WO2018173990A1 - エンジンの制御装置 - Google Patents
エンジンの制御装置 Download PDFInfo
- Publication number
- WO2018173990A1 WO2018173990A1 PCT/JP2018/010696 JP2018010696W WO2018173990A1 WO 2018173990 A1 WO2018173990 A1 WO 2018173990A1 JP 2018010696 W JP2018010696 W JP 2018010696W WO 2018173990 A1 WO2018173990 A1 WO 2018173990A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- valve
- phase
- hydraulic
- exhaust
- cylinder
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L1/00—Valve-gear or valve arrangements, e.g. lift-valve gear
- F01L1/20—Adjusting or compensating clearance
- F01L1/22—Adjusting or compensating clearance automatically, e.g. mechanically
- F01L1/24—Adjusting or compensating clearance automatically, e.g. mechanically by fluid means, e.g. hydraulically
- F01L1/2405—Adjusting or compensating clearance automatically, e.g. mechanically by fluid means, e.g. hydraulically by means of a hydraulic adjusting device located between the cylinder head and rocker arm
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L1/00—Valve-gear or valve arrangements, e.g. lift-valve gear
- F01L1/34—Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
- F01L1/344—Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
- F01L1/3442—Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L13/00—Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
- F01L13/0005—Deactivating valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D13/00—Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
- F02D13/02—Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
- F02D13/0203—Variable control of intake and exhaust valves
- F02D13/0207—Variable control of intake and exhaust valves changing valve lift or valve lift and timing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D13/00—Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
- F02D13/02—Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
- F02D13/0203—Variable control of intake and exhaust valves
- F02D13/0215—Variable control of intake and exhaust valves changing the valve timing only
- F02D13/0219—Variable control of intake and exhaust valves changing the valve timing only by shifting the phase, i.e. the opening periods of the valves are constant
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D13/00—Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
- F02D13/02—Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
- F02D13/0253—Fully variable control of valve lift and timing using camless actuation systems such as hydraulic, pneumatic or electromagnetic actuators, e.g. solenoid valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D13/00—Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
- F02D13/02—Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
- F02D13/06—Cutting-out cylinders
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/0002—Controlling intake air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/008—Controlling each cylinder individually
- F02D41/0087—Selective cylinder activation, i.e. partial cylinder operation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02P—IGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
- F02P5/00—Advancing or retarding ignition; Control therefor
- F02P5/04—Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
- F02P5/045—Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions combined with electronic control of other engine functions, e.g. fuel injection
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02P—IGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
- F02P5/00—Advancing or retarding ignition; Control therefor
- F02P5/04—Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
- F02P5/145—Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
- F02P5/15—Digital data processing
- F02P5/1502—Digital data processing using one central computing unit
- F02P5/1504—Digital data processing using one central computing unit with particular means during a transient phase, e.g. acceleration, deceleration, gear change
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02P—IGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
- F02P5/00—Advancing or retarding ignition; Control therefor
- F02P5/04—Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
- F02P5/145—Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
- F02P5/15—Digital data processing
- F02P5/1502—Digital data processing using one central computing unit
- F02P5/1512—Digital data processing using one central computing unit with particular means concerning an individual cylinder
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L1/00—Valve-gear or valve arrangements, e.g. lift-valve gear
- F01L1/12—Transmitting gear between valve drive and valve
- F01L1/18—Rocking arms or levers
- F01L1/185—Overhead end-pivot rocking arms
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L1/00—Valve-gear or valve arrangements, e.g. lift-valve gear
- F01L1/02—Valve drive
- F01L1/04—Valve drive by means of cams, camshafts, cam discs, eccentrics or the like
- F01L1/047—Camshafts
- F01L1/053—Camshafts overhead type
- F01L2001/0537—Double overhead camshafts [DOHC]
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L13/00—Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
- F01L13/0005—Deactivating valves
- F01L2013/001—Deactivating cylinders
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L2800/00—Methods of operation using a variable valve timing mechanism
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L2800/00—Methods of operation using a variable valve timing mechanism
- F01L2800/08—Timing or lift different for valves of different cylinders
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L2810/00—Arrangements solving specific problems in relation with valve gears
- F01L2810/02—Lubrication
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/0002—Controlling intake air
- F02D2041/001—Controlling intake air for engines with variable valve actuation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/0002—Controlling intake air
- F02D2041/001—Controlling intake air for engines with variable valve actuation
- F02D2041/0012—Controlling intake air for engines with variable valve actuation with selective deactivation of cylinders
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Definitions
- the present invention relates to an engine control device, and more particularly to an engine control device capable of executing a reduced-cylinder operation in which operation of some cylinders among a plurality of cylinders is suspended.
- a plurality of cylinders and a hydraulic type that holds an intake valve and an exhaust valve of some of the plurality of cylinders (for example, first and fourth cylinders of the first to fourth cylinders) are closed.
- an engine control device that includes a valve stop mechanism and a control unit that controls the hydraulic valve stop mechanism, and is capable of performing a reduced-cylinder operation in which the operation of the idle cylinders that are the partial cylinders is suspended. ing.
- Patent Document 1 discloses an engine control device including a hydraulic valve stop mechanism that holds an intake valve and an exhaust valve of a deactivated cylinder closed.
- the air amount sucked into each cylinder is larger than the air amount during normal all-cylinder operation where the reduced-cylinder operation execution condition is not satisfied.
- the preparatory control for increasing the throttle valve opening and retarding the ignition timing of the ignition means is performed, and after the preparatory control is finished, the intake and exhaust valves of the idle cylinder are closed and the idle cylinder is ignited. Has stopped.
- the engine is provided with a phase control mechanism (also referred to as a variable valve mechanism) that can change the valve characteristics of the intake valve and the exhaust valve in order to optimize the operating state.
- a phase control mechanism also referred to as a variable valve mechanism
- the phase control mechanism includes a hydraulic phase control mechanism using hydraulic pressure as a drive source and an electric phase control mechanism using an electric motor as a drive source.
- the hydraulic phase control mechanism is driven by a hydraulic pressure boosted by a variable displacement oil pump that is rotationally driven by a crankshaft of an engine.
- the timing for increasing the opening of the throttle valve and the pressure increase timing for raising the hydraulic pressure of the hydraulic valve stop mechanism to the target hydraulic pressure are set at the same time when the condition for executing the reduced cylinder operation is satisfied. ing.
- Air followability is higher in physical properties than hydraulic followability.
- the pressure increase time of the hydraulic valve stop mechanism is significantly increased with respect to the time for the intake air amount to each cylinder to increase to a predetermined amount. For this reason, the ignition timing retardation (ignition retard) time is prolonged, and as a result, fuel consumption may be deteriorated.
- the opening and closing timing of the exhaust valve is set to the retard side, thereby increasing the combustion gas and increasing the torque.
- the pumping loss can be reduced by setting the opening / closing timing of the intake / exhaust valve to the retard side.
- An object of the present invention is to provide an engine control device or the like that can stabilize the engine torque while shortening the switching time from the all-cylinder operation to the reduced-cylinder operation and obtaining the fuel efficiency improvement effect.
- an engine control apparatus includes a plurality of cylinders, a reduced-cylinder operation in which operation of a non-operating cylinder, which is a part of the plurality of cylinders, is stopped, and all cylinders are operated.
- a hydraulic valve stop mechanism that holds the intake valve and exhaust valve of the idle cylinder closed during reduced-cylinder operation, and an intake valve or exhaust valve of the engine
- a control means for controlling the hydraulic valve stop mechanism and the hydraulic phase control mechanism wherein the control means is a condition for executing a reduced cylinder operation.
- the engine torque can be stabilized while shortening the switching time from the all-cylinder operation to the reduced-cylinder operation and obtaining the fuel efficiency improvement effect.
- FIG. 1 is a schematic plan view showing an overall configuration of an engine according to an embodiment of the present invention. It is a longitudinal cross-sectional view of an engine.
- FIG. 5A is a diagram illustrating a valve stop mechanism, in which FIG. 5A is a diagram in which the pivot portion is in a locked state, FIG. 5B is a diagram in which the pivot portion is in a state before transitioning to an unlocked state, and FIG. Is a diagram in an unlocked state.
- It is the schematic which shows the structure of an oil supply apparatus.
- It is a block diagram which shows the control system of an engine.
- 3 is a map showing an all-cylinder operation region and a reduced-cylinder operation region.
- the engine 1 is, for example, an in-line four-cylinder gasoline engine in which a first cylinder to a fourth cylinder are sequentially arranged in series, and is mounted on a vehicle such as an automobile.
- the engine 1 includes a reduced-cylinder operation that stops operation of some of the cylinders (four cylinders) of the engine 1 (first and fourth cylinders in this embodiment), It is configured to be able to perform all-cylinder operation in which cylinders (four cylinders) are operated.
- the cylinders (first and fourth cylinders) whose operation is stopped during the reduced-cylinder operation are appropriately referred to as idle cylinders.
- the engine 1 includes a head cover 2, a cylinder head 3, a cylinder block 4, a crankcase (not shown), and an oil pan 5 (see FIG. 4), which are connected vertically.
- the engine 1 includes a piston 6 that can slide in four cylinder bores 9 formed in the cylinder block 4, and a crankshaft 7 that is rotatably supported by a crankcase.
- the piston 6 and the crankshaft 7 are connected by a connecting rod 8.
- Each cylinder is formed with a combustion chamber 11 defined by a cylinder bore 9 of the cylinder block 4, a piston 6 and a cylinder head 3.
- Each combustion chamber 11 is provided with an injector 12 for injecting fuel into the combustion chamber 11 and a spark plug 13 for igniting a mixture of fuel and air in the combustion chamber 11.
- ignition is performed in the order of the first cylinder ⁇ the third cylinder ⁇ the fourth cylinder ⁇ the second cylinder.
- the engine 1 includes, as elements of its intake system, an intake port 21 that communicates with the combustion chamber 11, an independent intake passage 22 that communicates with each of the intake ports 21, and a surge that is commonly connected to these independent intake passages 22.
- a tank 23 and an intake pipe 24 extending upstream from the surge tank 23 are provided. Air is introduced into each combustion chamber 11 (each cylinder) via an air duct (not shown), an intake pipe 24, a surge tank 23, an independent intake passage 22, and an intake port 21.
- a butterfly throttle valve 25 air amount adjusting means capable of adjusting the amount of air introduced into each cylinder is provided.
- An actuator 26 (electric motor) for driving the throttle valve 25 is installed in the vicinity of the throttle valve 25.
- the downstream portion of the independent intake passage 22 functions as an intake manifold through which intake air introduced into each cylinder flows.
- the engine 1 includes an exhaust passage 130 through which exhaust gas discharged from each cylinder flows.
- the exhaust passage 130 includes an exhaust port 31 that communicates with the combustion chamber 11, an independent exhaust passage 32 that communicates with each of the exhaust ports 31, a collective portion 33 in which the independent exhaust passages 32 are gathered, and a downstream from the collective portion 33.
- An exhaust pipe 34 extending to the side is provided.
- a butterfly exhaust shutter valve 35 capable of adjusting the amount of exhaust gas flowing through the exhaust pipe 34 is provided. When the exhaust shutter valve 35 is closed, the amount of exhaust gas flowing through the exhaust pipe 34 (exhaust passage 130) decreases.
- An actuator 36 (electric motor) for driving the exhaust shutter valve 35 is installed in the vicinity of the exhaust shutter valve 35.
- the intake port 21 and the exhaust port 31 are provided with an intake valve 41 and an exhaust valve 51 for opening and closing each.
- the phase of the intake valve 41, that is, the opening / closing timing, and the phase of the exhaust valve 51, that is, the opening / closing timing, are changed by the intake variable valve timing mechanism 19 and the exhaust variable valve timing mechanism 20, respectively.
- the valve timing mechanisms 19 and 20 change the opening / closing timings of the intake valve 41 and the exhaust valve 51, respectively, in a state where the valve opening period is constant.
- the intake variable valve timing mechanism 19 that changes the phase of the intake valve 41 is an electric type.
- the exhaust variable valve timing mechanism 20 that changes the phase of the exhaust valve 51 is hydraulic. In the figure, the variable valve timing mechanism is indicated as S-VT.
- the swing arms 44 and 54 swing around the tops of the pivot mechanisms 14a and 15a provided at one end thereof, respectively.
- the intake valve 41 and the exhaust valve 51 are connected to the other ends of the swing arms 44 and 54. Accordingly, the swing arms 44 and 54 swing, and accordingly, the other ends of the swing arms 44 and 54, the intake valve 41 and the exhaust valve 51 are moved downward against the urging force of the return springs 42 and 52. When pushed down, the intake valve 41 and the exhaust valve 51 are opened.
- the swing clearances 44 and 54 of the second and third cylinders which are cylinders formed in the center portion of the engine 1 in the cylinder arrangement direction, are subjected to valve clearance by oil (hydraulic oil) pressure (hereinafter simply referred to as hydraulic pressure).
- Pivot mechanisms 15a each having a known hydraulic lash adjuster (hereinafter abbreviated as HLA) 15 are provided.
- a pivot mechanism provided with an HLA 14 with a valve stop mechanism is provided on the swing arms 44 and 54 of the first and fourth cylinders, which are cylinders formed at both ends in the cylinder arrangement direction of the engine 1. 14a is provided.
- the HLA 14 with a valve stop mechanism is configured so that the valve clearance can be automatically adjusted to zero by hydraulic pressure, similarly to the HLA 15.
- the HLA 14 stops the opening and closing operations of the intake valves 41 and the exhaust valves 51 of the first and fourth cylinders, which are idle cylinders, during the reduced-cylinder operation, and holds the intake valves 41 and the exhaust valves 51 closed.
- the HLA 14 opens and closes the intake valve 41 and the exhaust valve 51 of the first and fourth cylinders, which are idle cylinders, during all cylinder operation. Note that the intake valves 41 and the exhaust valves 51 of the second and third cylinders operate in both the reduced-cylinder operation and the all-cylinder operation.
- the HLA 14 stops the operation of the intake valve 41 and the exhaust valve 51 of the first and fourth cylinders of the first to fourth cylinders of the engine 1 during the reduced cylinder operation, and during the all cylinder operation, The intake valve 41 and the exhaust valve 51 of the first to fourth cylinders operate. Note that the reduced-cylinder operation and the all-cylinder operation are appropriately switched according to the operating state of the engine 1 as described later.
- mounting holes 45 and 55 for inserting and mounting the lower end portion of the HLA 14 are provided in the portions on the intake side and the exhaust side, respectively. Yes.
- the lower end portion of the HLA 15 is inserted into the portions on the intake side and the exhaust side of the portions corresponding to the second and third cylinders of the cylinder head 3, respectively, the same as the mounting holes 45 and 55 Mounting holes (not shown) are provided.
- a pair of oil passages 71 and 73 are formed in the mounting hole 45, and a pair of oil passages 72 and 74 are formed in the mounting hole 55.
- the oil passages 71 and 72 are oil passages for supplying hydraulic pressure for operating the valve stop mechanism 14b of the HLA 14 to the valve stop mechanism 14b.
- the oil passages 73 and 74 are oil passages for supplying hydraulic pressure for operating the pivot mechanism 14a. Only the oil passages 73 and 74 are communicated with the pivot mechanism 15a of the second and third cylinders.
- the valve stop mechanism 14b is provided with a lock mechanism 140 that locks the operation of the pivot mechanism 14a.
- the pivot mechanism 14 a is accommodated in a bottomed outer cylinder 141 so as to be slidable in the axial direction of the outer cylinder 141.
- Through holes 141 a are respectively formed at two locations on the side peripheral surface of the outer cylinder 141 that face each other in the radial direction of the outer cylinder 141.
- the lock mechanism 140 includes a pair of lock pins 142 that can be advanced and retracted in the respective through holes 141a.
- the pair of lock pins 142 are urged outwardly in the radial direction of the outer cylinder 141 by a spring 143.
- a lost motion spring 144 that presses and urges the pivot mechanism 14a above the outer cylinder 141 is disposed.
- the top of the pivot mechanism 14a becomes a fulcrum for swinging of the swing arms 44 and 54. Accordingly, at this time, when the cam portions 43a and 53a push the cam followers 44a and 54a downward along with the rotation of the cam shafts 43 and 53, the intake valve 41 and the exhaust valve 51 are biased by the return springs 42 and 52. On the other hand, it is pushed downward to open the valve. That is, the intake valve 41 and the exhaust valve 51 can be opened and closed in a state in which both lock pins 142 are fitted in the through holes 141a.
- both lock pins 142 when the outer ends of both lock pins 142 are pressed by hydraulic pressure, as shown by the black arrows, the spring 143 resists the urging force.
- the both lock pins 142 are retracted radially inward of the outer cylinder 141 so as to approach each other.
- both lock pins 142 are removed from the through-holes 141a, and the pivot mechanism 14a located above the lock pins 142 can be moved downward in the axial direction of the outer cylinder 141.
- the urging force of the return springs 42 and 52 is stronger than the urging force of the lost motion spring 144. Therefore, in a state where both lock pins 142 are removed from the through holes 141a, when the cam portions 43a and 53a push the cam followers 44a and 54a downward as the cam shafts 43 and 53 rotate, the intake valve 41 and the exhaust valve The top of 51 is a pivot for swinging the swing arms 44 and 54. Accordingly, at this time, the pivot mechanism 14a is pushed downward against the urging force of the lost motion spring 144 while the intake valve 41 and the exhaust valve 51 are closed. Thus, the intake valve 41 and the exhaust valve 51 are held closed by the lock pins 142 not being fitted into the through-holes 141a.
- the oil supply circuit includes a variable displacement oil pump 16 driven by rotation of the crankshaft 7 and an oil supply path 60 connected to the oil pump 16.
- the oil supply passage 60 is an oil passage for guiding the oil boosted by the oil pump 16 to each lubrication part and each hydraulic actuator of the engine 1.
- the oil supply passage 60 is an oil passage formed in the cylinder head 3 and the cylinder block 4 or the like.
- the oil supply passage 60 includes first to third communication passages 61 to 63, a main gallery 64, a plurality of oil passages 71 to 79, and the like.
- the first communication passage 61 communicates with the oil pump 16 and extends from the discharge port 16b of the oil pump 16 to the branch point 64a in the cylinder block 4.
- the main gallery 64 extends in the cylinder row direction in the cylinder block 4.
- the second communication path 62 extends from a branch point 64b on the main gallery 64 to a branch part 63b on the cylinder head 3.
- the third communication path 63 extends in the horizontal direction between the intake side and the exhaust side in the cylinder head 3.
- the plurality of oil passages 71 to 79 branch from the third communication passage 63 in the cylinder head 3.
- the oil pump 16 is a known variable displacement oil pump in which the amount of oil discharged from the oil pump 16 is changed in accordance with the change in the capacity of the oil pump 16.
- the oil pump 16 includes a housing, a drive shaft, a pump element, a cam ring, a spring, a ring member, and the like.
- the housing of the oil pump 16 has a pump chamber 161 formed therein, a suction port 16a for supplying oil to the pump chamber 161, and a discharge port 16b for discharging oil from the pump chamber 161.
- a pressure chamber 162 defined by the inner peripheral surface of the housing and the outer peripheral surface of the cam ring is formed, and an introduction hole 16c is provided in the pressure chamber 162.
- An oil strainer 18 facing the oil pan 5 is provided at the suction port 16a of the oil pump 16.
- An oil filter 65 and an oil cooler 66 are arranged in order from the upstream side to the downstream side in the first communication path 61 communicating with the discharge port 16b of the oil pump 16.
- the oil stored in the oil pan 5 is pumped up by the oil pump 16 through the oil strainer 18, then filtered by the oil filter 65, cooled by the oil cooler 66, and then the main gallery in the cylinder block 4. 64.
- the main gallery 64 has metal bearing oil supply parts 81 arranged on five main journals that rotatably support the crankshaft 7 and four connecting rods 8 arranged on the crankpin of the crankshaft 7 so as to freely rotate. It is connected to the oil supply part 82 of the metal bearing connected to. Oil is constantly supplied to the main gallery 64.
- an oil supply unit 83 that supplies oil to a hydraulic chain tensioner (not shown) of the timing chain, and oil that supplies oil to the pressure chamber 162 of the oil pump 16.
- the path 70 is connected.
- the oil passage 70 communicates the branch point 64 c of the main gallery 64 and the introduction hole 16 c of the oil pump 16.
- a linear solenoid valve 89 capable of electrically duty-controlling the oil flow rate is provided in the middle of the oil passage 70.
- the oil passage 78 branched from the branch point 63a of the third communication passage 63 is connected to the exhaust side first direction switching valve 84.
- the oil passage 78 is connected to the advance side oil passage 201 and the retard side oil passage 202 via the exhaust side first direction switching valve 84.
- Oil is supplied to the advance working chamber 203 of the exhaust variable valve timing mechanism 20 to be described later via the advance side oil passage 201.
- oil is supplied to the retarded working chamber 204 of the exhaust variable valve timing mechanism 20 described later via the retarded oil passage 202.
- the oil passage 74 branched from the branch point 63a is connected to the oil supply unit (see the white triangle ⁇ in FIG. 4), the HLA 15, the HLA 14, the fuel pump 87, and the vacuum pump 88. .
- the oil passage 76 that branches from the branch point 74 a of the oil passage 74 is connected to an oil shower that supplies lubricating oil to the swing arm 54 on the exhaust side, and oil is also constantly supplied to the oil passage 76.
- a hydraulic sensor 90 that detects the oil pressure of the oil passage 77 is disposed in the oil passage 77 that branches from the branch point 63 c of the third communication passage 63.
- the oil passage 73 branched from the branch point 63d is connected to the cam journal oil supply portion (see the white triangle ⁇ in FIG. 4), the HLA 15 and the HLA 14 in the cam shaft 43 on the intake side.
- the oil passage 75 that branches from the branch point 73 a of the oil passage 73 is connected to an oil shower that supplies lubricating oil to the swing arm 44 on the intake side.
- a check valve that restricts the direction in which the oil flows in only one direction from the upstream side to the downstream side is disposed.
- the oil passage 79 branches into two oil passages 71 and 72 at a branch point 79a on the downstream side of the check valve.
- these oil passages 71 and 72 communicate with the mounting holes 45 and 55 for the HLA 14 with a valve stop mechanism, and the intake side second direction switching valve 86 and the exhaust side second direction switching as hydraulic control valves.
- the valves 85 are connected to the valve stop mechanisms 14b of the HLA 14 with valve stop mechanisms on the intake side and the exhaust side, respectively. These intake side second direction switching valve 86 and exhaust side second direction switching valve 85 change the supply state of oil to each valve stop mechanism 14b.
- Phase control mechanism The cam pulleys of the intake variable valve timing mechanism 19 and the exhaust variable valve timing mechanism 20 are driven by a crankshaft sprocket (not shown) via a timing chain.
- the intake variable valve timing mechanism 19 includes an electric motor 191 and a conversion section (not shown) formed at one end of the cam shaft 43.
- the gear pulley that rotates synchronously with the crankshaft 7 meshes with the timing chain.
- the electric motor 191 is formed integrally with the gear pulley, and the conversion part is formed integrally with the cam shaft 43.
- the exhaust variable valve timing mechanism 20 has an annular housing and a vane body accommodated in the housing (both not shown).
- the housing of the exhaust variable valve timing mechanism 20 is rotatably connected integrally with a cam pulley that rotates in synchronization with the crankshaft 7, and rotates in conjunction with the crankshaft 7.
- the vane body of the exhaust variable valve timing mechanism 20 is connected to a camshaft 53 that opens and closes the exhaust valve 51 by a fastening bolt so as to be rotatable together.
- a plurality of advance working chambers 203 and retard working chambers 204 are defined by a plurality of vanes provided on the outer peripheral surface of the vane body and the inner peripheral surface of the housing. Has been.
- the advance working chamber 203 and the retard working chamber 204 are arranged in the exhaust side first direction via the advance side oil passage 201 and the retard side oil passage 202, respectively, as described above.
- the switching valve 84 is connected.
- the exhaust side first direction switching valve 84 is connected to the variable displacement oil pump 16.
- a part of the advance side oil passage 201 and the retard side oil passage 202 are respectively formed.
- the exhaust variable valve timing mechanism 20 is provided with a lock mechanism that locks the operation of the exhaust variable valve timing mechanism 20.
- the lock mechanism has a lock pin 205 for fixing the phase angle of the camshaft 53 with respect to the crankshaft 7 at a specific phase.
- Each vane is rotated to the advance position with respect to the cam pulley (crankshaft 7) by the oil supplied through the advance passage 201.
- Each vane is rotated to the retard position with respect to the cam pulley by the oil supplied through the retard side passage 202.
- the lock pin 205 urged by the urging spring is fitted into a fitting recess formed in a portion of the vane body where the vane is not formed, thereby being locked.
- the vane body is fixed to the housing, and the phase of the camshaft 53 relative to the crankshaft 7 is fixed.
- the exhaust side first direction switching valve 84 includes the amount of oil supplied to the advance side oil passage 201 and the advance working chamber 203 of the exhaust variable valve timing mechanism 20, and the retard side of the exhaust variable valve timing mechanism 20.
- the amount of oil supplied to the oil passage 202 and the retarded working chamber 204 can be changed. Therefore, the opening / closing timing of the exhaust valve 51 is changed by the exhaust-side first direction switching valve 84.
- the engine 1 is controlled by an ECU (Electric Control Unit) 110.
- ECU Electronic Control Unit
- the ECU 110 executes all-cylinder operation by the first to fourth cylinders when the execution condition for all-cylinder operation is satisfied, and when the execution condition for reduced-cylinder operation is satisfied, the first and fourth cylinders that are idle cylinders. And the reduced-cylinder operation in which only the operation by the second and third cylinders is performed.
- the ECU 110 includes a CPU (Central Processing Unit), a ROM, a RAM, an in-side interface, an out-side interface, and the like.
- a CPU Central Processing Unit
- ROM Read Only Memory
- RAM Random Access Memory
- in-side interface an out-side interface
- out-side interface an out-side interface
- the ECU 110 includes a hydraulic pressure sensor 90, a vehicle speed sensor 91, an accelerator opening sensor 92, a gear position sensor 93, an intake manifold pressure sensor 94, an intake air amount sensor 95, and an intake air temperature sensor 96.
- the intake pressure sensor 97, the crank angle sensor 98, the cam angle sensor 99, the oil temperature sensor 100, and the like are electrically connected.
- the vehicle speed sensor 91 detects the traveling speed of the vehicle.
- the accelerator opening sensor 92 detects the amount of depression of an accelerator pedal (not shown) by the occupant.
- the gear stage sensor 93 detects the currently set transmission gear stage in the transmission mounted on the vehicle.
- the intake manifold pressure sensor 94 detects the pressure in the intake manifold (intake manifold pressure, intake manifold pressure).
- the intake air amount sensor 95 detects the intake air amount taken into each combustion chamber 11.
- the intake air temperature sensor 96 detects the temperature of intake air taken into each combustion chamber.
- the intake pressure sensor 97 detects the pressure of intake air taken into each combustion chamber.
- the crank angle sensor 98 detects the rotation angle of the crankshaft 7 and detects the engine rotation speed based on this rotation angle.
- the cam angle sensor 99 detects the rotation angle of the cam shafts 43 and 53, and detects the rotation phase of the cam shafts 43 and 53 and the phase angle of the variable valve timing mechanisms 19 and 20 based on the rotation angle.
- the oil temperature sensor 100 detects the temperature of oil flowing through the oil supply passage 70.
- Detected values by these sensors 90 to 100 are output to the ECU 110, and the operation of the engine 1 is controlled by the ECU 110.
- the ECU 110 detects the sensors 90 to 100 so that the total torque (requested torque) output from the engine 1 becomes substantially constant when switching from one operation of all-cylinder operation and reduced-cylinder operation to the other operation. Based on the values, the injector 12, the spark plug 13, the HLA 14, the variable valve timing mechanisms 19, 20, the throttle valve 25, and the exhaust shutter valve 35 are cooperatively controlled in time series.
- the ECU 110 includes an operating condition determination unit 111, a variable valve timing mechanism control unit 112, an ignition timing control unit 113, a fuel control unit 114, a throttle valve control unit 115, and a valve stop mechanism control.
- Unit 116 an exhaust shutter valve control unit 117, and the like.
- the operating condition determination unit 111 determines whether to perform all-cylinder operation or reduced-cylinder operation based on the operation state.
- the operating condition determination unit 111 stores in advance a map M in which an all-cylinder operation region A1 in which all-cylinder operation is performed and a reduced-cylinder operation region A2 in which reduced-cylinder operation is performed are set. .
- the operating condition determination unit 111 determines in which region A1, A2 the engine is operated based on the map M and the operating state of the engine.
- the operation condition determination unit 111 establishes that the execution condition for all-cylinder operation is satisfied (the condition for executing switching from reduced-cylinder operation to all-cylinder operation is satisfied). judge.
- this all-cylinder operation execution condition is referred to as an all-cylinder operation execution condition.
- the operating condition determination unit 111 establishes that the execution condition for reduced-cylinder operation is satisfied (the execution condition for switching from all-cylinder operation to reduced-cylinder operation is satisfied). judge.
- the execution condition of the reduced cylinder operation is referred to as a reduced cylinder operation execution condition.
- the area range is set from low rotation to high rotation.
- the upper limit torque line connecting the highest engine torque at each engine speed in the reduced-cylinder operation region A1 is set to a line where the engine torque increases as the speed increases.
- the range of the reduced-cylinder operation region A2 is set based on loss region branching torque, intake pulsation restriction, and the like.
- the horizontal axis of the map M is the engine speed, and the vertical axis is the target indicated torque.
- the target indicated torque is a basic torque that is a basic value of the engine torque calculated based on the target acceleration of the vehicle. Based on this basic torque, the output of the engine 1 and the shift speed control of the transmission are executed. Specifically, a target acceleration of the vehicle is set from a depression amount of the accelerator pedal, a vehicle speed, and a gear stage using a preset map (not shown), and a wheel torque is calculated based on the target acceleration.
- the shaft torque required for the engine 1 is obtained based on the wheel torque, the output torque and the input torque of the transmission. Thereafter, correction torque such as auxiliary machine loss and mechanical loss is added to the engine shaft torque to finally obtain the target indicated torque.
- the ECU 110 does not immediately execute the reduced-cylinder operation for stopping the first and fourth cylinders, but first performs a preparation process. Then, after the preparation process is completed, the first and fourth cylinders are stopped and the reduced cylinder operation is started.
- the ECU 110 immediately operates the first and fourth cylinders.
- the intake valves 41 and the exhaust valves 51 of the first and fourth cylinders are held closed.
- the phases of the variable valve timing mechanisms 19 and 20, that is, the phases of the intake valve 41 and the exhaust valve 51 are set to the phase on the retard side from that during all-cylinder operation. Further, the opening degree of the throttle valve 25 is increased (opened) as compared with the case of all cylinder operation.
- the respective phases of the intake valve 41 and the exhaust valve 51 are retarded in order to increase the torque by increasing the combustion gas and to reduce the pumping loss.
- the oil pressure in the oil passage 70 is increased to the switching target oil pressure so that the intake valves 41 and the exhaust valves 51 of the first and fourth cylinders are maintained closed.
- the switching target hydraulic pressure is the hydraulic pressure supplied to the HLA 14 (valve stop mechanism 14a) of the first and fourth cylinders.
- the HLA 14 (valve stop mechanism 14a) is the intake valve 41 and exhaust valve 51 of the first and fourth cylinders.
- the hydraulic pressure is higher than the hydraulic pressure (holding hydraulic pressure) that can hold the valve closed.
- the phases of the intake valve 41 and the exhaust valve 51 are changed to the retarded phase.
- the opening amount of the throttle valve 25 is increased, and the air amount increase control for increasing the amount of intake air introduced into each combustion chamber 11 (increasing the air amount of each cylinder) is performed.
- the ignition timing is retarded from the basic ignition timing, which will be described later, during the air amount increase control.
- the hydraulic pressure consumed by the exhaust variable valve timing mechanism 20 retarding the phase of the exhaust valve 51 is large. Therefore, when the exhaust valve 51 is retarded, there is a risk that the hydraulic pressure supplied to the HLA 14 decreases or the hydraulic pressure changes such as overshoot and undershoot. As a result, the time until the exhaust valve 51 of the idle cylinder is closed by the HLA 14 may be increased. Therefore, in the present embodiment, the hydraulic pressure of the oil passage 70 and the hydraulic pressure supplied to the HLA 14 are increased after the exhausting variable valve timing mechanism 20 completes the retarding operation of the phase of the exhaust valve 51 so that this time is shortened. The operation is performed.
- the air amount increase control and the ignition timing retard control are performed.
- correction control for correcting the phase of the exhaust valve 51 by the exhaust variable valve timing mechanism 20 may be performed. In this case, air amount increase control and ignition timing retardation control are performed after completion of the correction control.
- the operation condition determination unit 111 determines that the reduced cylinder operation execution condition is satisfied, the ECU 110 first starts the operation of retarding the phase of the exhaust valve 51 by the exhaust variable valve timing mechanism 20.
- variable valve timing mechanism control unit 112 sets a target phase that is a target value of the phases of the intake valve 41 and the exhaust valve 51 based on the air charging efficiency (Ce) of each cylinder.
- the variable valve timing mechanism control unit 112 issues a command to the electric motor 191 and the exhaust-side first direction switching valve 84 so that this target phase is realized.
- variable valve timing mechanism control unit 112 stores in advance a control map (not shown) in which the relationship between the air charging efficiency and the target phase is set.
- the variable valve timing mechanism control unit 112 extracts a target phase corresponding to the current air charging efficiency from this map.
- the current air filling efficiency is calculated as follows.
- the intake manifold pressure is calculated based on the detected value of the intake manifold pressure sensor 94, the intake amount detected by the intake air amount sensor 95, and the intake air temperature detected by the intake air temperature sensor 96. .
- the detection value itself of the intake manifold pressure sensor 94 may be used as the intake manifold pressure.
- the volumetric efficiency ⁇ vp in the intake manifold is calculated based on the engine speed, the phases of the intake valve 41 and the exhaust valve 51, the intake manifold pressure, and the exhaust pressure.
- the air charging efficiency of each cylinder is calculated from the intake manifold pressure and the volumetric efficiency ⁇ vp.
- the exhaust pressure is the pressure in the exhaust passage 130.
- the exhaust pressure is estimated based on the amount of exhaust gas flowing through the exhaust passage 130 (estimated by the intake air amount, the engine speed, etc.) and the opening of the exhaust shutter valve 35.
- the phases of the intake valve 41 and the exhaust valve 51 are set to be retarded during the reduced-cylinder operation than in the all-cylinder operation.
- the variable valve timing mechanism control unit 112 sets the target phase for the reduced-cylinder operation on the retard side from the phase for all-cylinder operation (the target phase for switching the reduced-cylinder operation, hereinafter referred to as appropriate).
- Each phase of the intake valve 41 and the exhaust valve 51 is gradually retarded (refer to FIG. 7).
- the exhaust variable valve timing mechanism 20 first changes the phases of the intake valve 41 and the exhaust valve 51, and then the oil pressure of the oil passage 70 is increased toward the switching target oil pressure. Therefore, the operating state of the engine may change during the pressure increase of the oil passage 70. Therefore, in the present embodiment, the phase of the exhaust valve 51 is adjusted by the exhaust variable valve timing mechanism 20 after increasing the oil pressure in the oil passage 70 to the switching target oil pressure and before performing the air amount increase control in the preparation process. Is corrected so as to obtain a corrected target phase for reduced-cylinder operation that is a target phase corresponding to the current intake charging efficiency (a target phase in a new reduced-cylinder operation and a final target phase). The amount of change in the phase of the exhaust valve 51 due to the execution of this correction control is smaller than the amount of change in the phase that is performed first (the amount of change in the phase toward the target phase for reduced cylinder operation). The hydraulic pressure fluctuation of 70 is small.
- the intake variable valve timing mechanism 20 is driven by an electric motor 191. Therefore, the phase change of the intake valve 41 by the intake variable valve timing mechanism 20 and the pressure increase operation of the oil pressure in the oil passage 70 do not affect each other. Therefore, in the present embodiment, in the preparation process, even during the pressure increase operation of the oil passage 70, the phase of the intake valve 41 is changed to the target phase by the intake variable valve timing mechanism 20.
- the exhaust valve is secured in order to ensure the overlap amount of the intake / exhaust valves 41, 51 during the transition
- the advance operation speed 51 may be slower than the advance operation speed of the intake valve 41. In this case, the operating speeds of the intake and exhaust valves 41 and 51 are adjusted based on the hydraulic pressure and the oil temperature.
- variable valve timing mechanism control unit 112 moves from the target phase for the reduced cylinder operation toward the target phase for the all cylinder operation on the more advanced side than the intake valve 41 and Each phase of the exhaust valve 51 is gradually advanced (see FIG. 8). This advance angle control is started almost immediately after the all-cylinder operation execution condition is satisfied.
- the throttle valve control unit 115 changes the opening degree of the throttle valve 25 by controlling the actuator 26 so that the target indicated torque is achieved.
- the throttle valve control unit 115 increases the opening of the throttle valve 25 to increase the amount of intake air introduced into each combustion chamber 11 (the amount of air in each cylinder is reduced). Increase control). Specifically, at this time, the opening degree of the throttle valve 25 is gradually increased.
- the air amount increase control is performed. Is started, and the opening operation of the throttle valve 25 is started.
- the throttle valve control unit 115 reduces the opening of the throttle valve 25 to reduce the amount of intake air introduced into each combustion chamber 11 (the air amount of each cylinder is reduced). Reduce the air amount).
- the air amount reduction control is performed, and the control for retarding the ignition timing from the basic ignition timing described later is performed.
- the air amount reduction control is started simultaneously with the start of the control for advancing the phases of the intake valve 41 and the exhaust valve 51 by the variable valve timing mechanisms 19 and 20.
- the ignition timing control unit 113 determines the ignition timing according to the driving state of the vehicle, and outputs a command to the spark plug 13.
- the ignition timing control unit 113 stores in advance a map (not shown) representing the relationship between the engine speed, the engine load calculated from the engine speed and the accelerator opening, and the ignition timing.
- the ignition timing control unit 113 extracts the ignition timing from this map, corrects the extracted ignition timing based on the intake pressure detected by the intake pressure sensor 97, and sets the basic ignition timing.
- the ignition timing control unit 113 extracts the ignition timing corresponding to the engine speed and the engine load from the all-cylinder operation map, and corrects the extracted ignition timing with the intake pressure to obtain the basic ignition timing. Set.
- the ignition timing control unit 113 extracts the ignition timing corresponding to the engine speed and the engine load from the reduced-cylinder operation map, and corrects the extracted ignition timing with the intake pressure to obtain the basic ignition timing. Set.
- the basic ignition timing is set to an ignition timing at which the required engine torque, that is, the engine load, can be realized in a state where the air charging efficiency of each cylinder is controlled to the target air charging efficiency. For this reason, during normal all-cylinder operation and when the air charging efficiency of each cylinder is controlled to the target air charging efficiency, the ignition timing is set to the basic ignition timing for all-cylinder operation. Further, when the normal cylinder reduction operation is performed and the air charging efficiency of each cylinder is controlled to the target air charging efficiency, the ignition timing is set to the basic ignition timing for the cylinder reduction operation.
- the above air amount increase control is performed. Therefore, during the execution of the air amount increase control, the air charging efficiency of each cylinder becomes larger than the target air charging efficiency during all-cylinder operation. Therefore, if the ignition timing is set to the basic ignition timing for all cylinder operation during the execution of the air amount increase control, the engine torque becomes larger than the required value. Therefore, the ignition timing control unit 113 retards the ignition timing from the basic ignition timing (basic ignition timing for all cylinder operation) during the execution of the air amount increase control. This retarding control of the ignition timing is stopped when the reduced cylinder operation is started. When the reduced-cylinder operation starts, the ignition timing is set to the basic ignition timing for reduced-cylinder operation.
- the ignition timing control unit 113 retards the ignition timing from the basic ignition timing as described above. Specifically, the ignition timing control unit 113 retards the ignition timing relatively large with respect to the basic ignition timing when the all-cylinder operation execution condition is satisfied. Thereafter, the ignition timing control unit 113 gradually advances the ignition timing as the air amount charging efficiency of each cylinder decreases due to the air amount reduction control. This advance angle control is stopped when the air charging efficiency of each cylinder reaches the target air charging efficiency during all cylinder operation. Thereafter, the ignition timing is set to the basic ignition timing for all cylinder operation.
- the retard amount of the ignition timing with respect to the basic ignition timing at the time of shifting to the reduced cylinder operation and after the all cylinder operation execution condition is established is set to be inversely proportional to the amount of internal EGR gas in the cylinder bore 9 of each cylinder. ing.
- the fuel control unit 114 determines the fuel injection amount that is the amount of fuel injected from the injector 12 and the timing of fuel injection by the injector 12 according to the operating state, and outputs an injection execution command to the injector 12.
- the fuel control unit 114 stores a preset fuel injection map (not shown) corresponding to the target indicated torque, and sets the fuel injection amount and timing based on this map.
- the fuel control unit 114 switches the control of the injectors 12 of the idle cylinders (first and fourth cylinders) according to the all cylinder operation or the reduced cylinder operation. That is, during all cylinder operation, the fuel control unit 114 drives the injectors 12 of the first to fourth cylinders to perform fuel injection. On the other hand, the fuel control unit 114 prohibits fuel injection by the injectors 12 of the idle cylinders (first and fourth cylinders) during the reduced cylinder operation.
- valve stop mechanism controller Next, the valve stop mechanism control unit 116 will be described.
- the valve stop mechanism control unit 116 switches the control of the exhaust-side second direction switching valve 85, the intake-side second direction switching valve 86, and the linear solenoid valve 89 depending on whether all-cylinder operation or reduced-cylinder operation.
- the valve stop mechanism control unit 116 turns off the exhaust-side second direction switching valve 85 and the intake-side second direction switching valve 86 during all cylinder operation. As a result, the intake and exhaust valves 41 and 51 of the first to fourth cylinders can be opened and closed.
- the valve stop mechanism control unit 116 drives the linear solenoid valve 89 to increase the oil pressure of the oil passage 70 to the switching target oil pressure as described above, and at the same time, the exhaust side second direction switching valve 85 during the reduced cylinder operation. Then, the intake side second direction switching valve 86 is turned on, and the hydraulic pressure supplied to the HLA 14 of the idle cylinder is held at the holding hydraulic pressure. As a result, the intake and exhaust valves 41 and 51 of the idle cylinder are maintained in the closed state.
- valve stop mechanism control unit 116 When the reduced cylinder operation is switched, the valve stop mechanism control unit 116 turns on the exhaust side second direction switching valve 85 after the air filling efficiency of each cylinder reaches the target value during the reduced cylinder operation, and sets the idle cylinder to the HLA 14. The exhaust valve 51 is held closed. Then, after the exhaust valve 51 is held closed, the valve stop mechanism control unit 116 turns on the intake side second direction switching valve 86 to cause the HLA 14 to hold the intake valve 41 closed.
- valve stop mechanism control unit 116 enables the exhaust valve 51 of the deactivated cylinder to be opened by turning off the exhaust-side second direction switching valve 85 when all cylinder operation is switched. Then, after opening the exhaust valve 51 of the deactivated cylinder, the valve stop mechanism control unit 116 turns off the intake side second direction switching valve 86 so that the intake valve 41 of the deactivated cylinder can be opened.
- the exhaust valve 51 is opened earlier than the intake valve 41 among the intake valve 41 and the exhaust valve 51 of the idle cylinder when the all cylinder operation is switched.
- the exhaust shutter valve control unit 117 controls the exhaust shutter valve 35 to the valve closing side (the side on which the exhaust flow rate decreases) during the reduced cylinder operation.
- the exhaust shutter valve control unit 117 operates the exhaust shutter valve so that the pressure on the upstream side of the exhaust shutter valve 35 in the exhaust passage 130 is equal to or lower than a set pressure (for example, the seal pressure of the exhaust valve 51) during all cylinder operation. 35 is controlled.
- the reason why the exhaust shutter valve 35 is controlled to the valve closing side during the reduced cylinder operation is to reduce noise. Specifically, the frequency of exhaust gas pulsation passing through the exhaust passage 130 differs between the reduced cylinder operation and the all cylinder operation due to the different number of operating cylinders. Therefore, during the reduced-cylinder operation, vibration generated in the exhaust passage may increase and noise may increase. On the other hand, if the amount of exhaust gas flowing through the exhaust passage is reduced by reducing the exhaust shutter valve 35 to the closed side during the reduced-cylinder operation as described above, the vibration of the exhaust gas in the exhaust passage and thus noise is reduced. it can.
- step S1 the ECU 110 reads the output values of the sensors 90 to 100, maps and various information, and proceeds to step S2.
- step S2 it is determined whether the reduced cylinder operation execution condition is satisfied. As described above, in this embodiment, when the engine is operated in the reduced-cylinder operation region A2 of the map M, it is determined that the reduced-cylinder operation execution condition is satisfied.
- step S3 the retard operation of the intake and exhaust valves 41 and 51 is performed. Specifically, the variable valve timing mechanisms 19 and 20 are controlled so that the intake and exhaust valves 41 and 52 are gradually retarded. Next, the process proceeds to step S4.
- step S4 it is determined whether or not the phase of the exhaust valve 51 has reached the target phase for reduced-cylinder operation (the target phase for reduced-cylinder operation).
- step S4 when the phase of the exhaust valve 51 has reached the target phase for reduced cylinder operation (t2), the process proceeds to step S5, the linear solenoid valve 89 is driven (turned on), and the oil passage 70 Increase the hydraulic pressure of. Next, the process proceeds to step S6.
- step S4 determines whether the phase of the exhaust valve 51 has not reached the target phase for reduced cylinder operation. If the result of determination in step S4 is that the phase of the exhaust valve 51 has not reached the target phase for reduced cylinder operation, the operation returns to step S3 to continue the operation of retarding the phase of the exhaust valve 51.
- step S6 it is determined whether the oil pressure in the oil passage 70 has exceeded the switching target oil pressure.
- step S6 when the oil pressure in the oil passage 70 exceeds the switching target oil pressure (t3), the process proceeds to step S7, and the operation state of the engine changes during the period in which the oil pressure in the oil passage 70 is increased. Judge whether there was.
- step S6 determines whether the oil pressure in the oil passage 70 does not exceed the target oil pressure for switching. If the result of determination in step S6 is that the oil pressure in the oil passage 70 does not exceed the target oil pressure for switching, the flow returns to S5 to continue driving the linear solenoid valve 89 (ON state) and increase the oil pressure in the oil passage 70. Continue.
- step S7 If the result of determination in step S7 is that the engine operating state has changed during the pressure increase period of the oil passage 70, the target phase for reduced-cylinder operation is not compatible with the current engine operating state. Therefore, in this case, the process proceeds to step S8, where the exhaust-side first direction switching valve 84 is further operated to execute the correction control of the phase of the exhaust valve 51 by the exhaust variable valve timing mechanism 20. After step S8, the process proceeds to S9.
- step S9 it is determined whether or not the phase of the exhaust valve 51 has reached the correction target phase for reduced cylinder operation.
- step S9 If the result of determination in step S9 is that the phase of the exhaust valve 51 has reached the correction target phase for reduced cylinder operation (t4), the process proceeds to step S10.
- step S9 determines whether the phase of the exhaust valve 51 has not reached the correction target phase for reduced-cylinder operation. If the result of determination in step S9 is that the phase of the exhaust valve 51 has not reached the correction target phase for reduced-cylinder operation, the process returns to step S8 to continue variable valve timing mechanism correction control of the exhaust valve 51.
- step S7 when there is no change in the operating state of the engine during the pressure increase period of the oil passage 70, the target phase for reduced cylinder operation is adapted to the current operating state of the engine. Therefore, in this case, the process proceeds to step S10.
- step S10 execution of throttle valve increase operation (air amount increase control) for increasing the opening of the throttle valve 25 and ignition timing retard control for retarding the ignition timing are started (t4). Thereafter, the process proceeds to step S11.
- step S11 it is determined whether or not the air charging efficiency of each cylinder exceeds the target air charging efficiency that is the target value of the air charging efficiency for the reduced cylinder operation.
- step S11 when the air charging efficiency exceeds the target air charging efficiency for reduced-cylinder operation (t5), the intake side second direction switching valve 86 and the exhaust side second direction switching valve 85 are turned on, The intake / exhaust valves 41 and 51 of the deactivated cylinders (first and fourth cylinders) are set in a closed state (S12), and then the process proceeds to step S13.
- the closing operation of the exhaust valve 51 is started slightly earlier than the closing operation of the intake valve 41.
- step S11 If it is determined in step S11 that the air filling efficiency does not exceed the target air filling efficiency during the reduced-cylinder operation, the process returns to step S10 to continue the throttle valve increasing operation.
- step S13 after completion of closing of the intake / exhaust valves 41 and 51 of the idle cylinder, the fuel injection of the first and fourth cylinders is prohibited and the ignition timing retarding control is prohibited to reduce the ignition timing.
- the hydraulic pressure supplied to the HLA 14 is adjusted from the switching target hydraulic pressure to the valve closing holding hydraulic pressure (holding hydraulic pressure).
- the start of the reduced cylinder operation is started from t7 due to the followability of the hydraulic pressure. Therefore, the period from t5 to t7 is a transition period to the reduced cylinder operation.
- step S14 the exhaust shutter valve 35 is controlled to the valve closing side to decrease the flow rate of the exhaust gas. Thereafter, the flag is changed to 1 (S15), and the process returns. This flag is 0 during all cylinder operation and 1 during reduced cylinder operation.
- step S2 When the engine is not operating in the reduced cylinder operation region A2 of the map M, it is not determined in step S2 that the reduced cylinder operation execution condition is satisfied. In this case, the process proceeds to step S16 to determine whether or not the flag is 1.
- step S16 If the result of determination in step S16 is that the flag is not 1, since the previous operating state is all-cylinder operation, all-cylinder operation is continued (S24) and the process returns.
- step S16 if the flag is 1, the all-cylinder operation execution condition is satisfied during the reduced-cylinder operation (t8). As a result of the determination in step S16, if the flag is 1, the process proceeds to step S17.
- step S17 the fuel injection prohibition of the first and fourth cylinders is canceled and the ignition timing retardation control prohibition is canceled (t9), and the process proceeds to step S18.
- the command value of the ignition timing of the idle cylinder is once returned to the ignition timing when the reduced cylinder operation is started.
- the injector 12 and the spark plug 13 do not actually operate yet because the release of the valve closing hold of the intake and exhaust valves 41 and 51 of the first and fourth cylinders is not completed.
- step S18 the exhaust shutter valve control is terminated, and the process proceeds to step S19.
- step S19 the closing operation of the intake / exhaust valves 41, 51 of the deactivated cylinder is released.
- step S20 the linear solenoid valve 89 is operated to be turned off.
- step S21 The opening operation of the exhaust valve 51 is started earlier than the opening operation of the intake valve 41.
- step S21 it is determined whether or not the hydraulic pressure supplied to the HLA 14 has dropped from the valve closing holding hydraulic pressure to the target hydraulic pressure during all cylinder operation.
- step S21 If the result of determination in step S21 is that the hydraulic pressure supplied to the HLA 14 has not dropped from the valve closing holding hydraulic pressure to the target hydraulic pressure during all cylinder operation, the flow returns to S20 to continue the linear solenoid valve 89 in the off state. Continue.
- step S21 when the hydraulic pressure supplied to the HLA 14 drops from the valve closing holding hydraulic pressure to the target hydraulic pressure during all cylinder operation (t10), the process proceeds to step S22.
- the intake and exhaust valves 41 and 51 of the first and fourth cylinders can be opened and closed, and all-cylinder operation is possible. . Therefore, the start of all-cylinder operation is started at t10 when the release operation of the intake and exhaust valves 41 and 51 of the first and fourth cylinders is completed.
- step S22 execution of a throttle valve reduction operation (air amount reduction control) for gradually reducing the opening of the throttle valve 25 is started.
- a throttle valve reduction operation air amount reduction control
- the air charging efficiency of each cylinder gradually increases toward the target value for all cylinder operation. It will decrease to. Note that the air charging efficiency of the idle cylinders (first and fourth cylinders) temporarily increases when the intake and exhaust valves 41 and 51 are opened.
- step S22 the phase advance operation of the intake and exhaust valves 41 and 51 is performed. Specifically, the variable valve timing mechanisms 19 and 20 are controlled so that the phases of the intake and exhaust valves 41 and 51 gradually advance from the target phase for reduced cylinder operation toward the target phase for all cylinder operation. .
- step S22 fuel injection of the deactivated cylinders (first and fourth cylinders) is started and ignition of the deactivated cylinders (first and fourth cylinders) is started.
- the ignition timing is set to a timing retarded from the basic ignition timing for all cylinder operation (in the example of FIG. 11, the ignition timing is the same as the ignition timing at the time of switching the reduced cylinder operation). Thereafter, the ignition timing is gradually advanced toward the basic ignition timing for all cylinder operation.
- the control for reducing the opening of the throttle valve 25 is stopped at time t11 by the air amount reduction control and the advance control of the intake / exhaust valves 41, 51, and the intake / exhaust valves 41, 51 are stopped at time t12.
- This phase reaches the target phase for all cylinder operation, and the air charging efficiency of each cylinder reaches the target value for all cylinder operation.
- step S22 the process proceeds to step S23.
- step S23 the flag is changed to 0 and the process returns.
- the ECU 110 causes the exhaust valve 51 to change the phase by the exhaust variable valve timing 20 when the reduced-cylinder operation execution condition is satisfied. Therefore, the combustion gas can be highly expanded to increase the torque, and the pumping loss can be reduced.
- the ECU 110 executes the phase change of the exhaust valve 51 by the exhaust variable valve timing 20 when the reduced-cylinder operation execution condition is satisfied, and then performs intake and exhaust of the idle cylinders (first and fourth cylinders) by the valve stop mechanism 14b.
- the valves 41 and 51 are moved to the closed state. Therefore, it is possible to suppress a decrease or fluctuation in the hydraulic pressure supplied to the valve stop mechanism 14b due to the hydraulic pressure consumption of the exhaust variable valve timing 20.
- the switching time of the valve stop mechanism 14b can be shortened by suppressing the hydraulic pressure fluctuation caused by the operation of the exhaust variable valve timing 20. Accordingly, it is possible to ensure the fuel efficiency improvement effect and the engine torque stabilization effect while shortening the reduced cylinder operation switching time.
- the ECU 110 changes the phase of the exhaust valve 51 to the target phase for reduced cylinder operation (target phase for reduced cylinder operation switching) by the exhaust variable valve timing 20 when the reduced cylinder operation execution condition is satisfied, and then the valve stop mechanism 14b.
- the hydraulic pressure adjustment pressure increase of the oil passage 70 for shifting to the closed state of the intake and exhaust valves 41 and 51 of the idle cylinder is started. Therefore, it is possible to switch to the reduced-cylinder operation in a state where the phase of the exhaust valve 51 is changed to the target phase for switching the reduced-tube operation more reliably.
- the ECU 110 restricts the phase change of the exhaust valve 51 by the exhaust variable valve timing 20 during the hydraulic pressure adjustment for the transition to the closed state of the intake / exhaust valves 41 and 51 of the deactivated cylinder by the valve stop mechanism 14b. Thereby, since the hydraulic pressure is not consumed by the exhaust variable valve timing 20, the hydraulic pressure fluctuation of the valve stop mechanism 14b can be reliably suppressed.
- the supply of hydraulic pressure to the exhaust variable valve timing 20 is stopped during the hydraulic pressure adjustment for shifting the intake and exhaust valves 41 and 51 of the deactivated cylinder to the closed state by the valve stop mechanism 14b. . Therefore, the hydraulic pressure fluctuation of the valve stop mechanism 14b can be more reliably suppressed.
- the ECU 110 adjusts the phase of the exhaust valve 51 by the exhaust variable valve timing 20 after the hydraulic pressure adjustment for the transition to the closed state of the intake / exhaust valves 41 and 51 of the idle cylinder by the valve stop mechanism 14b. Change to phase. Therefore, the phase change required during the hydraulic pressure adjustment of the valve stop mechanism 14b can be set as the target phase, and the phase of the exhaust valve 51 can be more appropriately transferred according to the operating state of the engine. The stabilization effect can be further increased.
- the ECU 110 restricts the phase change of the exhaust valve 51 by the hydraulic exhaust variable valve timing 20 during the hydraulic pressure adjustment for the transition to the closed state of the intake / exhaust valves 41 and 51 of the deactivated cylinder by the valve stop mechanism 14b.
- the phase change of the intake valve 41 by the electric intake variable valve timing 19 is permitted. Therefore, the phases of the intake and exhaust valves 41 and 51 can be set to the target phase without affecting the hydraulic pressure of the valve stop mechanism 14b. That is, by changing the phase of the intake valve 41 with the electric variable valve timing 19, the phase of the intake valve 41 can be set to the target phase at an early stage, and the exhaust valve can be set using the hydraulic variable valve timing 20. 51 phases can be set as the target phase.
- the ECU 110 has a throttle valve control unit 115 capable of adjusting the amount of air supplied to the engine 1.
- the ECU 110 causes the VVT 20 to change the phase of the exhaust valve 51 and then stops the valve when the reduced cylinder operation execution condition is satisfied.
- the throttle valve control is performed.
- the air amount adjustment (increase in the opening degree of the throttle valve 25) by the unit 115 is started. Therefore, the time until the intake amount of each cylinder reaches the target value can be shortened, and deterioration in fuel consumption can be suppressed.
- the ECU 110 sets the phase of the exhaust valve 51 to the target value in the reduced-cylinder operation by the exhaust variable valve timing 20 after the hydraulic pressure supplied to the valve stop mechanism 14b (the hydraulic pressure in the oil passage 70) reaches the target hydraulic pressure for switching. After changing to the target phase for reduced-cylinder operation and changing the phase of the exhaust valve 51, the air amount adjustment by the throttle valve 25 is started. For this reason, the phase change necessary during the hydraulic pressure adjustment of the valve stop mechanism 14b is taken into account, and the phase of the exhaust valve 51 is further corrected. Therefore, the phase of the exhaust valve 51 can be more appropriately transferred, and the fuel consumption can be improved. The improvement effect and the engine torque stabilization effect can be further enhanced.
- the ignition timing control unit 114 for adjusting the ignition timing of the engine 1 is provided, and the ECU 110 retards the ignition timing by the ignition timing control unit 114 when adjusting the air amount by the throttle valve 25. Therefore, it is possible to effectively suppress the torque shock accompanying the increase in the air amount when switching the reduced cylinder operation.
- the number of deactivated cylinders may be arbitrarily set.
- the intake valve is an electric VVT and the exhaust valve is a hydraulic VVT has been described.
- Electric VVT may be used, and both the intake and exhaust valves may be hydraulic VVT.
- the electric VVT may be omitted.
- the engine control apparatus is capable of switching between a plurality of cylinders and a reduced-cylinder operation in which operation of some of the plurality of cylinders is deactivated and an all-cylinder operation in which all cylinders are operated.
- a hydraulic valve stop mechanism that holds the intake valve and the exhaust valve of the idle cylinder closed during a reduced cylinder operation, and a hydraulic phase control that can change the phase of the intake valve or the exhaust valve of the engine
- a control means for controlling the hydraulic valve stop mechanism and the hydraulic phase control mechanism the control means when the reduced cylinder operation execution condition that is a condition for executing the reduced cylinder operation is satisfied, After the phase change of the intake valve or the exhaust valve is executed by the type phase control mechanism, the intake valve and the exhaust valve of the idle cylinder are shifted to the closed valve holding state by the hydraulic valve stop mechanism.
- the control means when the reduced cylinder operation execution condition is satisfied, causes the combustion phase of the combustion gas to be increased and the torque to be increased in order to cause the hydraulic phase control mechanism to change the phase of the intake valve or the exhaust valve.
- the increase can be achieved and the pumping loss can be reduced.
- the control means executes the phase change of the intake valve or the exhaust valve by the hydraulic phase control mechanism when the reduced-cylinder operation execution condition is satisfied, and then causes the intake valve of the idle cylinder and the idle cylinder to be deactivated by the hydraulic valve stop mechanism. Since the exhaust valve is shifted to the closed state, the hydraulic pressure supplied to the hydraulic valve stop mechanism can be prevented from decreasing due to the hydraulic pressure consumption of the hydraulic phase control mechanism.
- the switching time of the hydraulic valve stop mechanism is shortened by suppressing the hydraulic pressure drop (fluctuation) caused by the operation of the hydraulic phase control mechanism. Therefore, it is possible to ensure the fuel efficiency improvement effect and the engine torque stabilization effect while suppressing the reduced cylinder operation switching time.
- the control unit changes the phase of the intake valve or the exhaust valve to the target phase for switching the reduced cylinder operation by the hydraulic phase control mechanism, and then stops the hydraulic valve It is preferable to start hydraulic pressure adjustment for shifting the intake valve and exhaust valve of the idle cylinder to the closed holding state by the mechanism.
- control means is configured to adjust the intake valve or the exhaust valve by the hydraulic phase control mechanism during the hydraulic pressure adjustment for the transition to the closed state of the intake valve and the exhaust valve of the idle cylinder by the hydraulic valve stop mechanism. It is preferable to limit the phase change.
- the control means stops the supply of hydraulic pressure to the hydraulic phase control mechanism during the hydraulic pressure adjustment for the transition to the closed holding state of the intake and exhaust valves of the idle cylinder by the hydraulic valve stop mechanism. Therefore, it is preferable to limit the phase change of the intake valve or the exhaust valve by the hydraulic phase control mechanism.
- control means After the hydraulic pressure adjustment for the transition to the closed state of the intake valve and the exhaust valve of the idle cylinder by the hydraulic valve stop mechanism is completed, the control means performs the phase of the intake valve or the exhaust valve by the hydraulic phase control mechanism. Is preferably changed to the target phase in the reduced-cylinder operation.
- the control means includes the hydraulic pressure
- the hydraulic phase control mechanism restricts the exhaust valve phase change during the hydraulic pressure adjustment for the transition to the closed holding state of the intake valve and the exhaust valve of the idle cylinder by the valve stop mechanism, while the electric phase It is preferable to allow the intake valve phase change by the control mechanism.
- the hydraulic pressure fluctuation of the hydraulic valve stop mechanism can be more reliably suppressed while appropriately controlling the phase of the intake valve and the phase of the exhaust valve.
- An air amount adjusting means capable of adjusting an air amount supplied to the engine, and the control means changes the phase of the intake valve or the exhaust valve by the hydraulic phase control mechanism when the reduced cylinder operation execution condition is satisfied.
- the hydraulic pressure adjustment for shifting to the closed state of the intake valve and the exhaust valve of the idle cylinder is started by the hydraulic valve stop mechanism, and supplied to the oil passage leading to the hydraulic valve stop mechanism It is preferable that the air amount adjustment by the air amount adjusting means is started after the hydraulic pressure to be reached reaches a predetermined target oil pressure.
- the time for increasing the intake air amount of each cylinder to a predetermined amount can be shortened, and deterioration of fuel consumption can be suppressed.
- the control means is configured to reduce the phase of the intake valve or the exhaust valve by the hydraulic phase control mechanism after the hydraulic pressure supplied to the oil passage leading to the hydraulic valve stop mechanism reaches a predetermined target hydraulic pressure. It is preferable to change to the phase, and after the phase change of the intake valve or the exhaust valve, start the air amount adjustment by the air amount adjusting means.
- It has an ignition timing adjusting means for adjusting the ignition timing of the engine, and the control means retards the ignition timing by the ignition timing adjusting means when adjusting the air amount by the air amount adjusting means.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Signal Processing (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Output Control And Ontrol Of Special Type Engine (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
- Electrical Control Of Ignition Timing (AREA)
- Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
Abstract
4気筒のうち一部の運転を休止する減筒運転の実行条件成立により4気筒から第1,第4気筒を設定すると共に第1,第4気筒の吸排気弁41,51を閉弁する油圧式の弁停止機構14bと、エンジン1の排気弁51の位相を変更可能な油圧式の可変バルブタイミング機構19と、弁停止機構14b及び油圧式の可変バルブタイミング機構19を制御するECU110とを備えたエンジン1の制御装置であって、ECU110は、減筒運転実行条件が成立したとき、油圧式の可変バルブタイミング機構19により排気弁51の位相変更を実行させた後、弁停止機構14bにより第1,第4気筒の吸排気弁41,51を閉弁状態に移行させる。
Description
本発明は、エンジンの制御装置に関し、特に複数の気筒のうち一部の気筒の運転を休止する減筒運転を実行可能なエンジンの制御装置に関する。
従来より、複数の気筒と、これら複数の気筒のうち一部の気筒(例えば、第1~第4気筒のうちの第1,第4気筒)の吸気弁・排気弁を閉弁保持する油圧式弁停止機構と、この油圧式弁停止機構を制御する制御手段とを備え、前記の一部の気筒である休止気筒の運転が休止される減筒運転を実施可能なエンジンの制御装置が知られている。
減筒運転では、稼働している気筒の数が減少することによってエンジン出力が低下してトルクショックが発生する。そのため、従来の制御装置では、減筒運転を実行する条件である減筒運転実行条件が成立すると、休止気筒の燃焼を停止する前にスロットルバルブの開度を増大させ、全気筒について夫々吸入される空気量を増大させた後、休止気筒の燃焼を停止するようにしていた。
しかし、休止気筒の燃焼が停止される前の所謂切替過渡期に、単純に全気筒に吸入される空気量を増大すると、一時的エンジンの出力が増加し、やはりトルクショックが発生する。
これに対して、特許文献1には、休止気筒の吸気弁・排気弁を閉弁保持する油圧式弁停止機構を備えたエンジンの制御装置が開示されている。この装置では、減筒運転実行条件が成立すると、各気筒に吸入される空気量が減筒運転実行条件が成立していない通常の全筒運転時における空気量よりも多い空気量になるように、スロットルバルブの開度を増大させ、且つ、点火手段の点火時期を遅角させる準備制御を実施し、準備制御の終了後、休止気筒の吸気弁・排気弁を閉弁すると共に休止気筒の点火を停止している。
一方、エンジンには、運転状態を最適化するため、吸気弁や排気弁のバルブ特性を変更可能な位相制御機構(可変動弁機構ともいう)が設けられることが知られている。
この位相制御機構には、油圧を駆動源とする油圧式位相制御機構と、電動モータを駆動源とする電動式位相制御機構とが存在する。
一般に、油圧式位相制御機構の場合、エンジンのクランク軸によって回転駆動される可変容量型オイルポンプによって昇圧された油圧によって駆動されている。
特許文献1のエンジンの制御装置では、減筒運転の実行条件成立に伴うスロットルバルブの開度増加タイミングと油圧式弁停止機構の油圧を目標油圧に上昇させる昇圧タイミングとが同時になるように設定されている。
空気の追従性は、油圧の追従性よりも物理的特性上高い。
それ故、各気筒へ吸気量が所定量まで増大する時間に対して、油圧式弁停止機構の昇圧時間が大幅に長くなる。そのため、点火時期の遅角(点火リタード)時間が長期化し、結果的に燃費悪化を招く虞がある。
そこで、油圧式弁停止機構の油圧が目標油圧に到達(切替終了)するのを待って、スロットルバルブの開度増加を開始することにより、燃費悪化の解消を図ることができる。
しかし、油圧式位相制御機構を備えたエンジンの場合、この油圧式位相制御機構の作動に必要な油圧(所謂、油圧消費量)が大きいことから、油圧式弁停止機構に供給される油圧の低下、オーバーシュート或いはアンダーシュート等の油圧変動が発生し、油圧式弁停止機構によって適切に吸排気弁の閉弁保持が可能となるまでの時間、ひいては、全筒運転から減筒運転への切替時間が長期化する虞がある。
特に、油圧式位相制御機構を備えたエンジンでは、全筒運転から減筒運転への切替時、排気弁の開閉タイミングを遅角側に設定することにより、燃焼ガスを高膨張化してトルク増加を図ることができ、また、吸排気弁の開閉タイミングを遅角側に設定することにより、ポンピングロスの低減を図ることができる。
しかし、上記切替時間が長期化すると、油圧式位相制御機構による十分な燃費改善効果を得ることができない、また、エンジントルクが不安定になるおそれがある。
本発明の目的は、全筒運転から減筒運転への切替時間を短くして、燃費改善効果を得つつエンジントルクを安定させることが可能なエンジンの制御装置等を提供することである。
前記課題を解決するための本発明のエンジンの制御装置は、複数の気筒と、複数の気筒のうち一部の気筒である休止気筒の稼働を休止する減筒運転と、全ての気筒が稼働される全筒運転とを切替可能なエンジンに適用される制御装置において、減筒運転時に前記休止気筒の吸気弁及び排気弁を閉弁保持する油圧式弁停止機構と、エンジンの吸気弁又は排気弁の位相を変更可能な油圧式位相制御機構と、前記油圧式弁停止機構及び油圧式位相制御機構を制御する制御手段とを備え、前記制御手段は、減筒運転を実行する条件である減筒運転実行条件が成立したとき、前記油圧式位相制御機構により吸気弁又は排気弁の位相変更を実行させた後、前記油圧式弁停止機構により前記休止気筒の吸気弁及び排気弁を閉弁保持状態に移行させる。
本発明のエンジンの制御装置によれば、全筒運転から減筒運転への切替時間を短くして、燃費改善効果を得つつエンジントルクを安定させることができる。
以下、本発明の実施形態について図1~図11に基づいて説明する。
以下の説明は、本発明に係るエンジンの制御装置を車両に適用したものを例示したものであり、本発明、その適用物、或いは、その用途を制限するものではない。
(エンジンの全体構成)
図1,図2に示すように、エンジン1は、例えば、第1気筒から第4気筒が直列状に順次配置された直列4気筒ガソリンエンジンであり、自動車等の車両に搭載されている。
図1,図2に示すように、エンジン1は、例えば、第1気筒から第4気筒が直列状に順次配置された直列4気筒ガソリンエンジンであり、自動車等の車両に搭載されている。
本実施形態では、エンジン1は、エンジン1の全ての気筒(4気筒)のうち一部の気筒(本実施形態では、第1,第4気筒)の稼働を停止させる減筒運転と、全ての気筒(4気筒)を稼働させる全筒運転とを実施可能に構成されている。以下では、減筒運転時に稼働が停止される(つまり、燃焼が停止される)気筒(第1,第4気筒)を、適宜、休止気筒という。
エンジン1は、ヘッドカバー2と、シリンダヘッド3と、シリンダブロック4と、クランクケース(図示略)と、オイルパン5(図4参照)とを備え、これらは夫々上下に連結されている。
エンジン1は、シリンダブロック4に形成された4つのシリンダボア9内を夫々摺動可能なピストン6と、クランクケースに回転自在に支持されたクランク軸7とを備える。これらピストン6とクランク軸7とは、コネクティングロッド8によって連結されている。各気筒には、シリンダブロック4のシリンダボア9とピストン6とシリンダヘッド3とによって区画された燃焼室11が形成されている。
各燃焼室11には、燃焼室11内に燃料を噴射するインジェクタ12と、燃焼室11内の燃料と空気の混合気に点火する点火プラグ13とが夫々設けられている。本実施形態では、第1気筒→第3気筒→第4気筒→第2気筒の順に点火が行われる。
エンジン1は、その吸気系の要素として、燃焼室11に夫々連通する吸気ポート21と、これら吸気ポート21に夫々連通する独立吸気通路22と、これら独立吸気通路22に共通して接続されたサージタンク23と、このサージタンク23から上流側に延びる吸気管24等を備える。各燃焼室11(各気筒)には、エアダクト(図示略)、吸気管24、サージタンク23、独立吸気通路22、吸気ポート21を介して空気が導入される。吸気管24の途中部には、各気筒に導入される空気の量を調整可能なバタフライ式のスロットルバルブ25(空気量調整手段)が設けられている。スロットルバルブ25の近傍位置には、スロットルバルブ25を駆動するためのアクチュエータ26(電動モータ)が設置されている。本実施形態では、独立吸気通路22の下流側部分が、各気筒に導入される吸気が流通するインテークマニホールドとして機能する。
エンジン1は、各気筒から排出された排気ガスが流通する排気通路130を備える。排気通路130は、燃焼室11に夫々連通する排気ポート31と、これら排気ポート31に夫々連通する独立排気通路32と、これら独立排気通路32が集合した集合部33と、この集合部33から下流側に延びる排気管34等を備える。排気管34の途中部には、排気管34を流れる排気ガスの量を調整可能なバタフライ式の排気シャッタ弁35が設けられている。排気シャッタ弁35が閉じ側にされると、排気管34(排気通路130)を流れる排気ガスの量は減少する。排気シャッタ弁35の近傍位置には排気シャッタ弁35を駆動するためのアクチュエータ36(電動モータ)が設置されている。
図2に示すように、吸気ポート21及び排気ポート31には、各々を開閉する吸気弁41及び排気弁51が配設されている。
これら吸気弁41の位相つまり開閉時期及び排気弁51の位相つまり開閉時期は、それぞれ、吸気用可変バルブタイミング機構19及び排気用可変バルブタイミング機構20によって変更される。本実施形態では、これらバルブタイミング機構19、20によって、吸気弁41および排気弁51の開閉時期は、それぞれ、開弁期間を一定とした状態で変更される。本実施形態では、吸気弁41の位相を変更する吸気用可変バルブタイミング機構19は、電動式である。一方、排気弁51の位相を変更する排気用可変バルブタイミング機構20は、油圧式である。なお、図では、可変バルブタイミング機構は、S-VTと示されている。
これら吸気弁41及び排気弁51は、それぞれリターンスプリング42,52によって閉弁方向(上方)に付勢されている。それぞれ回動するカム軸43,53の外周に設けられたカム部43a,53aは、スイングアーム44,54の略中央部に回転自在に設けられたカムフォロア44a,54aを下方に押圧する。
スイングアーム44,54は、それぞれ、その一端側に設けられたピボッド機構14a,15aの頂部を支点として揺動する。吸気弁41及び排気弁51は、各スイングアーム44,54の他端部に接続されている。従って、スイングアーム44,54が揺動し、これに伴って、各スイングアーム44,54の他端部、吸気弁41および排気弁51がリターンスプリング42,52の付勢力に抗して下方に押し下げられると、吸気弁41および排気弁51は開弁する。
エンジン1の気筒配列方向の中央部分に形成された気筒である第2,第3気筒のスイングアーム44,54には、オイル(作動油)の圧力(以下、単に油圧と省略する)によりバルブクリアランスを自動的に零に調整する公知の油圧ラッシュアジャスタ(Hydraulic Lash Adjuster: 以下、HLAと略す)15を備えたピボット機構15aがそれぞれ設けられている。
一方、図2に示すように、エンジン1の気筒配列方向の両端部分に形成された気筒である第1,第4気筒のスイングアーム44,54には、弁停止機構付きHLA14を備えたピボット機構14aが夫々設けられている。これら弁停止機構付きHLA14は、HLA15と同様に、油圧によりバルブクリアランスを自動的に零に調整可能に構成されている。
HLA14は、減筒運転の時、休止気筒である第1,第4気筒の吸気弁41および排気弁51の開閉動作を停止させてこれら吸気弁41および排気弁51を閉弁保持する。一方で、HLA14は、全筒運転時、休止気筒である第1,第4気筒の吸気弁41および排気弁51を開閉動作させる。なお、第2,第3気筒の吸気弁41および排気弁51は、減筒運転及び全筒運転の双方で作動する。
このようにして、HLA14によって、減筒運転時、エンジン1の第1~第4気筒のうち第1,第4気筒の吸気弁41および排気弁51の作動が停止されて、全筒運転時、第1~第4気筒の吸気弁41および排気弁51が作動する。尚、減筒運転及び全筒運転は、後述するように、エンジン1の運転状態に応じて適宜切り替えられる。
シリンダヘッド3の第1,第4気筒に夫々対応する部分のうちの吸気側及び排気側の部分には、HLA14の下端部分を挿入して装着するための装着穴45,55が夫々設けられている。また、シリンダヘッド3の第2,第3気筒に夫々対応する部分のうちの吸気側及び排気側の部分には、HLA15の下端部分を挿入して装着するため、装着穴45,55と同様の装着穴(図示略)が夫々設けられている。
装着穴45には、1対の油路71,73が穿設され、装着穴55には、1対の油路72,74が穿設されている。油路71,72は、HLA14の弁停止機構14bに、これを作動させる油圧を供給するための油路である。油路73,74は、ピボット機構14aに、これを作動させる油圧を供給するための油路である。尚、第2、第3気筒のピボット機構15aには、油路73,74のみが連通されている。
図3(a)に示すように、弁停止機構14bには、ピボット機構14aの動作をロックするロック機構140が設けられている。ピボット機構14aは、有底の外筒141に、外筒141の軸方向に摺動自在に収納されている。外筒141の側周面のうち外筒141の径方向について互いに対向する2箇所には、それぞれ貫通孔141aが形成されている。ロック機構140は、各貫通孔141aに夫々進退可能な1対のロックピン142を備えている。これら1対のロックピン142は、スプリング143によって外筒141の径方向の外側に付勢されている。外筒141の内底部とピボット機構14aの底部との間には、ピボット機構14aを外筒141の上方に押圧して付勢するロストモーションスプリング144が配置されている。
両ロックピン142が外筒141の貫通孔141aに嵌合している場合、ロックピン142の上方に位置するピボット機構14aは上方に突出した状態で固定される。
これにより、ピボット機構14aの頂部がスイングアーム44,54の揺動の支点になる。従って、このときは、カム軸43,53の回動に伴ってカム部43a,53aがカムフォロア44a,54aを下方に押すと、吸気弁41および排気弁51がリターンスプリング42,52の付勢力に抗して下方に押されて開弁する。即ち、両ロックピン142が貫通孔141aに嵌合した状態では、吸気弁41および排気弁51は開閉可能とされる。
一方、図3(b),図3(c)に示すように、黒矢印で示すように、油圧によって両ロックピン142の外側端部が押圧された場合、スプリング143の付勢力に抗して両ロックピン142が互いに接近するように外筒141の径方向内側に後退する。
これにより、両ロックピン142は貫通孔141aから抜け、ロックピン142の上方に位置するピボット機構14aは外筒141の軸方向の下側へ移行可能となる。
リターンスプリング42,52の付勢力は、ロストモーションスプリング144の付勢力よりも強い。それ故、両ロックピン142が貫通孔141aから抜けた状態では、カム軸43,53の回動に伴ってカム部43a,53aがカムフォロア44a,54aを下方に押すと、吸気弁41および排気弁51の頂部がスイングアーム44,54の揺動の支点になる。従って、このときは、吸気弁41および排気弁51が閉弁されたまま、ピボット機構14aがロストモーションスプリング144の付勢力に抗して下方に押される。このように、両ロックピン142が貫通孔141aに対して嵌合していない状態になることで、吸気弁41および排気弁51は閉弁保持される。
(オイル供給回路)
図4に示すように、オイル供給回路は、クランク軸7の回転によって駆動される可変容量型オイルポンプ16と、このオイルポンプ16に接続された給油路60とを備えている。給油路60は、オイルポンプ16によって昇圧されたオイルをエンジン1の各潤滑部及び各油圧作動装置に導くための油路である。
図4に示すように、オイル供給回路は、クランク軸7の回転によって駆動される可変容量型オイルポンプ16と、このオイルポンプ16に接続された給油路60とを備えている。給油路60は、オイルポンプ16によって昇圧されたオイルをエンジン1の各潤滑部及び各油圧作動装置に導くための油路である。
給油路60は、シリンダヘッド3及びシリンダブロック4等に穿設されたオイル通路である。この給油路60は、第1~第3連通路61~63と、メインギャラリ64と、複数の油路71~79等を備えている。
第1連通路61は、オイルポンプ16と連通され、このオイルポンプ16の吐出口16bからシリンダブロック4内の分岐点64aまで延びている。
メインギャラリ64は、シリンダブロック4内で気筒列方向に延びている。
第2連通路62は、メインギャラリ64上の分岐点64bからシリンダヘッド3上の分岐部63bまで延びている。第3連通路63は、シリンダヘッド3内で吸気側と排気側との間を略水平方向に延びている。複数の油路71~79は、シリンダヘッド3内で第3連通路63から分岐している。
オイルポンプ16は、このオイルポンプ16の容量の変更に伴ってオイルポンプ16からのオイルの吐出量が変更される公知の可変容量型オイルポンプである。オイルポンプ16は、ハウジングと、駆動軸と、ポンプ要素と、カムリングと、スプリングと、リング部材等を有している。
オイルポンプ16のハウジングは、その内部に形成されたポンプ室161と、ポンプ室161にオイルを供給する吸入口16aと、ポンプ室161からオイルを吐出する吐出口16bとを有している。
オイルポンプ16のハウジングの内部には、このハウジングの内周面とカムリングの外周面とによって画成された圧力室162が形成され、この圧力室162には導入孔16cが設けられている。
オイルポンプ16の吸入口16aには、オイルパン5に臨むオイルストレーナ18が設けられている。オイルポンプ16の吐出口16bと連通する第1連通路61には、上流側から下流側に順に、オイルフィルタ65及びオイルクーラ66が配置されている。
オイルパン5内に貯留されたオイルは、オイルポンプ16により、オイルストレーナ18を介して汲み上げられ、その後、オイルフィルタ65で濾過され、オイルクーラ66で冷却された後、シリンダブロック4内のメインギャラリ64に導入される。
メインギャラリ64は、クランク軸7を回動自在に支持する5つのメインジャーナルに配置されたメタルベアリングのオイル供給部81と、クランク軸7のクランクピンに配置されて4つのコネクティングロッド8を回転自在に連結するメタルベアリングのオイル供給部82とに接続されている。メインギャラリ64には、オイルが常時供給される。
メインギャラリ64の分岐点64cの下流側には、タイミングチェーンの油圧式チェーンテンショナ(何れも図示略)にオイルを供給するオイル供給部83と、オイルポンプ16の圧力室162にオイルを供給する油路70とが接続されている。油路70は、メインギャラリ64の分岐点64cとオイルポンプ16の導入孔16cとを連通している。油路70の途中部には、オイルの流量を電気的にデューティ制御可能なリニアソレノイドバルブ89が設けられている。
第3連通路63の分岐点63aから分岐する油路78は、排気側第1方向切替バルブ84に接続されている。この排気側第1方向切替バルブ84を介して、油路78は、進角側油路201と遅角側油路202に接続されている。後述する排気用の可変バルブタイミング機構20の進角作動室203には、この進角側油路201を介してオイルが供給される。一方、後述する排気用の可変バルブタイミング機構20の遅角作動室204には、この遅角側油路202を介してオイルが供給される。
また、分岐点63aから分岐する油路74は、オイル供給部(図4の白抜き三角△を参照。)と、HLA15と、HLA14と、燃料ポンプ87と、バキュームポンプ88とに接続されている。
油路74の分岐点74aから分岐する油路76は、排気側のスイングアーム54に潤滑用オイルを供給するオイルシャワーに接続され、この油路76にもオイルが常時供給される。
第3連通路63の分岐点63cから分岐する油路77には、この油路77の油圧を検出する油圧センサ90が配設されている。また、分岐点63dから分岐する油路73は、吸気側のカム軸43におけるカムジャーナルのオイル供給部(図4の白抜き三角△を参照。)と、HLA15と、HLA14とに接続されている。また、油路73の分岐点73aから分岐する油路75は、吸気側のスイングアーム44に潤滑用オイルを供給するオイルシャワーに接続されている。
第3連通路63の分岐点63cから分岐する油路79には、オイルが流れる方向を上流側から下流側への一方向のみに規制する逆止バルブが配設されている。この油路79は、逆止バルブの下流側の分岐点79aで、2つの油路71、72に分岐する。これら油路71、72は、前記の通り、弁停止機構付きHLA14用の装着穴45、55と連通しており、油圧制御バルブとしての吸気側第2方向切替バルブ86及び排気側第2方向切替バルブ85を介して、吸気側及び排気側の各バルブ停止機構付きHLA14の弁停止機構14bと夫々接続されている。これら吸気側第2方向切替バルブ86及び排気側第2方向切替バルブ85によって、各弁停止機構14bへのオイルの供給状態が変更される。
(位相制御機構)
吸気用可変バルブタイミング機構19及び排気用可変バルブタイミング機構20の各カムプーリは、クランク軸のスプロケット(図示略)によって、タイミングチェーンを介して駆動される。
吸気用可変バルブタイミング機構19及び排気用可変バルブタイミング機構20の各カムプーリは、クランク軸のスプロケット(図示略)によって、タイミングチェーンを介して駆動される。
(吸気用可変バルブタイミング機構)
図4に示すように、吸気用可変バルブタイミング機構19は、電動モータ191と、カム軸43の一端部に形成された変換部(図示略)とを備える。
図4に示すように、吸気用可変バルブタイミング機構19は、電動モータ191と、カム軸43の一端部に形成された変換部(図示略)とを備える。
タイミングチェーンには、クランク軸7と同期回転するギヤプーリが噛合している。電動モータ191は、ギヤプーリと一体形成され、変換部は、カム軸43と一体形成されている。
電動モータ191に対して変換部が電動モータ191の軸心回りに相対変位すると、ギヤプーリ(タイミングチェーン)とカム軸43との位相が変更される。これにより、吸気弁41の位相が変更される。
(排気用可変バルブタイミング機構)
排気用可変バルブタイミング機構20は、円環状のハウジングと、このハウジングの内部に収容されたベーン体とを有している(何れも図示略)。排気用可変バルブタイミング機構20のハウジングは、クランク軸7と同期して回転するカムプーリと一体に回転可能に連結されており、クランク軸7と連動して回転する。排気用可変バルブタイミング機構20のベーン体は、締結ボルトによって、排気弁51を開閉するカム軸53と一体に回転可能に連結されている。
排気用可変バルブタイミング機構20は、円環状のハウジングと、このハウジングの内部に収容されたベーン体とを有している(何れも図示略)。排気用可変バルブタイミング機構20のハウジングは、クランク軸7と同期して回転するカムプーリと一体に回転可能に連結されており、クランク軸7と連動して回転する。排気用可変バルブタイミング機構20のベーン体は、締結ボルトによって、排気弁51を開閉するカム軸53と一体に回転可能に連結されている。
排気用可変バルブタイミング機構20のハウジングの内部には、ベーン体の外周面に設けられた複数のベーンとハウジングの内周面とによって、複数の進角作動室203及び遅角作動室204が区画されている。
進角作動室203及び遅角作動室204は、図4に示すように、また、前記のように、それぞれ進角側油路201及び遅角側油路202を介して、排気側第1方向切替バルブ84に接続されている。この排気側第1方向切替バルブ84は、可変容量型オイルポンプ16に接続されている。カム軸53及び排気用可変バルブタイミング機構20のベーン体には、これら進角側油路201及び遅角側油路202の一部が夫々形成されている。
図4に示すように、排気用可変バルブタイミング機構20には、この排気用可変バルブタイミング機構20の動作をロックするロック機構が設けられている。ロック機構は、カム軸53のクランク軸7に対する位相角を特定の位相で固定するためのロックピン205を有している。
進角側通路201を通して供給されたオイルにより、各ベーンがカムプーリ(クランク軸7)に対して進角位置に回動される。遅角側通路202を通して供給されたオイルにより、各ベーンがカムプーリに対して遅角位置に回動される。そして、付勢ばねによって付勢されたロックピン205が、ベーン体のうちベーンが形成されていない部分に形成された嵌合凹部に嵌合してロック状態になる。これにより、ベーン体がハウジングに固定されて、カム軸53のクランク軸7に対する位相が固定される。
排気側第1方向切替バルブ84は、排気用可変バルブタイミング機構20の進角側油路201および進角作動室203に供給されるオイルの量と、排気用可変バルブタイミング機構20の遅角側油路202および遅角作動室204に供給されるオイルの量とを変更可能である。従って、排気側第1方向切替バルブ84によって、排気弁51の開閉時期が変更される。
具体的には、排気側第1方向切替バルブ84によって進角作動室203に遅角作動室204よりも多くのオイルが供給されると(進角作動室203に供給される油圧が遅角作動室204に供給される油圧よりも高くされると)、カム軸53がその回転方向に回動して、排気弁51の開閉時期が早い(進角側の)時期)に変更される。
一方、排気側第1方向切替バルブ84によって、遅角作動室204に進角作動室203よりも多くのオイルが供給されると(遅角作動室204に供給される油圧が進角作動室203に供給される油圧よりも高くされると)、カム軸53がその回転方向とは逆向きに回動して、排気バルブ51の開時期が遅い(遅角側の)時期に変更される。
(制御系統)
エンジン1は、ECU(Electric Control Unit)110によって制御されている。
エンジン1は、ECU(Electric Control Unit)110によって制御されている。
このECU110は、全筒運転の実行条件が成立したとき、第1~第4気筒による全筒運転を実行し、減筒運転の実行条件が成立したとき、休止気筒である第1,第4気筒による運転を停止すると共に第2,第3気筒による運転のみを行う減筒運転を実行する。
ECU110は、CPU(Central Processing Unit)と、ROMと、RAMと、イン側インタフェースと、アウト側インタフェース等によって構成されている。
図5に示すように、ECU110は、油圧センサ90と、車速センサ91と、アクセル開度センサ92と、ギヤ段センサ93と、インマニ圧センサ94と、吸気量センサ95と、吸気温センサ96と、吸気圧センサ97と、クランク角センサ98と、カム角センサ99と、油温センサ100等に電気的に接続されている。
車速センサ91は、車両の走行速度を検出する。アクセル開度センサ92は、乗員によるアクセルペダル(図示略)の踏込量を検出する。ギヤ段センサ93は、車両に搭載された変速機において現在設定されている変速ギヤ段を検出する。インマニ圧センサ94は、インテークマニホールド内の圧力(インテークマニホールド圧、インマニ圧)を検出する。吸気量センサ95は、各燃焼室11に吸入される吸気量を検出する。吸気温センサ96は、各燃焼室に吸入される吸気の温度を検出する。吸気圧センサ97は、各燃焼室に吸入される吸気の圧力を検出する。クランク角センサ98は、クランク軸7の回転角度を検出し、この回転角度に基づきエンジン回転速度を検出する。カム角センサ99は、カム軸43、53の回転角度を検出し、この回転角度に基づきカム軸43、53の回転位相や各可変バルブタイミング機構19、20の位相角を検出する。油温センサ100は、給油路70内を流れる油温を検出する。
これらのセンサ90~100による検出値は、ECU110に出力され、ECU110によってエンジン1の作動が制御される。
このECU110は、全筒運転と減筒運転の一方の運転から他方の運転への切替時、エンジン1から出力されるトータルトルク(要求トルク)が略一定になるように、センサ90~100の検出値に基づき、インジェクタ12と、点火プラグ13と、HLA14と、可変バルブタイミング機構19,20と、スロットルバルブ25と、排気シャッタ弁35を時系列的に協調制御する。
図5に示すように、ECU110は、運転条件判定部111と、可変バルブタイミング機構制御部112と、点火時期制御部113と、燃料制御部114と、スロットルバルブ制御部115と、弁停止機構制御部116と、排気シャッタ弁制御部117等を備えている。
(運転条件判定部)
まず、運転条件判定部111について説明する。
まず、運転条件判定部111について説明する。
運転条件判定部111は、運転状態に基づき、全筒運転と減筒運転の何れの運転を実行するかについて判定する。
図6に示すように、運転条件判定部111は、全筒運転を実施する全筒運転領域A1と減筒運転を実施する減筒運転領域A2とが設定されたマップMを予め記憶している。運転条件判定部111は、このマップMとエンジンの運転状態とに基づき、エンジンがどの領域A1、A2で運転されているかを判定する。そして、運転条件判定部111は、全筒運転領域A1でエンジンが運転されているときは全筒運転の実行条件が成立した(減筒運転から全筒運転への切替実行条件が成立した)と判定する。以下、この全筒運転の実行条件を、全筒運転実行条件という。また、運転条件判定部111は、減筒運転領域A2でエンジンが運転されているときは減筒運転の実行条件が成立した(全筒運転から減筒運転への切替実行条件が成立した)と判定する。以下、この減筒運転の実行条件を、減筒運転実行条件という。
減筒運転領域A2は、低回転から高回転に亙って領域範囲が設定されている。減筒運転領域A1のうち各エンジン回転数でエンジントルクが最も高い点を結んだ上限トルクラインは、回転数が高いほどエンジントルクが高くなるラインに設定されている。この減筒運転領域A2の範囲は、損域分岐トルクや吸気脈動制限等に基づき設定されている。
マップMの横軸はエンジン回転数、縦軸は目標図示トルクである。
目標図示トルクは、車両の目標加速度に基づき演算されるエンジントルクの基本値である基本トルクである。この基本トルクに基づきエンジン1の出力や変速機の変速段制御は実行される。具体的には、予め設定されたマップ(図示略)を用いてアクセルペダルの踏込量と車速とギヤ段から車両の目標加速度が設定され、この目標加速度に基づきホイールトルクが演算される。
このホイールトルクと、変速機の出力トルク及び入力トルクとに基づいて、エンジン1に必要な軸トルクが求められる。その後、このエンジン軸トルクに補機ロス及びメカロス等の補正用トルクが加算されて、最終的に目標図示トルクが求められる。
ECU110は、運転条件判定部111によって減筒運転実行条件が成立したと判定された場合でも、直ちに第1,第4気筒を停止する減筒運転の実行を行わず、まず、準備行程を実施し、準備行程の終了後に第1,第4気筒を停止して減筒運転を開始する。
一方、ECU110は、運転条件判定部111によって全筒運転実行条件が成立したと判定された場合は、直ちに第1,第4気筒を稼働する。
(準備行程の概要)
減筒運転では、第1,第4気筒の吸気弁41および排気弁51が夫々閉弁保持される。また、減筒運転では、可変バルブタイミング機構19,20の位相つまり吸気弁41および排気弁51の位相が全筒運転時よりも遅角側の位相に設定される。また、スロットルバルブ25の開度が、全筒運転時よりも増大(開き側に)される。減筒運転において、吸気弁41および排気弁51の各位相を遅角するのは、燃焼ガスを高膨張化してトルクを増大させるため、および、ポンピングロスを低減するためである。
減筒運転では、第1,第4気筒の吸気弁41および排気弁51が夫々閉弁保持される。また、減筒運転では、可変バルブタイミング機構19,20の位相つまり吸気弁41および排気弁51の位相が全筒運転時よりも遅角側の位相に設定される。また、スロットルバルブ25の開度が、全筒運転時よりも増大(開き側に)される。減筒運転において、吸気弁41および排気弁51の各位相を遅角するのは、燃焼ガスを高膨張化してトルクを増大させるため、および、ポンピングロスを低減するためである。
これに対応して、準備行程では、第1,第4気筒の吸気弁41および排気弁51の閉弁が維持されるように、油路70の油圧が、切替用目標油圧まで昇圧される。切替用目標油圧は、第1、第4気筒のHLA14(弁停止機構14a)に供給される油圧が、このHLA14(弁停止機構14a)が第1,第4気筒の吸気弁41および排気弁51を閉弁保持することが可能な油圧(保持油圧)よりも高くなる油圧である。
また、準備行程では、吸気弁41および排気弁51の位相が遅角側の位相に変更される。
また、準備行程では、スロットルバルブ25の開度が増大されて、各燃焼室11に導入される吸気の量を増大する(各気筒の空気量を増大させる)空気量増大制御が実施される。
また、準備行程では、空気量増大制御の実施中、点火時期が後述する基本点火時期よりも遅角される。
ここで、排気用可変バルブタイミング機構20が排気弁51の位相を遅角することによって消費される油圧は大きい。そのため、排気弁51の遅角操作をすると、HLA14に供給される油圧の低下或いはオーバーシュートやアンダーシュート等の油圧変動が発生するおそれがある。そして、これに伴ってHLA14によって休止気筒の排気弁51が閉弁保持されるまでの時間が長くなるおそれがある。そこで、本実施形態では、この時間が短くなるように、排気用可変バルブタイミング機構20による排気弁51の位相の遅角操作の終了後に、油路70の油圧ひいてはHLA14に供給される油圧の上昇操作が行われる。
また、本実施形態では、燃費悪化を抑制するべく点火時期の遅角制御の期間が短く抑えられるように、排気用可変バルブタイミング機構20による排気弁51の位相の遅角操作、および、油路70の油圧ひいては第1、第4気筒のHLA14に供給される油圧の上昇操作の終了後に、空気量増大制御および点火時期の遅角制御が行われる。本実施形態では、後述するように、上記油圧の上昇操作の後、さらに、排気用可変バルブタイミング機構20によって排気弁51の位相が補正される補正制御が実施される場合がある。この場合は、この補正制御の終了後に、空気量増大制御および点火時期の遅角制御が行われる。
これより、ECU110は、運転条件判定部111が減筒運転実行条件の成立を判定すると、まず、排気用可変バルブタイミング機構20による排気弁51の位相の遅角操作を開始する。
(可変バルブタイミング機構制御部)
可変バルブタイミング機構制御部112は、各気筒の空気充填効率(Ce)に基づいて吸気弁41と排気弁51の位相の目標値である目標位相を設定する。可変バルブタイミング機構制御部112は、この目標位相が実現されるように、電動モータ191及び排気側第1方向切替バルブ84に指令を出す。
可変バルブタイミング機構制御部112は、各気筒の空気充填効率(Ce)に基づいて吸気弁41と排気弁51の位相の目標値である目標位相を設定する。可変バルブタイミング機構制御部112は、この目標位相が実現されるように、電動モータ191及び排気側第1方向切替バルブ84に指令を出す。
本実施形態では、可変バルブタイミング機構制御部112は、空気充填効率と目標位相との関係が設定された制御マップ(図示略)を予め記憶している。可変バルブタイミング機構制御部112は、このマップから、現在の空気充填効率に対応する目標位相を抽出する。
現在の空気充填効率は次のようにして算出される。
図9に示すように、インマニ圧センサ94の検出値と、吸気量センサ95により検出された吸入量と、吸気温センサ96により検出された吸気温度とに基づいて、インテークマニホールド圧が演算される。なお、これに代えて、または、所定の運転条件では、インマニ圧センサ94の検出値そのものをインテークマニホールド圧として用いてもよい。
また、エンジン回転数と、吸気弁41と排気弁51の各位相と、インテークマニホールド圧と、排気圧力とに基づいてインテークマニホールド内の体積効率ηvpが演算される。インテークマニホールド圧と体積効率ηvpとにより、各気筒の空気充填効率が算出される。
排気圧力は、排気通路130内の圧力である。排気圧力は、排気通路130を流通する排気ガスの量(吸入空気量、エンジン回転数等により推定される)と排気シャッタ弁35の開度とに基づいて推定される。
前記のように、吸気弁41および排気弁51の各位相は、減筒運転時の方が全筒運転時よりも遅角側の位相に設定される。これに伴い、準備行程において、可変バルブタイミング機構制御部112は、全筒運転用の位相からこれよりも遅角側の減筒運転用の目標位相(減筒運転切替用目標位相、以下、適宜、減筒運転用目標位相という)に向けて、吸気弁41および排気弁51の各位相を徐々に遅角させる(図7参照)。
準備行程では、前記のように、排気用可変バルブタイミング機構20によって吸気弁41および排気弁51の位相がまず変更され、その後、切替用目標油圧に向けて油路70の油圧が昇圧される。そのため、この油路70の油圧の昇圧途中に、エンジンの運転状態が変化することがある。そこで、本実施形態では、準備行程において、油路70の油圧を切替用目標油圧に昇圧した後で且つ空気量増大制御を実施する前に、排気用可変バルブタイミング機構20によって排気弁51の位相を補正して現在の吸気充填効率に対応した目標位相である減筒運転用補正目標位相(新たな減筒運転における目標位相、最終的な目標位相)にする補正制御を行う。この補正制御の実施に伴う排気弁51の位相の変化量は、先に行われる位相の変化量(減筒運転用目標位相に向けた位相の変更量)に比べて少量であるため、油路70の油圧変動は小さい。
尚、切替用目標油圧に向けて油路70の油圧が昇圧されている間に、エンジンの運転状態が変化しなかった場合には、前記の補正制御は省略される。
一方、吸気用可変バルブタイミング機構20は、電動モータ191により駆動される。そのため、吸気用可変バルブタイミング機構20による吸気弁41の位相の変化と、油路70の油圧の昇圧操作とは、互いに影響を与えない。そこで、本実施形態では、準備行程において、油路70の油圧の昇圧操作の間であっても、吸気用可変バルブタイミング機構20によって吸気弁41の位相が目標位相となるように変更される。
ここで、図8に示すように、吸排気弁41,51の各位相を進角側に移行する場合において、この移行中の吸排気弁41,51のオーバーラップ量を確保するため、排気弁51の進角作動速度を吸気弁41の進角作動速度よりも遅くしても良い。この場合、吸排気弁41,51の作動速度を油圧及び油温に基づき調整する。
一方、全筒運転実行条件が成立すると、可変バルブタイミング機構制御部112は、減筒運転用の目標位相からこれよりも進角側の全筒運転用の目標位相に向けて、吸気弁41および排気弁51の各位相を徐々に進角側にする(図8参照)。この進角制御は、全筒運転実行条件が成立したほぼ直後から開始される。
(スロットルバルブ制御部)
スロットルバルブ制御部115は、目標図示トルクが実現されるように、アクチュエータ26を制御してスロットルバルブ25の開度を変更する。
スロットルバルブ制御部115は、目標図示トルクが実現されるように、アクチュエータ26を制御してスロットルバルブ25の開度を変更する。
減筒運転時は、稼動する気筒数が減少する。そのため、減筒運転時は、稼動している気筒(第2,第3気筒)の1気筒当りの出力が全筒運転時における1気筒当りの出力よりも大きくなるように、稼働している気筒の空気充填効率を全筒運転時よりも大きくする必要がある。そこで、前記のように、準備行程において、スロットルバルブ制御部115は、スロットルバルブ25の開度を増大させて、各燃焼室11に導入される吸気の量を増大させる(各気筒の空気量を増大させる)空気量増大制御を実施する。具体的には、このとき、スロットルバルブ25の開度は徐々に増大される。
本実施形態では、前記のように、準備行程において、排気用可変バルブタイミング機構20による補正制御の終了後(補正制御が実施されない場合は、油圧の上昇操作の終了後)に、空気量増大制御が開始されてスロットルバルブ25の開度の増加操作が開始される。
一方、減筒運転から全筒運転に移行する時は、各気筒の空気充填効率を減筒運転時の値よりも低減する必要がある。そこで、スロットルバルブ制御部115は、全筒運転実行条件が成立すると、スロットルバルブ25の開度を低減させて、各燃焼室11に導入される吸気の量を減少させる(各気筒の空気量を減少させる)空気量減少制御を実施する。
前記のように、スロットルバルブ25の開度変更を行っても、即座には各気筒の空気充填効率は低減しないため、空気量減少制御を開始してもエンジントルクが要求値よりも大きくなるおそれがある。これに対して、本実施形態では、全筒運転が成立すると、空気量減少制御を実施するとともに、点火時期を後述する基本点火時期よりも遅角させる制御を実施する。なお、空気量減少制御は、可変バルブタイミング機構19,20による吸気弁41および排気弁51の位相を進角させる制御の開始と同時に開始される。
(点火時期制御部)
次に、点火時期制御部113について説明する。
次に、点火時期制御部113について説明する。
点火時期制御部113は、車両の運転状態に応じて点火時期を決定し、点火プラグ13に指令を出力する。点火時期制御部113は、エンジン回転数と、エンジン回転数およびアクセル開度等から算出されるエンジン負荷と、点火時期との関係を表すマップ(図示略)を予め記憶している。点火時期制御部113は、このマップから点火時期を抽出し、抽出された点火時期を吸気圧センサ97により検出された吸気圧力に基づいて補正して基本点火時期を設定する。
点火時期のマップは、全筒運転用と減筒運転用の2種類用意されている。全筒運転時は、点火時期制御部113は、全筒運転用のマップからエンジン回転数とエンジン負荷とに対応する点火時期を抽出し、抽出した点火時期を吸気圧力によって補正して基本点火時期を設定する。減筒運転時は、点火時期制御部113は、減筒運転用のマップからエンジン回転数とエンジン負荷とに対応する点火時期を抽出し、抽出した点火時期を吸気圧力によって補正して基本点火時期を設定する。
基本点火時期は、各気筒の空気充填効率が目標の空気充填効率に制御されている状態で要求されるエンジントルクつまりエンジン負荷を実現できる点火時期に設定される。そのため、通常の全筒運転時であって各気筒の空気充填効率が目標の空気充填効率に制御されているときは、点火時期は全筒運転用の基本点火時期とされる。また、通常の減筒運転時であって各気筒の空気充填効率が目標の空気充填効率に制御されているときは、点火時期は減筒運転用の基本点火時期とされる。
ただし、減筒運転への移行時は、前記の空気量増大制御が実施される。そのため、空気量増大制御の実施中は、各気筒の空気充填効率が、全筒運転時の目標の空気充填効率よりも大きくなる。従って、空気量増大制御の実施中に、仮に点火時期が全筒運転用の基本点火時期にされると、エンジントルクが要求値よりも大きくなる。そこで、点火時期制御部113は、空気量増大制御の実施中は、点火時期を、基本点火時期(全筒運転用の基本点火時期)よりも遅角する。この点火時期の遅角制御は、減筒運転が開始すると停止される。減筒運転が開始すると、点火時期は、減筒運転用の基本点火時期とされる。
一方、点火時期制御部113は、全筒運転実行条件が成立したときは、前記のように、点火時期を基本点火時期よりも遅角する。具体的には、点火時期制御部113は、全筒運転実行条件が成立すると、点火時期を基本点火時期に対して比較的大きく遅角させる。その後、点火時期制御部113は、空気量減少制御の実施によって各気筒の空気量充填効率が減少していくのに伴って、点火時期を徐々に進角させる。この進角制御は、各気筒の空気充填効率が全筒運転時の目標の空気充填効率に到達すると停止される。その後は、点火時期は、全筒運転用の基本点火時期とされる。
減筒運転への移行時および全筒運転実行条件が成立した後の、基本点火時期に対する点火時期の遅角量は、各気筒のシリンダボア9内の内部EGRガスの量に反比例するように設定されている。
(燃料制御部)
燃料制御部114は、運転状態に応じてインジェクタ12から噴射される燃料の量である燃料噴射量及びインジェクタ12による燃料噴射のタイミングを決定し、インジェクタ12に噴射実行指令を出力する。燃料制御部114は、目標図示トルクに対応する予め設定された燃料噴射マップ(図示略)を記憶しており、このマップに基づき燃料噴射量及びタイミングを設定する。
燃料制御部114は、運転状態に応じてインジェクタ12から噴射される燃料の量である燃料噴射量及びインジェクタ12による燃料噴射のタイミングを決定し、インジェクタ12に噴射実行指令を出力する。燃料制御部114は、目標図示トルクに対応する予め設定された燃料噴射マップ(図示略)を記憶しており、このマップに基づき燃料噴射量及びタイミングを設定する。
また、燃料制御部114は、全筒運転か減筒運転かに応じて休止気筒(第1,第4気筒)のインジェクタ12の制御を切り替える。つまり、全筒運転時、燃料制御部114は、第1~第4気筒のインジェクタ12を駆動して燃料噴射を実行する。一方、燃料制御部114は、減筒運転時、休止気筒(第1,第4気筒)のインジェクタ12による燃料噴射を禁止する。
(弁停止機構制御部)
次に、弁停止機構制御部116について説明する。
次に、弁停止機構制御部116について説明する。
弁停止機構制御部116は、全筒運転か減筒運転かに応じて、排気側第2方向切替バルブ85、吸気側第2方向切替バルブ86およびリニアソレノイドバルブ89の制御を切り替える。
弁停止機構制御部116は、全筒運転時、排気側第2方向切替バルブ85および吸気側第2方向切替バルブ86をオフ状態にする。これにより、第1~第4気筒の吸排気弁41,51の開閉動作は可能となる。一方、弁停止機構制御部116は、減筒運転時、リニアソレノイドバルブ89を駆動して前記のように油路70の油圧を切替用目標油圧まで上昇させるとともに、排気側第2方向切替バルブ85および吸気側第2方向切替バルブ86をオン状態にして、休止気筒のHLA14に供給される油圧を保持油圧に保持する。これにより休止気筒の吸排気弁41,51は閉弁状態に維持される。
弁停止機構制御部116は、減筒運転切替時、各気筒の空気充填効率が減筒運転時における目標値に到達した後、排気側第2方向切替バルブ85をオン状態としてHLA14に休止気筒の排気弁51を閉弁保持させる。そして、弁停止機構制御部116は、排気弁51の閉弁保持の後、吸気側第2方向切替バルブ86をオン状態にしてHLA14に吸気弁41を閉弁保持させる。
また、弁停止機構制御部116は、全筒運転切替時、排気側第2方向切替バルブ85をオフ状態にして休止気筒の排気弁51を開弁可能とする。そして、弁停止機構制御部116は、休止気筒の排気弁51の開弁後、吸気側第2方向切替バルブ86をオフ状態にして休止気筒の吸気弁41を開弁可能とする。
これにより、全筒運転切替時、休止気筒の吸気弁41と排気弁51のうち排気弁51が吸気弁41よりも先に開弁される。
(排気シャッタ弁制御部)
次に、排気シャッタ弁制御部117について説明する。
次に、排気シャッタ弁制御部117について説明する。
排気シャッタ弁制御部117は、減筒運転時、排気シャッタ弁35を閉弁側(排気の流量が減少する側)に制御する。排気シャッタ弁35が閉じ側にされると、前記のように、排気管34を流れる排気ガスの流量は減少する。一方、排気シャッタ弁制御部117は、全筒運転時、排気通路130のうち排気シャッタ弁35の上流側の圧力が設定圧力(例えば、排気弁51のシール圧)以下になるように排気シャッタ弁35を制御する。
減筒運転時に排気シャッタ弁35を閉弁側に制御するのは、騒音を低減するためである。具体的には、減筒運転時と全筒運転時とでは、稼働気筒の数が異なることで、排気通路130内を通過する排気ガスの脈動の周波数が異なる。従って、減筒運転時には、排気通路内で生じる振動が大きくなって騒音が増大するおそれがある。これに対して、前記のように、減筒運転時に排気シャッタ弁35を閉弁側にして排気通路を流れる排気ガスの量を低減すれば、排気通路内での排気ガスの振動ひいては騒音を低減できる。
次に、図10のフローチャート及び図11のタイムチャートに基づいて、ECU110によって実施される制御処理内容について説明する。
ここでは、減筒運転用の基本点火時期と全筒運転用の基本点火時期とが同じ場合について説明する。
尚、Si(i=1,2…)は、各処理のためのステップを示し、t1~t12は、タイムチャートにおける時点を示している。
図10のフローチャートに示すように、まず、ECU110は、ステップS1にて、各センサ90~100の出力値、各マップ及び各種情報を読み込み、ステップS2に移行する。
ステップS2では、減筒運転実行条件が成立したか否かを判定する。前記のように、本実施形態では、マップMの減筒運転領域A2でエンジンが運転されていると、減筒運転実行条件が成立したと判定される。
ステップS2の判定の結果、減筒運転実行条件が成立していると判定された場合(t1)、減筒運転の準備行程を実行する。まず、ステップS3において、吸排気弁41,51の遅角操作が行われる。具体的には、吸排気弁41、52が徐々に遅角するように可変バルブタイミング機構19、20が制御される。次に、ステップS4に移行する。
ステップS4では、排気弁51の位相が、減筒運転用目標位相(減筒運転用の目標の位相)に到達したか否かを判定する。
ステップS4の判定の結果、排気弁51の位相が減筒運転用目標位相に到達した場合(t2)、ステップS5に進み、リニアソレノイドバルブ89を駆動して(オン状態にして)、油路70の油圧を昇圧する。次にステップS6に移行する。
ここで、排気弁51の位相が減筒運転用目標位相に到達した時点t2で、排気用可変バルブタイミング機構20への油圧供給は停止される。そのため、排気弁51の位相変更に伴う油圧変動が抑制される。
一方、ステップS4の判定の結果、排気弁51の位相が減筒運転用目標位相に到達していない場合、ステップS3に戻って排気弁51の位相を遅角する操作を継続する。
ステップS6では、油路70の油圧が切替用目標油圧を超えたか否か判定する。
ステップS6の判定の結果、油路70の油圧が切替用目標油圧を超えた場合(t3)、ステップS7に進み、油路70の油圧を昇圧している期間中においてエンジンの運転状態に変化があったか否か判定する。
一方、ステップS6の判定の結果、油路70の油圧が切替用目標油圧を超えていない場合、S5に戻ってリニアソレノイドバルブ89の駆動(オン状態)を継続し、油路70の油圧の昇圧を継続する。
ステップS7の判定の結果、油路70の油圧の昇圧期間中にエンジンの運転状態に変化があった場合は、減筒運転用目標位相が現在のエンジンの運転状態に適合していない。そこで、この場合は、ステップS8に進み、排気側第1方向切替バルブ84を更に作動させて排気用可変バルブタイミング機構20による排気弁51の位相の補正制御を実行する。ステップS8の後は、S9に移行する。
ステップS9では、排気弁51の位相が減筒運転用補正目標位相に到達したか否か判定する。
ステップS9の判定の結果、排気弁51の位相が減筒運転用補正目標位相に到達した場合(t4)、ステップS10に移行する。
一方、ステップS9の判定の結果、排気弁51の位相が減筒運転用補正目標位相に到達していない場合、ステップS8に戻って排気弁51の可変バルブタイミング機構補正制御を継続する。
ステップS7の判定の結果、油路70の油圧の昇圧期間中にエンジンの運転状態に変化がない場合、減筒運転用目標位相が現在のエンジンの運転状態に適合している。そこで、この場合は、ステップS10に移行する。
ステップS10では、スロットルバルブ25の開度を増加するスロットルバルブ増加操作(空気量増加制御)と点火時期を遅角する点火時期遅角制御の実行を開始する(t4)。その後、ステップS11に移行する。
ステップS11では、各気筒の空気充填効率が減筒運転用の空気充填効率の目標値である目標空気充填効率を超えたか否か判定する。
ステップS11の判定の結果、空気充填効率が減筒運転用の目標空気充填効率を超えた場合(t5)、吸気側第2方向切替バルブ86及び排気側第2方向切替バルブ85をオンにして、休止気筒(第1、第4気筒)の吸排気弁41,51を閉弁保持状態にし(S12)、その後、ステップS13に移行する。
前記のように、排気弁51の閉弁保持操作は、吸気弁41の閉弁保持操作よりも若干早く開始される。
ステップS11の判定の結果、空気充填効率が減筒運転時における目標空気充填効率を超えていない場合、ステップS10に戻ってスロットルバルブ増加操作を継続する。
ステップS13では、休止気筒の吸排気弁41,51の閉弁保持の完了後、第1、第4気筒の燃料噴射を禁止すると共に、点火時期遅角制御を禁止して点火時期を減筒運転用の基本点火時期にする。ここでは、前記のように、減筒運転時と全筒運転時とで基本点火時期が同一とされており、点火時期は元に戻される(t6)。その後、S14に移行する。
この時点で、HLA14に供給される油圧を切替用目標油圧から閉弁保持油圧(保持油圧)に調整する。減筒運転の開始は、油圧の追従性によりt7から開始される。それ故、t5~t7間は減筒運転への移行期間である。
ステップS14では、排気シャッタ弁35を閉弁側に制御して、排気ガスの流量を減少させる。その後、フラグを1に変更し(S15)、リターンする。このフラグは、全筒運転時に0となり、減筒運転時に1となる。
マップMの減筒運転領域A2でエンジンが運転されていないときは、ステップS2において減筒運転実行条件の成立が判定されない。この場合は、ステップS16に移行し、フラグが1か否か判定する。
ステップS16の判定の結果、フラグが1ではない場合、前の運転状態が全筒運転であるため、全筒運転を継続実行して(S24)、リターンする。
一方、ステップS16の判定の結果、フラグが1の場合、減筒運転中に全筒運転実行条件が成立したことになる(t8)。ステップS16の判定の結果、フラグが1の場合はステップS17に移行する。
ステップS17では、第1、第4気筒の燃料噴射禁止を解除すると共に点火時期遅角制御禁止を解除し(t9)、ステップS18に移行する。
点火時期遅角制御の禁止が解除されることで、休止気筒の点火時期の指令値は、一旦、減筒運転が開始したときの点火時期に戻される。ただし、第1、第4気筒の吸排気弁41,51の閉弁保持解除が完了していないため、インジェクタ12及び点火プラグ13は実際にはまだ作動しない。
ステップS18では、排気シャッタ弁制御を終了し、ステップS19に移行する。ステップS19では、休止気筒の吸排気弁41,51の閉弁操作を解除する。その後、ステップS20にて、リニアソレノイドバルブ89をオフ状態に操作する。ステップS20の後はステップS21に移行する。なお、排気弁51の開弁操作は、吸気弁41の開弁操作よりも早く開始される。
ステップS21では、HLA14に供給される油圧が閉弁保持油圧から全筒運転時の目標油圧まで降下したか否か判定する。
ステップS21の判定の結果、HLA14に供給される油圧が閉弁保持油圧から全筒運転時の目標油圧まで降下していない場合、S20にリターンしてリニアソレノイドバルブ89のオフ状態を継続し、降圧を継続する。
一方、ステップS21の判定の結果、HLA14に供給される油圧が閉弁保持油圧から全筒運転時の目標油圧まで降下した場合(t10)、ステップS22に移行する。HLA14に供給される油圧が閉弁保持油圧から全筒運転時の目標油圧まで降下すると、第1、第4気筒の吸排気弁41,51は開閉可能とされて、全筒運転が可能となる。それ故、全筒運転の開始は、第1、第4気筒の吸排気弁41,51の閉弁操作解除が完了したt10から開始される。
ステップS22では、スロットルバルブ25の開度を徐々に低減するスロットルバルブ低減操作(空気量減少制御)の実行が開始される。この操作によって、図11に示すように、HLA14に供給される油圧が全筒運転時の目標油圧まで降下した時刻t9後、各気筒の空気充填効率は全筒運転用の目標値に向けて徐々に減少していく。なお、休止気筒(第1、第4気筒)の空気充填効率は、吸排気弁41、51が開弁されることで一旦増大する。
また、ステップS22では、吸排気弁41、51の位相の進角操作が行われる。具体的には、吸排気弁41、51の位相が減筒運転用の目標位相から全筒運転用の目標位相に向けて徐々に進角するように可変バルブタイミング機構19、20が制御される。
また、ステップS22では、休止気筒(第1、第4気筒)の燃料噴射が開始されるとともに休止気筒(第1、第4気筒)の点火が開始される。このとき、点火時期は、全筒運転用の基本点火時期よりも遅角側の時期とされる(図11の例では、減筒運転切替時の点火時期と同じ時期とされる)。その後、点火時期は、全筒運転用の基本点火時期に向けて徐々に進角される。
前記の空気量減少制御および吸排気弁41、51の進角制御によって、時刻t11にて、スロットルバルブ25の開度が低減される制御が停止し、時刻t12にて、吸排気弁41、51の位相が全筒運転用目標位相に到達するとともに、各気筒の空気充填効率が全筒運転用の目標値に空気充填効率に到達する。
ステップS22の後はステップS23に移行する。ステップS23では、フラグを0に変更し、リターンする。
次に、上記エンジンの制御装置の作用、効果について説明する。
本制御装置によれば、ECU110は、減筒運転実行条件が成立したとき、排気用可変バルブタイミング20により排気弁51の位相変更を実行させる。そのため、燃焼ガスを高膨張化してトルク増加を図ることができ、ポンピングロスの低減を図ることができる。
ECU110は、減筒運転実行条件が成立したとき、排気用可変バルブタイミング20により排気弁51の位相変更を実行させた後、弁停止機構14bにより休止気筒(第1,第4気筒)の吸排気弁41,51を閉弁状態に移行させる。そのため、排気用可変バルブタイミング20の油圧消費に起因して弁停止機構14bに供給される油圧が低下あるいは変動するのを抑制することができる。
即ち、排気用可変バルブタイミング20の作動に起因した油圧変動の抑制により弁停止機構14bの切替時間を短縮化できる。従って、減筒運転切替時間を短くしつつ燃費改善効果とエンジントルク安定化効果とを確保することができる。
ECU110は、減筒運転実行条件が成立したとき、排気用可変バルブタイミング20により排気弁51の位相を減筒運転用目標位相(減筒運転切替用目標位相)に変更した後、弁停止機構14bによる休止気筒の吸排気弁41,51の閉弁状態への移行のための油圧調整(油路70の油圧の昇圧)を開始する。そのため、排気弁51の位相をより確実に減筒運転切替用目標位相に変更した状態で減筒運転に切り替えることができる。
ECU110は、弁停止機構14bによる休止気筒の吸排気弁41,51の閉弁状態への移行のための油圧調整中、排気用可変バルブタイミング20による排気弁51の位相変更を制限している。これにより、排気用可変バルブタイミング20によって油圧が消費されないため、弁停止機構14bの油圧変動を確実に抑制することができる。
特に、本実施形態では、弁停止機構14bによる休止気筒の吸排気弁41,51の閉弁状態への移行のための油圧調整中、排気用可変バルブタイミング20に対する油圧の供給を停止している。そのため、弁停止機構14bの油圧変動をより確実に抑制することができる。
ECU110は、弁停止機構14bによる休止気筒の吸排気弁41,51の閉弁状態への移行のための油圧調整終了後、排気用可変バルブタイミング20により排気弁51の位相を減筒運転における目標位相に変更する。そのため、弁停止機構14bの油圧調整中に必要になった位相変更を目標位相にして排気弁51の位相をエンジンの運転状態に応じたより適切な移送にすることができ、燃費改善効果とエンジントルク安定化効果とを一層高くすることができる。
ECU110は、弁停止機構14bによる休止気筒の吸排気弁41,51の閉弁状態への移行のための油圧調整中、油圧式の排気用可変バルブタイミング20による排気弁51の位相変更を制限する一方、電動式の吸気用可変バルブタイミグ19による吸気弁41の位相変更を許可する。そのため、弁停止機構14bの油圧に影響を与えることなく、吸排気弁41,51の位相を目標位相に設定することができる。つまり、吸気弁41の位相を電動式の可変バルブタイミグ19で変更することで、吸気弁41の位相を早期に目標位相に設定することができ、油圧式の可変バルブタイミグ20を用いて排気弁51の位相を目標位相に設定することができる。
エンジン1に供給される空気量を調整可能なスロットルバルブ制御部115を有し、ECU110は、減筒運転実行条件が成立したとき、VVT20により排気弁51の位相変更を実行させた後、弁停止機構14bにより休止気筒の吸排気弁41,51の閉弁状態への移行のための油圧調整を開始し、弁停止機構14bに供給される油圧が切替用目標油圧に達した後、スロットルバルブ制御部115による空気量調整(スロットルバルブ25の開度の増大)を開始する。そのため、各気筒の吸気量が目標の値に到達するまでの時間を短くでき、燃費悪化を抑制することができる。
ECU110は、弁停止機構14bに供給される油圧(油路70の油圧)が切替用目標油圧に達した後、排気用可変バルブタイミング20により排気弁51の位相を減筒運転における目標値である減筒運転用目標位相に変更し、排気弁51の位相変更後、スロットルバルブ25による空気量調整を開始する。そのため、弁停止機構14bの油圧調整中に必要になった位相変更が考慮されて排気弁51の位相がさらに補正されるため、排気弁51の位相をより適切な移送にすることができ、燃費改善効果とエンジントルク安定化効果とを一層高くすることができる。
エンジン1の点火時期を調整する点火時期制御部114を有し、ECU110は、スロットルバルブ25により空気量調整するとき、点火時期制御部114によって点火時期を遅角させる。そのため、減筒運転切替時における空気量増加に伴うトルクショックを効果的に抑制することができる。
次に、前記実施形態を部分的に変更した変形例について説明する。
1〕前記実施形態においては、直列4気筒ガソリンエンジンの例を説明したが、例えば、6気筒エンジンやV型エンジン等エンジンの型式に制限されること無く適用することが可能であり、特に直列4気筒ガソリンエンジンに限られるものではない。
1〕前記実施形態においては、直列4気筒ガソリンエンジンの例を説明したが、例えば、6気筒エンジンやV型エンジン等エンジンの型式に制限されること無く適用することが可能であり、特に直列4気筒ガソリンエンジンに限られるものではない。
また、4気筒のうち半数の2気筒を休止させる減筒運転を行うエンジンの例を説明したが、休止気筒の数を任意に設定しても良い。
2〕前記実施形態においては、吸気弁を電動式VVT、排気弁を油圧式VVTの例を説明したが、少なくとも一方に油圧式VVTを備えれば良く、吸気弁を油圧式VVT、排気弁を電動式VVTにしても良く、吸排気弁共に油圧式VVTにしても良く、電動式VVTを省略することも可能である。
3〕その他、当業者であれば、本発明の趣旨を逸脱することなく、前記実施形態に種々の変更を付加した形態や各実施形態を組み合わせた形態で実施可能であり、本発明はそのような変更形態も包含するものである。
なお、上述した具体的実施形態には以下の構成を有する発明が主に含まれている。
エンジンの制御装置は、複数の気筒と、複数の気筒のうち一部の気筒である休止気筒の稼働を休止する減筒運転と、全ての気筒が稼働される全筒運転とを切替可能なエンジンに適用される制御装置において、減筒運転時に前記休止気筒の吸気弁及び排気弁を閉弁保持する油圧式弁停止機構と、エンジンの吸気弁又は排気弁の位相を変更可能な油圧式位相制御機構と、前記油圧式弁停止機構及び油圧式位相制御機構を制御する制御手段とを備え、前記制御手段は、減筒運転を実行する条件である減筒運転実行条件が成立したとき、前記油圧式位相制御機構により吸気弁又は排気弁の位相変更を実行させた後、前記油圧式弁停止機構により前記休止気筒の吸気弁及び排気弁を閉弁保持状態に移行させる。
このエンジンの制御装置では、制御手段は、前記減筒運転実行条件が成立したとき、前記油圧式位相制御機構により吸気弁又は排気弁の位相変更を実行させるため、燃焼ガスを高膨張化してトルク増加を図ることができ、ポンピングロスの低減を図ることができる。
制御手段は、前記減筒運転実行条件が成立したとき、前記油圧式位相制御機構により吸気弁又は排気弁の位相変更を実行させた後、前記油圧式弁停止機構により前記休止気筒の吸気弁及び排気弁を閉弁状態に移行させるため、油圧式弁停止機構に供給される油圧が油圧式位相制御機構の油圧消費に起因して低下するのを抑制することができる。
即ち、油圧式位相制御機構の作動に起因した油圧低下(変動)の抑制により油圧式弁停止機構の切替時間が短縮化される。そのため、減筒運転切替時間を抑制しつつ燃費改善効果とエンジントルク安定化効果とを確保することができる。
また、前記制御手段は、前記減筒運転実行条件が成立したとき、前記油圧式位相制御機構により吸気弁又は排気弁の位相を減筒運転切替用目標位相に変更した後、前記油圧式弁停止機構による前記休止気筒の吸気弁及び排気弁の閉弁保持状態への移行のための油圧調整を開始する、のが好ましい。
この構成によれば、吸気弁又は排気弁の位相を減筒運転切替用目標位相に変更した状態で減筒運転に切り替えることができる。
また、前記制御手段は、前記油圧式弁停止機構による前記休止気筒の吸気弁及び排気弁の閉弁状態への移行のための油圧調整中、前記油圧式位相制御機構による吸気弁又は排気弁の位相変更を制限する、のが好ましい。
この構成によれば、油圧式位相制御機構によって油圧が消費されないため、油圧式弁停止機構の油圧変動を確実に抑制することができる。
前記制御手段は、前記油圧式弁停止機構による前記休止気筒の吸気弁及び排気弁の閉弁保持状態への移行のための油圧調整中、前記油圧式位相制御機構への油圧の供給を停止して当該油圧式位相制御機構による吸気弁又は排気弁の位相変更を制限する、のが好ましい。
このようにすれば、油圧式弁停止機構の油圧変動をより確実に抑制することができる。
前記制御手段は、前記油圧式弁停止機構による前記休止気筒の吸気弁及び排気弁の閉弁状態への移行のための油圧調整終了後、前記油圧式位相制御機構により吸気弁又は排気弁の位相を減筒運転における目標位相に変更する、のが好ましい。
この構成によれば、油圧式弁停止機構の油圧調整中に必要になった位相変更が考慮されて吸気弁又は排気弁の位相が変更されるため、これらの位相を高精度に制御することができる。従って、燃費改善効果とエンジントルク安定化効果とを一層高くすることができる。
前記構成において、各気筒の排気弁の位相を変更可能な前記油圧式位相制御機構と、各気筒の吸気弁の位相を変更可能な電動式位相制御機構とを備え、前記制御手段は、前記油圧式弁停止機構による前記休止気筒の吸気弁及び排気弁の閉弁保持状態への移行のための油圧調整中、前記油圧式位相制御機構による排気弁の位相変更を制限する一方、前記電動式位相制御機構による吸気弁の位相変更を許可する、のが好ましい。
このようにすれば、吸気弁の位相および排気弁の位相を適切に制御しつつ、油圧式弁停止機構の油圧変動をより確実に抑制することができる。
エンジンに供給される空気量を調整可能な空気量調整手段を有し、前記制御手段は、前記減筒運転実行条件が成立したとき、前記油圧式位相制御機構により吸気弁又は排気弁の位相変更を実行させた後、前記油圧式弁停止機構による前記休止気筒の吸気弁及び排気弁の閉弁状態への移行のための油圧調整を開始し、前記油圧式弁停止機構に通じる油路に供給される油圧が所定の目標油圧に達した後、前記空気量調整手段による空気量調整を開始する、のが好ましい。
この構成によれば、各気筒の吸気量を所定量まで増大させる時間を短くでき、燃費悪化を抑制することができる。
前記制御手段は、前記油圧式弁停止機構に通じる油路に供給される油圧が所定の目標油圧に達した後、前記油圧式位相制御機構により吸気弁又は排気弁の位相を減筒運転における目標位相に変更し、前記吸気弁又は排気弁の位相変更後、前記空気量調整手段による空気量調整を開始する、のが好ましい。
この構成によれば、油圧式弁停止機構の油圧調整中に必要になった位相変更が考慮されて吸気弁又は排気弁の位相が変更されるため、これらの位相を高精度に制御することができる。従って、燃費改善効果とエンジントルク安定化効果とを一層高くすることができる。
エンジンの点火時期を調整する点火時期調整手段を有し、前記制御手段は、前記空気量調整手段により空気量調整するとき、前記点火時期調整手段によって点火時期を遅角させることを特徴としている。
この構成によれば、減筒運転切替時における空気量増加に伴うトルクショックを効果的に抑制することができる。
Claims (9)
- 複数の気筒と、複数の気筒のうち一部の気筒である休止気筒の稼働を休止する減筒運転と、全ての気筒が稼働される全筒運転とを切替可能なエンジンに適用される制御装置において、
減筒運転時に前記休止気筒の吸気弁及び排気弁を閉弁保持する油圧式弁停止機構と、
エンジンの吸気弁又は排気弁の位相を変更可能な油圧式位相制御機構と、
前記油圧式弁停止機構及び油圧式位相制御機構を制御する制御手段とを備え、
前記制御手段は、減筒運転を実行する条件である減筒運転実行条件が成立したとき、前記油圧式位相制御機構により吸気弁又は排気弁の位相変更を実行させた後、前記油圧式弁停止機構により前記休止気筒の吸気弁及び排気弁を閉弁保持状態に移行させることを特徴とする、エンジンの制御装置。 - 前記制御手段は、前記減筒運転実行条件が成立したとき、前記油圧式位相制御機構により吸気弁又は排気弁の位相を減筒運転切替用目標位相に変更した後、前記油圧式弁停止機構による前記休止気筒の吸気弁及び排気弁の閉弁保持状態への移行のための油圧調整を開始することを特徴とする、請求項1に記載のエンジンの制御装置。
- 前記制御手段は、前記油圧式弁停止機構による前記休止気筒の吸気弁及び排気弁の閉弁保持状態への移行のための油圧調整中、前記油圧式位相制御機構による吸気弁又は排気弁の位相変更を制限することを特徴とする、請求項1または2に記載のエンジンの制御装置。
- 前記制御手段は、前記油圧式弁停止機構による前記休止気筒の吸気弁及び排気弁の閉弁保持状態への移行のための油圧調整中、前記油圧式位相制御機構に対する油圧の供給を停止して当該油圧式位相制御機構による吸気弁又は排気弁の位相変更を制限することを特徴とする、請求項3に記載のエンジンの制御装置。
- 前記制御手段は、前記油圧式弁停止機構による前記休止気筒の吸気弁及び排気弁の閉弁状態への移行のための油圧調整終了後、前記油圧式位相制御機構により吸気弁又は排気弁の位相を減筒運転における目標位相に変更することを特徴とする、請求項3または4に記載のエンジンの制御装置。
- 各気筒の排気弁の位相を変更可能な前記油圧式位相制御機構と、
各気筒の吸気弁の位相を変更可能な電動式位相制御機構とを備え、
前記制御手段は、前記油圧式弁停止機構による前記休止気筒の吸気弁及び排気弁の閉弁保持状態への移行のための油圧調整中、前記油圧式位相制御機構による排気弁の位相変更を制限する一方、前記電動式位相制御機構による吸気弁の位相変更を許可することを特徴とする、請求項3~5のいずれか1項に記載のエンジンの制御装置。 - エンジンに供給される空気量を調整可能な空気量調整手段を有し、
前記制御手段は、前記減筒運転実行条件が成立したとき、前記油圧式位相制御機構により吸気弁又は排気弁の位相変更を実行させた後、前記油圧式弁停止機構による前記休止気筒の吸気弁及び排気弁の閉弁状態への移行のための油圧調整を開始し、前記油圧式弁停止機構に通じる油路に供給される油圧が所定の目標油圧に達した後、前記空気量調整手段による空気量調整を開始することを特徴とする請求項1~6の何れか1項に記載のエンジンの制御装置。 - 前記制御手段は、前記油圧式弁停止機構に通じる油路に供給される油圧が所定の目標油圧に達した後、前記油圧式位相制御機構により吸気弁又は排気弁の位相を減筒運転における目標位相に変更し、前記吸気弁又は排気弁の位相変更後、前記空気量調整手段による空気量調整を開始することを特徴とする請求項7に記載のエンジンの制御装置。
- エンジンの点火時期を調整する点火時期調整手段を有し、
前記制御手段は、前記空気量調整手段により空気量調整するとき、前記点火時期調整手段によって点火時期を遅角させることを特徴とする請求項7又は8に記載のエンジンの制御装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP18771823.4A EP3578783B1 (en) | 2017-03-23 | 2018-03-19 | Engine control device |
US16/493,303 US11131253B2 (en) | 2017-03-23 | 2018-03-19 | Control device for engine |
CN201880015628.5A CN110382845A (zh) | 2017-03-23 | 2018-03-19 | 发动机的控制装置 |
JP2019507652A JP6791360B2 (ja) | 2017-03-23 | 2018-03-19 | エンジンの制御装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-057411 | 2017-03-23 | ||
JP2017057411 | 2017-03-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018173990A1 true WO2018173990A1 (ja) | 2018-09-27 |
Family
ID=63584478
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/010696 WO2018173990A1 (ja) | 2017-03-23 | 2018-03-19 | エンジンの制御装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US11131253B2 (ja) |
EP (1) | EP3578783B1 (ja) |
JP (1) | JP6791360B2 (ja) |
CN (1) | CN110382845A (ja) |
WO (1) | WO2018173990A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019138205A (ja) * | 2018-02-09 | 2019-08-22 | トヨタ自動車株式会社 | エンジン制御装置 |
CN115217649A (zh) * | 2022-07-22 | 2022-10-21 | 一汽解放汽车有限公司 | 一种发动机起停控制方法及车辆 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115992760B (zh) * | 2023-02-21 | 2023-07-14 | 吉林大学 | 基于液压可变气门机构的可变排量控制方法和系统 |
US12055074B1 (en) * | 2023-11-13 | 2024-08-06 | GM Global Technology Operations LLC | Vehicle system |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010001750A (ja) * | 2008-06-18 | 2010-01-07 | Toyota Motor Corp | 内燃機関の制御装置 |
WO2014156012A1 (ja) * | 2013-03-29 | 2014-10-02 | マツダ株式会社 | 多気筒エンジンの制御装置 |
JP2015194132A (ja) * | 2014-03-31 | 2015-11-05 | マツダ株式会社 | エンジンの制御装置 |
JP2015203370A (ja) * | 2014-04-15 | 2015-11-16 | マツダ株式会社 | エンジンの制御装置 |
JP2016050510A (ja) | 2014-08-29 | 2016-04-11 | マツダ株式会社 | エンジンの制御装置 |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4058909B2 (ja) * | 2001-01-22 | 2008-03-12 | 日産自動車株式会社 | 内燃機関の油圧制御装置 |
JP2002339764A (ja) * | 2001-03-13 | 2002-11-27 | Komatsu Ltd | ディーゼルエンジン |
US7308872B2 (en) * | 2004-12-30 | 2007-12-18 | Delphi Technologies, Inc. | Method and apparatus for optimized combustion in an internal combustion engine utilizing homogeneous charge compression ignition and variable valve actuation |
JP2011012610A (ja) * | 2009-07-02 | 2011-01-20 | Toyota Motor Corp | 可変気筒内燃機関の制御装置 |
US9194261B2 (en) * | 2011-03-18 | 2015-11-24 | Eaton Corporation | Custom VVA rocker arms for left hand and right hand orientations |
US8047065B2 (en) * | 2009-07-22 | 2011-11-01 | GM Global Technology Operations LLC | Diagnostic system for valve actuation camshaft driven component compensation |
US9222419B2 (en) * | 2009-10-27 | 2015-12-29 | Toyota Jidosha Kabushiki Kaisha | Control apparatus for internal combustion engine including valve stop mechanism |
US8887692B2 (en) * | 2011-02-14 | 2014-11-18 | GM Global Technology Operations LLC | Systems and methods for decreasing torque fluctuations during cylinder deactivation and reactivation |
US8789502B2 (en) * | 2011-02-16 | 2014-07-29 | Cummins Intellectual Property, Inc. | Variable valve actuation system and method using variable oscillating cam |
US8621917B2 (en) * | 2011-12-09 | 2014-01-07 | Delphi Technologies, Inc. | Diagnostic for two-mode variable valve activation device |
JP6217236B2 (ja) * | 2013-08-22 | 2017-10-25 | マツダ株式会社 | 多気筒エンジンの制御装置及び制御方法 |
JP6123575B2 (ja) * | 2013-08-22 | 2017-05-10 | マツダ株式会社 | 多気筒エンジンの制御装置 |
GB2520705B (en) * | 2013-11-28 | 2020-04-08 | Ford Global Tech Llc | An engine valve deactivation system |
JP6135580B2 (ja) * | 2014-03-31 | 2017-05-31 | マツダ株式会社 | エンジンの制御装置 |
JP2015194131A (ja) * | 2014-03-31 | 2015-11-05 | マツダ株式会社 | エンジンの制御装置 |
JP6020770B2 (ja) * | 2014-08-29 | 2016-11-02 | マツダ株式会社 | エンジンの制御装置 |
JP6079798B2 (ja) * | 2015-02-18 | 2017-02-15 | マツダ株式会社 | エンジンの制御装置 |
DE102015111056A1 (de) * | 2015-07-08 | 2017-01-12 | Volkswagen Aktiengesellschaft | Verfahren zur wirkungsgradoptimierten Umschaltung einer Viertakt-Brennkraftmaschine mit mehreren Zylindern und vollvariablem Ventiltrieb zwischen einem Voll-Zylinderbetrieb und Teil-Zylinderbetrieb |
-
2018
- 2018-03-19 CN CN201880015628.5A patent/CN110382845A/zh active Pending
- 2018-03-19 US US16/493,303 patent/US11131253B2/en active Active
- 2018-03-19 WO PCT/JP2018/010696 patent/WO2018173990A1/ja unknown
- 2018-03-19 JP JP2019507652A patent/JP6791360B2/ja active Active
- 2018-03-19 EP EP18771823.4A patent/EP3578783B1/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010001750A (ja) * | 2008-06-18 | 2010-01-07 | Toyota Motor Corp | 内燃機関の制御装置 |
WO2014156012A1 (ja) * | 2013-03-29 | 2014-10-02 | マツダ株式会社 | 多気筒エンジンの制御装置 |
JP2015194132A (ja) * | 2014-03-31 | 2015-11-05 | マツダ株式会社 | エンジンの制御装置 |
JP2015203370A (ja) * | 2014-04-15 | 2015-11-16 | マツダ株式会社 | エンジンの制御装置 |
JP2016050510A (ja) | 2014-08-29 | 2016-04-11 | マツダ株式会社 | エンジンの制御装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3578783A4 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019138205A (ja) * | 2018-02-09 | 2019-08-22 | トヨタ自動車株式会社 | エンジン制御装置 |
JP7010040B2 (ja) | 2018-02-09 | 2022-01-26 | トヨタ自動車株式会社 | エンジン制御装置 |
CN115217649A (zh) * | 2022-07-22 | 2022-10-21 | 一汽解放汽车有限公司 | 一种发动机起停控制方法及车辆 |
CN115217649B (zh) * | 2022-07-22 | 2023-06-09 | 一汽解放汽车有限公司 | 一种发动机起停控制方法及车辆 |
Also Published As
Publication number | Publication date |
---|---|
EP3578783A1 (en) | 2019-12-11 |
CN110382845A (zh) | 2019-10-25 |
JPWO2018173990A1 (ja) | 2019-11-07 |
JP6791360B2 (ja) | 2020-11-25 |
EP3578783B1 (en) | 2021-05-12 |
US20210140378A1 (en) | 2021-05-13 |
US11131253B2 (en) | 2021-09-28 |
EP3578783A4 (en) | 2020-02-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8316831B2 (en) | Control device for internal combustion engine and control method for internal combustion engine | |
WO2018173990A1 (ja) | エンジンの制御装置 | |
WO2014155967A1 (ja) | エンジンのオイル供給装置 | |
US8498797B2 (en) | Control apparatus and control method for internal combustion engine | |
WO2018173989A1 (ja) | エンジンの制御装置 | |
JP6052205B2 (ja) | エンジンのバルブタイミング制御装置 | |
WO2014156012A1 (ja) | 多気筒エンジンの制御装置 | |
JP6094545B2 (ja) | エンジンのオイル供給装置 | |
US20080092862A1 (en) | Internal EGR control system for internal combustion engine | |
JP6123726B2 (ja) | エンジンの制御装置 | |
JP6551445B2 (ja) | エンジンの制御装置 | |
JP6156182B2 (ja) | 多気筒エンジンの制御装置 | |
JP6020307B2 (ja) | 多気筒エンジンの制御装置 | |
JP6551440B2 (ja) | エンジンの制御装置 | |
JP6607529B2 (ja) | エンジンの制御装置 | |
JP6449044B2 (ja) | エンジンの制御装置 | |
JP6146341B2 (ja) | エンジンのバルブタイミング制御装置 | |
JP6607530B2 (ja) | エンジンの制御装置 | |
JP6607528B2 (ja) | エンジンの制御装置 | |
JP2010071188A (ja) | エンジンの制御装置 | |
JP6197806B2 (ja) | エンジンの制御装置 | |
JP2015194097A (ja) | エンジンの制御装置 | |
JP3873809B2 (ja) | 内燃機関のバルブタイミング可変制御装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18771823 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019507652 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2018771823 Country of ref document: EP Effective date: 20190905 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |