CN104253266A - 一种多层膜硅/石墨烯复合材料阳极结构 - Google Patents

一种多层膜硅/石墨烯复合材料阳极结构 Download PDF

Info

Publication number
CN104253266A
CN104253266A CN201410298530.9A CN201410298530A CN104253266A CN 104253266 A CN104253266 A CN 104253266A CN 201410298530 A CN201410298530 A CN 201410298530A CN 104253266 A CN104253266 A CN 104253266A
Authority
CN
China
Prior art keywords
graphene
silicon
composite material
multilayer film
anode structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410298530.9A
Other languages
English (en)
Other versions
CN104253266B (zh
Inventor
森达宏
陈致融
洪太峰
穆罕默德·沙德
刘如熹
胡淑芬
林弘正
林逸樵
宋健民
黄炳照
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CN104253266A publication Critical patent/CN104253266A/zh
Application granted granted Critical
Publication of CN104253266B publication Critical patent/CN104253266B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0421Methods of deposition of the material involving vapour deposition
    • H01M4/0423Physical vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

本发明提供一种具有高电化学特性的硅/石墨烯多层膜复合材料阳极结构,藉石墨烯高导电性的优点改善硅材料的电化学特性,并将该石墨烯及该硅薄膜的厚度皆控制于100nm以下,以降低充放电过程中各薄膜的体积变化。首先于铜箔电流收集器表面沉积一石墨烯薄膜以形成该结构的底表面,可避免该电流收集器与该硅薄膜的导电度差异过大而造成电化学表现不佳。为防止该硅薄膜因接触空气而氧化成不具活性的二氧化硅,故最后亦以一石墨烯薄膜形成该结构的顶表面。

Description

一种多层膜硅/石墨烯复合材料阳极结构
技术领域
本发明揭示一种具有高电化学特性的多层膜硅/石墨烯复合材料阳极结构。
背景技术
于2012年Ji等人(Nano Energy 2012, 1, 164)将石墨烯(graphene)溶液透过抽气过滤形成薄膜,并将其转印至铜箔电流收集器上,另于其表面藉等离子体增强化学气相沉积(plasma-enhanced chemical vapor deposition; PECVD)形成硅薄膜,重复数次该制程即可成功制备硅/石墨烯多层膜复合材料做为电池的阳极,其中五层的硅/石墨烯结构样品其电化学特性最佳,然而以50 mA/g电流密度下进行充放电测试,该五层的硅/石墨烯结构样品于第30循环的放电电容量衰退至第1循环的59.5%。
同年Zhang等人(Electrochem. Commun. 2012, 23, 17)于铜箔电流收集器上分别藉电泳沉积(electrophoretic deposition; EPD)与射频磁控溅镀(RF magnetron sputter),依序制备碳/石墨烯多层膜复合材料做为电池的阳极,于840 mA/g电流密度下进行充放电测试,其第一循环放电电容量可达3150 mAh/g,但该研究所计算的克电容量并未考虑碳材重量,故其实际电容量远较此值为低。更重要是,该碳/石墨烯多层膜复合材料充放电第1循环的库伦效率(coulombic efficiency)仅71.9%,充放电第2循环的放电电容量即衰退至约2000 mAh/g,故可逆电容量(reversible capacity)仅为63.5%。
而2012年Kim等人亦于美国专利(US 8168328)提出碳/硅多层膜复合材料阳极结构,然该碳/硅多层膜复合材料阳极结构必须利用退火(annealing)方式于其碳/硅多层膜间形成一所谓的稳定界面硅化(silicide)层。
发明内容
本发明提出以电子束蒸镀技术制备具有高电化学特性的硅/石墨烯多层膜复合材料阳极结构,藉石墨烯高导电性的优点改善硅薄膜的电化学特性,并将石墨烯薄膜及硅薄膜厚度皆控制于100 nm以下以降低于充放电过程中阳极材料的体积变化。
首先于铜箔电流收集器表面沉积一石墨烯薄膜以形成该结构的底表面,可避免该电流收集器与该硅薄膜的导电度差异过大而造成电化学表现不佳,为防止该硅薄膜因接触空气而氧化成不具活性的二氧化硅,故最后以一石墨烯薄膜形成该结构的顶表面。
该阳极材料由一硅上层薄膜与一石墨烯下层薄膜构成一单元层,具体的,由一非晶相结构的硅上层薄膜与一石墨烯下层薄膜堆栈形成一硅/石墨烯单元层,且至少具有一该硅/石墨烯单元层,且于该非晶相结构最上层的硅薄膜上沉积一石墨烯薄膜,用于避免硅薄膜氧化。重复此单元层达所需的层数后最终再沉积一石墨烯薄膜做为顶表面,即完成制备硅/石墨烯多层膜复合阳极材料,并以该石墨烯薄膜做为多层膜复合材料阳极结构的顶表面。其中以重复七层单元层的硅/石墨烯多层膜复合阳极材料(7L)的电化学表现较佳,并且,所述多层膜复合材料阳极结构以小于100 mAh/g的一电流密度进行测试,该多层膜复合材料阳极结构的一电容量大于1000 mAh/g,其第1循环的库伦效率可达80%以上,而第2循环不可逆电容量可降低至20%以下,此外经过30个充放电循环后,其放电电容量仍可维持于第1循环65%以上。
截至目前为止并无任何研究揭示具有高电容量且不含稳定界面硅化(silicide)层的硅/石墨烯多层膜复合材料阳极结构,而可达成上述电化学性能。
本发明提供另一种制备高电化学特性的硅/石墨烯多层膜复合材料阳极结构的方法,该方法采直接连续式镀膜且不含稳定界面硅化(silicide)层,更不须经繁杂的退火(annealing)步骤,该制备技术乃电子束蒸镀,提供一电子束蒸镀腔体,其腔体的压力维持在4~10 Pa;将基材的温度控制于200oC;电子束轰击石墨靶材形成第一层石墨烯薄膜,设定该石墨烯薄膜的镀率为1000 nm/h;于该第一层石墨烯薄膜表面,亦藉电子束轰击硅靶材沉积一硅薄膜,设定该硅薄膜的镀率为500 nm/h;于该硅薄膜表面再接续沉积第二层石墨烯薄膜,其中,在150~250℃下,沉积一石墨烯膜;以及在150~250℃下,沉积一硅膜于该石墨烯膜上。
附图说明
图1为本发明的实施例硅/石墨烯多层膜复合材料阳极结构的结构图,其中一硅层及一石墨烯层构成一单元层;
图2为本发明的实施例以电子束蒸镀技术制备硅/石墨烯多层膜复合材料阳极结构其X光粉末绕射图谱,由上而下,9L、7L、5L、3L、1L、及Cu列分别代表9层单元层、7层单元层、5层单元层、3层单元层、1层单元层及铜箔绕射图谱;
图3为本发明的实施例以电子束蒸镀技术制备硅/石墨烯多层膜复合材料阳极结构穿透式电子显微镜影像;
图4为本发明的实施例以电子束蒸镀技术制备7单元层硅/石墨烯多层膜复合材料阳极结构的拉曼图谱;
图5为本发明的实施例与比较例的1单元层硅/石墨烯多层膜复合材料阳极结构的(a)充放电测试图与(b)循环寿命图;
图6为本发明的实施例与比较例的3单元层硅/石墨烯多层膜复合材料阳极结构的(a)充放电测试图与(b)循环寿命图;
图7为本发明的实施例与比较例的5单元层硅/石墨烯多层膜复合材料阳极结构的(a)充放电测试图与(b)循环寿命图;
图8为本发明的实施例与比较例的7单元层硅/石墨烯多层膜复合材料阳极结构的(a)充放电测试图与(b)循环寿命图;
图9为本发明的实施例与比较例的9单元层硅/石墨烯多层膜复合材料阳极结构的(a)充放电测试图与(b)循环寿命图;
图10为本发明的实施例与比较例的硅/石墨烯多层膜复合材料阳极结构的层数与第一循环放电电容量关系图;
图11为本发明的实施例与比较例的硅/石墨烯多层膜复合材料阳极结构的层数与第一循环库伦效率关系图;
图12为本发明的实施例与比较例的硅/石墨烯多层膜复合材料阳极结构的层数与第二循环可逆电容量关系图。
【符号说明】
11 硅
12 石墨烯
13 铜箔。
具体实施方式
以电子束蒸镀技术,于铜箔电流收集器表面连续沉积数层硅/石墨烯复合阳极材料,而沉积腔体的压力维持于4~10 Pa,基材的温度则控制于150~250℃,且石墨烯薄膜与硅薄膜其镀率则分别固定约为1000 nm/h与500 nm/h。于制备步骤中,铜箔电流收集器表面首先沉积石墨烯薄膜,接续以硅、石墨烯、硅、石墨烯的顺序交互沉积,且最后一层的薄膜皆固定为石墨烯薄膜。而此材料的电化学测试乃将其与锂金属组装为钮扣电池(coin cell),使用六氟磷酸锂(lithium hexafluorophosphate; LiPF6)溶于碳酸乙烯酯(ethylene carbonate; EC)与二甲基碳酸酯(dimethyl carbonate; DMC)做为电解液,并于100 mA/g电流密度下进行充放电测试。
参考图1所示为本发明的实施例与比较例以电子束蒸镀制备的硅/石墨烯多层膜复合材料阳极结构其结构图,制程皆固定以沉积石墨烯薄膜做为起始与结束,可降低硅薄膜及铜箔间导电度差异与防止硅薄膜接触空气而氧化。
参考图3所示为本发明的硅/石墨烯多层膜复合材料阳极结构其穿透式电子显微镜影像,薄膜材料厚度皆控制于100 nm以下,避免于充放电过程中体积剧烈变化。
参考图4所示为本发明所制备的硅/石墨烯多层膜复合材料阳极结构其拉曼图谱,可于505 cm-1发现硅的拉曼讯号,此外亦可分别于1339cm-1、1569cm-1与2697cm-1分别发现石墨烯其D band、G band与2D band的拉曼讯号, D band的存在指出石墨烯结构中具有少部分缺陷,而有助于锂离子进行嵌入与嵌出。
参考图55所示为本发明的1单元层硅/石墨烯多层膜复合材料阳极结构(a)充放电测试图与(b)循环寿命图,其第一循环放电电容量与库伦效率分别为552 mAh/g与53.8%,而其第二循环可逆电容量则为48.3%。
参考图6所示为本发明的3单元层硅/石墨烯多层膜复合材料阳极结构(a)充放电测试图与(b)循环寿命图,其第一循环放电电容量与库伦效率分别为1090 mAh/g与76.3%,而其第二循环可逆电容量则为73.3%。
参考图7所示为本发明的5单元层硅/石墨烯多层膜复合材料阳极结构(a)充放电测试图与(b)循环寿命图,其第一循环放电电容量与库伦效率分别为1110 mAh/g与79.8%,而其第二循环可逆电容量则为77.7%。
参考图8所示为本发明的7单元层硅/石墨烯多层膜复合材料阳极结构(a)充放电测试图与(b)循环寿命图,其第一循环放电电容量与库伦效率分别为1660 mAh/g与82.3%,而其第二循环可逆电容量则为84.3%。
参考图9所示为本发明的9单元层硅/石墨烯多层膜复合材料阳极结构(a)充放电测试图与(b)循环寿命图,其第一循环放电电容量与库伦效率分别为1719 mAh/g与81.0%,而其第二循环可逆电容量则为65.4%。
参考图10所示为本发明的硅/石墨烯多层膜复合材料阳极结构其层数与第一循环放电电容量关系,可得知层数提升至7层时电容量可达饱和。
参考图11所示为本发明的硅/石墨烯多层膜复合材料阳极结构其层数与第一循环库伦效率关系,可得知层数为7层具有最高库伦效率。
参考图12所示为本发明的硅/石墨烯多层膜复合材料阳极结构其层数与第二循环可逆电容量关系,可得知层数为7层具有最高可逆电容量。

Claims (7)

1.一种多层膜复合材料阳极结构,是利用一电子束蒸镀技术来制备,其特征在于,包含:     由一非晶相结构的硅上层薄膜与一石墨烯下层薄膜堆栈形成一硅/石墨烯单元层,且至少具有一该硅/石墨烯单元层,且于该非晶相结构最上层的硅薄膜上沉积一石墨烯薄膜,用于避免硅薄膜氧化。
2.如权利要求1所示的多层膜复合材料阳极结构,其特征在于,所述非晶相结构的硅/石墨烯单元层为7层。
3.如权利要求2所示的多层膜复合材料阳极结构,其特征在于,所述非晶相结构的硅/石墨烯单元层的厚度为100 nm。
4.如权利要求2所示的多层膜复合材料阳极结构,其特征在于,所述多层膜复合材料阳极结构为7层复合结构,并以一石墨烯薄膜做为多层膜复合材料阳极结构的顶表面。
5.如权利要求4所示的多层膜复合材料阳极结构,其特征在于,所述多层膜复合材料阳极结构以小于100 mAh/g的一电流密度进行测试,该多层膜复合材料阳极结构的一电容量大于1000 mAh/g。
6.如权利要求5所示的多层膜复合材料阳极结构,其特征在于,所述多层膜复合材料阳极结构的第1充放电循环的库伦效率大于80%,该多层膜复合材料阳极结构的第2充放电循环不可逆电容量小于20%,且经过30个充放电循环,该硅/石墨烯多层膜复合材料阳极结构的放电电容量大于第1循环的65%。
7.一种电极结构的制备方法,其特征在于,其步骤包含:         提供一电子束蒸镀腔体;     使该腔体的压力维持在4~10 Pa;     在150~250℃下,沉积一石墨烯膜;以及     在150~250℃下,沉积一硅膜于该石墨烯膜上。
CN201410298530.9A 2013-06-26 2014-06-26 一种多层膜硅/石墨烯复合材料阳极结构 Active CN104253266B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW102122827A TWI461555B (zh) 2013-06-26 2013-06-26 一種多層膜矽/石墨烯複合材料陽極結構
TW102122827 2013-06-26

Publications (2)

Publication Number Publication Date
CN104253266A true CN104253266A (zh) 2014-12-31
CN104253266B CN104253266B (zh) 2017-05-03

Family

ID=52115901

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410298530.9A Active CN104253266B (zh) 2013-06-26 2014-06-26 一种多层膜硅/石墨烯复合材料阳极结构

Country Status (3)

Country Link
US (1) US20150004494A1 (zh)
CN (1) CN104253266B (zh)
TW (1) TWI461555B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108075164A (zh) * 2016-11-09 2018-05-25 林逸樵 二次电池及其制作方法
WO2018176663A1 (zh) * 2017-03-31 2018-10-04 华为技术有限公司 一种制备电极材料的方法、电极材料及电池
CN109244377A (zh) * 2017-07-10 2019-01-18 力信(江苏)能源科技有限责任公司 一种锂离子电池负极硅碳复合材料的制备方法
CN110197896A (zh) * 2018-02-26 2019-09-03 华为技术有限公司 一种复合材料及其制备方法
CN110197895A (zh) * 2018-02-26 2019-09-03 华为技术有限公司 一种复合材料及其制备方法
CN111446417A (zh) * 2019-01-16 2020-07-24 通用汽车环球科技运作有限责任公司 夹层结构内的高性能电活性材料

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016142056A1 (de) * 2015-03-06 2016-09-15 Neutrino Deutschland Gmbh Folie aus metall oder einer metalllegierung
CN108807883A (zh) * 2018-05-28 2018-11-13 云南大学 硅碳薄膜负极材料及其制备方法
CN108807840A (zh) * 2018-05-28 2018-11-13 云南大学 热处理工艺制备碳硅负极材料的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102064322A (zh) * 2010-11-25 2011-05-18 天津大学 锂离子电池负极用的硅/石墨烯层状复合材料及其制备方法
CN102214817A (zh) * 2010-04-09 2011-10-12 清华大学 一种碳/硅/碳纳米复合结构负极材料及其制备方法
CN103035889A (zh) * 2011-10-09 2013-04-10 海洋王照明科技股份有限公司 石墨烯/纳米硅复合电极片及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100878718B1 (ko) * 2007-08-28 2009-01-14 한국과학기술연구원 리튬이차전지용 실리콘 박막 음극, 이의 제조방법 및 이를포함하는 리튬이차전지
US20120156424A1 (en) * 2010-12-15 2012-06-21 Academia Sinica Graphene-silicon carbide-graphene nanosheets
US20140170483A1 (en) * 2011-03-16 2014-06-19 The Regents Of The University Of California Method for the preparation of graphene/silicon multilayer structured anodes for lithium ion batteries
US9593413B2 (en) * 2011-05-04 2017-03-14 Uchicago Argonne, Llc Composite materials for battery applications

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102214817A (zh) * 2010-04-09 2011-10-12 清华大学 一种碳/硅/碳纳米复合结构负极材料及其制备方法
CN102064322A (zh) * 2010-11-25 2011-05-18 天津大学 锂离子电池负极用的硅/石墨烯层状复合材料及其制备方法
CN103035889A (zh) * 2011-10-09 2013-04-10 海洋王照明科技股份有限公司 石墨烯/纳米硅复合电极片及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIWEN JI,ET AL.: ""Graphene/Si multilayer structure anodes for advanced half and full lithium-ion cells"", 《NANO ENERGY》 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108075164A (zh) * 2016-11-09 2018-05-25 林逸樵 二次电池及其制作方法
WO2018176663A1 (zh) * 2017-03-31 2018-10-04 华为技术有限公司 一种制备电极材料的方法、电极材料及电池
CN108666566A (zh) * 2017-03-31 2018-10-16 华为技术有限公司 一种制备电极材料的方法、电极材料及电池
CN108666566B (zh) * 2017-03-31 2021-08-31 华为技术有限公司 一种制备电极材料的方法、电极材料及电池
US11283067B2 (en) 2017-03-31 2022-03-22 Huawei Technologies Co., Ltd. Method for preparing electrode material, electrode material, and battery
CN109244377A (zh) * 2017-07-10 2019-01-18 力信(江苏)能源科技有限责任公司 一种锂离子电池负极硅碳复合材料的制备方法
CN110197896A (zh) * 2018-02-26 2019-09-03 华为技术有限公司 一种复合材料及其制备方法
CN110197895A (zh) * 2018-02-26 2019-09-03 华为技术有限公司 一种复合材料及其制备方法
CN111446417A (zh) * 2019-01-16 2020-07-24 通用汽车环球科技运作有限责任公司 夹层结构内的高性能电活性材料
CN111446417B (zh) * 2019-01-16 2023-06-06 通用汽车环球科技运作有限责任公司 夹层结构内的高性能电活性材料

Also Published As

Publication number Publication date
TW201500568A (zh) 2015-01-01
US20150004494A1 (en) 2015-01-01
CN104253266B (zh) 2017-05-03
TWI461555B (zh) 2014-11-21

Similar Documents

Publication Publication Date Title
CN104253266B (zh) 一种多层膜硅/石墨烯复合材料阳极结构
JP6367390B2 (ja) 大容量プリズムリチウムイオン合金アノードの製造
KR101946658B1 (ko) 전극 박, 집전체, 전극 및 이를 이용한 축전 소자
US8900331B2 (en) Process for manufacturing a battery incorporating an anodized metallic battery separator having through-pores
EP2605325A2 (en) Cathode current collector coated with a primer and magnesium secondary battery including same
US20130003261A1 (en) Lithium plate, method for lithiation of electrode and energy storage device
Yang et al. Ultra-thick Li-ion battery electrodes using different cell size of metal foam current collectors
JP2017522725A5 (zh)
KR102244477B1 (ko) 전해 동박 및 이를 포함하는 전극 및 리튬-이온 전지
KR101404062B1 (ko) 무선 충전이 가능한 케이블형 이차전지
JP2021530847A (ja) 金属発泡体のアノードおよびカソードを有するリチウムイオン蓄電池
Cao et al. Influences of co-sputtered carbon on the electrochemical performance of SiO/C thin film anodes for lithium-ion batteries
KR20160113981A (ko) 음극 활물질 및 이의 제조방법
EP3614463A1 (en) Electrode structure of electrochemical energy storage device and manufacturing method thereof
US8379368B2 (en) Method for manufacturing lithium ion capacitor and lithium ion capacitor manufactured using the same
US20230253567A1 (en) Microgradient patterned carbon coated current collector for alkali metal battery and method of preparation thereof
KR20160123050A (ko) 리튬 이차 전지의 제조 방법
JP5058381B1 (ja) 集電体及び電極、これを用いた蓄電素子
JP2009176511A (ja) リチウムイオン二次電池の充放電方法
KR101153625B1 (ko) 2차 전원용 전극 제조 방법 및 이를 이용한 2차 전원의 제조 방법
US20110300449A1 (en) Electrode for secondary power source and method of manufacturing electrode for secondary power source
Chen et al. Waterbed inspired stress relaxation strategies of patterned silicon anodes for fast-charging and longevity of lithium microbatteries
Dou et al. Critical evaluation of the use of 3D carbon networks enhancing the long-term stability of lithium metal anodes
US20200067102A1 (en) Electrode structure of electrochemical energy storage device and manufacturing method thereof
WO2021226180A9 (en) Inhibition of lithium dendrite growth using ultra-thin sub-nanometer porous carbon nanomembrane in conventional and solid-state lithium-ion batteries

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant