layer.
- the flexibility of the graphene quantum dots on the surface of the layered silicon core can well buffer the expansion of the layered silicon core, and the cladding layer can cure the layered silicon core to avoid layered silicon core material and Direct contact with the electrolyte reduces side reactions, prevents silicidation of silicon during long-term cycling, and further improves cycle performance.
- the coating layer when it is a carbon coating layer, it can also provide a stable graphitization interface, provide more channels for lithium ion deintercalation, reduce the electrochemical reaction resistance of the interface, and reduce the amount of the negative film forming additive, thereby improving Power performance.
- an embodiment of the present application provides an electrode material comprising a layered silicon core and a graphene quantum dot, the layered silicon core comprising at least two layers of silicon-based material, and two adjacent layers of at least two layers of silicon-based material There are interlayer voids between the layers, the silicon-based material comprising at least one of silicon or silicon oxide; the graphene quantum dots being located on an outer surface of the layered silicon core.
- the electrode material when used as the battery negative electrode, a large number of interlayer spaces of the layered silicon core can reduce the expansion pressure of the negative electrode in the state of lithium insertion (or other ions released by the battery positive electrode), and reduce the charging and discharging process.
- the change of the negative electrode volume of the battery effectively avoids the powdering of the negative electrode of the battery and improves the service life of the negative electrode of the battery.
- the graphene quantum dots on the outer surface of the layered silicon core can improve the conductivity of the layered silicon core, and the flexibility of the graphene quantum dots can also provide a good buffer for the expansion of the layered silicon core.
- the electrode material further includes a coating layer coated on an outer surface of the layered silicon core, and the graphene quantum dots are covered by the carbon coating layer.
- an embodiment of the present application provides an electrode material comprising a layered silicon core and a carbon coating layer coated on the surface of the layered silicon core.
- a large number of interlayer spaces of the layered silicon core can reduce the expansion pressure of the anode in the state of lithium insertion (or other ions released by the battery cathode), and reduce The change of the volume of the battery anode material during charging and discharging effectively avoids the powdering of the battery anode material and improves the service life of the battery anode material.
- a carbon coating layer is prepared on the outer surface of the layered silicon core to solidify the layered silicon core, thereby avoiding direct contact between the layered silicon core and the electrolyte, reducing side reactions and preventing powdering of silicon during long-term circulation. Further improve cycle performance.
- the carbon coating layer can provide a stable graphitization interface, provide more channels for lithium ion deintercalation, reduce the electrochemical reaction resistance of the interface, reduce the amount of negative film forming additives, and improve power performance.
- an embodiment of the present application provides a method for preparing an electrode material, comprising the steps of: first, reacting a metal silicide with a metal remover to form a layered silicon core with metal removal, in a metal silicide
- the metal element may be an alkali metal or an alkaline earth metal
- the metal removing agent may be ethanol, propanol, butanol, isopropanol, an oxidizing agent or an acid solution, etc., and the metal silicide is reacted with a metal removing agent to form the metal element.
- the layered silicon core comprises at least two layers of silicon-based material having inter-layer voids between adjacent two layers of at least two layers of silicon-based material, the silicon-based material comprising at least one of silicon or silicon oxides, for example, silicon
- the base material may be any one of silicon, silicon dioxide, and silicon monoxide, or the silicon-based material may include two of silicon, silicon dioxide, and silicon monoxide, or both.
- the graphene quantum dots are assembled in the interlayer voids of the layered silicon core, and the graphene quantum dots may be assembled by in situ growth of graphene quantum dots in the interlayer spaces of the layered silicon core, or The already prepared graphene quantum dots migrate into the interlaminar spaces of the layered silicon core.
- a layered silicon core is prepared, and the interlayer gap is effectively suppressed by the interlayer void of the layered silicon core.
- the expansion pressure of the material during lithium insertion reduces the change of the volume of the battery anode material during charging and discharging, and improves the service life of the battery anode material.
- the interlaminar voids of the layered silicon core are filled with graphene quantum dots, and the layers of the silicon-based material are supported by the graphene quantum dots to increase the strength of the layered silicon core and prevent the layered silicon core from being repeated. Structural collapse occurs after expansion and contraction.
- the graphene quantum dots have excellent electrical conductivity, contribute to electron transport, and can improve the electrical conductivity of the electrode material.
- the graphene quantum dots in addition to assembling the graphene quantum dots in the interlaminar spaces of the layered silicon core, may be assembled on the outer surface of the layered silicon core.
- the formation of graphene quantum dots on the outer surface of the layered silicon core can further improve the electrical conductivity of the layered silicon core, and the flexibility of the graphene quantum dots can also provide a good buffer for the expansion of the layered silicon core.
- a coating layer which may be an amorphous carbon coating layer, or an inorganic compound coating layer, such as a lithium titanate coating layer, or an organic coating layer, such as a polyaniline coating layer.
- the process for preparing the cladding layer may be evaporation, sputtering, electroplating, chemical vapor deposition (CVD) or the like.
- the outer surface of the layered silicon core is prepared with a coating layer, which can solidify the layered silicon core, avoiding direct contact between the layered silicon core and the electrolyte, reducing side reactions, preventing silicidation of silicon during long-term circulation, and further improving cycle performance.
- the coating layer is a carbon coating layer, it can also provide a stable graphitization interface, provide more channels for lithium ion deintercalation, reduce the electrochemical reaction resistance of the interface, and reduce the amount of the negative film forming additive, thereby improving Power performance.
- the graphene quantum dots in addition to assembling the graphene quantum dots in the interlayer voids of the layered silicon core, may be assembled on the outer surface of the layered silicon core, and After assembling the graphene quantum dots, a cladding layer is continuously prepared on the outer surface of the layered silicon core in which the graphene quantum dots are assembled.
- the flexibility of the graphene quantum dots on the surface of the layered silicon core can well buffer the expansion of the layered silicon core, and the cladding layer can cure the layered silicon core to avoid direct contact between the layered silicon core material and the electrolyte. Reduce side reactions, prevent the pulverization of silicon during long-term cycling, and further improve cycle performance.
- the coating layer when it is a carbon coating layer, it can also provide a stable graphitization interface, provide more channels for lithium ion deintercalation, reduce the electrochemical reaction resistance of the interface, and reduce the amount of the negative film forming additive, thereby improving Power performance.
- the graphene quantum dots are grown in the interlevel spaces of the layered silicon core using a chemical vapor deposition CVD process.
- the carbon source used in the CVD process may be a gaseous hydrocarbon containing carbon such as methane, ethane, propane, ethylene, propylene, acetylene or the like.
- the in-situ growth of graphene quantum dots in the interlayer voids of the layered silicon core according to the CVD process is highly efficient, and the prepared graphene quantum dots have a good supporting effect on the layered silicon core, and the electrical properties of the graphene quantum dots. Excellent.
- the graphene quantum dots are migrated to the interlayer voids of the layered silicon core to realize the assembly of graphene quantum dots in the interlayer voids of the layered silicon core, and the method has The advantage of low cost.
- the metal silicide used for preparing the layered silicon core is prepared according to silicon and at least one metal, and the metal silicon compound may be a compound of a metal element and silicon, or
- the preparation of the metal silicide can be achieved by processes such as sintering, evaporation, sputtering, electroplating, CVD, and the like. This method can reduce the cost of preparing the electrode material.
- the metal silicide is prepared from silicon according to at least one of an alkali metal or an alkaline earth metal (such as Li, Na, Ca, Mg, etc.), and is removed according to the metal silicide.
- the metal reaction can prepare a layered silicon core with a higher purity.
- an embodiment of the present application provides a method of preparing an electrode material, the method comprising the steps of: first, reacting a metal silicide with a metal remover to form a metal-free layered silicon core,
- the layered silicon core comprises at least two layers of silicon-based material having inter-layer spaces between adjacent two layers of at least two layers of silicon-based material, the silicon-based material comprising at least one of silicon or silicon oxides;
- the outer surface of the layered silicon core assembles graphene quantum dots.
- a large number of interlayer spaces of the layered silicon core can reduce the expansion pressure of the anode in the state of lithium insertion (or other ions released by the battery cathode), and reduce The change of the volume of the battery anode material during charging and discharging effectively avoids the powdering of the battery anode material and improves the service life of the battery anode material.
- the formation of graphene quantum dots on the outer surface of the layered silicon core can improve the conductivity of the layered silicon core, and the flexibility of the graphene quantum dots can also provide a good buffer for the expansion of the layered silicon core.
- the outer surface of the layered silicon core assembled with the graphene quantum dots is further prepared.
- Cladding The coating layer may be an amorphous carbon coating layer, or may be an inorganic compound coating layer such as a lithium titanate coating layer, or may be an organic coating layer such as a polyaniline coating layer.
- the flexibility of the graphene quantum dots on the surface of the layered silicon core can well buffer the expansion of the layered silicon core, and the cladding layer can cure the layered silicon core to avoid direct contact between the layered silicon core material and the electrolyte. Reduce side reactions, prevent the pulverization of silicon during long-term cycling, and further improve cycle performance.
- the coating layer when it is a carbon coating layer, it can also provide a stable graphitization interface, provide more channels for lithium ion deintercalation, reduce the electrochemical reaction resistance of the interface, and reduce the amount of the negative film forming additive, thereby improving Power performance.
- an embodiment of the present application provides a method of preparing an electrode material, the method comprising the steps of: first, reacting a metal silicide with a metal remover to form a metal-removed layered silicon core,
- the layered silicon core comprises at least two layers of silicon-based material having inter-layer spaces between adjacent two layers of at least two layers of silicon-based material, the silicon-based material comprising at least one of silicon or silicon oxides;
- a cladding layer is prepared on the outer surface of the layered silicon core.
- the coating layer may be an amorphous carbon coating layer, or may be an inorganic compound coating layer such as a lithium titanate coating layer, or may be an organic coating layer such as a polyaniline coating layer.
- a large number of interlayer spaces of the layered silicon core can reduce the expansion pressure of the anode in the state of lithium insertion (or other ions released by the battery cathode), and reduce The change of the volume of the battery anode material during charging and discharging effectively avoids the powdering of the battery anode material and improves the service life of the battery anode material.
- a coating layer is prepared on the outer surface of the layered silicon core to cure the layered silicon core, thereby avoiding direct contact between the layered silicon core and the electrolyte, reducing side reactions and preventing powdering of silicon during long-term circulation, further Improve cycle performance.
- the coating layer when it is a carbon coating layer, it can also provide a stable graphitization interface, provide more channels for lithium ion deintercalation, reduce the electrochemical reaction resistance of the interface, and reduce the amount of the negative film forming additive, thereby improving Power performance.
- an embodiment of the present application provides an electrode material prepared by the method of any of the alternative aspects of the fourth aspect or the fourth aspect.
- an embodiment of the present application provides an electrode material prepared by the method of any of the alternative aspects of the fifth aspect or the fifth aspect.
- an embodiment of the present application provides an electrode material prepared by the method described in the sixth aspect.
- At least a portion of the adjacent two of the at least two layers of the silicon-based material of the layered silicon core are connected such that the layered silicon core has a stable layered structure.
- the size of the graphene quantum dots in the planar direction is in the range of 1 to 60 nm, for example, the planar dimensions of the graphene quantum dots are 1 nm, 2 nm, 5 nm, 10 nm, 20 nm, 30 nm. , 40nm, 50nm, 60nm.
- the above-mentioned planar size graphene quantum dots have good support for the layered silicon core and good electrical properties.
- the number of layers of the graphene quantum dots is in the range of 1 to 3 layers, such as single-layer graphene quantum dots, double-layer graphene quantum dots, and three-layer graphene quantum dots.
- the above-mentioned number of graphene quantum dots have good support for the layered silicon core and good electrical properties.
- an embodiment of the present application provides a battery including a positive electrode, an electrolyte, and a negative electrode, wherein the negative electrode according to the first aspect, any of the optional embodiments of the first aspect, the second aspect, and the second aspect
- the preparation of the electrode material provided by any of the optional embodiments, the third aspect, the seventh aspect, the eighth aspect, and the ninth aspect.
- FIG. 1 is a schematic flow chart of a method for preparing an electrode material according to an embodiment of the present application
- FIGS. 2a to 2h are schematic views showing a process of preparing an electrode material in an embodiment of the present application
- FIG. 3 is a schematic diagram of a battery provided by an embodiment of the present application.
- the plurality referred to in the present application means two or more.
- the term “and/or” in the present application is merely an association relationship describing an associated object, indicating that there may be three relationships, for example, A and/or B, which may indicate that A exists separately. There are both A and B, and B exists alone.
- a quantum dot is a quasi-zero-dimensional nanomaterial composed of a small number of atoms.
- the dimensions of the three dimensions of quantum dots are usually below 100 nanometers (nm), and the movement of electrons in quantum dots is limited in all directions, so the quantum confinement effect is particularly remarkable.
- Chemical vapor deposition refers to introducing a vapor containing a gaseous reactant or a liquid reactant constituting an element of a target substance and other gases required for the reaction into a reaction chamber, and chemically reacting on the surface of the substrate to form a thin film.
- FIG. 1 is a schematic flow chart of a method for preparing an electrode material according to the present application, including:
- the metal silicide is reacted with a metal remover to form a layered silicon core with metal removal.
- the layered silicon core comprises at least two layers of silicon-based material having inter-layer voids between adjacent two layers of at least two layers of silicon-based material, the silicon-based material comprising at least one of silicon or silicon oxides, for example, silicon
- the base material may be any one of silicon, silicon dioxide, and silicon monoxide, or the silicon-based material may include two of silicon, silicon dioxide, and silicon monoxide, or both.
- FIG. 2a is a schematic view of the layered silicon core. It should be noted that, in the technical solution of the embodiment of the present application, although the adjacent two layers of the silicon-based material of the layered silicon core have interlayer gaps, the adjacent two layers are There may also be some connections between them. To better illustrate the interlaminar voids of the layered silicon core, in Figure 2a and the following schematic, the adjacent two layers of silicon-based material of the layered silicon core are simplified to phase separation.
- the above metal silicide may be a finished product or may be formed by a reaction of a metal with silicon.
- Methods of preparing metal silicides include, but are not limited to, sintering, evaporation, sputtering, electroplating, CVD, and the like.
- the metal element in the metal silicide may be an alkali metal or an alkaline earth metal such as Li, Na, Ca, Mg or the like.
- the metal silicide may be a compound of a metal element and silicon, or may be a compound of two or more metal elements and silicon, such as Li 3 NaSi 6 formed of lithium, sodium and silicon.
- the metal remover is used for demetallization reaction with the metal silicide, and the metal remover may be different depending on the type of the metal silicide.
- the metal remover is a chemical delithiation reagent including, but not limited to, ethanol, propanol, butanol, isopropanol, and the like.
- the metal silicide is calcium silicide (CaSi 2 )
- the metal remover may be an oxidizing agent or an acid solution including, but not limited to, CuCl 2 , SnCl 2 , HCl, and the like.
- the metal silicide is de-metallized to form an oxide of silicon or silicon in an amorphous structure.
- the metal silicide and the metal stripper are reacted in different reaction media to obtain silicon-based materials of different oxidation states.
- the reaction medium is water
- calcium silicide is reacted with the metal remover to obtain Silica SiO 2
- the reaction medium is an alcohol
- the calcium silicide reacts with the metal remover to obtain other oxides of silicon other than silica, denoted as SiOx
- the reaction medium is a molten salt
- the reaction with a metal remover gives pure Si.
- the silicon-based material is formed by removing metal from the metal silicide, a large amount of voids formed by the removal of the metal exist in all of the silicon-based materials, so that the silicon-based material is layered.
- the layered silicon core is used as the battery negative electrode material, a large number of interlayer spaces of the layered silicon core can reduce the expansion pressure of the negative electrode in the state of lithium insertion (or other ions released from the positive electrode of the battery), and reduce the charging and discharging process.
- the change of the volume of the battery anode material effectively avoids the powdering of the battery anode material and improves the service life of the battery anode material.
- Step 402 assembling graphene quantum dots in the interlayer spaces of the layered silicon core.
- Figure 2b is a schematic illustration of a layered silicon core assembled with graphene quantum dots.
- the graphene quantum dots may be assembled in the inter-layer voids of the layered silicon core by various means, including but not limited to the following manners:
- the specific process may be: heating the layered silicon core, heating to a set temperature, continuously introducing hydrogen H 2 and a gaseous carbon source, and maintaining the gas for a period of time, then turning off the gaseous carbon.
- the source is cooled by Argon Ar gas to obtain a graphene quantum dot modified layered silicon core, and the graphene quantum dots are located in the interlayer spaces of the layered silicon core.
- the gaseous carbon source may be a gaseous hydrocarbon containing carbon, including but not limited to methane, ethane, propane, ethylene, propylene, acetylene, and the like.
- the already prepared graphene quantum dots are transferred into the interlayer spaces of the layered silicon core.
- a graphene quantum dot grown on another substrate is immersed in a solution, such as an alcohol, a solvent such as Isopropanol amine (IPA), and then the substrate having the graphene quantum dots is etched away.
- IPA Isopropanol amine
- the graphene quantum dots are migrated into the interlaminar spaces of the layered silicon core.
- a layered silicon core is prepared, and the interlayer gap of the layered silicon core is used to effectively suppress the expansion pressure of the anode material during lithium insertion, reduce the volume change of the battery anode material during charge and discharge, and improve the battery anode.
- the service life of the material the interlaminar voids of the layered silicon core are filled with graphene quantum dots, and the layers of the silicon-based material are supported by the graphene quantum dots to increase the strength of the layered silicon core and prevent the layered silicon core from being repeated. Structural collapse occurs after expansion and contraction.
- the graphene quantum dots have excellent electrical conductivity, contribute to electron transport, and can improve the electrical conductivity of the electrode material.
- graphene quantum dots in addition to assembling the graphene quantum dots in the interlaminar spaces of the layered silicon core, graphene quantum dots can be assembled on the outer surface of the layered silicon core.
- graphene quantum dots when graphene quantum dots are grown by a CVD process, graphene quantum dots can be grown on the interlaminar voids of the layered silicon core and the outer surface of the layered silicon core.
- Another example is the migration of graphene quantum dots to layers by migration.
- the interlayer void of the silicon core is used, a part of the graphene quantum dots can also migrate to the outer surface of the layered silicon core.
- the formation of graphene quantum dots on the outer surface of the layered silicon core can further improve the conductivity of the layered silicon core, and the flexibility of the graphene quantum dots can also promote the expansion of the layered silicon core. Buffering effect.
- step 402 the method further includes:
- a coating layer is prepared on the outer surface of the layered silicon core in which the graphene quantum dots are assembled.
- the coating layer may be an amorphous carbon coating layer, or may be an inorganic compound coating layer such as a lithium titanate coating layer, or may be an organic coating layer such as a polyaniline coating layer.
- the material structure after preparation of the cladding layer is shown in Figure 2d.
- the material structure after preparing the cladding layer is as shown in Fig. 2e.
- the cross-sectional shape of the cladding layer in FIGS. 2d-2e is simplified to a circular shape.
- the cross-sectional shape of the cladding layer may be other shapes such as an elliptical shape, or may be an irregular shape.
- the carbon coating layer can be prepared in various manners including, but not limited to, evaporation, sputtering, electroplating, CVD, and the like.
- the layered silicon-graphene quantum dot composite formed in step 402 is mixed with a carbon source and cracked at a high temperature to form a carbon coating on the outer surface of the layered silicon-graphene quantum dot composite.
- the carbon source is a gaseous carbon source, a liquid carbon source or a solid carbon source
- the gaseous carbon source includes but is not limited to methane, ethane, ethylene, acetylene, propylene, carbon monoxide, etc.
- the liquid carbon source includes but is not limited to Methanol, ethanol, n-hexane, cyclohexane, benzene, toluene, xylene, etc.
- solid carbon sources include, but are not limited to, polyethylene, polypropylene, polyvinyl chloride, polyvinylidene fluoride, polyacrylonitrile, polystyrene, rings Oxygen resin, phenolic resin, glucose, fructose, sucrose, maltose, coal tar pitch, petroleum pitch, and the like.
- a coating layer is prepared on the outer surface of the layered silicon core to solidify the layered silicon core, thereby avoiding direct contact between the layered silicon core and the electrolyte, reducing side reactions and preventing powdering of silicon during long-term circulation. Further improve cycle performance.
- a stable graphitization interface can be provided, more channels for lithium ion deintercalation can be provided, the interface electrochemical reaction resistance can be reduced, and the negative electrode film forming additive can be reduced. Dosage to improve power performance.
- step 1 a metal silicide Li 12 Si 7 is prepared .
- a stoichiometric Si block and a Li band (in consideration of the evaporation loss of Li, an excess of 7% of Li can be used) can be reacted by arc melting in an Ar gas atmosphere to form a Li 12 Si 7 compound. After cooling down, the resulting cake was ground into a powder in a mortar filled with Ar gas using a mortar.
- step 2 an amorphous layered silicon core is prepared.
- step 3 the amorphous layered silicon core is modified by graphene quantum dots.
- amorphous layered silicon core prepared in step 2 in a clean quartz boat, place it in the heating zone of the rail oven, pass 20 mL/min H 2 , start the heating process, and slowly heat up to a heating rate of 10 ° C/min. 900 ° C. After continuously feeding 20 mL/min H 2 and 5 mL/min CH 4 for 15 min, the oven was slid out of the sample area, and the carbon source was turned off. Finally, 150 mL/min Ar gas was passed to cool to obtain graphene quantum dot modified. Amorphous layered silicon core.
- step 4 a carbon coating layer is prepared.
- 0.2 g of the amorphous layered silicon-graphene quantum dot composite material obtained in the step 3 and 0.4 g of polyacrylonitrile were dispersed in 10 mL of dimethylformamide, dispersed uniformly by sonication and stirring, and then evaporated to dryness.
- Methylformamide the obtained solid was transferred to a high temperature furnace and heated to 900 ° C under N 2 protection for 2 h. After natural cooling and cooling, the product was taken out, and a carbon coating layer was formed on the surface of the amorphous layered silicon-graphene quantum dot composite after polyacrylonitrile cracking to obtain a final amorphous layered silicon-graphene quantum dot-carbon composite. .
- step 5 a metal silicide CaSi 2 is prepared.
- Pure calcium chips and pure silicon powder are mixed evenly, placed in a hard-burning porcelain boat, the porcelain boat is placed in a quartz reaction tube, and CO 2 is introduced .
- the temperature inside the quartz reaction tube is 1000 ° C, pure calcium powder and pure silicon powder.
- the mixture melts and the reaction proceeds.
- the porcelain boat was taken out, and the product CaSi was immediately condensed to obtain a metallic gray lead-colored porous mass CaSi, which was pulverized.
- the CaSi and the metered Si powder were uniformly mixed, placed in a nickel boat, and heated at 1000 ° C in a H 2 gas stream to cause CaSi to react with Si. Since the reaction between CaSi and Si proceeds slowly, the nickel boat can be heated for 15 hours, and thus CaSi 2 can be obtained.
- step 6 an amorphous layered silicon core is prepared.
- the process of preparing an amorphous layered silicon core in different reaction media is described below.
- the reaction medium is an aqueous solution.
- 0.2 g of CaSi 2 was mixed with 20 mL of an aqueous solution of 0.2 mol*L -1 CuCl 2 , and stirred at room temperature for 2 h.
- the obtained product was filtered, washed with water and ethanol, and then dried under vacuum at 80 ° C for 24 h, and the resulting Cu nanoparticles were treated with CuCl 2 .
- the aqueous solution was removed to obtain a layered structure of amorphous SiO 2 .
- the reaction medium is an ethanol solution.
- the reaction medium is a molten salt.
- step 7 the layered silicon core is modified by graphene quantum dots.
- amorphous layered silicon core prepared in step 6 Place the amorphous layered silicon core prepared in step 6 in a clean quartz boat, place it in the heating zone of the rail oven, pass 20 mL/min H 2 , start the heating process, and slowly heat up to a heating rate of 10 ° C/min. 900 ° C. After continuously feeding 20 mL/min H 2 and 5 mL/min CH 4 for 15 min, the oven was slid out of the sample area, and the carbon source was turned off. Finally, 150 mL/min Ar gas was passed to cool, and the graphene quantum dot modification was obtained. Shaped layered silicon core.
- step 8 a carbon coating layer is prepared.
- 0.2 g of the amorphous layered silicon-graphene quantum dot composite prepared in step 7 and 0.4 g of polyacrylonitrile were dispersed in 10 mL of dimethylformamide, dispersed by sonication and stirring, and then evaporated to dryness.
- Methylformamide the solid was transferred to a high temperature furnace and heated to 900 ° C under N 2 protection for 2 h. After natural cooling and cooling, the product was taken out, and a carbon coating layer was formed on the surface of the amorphous layered silicon-graphene quantum dot composite after polyacrylonitrile cracking to obtain a final amorphous layered silicon-graphene quantum dot-carbon composite. .
- the graphene quantum dots are modified on the outer surface of the layered silicon core
- FIG. 2f is a layer of surface-modified graphene quantum dots.
- the formation of graphene quantum dots on the surface of the layered silicon core may be by in situ growth of graphene quantum dots on the surface of the layered silicon core, such as growth of graphene quantum dots by a CVD process. In addition to this, it is also possible to migrate the prepared graphene quantum dots to the outer surface of the layered silicon core.
- the layered silicon core When the layered silicon core is used as the battery negative electrode material, a large number of interlayer spaces of the layered silicon core can reduce the expansion pressure of the negative electrode in the state of lithium insertion (or other ions released from the positive electrode of the battery), and reduce the charging and discharging process.
- the change of the volume of the battery anode material effectively avoids the powdering of the battery anode material and improves the service life of the battery anode material.
- the formation of graphene quantum dots on the outer surface of the layered silicon core can improve the conductivity of the layered silicon core, and the flexibility of the graphene quantum dots can also provide a good buffer for the expansion of the layered silicon core.
- a cladding layer is prepared on the outer surface of the layered silicon core, and the resulting structure is as shown in Fig. 2g.
- the implementation of the preparation of the coating is described in Example 1 and will not be repeated here.
- the outer layer of the layered silicon core can cure the layered silicon core, avoiding the direct contact of the layered silicon core with the electrolyte, reducing side reactions, preventing the powdering of silicon during long-term cycling, and further improving the cycle performance.
- a stable graphitization interface can be provided, more channels for lithium ion deintercalation can be provided, the interface electrochemical reaction resistance can be reduced, and the negative electrode film forming additive can be reduced. Dosage to improve power performance.
- a cladding layer is prepared on the outer surface of the layered silicon core, and the formation manner is obtained in step 403. There is a detailed description and will not be repeated here.
- a large number of interlayer spaces of the layered silicon core can reduce the expansion pressure of the anode in the state of lithium insertion (or other ions released by the battery cathode), and reduce The change of the volume of the battery anode material during charging and discharging effectively avoids the powdering of the battery anode material and improves the service life of the battery anode material.
- a coating layer is also prepared on the outer surface of the layered silicon core to cure the layered silicon core and avoid layering The silicon core is in direct contact with the electrolyte to reduce side reactions, prevent silicidation of silicon during long-term cycling, and further improve cycle performance.
- a stable graphitization interface can be provided, more channels for lithium ion deintercalation can be provided, the interface electrochemical reaction resistance can be reduced, and the negative electrode film forming additive can be reduced. Dosage to improve power performance.
- Embodiment 4 of the present application provides an electrode material prepared according to the method provided in any one of Embodiment 1, Embodiment 2 and Embodiment 3, so that the electrode material can be utilized when used as a battery negative electrode.
- the interlayer gap of the layered silicon core effectively suppresses the expansion pressure of the anode material during lithium insertion, reduces the volume change of the battery anode material during charge and discharge, and improves the service life of the battery anode material.
- the interlaminar voids of the layered silicon core are filled with graphene quantum dots, and the layers of the silicon-based material are supported by the graphene quantum dots to improve the layered shape.
- the strength of the silicon core prevents structural collapse of the layered silicon core after repeated expansion and contraction.
- the graphene quantum dots have excellent electrical conductivity, contribute to electron transport, and can improve the electrical conductivity of the electrode material.
- the graphene quantum dots are formed on the outer surface of the layered silicon core, the conductivity of the layered silicon core can be improved, and the flexibility of the graphene quantum dots can also be layered.
- the expansion of the silicon core serves as a good buffer.
- a coating layer is prepared on the outer surface of the layered silicon core to cure the layered silicon core, thereby avoiding direct contact between the layered silicon core and the electrolyte, reducing side reactions and preventing long-term
- the pulverization of silicon during the cycle further improves the cycle performance.
- the layered silicon core is coated with a carbon coating layer, a stable graphitization interface can be provided, more channels for lithium ion deintercalation can be provided, the interface electrochemical reaction resistance can be reduced, and the negative electrode film forming additive can be reduced. Dosage to improve power performance.
- the layered silicon core 10 includes at least two layers of silicon-based material having inter-layer spaces between adjacent two layers of at least two layers of silicon-based material, the silicon-based material including at least one of silicon or silicon oxides.
- the adjacent two layers of the silicon-based material of the layered silicon core have inter-layer gaps, a part of the adjacent two layers may be connected to each other, thereby providing stability.
- the graphene quantum dots 20 are located in the interlayer spaces of the layered silicon core 10.
- the interlayer gap of the layered silicon core can effectively suppress the expansion pressure of the anode material during lithium insertion, and reduce the volume of the battery anode material during charge and discharge. Changes in the life of the battery anode material.
- the interlaminar voids of the layered silicon core are filled with graphene quantum dots, and the layers of the silicon core are supported by the graphene quantum dots to increase the strength of the layered silicon core and prevent the layered silicon core from expanding repeatedly. Structural collapse occurs after shrinkage.
- the graphene quantum dots have excellent electrical conductivity, contribute to electron transport, and can improve the electrical conductivity of the electrode material.
- the graphene quantum dots 20 are also located on the outer surface of the layered silicon core 10 to further improve the electrical conductivity of the layered layered silicon core 10 and are located on the surface of the layered silicon core 10.
- the flexibility of the graphene quantum dots 20 also serves as a good buffer for the expansion of the layered silicon core 10.
- the electrode material further includes a cladding layer 30 overlying the outer surface of the layered silicon core 10.
- the cladding layer 30 may be a carbon coating layer, an organic compound coating layer, an inorganic compound coating layer, or the like, and an embodiment thereof has been described in Embodiment 1.
- the cladding layer 30 can cure the layered silicon core 10 to avoid layered silicon
- the core 10 material is in direct contact with the electrolyte to reduce side reactions, prevent silicidation of silicon during long-term cycling, and further improve cycle performance.
- the coating layer when it is a carbon coating layer, it can also provide a stable graphitization interface, provide more channels for lithium ion deintercalation, reduce the electrochemical reaction resistance of the interface, and reduce the amount of the negative film forming additive, thereby improving Power performance.
- the graphene quantum dot 20 is also located on the outer surface of the layered silicon core 10, and the electrode material further includes a cladding layer 30 covering the layered silicon core 10 The outer surface.
- the flexibility of the graphene quantum dots 20 on the surface of the layered silicon core 10 can also provide a good buffering effect on the expansion of the layered silicon core 10, and the cladding layer 30 can cure the layered silicon core 10, avoiding the layered silicon core 10
- the material is in direct contact with the electrolyte to reduce side reactions, prevent the powdering of silicon during long-term circulation, and further improve the cycle performance.
- the cladding layer 30 when it is a carbon coating layer, it can also provide a stable graphitization interface, provide more channels for lithium ion deintercalation, reduce the electrochemical reaction resistance of the interface, and reduce the amount of the negative film forming additive, thereby improving Power performance.
- Embodiment 6 of the present application provides an electrode material comprising: a layered silicon core 10 and a graphene quantum dot 20.
- a layered silicon core 10 has been described in Embodiment 5, and the graphene quantum dots 20 are located on the outer surface of the layered silicon core 10.
- a large number of interlayer voids of the layered silicon core can reduce the expansion pressure of the negative electrode in the state of lithium insertion (or other ions released from the positive electrode of the battery), and reduce the volume of the battery negative electrode during charge and discharge.
- the change effectively avoids the powdering of the negative electrode of the battery and improves the service life of the negative electrode of the battery.
- the graphene quantum dots 20 on the outer surface of the layered silicon core 10 can improve the conductivity of the layered silicon core 10, and the flexibility of the graphene quantum dots 20 can also well buffer the expansion of the layered silicon core 10. effect.
- the electrode material further includes a coating layer 30 coated on the outer surface of the layered silicon core 10, and the graphene quantum dots 20 are also covered by the cladding layer 30, and the cladding layer 30 may be a carbon coating layer, an organic compound coating layer, an inorganic compound coating layer or the like, and an embodiment thereof has been described in Embodiment 1.
- the cladding layer 30 on the outer surface of the layered silicon core 10 can cure the layered silicon core 10, avoiding direct contact of the layered silicon core 10 with the electrolyte, reducing side reactions, preventing silicidation of silicon during long-term cycling, and further improving circulation. performance.
- the cladding layer 30 when it is a carbon coating layer, it can also provide a stable graphitization interface, provide more channels for lithium ion deintercalation, reduce the electrochemical reaction resistance of the interface, and reduce the amount of the negative film forming additive, thereby improving Power performance.
- Embodiment 7 of the present application provides an electrode material comprising: a layered silicon core 10 and a cladding layer 30.
- the structure of the layered silicon core 10 has been described in the embodiment 5, and the cladding layer 30 is coated on the outer surface of the layered silicon core 10.
- the layered silicon core 10 is used as the battery negative electrode material, a large number of interlayer spaces of the layered silicon core 10 can alleviate the expansion pressure of the negative electrode in the state of lithium insertion (or other ions released from the positive electrode of the battery).
- a cladding layer 30 is also prepared on the outer surface of the layered silicon core 10 to cure the layered silicon core 10, thereby avoiding direct contact of the layered silicon core 10 with the electrolyte, reducing side reactions and preventing silicon during long-term cycling. Powdering to further improve cycle performance.
- the cladding layer 30 is a carbon coating layer, it can also provide a stable graphitization interface, provide more channels for lithium ion deintercalation, reduce the electrochemical reaction resistance of the interface, and reduce the amount of the anode film-forming additive. Improve power performance.
- the interlayer voids or surface-assembled graphene quantum dots of the layered silicon core may have a size in the plane direction ranging from 1 to 60 nm, for example, graphene quantum dots.
- the plane size is 1nm, 2 nm, 5 nm, 10 nm, 20 nm, 30 nm, 40 nm, 50 nm, 60 nm.
- the above-mentioned planar size graphene quantum dots have both a supporting effect on the layered silicon core and excellent electrical conductivity, and due to the small size of the graphene quantum dots, a large amount of void space remains between the layers of the layered silicon core.
- the expansion pressure of the negative electrode material during lithium insertion can be effectively suppressed, and the change of the volume of the battery negative electrode material during charging and discharging can be reduced.
- the number of layers of the graphene quantum dots may be in the range of 1 to 3 layers, such as single-layer graphene quantum dots, double-layer graphene quantum dots, and three-layer graphene quantum dots.
- the above-mentioned number of graphene quantum dots are assembled in the interlaminar space of the layered silicon core, and have the support for the layered silicon core and excellent electrical conductivity, and a large amount of voids remain between the layers of the layered silicon core.
- the space can effectively suppress the expansion pressure of the anode material during lithium insertion, and reduce the volume change of the battery anode material during charge and discharge.
- FIGS. 2a to 2h in the drawings of the present specification are schematic cross-sectional views of the electrode material, and those skilled in the art can know that the electrode material should have a certain three-dimensional size instead of two-dimensional, for example, an electrode.
- the material may be in the form of a sphere, an ellipsoid, a column, or other regular shapes, or other irregular shapes, which are not limited in the embodiment of the present application.
- the graphene quantum dots 20 are not limited to being distributed in the position represented by the schematic cross-section, but may be uniformly distributed on the outer surface of the layered silicon core 10 having a three-dimensional size or Non-uniform distribution.
- Embodiment 3 is a battery provided in Embodiment 8 of the present application, comprising: a housing 51, a positive electrode 52, a negative electrode 53, and an electrolyte 54.
- the positive electrode 52, the negative electrode 53, and the electrolytic solution 54 are housed in the casing 51.
- the positive electrode 52 releases a cation such as lithium ion, and the lithium ion released from the positive electrode moves to the negative electrode 53 through the electrolytic solution to be embedded in the negative electrode material.
- the anode 53 was prepared according to the electrode materials provided in any of Examples 4 to 6. Since the negative electrode has a layered silicon core (or a layered silicon core), the interlayer gap of the layered silicon core effectively suppresses the expansion pressure of the anode material during lithium insertion, and reduces the volume change of the battery anode material during charge and discharge. Improve the service life of the battery anode material.
- the interlaminar voids of the layered silicon core are filled with graphene quantum dots, and the layers of the silicon-based material are supported by the graphene quantum dots to increase the strength of the layered silicon core and prevent the layered silicon core from being repeated. Structural collapse occurs after expansion and contraction.
- the graphene quantum dots have excellent electrical conductivity, contribute to electron transport, and can improve the electrical conductivity of the electrode material.
- the battery provided in Embodiment 8 may further include a structure such as a diaphragm, an extraction electrode, and the like, which are not described in detail in the embodiments of the present application.
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Composite Materials (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
一种制备电极材料的方法、电极材料及电池,用以解决现有技术中存在的电池中硅负极材料在满嵌状态下容易粉化的问题。该电极材料包括:层状硅内核以及石墨烯量子点,该层状硅内核包括至少两层硅基材料,该至少两层硅基材料的相邻两层之间具有层间空隙,该硅基材料包括硅或硅的氧化物中的至少一种;该石墨烯量子点位于该至少两层硅基材料的层间空隙。
Description
本申请要求在2017年3月31日提交中国专利局、申请号为201710209622.9、发明名称为“一种制备电极材料的方法、电极材料及电池”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及材料技术领域,尤其涉及一种制备电极材料的方法、电极材料及电池。
锂离子电池通常采用石墨作为负极材料,石墨的理论克容量为372mAh/g,而当前实际使用的石墨的克容量已超过360mAh/g,已接近理论极限值,很难再有上升的空间,制约电池的能量密度的进一步提升。
硅的理论克容量远大于石墨,达到4200mAh/g,很有希望被用作电池负极材料。但是,硅负极在满嵌锂状态下,体积膨胀高达300%-400%,会导致固体电解质界面膜(solid electrolyte interface,SEI)破裂,并导致硅负极材料粉化,大大降低循环寿命。
发明内容
本申请提供一种制备电极材料的方法、电极材料及电池,用以解决现有技术中存在的电池中硅负极材料在满嵌状态下容易粉化的问题。
第一方面,本申请的实施例提供一种电极材料,包括层状硅内核以及石墨烯量子点。所述层状硅内核包括至少两层硅基材料,至少两层硅基材料的相邻两层之间具有层间空隙,该硅基材料包括硅或硅的氧化物中的至少一种,例如,硅基材料可以为硅、二氧化硅、一氧化硅中的任意一种,或者硅基材料同时包括硅、二氧化硅、一氧化硅中的两种,或者同时包括三者;所述石墨烯量子点位于所述层状硅内核的层间空隙。
本实现方式中的电极材料在被用作电池负极时,能够利用层状硅内核的层间空隙有效抑制负极材料在嵌锂时的膨胀压力,减小充放电过程中的电池负极材料体积的变化,提高电池负极材料的使用寿命。不仅如此,还在层状硅内核的层间空隙中填充石墨烯量子点,利用石墨烯量子点对硅内核的层间进行支撑,提高层状硅内核的强度,防止层状硅内核在反复膨胀收缩后发生结构坍塌。再者,石墨烯量子点具有优良的导电性也,有助于电子传输,能够提高电极材料的导电性能。
第一方面的一种可选的实现方式中,所述石墨烯量子点还位于所述层状硅内核的外表面。层状硅内核的外表面上的石墨烯量子点可以进一步提高层状硅内核的导电性能,而且石墨烯量子点的柔韧性也能够对层状硅内核的膨胀起到良好的缓冲作用。
第一方面的一种可选的实现方式中,电极材料还包括包覆层,包覆在所述层状硅内核的外表面。该包覆层可以为无定形的碳包覆层,也可以为无机化合物包覆层,如钛酸锂包覆层,还可以为有机物包覆层,如聚苯胺包覆层。层状硅内核的外表面制备包覆层,可以固化层状硅内核,避免层状硅内核与电解液直接接触,减少副反应,防止长期循环过程中
硅的粉化,进一步提高循环性能。另外,在包覆层为碳包覆层时,还可以提供稳定的石墨化的界面,提供更多的锂离子脱嵌的通道,降低界面电化学反应阻抗,减少负极成膜添加剂的用量,提升功率性能。
第一方面的一种可选的实现方式中,所述石墨烯量子点位于所述层状硅内核的层间空隙以及表面,电极材料还包括包覆层,包覆在所述层状硅内核的外表面,位于层状硅内核外表面的石墨烯量子点同样被包覆层所包覆。本实现方式中,层状硅内核表面的石墨烯量子点的柔韧性能够对层状硅内核的膨胀起到良好的缓冲作用,包覆层可以固化层状硅内核,避免层状硅内核料与电解液直接接触,减少副反应,防止长期循环过程中硅的粉化,进一步提高循环性能。另外,在包覆层为碳包覆层时,还可以提供稳定的石墨化的界面,提供更多的锂离子脱嵌的通道,降低界面电化学反应阻抗,减少负极成膜添加剂的用量,提升功率性能。
第二方面,本申请的实施例提供一种电极材料,包括层状硅内核以及石墨烯量子点,所述层状硅内核包括至少两层硅基材料,至少两层硅基材料的相邻两层之间具有层间空隙,该硅基材料包括硅或硅的氧化物中的至少一种;所述石墨烯量子点位于所述层状硅内核的外表面。本实现方式中,在将电极料作为电池负极时,层状硅内核的大量层间空隙能够缓减负极在嵌锂(或电池正极释放的其他离子)状态下的膨胀压力,减小充放电过程中的电池负极体积的变化,有效避免电池负极的粉化,提高电池负极的使用寿命。层状硅内核的的外表面的石墨烯量子点可以提高层状硅内核的导电性能,而且石墨烯量子点的柔韧性也能够对层状硅内核的膨胀起到良好的缓冲作用。
第二方面的一种可选的实现方式中,电极材料还包括包覆层,包覆在所述层状硅内核的外表面,所述石墨烯量子点被所述碳包覆层包覆。
第三方面,本申请的实施例提供一种电极材料,包括层状硅内核以及包覆在层状硅内核表面的碳包覆层。上述技术方案中,在将层状硅内核作为电池负极材料时,层状硅内核的大量层间空隙能够缓减负极在嵌锂(或电池正极释放的其他离子)状态下的膨胀压力,减小充放电过程中的电池负极材料体积的变化,有效避免电池负极材料的粉化,提高电池负极材料的使用寿命。进一步地,还在层状硅内核的外表面制备碳包覆层,可以固化层状硅内核,避免层状硅内核与电解液直接接触,减少副反应,防止长期循环过程中硅的粉化,进一步提高循环性能。另外,碳包覆层还可以提供稳定的石墨化的界面,提供更多的锂离子脱嵌的通道,降低界面电化学反应阻抗,减少负极成膜添加剂的用量,提升功率性能。
第四方面,本申请的实施例提供一种制备电极材料的方法,包括如下步骤:首先,将金属硅化物与金属脱除剂进行反应,生成脱除金属的层状硅内核,金属硅化物中的金属元素可以为碱金属或碱土金属,金属脱除剂可以为乙醇、丙醇、丁醇、异丙醇、氧化性试剂或酸溶液等,金属硅化物与金属脱除剂反应生成的所述层状硅内核包括至少两层硅基材料,至少两层硅基材料的相邻两层之间具有层间空隙,该硅基材料包括硅或硅的氧化物中的至少一种,例如,硅基材料可以为硅、二氧化硅、一氧化硅中的任意一种,或者硅基材料同时包括硅、二氧化硅、一氧化硅中的两种,或者同时包括三者。然后,在所述层状硅内核的层间空隙中组装石墨烯量子点,组装石墨烯量子点的方式可以为在层状硅内核的层间空隙中原位生长石墨烯量子点,也可以为将已经制备好的石墨烯量子点迁移至层状硅内核的层间空隙中。
上述技术方案中,制备形成层状硅内核,利用层状硅内核的层间空隙有效抑制负极材
料在嵌锂时的膨胀压力,减小充放电过程中的电池负极材料体积的变化,提高电池负极材料的使用寿命。不仅如此,还在层状硅内核的层间空隙中填充石墨烯量子点,利用石墨烯量子点对硅基材料的层间进行支撑,提高层状硅内核的强度,防止层状硅内核在反复膨胀收缩后发生结构坍塌。再者,石墨烯量子点具有优良的导电性也,有助于电子传输,能够提高电极材料的导电性能。
第四方面的一种可选的实现方式中,除了在层状硅内核的层间空隙中组装石墨烯量子点之外,还可以在层状硅内核的外表面组装石墨烯量子点。层状硅内核的外表面形成石墨烯量子点可以进一步提高层状硅内核的导电性能,而且石墨烯量子点的柔韧性也能够对层状硅内核的膨胀起到良好的缓冲作用。
第四方面的一种可选的实现方式中,在所述层状硅内核的层间空隙中组装石墨烯量子点之后,继续在组装有所述石墨烯量子点的层状硅内核的外表面制备包覆层,该包覆层可以为无定形的碳包覆层,也可以为无机化合物包覆层,如钛酸锂包覆层,还可以为有机物包覆层,如聚苯胺包覆层。制备包覆层的工艺可以为蒸发、溅射、电镀、化学气相淀积(chemical vapor deposition,CVD)等。层状硅内核的外表面制备包覆层,可以固化层状硅内核,避免层状硅内核与电解液直接接触,减少副反应,防止长期循环过程中硅的粉化,进一步提高循环性能。另外,在包覆层为碳包覆层时,还可以提供稳定的石墨化的界面,提供更多的锂离子脱嵌的通道,降低界面电化学反应阻抗,减少负极成膜添加剂的用量,提升功率性能。
第四方面的一种可选的实现方式中,除了在层状硅内核的层间空隙中组装石墨烯量子点之外,还可以在层状硅内核的外表面组装石墨烯量子点,而且,在组装石墨烯量子点之后,继续在组装有所述石墨烯量子点的层状硅内核的外表面制备包覆层。层状硅内核表面的石墨烯量子点的柔韧性能够对层状硅内核的膨胀起到良好的缓冲作用,包覆层可以固化层状硅内核,避免层状硅内核料与电解液直接接触,减少副反应,防止长期循环过程中硅的粉化,进一步提高循环性能。另外,在包覆层为碳包覆层时,还可以提供稳定的石墨化的界面,提供更多的锂离子脱嵌的通道,降低界面电化学反应阻抗,减少负极成膜添加剂的用量,提升功率性能。
第四方面的一种可选的实现方式中,采用化学气相沉积CVD工艺在所述层状硅内核的层间空隙中生长石墨烯量子点。其中,CVD工艺采用的碳源可以为含碳的气态烃类物质,如甲烷、乙烷、丙烷、乙烯、丙烯、乙炔等。根据CVD工艺在层状硅内核的层间空隙中原位生长石墨烯量子点具有效率高,制备得到的石墨烯量子点对层状硅内核具有较好的支撑作用,且石墨烯量子点的电学性能优异。
第四方面的一种可选的实现方式中,将石墨烯量子点迁移至所述层状硅内核的层间空隙,实现在层状硅内核的层间空隙组装石墨烯量子点,本方式具有成本低的优点。
第四方面的一种可选的实现方式中,制备层状硅内核所使用的金属硅化物根据硅以及至少一种金属制备,该金属硅化合物可以为一种金属元素与硅的化合物,也可以为两种或两种以上的金属元素与硅的化合物,制备金属硅化物可以通过烧结、蒸发、溅射、电镀、CVD等工艺实现。本方式可以降低制备电极材料的成本。
第四方面的一种可选的实现方式中,根据碱金属或碱土金属中的至少一种(如Li、Na、Ca、Mg等)与硅制备该金属硅化物,根据该金属硅化物进行脱金属反应可以制备纯度较高的层状硅内核。
第五方面,本申请的实施例提供一种制备电极材料的方法,该方法包括如下步骤:首先,将金属硅化物与金属脱除剂进行反应,生成脱除金属的层状硅内核,所述层状硅内核包括至少两层硅基材料,至少两层硅基材料的相邻两层之间具有层间空隙,该硅基材料包括硅或硅的氧化物中的至少一种;然后,在所述层状硅内核的外表面组装石墨烯量子点。本实现方式中,在将层状硅内核作为电池负极材料时,层状硅内核的大量层间空隙能够缓减负极在嵌锂(或电池正极释放的其他离子)状态下的膨胀压力,减小充放电过程中的电池负极材料体积的变化,有效避免电池负极材料的粉化,提高电池负极材料的使用寿命。在层状硅内核的外表面形成石墨烯量子点,可以提高层状硅内核的导电性能,而且石墨烯量子点的柔韧性也能够对层状硅内核的膨胀起到良好的缓冲作用。
第五方面的一种可选的实现方式中,在所述层状硅内核的外表面组装石墨烯量子点之后,继续在组装有所述石墨烯量子点的层状硅内核的外表面制备包覆层。该包覆层可以为无定形的碳包覆层,也可以为无机化合物包覆层,如钛酸锂包覆层,还可以为有机物包覆层,如聚苯胺包覆层。层状硅内核表面的石墨烯量子点的柔韧性能够对层状硅内核的膨胀起到良好的缓冲作用,包覆层可以固化层状硅内核,避免层状硅内核料与电解液直接接触,减少副反应,防止长期循环过程中硅的粉化,进一步提高循环性能。另外,在包覆层为碳包覆层时,还可以提供稳定的石墨化的界面,提供更多的锂离子脱嵌的通道,降低界面电化学反应阻抗,减少负极成膜添加剂的用量,提升功率性能。
第六方面,本申请的实施例提供一种制备电极材料的方法,该方法包括如下步骤:首先,将金属硅化物与金属脱除剂进行反应,生成脱除金属的层状硅内核,所述层状硅内核包括至少两层硅基材料,至少两层硅基材料的相邻两层之间具有层间空隙,该硅基材料包括硅或硅的氧化物中的至少一种;然后,在层状硅内核的外表面制备包覆层。该包覆层可以为无定形的碳包覆层,也可以为无机化合物包覆层,如钛酸锂包覆层,还可以为有机物包覆层,如聚苯胺包覆层。上述技术方案中,在将层状硅内核作为电池负极材料时,层状硅内核的大量层间空隙能够缓减负极在嵌锂(或电池正极释放的其他离子)状态下的膨胀压力,减小充放电过程中的电池负极材料体积的变化,有效避免电池负极材料的粉化,提高电池负极材料的使用寿命。进一步地,还在层状硅内核的外表面制备包覆层,可以固化层状硅内核,避免层状硅内核与电解液直接接触,减少副反应,防止长期循环过程中硅的粉化,进一步提高循环性能。另外,在包覆层为碳包覆层时,还可以提供稳定的石墨化的界面,提供更多的锂离子脱嵌的通道,降低界面电化学反应阻抗,减少负极成膜添加剂的用量,提升功率性能。
第七方面,本申请的实施例提供一种电极材料,该电极材料采用第四方面或第四方面的任一可选实施方式所述的方法制备。
第八方面,本申请的实施例提供一种电极材料,该电极材料采用第五方面或第五方面的任一可选实施方式所述的方法制备。
第九方面,本申请的实施例提供一种电极材料,该电极材料采用第六方面所述的方法制备。
在上述所有可能的实现方式中,所述层状硅内核的至少两层硅基材料中的相邻两层的至少一部分相连,使得层状硅内核具有稳固地层状结构。
在上述所有可能的实现方式中,所述石墨烯量子点在平面方向上的尺寸在1~60nm范围内,,例如,石墨烯量子点的平面尺寸为1nm、2nm、5nm、10nm、20nm、30nm、40nm、50nm、
60nm。上述平面尺寸的石墨烯量子点既对层状硅内核具有较好的支撑作用,又具有良好的电学性能。
在上述所有可能的实现方式中,所述石墨烯量子点的层数在1~3层范围内,例如单层石墨烯量子点、双层石墨烯量子点、三层石墨烯量子点。上述层数的石墨烯量子点既对层状硅内核具有较好的支撑作用,又具有良好的电学性能。
第十方面,本申请的实施例提供一种电池,包括正极、电解液以及负极,其中,所述负极根据第一方面、第一方面的任一可选实施方式、第二方面、第二方面的任一可选实施方式、第三方面、第七方面、第八方面、第九方面中任一实施方式所提供的电极材料制备。
图1为本申请实施例提供的制备电极材料的方法的流程示意图;
图2a至图2h为本申请实施例中制备电极材料的过程的示意图;
图3为本申请实施例提供的电池的示意图。
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。
本申请中所涉及的多个,是指两个或两个以上。另外,需要理解的是,本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况。
量子点(quantum dot)是准零维的纳米材料,由少量的原子所构成。量子点三个维度的尺寸通常都在100纳米(nm)以下,量子点内部电子在各方向上的运动都受到局限,所以量子限域效应(quantum confinement effect)特别显著。
化学气相淀积(chemical vapor deposition,CVD),指把含有构成目标物质的元素的气态反应剂或液态反应剂的蒸气及反应所需其它气体引入反应室,在衬底表面发生化学反应生成薄膜、颗粒或量子点的过程。
实施例1
图1所示为本申请的制备电极材料的方法的流程示意图,包括:
步骤401,将金属硅化物与金属脱除剂进行反应,生成脱除金属的层状硅内核。层状硅内核包括至少两层硅基材料,至少两层硅基材料的相邻两层之间具有层间空隙,该硅基材料包括硅或硅的氧化物中的至少一种,例如,硅基材料可以为硅、二氧化硅、一氧化硅中的任意一种,或者硅基材料同时包括硅、二氧化硅、一氧化硅中的两种,或者同时包括三者。
图2a为该层状硅内核的示意图,需要说明的是,本申请实施例技术方案中,虽然层状硅内核的相邻两层硅基材料之间具有层间空隙,但相邻两层之间也可以有一部分相连,为了更好地体现层状硅内核的层间空隙,在图2a以及后面的示意图中,层状硅内核的相邻两层硅基材料被简化为相分离。
上述金属硅化物可以为成品,也可以根据金属与硅的反应生成。金属硅化物的制备方法包括但不限于:烧结、蒸发、溅射、电镀、CVD等。金属硅化物中的金属元素可以为碱
金属或碱土金属,如Li、Na、Ca、Mg等。金属硅化物可以为一种金属元素与硅的化合物,也可以为两种或两种以上的金属元素与硅的化合物,如锂、钠与硅形成的Li3NaSi6。
金属脱除剂用于与金属硅化物发生脱金属反应,金属脱除剂根据金属硅化物的种类不同而可以不同。例如,当金属硅化物为锂的硅化物(LiSix)时,金属脱除剂为化学脱锂试剂,包括但不限于乙醇、丙醇、丁醇、异丙醇等。当金属硅化物为硅化钙(CaSi2)时,金属脱除剂可以为氧化性试剂或酸溶液,包括但不限于CuCl2、SnCl2、HCl等。
在一些实施例中,金属硅化物脱去金属后生成硅或硅的氧化物为无定形结构。
在一些实施例中,金属硅化物与金属脱除剂在不同的反应介质中反应,可以得到不同氧化态的硅基材料,例如,当反应介质为水时,硅化钙与金属脱除剂反应得到二氧化硅SiO2;当反应介质为醇类时,硅化钙与金属脱除剂反应可以得到二氧化硅之外的硅的其他氧化物,表示为SiOx;当反应介质为熔盐时,硅化钙与金属脱除剂进行反应得到纯Si。
由于该硅基材料由从金属硅化物中脱去金属形成,所有硅基材料中存在大量脱去金属所形成的空隙,使得硅基材料呈现层状。在将层状硅内核作为电池负极材料时,层状硅内核的大量层间空隙能够缓减负极在嵌锂(或电池正极释放的其他离子)状态下的膨胀压力,减小充放电过程中的电池负极材料体积的变化,有效避免电池负极材料的粉化,提高电池负极材料的使用寿命。
步骤402,在层状硅内核的层间空隙中组装石墨烯量子点。图2b为组装石墨烯量子点的层状硅内核的示意图。
本申请实施例中,可以通过多种方式在层状硅内核的层间空隙中组装石墨烯量子点,包括但不限于以下方式:
方式1,在层状硅内核的层间空隙中原位生长石墨烯量子点。
如采用CVD工艺生长石墨烯量子点,具体过程可以为:对层状硅内核进行加热,升温至设定温度后,持续通入氢气H2和气态碳源,并保持一段时间,然后关闭气态碳源,并通入氩Ar气冷却,便可得到石墨烯量子点修饰的层状硅内核,石墨烯量子点位于层状硅内核的层间空隙中。其中,气态碳源可以为含碳的气态烃类物质,包括但不限于甲烷、乙烷、丙烷、乙烯、丙烯、乙炔等。
方式2,将已经制备好的石墨烯量子点迁移至层状硅内核的层间空隙中。
例如,将生长在其他衬底上的石墨烯量子点浸入溶液内,例如酒精,异丙醇胺(Isopropanol amine,IPA)等溶剂,然后将长有石墨烯量子点的衬底腐蚀掉,在液相中将石墨烯量子点迁移至层状硅内核的层间空隙中。
上述技术方案中,制备形成层状硅内核,利用层状硅内核的层间空隙有效抑制负极材料在嵌锂时的膨胀压力,减小充放电过程中的电池负极材料体积的变化,提高电池负极材料的使用寿命。不仅如此,还在层状硅内核的层间空隙中填充石墨烯量子点,利用石墨烯量子点对硅基材料的层间进行支撑,提高层状硅内核的强度,防止层状硅内核在反复膨胀收缩后发生结构坍塌。再者,石墨烯量子点具有优良的导电性也,有助于电子传输,能够提高电极材料的导电性能。
作为一种可选的方式,参照图2c,除了在层状硅内核的层间空隙中组装石墨烯量子点之外,还可以在层状硅内核的外表面组装石墨烯量子点。
例如,在采用CVD工艺生长石墨烯量子点时,石墨烯量子点可以生长在层状硅内核的层间空隙以及层状硅内核的外表面。又例如,在采用迁移的方式将石墨烯量子点迁移至层
状硅内核的层间空隙时,还可以将一部分石墨烯量子点迁移至层状硅内核的外表面。
上述技术方案中,在层状硅内核的外表面形成石墨烯量子点,可以进一步提高层状硅内核的导电性能,而且石墨烯量子点的柔韧性也能够对层状硅内核的膨胀起到良好的缓冲作用。
作为另一种可选的方式,在步骤402之后,还包括:
步骤403,在组装有石墨烯量子点的层状硅内核的外表面制备包覆层。该包覆层可以为无定形的碳包覆层,也可以为无机化合物包覆层,如钛酸锂包覆层,还可以为有机物包覆层,如聚苯胺包覆层。
结合图2b所示的结构,制备包覆层后的材料结构如图2d所示。结合图2c所示的结构,制备包覆层后的材料结构如图2e所示。需要说明的是,图2d-2e中包覆层的截面形状简化为圆形,在具体实施时,包覆层的截面形状可以为椭圆形等其他形状,也可以为不规则形状。
以碳包覆层包覆层状硅内核为例,本申请实施例中可以采用多种方式制备碳包覆层,包括但不限于:蒸发、溅射、电镀、CVD等。例如,将步骤402形成的层状硅基-石墨烯量子点复合材料与碳源混合,在高温下裂解,在层状硅基-石墨烯量子点复合材料的外表面形成碳包覆层。其中,所述的碳源为气态碳源、液态碳源或固态碳源,其中,气态碳源包括但不限于甲烷、乙烷、乙烯、乙炔、丙烯、一氧化碳等;液态碳源包括但不限于甲醇、乙醇、正己烷、环己烷、苯、甲苯、二甲苯等;固态碳源包括但不限于聚乙烯、聚丙烯、聚氯乙烯、聚偏氟乙烯、聚丙烯腈、聚苯乙烯、环氧树脂、酚醛树脂、葡萄糖、果糖、蔗糖、麦芽糖、煤焦油沥青、石油沥青等。
上述技术方案中,在层状硅内核的外表面制备包覆层,可以固化层状硅内核,避免层状硅内核与电解液直接接触,减少副反应,防止长期循环过程中硅的粉化,进一步提高循环性能。另外,在采用碳包覆层包覆层状硅内核时,还可以提供稳定的石墨化的界面,提供更多的锂离子脱嵌的通道,降低界面电化学反应阻抗,减少负极成膜添加剂的用量,提升功率性能。
下面介绍根据上述技术方案制备电极材料的应用实例。
应用实例1
步骤1,制备金属硅化物Li12Si7。
将化学计量比的Si块与Li带(考虑到Li的蒸发损失,可以将Li的用量过量7%)在Ar气环境中通过电弧熔化进行反应,生成Li12Si7化合物。当冷却下来以后,将得到的块状物在充满Ar气的手套箱中用研钵研磨成粉末。
步骤2,制备无定型层状硅内核。
取步骤1研磨的粉末1.0g置于烧瓶中,放入充满Ar气的手套箱。烧瓶中加入120mL乙醇,持续搅拌,使硅化锂与乙醇反应,将反应产物转移入布氏漏斗中用滤纸过滤,滤渣用蒸馏水和1摩尔/升(mol*L-1)盐酸分别清洗三次,再用蒸馏水洗至中性,得到黑色不溶于水的产物。该产物在Ar气保护下在管式炉中120℃加热3h,可以得到无定型层状硅内核。
步骤3,采用石墨烯量子点对无定型层状硅内核进行修饰。
将步骤2制备的无定型层状硅内核置于干净的石英舟中,放入滑轨炉加热区域,通入20mL/min H2,启动加热程序,以10℃/min的加热速率缓慢升温至900℃。持续通入20
mL/min H2和5mL/min CH4并保持15min后,将炉箱滑出样品区域,同时关闭碳源,最后通入150mL/min Ar气冷却,得到石墨烯量子点修饰的无定型层状硅内核。
步骤4,制备碳包覆层。
将0.2g步骤3中得到的无定型层状硅-石墨烯量子点复合材料和0.4g聚丙烯腈分散在10mL二甲基甲酰胺中,通过超声处理和搅拌使其分散均匀,然后蒸干二甲基甲酰胺,将获得的固体转移到高温炉中,在N2保护下升温至900℃,并保持2h。自然冷却降温后将产物取出,聚丙烯腈裂解后在无定型层状硅-石墨烯量子点复合材料表面形成碳包覆层,得到最终的无定型层状硅-石墨烯量子点-碳复合材料。
应用实例2
步骤5,制备金属硅化物CaSi2。
将纯钙屑与纯硅粉混合均匀,放在硬质素烧瓷舟中,将瓷舟放入石英反应管内,通入CO2,石英反应管内温度为1000℃,纯钙屑与纯硅粉的混合物熔融,反应随之进行。然后,取出瓷舟,生成物CaSi即刻凝结,得到有金属光泽的铅灰色多孔块状物CaSi,将其粉碎。将CaSi与计量比的Si粉混合均匀,放在镍舟中,在H2气流中加热1000℃,使得CaSi与Si反应。由于CaSi与Si反应进行缓慢,可以对镍舟加热15h,进而可得到CaSi2。
步骤6,制备无定型层状硅内核。下面分别介绍在不同反应介质中制备无定型层状硅内核的过程。
情形1,反应介质为水溶液。
将0.2g CaSi2与20mL 0.2mol*L-1CuCl2水溶液混合,在室温下搅拌2h,将所得产物过滤,用水和乙醇洗涤,然后80℃真空干燥24h,将生成的Cu纳米颗粒用CuCl2水溶液除去,得到层状结构的无定型SiO2。
上述过程可以通过如下化学反应方程式表示:
CaSi2+CuCl2→CaCl2+2Si+Cu;
2Si+4H2O→2SiO2+4H2。
情形2,反应介质为乙醇溶液。
将0.2g CaSi2与40mL 0.1mol*L-1SnCl2乙醇溶液混合,在60℃下搅拌反应10h,将所得产物过滤,用乙醇洗涤,然后80℃真空干燥24h,将生成的Sn纳米颗粒用HCl乙醇溶液除去,得到层状结构的无定型SiOx。
上述过程可以通过如下化学反应方程式表示:
CaSi2+SnCl2→2Si+CaCl2+Sn;
Si+CH3CH2OH→SiOx+reduzate,式中reduzate表示还原沉积物;
CaSi2+SnCl2→2Si+CaCl2+Sn;
Si+CH3CH2OH→SiOx+reduzate。
情形3,反应介质为熔盐。
将1g CaSi2/SnCl2(摩尔比1:1.5)与10g LiCl/KCl(摩尔比59:41)混合,在充满Ar气的手套箱中研磨均匀,得到的粉末置于陶瓷坩埚中在Ar气保护下400℃烧结5h。所得产物用乙醇洗涤,然后80℃真空干燥24h。生成的Sn纳米颗粒用HCl乙醇溶液除去,得到层状结构的无定型Si。
上述过程可以通过如下化学反应方程式表示:
CaSi2+SnCl2→2Si+CaCl2+Sn。
步骤7,采用石墨烯量子点对层状硅内核进行修饰。
将步骤6制备的无定型层状硅内核置于干净的石英舟中,放入滑轨炉加热区域,通入20mL/min H2,启动加热程序,以10℃/min的加热速率缓慢升温至900℃。持续通入20mL/min H2和5mL/min CH4并保持15min后,将炉箱滑出样品区域,同时关闭碳源,最后通入150mL/min Ar气冷却,得到石墨烯量子点修饰的无定型层状硅内核。
步骤8,制备碳包覆层。
取0.2g步骤7中制备的无定型层状硅-石墨烯量子点复合材料和0.4g聚丙烯腈分散在10mL二甲基甲酰胺中,通过超声处理和搅拌使其分散均匀,然后蒸干二甲基甲酰胺,将固体转移到高温炉中,在N2保护下升温至900℃,并保持2h。自然冷却降温后将产物取出,聚丙烯腈裂解后在无定型层状硅-石墨烯量子点复合材料表面形成碳包覆层,得到最终的无定型层状硅-石墨烯量子点-碳复合材料。
需要说明的是,上述两个应用实例用于进行举例,不能以此对本申请的实施例的技术方案进行限定。
实施例2
本申请实施例2提供的制备电极材料的方法中,在根据步骤401获得层状硅内核后,在层状硅内核的外表面修饰石墨烯量子点,图2f为表面修饰石墨烯量子点的层状硅内核的示意图。在层状硅内核表面形成石墨烯量子点的方式可以为在层状硅内核表面原位生长石墨烯量子点,如采用CVD工艺生长石墨烯量子点。除此之外,还可以将已制备的石墨烯量子点迁移至层状硅内核的外表面。
在将层状硅内核作为电池负极材料时,层状硅内核的大量层间空隙能够缓减负极在嵌锂(或电池正极释放的其他离子)状态下的膨胀压力,减小充放电过程中的电池负极材料体积的变化,有效避免电池负极材料的粉化,提高电池负极材料的使用寿命。在层状硅内核的外表面形成石墨烯量子点,可以提高层状硅内核的导电性能,而且石墨烯量子点的柔韧性也能够对层状硅内核的膨胀起到良好的缓冲作用。
作为一种可选的方式,在层状硅内核的外表面修饰石墨烯量子点之后,在层状硅内核的外表面制备包覆层,形成的结构如图2g所示。制备包覆层的实现方式在实施例1中已有介绍,在此不再重复。层状硅内核的外表面的包覆层可以固化层状硅内核,避免层状硅内核与电解液直接接触,减少副反应,防止长期循环过程中硅的粉化,进一步提高循环性能。另外,在采用碳包覆层包覆层状硅内核时,还可以提供稳定的石墨化的界面,提供更多的锂离子脱嵌的通道,降低界面电化学反应阻抗,减少负极成膜添加剂的用量,提升功率性能。
实施例3
参照图2h,本申请实施例3提供的制备电极材料的方法中,在根据步骤401获得层状硅内核后,在层状硅内核的外表面制备包覆层,形成实现方式在步骤403中已有详细描述,在此不再重复。
上述技术方案中,在将层状硅内核作为电池负极材料时,层状硅内核的大量层间空隙能够缓减负极在嵌锂(或电池正极释放的其他离子)状态下的膨胀压力,减小充放电过程中的电池负极材料体积的变化,有效避免电池负极材料的粉化,提高电池负极材料的使用寿命。进一步地,还在层状硅内核的外表面制备包覆层,可以固化层状硅内核,避免层状
硅内核与电解液直接接触,减少副反应,防止长期循环过程中硅的粉化,进一步提高循环性能。另外,在采用碳包覆层包覆层状硅内核时,还可以提供稳定的石墨化的界面,提供更多的锂离子脱嵌的通道,降低界面电化学反应阻抗,减少负极成膜添加剂的用量,提升功率性能。
实施例4
本申请实施例4提供一种电极材料,该电极材料根据实施例1、实施例2以及实施例3中任一实施例提供的方法制备,使得该电极材料在被用作电池负极时,能够利用层状硅内核的层间空隙有效抑制负极材料在嵌锂时的膨胀压力,减小充放电过程中的电池负极材料体积的变化,提高电池负极材料的使用寿命。
不仅如此,在根据实施例1的方法制备的电极材料中,在层状硅内核的层间空隙中填充石墨烯量子点,利用石墨烯量子点对硅基材料的层间进行支撑,提高层状硅内核的强度,防止层状硅内核在反复膨胀收缩后发生结构坍塌。再者,石墨烯量子点具有优良的导电性也,有助于电子传输,能够提高电极材料的导电性能。
在根据实施例2的方法制备的电极材料中,在层状硅内核的外表面形成石墨烯量子点,可以提高层状硅内核的导电性能,而且石墨烯量子点的柔韧性也能够对层状硅内核的膨胀起到良好的缓冲作用。
在根据实施例3的方法制备的电极材料中,在层状硅内核的外表面制备包覆层,可以固化层状硅内核,避免层状硅内核与电解液直接接触,减少副反应,防止长期循环过程中硅的粉化,进一步提高循环性能。另外,在采用碳包覆层包覆层状硅内核时,还可以提供稳定的石墨化的界面,提供更多的锂离子脱嵌的通道,降低界面电化学反应阻抗,减少负极成膜添加剂的用量,提升功率性能。
实施例5
图2b所示为本申请实施例5提供的一种电极材料,包括层状硅内核10以及石墨烯量子点20。参照图2a,层状硅内核10包括至少两层硅基材料,至少两层硅基材料的相邻两层之间具有层间空隙,该硅基材料包括硅或硅的氧化物中的至少一种。需要说明的是,本申请实施例技术方案中,虽然层状硅内核的相邻两层硅基材料之间具有层间空隙,但相邻两层之间也可以有一部分相连,进而可以提供稳固的层状结构。石墨烯量子点20位于层状硅内核10的层间空隙。
上述技术方案中,在该电极材料在被用作电池负极时,能够利用层状硅内核的层间空隙有效抑制负极材料在嵌锂时的膨胀压力,减小充放电过程中的电池负极材料体积的变化,提高电池负极材料的使用寿命。不仅如此,还在层状硅内核的层间空隙中填充石墨烯量子点,利用石墨烯量子点对硅内核的层间进行支撑,提高层状硅内核的强度,防止层状硅内核在反复膨胀收缩后发生结构坍塌。再者,石墨烯量子点具有优良的导电性也,有助于电子传输,能够提高电极材料的导电性能。
作为一种可选的方式,参照图2c,石墨烯量子点20还位于层状硅内核10的外表面,进一步提高层状层状硅内核10的导电性能,而且位于层状硅内核10表面的石墨烯量子点20的柔韧性也能够对层状硅内核10的膨胀起到良好的缓冲作用。
作为一种可选的方式,参见图2d,电极材料还包括包覆层30,包覆层30包覆在层状硅内核10的外表面。包覆层30可以为碳包覆层、有机化合物包覆层、无机化合物包覆层等,其实现方式在实施例1中已有介绍。包覆层30可以固化层状硅内核10,避免层状硅
内核10料与电解液直接接触,减少副反应,防止长期循环过程中硅的粉化,进一步提高循环性能。另外,在包覆层为碳包覆层时,还可以提供稳定的石墨化的界面,提供更多的锂离子脱嵌的通道,降低界面电化学反应阻抗,减少负极成膜添加剂的用量,提升功率性能。
作为一种可选的方式,参见图2e,石墨烯量子点20还位于层状硅内核10的外表面,且电极材料还包括包覆层30,包覆层30包覆在层状硅内核10的外表面。层状硅内核10表面的石墨烯量子点20的柔韧性也能够对层状硅内核10的膨胀起到良好的缓冲作用,包覆层30可以固化层状硅内核10,避免层状硅内核10料与电解液直接接触,减少副反应,防止长期循环过程中硅的粉化,进一步提高循环性能。另外,包覆层30为碳包覆层时,还可以提供稳定的石墨化的界面,提供更多的锂离子脱嵌的通道,降低界面电化学反应阻抗,减少负极成膜添加剂的用量,提升功率性能。
实施例6
参照图2f,本申请实施例6提供一种电极材料,包括:层状硅内核10以及石墨烯量子点20。其中,层状硅内核10的结构在实施例5中已有介绍,石墨烯量子点20位于层状硅内核10的外表面。
在将电极料作为电池负极时,层状硅内核的大量层间空隙能够缓减负极在嵌锂(或电池正极释放的其他离子)状态下的膨胀压力,减小充放电过程中的电池负极体积的变化,有效避免电池负极的粉化,提高电池负极的使用寿命。层状硅内核10的的外表面的石墨烯量子点20可以提高层状硅内核10的导电性能,而且石墨烯量子点20的柔韧性也能够对层状硅内核10的膨胀起到良好的缓冲作用。
作为一种可选的方式,参照图2g,电极材料还包括包覆层30,包覆在层状硅内核10的外表面,石墨烯量子点20也被包覆层30包覆,包覆层30可以为碳包覆层、有机化合物包覆层、无机化合物包覆层等,其实现方式在实施例1中已有介绍。层状硅内核10的外表面的包覆层30可以固化层状硅内核10,避免层状硅内核10与电解液直接接触,减少副反应,防止长期循环过程中硅的粉化,进一步提高循环性能。另外,包覆层30为碳包覆层时,还可以提供稳定的石墨化的界面,提供更多的锂离子脱嵌的通道,降低界面电化学反应阻抗,减少负极成膜添加剂的用量,提升功率性能。
实施例7
参照图2h,本申请实施例7提供一种电极材料,包括:层状硅内核10以及包覆层30。其中,层状硅内核10的结构在实施例5中已有介绍,包覆层30包覆在层状硅内核10的外表面。上述技术方案中,在将层状硅内核10作为电池负极材料时,层状硅内核10的大量层间空隙能够缓减负极在嵌锂(或电池正极释放的其他离子)状态下的膨胀压力,减小充放电过程中的电池负极材料体积的变化,有效避免电池负极材料的粉化,提高电池负极材料的使用寿命。进一步地,还在层状硅内核10的外表面制备包覆层30,可以固化层状硅内核10,避免层状硅内核10与电解液直接接触,减少副反应,防止长期循环过程中硅的粉化,进一步提高循环性能。另外,在包覆层30为碳包覆层时,还可以提供稳定的石墨化的界面,提供更多的锂离子脱嵌的通道,降低界面电化学反应阻抗,减少负极成膜添加剂的用量,提升功率性能。
可选的,在上述所有可能的实施例中,层状硅内核的层间空隙或表面组装的石墨烯量子点在平面方向上的尺寸可以在1~60nm范围内,例如,石墨烯量子点的平面尺寸为1nm、
2nm、5nm、10nm、20nm、30nm、40nm、50nm、60nm。上述平面尺寸的石墨烯量子点兼具对层状硅内核的支撑作用以及具有优异的导电性能,而且由于石墨烯量子点的尺寸较小,使得层状硅内核的层间尚剩余大量的空隙空间,能够有效抑制负极材料在嵌锂时的膨胀压力,减小充放电过程中的电池负极材料体积的变化。
可选的,在上述所有可能的实施例中,石墨烯量子点的层数可以在1~3层范围内,例如单层石墨烯量子点、双层石墨烯量子点、三层石墨烯量子点。上述层数的石墨烯量子点组装在层状硅内核的层间空隙后,兼具对层状硅内核的支撑作用以及具有优异的导电性能,而且层状硅内核的层间可以剩余大量的空隙空间,能够有效抑制负极材料在嵌锂时的膨胀压力,减小充放电过程中的电池负极材料体积的变化。
需要说明的是,本发明说明书附图中的图2a至图2h为电极材料的截面示意图,本领域普通技术人员可以知道,电极材料应当具有一定的三维尺寸,而不是二维的,例如,电极材料可以呈现为球状、椭球状、柱状,或其他规则形状,抑或其他的非规则形状,本申请实施例不予限定。在图2c、2e、2f以及2g所示的结构中,石墨烯量子点20不限于分布在截面示意图所呈现的位置,而是可以在具有三维尺寸的层状硅内核10的外表面均匀分布或非均匀分布。
实施例8
图3所示为本申请实施例8提供的一种电池,包括:壳体51、正极52、负极53以及电解液54。
其中,正极52、负极53以及电解液54容置与壳体51内。在电池工作时,正极52释放阳离子,如锂离子,正极释放的锂离子通过电解液移动至负极53,嵌入负极材料。负极53根据实施例4至实施例6中任一提供的电极材料制备。由于负极具有层状硅内核(或,层状硅内核),层状硅内核的层间空隙有效抑制负极材料在嵌锂时的膨胀压力,减小充放电过程中的电池负极材料体积的变化,提高电池负极材料的使用寿命。不仅如此,还在层状硅内核的层间空隙中填充石墨烯量子点,利用石墨烯量子点对硅基材料的层间进行支撑,提高层状硅内核的强度,防止层状硅内核在反复膨胀收缩后发生结构坍塌。再者,石墨烯量子点具有优良的导电性也,有助于电子传输,能够提高电极材料的导电性能。
另外,本领域技术人员还可以知道,实施例8提供的电池还可以包括隔膜、引出电极等结构,本申请实施例不一一详述。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。
Claims (16)
- 一种电极材料,其特征在于,包括:层状硅内核,所述层状硅内核包括至少两层硅基材料,所述至少两层硅基材料的相邻两层之间具有层间空隙,所述硅基材料包括硅或硅的氧化物中的至少一种;石墨烯量子点,位于所述至少两层硅基材料的层间空隙。
- 根据权利要求1所述的电极材料,其特征在于,所述石墨烯量子点还位于所述层状硅内核的外表面。
- 根据权利要求1或2所述的电极材料,其特征在于,还包括:包覆层,包覆在所述层状硅内核的外表面。
- 根据权利要求3所述的电极材料,其特征在于,所述包覆层的材料为无定形碳。
- 根据权利要求1至4中任一项所述的电极材料,其特征在于,所述至少两层硅基材料中相邻两层的至少一部分相连。
- 根据权利要求1至5中任一项所述的电极材料,其特征在于,所述石墨烯量子点在平面方向上的尺寸在1~60nm范围内。
- 根据权利要求1至6中任一项所述的电极材料,其特征在于,所述石墨烯量子点中石墨烯的层数在1~3层范围内。
- 一种电极材料,其特征在于,包括:层状硅内核,所述层状硅内核包括至少两层硅基材料,所述至少两层硅基材料的相邻两层之间具有层间空隙,所述硅基材料包括硅或硅的氧化物中的至少一种;石墨烯量子点,位于所述层状硅内核的外表面。
- 根据权利要求8所述的电极材料,其特征在于,还包括:包覆层,包覆在所述层状硅内核的外表面,所述石墨烯量子点被所述包覆层包覆。
- 一种制备电极材料的方法,其特征在于,包括:将金属硅化物与金属脱除剂进行反应,生成脱除金属的层状硅内核,所述层状硅内核包括至少两层硅基材料,所述至少两层硅基材料的相邻两层之间具有层间空隙,所述硅基材料包括硅或硅的氧化物中的至少一种;在所述层状硅内核的层间空隙中组装石墨烯量子点。
- 根据权利要求10所述的方法,其特征在于,还包括:在所述层状硅内核的外表面组装石墨烯量子点。
- 根据权利要求10或11所述的方法,其特征在于,在所述层状硅内核的层间空隙中组装石墨烯量子点之后,还包括:在组装有所述石墨烯量子点的层状硅内核的外表面制备碳包覆层。
- 根据权利要求10至12中任一项所述的方法,其特征在于,在所述层状硅内核的层间空隙中组装石墨烯量子点,包括:采用化学气相沉积CVD工艺在所述层状硅内核的层间空隙中生长石墨烯量子点;或者将石墨烯量子点迁移至所述层状硅内核的层间空隙。
- 一种制备电极材料的方法,其特征在于,包括:将金属硅化物与金属脱除剂进行反应,生成脱除金属的层状硅内核,所述层状硅内核 包括至少两层硅基材料,所述至少两层硅基材料的相邻两层之间具有层间空隙,所述硅基材料包括硅或硅的氧化物中的至少一种;在所述层状硅内核的外表面组装石墨烯量子点。
- 根据权利要求14所述的方法,其特征在于,在所述层状硅内核的外表面组装石墨烯量子点之后,还包括:在组装有所述石墨烯量子点的层状硅内核的外表面制备碳包覆层。
- 一种电池,包括:正极、电解液以及负极,其特征在于,所述负极根据权利要求1至9中任一项所述的电极材料制备。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP17903184.4A EP3595062B1 (en) | 2017-03-31 | 2017-06-27 | Method for preparing electrode material, electrode material and battery |
US16/586,478 US11283067B2 (en) | 2017-03-31 | 2019-09-27 | Method for preparing electrode material, electrode material, and battery |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710209622.9A CN108666566B (zh) | 2017-03-31 | 2017-03-31 | 一种制备电极材料的方法、电极材料及电池 |
CN201710209622.9 | 2017-03-31 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/586,478 Continuation US11283067B2 (en) | 2017-03-31 | 2019-09-27 | Method for preparing electrode material, electrode material, and battery |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018176663A1 true WO2018176663A1 (zh) | 2018-10-04 |
Family
ID=63674109
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/090377 WO2018176663A1 (zh) | 2017-03-31 | 2017-06-27 | 一种制备电极材料的方法、电极材料及电池 |
Country Status (4)
Country | Link |
---|---|
US (1) | US11283067B2 (zh) |
EP (1) | EP3595062B1 (zh) |
CN (1) | CN108666566B (zh) |
WO (1) | WO2018176663A1 (zh) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109524640B (zh) * | 2018-10-19 | 2021-04-20 | 西安科技大学 | 一种柔性自支撑锂离子电池负极材料及其制备方法 |
CN110534710B (zh) * | 2019-07-15 | 2022-07-05 | 同济大学 | 硅/碳复合材料及其制备方法和应用 |
TWI705599B (zh) * | 2020-02-18 | 2020-09-21 | 財團法人國家同步輻射研究中心 | 可撓電極及其製造方法 |
CN111162266B (zh) * | 2020-03-02 | 2021-07-20 | 山东大学 | 一种碳包覆二维硅及其制备方法与应用 |
WO2021247498A1 (en) | 2020-06-01 | 2021-12-09 | Pmo Llc | Bone deformity treatment system, device, and related methods |
CN111686810A (zh) * | 2020-06-28 | 2020-09-22 | 西北师范大学 | 一种层层自组装GQDs/3D-G/PANI复合薄膜的制备方法 |
CN112194138B (zh) * | 2020-09-30 | 2022-05-20 | 哈尔滨工业大学 | 一种层状SiOx材料及其制备方法和应用 |
CN114180576B (zh) * | 2021-12-09 | 2023-03-24 | 海宁硅泰科技有限公司 | 石墨包覆含金属颗粒硅纳米片快充负极材料及方法和电池 |
CN114927662B (zh) * | 2022-05-26 | 2024-06-11 | 哈尔滨工业大学 | 一种氧含量可控的片层状SiOx材料的制备方法及其应用 |
CN114927678A (zh) * | 2022-06-20 | 2022-08-19 | 南昌大学 | 一种硅负极材料的表面改性方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104253266A (zh) * | 2013-06-26 | 2014-12-31 | 黄炳照 | 一种多层膜硅/石墨烯复合材料阳极结构 |
CN104528737A (zh) * | 2014-12-19 | 2015-04-22 | 浙江大学 | 一种纳米级层状二氧化硅/石墨烯复合材料的制备方法及其产品 |
WO2016031126A1 (ja) * | 2014-08-27 | 2016-03-03 | 株式会社豊田自動織機 | 炭素被覆シリコン材料の製造方法 |
JP2016110897A (ja) * | 2014-12-09 | 2016-06-20 | 株式会社豊田自動織機 | Si−N結合を有する層状シリコン材料 |
CN105960726A (zh) * | 2014-01-31 | 2016-09-21 | 株式会社丰田自动织机 | 非水系二次电池用负极和非水系二次电池、负极活性物质及其制造方法、具备纳米硅、碳层和阳离子性聚合物层的复合体、由纳米硅和碳层构成的复合体的制造方法 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9017867B2 (en) * | 2009-08-10 | 2015-04-28 | Battelle Memorial Institute | Self assembled multi-layer nanocomposite of graphene and metal oxide materials |
CN102157731B (zh) | 2011-03-18 | 2015-03-04 | 上海交通大学 | 一种锂离子电池硅碳复合负极材料及其制备方法 |
KR101396521B1 (ko) | 2011-08-05 | 2014-05-22 | 강원대학교산학협력단 | 리튬 이차 전지용 음극 활물질, 이의 제조 방법, 그리고 이를 포함하는 음극 및 리튬 이차 전지 |
KR101708360B1 (ko) | 2011-10-05 | 2017-02-21 | 삼성에스디아이 주식회사 | 음극 활물질 및 이를 채용한 리튬 전지 |
JP5798678B2 (ja) | 2012-03-22 | 2015-10-21 | 中央電気工業株式会社 | ケイ素黒鉛複合粒子およびその製造方法ならびに電極およびその電極を備える非水電解質二次電池 |
KR20140022682A (ko) | 2012-08-14 | 2014-02-25 | 삼성에스디아이 주식회사 | 리튬 이차 전지용 음극 활물질, 및 이를 포함하는 음극 및 리튬 이차 전지 |
CN104979536B (zh) | 2014-04-10 | 2018-05-29 | 宁德新能源科技有限公司 | 锂离子电池及其阳极片、阳极活性材料的制备方法 |
CN105336923B (zh) * | 2015-08-26 | 2018-05-22 | 深圳市贝特瑞新能源材料股份有限公司 | 一种负极活性材料及其制备方法、锂离子电池 |
CN106410156B (zh) * | 2016-11-07 | 2018-10-19 | 珠海格力电器股份有限公司 | 一种硅碳复合材料、其制备方法及其应用 |
CN106784700B (zh) | 2016-12-27 | 2020-02-18 | 电子科技大学 | 一种多层硅/石墨烯复合锂电池负极材料及其制备方法 |
US11574177B2 (en) * | 2019-09-13 | 2023-02-07 | University Of Central Florida Research Foundation, Inc. | Photonic synapse based on graphene-perovskite quantum dot for neuromorphic computing |
-
2017
- 2017-03-31 CN CN201710209622.9A patent/CN108666566B/zh active Active
- 2017-06-27 EP EP17903184.4A patent/EP3595062B1/en active Active
- 2017-06-27 WO PCT/CN2017/090377 patent/WO2018176663A1/zh unknown
-
2019
- 2019-09-27 US US16/586,478 patent/US11283067B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104253266A (zh) * | 2013-06-26 | 2014-12-31 | 黄炳照 | 一种多层膜硅/石墨烯复合材料阳极结构 |
CN105960726A (zh) * | 2014-01-31 | 2016-09-21 | 株式会社丰田自动织机 | 非水系二次电池用负极和非水系二次电池、负极活性物质及其制造方法、具备纳米硅、碳层和阳离子性聚合物层的复合体、由纳米硅和碳层构成的复合体的制造方法 |
WO2016031126A1 (ja) * | 2014-08-27 | 2016-03-03 | 株式会社豊田自動織機 | 炭素被覆シリコン材料の製造方法 |
JP2016110897A (ja) * | 2014-12-09 | 2016-06-20 | 株式会社豊田自動織機 | Si−N結合を有する層状シリコン材料 |
CN104528737A (zh) * | 2014-12-19 | 2015-04-22 | 浙江大学 | 一种纳米级层状二氧化硅/石墨烯复合材料的制备方法及其产品 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3595062A4 |
Also Published As
Publication number | Publication date |
---|---|
CN108666566A (zh) | 2018-10-16 |
CN108666566B (zh) | 2021-08-31 |
US20200028163A1 (en) | 2020-01-23 |
US11283067B2 (en) | 2022-03-22 |
EP3595062B1 (en) | 2023-04-05 |
EP3595062A4 (en) | 2020-04-15 |
EP3595062A1 (en) | 2020-01-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018176663A1 (zh) | 一种制备电极材料的方法、电极材料及电池 | |
US11621409B2 (en) | Curved two-dimensional nanocomposites for battery electrodes | |
US20230343939A1 (en) | Multi-shell structures and fabrication methods for battery active materials with expansion properties | |
Zhou et al. | A quasi‐solid‐state flexible fiber‐shaped Li–CO2 battery with low overpotential and high energy efficiency | |
Xu et al. | 2020 roadmap on two-dimensional materials for energy storage and conversion | |
US20240282934A1 (en) | Electrodes, lithium-ion batteries, and methods of making and using same | |
KR102689410B1 (ko) | 금속 및 금속-이온 배터리들을 위한 안정적인 리튬 불화물계 캐소드들 | |
Jeong et al. | Microclusters of kinked silicon nanowires synthesized by a recyclable iodide process for high‐performance lithium‐ion battery anodes | |
Li et al. | Si‐, Ge‐, Sn‐based anode materials for lithium‐ion batteries: from structure design to electrochemical performance | |
Zhu et al. | Novel non‐carbon sulfur hosts based on strong chemisorption for lithium–sulfur batteries | |
Hu et al. | High performance germanium-based anode materials | |
Terranova et al. | Si/C hybrid nanostructures for Li-ion anodes: An overview | |
Li et al. | Dual or multi carbonaceous coating strategies for next-generation batteries | |
Man et al. | Cube-like Sb 2 Se 3/C constructed by ultrathin nanosheets as anode material for lithium and sodium-ion batteries | |
KR101833401B1 (ko) | 실리콘옥시카바이드 복합체, 이의 제조방법 및 이를 포함하는 나트륨 이차전지용 음극소재 | |
TWI690112B (zh) | 複合電極材料及其製作方法、包含該複合電極材料之複合電極、以及包含該複合電極之鋰電池 | |
US20200381715A1 (en) | Composite material and preparation method thereof | |
Sun et al. | High-quality epitaxial N doped graphene on SiC with tunable interfacial interactions via electron/ion bridges for stable lithium-ion storage | |
WO2019161648A1 (zh) | 一种复合材料及其制备方法 | |
Ryu et al. | Nanoscale anodes for rechargeable batteries: Fundamentals and design principles | |
Karbhal et al. | Electrospun Silicon-Based Nanocomposite Anodes for Lithium-Ion Batteries |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17903184 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2017903184 Country of ref document: EP Effective date: 20191008 |