JP6551440B2 - エンジンの制御装置 - Google Patents
エンジンの制御装置 Download PDFInfo
- Publication number
- JP6551440B2 JP6551440B2 JP2017057410A JP2017057410A JP6551440B2 JP 6551440 B2 JP6551440 B2 JP 6551440B2 JP 2017057410 A JP2017057410 A JP 2017057410A JP 2017057410 A JP2017057410 A JP 2017057410A JP 6551440 B2 JP6551440 B2 JP 6551440B2
- Authority
- JP
- Japan
- Prior art keywords
- oil
- cylinder
- engine
- cylinder operation
- cylinders
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Landscapes
- Valve Device For Special Equipments (AREA)
- Output Control And Ontrol Of Special Type Engine (AREA)
Description
特許文献1のエンジンの制御装置は、減筒運転の実行条件成立により複数の休止気筒の吸排気弁を閉弁する油圧式弁停止機構を有し、低負荷、低エンジン回転数時或いは低車速時、減筒運転を禁止すると共に、減筒運転から全筒運転への切替実行条件が成立したとき、休止気筒の排気弁を吸気弁よりも先に開弁するように構成されている。
これにより、休止対象気筒の燃焼が停止される前段階、所謂切替過渡期において空気量を増量した結果、4気筒全てに対して供給される空気量が増加することから、一時的に減筒運転開始前におけるエンジン全体の出力が増加し、トルクショックを招く虞があった。
一方で、油圧式弁停止機構は、駆動動力の媒体としてオイル(作動油)を用いているため、オイルの状態によって、油圧式弁停止機構の応答性や追従性が低下することがある。
特許文献1のエンジンの制御装置では、油温が40℃未満のとき、オイルの流動性が低下することから、弁停止機構を非作動にして全筒運転から減筒運転への切替を禁止している。
例えば、オイルパンに貯留されたオイルレベルが低下した場合、オイルストレーナから空気が吸引される。また、車両が急旋回した場合、オイルパンに貯留されたオイルが空気と攪拌されることから、非圧縮流体であるオイル中に圧縮流体である気泡(以下、エアという)が混入される。
それ故、受圧部に十分な油圧を作用させることができず、全筒運転から減筒運転への切替時間或いは減筒運転から全筒運転への切替時間(切替過渡期)の長期化を招く。
つまり、運転状態に拘らず、油圧式弁停止機構の応答性や追従性を維持することができ、車両の操作性を向上することができる。
この構成によれば、オイルにエア混入が想定される運転状態について、オイルレベルをパラメータとして判定することができる。つまり、オイルレベルによって、オイルストレーナから空気が吸引されてオイル中のエア量が増加する状態を判定することができる。
この構成によれば、オイルにエア混入が想定される運転状態について、旋回加速度をパラメータとして判定することができる。つまり、旋回加速度によって、オイルパンに貯留されたオイルが空気と攪拌される状態を判定することができる。
この構成によれば、オイルにエア混入が想定される運転状態について、オイル温度をパラメータとして判定することができる。つまり、オイル温度によって、オイルの粘性が低下して空気がオイル中に導入され易い状態を判定することができる。
この構成によれば、オイル中に圧縮流体であるエアが混入した状態での切替操作を制限することができ、運転切替時間の長期化を防止することができる。しかも、オイル中にエアが混入する可能性が高い高速運転領域での運転切替操作を制限するため、燃費改善と油圧式弁停止機構の性能確保とを両立することができる。
以下の説明は、本発明をエンジンの制御装置に適用したものを例示したものであり、本発明、その適用物、或いは、その用途を制限するものではない。
図1,図2に示すように、エンジン1は、例えば、第1気筒から第4気筒が直列状に順次配置された直列4気筒ガソリンエンジンであり、自動車等の車両に搭載されている。
エンジン1は、ヘッドカバー2と、シリンダヘッド3と、シリンダブロック4と、クランクケース(図示略)と、オイルパン5(図4参照)とが夫々上下に連結されている。
各シリンダブロック4に形成された4つのシリンダボア9内を夫々摺動可能なピストン6 と、クランクケースに回転自在に支持されたクランク軸7とは、コネクティングロッド8によって連結されている。シリンダブロック4のシリンダボア9とピストン6とシリンダヘッド3とによって燃焼室11が各気筒に形成されている。
各燃焼室11には、インジェクタ12と点火プラグ13とが夫々設けられ、第1気筒→第3気筒→第4気筒→第2気筒の順に点火が行われる。
スイングアーム44,54は、各々の一端側に設けられたピボッド機構14a,15aの頂部を支点として揺動することにより、各スイングアーム44,54の他端部において、吸気弁41及び排気弁51がリターンスプリング42,52の付勢力に抗して下方に押し下げられることにより開弁する。
更に、HLA14は、エンジン1の全4気筒の一部である第1,第4気筒の作動を休止させる減筒運転時、第1,第4気筒の吸排気弁41,51の開閉動作を停止させ、全4気筒を作動させる全筒運転時、第1,第4気筒の吸排気弁41,51を開閉動作させている。第2,第3気筒の吸排気弁41,51は、減筒運転及び全筒運転の双方で作動する。
それ故、減筒運転時、エンジン1の第1〜第4気筒のうち第1,第4気筒の吸排気弁41,51が作動を停止し、全筒運転時、第1〜第4気筒の吸排気弁41,51が作動している。尚、減筒運転及び全筒運転は、後述するように、エンジン1の運転状態に応じて適宜切り替えられる。
装着穴45には、1対の油路71,73が穿設され、装着穴55には、1対の油路72,74が穿設されている。油路71,72は、HLA14の弁停止機構14bを作動させる油圧を供給し、油路73,74は、HLA14のピボット機構14aを作動させる油圧を供給するように構成されている。HLA15の装着穴には、油路73,74のみが連通されている。
これにより、ピボット機構14aの頂部がスイングアーム44,54の揺動の支点になるため、カム軸43,53の回動によりカム部43a,53aがカムフォロア44a,54aを下方に押すと、吸排気弁41,51がリターンスプリング42,52の付勢力に抗して下方に押されて開弁する。即ち、両ロックピン142を貫通孔141aに嵌合した状態にすることで、全筒運転が実行される。
これにより、両ロックピン142が貫通孔141aから抜けて、ロックピン142の上方に位置するピボット機構14aがロックピン142と共に外筒141の軸方向下側に移行して弁停止状態になる。
リターンスプリング42,52の付勢力は、ロストモーションスプリング144の付勢力よりも強くなるように設定されている。それ故、カム軸43,53の回動によりカム部43a,53aがカムフォロア44a,54aを下方に押すと、吸排気弁41,51の頂部がスイングアーム44,54の揺動の支点になるため、吸排気弁41,51は閉弁を維持したまま、ピボット機構14aがロストモーションスプリング144の付勢力に抗して下方に押される。即ち、両ロックピン142を貫通孔141aに対して非嵌合した状態にすることで、減筒運転が実行される。
図4に示すように、オイル供給回路は、クランク軸7の回転によって駆動される可変容量型オイルポンプ16と、このオイルポンプ16に接続されて昇圧されたオイルをエンジン1の各潤滑部及び各油圧作動装置に導く給油路60とを備えている。
給油路60は、シリンダヘッド3及びシリンダブロック4等に穿設されたオイル通路である。この給油路60は、第1〜第3連通路61〜63と、メインギャラリ64と、複数の油路71〜79等を備えている。
メインギャラリ64は、シリンダブロック4内で気筒列方向に延びている。
第2連通路62は、メインギャラリ64上の分岐点64bからシリンダヘッド3上の分岐部63bまで延びている。第3連通路63は、シリンダヘッド3内で吸気側と排気側との間を略水平方向に延びている。複数の油路71〜79は、シリンダヘッド3内で第3連通路63から分岐している。
ハウジングは、内部のポンプ室161にオイルを供給する吸入口16aと、ポンプ室161からオイルを吐出する吐出口16bとを有している。
ハウジングの内部には、このハウジングの内周面とカムリングの外周面とによって画成された圧力室162が形成され、この圧力室162には導入孔16cが設けられている。
オイルパン5内に貯留されたオイルは、オイルポンプ16により、オイルストレーナ18を介して汲み上げられ、その後、オイルフィルタ65で濾過され、オイルクーラ66で冷却された後、シリンダブロック4内のメインギャラリ64に導入される。
オイルパン5には、オイルパン5内に貯留されているオイルレベル(オイル量)を検出するオイルレベルセンサ101(図5参照)が設けられている。
メインギャラリ64の分岐点64cの下流側には、タイミングチェーンの油圧式チェーンテンショナ(何れも図示略)にオイルを供給するオイル供給部83と、オイルポンプ16の圧力室162にオイルを供給する油路70とが接続されている。油路70は、メインギャラリ64の分岐点64cからオイルポンプ16の導入孔16cまでを連通し、その途中部にオイルの流量を電気的にデューティ制御可能なリニアソレノイドバルブ89が設けられている。
エンジン1では、減筒運転切替時、可変バルブタイミング機構(以下、VVTと略す)を用いて吸排気弁41,51の開閉タイミングを遅角側に設定することにより、燃焼ガスを高膨張化してトルクを増加すると共にポンピングロス低減を図っている。
吸気用VVT19及び排気用VVT20の各カムプーリは、クランク軸のスプロケット(図示略)により、タイミングチェーンを介して駆動されている。
図4に示すように、吸気用VVT19は、電動モータ191と、カム軸43の一端部に形成された変換部(図示略)とから構成されている。
電動モータ191が、タイミングチェーンに噛合してクランク軸7と同期回転するギヤプーリと一体形成され、変換部が、カム軸43と一体形成されている。
電動モータ191に対して変換部を軸心回りに相対変位させることにより、ギヤプーリ(タイミングチェーン)とカム軸43との位相が変更される。
ハウジングの内部には、このハウジングの内周面とベーン体の外周面に設けられた複数のベーンとによって区画された複数の進角作動室203及び遅角作動室204が夫々形成されている。進角作動室203及び遅角作動室204は、図4に示すように、夫々進角側油路201及び遅角側油路202を介して、排気側第1方向切替バルブ84に接続されている。この排気側第1方向切替バルブ84は、可変容量型オイルポンプ16に接続されている。カム軸53及びベーン体には、これら進角側油路201及び遅角側油路202の一部が夫々形成されている。
進角側通路201を通して供給されたオイルにより、各ベーンがカムプーリ(クランク軸7)に対して進角位置に回動され、遅角側通路202を通して供給されたオイルにより、各ベーンがカムプーリに対して遅角位置に回動される。
そして、付勢ばねによって付勢されたロックピン205が、ベーン体のベーンが形成されていない部分に形成された嵌合凹部に嵌合してロック状態になる。
これにより、ベーン体がハウジングに固定されて、カム軸53のクランク軸7に対する位相が固定される。
一方、排気側第1方向切替バルブ84の制御により、遅角作動室204に進角作動室203よりも多くの供給量(高い油圧)でもってオイルを供給すると、カム軸53がその回転方向とは逆向きに回動して、排気バルブ51の開時期が遅くなり、遅角側に設定される。
エンジン1は、ECU(Electric Control Unit)110によって制御されている。
このECU110は、全筒運転の実行条件が成立したとき、第1〜第4気筒による全筒運転を実行し、減筒運転の実行条件が成立したとき、第1,第4気筒による運転を停止すると共に第2,第3気筒による運転のみを行う減筒運転を実行している。
ECU110は、CPU(Central Processing Unit)と、ROMと、RAMと、イン側インタフェースと、アウト側インタフェース等によって構成されている。
図5に示すように、ECU110は、油圧センサ90と、車速センサ91と、アクセル開度センサ92と、ギヤ段センサ93と、インマニ圧センサ94と、吸気量センサ95と、吸気温センサ96と、吸気圧センサ97と、クランク角センサ98と、カム角センサ99と、油温センサ100と、オイルレベルセンサ101と、水温センサ102と、旋回加速度センサ103等に電気的に接続されている。
これらのセンサ90〜103による検出値は、ECU110に出力され、エンジン1の作動が制御される。
図5に示すように、ECU110は、運転条件判定部111と、VVT制御部112と、点火時期制御部113と、燃料制御部114と、スロットルバルブ制御部115と、弁停止機構制御部116と、排気シャッタ弁制御部117等を備えている。
運転条件判定部111は、運転状態に基づき、全筒運転と減筒運転の何れの運転を実行するかについて可否判定している。
図6に示すように、運転条件判定部111は、全筒運転領域A1と減筒運転領域A2を設定したマップMを予め記憶しており、このマップMと運転条件とに基づき何れの運転の実行条件が成立したかについて判定している。
マップMは、横軸がエンジン回転数、縦軸が目標図示トルクによって規定されている。
減筒運転領域A2は、エンジン回転数下限値N1と、エンジン回転数上限値N2(N1<N2)と、目標図示トルク上限値Lとによって領域範囲が設定されている。
目標図示トルク上限値Lは、減筒運転時の最大トルク、損域分岐トルクや吸気脈動制限等に基づき設定され、後方上がり傾斜状に設定されている。
このホイールトルクを用いて変速機の出力トルク及び入力トルクを逆算してエンジン1に必要な軸トルクを求めた後、このエンジン軸トルクに補機ロス及びメカロス等の補正用トルクを加算して最終的に目標図示トルクを求めている。
本実施例では、弁停止機構14bに供給されるオイルにエアが混入される状況を、オイルレベルと、旋回加速度と、油温によって判定している。
オイルレベルが低いとき、オイルストレーナ18から空気が吸引されてオイル中に含まれるエア量が増加し、旋回加速度が大きいとき、オイルパン5に貯留されたオイルが空気と攪拌されてオイル中に含まれるエア量が増加し、油温が高いとき、オイルの粘性が低下して空気がオイル中に導入されてオイル中に含まれるエア量が増加するためである。
判定値Dは、車両が水平状態のとき、オイルストレーナ18の吸入部から所定距離上方に表面(上面)が位置するようなオイルレベルに相当している。判定値Gは、平均的なオイルレベルのとき、遠心力によってオイルが一方に偏り、オイルストレーナ18の吸入部がオイルから外に出るような旋回加速度に相当している。
減筒運転では、第1,第4気筒の吸排気弁41,51が夫々閉弁され、VVT19,20が遅角側に設定され、スロットルバルブ25の開度が増加側に設定されている。
それ故、準備行程では、第1,第4気筒の吸排気弁41,51の閉弁を維持するためにHLA14に供給される保持油圧よりも高い切替用目標油圧まで油圧を昇圧すると共に、VVT19,20を遅角側に制御し、更に、スロットルバルブ25の開度を増加側に制御する。ここで、エンジン1による要求トルク一定にするため、スロットルバルブ25の開度の増加側制御期間では点火時期を遅角側に制御する点、また、燃費悪化を抑制するため、点火時期の遅角側制御期間を短縮化する点を考慮し、切替用目標油圧昇圧操作及びVVT19,20の遅角操作の終了後にスロットルバルブ25の開度の増加操作を行っている。
更に、VVT20の遅角操作による油圧消費量が大きいため、HLA14に供給される油圧の低下或いはオーバーシュートやアンダーシュート等の油圧変動が発生し、運転切替時間が長期化する点を考慮し、VVT20の遅角操作の終了後に切替用目標油圧昇圧操作を行っている。以上により、運転条件判定部111が減筒運転実行条件の成立を判定した際、まず、VVT19,20の遅角操作を開始している。
VVT制御部112は、全筒運転から減筒運転への運転切替時(以下、減筒運転切替時という)、空気充填効率(ce)に基づきVVT19,20の減筒運転用目標位相を夫々設定し、電動モータ191及び排気側第1方向切替バルブ84を遅角操作させている。このVVT制御部112は、減筒運転切替時、全筒運転時の位相から減筒運転用目標位相になるように徐々に遅角側に制御し、減筒運転から全筒運転への運転切替時(以下、全筒運転切替時という)、減筒運転用目標位相から全筒運転用目標位相になるように徐々に進角側に制御している。
図7に示すように、インマニ圧センサ94により検出されたインテークマニホールド内の圧力と、吸気量センサ95により検出された吸入空気量と、吸気温センサ96により検出された吸気温度とに基づいてインテークマニホールド内の圧力が演算される。
また、エンジン回転数と、VVT19,20の位相と、インテークマニホールド圧及び排気圧力とに基づいてインテークマニホールド内の体積効率ηvpが演算される。
インテークマニホールド内圧力と体積効率ηvpとにより、エンジン1の空気充填効率を算出している。
この補正制御は、最初の遅角操作に比べて少量の操作であるため、油圧変動が小さい。
尚、切替用目標油圧昇圧操作の間において、運転状態の変化が生じていない場合には、VVT20の補正制御は省略される。
VVT19については、電動モータ191による駆動であり、切替用目標油圧昇圧操作に影響を与えないため、切替用目標油圧昇圧操作の間であっても操作が継続されている。
また、進角側へのシフト中の吸排気弁41,51のオーバーラップ量を確保するため、排気弁51の進角作動速度を吸気弁41の進角作動速度よりも遅くしても良い。この場合、吸排気弁41,51の作動速度を油圧及び油温に基づき調整する。
点火時期制御部113は、車両の運転状態に応じて点火時期を決定し、点火プラグ13に点火実行指令を出力している。この点火時期制御部113は、エンジン回転数と、アクセル開度により代用されるエンジン負荷とによって設定された点火時期マップ(図示略)を予め記憶しており、このマップに基づき点火時期を抽出すると共に抽出された点火時期を吸気圧センサ97により検出された吸気圧力に基づいて基本点火時期を設定している。
上記点火時期マップは、全筒運転用と減筒運転用の2種類用意されている。
減筒運転切替時及び全筒運転切替時における遅角(リタード)量は、各気筒のシリンダボア9内に流入した内部EGR量に反比例するように設定されている。この減筒運転切替時及び全筒運転切替時の点火時期遅角制御は、減筒運転開始後では一旦キャンセルされ、全筒運転切替時、再度キャンセル前の遅角量に戻される。
燃料制御部114は、運転状態に応じて燃料噴射量及びタイミングを決定し、インジェクタ12に噴射実行指令を出力している。この燃料制御部114は、目標図示トルクによって予め設定された燃料噴射マップ(図示略)を記憶しており、このマップに基づき燃料噴射量及びタイミングを設定している。
また、燃料制御部114は、全筒運転か減筒運転かに応じて休止気筒(第1,第4気筒)のインジェクタ12の制御を切り替える。つまり、全筒運転時、第1〜第4気筒のインジェクタ12を駆動して燃料噴射を実行する一方、減筒運転時、第1,第4気筒のインジェクタ12による燃料噴射を禁止している。
また、スロットルバルブ制御部115は、減筒運転切替時、VVT20による補正制御の終了後、減筒運転時における目標空気充填効率までのスロットルバルブ25の開度の増加操作を開始し、全筒運転切替時、VVT19,20の進角側への制御開始と同時に全筒運転時における目標空気充填効率までのスロットルバルブ25の開度の減少操作を開始している。
弁停止機構制御部116は、全筒運転か減筒運転かに応じてリニアソレノイドバルブ89の制御を切り替えている。この弁停止機構制御部116は、全筒運転時、リニアソレノイドバルブ89をオフ状態にして第1〜第4気筒の吸排気弁41,51の開閉動作を可能にする一方、減筒運転時、リニアソレノイドバルブ89をオン状態にしてHLA14に供給される油圧を閉弁状態保持油圧に保持して休止気筒の吸排気弁41,51を閉弁状態に維持している。
また、弁停止機構制御部116は、全筒運転切替時、排気側第2方向切替バルブ85により排気弁51を開弁後、吸気側第2方向切替バルブ86により吸気弁41を開弁する。
排気シャッタ弁制御部117は、減筒運転時、排気シャッタ弁35を閉弁側に制御し、全筒運転時、排気シャッタ弁35の上流側の排気圧力が設定圧力(例えば、排気弁51のシール圧)以下になるように排気シャッタ弁35を制御している。
この排気シャッタ弁制御部117は、排気シャッタ弁35が全閉位置で所定の排気ガスが流れると共に全開位置で大気圧になるように設定されているため、排気シャッタ弁35の開度に基づき排気圧力を推定可能に構成されている。
尚、Si(i=101,102…)は、各処理のためのステップを示している。
図8のフローチャートに示すように、まず、S101にて、各センサ90〜103の出力値、各マップ及び各種情報を読み込み、S102に移行する。
S102では、現在のエンジン回転数が下限値N1以上且つ上限値N2以下か否か判定する。
S103の判定の結果、現在の目標図示トルクが上限値L以下の場合、現在の運転状態が減筒運転領域A2内に存在するため、冷却水温が下限判定温度T2a以上且つ上限判定温度T2b以下か否か判定する(S104)。
S104の判定の結果、冷却水温が下限判定温度T2a以上且つ上限判定温度T2b以下の場合、油温が下限判定温度T1a以上且つ上限判定温度T1b以下か否か判定する(S105)。
S106の判定の結果、オイルレベルが判定値Dよりも大きい場合、旋回加速度が判定値G未満か否か判定する(S107)。
S107の判定の結果、旋回加速度が判定値G未満の場合、減筒運転実行条件成立を判定し(S108)、リターンする。
S104の判定の結果、冷却水温が下限判定温度T2a未満又は上限判定温度T2bを超える場合、S105の判定の結果、油温が下限判定温度T1a未満又は上限判定温度T1bを超える場合、減筒運転に適さない運転状況であるため、全筒運転実行条件成立を判定し(S109)、リターンする。
S106の判定の結果、オイルレベルが判定値D以下の場合、S107の判定の結果、旋回加速度が判定値G以上の場合、減筒運転に適さない運転状況であるため、全筒運転実行条件成立を判定し(S109)、リターンする。
尚、Si(i=201,202…)は、各処理のためのステップを示し、t1〜t12は、タイムチャートにおける時点を示している。
S202では、減筒運転実行条件の成立が判定されたか否か判定する。
S202の判定の結果、減筒運転実行条件の成立が判定された場合(t1)、減筒運転の準備行程を実行すべく、吸排気弁41,51についてVVT遅角操作を実行し(S203)、S204に移行する。
S204の判定の結果、排気弁51の位相が減筒運転用目標位相に到達した場合(t2)、リニアソレノイドバルブ89をオン状態に操作し(S205)、S206に移行する。排気弁51の位相が減筒運転用目標位相に到達した時点t2で、排気側VVT20への油圧供給を停止するため、排気弁51の位相変更に伴う油圧変動を抑制している。
S204の判定の結果、排気弁51の位相が減筒運転用目標位相に到達していない場合、S203にリターンして排気弁51のVVT遅角操作を継続する。
S206の判定の結果、油路70の油圧が切替用目標油圧を超えた場合(t3)、昇圧操作期間中において運転状態に変化があったか否か判定する(S207)。
S206の判定の結果、油路70の油圧が切替用目標油圧を超えていない場合、S205にリターンしてリニアソレノイドバルブ89のオン状態を継続し、昇圧を継続する。
S207の判定の結果、昇圧操作期間中運転状態に変化があった場合、減筒運転用目標位相が現在の運転状態に適合していないため、排気側第1方向切替バルブ84を更に作動させてVVT補正制御を実行し(S208)、S209に移行する。
S209の判定の結果、排気弁51の位相が減筒運転用補正目標位相に到達した場合(t4)、S210に移行する。
S209の判定の結果、排気弁51の位相が減筒運転用補正目標位相に到達していない場合、S208にリターンして排気弁51のVVT補正制御を継続する。
S207の判定の結果、昇圧操作期間中運転状態に変化がない場合、減筒運転用目標位相が現在の運転状態に適合しているため、S210に移行する。
S210では、スロットルバルブ25の開度を増加するスロットルバルブ増加操作と点火時期を遅角する点火時期遅角制御の実行を開始し(t4)、S211に移行する。
S211の判定の結果、空気充填効率が減筒運転時における目標空気充填効率を超えた場合(t5)、吸排気弁41,51の閉弁操作を実行し(S212)、S213に移行する。尚、排気弁51の閉弁操作開始タイミングは、吸気弁41の閉弁操作開始タイミングよりも早く開始される。
S211の判定の結果、空気充填効率が減筒運転時における目標空気充填効率を超えていない場合、S210にリターンしてスロットルバルブ増加操作を継続する。
S213では、吸排気弁41,51の閉弁後、第1、第4気筒の燃料噴射を禁止すると共に点火時期遅角制御を禁止して元に戻し(t6)、S214に移行する。
この時点で、HLA14に供給される油圧を切替用目標油圧から閉弁保持油圧に調整する。減筒運転の開始は、油圧の追従性によりt7から開始される。それ故、t5〜t7間は切替移行期間である。
S214では、排気シャッタ弁制御を実行し、フラグを1に変更し(S215)、リターンする。
全筒運転時、フラグ0であり、減筒運転時、フラグ1に設定している。
S216の判定の結果、フラグが1の場合、減筒運転時において、全筒運転実行条件の成立が判定されたため(t8)、減筒運転を終了してS217に移行する。
S217では、第1、第4気筒の燃料噴射禁止を解除すると共に点火時期遅角制御禁止を解除し(t9)、S218に移行する。
全筒運転切替用の点火時期遅角制御は、一旦、減筒運転切替時の点火時期に戻し、減筒運転切替時の点火時期を初期点火時期としている。尚、第1、第4気筒の吸排気弁41,51の閉弁操作解除が完了していないため、インジェクタ12及び点火プラグ13は、作動が開始されない。
S218では、排気シャッタ弁制御を終了し、吸排気弁41,51の閉弁操作を解除した後(S219)、リニアソレノイドバルブ89をオフ状態に操作する(S220)。
排気弁51の開弁操作開始タイミングは、吸気弁41の開弁操作開始タイミングよりも早く開始される。
S221では、HLA14に供給される油圧が閉弁保持油圧から全筒運転時の目標油圧まで降下したか否か判定する。
S221の判定の結果、HLA14に供給される油圧が閉弁保持油圧から全筒運転時の目標油圧まで降下していない場合、S20にリターンしてリニアソレノイドバルブ89のオフ状態を継続し、降圧を継続する。
S223では、フラグを0に変更し、リターンする。
S216の判定の結果、フラグが1ではない場合、前の運転状態が全筒運転であるため、全筒運転を継続実行して(S224)、リターンする。
本制御装置によれば、ECU110が、弁停止機構14bに供給されるオイルにエア混入が想定されるとき、全筒運転から減筒運転への切替実行条件が成立しても運転切替を制限するため、オイル中に圧縮流体であるエアが混入した状態での切替操作を制限することができ、運転切替時間の長期化を防止することができる。つまり、運転状態に拘らず弁停止機構14bの応答性や追従性を維持することができ、車両の操作性を向上することができる。
実施例1では、マップMに設定された単一の減筒運転領域A2が固定されていたのに対し、実施例2では、運転状態に応じて減筒運転領域A2が2種類設定されている。
運転条件判定部111は、通常運転時に用いる第1減筒運転領域A2と、オイルにエア混入が想定される運転時に用いる第2減筒運転領域A2とを備えている。
第1減筒運転領域A2は、実施例1と同様に、エンジン回転数下限値N1と、エンジン回転数上限値N2と、目標図示トルク上限値Lとによって領域範囲が設定されている。
第2減筒運転領域A2は、図6において破線で示すように、エンジン回転数上限値N2が第1減筒運転領域A2の上限値N2よりもΔN低く設定されている。
図11のフローチャートに示すように、まず、S301にて、各センサ90〜103の出力値、各マップ及び各種情報を読み込み、S302に移行する。
S302では、オイルレベルが判定値Dよりも大きいか否か判定する。
S302の判定の結果、オイルレベルが判定値Dよりも大きい場合、旋回加速度が判定値G未満か否か判定する(S303)。
S303の判定の結果、旋回加速度が判定値G未満の場合、第1減筒運転領域A2を選択する(S304)。
S302の判定の結果、オイルレベルが判定値D以下の場合、S303の判定の結果、旋回加速度が判定値G以上の場合、第2減筒運転領域A2を選択する(S311)。
S305の判定の結果、現在のエンジン回転数が下限値N1以上且つ上限値N2以下の場合、現在の目標図示トルクが上限値L以下か否か判定する(S306)。
S306の判定の結果、現在の目標図示トルクが上限値L以下の場合、現在の運転状態が減筒運転領域A2内に存在するため、冷却水温が下限判定温度T2a以上且つ上限判定温度T2b以下か否か判定する(S307)。
S307の判定の結果、冷却水温が下限判定温度T2a以上且つ上限判定温度T2b以下の場合、油温が下限判定温度T1a以上且つ上限判定温度T1b以下か否か判定する(S308)。
S308の判定の結果、油温が下限判定温度T1a以上且つ上限判定温度T1b以下の場合、減筒運転実行条件成立を判定し(S309)、リターンする。
S307の判定の結果、冷却水温が下限判定温度T2a未満又は上限判定温度T2bを超える場合、S308の判定の結果、油温が下限判定温度T1a未満又は上限判定温度T1bを超える場合、減筒運転に適さない運転状況であるため、全筒運転実行条件成立を判定し(S310)、リターンする。
本制御装置によれば、オイル中にエアが混入する可能性が高い高速運転領域での運転切替操作を制限するため、燃費改善と弁停止機構14bの性能確保とを両立することができる。
1〕前記実施形態においては、直列4気筒ガソリンエンジンの例を説明したが、例えば、6気筒エンジンやV型エンジン等エンジンの型式に制限されること無く適用することが可能であり、特に直列4気筒ガソリンエンジンに限られるものではない。
また、4気筒のうち半数の2気筒を休止させる減筒運転を行うエンジンの例を説明したが、休止気筒の数を任意に設定しても良い。
14b 弁停止機構
41 吸気弁
51 排気弁
101 排気ガス温センサ
110 ECU
113 点火時期制御部
115 スロットルバルブ制御部
117 排気シャッタ弁制御部
Claims (5)
- 複数の気筒と、これら複数の気筒のうち一部の気筒の運転を休止する減筒運転の実行条件成立により前記複数の気筒から休止気筒を設定すると共に前記休止気筒の吸気弁及び排気弁を閉弁する油圧式弁停止機構と、前記油圧式弁停止機構を制御する制御手段とを備えたエンジンの制御装置において、
前記制御手段は、前記複数の気筒が運転を行う全筒運転から前記減筒運転への切替実行条件が成立したとき、前記エンジンのスロットルバルブの開度を増加すると共に前記エンジンの点火時期を遅角側に制御し、前記油圧式弁停止機構に供給されるオイルにエア混入が想定されるとき、前記全筒運転から減筒運転への切替実行条件が成立しても運転切替を禁止することを特徴とするエンジンの制御装置。 - 前記油圧式弁停止機構に供給されるオイルを貯留するオイルパンのオイルレベルを検出可能なオイルレベル検出手段を有し、
前記制御手段は、前記オイルレベル検出手段により検出されたオイルレベルが判定値以下のとき、前記油圧式弁停止機構に供給されるオイルにエア混入が想定される運転状態と判定することを特徴とする請求項1に記載のエンジンの制御装置。 - 車両の旋回加速度を検出可能な旋回加速度検出手段を有し、
前記制御手段は、前記旋回加速度検出手段により検出された旋回加速度が判定値以上のとき、前記油圧式弁停止機構に供給されるオイルにエア混入が想定される運転状態と判定することを特徴とする請求項1に記載のエンジンの制御装置。 - 前記油圧式弁停止機構に供給されるオイル温度を検出可能なオイル温度検出手段を有し、
前記制御手段は、前記オイル温度検出手段により検出されたオイル温度が判定値よりも大きいとき、前記油圧式弁停止機構に供給されるオイルにエア混入が想定される運転状態と判定することを特徴とする請求項2又は3に記載のエンジンの制御装置。 - 複数の気筒と、これら複数の気筒のうち一部の気筒の運転を休止する減筒運転の実行条件成立により前記複数の気筒から休止気筒を設定すると共に前記休止気筒の吸気弁及び排気弁を閉弁する油圧式弁停止機構と、前記油圧式弁停止機構を制御する制御手段とを備えたエンジンの制御装置において、
前記制御手段は、前記油圧式弁停止機構に供給されるオイルにエア混入が想定されるとき、前記全筒運転から減筒運転への切替実行条件が成立しても運転切替を制限するものであって、エンジンの運転状態がエンジン回転数と目標図示トルクとで規定した減筒運転領域のとき、全筒運転から減筒運転への切替実行条件の成立を判定すると共に、前記油圧式弁停止機構に供給されるオイルにエア混入が想定される運転状態と判定したとき、前記減筒運転領域の前記エンジン回転数の上限値を低下させることを特徴とするエンジンの制御装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017057410A JP6551440B2 (ja) | 2017-03-23 | 2017-03-23 | エンジンの制御装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017057410A JP6551440B2 (ja) | 2017-03-23 | 2017-03-23 | エンジンの制御装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018159339A JP2018159339A (ja) | 2018-10-11 |
JP6551440B2 true JP6551440B2 (ja) | 2019-07-31 |
Family
ID=63796495
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017057410A Active JP6551440B2 (ja) | 2017-03-23 | 2017-03-23 | エンジンの制御装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6551440B2 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7310699B2 (ja) * | 2020-05-01 | 2023-07-19 | トヨタ自動車株式会社 | オイル状態推定装置、車両用制御装置、車両用制御システム、およびデータ解析装置 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0763097A (ja) * | 1993-08-20 | 1995-03-07 | Mitsubishi Motors Corp | エンジンの燃料制御装置 |
JP3123369B2 (ja) * | 1994-11-28 | 2001-01-09 | トヨタ自動車株式会社 | 車両用エンジンおよび自動変速機の制御装置 |
JP3948069B2 (ja) * | 1997-09-12 | 2007-07-25 | 株式会社デンソー | 内燃機関用バルブタイミング制御装置 |
JP2001207874A (ja) * | 2000-01-20 | 2001-08-03 | Toyota Central Res & Dev Lab Inc | 内燃機関のバルブタイミング調整装置 |
JP4470339B2 (ja) * | 2001-03-28 | 2010-06-02 | マツダ株式会社 | エンジンのバルブタイミング制御装置 |
JP4492710B2 (ja) * | 2008-02-08 | 2010-06-30 | トヨタ自動車株式会社 | 内燃機関の制御装置及び制御方法 |
JP6273837B2 (ja) * | 2013-12-27 | 2018-02-07 | マツダ株式会社 | 弁停止機構の油圧供給装置 |
JP6135580B2 (ja) * | 2014-03-31 | 2017-05-31 | マツダ株式会社 | エンジンの制御装置 |
-
2017
- 2017-03-23 JP JP2017057410A patent/JP6551440B2/ja active Active
Also Published As
Publication number | Publication date |
---|---|
JP2018159339A (ja) | 2018-10-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6163831B2 (ja) | エンジンのオイル供給装置 | |
JP6123575B2 (ja) | 多気筒エンジンの制御装置 | |
JP6217236B2 (ja) | 多気筒エンジンの制御装置及び制御方法 | |
JP5966999B2 (ja) | 多気筒エンジンの制御装置 | |
JP6052205B2 (ja) | エンジンのバルブタイミング制御装置 | |
EP3578782B1 (en) | Engine control device | |
JP6791360B2 (ja) | エンジンの制御装置 | |
JP2015194131A (ja) | エンジンの制御装置 | |
JP2015194132A (ja) | エンジンの制御装置 | |
JP6123726B2 (ja) | エンジンの制御装置 | |
JP6551445B2 (ja) | エンジンの制御装置 | |
JP6551440B2 (ja) | エンジンの制御装置 | |
JP6156182B2 (ja) | 多気筒エンジンの制御装置 | |
JP6020307B2 (ja) | 多気筒エンジンの制御装置 | |
JP6146341B2 (ja) | エンジンのバルブタイミング制御装置 | |
JP6607529B2 (ja) | エンジンの制御装置 | |
JP6607528B2 (ja) | エンジンの制御装置 | |
JP6607530B2 (ja) | エンジンの制御装置 | |
JP2008128055A (ja) | 内燃機関の制御装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20181227 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20190110 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190423 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190604 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190617 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6551440 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |