WO2018173663A1 - 車載装置、荷役機、制御回路、制御方法、及びプログラム - Google Patents

車載装置、荷役機、制御回路、制御方法、及びプログラム Download PDF

Info

Publication number
WO2018173663A1
WO2018173663A1 PCT/JP2018/007468 JP2018007468W WO2018173663A1 WO 2018173663 A1 WO2018173663 A1 WO 2018173663A1 JP 2018007468 W JP2018007468 W JP 2018007468W WO 2018173663 A1 WO2018173663 A1 WO 2018173663A1
Authority
WO
WIPO (PCT)
Prior art keywords
distance
work management
fork
management apparatus
forks
Prior art date
Application number
PCT/JP2018/007468
Other languages
English (en)
French (fr)
Inventor
淳 内村
高橋 秀明
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to US16/491,385 priority Critical patent/US20200024114A1/en
Publication of WO2018173663A1 publication Critical patent/WO2018173663A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0225Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving docking at a fixed facility, e.g. base station or loading bay
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F9/00Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes
    • B66F9/06Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes movable, with their loads, on wheels or the like, e.g. fork-lift trucks
    • B66F9/075Constructional features or details
    • B66F9/0755Position control; Position detectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F9/00Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes
    • B66F9/06Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes movable, with their loads, on wheels or the like, e.g. fork-lift trucks
    • B66F9/063Automatically guided
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F9/00Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes
    • B66F9/06Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes movable, with their loads, on wheels or the like, e.g. fork-lift trucks
    • B66F9/075Constructional features or details
    • B66F9/12Platforms; Forks; Other load supporting or gripping members
    • B66F9/16Platforms; Forks; Other load supporting or gripping members inclinable relative to mast
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F9/00Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes
    • B66F9/06Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes movable, with their loads, on wheels or the like, e.g. fork-lift trucks
    • B66F9/075Constructional features or details
    • B66F9/20Means for actuating or controlling masts, platforms, or forks
    • B66F9/24Electrical devices or systems
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0238Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using obstacle or wall sensors
    • G05D1/024Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using obstacle or wall sensors in combination with a laser

Definitions

  • the present invention relates to an in-vehicle device, a cargo handling machine, a control circuit, a control method, and a program.
  • Patent Document 1 describes that the distance to the pallet is informed that the distance is within the optimum distance obtained from the length of the fork and the depth of the pallet.
  • the technique described in Patent Document 1 detects only the distance to the pallet, and the length of the fork and the depth of the pallet are fixed, or the optimum according to the length of the fork and the depth of the pallet.
  • the distance must be preset. For example, if the length of the fork and the depth of the pallet are different from the assumptions, or if the settings are wrong, the technique described in Patent Document 1 determines an inappropriate distance as the optimum distance.
  • the optimum distance is wrong, there is a problem that the load to be transported (transport target) and the transport target at the back of the load are toppled, dropped or damaged due to insufficient insertion or excessive fork insertion.
  • the technique described in Patent Document 1 has a problem that the object to be transported cannot be prevented from being overturned, dropped, or damaged, and the object to be transported cannot be transported appropriately.
  • an object of one embodiment of the present invention is to provide an in-vehicle device, a cargo handling machine, a control circuit, a control method, and a program that can appropriately transport a transport target.
  • One aspect of the present invention is made to solve the above-described problem, and detects an insertion nail based on sensing information acquired from a space recognition device, and the detected insertion nail is inserted into an insertion target. It is an in-vehicle device provided with the analysis part which calculates the insertion distance which shows the distance which exists, and the control part which performs the amount determination of the insertion which judges whether the insertion distance is a predetermined range.
  • one embodiment of the present invention is a cargo handling machine including the above-described on-vehicle device.
  • the insertion nail is detected based on the sensing information acquired from the space recognition device, and the insertion distance indicating the distance at which the detected insertion nail is inserted into the insertion target is determined in advance. It is a control circuit which determines whether it is a range.
  • the analysis unit detects the insertion nail based on the sensing information acquired from the space recognition device, and indicates the distance at which the detected insertion nail is inserted into the insertion target And the control unit performs the insertion amount determination to determine whether or not the insertion distance is in a predetermined range.
  • the computer detects the insertion nail based on the sensing information acquired from the space recognition device, and the insertion distance indicating the distance at which the detected insertion nail is inserted into the insertion target.
  • This is a program for calculating and determining whether or not the insertion distance is within a predetermined range.
  • FIG. 1 is an explanatory view for explaining a transport operation according to an embodiment of the present invention.
  • the forklift F1 is an example of a cargo handling machine.
  • the forklift F1 is provided with forks F101 and F102.
  • Forks F101 and F102 are examples of insertion claws.
  • the forklift F1 grips and transports the transport object by inserting the forks F101 and F102 into the transport object such as a load or a pallet. That is, the loading / unloading machine is provided with an insertion claw for gripping the transportation object by being inserted into the transportation object.
  • the container 20 is an example of a transport object or an insertion object.
  • the container 20 is a container for storing luggage or the like inside.
  • the container 20 is provided with openings (insertions; may be recesses) of the fork pockets 201 and 202.
  • Fork pockets 201 and 202 are holes or recesses into which forks F101 and F102 are inserted, respectively.
  • the fork pockets 201 and 202 are examples of insertion objects.
  • a surface facing the forklift F1 during insertion or transportation also referred to as “insertion surface 211” has fork pockets 201 and 202.
  • the fork pockets 201 and 202 are holes or holes for inserting the forks F101 and F102 from the front (insertion surface 211) to the back of the object to be transported (in the positive direction of the Y-axis in FIG. 1), respectively, and projecting the tips from the back. It is a recess.
  • the fork pockets 201 and 202 are holes that extend straight in the normal direction of the insertion surface 211 at the lower part of the insertion surface 211.
  • the forklift F1 can grip and transport the container 20 appropriately (with good balance and stability).
  • the dimensions of the container 20 and the fork pockets 201 and 202 are defined by a standard (for example, JIS).
  • the object to be transported is not limited to the container 20, and may be a pallet, or both a pallet and a load placed on the pallet.
  • the pallet refers to a loading table for loading luggage.
  • the pallet is provided with a fork pocket. Further, there may be three or more (for example, four) fork pockets.
  • the work management device 1 is attached and fixed to a material handling machine.
  • the work management apparatus 1 includes a space recognition sensor such as a laser sensor.
  • a space recognition sensor such as a laser sensor.
  • the work management apparatus 1 senses the distance R from the own apparatus to each object by irradiating the laser beam and receiving the reflected light.
  • the work management device 1 repeats this for the sensing target range.
  • the work management apparatus 1 recognizes the space based on, for example, the irradiation direction of the laser light and the distance R to each object (see FIGS. 3 to 6).
  • the work management device 1 detects the container 20 (or the insertion surface 211) based on the sensing information obtained from the space recognition sensor.
  • the work management apparatus 1 detects the forks F101 and F102 based on the sensing information, and calculates a distance d p in which the detected forks F101 and F102 are inserted into the container 20 (or the fork pockets 201 and 202).
  • this distance d p is also referred to as “insertion distance d p ”
  • calculating the distance d p is also referred to as “insertion distance estimation”.
  • the work management device 1 performs an insertion amount determination for determining whether or not the calculated insertion distance d p is within a predetermined range.
  • the work management apparatus 1 outputs a determination result. For example, when the insertion distance d p is not within a predetermined range, that is, when the forks F101 and F102 are inserted too much, or when the forks F101 and F102 are insufficiently inserted, the work management apparatus 1 (For example, warning sound, warning light, warning image, guidance, etc.).
  • the work management apparatus 1 has, for example, inserted too much of the fork pockets 201 and 202 and the forks F101 and F102 into the worker or the like, or insufficient insertion of the forks F101 and F102 (simply (It is also called “Inappropriate insertion amount”).
  • It is also called “Inappropriate insertion amount”.
  • the insertion is insufficient, when the forklift F1 grips the container 20, the container 20 may not be gripped properly, or the container 20 may be out of balance and the container 20 may be dropped.
  • the object (other containers etc.) in the back of the container 20 may be damaged or fall down. In other words, the object to be transported cannot be transported properly.
  • An operator or the like can change the degree of insertion of the forks F101 and F102 according to the warning.
  • the operator or the like can insert the forks F101 and F102 into the fork pockets 201 and 202 by an appropriate amount. That is, the forklift F1 can grip and transport the container 20 appropriately (in a balanced and stable manner), and can prevent the container 20 from dropping. Further, the forklift F1 can prevent an object (another container or the like) in the back of the container 20 from being damaged or overturned.
  • the insertion distance d p is in a predetermined range, that is, when the forks F101 and F102 are properly inserted (also simply referred to as “insertion amount is appropriate”), the work management device 1 You may perform the output showing that.
  • the loading platform L1 is an example of a carry-out destination.
  • the loading platform L1 is a loading platform for trucks and trailers, a freight train freight car, and the like.
  • the loading platform L1 is provided with tightening devices L11 to L14.
  • the tightening device is an instrument used to connect and fix the container 20.
  • the container 20 is gripped and transported by the forklift F1, placed on the loading platform L1, and fixed to the loading platform L1 by the fastening devices L11 to L14.
  • the coordinate axes X, Y, and Z shown in FIG. 1 are coordinate axes that are common in the drawings of the present embodiment and its modifications.
  • FIG. 2 is a schematic diagram illustrating an example of a fixed position of the work management apparatus 1 according to the present embodiment.
  • FIG. 2 is a front view of the forklift F1.
  • Fork rails F11 and F12 are rails to which the forks F101 and F102 are attached.
  • the fork F101 or the fork F102 can be adjusted along the fork rails F11 and F12 to adjust the distance between the fork F101 and the fork F102.
  • the backrest F13 is attached to the fork rails F11 and F12.
  • the backrest F13 is a mechanism that prevents the grasped container 20 from collapsing or falling to the forklift F1 side.
  • the mast F14 is a rail for moving the forks F101 and F102 up and down. As the fork rails F11 and F12 are moved up and down along the mast F14, the forks F101 and F102 are moved up and down.
  • the work management device 1 is a central portion (in the X-axis direction) of the fork rail F11 and is fixed to the lower surface side (lower side) of the fork rail F11. However, the work management device 1 may be attached to the upper surface side (upper side) of the fork rail F11 or the like. Moreover, the work management apparatus 1 may be attached to the vehicle body of the fork rail F12, the backrest F13, the mast F14, or the forklift F1. A plurality of work management devices 1 or space recognition sensors may be attached.
  • the container 20 can be irradiated without being blocked by the laser light emitted by the space recognition apparatus.
  • the fork rail F11, the fork rail F12, and the backrest F13 move up and down together with the forks F101, F102 and the container 20, the relative positional relationship between them and the work management apparatus 1 can be fixed.
  • FIG. 3 is a schematic diagram illustrating an example of sensing according to the present embodiment. This figure is a figure when the irradiated laser beam is viewed from the upper surface side of the forklift F1.
  • an angle polar coordinate declination
  • An axis parallel to the Y axis and passing through the work management apparatus 1 (irradiation port) (initial optical axis described later) is set to ⁇ 0.
  • the work management apparatus 1 performs scanning in the horizontal direction by sequentially irradiating laser light in the horizontal direction (while keeping the other deflection angle ⁇ constant). More specifically, the work management apparatus 1 sequentially irradiates laser light toward the positive direction of the declination angle ⁇ (for example, every equal angle ⁇ ). The work management apparatus 1 irradiates a laser beam (also referred to as “horizontal scanning”) to a specific range in the horizontal direction (a range in which the deviation angle projected onto the XY plane is ⁇ max ⁇ ⁇ ⁇ ⁇ max), and then laser beam in the vertical direction. The laser beam is irradiated toward the negative direction of the deviation angle ⁇ . When the horizontal scanning in the negative direction of the deflection angle ⁇ is completed, the work management apparatus 1 further shifts the laser light irradiation direction in the vertical direction and performs horizontal scanning in the positive direction of the X axis again.
  • a laser beam also referred to as “horizontal scanning”
  • the work management apparatus 1 shifts the laser beam by an equal angle ⁇ in the direction of the declination ⁇ for each horizontal scan. More specifically, after performing horizontal scanning in the positive direction of the deflection angle ⁇ , the work management apparatus 1 shifts the laser light irradiation direction by an equal angle ⁇ in the positive direction of the deflection angle ⁇ . Thereafter, the work management apparatus 1 performs horizontal scanning in the negative direction of the deflection angle ⁇ , and then shifts the irradiation direction of the laser light by an equal angle ⁇ in the positive direction of the deflection angle ⁇ . The work management apparatus 1 repeats this operation and irradiates a specific range (a range of ⁇ ⁇ ⁇ ⁇ 0) in the positive direction of the deflection angle ⁇ .
  • FIG. 5 is a schematic diagram illustrating an example of a sensing result according to the present embodiment.
  • FIG. 5 shows sensing information indicating a sensing result for the example of sensing in FIGS. 3 and 4.
  • the sensing information is, for example, spatial coordinates.
  • the work management apparatus 1 calculates the spatial coordinates based on the laser light irradiation direction (deflection angle ⁇ and deviation angle ⁇ ) and the distance R between the reflection source (object).
  • the spatial coordinates are coordinates representing the position of the reflection source in the sensing range.
  • FIG. 5 is a diagram schematically showing the spatial coordinates.
  • the work management apparatus 1 detects the container 20, its fork pockets 201 and 202, and forks F101 and F102.
  • symbol G is the road surface G.
  • FIG. The work management apparatus 1 detects the container 20 (at least a part of the insertion surface 211) and the fork pockets 201 and 202 by the first detection process.
  • the work management apparatus 1 uses a flat or substantially flat surface (including a surface having unevenness) as a flat surface, and is perpendicular (vertical direction) or substantially perpendicular to the ground surface or the floor surface. Detect standing planes.
  • the work management apparatus 1 determines that the plane is the insertion surface 211 of the container 20.
  • the work management device 1 detects, as the fork pockets 201 and 202, a portion where the reflected light of the laser beam is not detected and a portion where the reception level of the reflected light of the laser beam is low in the detected plane or the lower portion of the plane. To do.
  • the work management apparatus 1 may detect, as the fork pockets 201 and 202, the detected plane or a lower portion of the plane where a distance that is a predetermined value or more changes (distant) with respect to the distance to the plane. . Further, the work management apparatus 1 may detect the fork pockets 201 and 202 from the detected plane using the sensing information and the pocket position information.
  • the pocket position information is information indicating a combination of the dimensions of the container 20 and the positions or dimensions (shapes) of the fork pockets 201 and 202 in the container 20, or information indicating a pattern of this combination.
  • the work management device 1 determines that the pocket position when the fork pockets 201 and 202 exist based on the pocket position information, for example, when a portion having a low reception level of the reflected light of the laser beam exists at a predetermined ratio or more. It may be determined that the fork pockets 201 and 202 based on the information exist.
  • the work management apparatus 1 detects the forks F101 and F102 by the second detection process.
  • the work management device 1 is a plane extending a specific length or more in the Y-axis direction among the planes parallel or substantially parallel to the XY plane, and is specified in the X-axis direction. Portions smaller than the width are detected as forks F101 and F102.
  • the work management apparatus 1 may store patterns of the positions and shapes of the forks F101 and F102 in advance and detect objects that match the patterns as the forks F101 and F102.
  • the work management apparatus 1 calculates the lengths (also referred to as “fork lengths”) f1 of the detected forks F101 and F102.
  • the fork length f1 is a length from the root to the tip of the fork F101 or F102 in the XY plane.
  • the present invention is not limited to this, and it may be a length including the Z-axis direction, or may be a length having one end near the root or near the tip.
  • the root of the fork F101 or F102 is the root of the fork F101 or F102, the end, an L-shaped bent portion, a portion that is not flat, or the XY plane, and the fork F101 or F102 and the fork rails F11 and F12 or the backrest F13. It is also a crossing part.
  • FIG. 6 is a diagram illustrating an example of a calculation process of the target distance LB according to the present embodiment.
  • the target distance LB is a distance from the forklift F1 to the container 20 (insertion surface 211).
  • the target distance LB is also a distance from the root of the forks F101 and F102 or a position near the base to the openings of the fork pockets 201 and 202.
  • FIG. 6 is a diagram in the case where the forklift F ⁇ b> 1 faces the container 20. That is, when the traveling direction of the forklift F1 (the direction in which the forks F101 and F102 extend) is the Y-axis direction, the traveling direction is the normal direction of the insertion surface 211.
  • FIG. 6 is a diagram obtained by projecting the sensing information of FIG. 5 onto the XY plane. In FIG. 6, a solid line represents laser light. Moreover, in FIG. 6, the projection of the container 20, the forks F101 and F102, and the work management apparatus 1 is indicated by broken lines for convenience.
  • the work management apparatus 1 detects the plane 211 in the range of the deviation angle ⁇ in the range of ⁇ P1 ⁇ ⁇ ⁇ ⁇ P1 + m .
  • i in ⁇ i represents the order of irradiation with laser light in one horizontal scan, that is, the number of times of irradiation.
  • ⁇ i ⁇ max + i ⁇ ⁇ .
  • the reference plane B1 is a plane parallel to the XZ plane, and is a plane perpendicular to the traveling direction when the forklift F1 travels straight.
  • the reference plane B1 is a plane including the work management device 1 (projection port) among such planes.
  • the reference plane B1 is located at or near the root of the forks F101 and F102, the fork rails F11 and F12, the backrest F13, the work management device 1, or the space recognition sensor in the projection onto the XY plane. To do.
  • the work management apparatus 1 determines that the plane 211 is the insertion surface (insertion surface 211) of the container 20.
  • the work management device 1 is also referred to as a distance L i from the reference surface B1 of the forklift F1 to the insertion surface 211 (“reference distance L i ”) based on the distance R i from the work management device 1 to the object (reflection source). ) Is calculated.
  • the distance R i is the distance R detected in the i-th irradiation, and represents the distance R from the work management apparatus 1 to the object (reflection source).
  • represents the deflection angle ⁇ when the i-th irradiation is performed.
  • the reference distance Li is the same value in the range of P1 ⁇ i ⁇ P1 + m.
  • the work management apparatus 1 sets the reference distance L i as the target distance LB.
  • the minimum value reference distance L i may be used as the target distance LB, it may be the object distance LB average value of the reference distance L i.
  • the work management device 1 may detect the root of the fork or the vicinity thereof and calculate the distance from the detected root or the vicinity thereof to the insertion surface 211 as the target distance LB.
  • ⁇ Insertion distance estimation> 7A and 7B are schematic diagrams illustrating an example of the insertion distance estimation according to the present embodiment.
  • the work management apparatus 1 calculates or reaches the insertion distance d p (when the value is positive or 0) or the value d obtained by subtracting the target distance LB from the length (also referred to as “fork length”) f1 of the forks F101 and F102.
  • the distance d c value if negative
  • the insertion distance d p is a distance from the insertion surface 211 (the opening of the fork pockets 201 and 202) to the tip of the forks F101 and F102 when the forks F101 and F102 are inserted.
  • Reaching distance d c when the fork F101, F102 is not inserted, the distance from the tip of the fork F101, F102 to insertion surface 211.
  • FIGS. 7A and 7B are diagrams in which the sensing information is projected onto the XY plane.
  • distances LB1 and LB2 are reference distances LB
  • fork length f1 is the length of forks F101 and F102 (the length in the Y-axis direction).
  • Figure 7A showing an example of a reaching distance d c
  • FIG. 7B an example of the insertion distance d p.
  • the distance LB1 a value obtained by subtracting the fork length f1, is calculated as a reaching distance d c.
  • the service management apparatus 1 when the fork F101, F102 is plugged (Fig. 7B, a value obtained by subtracting the distance LB2 from the fork length f1, calculated as insertion distance d p.
  • the work management system 1 The length f1 may be detected or stored in advance.
  • FIG. 8A and 8B are schematic diagrams illustrating an example of insertion amount determination according to the present embodiment.
  • FIG. 8A is a diagram when the insertion amount is appropriate
  • FIG. 8B is a diagram when the insertion amount is inappropriate.
  • 8A and 8B are diagrams in which sensing information is projected onto the XY plane.
  • distances LB 3 and LB 4 are reference distances LB
  • distances d p3 and d p4 are specific examples of plug-in distances d p .
  • the fork length f1 is the length of the forks F101 and F102.
  • the work management apparatus 1 performs the following first insertion amount determination.
  • the work management device 1 determines that the amount of insertion is appropriate when the insertion distance d p (see FIG. 8B) is equal to or greater than the threshold value TH1. That is, the work management device 1 determines that the forks F101 and F102 are sufficiently inserted and the container 20 can be gripped appropriately when the insertion distance d p is equal to or greater than the threshold value TH1. In this case, the work management apparatus 1 determines that the forks F101 and F102 are allowed to move up and down.
  • the threshold value TH1 is a length of a predetermined ratio (for example, 90%) of the fork length f1, or a length obtained by subtracting a predetermined length (for example, 20 cm) from the fork length f1.
  • the work management apparatus 1 may determine that the insertion amount is appropriate when the insertion distance d p is equal to or greater than the threshold value TH1 and equal to or less than the threshold value TH2 (> TH1). In other words, when the insertion distance d p is equal to or less than the threshold value TH2, the work management apparatus 1 determines that the forks F101 and F102 are not inserted too much and the container 20 can be gripped appropriately.
  • the threshold value TH2 is a predetermined percentage (for example, 95%) of the fork length f1, or a length obtained by subtracting a predetermined length (for example, 5 cm) from the fork length f1.
  • the work management apparatus 1 determines that the insertion amount is inappropriate. That is, when the insertion distance d p is smaller than the threshold value TH1, the work management device 1 determines that the forks F101 and F102 are not sufficiently inserted and the container 20 cannot be gripped appropriately. Note that the work management device 1 may determine that the insertion amount is inappropriate when the insertion distance d p is greater than the threshold value TH2. That is, the work management apparatus 1 determines that the forks F101 and F102 are inserted too much and the container 20 cannot be gripped appropriately. In these cases, the work management apparatus 1 determines that the forks F101 and F102 are not allowed to move up and down.
  • FIG. 8A is a diagram when TH1 ⁇ d p3 ⁇ TH2.
  • the forks F101 and F102 are fully inserted, and the container 20 can be appropriately gripped.
  • the threshold value TH1 is a value larger than the depth (length in the Y-axis direction) of the container 20 (or the fork pockets 201 and 202).
  • FIG. 8B is a diagram when d p3 ⁇ TH1. In the case of FIG. 8B, the forks F101 and F102 are not sufficiently inserted and the container 20 may not be properly gripped (such as falling forward).
  • the work management apparatus 1 may perform the first insertion amount determination when the forks F101 and F102 are inserted into the container 20 (for example, when the forklift F1 is moving forward). The work management apparatus 1 may not perform the first insertion amount determination when the forks F101 and F102 are extracted from the container 20 (for example, when the forklift F1 is moving backward). Moreover, the work management apparatus 1 may perform the first insertion amount determination when an operation for raising and lowering the lift is performed.
  • the work management apparatus 1 performs the following second insertion amount determination.
  • Service management apparatus 1 when the insertion distance d c is 0, or if more than reaching distance d c is the threshold value TH3 ( ⁇ 0), the insertion amount is appropriate (insertion amount is zero or negative, i.e. , Fork is properly extracted). In this case, the work management apparatus 1 determines that the forks F101 and F102 are completely extracted and appropriately separated from the container 20. Further, the work management device 1 determines that the steering operation (handle operation) of the forklift F1 is allowed.
  • Service management apparatus 1 when the insertion distance d c is greater than 0, it determines the insertion amount is inappropriate. In this case, the work management apparatus 1 determines that the forks F101 and F102 are not completely extracted and are not properly separated from the container 20. Further, the work management device 1 determines that the steering operation (handle operation) of the forklift F1 is not permitted.
  • FIG. 9A and 9B are schematic diagrams illustrating an example of insertion amount determination according to the present embodiment.
  • FIG. 9A is a diagram when the amount of insertion is appropriate
  • FIG. 9B is a diagram when the amount of insertion is inappropriate.
  • 9A and 9B are diagrams in which the sensing information is projected onto the XY plane.
  • distances LB 5 and LB 6 are reference distances LB.
  • the distance d c5 is reaching distance d c
  • the distance d p6 are insertion distance d p.
  • the fork length f1 is the length of the forks F101 and F102.
  • FIG. 9A is a diagram when d c5 ⁇ TH3 ⁇ 0.
  • the forks F101 and F102 are completely extracted.
  • the forklift F1 can avoid the forks F101 and F102 from colliding with the container 20 (or the openings of the fork pockets 201 and 202) even if the forklift F1 is bent by a steering operation while moving backward.
  • FIG. 9B is a diagram when d p6 > 0. In the case of FIG. 9B, the forks F101 and F102 are not completely extracted.
  • the work management apparatus 1 can notify this fact.
  • the work management apparatus 1 may perform the second insertion amount determination when the forks F101 and F102 are extracted from the container 20. On the other hand, the work management apparatus 1 may not perform the first insertion amount determination when the forks F101 and F102 are extracted from the container 20. Similarly, the work management apparatus 1 may perform the first insertion amount determination when inserting the forks F101 and F102 into the container 20. On the other hand, the work management apparatus 1 may not perform the second insertion amount determination when inserting the forks F101 and F102 into the container 20.
  • FIG. 10 is a flowchart showing an example of the operation of the forklift F1 according to the present embodiment.
  • Step S101 The forklift F1 starts the engine (ACC ON) by the operation of a worker or the like. Then, it progresses to step S102.
  • Step S102 The vehicle-mounted device such as the work management device 1 is activated by acquiring information indicating that power is supplied or the engine is started. Then, it progresses to step S103, S104, S05.
  • Step S103 The work management apparatus 1 acquires sensing information representing a space using a space recognition sensor. Specifically, laser light irradiation is performed to sense the distance to the object (sensor scanning). Thereafter, the process proceeds to step S106.
  • Step S104 The work management apparatus 1 acquires position information indicating the position of the forklift F1 (work management apparatus 1).
  • the position information is, for example, a positioning result of GNSS (Global Positioning Satellite System). However, the position information may be a positioning result using other wireless communication (for example, wireless LAN or RFID tag).
  • GNSS Global Positioning Satellite System
  • Step S105 The work management apparatus 1 acquires vehicle information indicating the state of the forklift F1 or an operation by a worker or the like. Thereafter, the process proceeds to step S106.
  • the vehicle information can be output by the forklift F1, such as the speed, steering angle, accelerator operation, brake operation, gear (forward, reverse, high speed, low speed, etc.), manufacturer, vehicle type, vehicle identification information, etc. It is data.
  • the vehicle information includes fork information indicating the position (height) of the forks F101 and F102, the presence / absence of the gripping object to be transported, the weight thereof, the load status of the lift chain, the type of the forks F101 and F102, Or identification information of workers (drivers), identification information of workplaces (warehouses and factories) and companies, identification information of gripped (transported) transport targets (for example, acquired by RFID attached to transport targets), etc. May include work information or the like.
  • Step S106 The work management apparatus 1 associates the sensing information acquired in Step S103, the position information acquired in Step S104, and the vehicle information acquired in Step S105 (the associated data is also referred to as “association data”). For example, the work management device 1 associates sensing information, position information, and vehicle information together with the device identification information of the work management device 1 and the acquisition date and time. Thereafter, the process proceeds to step S107.
  • Step S107 The work management apparatus 1 determines the presence or absence of a danger or an event based on the association data associated in step S106. For example, the work management apparatus 1 performs the insertion amount determination based on the association data. If it is determined that there is a danger or event (yes), the process proceeds to step S108. On the other hand, if it is determined that there is no danger or event (no), the process proceeds to step S109.
  • Step S108 The work management apparatus 1 outputs a warning (including guidance) based on the risk or event type determined in step S107 or the type and association data. Thereafter, the process proceeds to step S109.
  • Step S109 The work management apparatus 1 associates the association data, the determination information indicating the determination result of Step S107, or the output information indicating the output result of the warning of Step S108, and records the associated data in a recording device or the like. . Then, it progresses to step S110.
  • Step S110 The work management apparatus 1 transmits the data associated in step S109 to a server or the like. Thereafter, the process proceeds to step S111.
  • this server is an information processing apparatus that collects and manages data from a plurality of forklifts F1 in a workplace or a company, for example.
  • Data transmitted to the server is analyzed by a statistical processing function and a machine learning function.
  • Data transmitted to the server or analysis result data is used for driving education and the like.
  • the operation data of a worker who is well loaded or efficiently transported is used as a model.
  • the data at that time is used for investigation and improvement of the cause.
  • Step S111 When the engine of the forklift F1 is stopped by the operation of a worker or the like (yes), the process proceeds to Step S112. On the other hand, when the engine of the forklift F1 is not stopped (no), the process proceeds to steps S103, S104, and S05. That is, the work management apparatus 1 performs information acquisition, data association, recording, and transmission by sensing or the like until the engine stops. (Step S112) The in-vehicle device such as the work management device 1 stops or enters a sleep state by acquiring information indicating that the supply of power is stopped or the engine is stopped. Thereafter, this operation ends.
  • FIG. 11 is a schematic configuration diagram illustrating a hardware configuration of the work management apparatus 1 according to the present embodiment.
  • a work management apparatus 1 includes a CPU (Central Processing Unit) 111, an IF (Interface) 112, a communication module 113, a sensor 114 (for example, a space recognition sensor), a ROM (Read Only Memory) 121, and a RAM (Random Access). Memory) 122 and HDD (Hard Disk Drive) 123 are comprised.
  • the IF 112 is, for example, a part of the forklift F1 (driver's seat, vehicle body, mast F14, etc.) or an output device (lamp, speaker, touch panel display, etc.) provided in the work management apparatus 1.
  • the communication module 113 transmits and receives signals via a communication antenna.
  • the communication module 113 is a communication chip such as a GNSS receiver or a wireless LAN.
  • the sensor 114 irradiates laser light, for example, and performs sensing based on the received reflected light.
  • FIG. 12 is a schematic configuration diagram showing a hardware configuration of the work management apparatus 1 according to the present embodiment.
  • the work management apparatus 1 includes a sensor unit 101, a vehicle information acquisition unit 102, a GNSS reception unit 103, an analysis unit 104, a control unit 105, an output unit 106, a recording unit 107, and a communication unit 108. Is done.
  • the sensor unit 101 is a space recognition sensor.
  • the sensor unit 101 senses the distance R from its own device to each object, for example, with laser light.
  • the sensor unit 101 recognizes the space based on the irradiation direction (deviation angle ⁇ , ⁇ ) of the laser light and the sensed distance R.
  • recognizing a space means generating three-dimensional coordinates for a space including surrounding objects, but the present invention is not limited to this, and may be generating two-dimensional coordinates.
  • the sensor unit 101 generates sensing information (for example, coordinate information) and outputs it to the control unit 105.
  • the vehicle information acquisition unit 102 acquires vehicle information from the forklift F ⁇ b> 1 and outputs the acquired vehicle information to the control unit 105.
  • the GNSS receiving unit 103 acquires position information and outputs the acquired position information to the control unit 105.
  • the analysis unit 104 acquires the sensing information output from the sensor unit 101, the vehicle information output from the vehicle information acquisition unit 102, and the position information output from the GNSS reception unit from the control unit 105.
  • the analysis unit 104 generates association data by associating the acquired sensing information, vehicle information, and position information.
  • the analysis unit 104 analyzes the generated association data. For example, the analysis unit 104 detects the insertion surface 211 (container 20) by detecting the plane and the fork pockets 201 and 202 by the first detection process based on the sensing information. Moreover, the analysis part 104 detects the forks F101 and F102 by the 2nd detection process based on sensing information.
  • the analysis unit 104 may measure the lengths of the detected forks F101 and F102. Further, the analysis unit 104, based on the obtained sensing information, calculates a reference distance L i for detected at least one point of the insertion face 211, determines the object distance LB. The analysis unit 104 calculates a value d obtained by subtracting the target distance LB from the fork length f1 as an insertion distance d p (when the value is positive or 0) or an arrival distance d c (when the value is negative).
  • the control unit 105 acquires the sensing information output from the sensor unit 101, the vehicle information output from the vehicle information acquisition unit 102, and the position information output from the GNSS reception unit, and analyzes the analysis information using, for example, the analysis unit 104. Judgment is made based on this. For example, the control unit 105 determines whether there is a danger or an event.
  • the control unit 105 performs the above-described insertion amount determination as one of the determinations. Specifically, the control unit 105 determines whether or not the value d (the insertion distance d p or the reach distance d c ) calculated by the analysis unit 104 is within a predetermined range, thereby determining the insertion amount. (First insertion amount determination, second insertion amount determination) is performed.
  • the control unit 105 causes the output unit 106 to output a warning (including guidance) based on the determination result or the determination result and association data.
  • the control unit 105 records determination information indicating the determination result and association data in the recording unit 107 and transmits the information to a server or the like via the communication unit 108.
  • the sensor unit 101 is realized by the sensor 114 of FIG.
  • the vehicle information acquisition unit 102 and the GNSS reception unit 103 are realized by the communication module 113, for example.
  • the analysis unit 104 and the control unit 105 are realized by, for example, the CPU 111, the ROM 121, the RAM 122, or the HDD 123.
  • the work management device 1 is an in-vehicle device mounted on the forklift F1 (loader).
  • the analysis unit 104 detects forks F101 and F102 (insertion claws) based on sensing information acquired from a space recognition sensor (space recognition device), An insertion distance d p indicating the distance at which the detected forks F101 and F102 are inserted into the container 20 (insertion target) is calculated.
  • the control unit 105 performs insertion amount determination for determining whether or not the insertion distance d p is within a predetermined range.
  • the work management apparatus 1 can insert the forks F101 and F102 into the fork pockets 201 and 202 by an appropriate distance, and can appropriately transport the object to be transported.
  • the forklift F1 can grip and transport the container 20 appropriately (in a balanced and stable manner), and can prevent the container 20 from dropping due to insufficient insertion amount.
  • the work management apparatus 1 can prevent an object (other container or the like) in the back of the container 20 from being damaged or overturned.
  • the work management device 1 performs a steering operation (handle operation) when the forks F101 and F102 are not completely extracted after the container 20 is placed on the loading platform L1 or the like, and the forks F101 and F102 are placed in the container. 20 can be prevented.
  • the analysis unit 104 is a distance indicated by the sensing information, and the opening to be inserted from the root of the forks F101 and F102 or a position in the vicinity thereof.
  • the insertion distance d p is calculated based on the reference distance LB until.
  • the analysis unit 104 subtracts the reference distance LB from the fork length f1.
  • the work management device 1 can calculate the insertion distance d p based on the distance indicated by the sensing information, and can perform the insertion amount determination using the sensing information.
  • the analysis unit 104 (forklift F1 or work management device 1) is the position indicated by the sensing information, and the forks F101 and F102 (tips) are the positions of the openings of the fork pockets 201 and 202 of the container 20.
  • the insertion distance d p may be calculated on the basis of the timing of reaching the position (also referred to as “arrival timing”) and the speed of the forklift F1.
  • FIG. 14A and 14B are schematic diagrams illustrating an example of insertion amount determination according to a modification of the present embodiment.
  • FIG. 14A is a diagram showing the positional relationship between the forks F101 and F102 when they reach the insertion surface 211 of the container 20, and
  • FIG. 14B shows the timing after the forks F101 and F102 reach the insertion surface 211.
  • FIG. 14A and 14B are diagrams in which sensing information is projected onto the XY plane.
  • distances LB 5 and LB 6 are reference distances LB
  • the fork length f1 is the length of the forks F101 and F102.
  • the timing is detected (for example, FIG. 14A).
  • the analysis unit 104 may set the time when the value d becomes 0 when the forklift F1 is moving forward based on the vehicle information as the arrival timing.
  • This vehicle information is, for example, vehicle information indicating that the gear is moving forward, or vehicle information indicating that the moving direction is the front (the rotation direction of the tire).
  • the analysis unit 104 calculates the insertion distance d p by the circumference of the tire ⁇ (the rotation speed of the tire after the arrival timing). May be calculated as
  • the analysis unit 104 can calculate the insertion distance d p without using the distance LB and the fork length f1.
  • the analysis unit 104 (forklift F1 or work management device 1) is the position indicated by the sensing information, and the forks F101 and F102 (tips) are the positions of the openings of the fork pockets 201 and 202 of the container 20. Insertion distance based on the difference between the distance LB from the space recognition sensor (work management device 1) to the insertion surface 211 and the distance LB from the subsequent space recognition sensor to the insertion surface 211. d p may be calculated.
  • the analysis unit 104 calculates the distance LB 5 from the space recognition sensor to the insertion surface 211 when the forks F101 and F102 reach the positions of the openings of the fork pockets 201 and 202, and thereafter
  • the insertion distance d p6 is calculated by subtracting the distance LB 6 from the space recognition sensor to the insertion surface 211.
  • the analysis unit 104 can calculate the insertion distance d p without using the fork length f1.
  • the control unit 105 (forklifts F1 or service management apparatus 1), based on the insertion distance d p, may be changed output based on insertion amount determination. Specifically, when determining that the amount of insertion is inappropriate, the control unit 105 may change the magnitude and frequency of the output depending on whether or not the insertion amount approaches (or moves away from) the range. Thereby, the work management apparatus 1 can output the change of the insertion distance d p in addition to the determination result of the insertion amount determination. For example, when determining that the amount of insertion is inappropriate, the control unit 105 increases the frequency of output (for example, sound) the closer to the range determined to be appropriate or the farther the range is determined to be appropriate.
  • the control unit 105 increases the frequency of output (for example, sound) the closer to the range determined to be appropriate or the farther the range is determined to be appropriate.
  • control unit 105 may stop the output when the determination result of the insertion amount determination changes (appropriately changes from inappropriate), or performs an output different from the inappropriate case. Alternatively, the output may be stopped after this output. Thereby, the work management apparatus 1 can notify a worker or the like whether or not the insertion distance d p is correctly changed in order to change the determination result of the insertion amount determination, for example.
  • the control unit 105 makes a less conspicuous warning (small output, for example, A warning may be given by a low sound or dark light, a sound or light flashing with a small time or frequency, a sound with a wide interval or light flashing, etc.).
  • the control unit 105 determines that the insertion amount is inappropriate, when the insertion distance d p is smaller than a predetermined value, the control unit 105 makes a more conspicuous warning (large output, for example, larger). Sounds, bright lights, sounds with a lot of time and frequency, blinking lights, sounds with short intervals, blinking lights, etc.).
  • control unit 105 may output a warning based on the result of the insertion amount determination and the traveling direction of the vehicle in which the device is mounted. good.
  • the output unit 106 outputs a warning based on the result of the insertion amount determination and the traveling direction of the vehicle on which the own device is mounted.
  • the control unit 105 when determining that the insertion amount is inappropriate (the insertion distance d p is smaller than the threshold value TH1), the control unit 105 outputs a warning when the traveling direction is reverse. In this case, the control unit 105 may not output a warning when the traveling direction is forward. Further, when determining that the insertion amount is inappropriate (the insertion distance d p is smaller than the threshold value TH1), the control unit 105 may output a warning when the traveling direction changes from forward to reverse. For example, when the forklift F1 transports the container 20, the forklift F1 moves forward to insert the forks F101 and F102 into the container 20, and then grips the container 20, and usually first moves backward to transport the container 20.
  • the work management apparatus 1 outputs a warning when the traveling direction is reverse, and therefore can output a warning when it is necessary to appropriately grasp the transport target.
  • the control unit 105 (forklift F1 or work management device 1) issues a warning based on the result of the insertion amount determination and the vehicle information indicating the lift operation of the vehicle in which the device is mounted. It may be output.
  • the work management apparatus 1 may perform the insertion amount determination when an operation for raising and lowering the lift is performed.
  • the work management apparatus 1 may perform the first insertion amount determination when an operation of raising the lift (moving in the positive direction of the Z axis) is performed.
  • the work management apparatus 1 performs the first insertion amount determination for a specific period (a period until there is a specific movement) after the operation of lowering the lift (moving in the negative Z-axis direction) is performed. Also good.
  • the control unit 105 may perform output based on the first determination result or the second determination result and the vehicle information. Specifically, the control unit 105 outputs a warning based on the result of the insertion amount determination and the traveling direction of the vehicle on which the own device is mounted. For example, when it is determined that the insertion is inappropriate in the first insertion amount determination, the control unit 105 may output a warning when the vehicle information indicates that the traveling direction of the forklift F1 is reverse. .
  • the control unit 105 does not output a warning when the vehicle information indicates that the traveling direction of the forklift F1 is reverse when it is determined that the insertion is inappropriate in the second insertion amount determination. good.
  • the case where the traveling direction of the forklift F1 indicates the reverse is, for example, a case where the gear is reverse, or a case where the gear is reverse and the forklift F1 starts to reverse.
  • control unit 105 may output a warning when the vehicle information indicates that the traveling direction of the forklift F1 is forward when the insertion is determined to be inappropriate in the second insertion amount determination. good.
  • control unit 105 does not output a warning when the vehicle information indicates that the traveling direction of the forklift F1 is forward when it is determined that the insertion is inappropriate in the first insertion amount determination. good.
  • control unit 105 may output a warning when the forklift F1 is bent when it is determined that the insertion is inappropriate in the first determination result or the second determination result.
  • the case of indicating that the forklift F1 is bent is, for example, a case where the steering angle indicated by the vehicle information is equal to or greater than a threshold value, or a case where the steering angle indicated by the vehicle information is equal to or greater than the threshold value and the forklift F1 starts to reverse. .
  • the control unit 105 determines whether or not it is facing the insertion surface 211 having the openings of the fork pockets 201 and 202 based on the sensing information (“correct” (Also referred to as “pair determination”), an insertion amount determination or a warning based on the insertion amount determination (also referred to as “insertion amount determination etc.”) may be performed. Further, the control unit 105 determines whether or not the positional relationship between the fork pockets 201 and 202 and the forks F101 and F102 is shifted based on the sensing information (also referred to as “shift determination”), and then determines the insertion amount. Etc. may be performed.
  • the shift determination is to determine whether or not the forks F101 and F102 are included in the range of the fork pockets 201 and 202 in the projection of the XZ plane.
  • the control unit 105 may perform a deviation determination after performing a facing determination, and then perform an insertion amount determination or the like.
  • the service management apparatus 1, the forklift F1 is confronting, so inserted into the fork pockets 201 and 202 without displacement forks F101, F102, further, it is possible to plugged by appropriate insertion distance d p.
  • the analysis unit 104 calculates the amount of protrusion of the fork F101, F102 from the back of the container 20 when the forks F101, F102 are inserted (also referred to as “projection amount”). May be. Specifically, the analysis unit 104 stores the length A of the container 20 in the depth direction (Y-axis direction) in advance or calculates the detection result by the space recognition sensor. The analysis unit 104 sets a value obtained by subtracting A from the insertion distance d p as the protrusion amount. When the protrusion amount calculated by the analysis unit 104 is greater than or equal to the threshold, the control unit 105 outputs a warning that the protrusion is excessive. On the other hand, if the amount of protrusion calculated by the analysis unit 104 is negative (not protruding) and equal to or less than a threshold value (in the case of negative), a warning may be output as insufficient insertion.
  • the control unit 105 (forklift F1 or work management device 1) may be set with a condition for determining whether or not to perform the insertion amount determination.
  • the control unit 105 performs a warning based on the insertion amount determination when the following first condition is satisfied, and does not need to perform a warning based on the insertion amount determination when the first condition is not satisfied.
  • the control unit 105 may perform insertion amount determination or sensing when the first condition is satisfied, and may not perform insertion amount determination or sensing when the first condition is not satisfied.
  • the control part 105 may change the space
  • the first condition is, for example, a condition that the distance between the container 20 and the forklift F1 (for example, the reference distance Li or the target distance LB) is smaller than (is close to) a threshold value.
  • the first condition may be a condition based on position information or vehicle information, for example.
  • the control unit 105 may issue a warning or the like when the forklift F1 enters a predetermined position (range) in a warehouse or the like, and may not issue a warning or the like at other positions.
  • the first condition may be a condition based on fork information or work information, for example.
  • the control unit 105 may give a warning or the like when there is no gripping transport target, and may not perform a warning or the like when there is a gripping transport target.
  • the control unit 105 issues a warning or the like when the position (height) of the forks F101 and F102 is lower than the threshold, and does not need to issue a warning or the like when the position (height) of the forks F101 and F102 is higher than the threshold.
  • the control unit 105 issues a warning or the like when a specific worker operates, and does not need to issue a warning or the like in other cases.
  • the work management device 1 when the work management device 1 is fixed to the central portion of the forklift F1 in the X-axis direction, when the forklift F1 tries to grip the container 20 appropriately, the fork F101 and the fork F102
  • the work management device 1 can be positioned at the center portion of the fork pocket 201 or the fork pocket 201 and the center portion of the fork pocket 202.
  • the work management device 1 when the work management device 1 is fixed to the fork rail F11 and the backrest F13, the work management device 1 can more easily recognize the forks F101 and F102 than when the work management device 1 is fixed to the fork rail F12. . That is, since the work management device 1 and the forks F101 and F102 are separated in the height direction (X-axis direction), the work management device 1 recognizes the shape of the forks F101 and F102 in the length direction (Y-axis direction) more. (See FIGS. 3 and 5). Further, when the work management device 1 is fixed to the lower surface side (lower side) of the fork rail F11 or the like, the work management device 1 can sense the forks F101 and F102 (particularly up to the root portion).
  • the work management device 1 when the work management device 1 is fixed to the fork rails F11 and F12, the work management device 1 can more easily recognize the fork pockets 201 and 202 than when the work management device 1 is fixed to the backrest F13. That is, since the work management device 1 and the fork pockets 201 and 202 approach the height direction, the work management device 1 sets the irradiation angle (the angle in the height direction) of the laser light or the like to the fork pockets 201 and 202 more horizontally. Can be close to (perpendicular to the insertion surface).
  • the space recognition sensor may perform space recognition using light other than laser light.
  • the work management apparatus 1 may perform space recognition using radio waves other than laser light, or may perform space recognition using a captured image, for example.
  • the space recognition sensor may be a monocular camera, stereo camera, infrared camera, millimeter wave radar, optical laser, LiDAR (Light Detection And Ranging, Laser Imaging Detection And Ranging), (ultra) sonic sensor, or the like.
  • the work management apparatus 1 may be connected to the automatic driving apparatus or may be a part of the automatic driving apparatus. That is, the work management device 1 may perform the insertion amount determination and automatically operate the forklift F1 so that the insertion amount is appropriate.
  • the work management device 1 adjusts the gear, the accelerator, and the brake so that the insertion distance d p approaches a predetermined range as a result of the insertion amount determination, and, for example, moves forward or reverse the forklift F1.
  • the work management apparatus 1 may exclude the road surface G, the wall, and an object at a position farther than a predetermined distance from the detection target (sensing information). The work management apparatus 1 excludes these from the projection target when projecting onto each surface.
  • the work management apparatus 1 may use edge detection when detecting the container 20 and the forks F101 and F102.
  • the edge detected by edge detection is, for example, the distance R or a location where the rate of change is large.
  • the work management apparatus 1 may use, as an edge, a portion of the detected object in which the partial differentiation at each coordinate axis is equal to or greater than a threshold value.
  • the work management device 1 is a portion where the detected planes intersect, a portion where the difference in the distance R between adjacent or adjacent points in the reverse direction is equal to or greater than a threshold value, or a portion where the reflected light of the laser beam is not detected.
  • a portion adjacent to the portion, and a portion adjacent to a portion where the reception level of the reflected light of the laser beam is low may be used as an edge.
  • the work management apparatus 1 may perform edge detection by other methods.
  • the work management apparatus 1 records a program for realizing each function on a computer-readable recording medium, causes the computer system to read and execute the program recorded on the recording medium, The above processing may be performed.
  • the “computer system” includes an OS and hardware such as peripheral devices.
  • the “computer system” includes a WWW system having a homepage providing environment (or display environment).
  • the “computer-readable recording medium” refers to a storage device such as a flexible medium, a magneto-optical disk, a portable medium such as a ROM or a CD-ROM, and a hard disk incorporated in a computer system.
  • the “computer-readable recording medium” refers to a volatile memory (RAM) in a computer system that becomes a server or a client when a program is transmitted via a network such as the Internet or a communication line such as a telephone line. In addition, those holding programs for a certain period of time are also included.
  • RAM volatile memory
  • the program may be transmitted from a computer system storing the program in a storage device or the like to another computer system via a transmission medium or by a transmission wave in the transmission medium.
  • the “transmission medium” for transmitting the program refers to a medium having a function of transmitting information, such as a network (communication network) such as the Internet or a communication line (communication line) such as a telephone line.
  • the program may be for realizing a part of the functions described above. Furthermore, what can implement

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Transportation (AREA)
  • Physics & Mathematics (AREA)
  • Civil Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Forklifts And Lifting Vehicles (AREA)

Abstract

車載装置は、解析部と制御部とを有する。解析部は、空間認識装置から取得したセンシング情報に基づいて差込爪を検出し、検出した差込爪が差込対象に差し込まれている距離を示す差込距離を算出する。制御部は、差込距離が予め定めた範囲であるか否かを判定する差込量判定を行う。

Description

車載装置、荷役機、制御回路、制御方法、及びプログラム
 本発明は、車載装置、荷役機、制御回路、制御方法、及びプログラムに関する。
 近年、自動運転技術やロボット技術の発展に伴い、レーザやレーダを活用した空間認識技術の精度が向上し、また、空間認識センサの低価格化が進んでいる。
 一方、フォークリフト等の荷役機において、荷役作業を管理する装置が用いられている。例えば、特許文献1には、パレットとの距離がフォークの長さとパレットの奥行きから求めた最適距離の範囲内であることを知らせることが記載されている。
特開平07-101696号公報
 しかしながら、特許文献1記載の技術は、パレットとの距離のみを検出するものであり、フォークの長さ及びパレットの奥行きが固定であるか、又は、フォークの長さ及びパレットの奥行きに応じた最適距離を予め設定しなければならない。例えば、フォークの長さ及びパレットの奥行きが想定とは異なる場合、又は、設定を間違えた場合、特許文献1記載の技術では、不適切な距離を最適距離と判断してしまう。
 最適距離を誤った場合、差し込み不足やフォークの差し過ぎにより、運搬する荷物(運搬対象)やその奥の運搬対象が転倒、落下、又は損傷してしまう、という問題があった。
 以上に例示したように、特許文献1記載の技術では、運搬対象に対する転倒や落下、損傷を防止できず、運搬対象を適切に運搬できない、という問題があった。
 そこで、本発明の一態様は、運搬対象を適切に運搬することができる車載装置、荷役機、制御回路、制御方法、及びプログラムを提供することを目的としている。
 本発明の一態様は、上述の課題を解決すべくなされたもので、空間認識装置から取得したセンシング情報に基づいて差込爪を検出し、検出した差込爪が差込対象に差し込まれている距離を示す差込距離を算出する解析部と、前記差込距離が予め定めた範囲であるか否かを判定する差込量判定を行う制御部と、を備える車載装置である。
 また本発明の一態様は、上記の車載装置を備える荷役機である。
 また本発明の一態様は、空間認識装置から取得したセンシング情報に基づいて差込爪を検出し、検出した差込爪が差込対象に差し込まれている距離を示す差込距離が予め定めた範囲であるか否かを判定する制御回路である。
 また本発明の一態様は、解析部が、空間認識装置から取得したセンシング情報に基づいて差込爪を検出し、検出した差込爪が差込対象に差し込まれている距離を示す差込距離を算出し、制御部が、前記差込距離が予め定めた範囲であるか否かを判定する差込量判定を行う制御方法である。
 また本発明の一態様は、コンピュータに、空間認識装置から取得したセンシング情報に基づいて差込爪を検出させ、検出した差込爪が差込対象に差し込まれている距離を示す差込距離を算出させ、前記差込距離が予め定めた範囲であるか否かを判定する差込量判定を行わせるプログラムである。
 本発明の一態様によれば、運搬対象を適切に運搬できるという効果が得られる。
本発明の実施形態に係る運搬作業を示す斜視図である。 本実施形態に係る作業管理装置の固定位置の一例を示す正面図である。 本実施形態に係るセンシングの一例を示す概略図である。 本実施形態に係るセンシングの一例を示す側面図である。 本実施形態に係るセンシング結果の一例を示す模式図である。 本実施形態に係る対象距離の算出処理の一例を示す図である。 本実施形態に係る差込距離推定の一例を示す概略図であり、フォークリフトのフォークの到達距離を示す図である。 本実施形態に係る差込距離推定の一例を示す概略図であり、フォークの差込距離を示す図である。 本実施形態に係る差込量判定の一例を示す概略図であり、フォークの差込量が適切である場合を示す図である。 本実施形態に係る差込量判定の一例を示す概略図であり、フォークの差込量が不適切である場合を示す図である。 本実施形態に係る差込量判定の別の一例を示す概略図であり、フォークの差込量が適切である場合を示す図である。 本実施形態に係る差込量判定の別の一例を示す概略図であり、フォークの差込量が不適切である場合を示す図である。 本実施形態に係るフォークリフトの動作の一例を示すフローチャートである。 本実施形態に係る作業管理装置のハードウェア構成を示すブロック図である。 本実施形態に係る作業管理装置の論理構成を示す概略ブロック図である。 本実施形態に係る作業管理装置の論理構成を示す別の概略ブロック図である。 本実施形態の変形例に係る差込量判定の一例を示す概略図であり、フォークがコンテナの差込面に到達したタイミングにおける両者の位置関係を示す図である。 本実施形態の変形例に係る差込量判定の一例を示す概略図であり、フォークがコンテナの差込面に到達した後のタイミングにおける両者の位置関係を示す図である。
 以下、図面を参照しながら本発明の実施形態について詳しく説明する。
<運搬作業について>
 図1は、本発明の実施形態に係る運搬作業を説明する説明図である。
 フォークリフトF1は、荷役機の一例である。フォークリフトF1には、フォークF101、F102が設けられている。フォークF101、F102は、差込爪の一例である。
 フォークリフトF1は、フォークF101、F102を、荷物又はパレット等の運搬対象に差し込むことで、運搬対象を把持して運搬する。つまり、荷役機には、運搬対象に差し込むことで、運搬対象を把持する差込爪が設けられている。
 コンテナ20は、運搬対象又は差込対象の一例である。コンテナ20は、荷物等を内部に納めるための容器である。コンテナ20には、フォークポケット201、202の開口部(差込部;凹部であっても良い)が設けられている。フォークポケット201、202は、それぞれ、フォークF101、F102を差し込まれる穴又は凹部である。フォークポケット201、202は、差込対象の一例である。
 差込時又は運搬時にフォークリフトF1と対向する面(「差込面211」とも称する)は、フォークポケット201、202を有する。フォークポケット201、202は、運搬対象の正面(差込面211)から背面へ(図1ではY軸の正方向)、それぞれフォークF101、F102を差し込まれ、その先端部を背面から突き出させる穴又は凹部である。
 図1では、フォークポケット201、202は、差込面211の下部において、差込面211の法線方向に真っ直ぐ伸びる穴である。
 フォークF101、F102が、それぞれ、フォークポケット201、202に真っ直ぐに差し込まれた場合、フォークリフトF1は、コンテナ20を適切に(バランス良く、安定させて)把持して運搬することができる。
 なお、コンテナ20やフォークポケット201、202の寸法等は、標準規格(例えば、JIS)で定められている。また、運搬対象は、コンテナ20に限らず、パレットであっても良いし、パレットとパレットに載せられた荷物の両方であっても良い。ここで、パレットとは、荷物を載せるための荷役台をいう。パレットには、フォークポケットが設けられている。また、フォークポケットは、3個以上(例えば、4個)あってもよい。
 作業管理装置1は、荷役機に取り付けられ、固定されている。作業管理装置1は、例えばレーザセンサ等の空間認識センサを備える。本実施形態では、空間認識センサがレーザセンサである場合について説明する。つまり、作業管理装置1(空間認識センサ)は、レーザ光を照射して反射光を受光し、自装置から各物体までの距離Rをセンシングする。作業管理装置1は、センシング対象の範囲に対して、これを繰り返す。作業管理装置1は、例えば、レーザ光の照射方向と各物体までの距離Rによって、空間を認識する(図3~図6参照)。
 作業管理装置1は、空間認識センサから得たセンシング情報に基づいて、コンテナ20(又は差込面211)を検出する。作業管理装置1は、センシング情報に基づいて、フォークF101、F102を検出し、検出したフォークF101、F102がコンテナ20(又はフォークポケット201、202)に差し込まれている距離dを算出する。以下では、この距離dを「差込距離d」とも称し、また、距離dを算出することを「差込距離推定」とも称する。
 作業管理装置1は、算出した差込距離dが予め定めた範囲であるか否かを判定する差込量判定を行う。作業管理装置1は、判定結果を出力する。例えば、作業管理装置1は、差込距離dが予め定めた範囲にない場合、つまり、フォークF101、F102を差し込み過ぎの場合、又はフォークF101、F102の差し込みが不足している場合、その旨を表す出力(例えば、警告音、警告光、警告画像、案内等)を行う。
 これにより、作業管理装置1は、例えば、作業者等に、フォークポケット201、202と、フォークF101、F102を差し込み過ぎていること、又は、フォークF101、F102の差し込みが不足していること(単に「差込量が不適切」ともいう)を知らせることができる。差し込みが不足している場合、フォークリフトF1がコンテナ20を把持した場合、コンテナ20を適切に把持できず、又は、コンテナ20のバランスが崩れて、コンテナ20を落下させてしまう可能性がある。また、差し込み過ぎている場合、コンテナ20の奥にある物体(他のコンテナ等)を、損傷、又は転倒させてしまう、可能性もある。つまり、運搬対象を適切に運搬できない。
 作業者等は、警告に応じてフォークF101、F102の差し込み具合を変更できる。
 その結果、作業者等は、フォークF101、F102をフォークポケット201、202に、適切な分だけ、差し込ませることができる。すなわち、フォークリフトF1は、コンテナ20を適切に(バランス良く、安定させて)把持して運搬することができ、コンテナ20を落下させることを防止できる。また、フォークリフトF1は、コンテナ20の奥にある物体(他のコンテナ等)を、損傷又は転倒させることを防止できる。
 なお、作業管理装置1は、差込距離dが予め定めた範囲にある場合、つまり、フォークF101、F102が適切に差し込まれている場合(単に「差込量が適切」ともいう)、その旨を表す出力を行っても良い。
 荷台L1は、搬出先の一例である。荷台L1は、トラックやトレーラの荷台、貨物列車の貨車等である。荷台L1には、緊締装置L11~L14が設けられている。緊締装置は、コンテナ20を繋いだり固定したりするために用いられる器具である。
 コンテナ20は、フォークリフトF1に把持されて運搬され、荷台L1に載せられ、緊締装置L11~L14で荷台L1に固定される。
 なお、図1に示す座標軸X、Y、Zは、本実施形態及びその変形例の各図において、共通する座標軸である。
<フォークリフトについて>
 図2は、本実施形態に係る作業管理装置1の固定位置の一例を表す概略図である。
 図2は、フォークリフトF1の正面図である。
 フォークレールF11、F12(フィンガーバー)は、フォークF101、F102を取り付けるレールである。なお、フォークF101又はフォークF102は、フォークレールF11、F12に沿ってスライドさせられることにより、フォークF101とフォークF102の間隔を調整できる。
 バックレストF13は、フォークレールF11、F12に取り付けられている。バックレストF13は、把持されたコンテナ20が崩れる、又はフォークリフトF1側へ落下することを防止する機構である。
 マストF14は、フォークF101、F102を上下させるためのレールである。フォークレールF11、F12が、マストF14に沿って上下させられることで、フォークF101、F102が上下させられる。
 作業管理装置1は、フォークレールF11の(X軸方向の)中央部分であって、フォークレールF11の下面側(下側)に固定されている。ただし、作業管理装置1は、フォークレールF11等の上面側(上側)に取り付けられても良い。また、作業管理装置1は、フォークレールF12、バックレストF13、マストF14、又はフォークリフトF1の車体に取り付けられていても良い。また、作業管理装置1又は空間認識センサは、複数個、取り付けられても良い。
 なお、作業管理装置1がフォークレールF11、フォークレールF12、バックレストF13に固定されている場合、空間認識装置が照射するレーザ光を遮られることなく、コンテナ20に照射できる。この場合、フォークレールF11、フォークレールF12、バックレストF13は、フォークF101、F102やコンテナ20と一緒に上下するので、これらと作業管理装置1との相対的な位置関係を固定できる。
<センシングについて>
 以下、作業管理装置1(空間認識センサ)によるセンシングについて説明する。
 なお、本実施形態では、レーザ光の照射方式について、作業管理装置1がラスタースキャンを行う場合について説明するが、本発明はこれに限らず、他の照射方式(例えば、リサージュスキャン)であっても良い。
 図3は、本実施形態に係るセンシングの一例を表す概略図である。
 この図は、順次、照射されたレーザ光を、フォークリフトF1の上面側から見た場合の図である。なお、図3において、レーザ光の投射方向について、XY平面に投影した場合の角度(極座標の偏角)をθとする。Y軸に平行な軸であって、作業管理装置1(照射口)を通る軸(後述する初期光軸)を、θ=0とする。
 作業管理装置1は、水平方向に(他の偏角φを一定にしたまま)、順次、レーザ光を照射することで、水平方向の走査を行う。
 より具体的には、作業管理装置1は、偏角θの正方向に向かって、順次(例えば、等角度Δθ毎に)、レーザ光を照射する。作業管理装置1は、水平方向において特定範囲(XY平面に射影した偏角が-θmax≦θ≦θmaxの範囲)にレーザ光を照射(「水平走査」とも称する)した後、鉛直方向にレーザ光の照射方向をずらし、偏角θの負方向に向かって、レーザ光を照射する。
 この偏角θの負方向の水平走査が完了した場合、作業管理装置1は、鉛直方向にレーザ光の照射方向を、さらにずらし、再度、X軸の正方向に水平走査を行う。
 図4は、本実施形態に係るセンシングの一例を表す別の概略図である。
 この図は、レーザ光の照射を、フォークリフトF1の側面側から見た場合の図である。
なお、図3における水平走査は、図4の矢印の1本に相当する。
 図4において、レーザ光の投射方向について、YZ平面に投影した場合の角度(極座標の偏角)をφとする。Y軸に平行な軸であって、作業管理装置1(照射口)を通る軸(初期光軸)を、φ=0とする。
 作業管理装置1は、1回の水平走査毎に、偏角φの方向に等角度Δφだけ、レーザ光をずらす。より具体的には、作業管理装置1は、偏角θの正方向の水平走査を行った後、偏角φの正方向に等角度Δφだけ、レーザ光の照射方向をずらす。その後、作業管理装置1は、偏角θの負方向の水平走査を行った後、偏角φの正方向に等角度Δφだけ、さらに、レーザ光の照射方向をずらす。
 作業管理装置1は、この動作を繰り返し、偏角φの正方向において、特定範囲(-φ≦φ≦0の範囲)を照射する。なお、作業管理装置1は、特定範囲だけ照射をずらした後(φ=0)、偏角φの負方向に逆転させても良い。
 なお、作業管理装置1は、別の順序や別の座標系で、レーザ光を照射しても良い。
 図5は、本実施形態に係るセンシング結果の一例を表す模式図である。
 図5は、図3、図4のセンシングの一例について、センシング結果を示すセンシング情報を表す。センシング情報は、例えば空間座標である。作業管理装置1は、この空間座標を、レーザ光の照射方向(偏角θ及び偏角φ)と反射元(物体)の距離Rに基づいて計算する。この空間座標は、センシング範囲において、反射元の位置を表す座標である。図5は、この空間座標を模式的に表す図である。
 図5において、作業管理装置1は、コンテナ20、そのフォークポケット201、202、及び、フォークF101、F102を検出している。なお、符号Gを付した面は、路面Gである。
 作業管理装置1は、第1検出処理によって、コンテナ20(少なくとも差込面211の一部)と、そのフォークポケット201、202を検出する。第1検出処理の一例では、例えば、作業管理装置1は、平ら又は略平らな面(凹凸を有する面も含む)を平面とし、地面又は床面に対して垂直(鉛直方向)又は略垂直に立っている平面を検出する。作業管理装置1は、この平面において、フォークポケット201、202を検出した場合、この平面をコンテナ20の差込面211であると判定する。
 ここで、作業管理装置1は、例えば、検出した平面又は平面の下部において、レーザ光の反射光を検出しない部分、レーザ光の反射光の受信レベルが低い部分を、フォークポケット201、202として検出する。
 なお、作業管理装置1は、検出した平面又は平面の下部において、平面までの距離に対して所定値以上の距離が変わる(遠くにある)部分を、フォークポケット201、202として検出しても良い。
 また、作業管理装置1は、センシング情報とポケット位置情報を用いて、検出した平面から、フォークポケット201、202を検出しても良い。ここで、ポケット位置情報とは、コンテナ20の寸法と、コンテナ20におけるフォークポケット201、202の位置又は寸法(形状)との組合せを示す情報、又は、この組合せのパターンを示す情報である。つまり、作業管理装置1は、ポケット位置情報に基づいてフォークポケット201、202が存在する位置に、例えば、レーザ光の反射光の受信レベルが低い部分が所定の割合以上存在する場合は、ポケット位置情報に基づくフォークポケット201、202が存在すると判定しても良い。
 作業管理装置1は、第2検出処理によって、フォークF101、F102を検出する。
第2検出処理の一例では、例えば、作業管理装置1は、XY平面に平行又は略平行の面のうち、Y軸方向に特定の長さ以上、伸びる平面であって、X軸方向に特定の幅より小さい部分を、フォークF101、F102として検出する。なお、作業管理装置1は、フォークF101、F102の位置及び形状のパターンを予め記憶しておき、パターンに合致する物体をフォークF101、F102として検出しても良い。
 また、作業管理装置1は、検出したフォークF101、F102の長さ(「フォーク長」とも称する)f1を算出する。フォーク長f1とは、XY平面において、フォークF101又はF102の根本から先端までの長さである。ただし、本発明はこれに限らず、Z軸方向も含めた長さであっても良いし、根本の近傍や先端の近傍を一端とする長さであっても良い。なお、フォークF101又はF102の根本とは、フォークF101又はF102の付け根、終端、L字の屈曲部、平坦でなくなる部分、XY平面において、フォークF101又はF102とフォークレールF11、F12或いはバックレストF13と交わる部分でもある。
<対象距離の算出>
 図6は、本実施形態に係る対象距離LBの算出処理の一例を示す図である。
 なお、対象距離LBとは、フォークリフトF1からコンテナ20(差込面211)までの距離である。また、対象距離LBとは、フォークF101、F102の根本又はその近傍の位置からフォークポケット201、202の開口部までの距離でもある。
 図6は、フォークリフトF1がコンテナ20に正対している場合図である。つまり、フォークリフトF1の進行方向(フォークF101、F102の伸びる方向)がY軸方向の場合に、進行方向が差込面211の法線方向となる。図6は、図5のセンシング情報を、XY平面へ射影した図である。
 図6において、実線はレーザ光を表す。また、図6において、便宜上、コンテナ20、フォークF101、F102、及び作業管理装置1の射影を破線で記載している。
 図6において、作業管理装置1は、偏角θが-θP1≦θ≦θP1+mの範囲で、平面211を検出している。なお、θのiは、1回の水平走査において、レーザ光を照射した順番、つまり、照射回数を表す。例えば、θ=-θmax+i×Δθである。
 基準面B1は、XZ平面に平行な平面であり、フォークリフトF1が真っ直ぐに進む場合に、その進行方向に垂直な面である。例えば、基準面B1は、このような面のうち、作業管理装置1(投射口)を含む平面である。基準面B1は、XY平面への射影において、フォークF101、F102の根本或いはその近傍、フォークレールF11、F12、又は、バックレストF13、作業管理装置1、又は空間認識センサの位置或いはその近傍に位置する。
 作業管理装置1は、検出した平面211において、フォークポケット201、202を検出した場合、この平面211を、コンテナ20の差込面(差込面211)であると判定する。
 作業管理装置1は、作業管理装置1から物体(反射元)までの距離Rに基づいて、フォークリフトF1の基準面B1から差込面211までの距離L(「基準距離L」とも称する)を算出する。ここで、距離Rは、i回目の照射で検出した距離Rであって、作業管理装置1から物体(反射元)までの距離Rを表す。
 例えば、作業管理装置1は、照射方向がθ、φの場合、物体までの距離Rを検出した場合、基準距離L=Rcos|φ|×cos|θ|として算出する。ここで、φは、上記のi番目の照射を行ったときの偏角φを表す。
 図6において(基準面B1と差込面211が完全に正対している場合)、P1≦i≦P1+mの範囲で、基準距離Lは同じ値となる。この場合、作業管理装置1は、基準距離Lを対象距離LBとする。
 一方、基準面B1と差込面211が完全に正対していない等、基準距離Lが異なる場合には、作業管理装置1は、差込面211からの反射光について、最小値となる基準距離Lを対象距離LBとしても良いし、基準距離Lの平均値を対象距離LBとしても良い。又は、作業管理装置1は、照射方向が基準面B1の法線方向、つまり、θ=0、φ=0の場合に測定した基準距離Lを、対象距離LBとしても良い。
 なお、作業管理装置1は、フォークの根本又はその近傍を検出し、検出した根本又はその近傍から差込面211までの距離を対象距離LBとして算出しても良い。
<差込距離推定>
 図7Aおよび7Bは、本実施形態に係る差込距離推定の一例を示す概略図である。
 作業管理装置1は、フォークF101、F102の長さ(「フォーク長」とも称する)f1から対象距離LBを差し引いた値dを、差込距離d(値が正、或いは0の場合)又は到達距離d(値が負の場合)として算出する。
 ここで、差込距離dは、フォークF101、F102が差し込まれている場合に、差込面211(フォークポケット201、202の開口部)からフォークF101、F102の先端までの距離である。到達距離dは、フォークF101、F102が差し込まれていない場合に、フォークF101、F102の先端から差込面211までの距離である。
 図7Aおよび7Bは、センシング情報を、XY平面へ射影した図である。
 なお、図7Aおよび7Bにおいて、距離LB1、LB2は基準距離LBであり、フォーク長f1はフォークF101、F102の長さ(Y軸方向の長さ)である。
 図7Aにおいて、到達距離dの一例を示し、図7Bにおいて、差込距離dの一例を示す。
 作業管理装置1は、フォークF101、F102が差し込まれていない場合(図7Aの場合)、距離LB1からフォーク長f1を差し引いた値を、到達距離dとして算出する。一方、作業管理装置1は、フォークF101、F102が差し込まれている場合(図7B、フォーク長f1から距離LB2を差し引いた値を、差込距離dとして算出する。なお、作業管理装置1は、長さf1を検出しても良いし、予め記憶しても良い。
<差込量判定>
 図8Aおよび8Bは、本実施形態に係る差込量判定の一例を示す概略図である。
 図8Aは、差込量が適切の場合の図であり、図8Bは、差込量が不適切の場合の図である。なお、図8Aおよび8Bは、センシング情報を、XY平面へ射影した図である。図8Aおよび8Bにおいて、距離LB、LBは基準距離LBであり、距離dp3、dp4は、差込距離dの具体例である。フォーク長f1は、フォークF101、F102の長さである。
 作業管理装置1は、下記の第1差込量判定を行う。
 作業管理装置1は、差込距離d(図8B参照)が閾値TH1以上の場合、差込量が適切であると判定する。つまり、作業管理装置1は、差込距離dが閾値TH1以上の場合には、フォークF101、F102が十分に差し込まれ、適切にコンテナ20を把持できると判定する。この場合、作業管理装置1は、フォークF101、F102の昇降を許容すると判定する。例えば、閾値TH1は、フォーク長f1の所定の割合(例えば、90%)の長さ、又は、フォーク長f1から予め定めた長さ(例えば、20cm)を差し引いた長さである。
 なお、作業管理装置1は、差込距離dが閾値TH1以上、かつ、閾値TH2(>TH1)以下の場合、差込量が適切であると判定しても良い。つまり、作業管理装置1は、差込距離dが閾値TH2以下の場合には、フォークF101、F102が差し込まれ過ぎず、適切にコンテナ20を把持できると判定する。例えば、閾値TH2は、フォーク長f1の所定の割合(例えば、95%)の長さ、又は、フォーク長f1から予め定めた長さ(例えば、5cm)を差し引いた長さである。
 一方、作業管理装置1は、差込距離dが閾値TH1より小さい場合、差込量が不適切であると判定する。つまり、作業管理装置1は、差込距離dが閾値TH1より小さい場合には、フォークF101、F102が十分に差し込まれておらず、適切にコンテナ20を把持できないと判定する。
 なお、作業管理装置1は、差込距離dが閾値TH2より大きい場合、差込量が不適切であると判定しても良い。つまり、作業管理装置1は、フォークF101、F102が差し込まれ過ぎ、適切にコンテナ20を把持できないと判定する。これらの場合、作業管理装置1は、フォークF101、F102の昇降を許容しないと判定する。
 図8Aは、TH1≦dp3≦TH2である場合の図である。図8Aの場合、フォークF101、F102が十分に差し込まれ、コンテナ20は適切に把持され得る。なお、例えば、閾値TH1は、コンテナ20(又はフォークポケット201、202)の奥行(Y軸方向の長さ)よりも、大きい値である。
 図8Bは、dp3<TH1である場合の図である。図8Bの場合、フォークF101、F102が十分に差し込まれておらず、コンテナ20は適切に把持されない場合(前方へ落下する等)がある。
 なお、作業管理装置1は、上記第1差込量判定を、フォークF101、F102をコンテナ20に差し込む場合(例えば、フォークリフトF1が前進している場合)に行なっても良い。作業管理装置1は、上記第1差込量判定を、フォークF101、F102をコンテナ20から抜き出す場合(例えば、フォークリフトF1が後進している場合)に行なわなくても良い。また、作業管理装置1は、上記第1差込量判定を、リフトを昇降させる操作が行われたときに行なっても良い。
 作業管理装置1は、下記の第2差込量判定を行う。
 作業管理装置1は、差込距離dが0の場合、又は、到達距離dが閾値TH3(≧0)以上の場合、差込量が適切である(差込量がゼロ又はマイナス、つまり、フォークが適切に抜き出されている)と判定する。
 この場合、作業管理装置1は、フォークF101、F102が完全に抜き出され、適切にコンテナ20から離れたと判定する。また、作業管理装置1は、フォークリフトF1のステアリング操作(ハンドル操作)を許容すると判定する。
 作業管理装置1は、差込距離dが0より大きい場合、差込量が不適切であると判定する。この場合、作業管理装置1は、フォークF101、F102が完全に抜き出されてなく、適切にコンテナ20から離れていないと判定する。また、作業管理装置1は、フォークリフトF1のステアリング操作(ハンドル操作)を許容しないと判定する。
 図9Aおよび9Bは、本実施形態に係る差込量判定の一例を示す概略図である。
 図9Aは、差込量が適切の場合の図であり、図9Bは、差込量が不適切の場合の図である。なお、図9Aおよび9Bは、センシング情報を、XY平面へ射影した図である。図9Aおよび9Bにおいて、距離LB、LBは、基準距離LBである。距離dc5は到達距離dであり、距離dp6は差込距離dである。フォーク長f1は、フォークF101、F102の長さである。
 図9Aは、dc5≧TH3≧0である場合の図である。図9Aの場合、フォークF101、F102は、完全に抜き出されている。この場合、例えば、フォークリフトF1は、後進しながら、ステアリング操作によって曲がったとしても、フォークF101、F102がコンテナ20(又はフォークポケット201、202の開口部)に衝突することを避けることができる。
 図9Bは、dp6>0である場合の図である。図9Bの場合、フォークF101、F102は、完全に抜き出されていない。この場合、例えば、フォークリフトF1は、後進しながら、ステアリング操作によって曲がってしまうと、フォークF101、F102がコンテナ20(又はフォークポケット201、202の開口部)に衝突してしまう。例えば、作業管理装置1は、この旨を知らせることができる。
 なお、作業管理装置1は、第2差込量判定を、フォークF101、F102をコンテナ20から抜き出す場合に行なっても良い。一方、作業管理装置1は、第1差込量判定を、フォークF101、F102をコンテナ20から抜き出す場合に行なわなくても良い。
 同様に、作業管理装置1は、第1差込量判定を、フォークF101、F102をコンテナ20に差し込む場合に行っても良い。一方、作業管理装置1は、第2差込量判定を、フォークF101、F102をコンテナ20に差し込む場合に行わなくても良い。
<フォークリフトの動作>
 図10は、本実施形態に係るフォークリフトF1の動作の一例を示すフロー図である。
(ステップS101)作業員等の操作により、フォークリフトF1は、エンジンを始動させる(ACC ON)。その後、ステップS102へ進む。
(ステップS102)作業管理装置1等の車載機は、電力が供給される、又は、エンジンが始動されたことを示す情報を取得することで、起動する。その後、ステップS103、S104、S05へ進む。
(ステップS103)作業管理装置1は、空間認識センサを用いて、空間を表すセンシング情報を取得する。具体的には、レーザ光の照射し、物体までの距離をセンシングする(センサ走査)。その後、ステップS106へ進む。
(ステップS104)作業管理装置1は、フォークリフトF1(作業管理装置1)の位置を示す位置情報を取得する。位置情報は、例えば、GNSS(全球測位衛星システム)の測位結果である。ただし、位置情報は、他の無線通信(例えば、無線LANやRFIDタグ)を用いた測位結果であっても良い。その後、ステップS106へ進む。
(ステップS105)作業管理装置1は、フォークリフトF1の状態又は作業員等による操作を示す車両情報を取得する。その後、ステップS106へ進む。
 ここで、車両情報は、例えば、フォークリフトF1の速度、ステアリング角、アクセル操作、ブレーキ操作、ギヤ(前進、後進、高速、低速等)、メーカー、車種、車両識別情報等、フォークリフトF1が出力可能なデータである。また、車両情報には、フォークF101、F102の位置(高さ)、把持している運搬対象の有無、やその重量、或いはリフトチェーンの負荷状況、フォークF101、F102の種類等を示すフォーク情報、又は、作業員(運転手)の識別情報、作業場(倉庫や工場)や企業の識別情報、把持した(運搬した)運搬対象の識別情報(例えば、運搬対象に貼付されたRFID等で取得)等を示す作業情報等が含まれても良い。
(ステップS106)作業管理装置1は、ステップS103で取得したセンシング情報、ステップS104で取得した位置情報、及び、ステップS105で取得した車両情報を関連付ける(関連付けたデータを「関連付けデータ」とも称する)。例えば、作業管理装置1は、作業管理装置1の装置識別情報、取得日時とともに、センシング情報、位置情報、及び車両情報を関連付ける。その後、ステップS107へ進む。
(ステップS107)作業管理装置1は、ステップS106で関連付けた関連付けデータに基づいて、危険やイベントの有無を判定する。例えば、作業管理装置1は、関連付けデータに基づいて、上記の差込量判定を行う。危険やイベントがあると判定された場合(yes)、ステップS108へ進む。一方、危険やイベントがないと判定された場合(no)、ステップS109へ進む。
(ステップS108)作業管理装置1は、ステップS107で判定した危険やイベントの種類、又は、この種類と関連付けデータに基づいて、警告(案内を含む)を出力する。その後、ステップS109へ進む。
(ステップS109)作業管理装置1は、関連付けデータ、ステップS107の判定結果を示す判定情報、又は、ステップS108の警告の出力結果を示す出力情報を、関連付け、関連付けたデータを記録装置等に記録する。その後、ステップS110へ進む。
(ステップS110)作業管理装置1は、ステップS109で関連付けたデータを、サーバ等へ送信する。その後、ステップS111へ進む。
 なお、このサーバは、例えば、作業場や企業において、複数のフォークリフトF1からのデータを、総合的に収集して管理する情報処理装置である。サーバに送信されたデータは、統計処理機能や機械学習機能により、分析される。サーバに送信されたデータ、又は、分析結果のデータは、運転の教育等に用いられる。例えば、運搬対象の積載が上手い、又は効率的な作業員の運転データは、お手本として用いられる。一方、運搬対象の破損や落下等があった場合には、そのときのデータは、原因究明や改善に用いられる。
(ステップS111)作業員等の操作により、フォークリフトF1のエンジンが停止された場合(yes)、ステップS112へ進む。一方、フォークリフトF1のエンジンが停止されていない場合(no)、ステップS103、S104、S05へ進む。つまり、作業管理装置1は、センシング等による情報の取得、データの関連付け、記録、送信を、エンジンが停止するまで行う。
(ステップS112)作業管理装置1等の車載機は、電力の供給が停止する、又は、エンジンが停止されたことを示す情報を取得することで、停止する又はスリープ状態となる。
その後、本動作は終了する。
<作業管理装置の構成について>
 図11は、本実施形態に係る作業管理装置1のハードウェア構成を示す概略構成図である。この図において、作業管理装置1は、CPU(Central Processing Unit)111、IF(Interface)112、通信モジュール113、センサ114(例えば、空間認識センサ)、ROM(Read Only Memory)121、RAM(Random Access Memory)122、及び、HDD(Hard Disk Drive)123を含んで構成される。
 IF112は、例えば、フォークリフトF1の一部(運転席、車体、マストF14等)や作業管理装置1に設けられた出力装置(ランプやスピーカ、タッチパネルディスプレイ等)である。通信モジュール113は、通信アンテナを介して信号の送受信を行う。通信モジュール113は、例えば、GNSS受信機や無線LAN等の通信チップである。センサ114は、例えば、レーザ光を照射し、受信した反射光に基づくセンシングを行う。
 図12は、本実施形態に係る作業管理装置1のハードウェア構成を示す概略構成図である。この図において、作業管理装置1は、センサ部101、車両情報取得部102、GNSS受信部103、解析部104、制御部105、出力部106、記録部107、及び、通信部108を含んで構成される。
 センサ部101は、空間認識センサである。センサ部101は、例えばレーザ光によって、自装置から各物体までの距離Rをセンシングする。センサ部101は、レーザ光の照射方向(偏角θ、φ)及びセンシングした距離Rに基づいて、空間を認識する。なお、空間を認識するとは、周囲の物体を含む空間について、3次元座標を生成することをいうが、本発明はこれに限らず、2次元座標を生成することであっても良い。センサ部101は、センシング情報(例えば、座標情報)を生成し、制御部105へ出力する。
 車両情報取得部102は、フォークリフトF1から車両情報を取得し、取得した車両情報を制御部105へ出力する。
 GNSS受信部103は、位置情報を取得し、取得した位置情報を制御部105へ出力する。
 解析部104は、センサ部101が出力したセンシング情報、車両情報取得部102が出力した車両情報、GNSS受信部が出力した位置情報を、制御部105から取得する。
解析部104は、取得したセンシング情報、車両情報、位置情報を関連付けることで、関連付けデータを生成する。解析部104は、生成した関連付けデータを解析する。
 例えば、解析部104は、センシング情報に基づく第1検出処理によって、平面とフォークポケット201、202を検出することで、差込面211(コンテナ20)を検出する。また、解析部104は、センシング情報に基づく第2検出処理によって、フォークF101、F102を検出する。ここで、解析部104は、検出したフォークF101、F102の長さを計測しても良い。
 また、解析部104は、取得したセンシング情報に基づいて、検出した差込面211の少なくとも1点について基準距離Lを算出し、対象距離LBを決定する。解析部104は、フォーク長f1から対象距離LBを差し引いた値dを、差込距離d(値が正、或いは0の場合)又は到達距離d(値が負の場合)として算出する。
 制御部105は、センサ部101が出力したセンシング情報、車両情報取得部102が出力した車両情報、GNSS受信部が出力した位置情報を取得し、例えば解析部104を用いて分析し、分析結果に基づいて判定を行う。
 例えば、制御部105は、危険やイベントの有無の判定を行う。制御部105は、この判定の1つとして、上述の差込量判定を行う。
 具体的には、制御部105は、解析部104が算出した値d(差込距離d又は到達距離d)が予め定めた範囲であるか否かを判定することで、差込量判定(第1差込量判定、第2差込量判定)を行う。
 制御部105は、判定結果又は、判定結果と関連付けデータに基づいて、出力部106から警告(案内を含む)を出力させる。
 制御部105は、判定結果を示す判定情報、及び関連付けデータを記録部107に記録するとともに、通信部108を介してサーバ等へ送信する。
 なお、センサ部101は、図11のセンサ114で実現される。同様に、車両情報取得部102及びGNSS受信部103は、例えば、通信モジュール113で実現される。解析部104及び制御部105は、例えば、CPU111、ROM121、RAM122、又はHDD123で実現される。
(本実施形態のまとめ)
 以上のように、本実施形態では、作業管理装置1は、フォークリフトF1(荷役機)に搭載される車載装置である。作業管理装置1(フォークリフトF1)では、図13に示すように、解析部104が空間認識センサ(空間認識装置)から取得したセンシング情報に基づいてフォークF101、F102(差込爪)を検出し、検出したフォークF101、F102がコンテナ20(差込対象)に差し込まれている距離を示す差込距離dを算出する。制御部105は、差込距離dが予め定めた範囲であるか否かを判定する差込量判定を行う。
 これにより、作業管理装置1は、フォークF101、F102をフォークポケット201、202に、適切な距離だけ差し込むことができ、運搬対象を適切に運搬できる。例えば、フォークリフトF1は、コンテナ20を適切に(バランス良く、安定させて)把持して運搬することができ、差込量が不足する等、コンテナ20を落下させることを防止できる。また、作業管理装置1は、コンテナ20の奥にある物体(他のコンテナ等)を、損傷又は転倒させることを防止できる。さらに、作業管理装置1は、コンテナ20を荷台L1等に載せた後、フォークF101、F102が完全に抜き出されていない場合に、ステアリング操作(ハンドル操作)が行われ、フォークF101、F102がコンテナ20とぶつかることを防止できる。
 また、本実施形態では、作業管理装置1(フォークリフトF1)では、解析部104は、センシング情報が示す距離であって、フォークF101、F102の根本又はその近傍の位置から前記差込対象の開口部までの基準距離LBに基づいて、差込距離dを算出する。例えば、解析部104は、フォーク長f1から基準距離LBからを差し引く。
 これにより、作業管理装置1は、センシング情報が示す距離に基づいて、差込距離dを算出でき、センシング情報を用いた差込量判定を行うことができる。
<変形例A1>
 上記実施形態において、解析部104(フォークリフトF1又は作業管理装置1)は、センシング情報が示す位置であって、フォークF101、F102(の先端)がコンテナ20のフォークポケット201、202の開口部の位置に到達したタイミング(「到達タイミング」とも称する)と、フォークリフトF1の速度と、に基づいて、差込距離dを算出しても良い。
 図14Aおよび14Bは、本実施形態の変形例に係る差込量判定の一例を示す概略図である。
 図14Aは、フォークF101、F102がコンテナ20の差込面211に到達したタイミングにおける両者の位置関係を示す図であり、図14Bは、フォークF101、F102が差込面211に到達した後のタイミングにおける両者の父関係を示す図である。なお、図14Aおよび14Bは、センシング情報を、XY平面へ射影した図である。図14Aおよび14Bにおいて、距離LB、LBは基準距離LBであり、距離dp5(=0)、dp6は、差込距離dである。フォーク長f1は、フォークF101、F102の長さである。
 具体的には、解析部104は、フォーク長f1から対象距離LBを差し引いた値dが0(差込距離d=到達距離d=0)になった時点を、フォークF101、F102の到達タイミングとして検出する(例えば、図14A)。なお、解析部104は、車両情報に基づいてフォークリフトF1が前進していた場合に、値dが0になった時点を、到達タイミングとしても良い。
 この車両情報は、例えば、ギヤが前進を示す車両情報、又は、移動方向が前(タイヤの回転方向)を示す車両情報である。
 解析部104は、到達タイミングから、速度(Y軸方向の速度でも良い)を時間で積分することで、差込距離dを算出する。例えば、速度vが一定のときに時間Δtが経過した場合、解析部104は、差込距離d=v×Δtと算出する。
 なお、車両情報が、タイヤの回転数とタイヤの円周を示す情報を含む場合に、解析部104は、差込距離dを、タイヤの円周×(到達タイミング以降のタイヤの回転数)として算出しても良い。
 本変形例では、解析部104は、例えば、到達タイミング後は、距離LBやフォーク長f1を用いなくても、差込距離dを算出できる。
<変形例A2>
 上記実施形態において、解析部104(フォークリフトF1又は作業管理装置1)は、センシング情報が示す位置であって、フォークF101、F102(の先端)がコンテナ20のフォークポケット201、202の開口部の位置に到達したときの空間認識センサ(作業管理装置1)から差込面211までの距離LBと、その後の空間認識センサから差込面211までの距離LBと、の差に基づいて、差込距離dを算出しても良い。
 例えば、図14Aおよび14Bにおいて、解析部104は、フォークF101、F102がフォークポケット201、202の開口部の位置に到達したときの空間認識センサから差込面211までの距離LBから、その後の空間認識センサから差込面211までの距離LBを差し引くことによって、差込距離dp6を算出する。
 本変形例では、解析部104は、例えば、到達タイミング後は、フォーク長f1を用いなくても、差込距離dを算出できる。
<変形例A3>
 上記実施形態において、制御部105(フォークリフトF1又は作業管理装置1)は、差込距離dに基づいて、差込量判定に基づく出力を変化させても良い。
 具体的には、制御部105は、差込量が不適切と判定するとき、適切と判定する範囲に近づくか(又は遠ざかるか)否かで、出力の大きさや頻度を変化させても良い。これにより、作業管理装置1は、差込量判定の判定結果に加えて、差込距離dの変化を出力することができる。
 例えば、制御部105は、差込量が不適切と判定するとき、適切と判定する範囲に近づく程、又は、適切と判定する範囲に遠ざかる程、出力(例えば音)の頻度を高くする。この場合、制御部105は、差込量判定の判定結果が変化(不適切から適切に変化)した場合、出力を停止しても良いし、又は、不適切の場合とは異なる出力を行っても良いし、或いは、この出力後に出力を停止しても良い。これにより、作業管理装置1は、例えば、差込量判定の判定結果が変化させるために、正しく差込距離dを変化させているか否かを、作業員等に知らせることができる。
 また例えば、制御部105は、差込量が不適切と判定したとき、差込距離dが所定の値より大きい場合には、小さい場合と比較して、より目立たない警告(小さな出力、例えば、小さい音や暗い光、時間や回数が少ない音や光の点滅、間隔の広い音や光の点滅等)で警告を行っても良い。一方、制御部105は、差込量が不適切と判定したとき、差込距離dが所定の値より小さい場合には、大きい場合と比較して、より目立つ警告(大きな出力、例えば、大きい音や明るい光、時間や回数が多い音や光の点滅、間隔の狭い音や光の点滅等)で警告を行う。
<変形例A4>
 上記実施形態において、制御部105(フォークリフトF1又は作業管理装置1)は、差込量判定の結果と、自装置が搭載されている車両の進行方向と、に基づいて、警告を出力させても良い。この場合、出力部106は、差込量判定の結果と、自装置が搭載されている車両の進行方向と、に基づいて、警告を出力する。
 具体的には、制御部105は、差込量が不適切と判定するとき(差込距離dが閾値TH1より小さい)、進行方向が後進である場合、警告を出力させる。この場合、制御部105は、進行方向が前進である場合、警告を出力させなくても良い。また、制御部105は、差込量が不適切と判定するとき(差込距離dが閾値TH1より小さい)、進行方向が前進から後進へ変化した場合、警告を出力させても良い。
 例えば、フォークリフトF1は、コンテナ20を運ぶ際に、前進してフォークF101、F102をコンテナ20に差し込み、その後、コンテナ20を把持し、通常、まずは、後進してコンテナ20を運搬する。つまり、後進する際には、フォークF101、F102を適切に差し込んでいる(差込量が適切)必要がある。本変形例では、作業管理装置1は、進行方向が後進である場合に警告を出力するので、運搬対象を適切に把持する必要があるときに、警告を出力することができる。
<変形例A5>
 上記実施形態において、制御部105(フォークリフトF1又は作業管理装置1)は、差込量判定の結果と、自装置が搭載されている車両のリフト操作を示す車両情報と、に基づいて、警告を出力させても良い。
 具体的には、作業管理装置1は、差込量判定を、リフトを昇降させる操作が行われたときに行なっても良い。例えば、作業管理装置1は、第1差込量判定を、リフトを上げる(Z軸正方向に移動させる)操作が行われたときに行なっても良い。一方、作業管理装置1は、第1差込量判定を、リフトを下げる(Z軸負方向に移動させる)操作が行われた後に、特定の期間(特定の移動があるまでの期間)行なっても良い。
<変形例A6>
 上記実施形態において、制御部105(フォークリフトF1又は作業管理装置1)は、第1判定結果又は第2判定結果と、車両情報と、に基づいて、出力を行っても良い。
 具体的には、制御部105は、差込量判定の結果と、自装置が搭載されている車両の進行方向と、に基づいて、警告を出力させる。
 例えば、制御部105は、第1差込量判定において差込が不適切と判定されるとき、車両情報がフォークリフトF1の進行方向が後進であることを示す場合に、警告を出力しても良い。一方、制御部105は、第2差込量判定において差込が不適切と判定されるとき、車両情報がフォークリフトF1の進行方向が後進であることを示す場合に、警告を出力しなくても良い。
 ここで、フォークリフトF1の進行方向が後進であることを示す場合とは、例えば、ギヤが後進の場合、又は、ギヤが後進でフォークリフトF1が後進し始めた場合である。
 また例えば、制御部105は、第2差込量判定において差込が不適切と判定されるとき、車両情報がフォークリフトF1の進行方向が前進であることを示す場合に、警告を出力しても良い。一方、制御部105は、第1差込量判定において差込が不適切と判定されるとき、車両情報がフォークリフトF1の進行方向が前進であることを示す場合に、警告を出力しなくても良い。
 また例えば、制御部105は、第1判定結果又は第2判定結果において差込が不適切と判定されるとき、フォークリフトF1が曲がることを示す場合に、警告を出力しても良い。ここで、フォークリフトF1が曲がることを示す場合とは、例えば、車両情報が示すステアリング角が閾値以上の場合、又は、車両情報が示すステアリング角が閾値以上でフォークリフトF1が後進し始めた場合である。
<変形例A7>
 上記実施形態において、制御部105(フォークリフトF1又は作業管理装置1)は、センシング情報に基づいてフォークポケット201、202の開口部を有する差込面211に正対しているか否かを判定(「正対判定」とも称する)した後に、差込量判定、又は差込量判定に基づく警告(「差込量判定等」とも称する)を行わせても良い。
 また、制御部105は、センシング情報に基づいてフォークポケット201、202とフォークF101、F102との位置関係がずれていないか否かを判定(「ずれ判定」とも称する)した後に、差込量判定等を行っても良い。なお、ずれ判定とは、XZ平面の射影において、フォークポケット201、202の範囲内に、フォークF101、F102が含まれるか否かを判定するものである。
 制御部105は、正対判定を行った後に、ずれ判定を行い、その後、差込量判定等を行っても良い。これにより、作業管理装置1は、フォークリフトF1を正対させ、フォークF101、F102をずれ無くフォークポケット201、202に差し込ませ、さらに、適切な差込距離dだけ差し込ませることができる。
<変形例A8>
 上記実施形態において、解析部104(フォークリフトF1又は作業管理装置1)は、フォークF101、F102を差し込んだ場合に、その先端がコンテナ20の背面から突き出す量(「突出量」とも称する)を算出しても良い。
 具体的には、解析部104は、コンテナ20の奥行方向(Y軸方向)の長さAを予め記憶する、又は空間認識センサによる検出結果によって算出する。解析部104は、差込距離dからAを差し引いた値を、突出量とする。
 制御部105は、解析部104が算出した突出量が閾値以上の場合、突出し過ぎているとして、警告を出力する。一方、解析部104が算出した突出量がマイナス(突出していない)であり、かつ、閾値以下の場合(マイナスの場合)、差し込みが不足しているとして、警告を出力しても良い。
<変形例B1:出力又は差込量判定の条件>
 上記実施形態において、制御部105(フォークリフトF1又は作業管理装置1)は、差込量判定を行う又は行わない条件を設定されても良い。
 制御部105は、下記の第1条件が満たされた場合に、差込量判定に基づく警告を行い、第1条件を満たさない場合には、差込量判定に基づく警告を行わなくても良い。また、制御部105は、第1条件が満たされた場合に、差込量判定又はセンシングを行い、第1条件が満たされない場合には、差込量判定又はセンシングを行わなくても良い。
 また、制御部105は、第1条件に基づいて、差込量判定に基づく警告や、差込量判定又はセンシング(以下、警告等と称する)の間隔を変更しても良い。
 第1条件は、例えば、コンテナ20とフォークリフトF1の距離(例えば、基準距離L又は対象距離LB)が閾値よりも小さい(近接している)という条件である。
 第1条件は、例えば、位置情報や車両情報に基づく条件であっても良い。例えば、制御部105は、倉庫等において、予め定めた位置(範囲)にフォークリフトF1が入った場合に、警告等を行い、それ以外の位置では警告等を行わなくても良い。
 第1条件は、例えば、フォーク情報や作業情報に基づく条件であっても良い。
 例えば、制御部105は、把持している運搬対象が無い場合、警告等を行い、把持している運搬対象が有る場合、警告等を行わなくても良い。制御部105は、フォークF101、F102の位置(高さ)が閾値より低い場合、警告等を行い、フォークF101、F102の位置(高さ)が閾値より高い場合、警告等を行わなくても良い。
 例えば、制御部105は、特定の作業員が運転する場合、警告等を行い、それ以外の場合、警告等を行わなくても良い。
 なお、図2に示したように、作業管理装置1がフォークリフトF1のX軸方向の中央部分に固定されている場合、フォークリフトF1が適切にコンテナ20を把持しようとするとき、フォークF101とフォークF102の中央部分、又は、フォークポケット201とフォークポケット202の中央部分に、作業管理装置1を位置させることができる。
 また、作業管理装置1がフォークレールF11やバックレストF13に固定されている場合、作業管理装置1は、フォークレールF12に固定された場合と比較して、よりフォークF101、F102を認識し易くなる。つまり、作業管理装置1とフォークF101、F102が高さ方向(X軸方向)に離れるので、作業管理装置1は、フォークF101、F102の長さ方向(Y軸方向)の形状を、より多く認識できる(図3、図5参照)。
 また、作業管理装置1は、フォークレールF11等の下面側(下側)に固定されている場合、フォークF101、F102(特に、根本部分まで)をセンシングできる。
 また、作業管理装置1がフォークレールF11やF12に固定されている場合、作業管理装置1は、バックレストF13に固定された場合と比較して、よりフォークポケット201、202を認識し易くなる。つまり、作業管理装置1とフォークポケット201、202が高さ方向に近づくので、作業管理装置1は、フォークポケット201、202へのレーザ光等の照射角度(高さ方向の角度)を、より水平(差込面に対して垂直)に近くできる。
 なお、空間認識センサは、レーザ光以外を用いて空間認識を行っても良い。例えば、作業管理装置1は、レーザ光以外の電波を用いて空間認識を行っても良いし、例えば、撮像画像を用いて空間認識を行っても良い。例えば、空間認識センサは、単眼カメラ、ステレオカメラ、赤外線カメラ、ミリ波レーダ、光学レーザ、LiDAR(Light Detection And Ranging、Laser Imaging Detection And Ranging)、(超)音波センサ等であっても良い。
 また、作業管理装置1は、自動運転装置と接続されていても良いし、自動運転装置の一部であっても良い。つまり、作業管理装置1は、差込量判定を行い、差込量が適切になるようにフォークリフトF1を自動運転しても良い。
 例えば、作業管理装置1は、差込量判定の結果、差込距離dが予め定めた範囲に近づくように、ギヤ、アクセル、ブレーキを調整し、例えば、フォークリフトF1前進又は後進させる。
 また、作業管理装置1は、路面Gや壁、所定距離より遠い位置にある物体を、検出対象(センシング情報)から除いても良い。作業管理装置1は、各面への射影する場合に、これらを射影対象から除く。
 なお、作業管理装置1は、コンテナ20やフォークF101、F102を検出する場合、エッジ検出を用いても良い。ここで、エッジ検出で検出されるエッジは、例えば、距離R、又は、その変化率が大きい箇所である。
 具体的なエッジ検出として、作業管理装置1は、検出された物体について、各座標軸での偏微分が閾値以上になる部分をエッジとしても良い。また例えば、作業管理装置1は、検出した平面同士の交じわる部分や、逆方向に隣接又は近接する点同士の距離Rの差が閾値以上になる部分、レーザ光の反射光を検出しない部分と隣接する部分、レーザ光の反射光の受信レベルが低い部分と隣接する部分を、エッジとしても良い。作業管理装置1は、その他の方式でエッジ検出を行っても良い。
 なお、上記の作業管理装置1は、各機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することにより、上記の処理を行ってもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。また、「コンピュータシステム」は、ホームページ提供環境(あるいは表示環境)を備えたWWWシステムも含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムが送信された場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリ(RAM)のように、一定時間プログラムを保持しているものも含むものとする。
 また、上記プログラムは、このプログラムを記憶装置等に格納したコンピュータシステムから、伝送媒体を介して、あるいは、伝送媒体中の伝送波により他のコンピュータシステムに伝送されてもよい。ここで、プログラムを伝送する「伝送媒体」は、インターネット等のネットワーク(通信網)や電話回線等の通信回線(通信線)のように情報を伝送する機能を有する媒体のことをいう。また、上記プログラムは、前述した機能の一部を実現するためのものであっても良い。さらに、前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるもの、いわゆる差分ファイル(差分プログラム)であっても良い。
 本願は、2017年3月22日に、日本に出願された特願2017-56012号に基づき優先権を主張し、その内容をここに援用する。
F1 フォークリフト
F101、F102 フォーク
F11、F12 フォークレール
F13 バックレスト
F14 マスト
20 コンテナ
201、202 フォークポケット
211 差込面
1 作業管理装置
111 CPU
112 IF
113 通信モジュール
114 センサ
121 ROM
122 RAM
123 HDD
101 センサ部
102 車両情報取得部
103 GNSS受信部
104 解析部
105 制御部
106 出力部
107 記録部
108 通信部

Claims (10)

  1.  空間認識装置から取得したセンシング情報に基づいて差込爪を検出し、検出した前記差込爪が差込対象に差し込まれている距離を示す差込距離を算出する解析部と、
     前記差込距離が予め定めた範囲であるか否かを判定する差込量判定を行う制御部と、
     を備える車載装置。
  2.  前記解析部は、前記センシング情報が示す距離であって、前記差込爪の根本又はその近傍の位置から前記差込対象の差込部までの距離に基づいて、前記差込距離を算出する
     請求項1に記載の車載装置。
  3.  前記解析部は、前記センシング情報が示す位置であって、前記差込爪が前記差込対象の差込部の位置に到達したタイミングと前記車載装置が搭載された車両の速度とに基づいて、前記差込距離を算出する
     請求項1又は2に記載の車載装置。
  4.  前記解析部は、前記センシング情報が示す位置であって、前記差込爪が前記差込対象の差込部の位置に到達したときの前記空間認識装置から前記差込面までの距離と前記差込爪が前記差込部の位置に到達した後の前記空間認識装置から前記差込面までの距離との差に基づいて、前記差込距離を算出する
     請求項1又は2に記載の車載装置。
  5.  前記制御部は、前記差込距離に基づいて、前記差込量判定に基づく出力を変化させる
     請求項1から4のいずれか一項に記載の車載装置。
  6.  前記制御部は、差込量判定の結果と自装置が搭載されている車両の進行方向とに基づいて、警告を出力させる
     請求項1から5のいずれか一項に記載の車載装置。
  7.  請求項1から請求項6のいずれか一項に記載の車載装置を備える荷役機。
  8.  空間認識装置から取得したセンシング情報に基づいて差込爪を検出し、検出した前記差込爪が差込対象に差し込まれている距離を示す差込距離が予め定めた範囲であるか否かを判定する制御回路。
  9.  解析部が、空間認識装置から取得したセンシング情報に基づいて差込爪を検出し、検出した前記差込爪が差込対象に差し込まれている距離を示す差込距離を算出し、
     制御部が、前記差込距離が予め定めた範囲であるか否かを判定する差込量判定を行う、
     制御方法。
  10.  コンピュータに、
     空間認識装置から取得したセンシング情報に基づいて差込爪を検出させ、
    検出した前記差込爪が差込対象に差し込まれている距離を示す差込距離を算出させ、
     前記差込距離が予め定めた範囲であるか否かを判定する差込量判定を行わせる、
     プログラム。
PCT/JP2018/007468 2017-03-22 2018-02-28 車載装置、荷役機、制御回路、制御方法、及びプログラム WO2018173663A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/491,385 US20200024114A1 (en) 2017-03-22 2018-02-28 Vehicle-mounted device, cargo handling machine, control circuit, control method, and program thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017056012A JP6972600B2 (ja) 2017-03-22 2017-03-22 車載装置、荷役機、制御回路、制御方法、及びプログラム
JP2017-056012 2017-03-22

Publications (1)

Publication Number Publication Date
WO2018173663A1 true WO2018173663A1 (ja) 2018-09-27

Family

ID=63585293

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/007468 WO2018173663A1 (ja) 2017-03-22 2018-02-28 車載装置、荷役機、制御回路、制御方法、及びプログラム

Country Status (3)

Country Link
US (1) US20200024114A1 (ja)
JP (1) JP6972600B2 (ja)
WO (1) WO2018173663A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021105636A1 (fr) 2019-11-29 2021-06-03 Balyo Procede de determination de la position relative d'un prehenseur

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10913641B2 (en) * 2018-06-08 2021-02-09 Attabotics Inc. Storage units and robotic storage/retrieval vehicles for a three-dimensional storage system
WO2021167922A1 (en) 2020-02-21 2021-08-26 Crown Equipment Corporation Position assistance system for a materials handling vehicle
JPWO2021171728A1 (ja) * 2020-02-25 2021-09-02
EP4204352A1 (en) * 2020-08-27 2023-07-05 Kiwitron S.r.l. Safety device for self-propelled industrial vehicles

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04217595A (ja) * 1990-12-18 1992-08-07 Komatsu Forklift Co Ltd 荷役車両の荷役制御方法
JP2013230903A (ja) * 2012-04-27 2013-11-14 Hitachi Ltd フォークリフト
WO2016181733A1 (ja) * 2015-05-12 2016-11-17 株式会社豊田自動織機 フォークリフト
US20170015537A1 (en) * 2015-07-13 2017-01-19 George R. Bosworth, III Lifting fork positioning system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3589951B2 (ja) * 2000-06-14 2004-11-17 日本輸送機株式会社 リーチ型フォークリフト

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04217595A (ja) * 1990-12-18 1992-08-07 Komatsu Forklift Co Ltd 荷役車両の荷役制御方法
JP2013230903A (ja) * 2012-04-27 2013-11-14 Hitachi Ltd フォークリフト
WO2016181733A1 (ja) * 2015-05-12 2016-11-17 株式会社豊田自動織機 フォークリフト
US20170015537A1 (en) * 2015-07-13 2017-01-19 George R. Bosworth, III Lifting fork positioning system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021105636A1 (fr) 2019-11-29 2021-06-03 Balyo Procede de determination de la position relative d'un prehenseur
FR3103941A1 (fr) * 2019-11-29 2021-06-04 Balyo Procede de determination de la position relative d’un prehenseur

Also Published As

Publication number Publication date
JP2018158778A (ja) 2018-10-11
US20200024114A1 (en) 2020-01-23
JP6972600B2 (ja) 2021-11-24

Similar Documents

Publication Publication Date Title
WO2018173667A1 (ja) 車載装置、荷役機、制御回路、制御方法、及びプログラム
WO2018173651A1 (ja) 車載装置、荷役機、制御回路、制御方法、及びプログラム
WO2018173663A1 (ja) 車載装置、荷役機、制御回路、制御方法、及びプログラム
JP7375800B2 (ja) 荷役機、車載装置、方法、及びプログラム
US20220324650A1 (en) Automated storage and retrieval system with detector for detecting items extending beyond dimensional threshold
JP7228800B2 (ja) 搬送方法、搬送システム、プログラム及びパレット
US8561897B2 (en) Load tracking utilizing load identifying indicia and spatial discrimination
CN114930263A (zh) 自主运输车辆
JP2022028342A (ja) 無人搬送車システム
JP7288568B1 (ja) 自動採寸システム
JP2021086205A (ja) 識別部材、自律移動装置、連結システムおよび連結方法
JP2021060737A (ja) 識別部材、識別部材を用いた自律走行装置と搬送対象物の連結システム及び識別部材を用いた自律走行装置と搬送対象物の連結方法
JP7287329B2 (ja) フォークリフト
WO2022168377A1 (ja) 荷物搬送システム、並びに荷物搬送システムにおいて用いられる方法およびコンピュータプログラム
WO2024047724A1 (ja) フォークリフト、および自動倉庫システム
JP2020155131A (ja) 識別部材、識別部材の検出装置、自律移動装置、検出方法およびプログラム
CN113387274A (zh) 集卡车对位方法、系统及集装箱起重机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18772230

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18772230

Country of ref document: EP

Kind code of ref document: A1