WO2018173362A1 - スクリュー流体機械 - Google Patents

スクリュー流体機械 Download PDF

Info

Publication number
WO2018173362A1
WO2018173362A1 PCT/JP2017/041299 JP2017041299W WO2018173362A1 WO 2018173362 A1 WO2018173362 A1 WO 2018173362A1 JP 2017041299 W JP2017041299 W JP 2017041299W WO 2018173362 A1 WO2018173362 A1 WO 2018173362A1
Authority
WO
WIPO (PCT)
Prior art keywords
female
male
rotor
hole
oil
Prior art date
Application number
PCT/JP2017/041299
Other languages
English (en)
French (fr)
Inventor
土屋 豪
龍一郎 米本
聡 岩井
Original Assignee
日立ジョンソンコントロールズ空調株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立ジョンソンコントロールズ空調株式会社 filed Critical 日立ジョンソンコントロールズ空調株式会社
Priority to CN201780003784.5A priority Critical patent/CN108934174B/zh
Priority to EP17861211.5A priority patent/EP3604814A4/en
Publication of WO2018173362A1 publication Critical patent/WO2018173362A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/14Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C18/16Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation

Definitions

  • the present invention relates to a screw fluid machine that handles refrigerants such as HFC and HFO, natural refrigerants such as air and carbon dioxide, and other compressible gases.
  • Screw fluid machines are widely used as refrigeration and air conditioning compressors and air compressors. It is a major component of heat pump equipment such as air conditioners, chillers, and refrigerators. The social demand for energy saving is extremely strong, and high energy efficiency and high capacity are becoming increasingly important. Yes.
  • oil that has lubricated the shaft support means for rotatably supporting the rotor shafts of the male and female rotors flows into the suction port through the wall surface on the male rotor and female rotor side, and from the suction port. It is configured to be returned to the oil sump after mixing with the mainstream of the gas to be sucked.
  • An object of the present invention is to provide a screw fluid machine capable of reducing intake air heating by suppressing mixing of oil with a main stream of gas sucked from a suction port, and having high energy efficiency and high capacity.
  • a screw fluid machine includes a male rotor and a female rotor that rotate while meshing with each other, and a shaft support that rotatably supports a drive shaft of the male rotor and the female rotor.
  • the casing has an intermediate portion located between the drive means and the male rotor and the female rotor, and the intermediate portion has a male penetration through which the drive shaft of the male rotor passes.
  • an oil drain passage for returning the oil lubricated to the shaft support means to the drive means, and the oil lubricated to the shaft support means is passed through the oil drain passage through the oil drain passage. It is configured to return from the suction port to the drive means side so as to avoid gas passing through the suction port.
  • the present invention it is possible to suppress the mixing of oil with the main stream of gas sucked from the suction port, to reduce intake air heating, and to provide a screw fluid machine having high energy efficiency and high capacity. it can.
  • FIG. 2 shows a cross-sectional view of the screw fluid machine in the first embodiment along the line AA in FIG. 1.
  • FIG. 2 shows a cross-sectional view of the screw fluid machine in the first embodiment along the line BB in FIG. 1.
  • FIG. 2 shows a cross-sectional view of the screw fluid machine in the first embodiment along the line CC in FIG. 1.
  • FIG. 6 is a cross-sectional view of the screw fluid machine according to the first embodiment taken along line DD of FIG. 4.
  • FIG. 6 shows a cross-sectional view of the screw fluid machine in the second embodiment along the line CC in FIG. 1.
  • FIG. 6 shows a cross-sectional view of the screw fluid machine in the third embodiment along the line CC in FIG. 1.
  • FIG. 1 is a horizontal sectional view of the screw fluid machine 1 according to the present embodiment
  • FIG. 2 is a sectional view of the screw fluid machine 1 according to the first embodiment taken along line AA in FIG.
  • FIG. 3 shows a cross-sectional view of the screw fluid machine 1 according to the first embodiment along the line BB of FIG. 4 shows a cross-sectional view of the screw fluid machine 1 according to the first embodiment along the line CC in FIG.
  • the screw fluid machine 1 includes a compression unit 2, a drive unit 3, and a casing 4 that houses the compression unit 2 and the drive unit 3.
  • the screw fluid machine 1 operates in the intermediate portion 4 ⁇ / b> A after the gas sucked into the screw fluid machine 1 from the suction port 15 formed in the casing 4 passes through the motor 14. Suction from the suction port 10 of the chamber into the working chamber. The sucked gas is compressed and discharged from the discharge port 16 to the outside of the screw fluid machine 1 through the discharge port 11 of the working chamber.
  • the compression unit 2 includes a male rotor 5 that is rotationally driven by a motor 14 that is driving means disposed in the drive unit 3, a female rotor 6 that rotates while meshing with the male rotor 5, and the male rotor 5 and the female rotor. 6, the shaft support means 12 a, 12 b, 13 a, 13 b, the oil supply means 17 of the suction side shaft support means, and the oil supply means (not shown) of the discharge side shaft support means.
  • the male rotor 5 and the female rotor 6 are respectively provided with a male rotor shaft 5b and a female rotor shaft 6b as rotating shafts.
  • the suction side shaft support means 12 a is composed of two roller bearings that support the suction side of the male rotor shaft 5 b of the male rotor 5, and the discharge side shaft support means 12 b supports the discharge side of the male rotor shaft 5 b of the male rotor 5. Roller bearings and ball bearings.
  • the suction side shaft support means 13 a is constituted by a roller bearing that supports the suction side of the female rotor shaft 6 b of the female rotor 6, and the discharge side shaft support means 13 b is a roller bearing that supports the discharge side of the female rotor shaft 6 b of the female rotor 6. And ball bearings.
  • the casing 4 includes an intermediate part 4A located between the compression part 2 and the drive part 3.
  • a male through hole 4b In the intermediate portion 4A, a male through hole 4b, a female through hole 4c, a suction port 10, and an oil discharge passage portion 20 are formed.
  • a male oil passage 17d is formed in the male through hole 4b through the male rotor shaft 5b of the male rotor 5.
  • the female rotor shaft 6b of the female rotor 6 passes through the female through hole 4c to form a female oil passage 17e.
  • the suction port 10 is located below the male through hole 4b and the female through hole 4c and has end edges 10a and 10b in the horizontal direction. In addition, the suction port 10 is widely opened on the male rotor 5 side, and conversely, is narrowly opened on the female rotor 6 side.
  • the working chamber is constituted by the tooth grooves 5 a and 6 a of the male rotor 5 and the female rotor 6, the bore (wall surface facing the radial direction of each rotor) 7 of the casing 4, the suction end face 8 of the casing 4, and the discharge end face 9 of the casing 4.
  • a plurality are formed.
  • the casing 4 shown in FIG. 1 is shown as an integral structure as an example. It may be a divided structure or the like divided by parts.
  • the casing 4 is formed with an oil supply main path 17a and an oil supply branch path 17b as oil supply paths to the suction side shaft support means 12a of the male rotor 5 and the suction side shaft support means 13a of the female rotor 6.
  • oil supply for example, a method of supplying oil separated by an oil separator (not shown) or the like by a pressure difference is used, but another method may be used.
  • the oil supplied from the oil supply main branch passage 17a to the suction side shaft support means 12a does not flow out to the motor 14 side by the seal member 17c that prevents oil leakage to the motor 14 side, and supports the suction side shaft.
  • the male rotor shaft 5b of the male rotor 5 flows out to the male oil passage 17d formed by passing through the male through hole 4b of the intermediate portion 4A.
  • the oil supplied to the suction-side shaft support means 13a from the oil supply branch passage 17b lubricates the suction-side shaft support means 13a, and then the female rotor shaft 6b of the female rotor 6 becomes the female through hole 4c in the intermediate portion 4A. Flows out to the female oil passage 17e formed by penetrating.
  • FIG. 5 shows a cross-sectional view of the screw fluid machine 1 according to the first embodiment along the line DD in FIG.
  • the suction end face 8 of the intermediate portion 4 ⁇ / b> A has a suction port 10 of the working chamber, a male suction groove 18 a on the male rotor side where the suction end face 8 is dug on the opposite rotor side, and the female rotor side.
  • Female suction groove 18b Further, an oil drain passage portion 20 is formed in the intermediate portion 4A.
  • the suction port 10 is formed below the male rotor shaft 5a and the female rotor shaft 6b.
  • the male suction groove 18a and the female suction groove 18b are formed along a part (outer part) of the outer periphery of the male rotor shaft 5a and the female rotor shaft 6b, respectively.
  • a boundary 19a between the suction port 10 and the male suction groove 18a is located on the right side of the lower portion of the female rotor shaft 6b in FIG. 4, and a boundary 19b between the suction port 10 and the female suction groove 18b is formed on the female rotor shaft 6b. Located directly below.
  • the boundaries 19a and 19b correspond to the edges 10a and 10b of the suction port 10 in the horizontal direction.
  • the oil drainage passage 20 is constituted by a communication passage 20a, a discharge passage 20b, a plug 20c, and a discharge groove 20d.
  • the communication path 20 a, the discharge path 20 b, and the discharge groove 20 d extend in the horizontal direction, are formed by a single drilling operation on the casing 4, and the plug 20 c closes a hole on the outer surface of the casing 4.
  • the communication passage 20a connects the lower portion of the male oil passage 17d and the lower portion of the female oil passage 17e.
  • the discharge passage 20b connects the lower portion of the female oil passage 17e and the female suction groove 18b.
  • the discharge path 20b communicates with the female through hole 4c, extends to the side away from the male through hole 4b, and opens into the female suction groove 18b.
  • the discharge groove 20d is formed by cutting the bottom surface of the female suction groove 18b because the oil discharge passage portion 20 is processed as a large-diameter hole. For this reason, when the oil drain passage portion 20 is processed as a small-diameter hole, the drain groove 20d is not formed.
  • the oil that has lubricated the suction side shaft support means 12a, 13a flows in the direction intersecting the vertical direction (horizontal direction in the present embodiment) by the oil discharge passage portion 20, and then the end of the suction port 10 It is configured to flow from the edge 10b to the motor 14 side.
  • the oil that has lubricated the suction side shaft support means 12a, 13a is returned to the motor 14 over the wall that forms the edge 10b of the suction port 10, so that the mainstream of the gas into which the oil is sucked from the suction port 10 Mixing can be suppressed and intake air heating can be reduced.
  • the screw fluid machine 1 having high energy efficiency and high capacity can be realized.
  • the oil lubricated by the suction side shaft support means 12a, 13a is caused to flow in the direction intersecting the vertical direction (horizontal direction in the present embodiment) by the oil drain passage 20 and dropped along the female suction groove 18b.
  • the temperature of the oil can be lowered by heat exchange with the casing 4.
  • the heating of the gas sucked from the suction port 10 can be reduced.
  • the communication passage 20a of the oil discharge passage 20 communicates with the male through hole 4b and the female through hole 4c, and the discharge passage 20b of the oil discharge passage 20 communicates with the female through hole 4c and is separated from the male through hole 4b. It is comprised so that it may extend to the side to do. For this reason, since the communication path 20a and the discharge path 20b can be formed with a drill once with respect to the casing 4, the communication path 20a and the discharge path 20b can be formed easily.
  • the motor 14 drives the male rotor 5 to rotate, and the discharge path 20b communicates with the female through hole 4c and extends away from the male through hole 4b. Since the opening of the suction port 10 where the motor 14 is not provided becomes narrow as the casing 4 becomes smaller, the discharge path 20b is configured to extend from the female through hole 4c to the side away from the male through hole 4b.
  • the oil temperature can be lowered by increasing the distance from the outlet of the discharge passage 20b to the inlet 10. Therefore, the heating of the gas sucked from the suction port 10 can be reduced.
  • FIG. 6 shows a cross-sectional view of the screw fluid machine 1 according to the second embodiment along the line CC in FIG.
  • the suction port 10 is located at the center of the male rotor shaft 5b and the female rotor shaft 6b, and has a target shape with respect to a surface orthogonal to the paper surface.
  • a male drainage passage portion 50 and a female drainage passage portion 51 are formed in place of the drainage passage portion 20, and connect the lower portion of the male oil passage 17d and the lower portion of the female oil passage 17e.
  • the communicating path 20a is not formed.
  • the male oil drain passage 50 is constituted by a male discharge passage 50a, a plug 50b, and a discharge groove 50c.
  • the male discharge path 50 a and the discharge groove 50 c extend in the horizontal direction, are formed by machining the casing 4 with a drill, and the plug 50 b closes a hole on the outer surface of the casing 4.
  • the male discharge passage 50a connects the lower portion of the male oil passage 17d and the male suction groove 18a. That is, the male discharge path 50a communicates with the male through hole 4b, extends to the side away from the female through hole 4c, and opens into the male suction groove 18a.
  • the discharge groove 50c is formed by cutting the bottom surface of the male suction groove 18a because the male drain passage 50 is processed as a large-diameter hole.
  • the female oil drain passage 51 is composed of a female discharge passage 51a, a plug 51b, and a discharge groove 51c.
  • the female discharge path 51 a and the discharge groove 51 c extend in the horizontal direction and are formed by drilling the casing 4, and the plug 51 b closes the hole on the outer surface of the casing 4.
  • the female discharge path 51a connects the lower part of the female oil path 17e and the female suction groove 18b. That is, the female discharge path 51a communicates with the female through hole 4c, extends to the side away from the male through hole 4b, and opens into the female suction groove 18b.
  • the discharge groove 51c is formed by cutting the bottom surface of the female suction groove 18b because the female oil discharge passage 51 is processed as a large-diameter hole.
  • the oil that lubricates the suction side shaft support means 12a and flows into the male oil passage 17d flows in the horizontal direction through the male discharge passage 50a, and is discharged to the male suction groove 18a.
  • the oil discharged to the male suction groove 18a falls along the male suction groove 18a and flows from the end edge 10a of the suction port 10 into the oil reservoir 21 located on the motor 14 side.
  • the oil that has lubricated the suction-side shaft support means 12a flows in the direction intersecting the vertical direction (horizontal direction in the present embodiment) by the male drain passage 50, and then the edge of the suction port 10 It is configured to flow from 10a to the motor 14 side.
  • the oil that lubricates the suction side shaft support means 13a and flows into the female oil passage 17e flows in the horizontal direction through the female discharge passage 51a, and is discharged to the female suction groove 18b.
  • the oil discharged to the female suction groove 18b falls along the female suction groove 18b and flows into the oil reservoir 21 located on the motor 14 side from the end edge 10b of the suction port 10.
  • the oil that has lubricated the suction-side shaft support means 13a flows in the direction intersecting the vertical direction (horizontal direction in the present embodiment) by the female drain oil passage 51, and then the edge of the suction port 10 It is configured to flow from 10b to the motor 14 side.
  • both end edges 10a and 10b of the suction port 10 are provided. Therefore, heat exchange between the suction gas and the oil can be suppressed. Therefore, the screw fluid machine 1 having high energy efficiency and high capacity can be realized by reducing the intake air heating.
  • FIG. 7 shows a cross-sectional view along the line CC of FIG. 1 of the screw fluid machine 1 in the third embodiment.
  • the male rotor 5 is driven by the motor 14, the female rotor 6 may be driven.
  • the oil drain passage 20 may be formed not in the female oil passage 17e but in the male oil passage 17d.
  • the oil drainage groove 40 may be formed in both the male suction groove 18a and the female suction groove 18b of the second embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

油が吸込口から吸い込まれるガスの主流と混合するのを抑制して、吸気加熱を低減することができ、高エネルギー効率と高能力を有するスクリュー流体機械を提供する。 ケーシング4の中間部4Aには、雄ロータ5の雄ロータ軸5bが貫通する雄貫通孔4bと、雌ロータ6の雌ロータ軸6bが貫通する雌貫通孔4cと、雄貫通孔4b及び雌貫通孔4cの下側に位置しモータ14側から雄ロータ5及び雌ロータ6側へガスを吸い込むための吸込口10と、雄貫通孔4b及び雌貫通孔4cに連通し軸支持手段12a、13aを潤滑した油をモータ14側へ戻すための排油通路部20とが形成され、軸支持手段12a、13aを潤滑した油を、雄油通路17d及び雌油通路17eを介して、排油通路部20に流入させて、吸込口10の水平方向の端縁10bからモータ14側へ流入させる。

Description

スクリュー流体機械
 本発明は、HFC系、HFO系等の冷媒、空気や二酸化炭素等の自然系冷媒及びその他の圧縮性気体を扱うスクリュー流体機械に関する。
 スクリュー流体機械は、冷凍空調用圧縮機や空気圧縮機として広く普及している。空調機やチラー、冷凍機を始めとするヒートポンプ機器の主要構成機器であり、省エネであることへの社会的な要求は極めて強く、高エネルギー効率、高能力であることがますます重要になっている。
 従来のスクリュー流体機械では、雄ロータ及び雌ロータのロータ軸を回転可能に支持する軸支持手段を潤滑した油は、雄ロータ及び雌ロータ側の壁面を伝って吸込口に流入し、吸入口から吸い込まれるガスの主流と混合した後に油溜りに戻されるように構成されている。
 しかし、従来のスクリュー流体機械の油を戻す構成では、油が吸込口から吸い込まれるガスの主流と混合してしまうため、ガスと油のとの間で熱交換が行われ、吸気加熱を増大させることになり、圧縮効率を低減させている。
 そこで本発明は、油が吸込口から吸い込まれるガスの主流と混合するのを抑制して、吸気加熱を低減することができ、高エネルギー効率と高能力を有するスクリュー流体機械を提供することを目的とする。
 上記課題を解決するため、本発明の一形態に係るスクリュー流体機械は、互いに噛合いながら回転する雄ロータ及び雌ロータと、前記雄ロータ及び前記雌ロータの駆動軸を回転可能に支持する軸支持手段と、前記雄ロータ及び前記雌ロータを駆動する駆動手段と、前記雄ロータ、前記雌ロータ、前記軸支持手段、及び前記駆動手段を収納するケーシングと、前記軸支持手段へ油を給油する給油手段と、を備え、前記ケーシングは、前記駆動手段と前記雄ロータ及び前記雌ロータとの間に位置する中間部を有し、前記中間部には、前記雄ロータの駆動軸が貫通する雄貫通孔と、前記雌ロータの駆動軸を貫通する雌貫通孔と、前記駆動手段側から前記雄ロータ及び前記雌ロータ側へガスを吸い込むための吸込口と、前記雄貫通孔及び前記雌貫通孔に連通し前記軸支持手段を潤滑した油を前記駆動手段側へ戻すための排油通路部と、が形成され、前記軸支持手段を潤滑した油を、前記排油通路部を介して、前記吸込口を通過するガスを避けるように、前記吸込口から前記駆動手段側へ戻すように構成されている。
 本発明によれば、油が吸込口から吸い込まれるガスの主流と混合するのを抑制して、吸気加熱を低減することができ、高エネルギー効率と高能力を有するスクリュー流体機械を提供することができる。
第1の実施形態に係るスクリュー流体機械の水平断面図を示す。 第1の実施形態におけるスクリュー流体機械の図1のA-A線に沿った断面図を示す。 第1の実施形態におけるスクリュー流体機械の図1のB-B線に沿った断面図を示す。 第1の実施形態におけるスクリュー流体機械の図1のC-C線に沿った断面図を示す。 第1の実施形態におけるスクリュー流体機械の図4のD-D線に沿った断面図を示す。 第2の実施形態におけるスクリュー流体機械の図1のC-C線に沿った断面図を示す。 第3の実施形態におけるスクリュー流体機械の図1のC-C線に沿った断面図を示す。
 以下、本発明の第1の実施形態に係るスクリュー流体機械1について図面を参照して説明する。
 スクリュー流体機械1の全体構成について図1~4を参照して説明する。
 図1は、本実施形態に係るスクリュー流体機械1の水平断面図、図2は、第1の実施形態におけるスクリュー流体機械1の図1のA-A線に沿った断面図を示している。図3は、第1の実施形態におけるスクリュー流体機械1の図1のB-B線に沿った断面図を示している。図4は、第1の実施形態におけるスクリュー流体機械1の図1のC-C線に沿った断面図を示している。
 図1に示すように、スクリュー流体機械1は、圧縮部2と、駆動部3と、圧縮部2および駆動部3を収納するケーシング4とを備える。図1、2に示すように、スクリュー流体機械1は、ケーシング4に形成された吸込ポート15からスクリュー流体機械1内に吸込んだガスを、モータ14を通過した後に中間部4Aに形成された作動室の吸込口10から作動室へと吸込む。そして吸込んだガスを圧縮し作動室の吐出口11を経由して吐出ポート16からスクリュー流体機械1の外部へと吐出する。
 圧縮部2は、駆動部3に配設した駆動手段であるモータ14により回転駆動される雄ロータ5と、雄ロータ5と互いに噛合いながら回転する雌ロータ6と、これら雄ロータ5及び雌ロータ6を収納するケーシング4と、軸支持手段12a、12b、13a、13bと、吸込側軸支持手段の給油手段17と、吐出側軸支持手段の給油手段(図示せず)とを備える。
 雄ロータ5及び雌ロータ6は、回転軸しての雄ロータ軸5b、雌ロータ軸6bをそれぞれ備える。吸込側軸支持手段12aは、雄ロータ5の雄ロータ軸5bの吸込側を支持する2つのころ軸受で構成され、吐出側軸支持手段12bは雄ロータ5の雄ロータ軸5bの吐出側を支持するころ軸受と玉軸受で構成されている。吸込側軸支持手段13aは雌ロータ6の雌ロータ軸6bの吸込側を支持するころ軸受で構成され、吐出側軸支持手段13bは雌ロータ6の雌ロータ軸6bの吐出側を支持するころ軸受と玉軸受で構成されている。
 ケーシング4は、圧縮部2と駆動部3との間に位置する中間部4Aを備える。中間部4Aには、雄貫通孔4bと、雌貫通孔4cと、吸込口10と、排油通路部20とが形成されている。雄貫通孔4bには、雄ロータ5の雄ロータ軸5bか貫通して、雄油通路17dが形成される。雌貫通孔4cには、雌ロータ6の雌ロータ軸6bが貫通して、雌油通路17eが形成される。吸込口10は、雄貫通孔4b及び雌貫通孔4cの下側に位置し、水平方向における端縁10a、10bを有する。また、吸込口10は、雄ロータ5側に広く開口し、逆に雌ロータ6側への狭く開口している。
 作動室は、雄ロータ5及び雌ロータ6の歯溝5a、6a、ケーシング4のボア(各ロータの径方向に相対する壁面)7、ケーシング4の吸込端面8、およびケーシング4の吐出端面9により複数形成されている。ここで、図1に示したケーシング4は、一例として一体構造で示したが、圧縮部2と駆動部3の間や、圧縮部2を雄雌ロータの吐出側軸支持手段を配設するケーシング部で分割した分割構造等であってもでも構わない。
 次に、給油手段17の構成について詳細に説明する。
 ケーシング4には、雄ロータ5の吸込側軸支持手段12aと雌ロータ6の吸込側軸支持手段13aへの給油経路として、給油主経路17aと給油分岐路17bが形成されている。給油は、たとえば、油分離器(図示せず)等で分離した油を圧力差により供給する方法を用いるが、別の方法でも良い。雄ロータ5側において、給油主岐路17aから吸込側軸支持手段12aに供給する油は、モータ14側への油漏れを防止するシール部材17cによりモータ14側へ流出することなく、吸込側軸支持手段12aを潤滑後、雄ロータ5の雄ロータ軸5bが中間部4Aの雄貫通孔4bを貫通することにより形成される雄油通路17dまで流出する。雌ロータ6側では、給油分岐路17bから吸込側軸支持手段13aに供給した油は、吸込側軸支持手段13aを潤滑後、雌ロータ6の雌ロータ軸6bが中間部4Aの雌貫通孔4cを貫通することにより形成される雌油通路17eまで流出する。
 図4、5を用いて、雄油通路17d、雌油通路17eから油溜21へ油を導くための排油通路部20について説明する。
 図5は、第1の実施形態におけるスクリュー流体機械1の図4のD-D線に沿った断面図を示している。
 図4、5に示すように、中間部4Aの吸込端面8には、作動室の吸込口10と、吸込端面8を反ロータ側に掘り込んだ雄ロータ側の雄吸込溝18a及び雌ロータ側の雌吸込溝18bとが形成されている。また、中間部4Aには、排油通路部20が形成されている。
 吸込口10は、雄ロータ軸5a及び雌ロータ軸6bの下側に形成されている。雄吸込溝18a、雌吸込溝18bは、それぞれ雄ロータ軸5a、雌ロータ軸6bの外周の一部(外側部分)に沿うように形成されている。そして、吸込口10と雄吸込溝18aとの境界19aは、図4における雌ロータ軸6bの下部の右側に位置し、吸込口10と雌吸込溝18bとの境界19bは、雌ロータ軸6bの直下に位置している。なお、境界19a、19bは、吸込口10の水平方向における端縁10a、10bに相当する
 排油通路部20は、連通路20aと、排出路20bと、プラグ20cと、排出溝20dとにより構成される。連通路20a、排出路20b、及び排出溝20dは、水平方向に延び、ケーシング4に対しドリルにより一回の加工で形成され、プラグ20cはケーシング4の外面の穴を閉止している。連通路20aは、雄油通路17dの下部と雌油通路17eの下部とを接続している。排出路20bは、雌油通路17eの下部と雌吸込溝18bとを接続している。すなわち、排出路20bは、雌貫通孔4cに連通し、雄貫通孔4bから離間する側に延び、雌吸込溝18bに開口している。排出溝20dは、排油通路部20を大口径の穴として加工したために、雌吸込溝18bの底面を削ることにより形成されている。このため、排油通路部20を小口径の穴として加工した場合には、排出溝20dは形成されない。
 吸込側軸支持手段12aを潤滑し雄油通路17dに流入した油の多くは、連通路20aに流入して水平方向へ流れ、雌油通路17eに流出し、雌油通路17eにおいて吸込側軸支持手段13aを潤滑した油と合流し、合流した油の多くは、排出路20bを通り水平方向へ流れ、雌吸込溝18bへ排出される。雌吸込溝18bへ排出された油は、雌吸込溝18bに沿って落下し、吸込口10の端縁10bから、モータ14側に位置する油溜21へ流入する。このように、吸込側軸支持手段12a、13aを潤滑した油は、排油通路部20によって鉛直方向に対して交差する方向(本実施形態では水平方向)に流れたのち、吸込口10の端縁10bから、モータ14側へ流れるように構成されている。
 よって、吸込側軸支持手段12a、13aを潤滑した油は、吸込口10の端縁10bを形成する壁を這ってモータ14側へ戻されるので、油が吸込口10から吸い込まれるガスの主流と混合するのを抑制することができ、吸気加熱を低減することができる。これにより、高エネルギー効率と高能力を有するスクリュー流体機械1を実現することができる。
 また、吸込側軸支持手段12a、13aを潤滑した油を、排油通路部20によって鉛直方向に対して交差する方向(本実施形態では水平方向)に流し、雌吸込溝18bに沿って落下させ雌吸込溝18bに油膜として存在するものも増やすことにより、ケーシング4との熱交換により油の温度を低下させることができる。その結果、吸込口10から吸い込まれるガスの加熱を低減することができる。
 また、排油通路部20の連通路20aは、雄貫通孔4bと雌貫通孔4cを連通し、排油通路部20の排出路20bは、雌貫通孔4cに連通し雄貫通孔4bから離間する側へ延びるように構成されている。このため、連通路20a及び排出路20bをケーシング4に対しドリルにより一回の加工で形成することができるので、連通路20a及び排出路20bを容易に形成することができる。
 また、モータ14は、雄ロータ5を回転駆動し、排出路20bは、雌貫通孔4cに連通し雄貫通孔4bから離間する側へ延びている。吸込口10においてモータ14を設けない側は、ケーシング4の小型化に伴い開口が狭くなるので、排出路20bを雌貫通孔4cから雄貫通孔4bから離間する側へ延びるように構成することにより、排出路20bの出口から吸込口10までの距離を長くして油の温度を低下させさせることができる。よって、吸込口10から吸い込まれるガスの加熱を低減することができる。 
 次に、本発明の第2の実施形態に係るスクリュー流体機械1について図6を参照して説明する。第2の実施形態に係るスクリュー流体機械1と同一の部材については同一の参照番号を付して説明を省略し、異なる部分についてのみ説明する。
 図6は、第2の実施形態におけるスクリュー流体機械1の図1のC-C線に沿った断面図を示している。
 図6に示すように、吸込口10は、雄ロータ軸5b及び雌ロータ軸6bの中央に位置し、紙面に対し直行する面に対し対象の形状をなしている。中間部4Aには、排油通路部20に代えて、雄排油通路部50及び雌排油通路部51が形成されており、雄油通路17dの下部と雌油通路17eの下部とを接続する連通路20aは形成されていない。
 雄排油通路部50は、雄排出路50aと、プラグ50bと、排出溝50cとにより構成される。雄排出路50a及び排出溝50cは、水平方向に延び、ケーシング4に対しドリルによる加工で形成され、プラグ50bはケーシング4の外面の穴を閉止している。雄排出路50aは、雄油通路17dの下部と雄吸込溝18aとを接続している。すなわち、雄排出路50aは、雄貫通孔4bに連通し、雌貫通孔4cから離間する側に延び、雄吸込溝18aに開口している。排出溝50cは、雄排油通路部50を大口径の穴として加工したために、雄吸込溝18aの底面を削ることにより形成されている。
 雌排油通路部51は、雌排出路51aと、プラグ51bと、排出溝51cとにより構成される。雌排出路51a及び排出溝51cは、水平方向に延び、ケーシング4に対しドリルによる加工で形成され、プラグ51bはケーシング4の外面の穴を閉止している。雌排出路51aは、雌油通路17eの下部と雌吸込溝18bとを接続している。すなわち、雌排出路51aは、雌貫通孔4cに連通し、雄貫通孔4bから離間する側に延び、雌吸込溝18bに開口している。排出溝51cは、雌排油通路部51を大口径の穴として加工したために、雌吸込溝18bの底面を削ることにより形成されている。
 吸込側軸支持手段12aを潤滑し雄油通路17dに流入した油の多くは、雄排出路50aを通り水平方向へ流れ、雄吸込溝18aへ排出される。雄吸込溝18aへ排出された油は、雄吸込溝18aに沿って落下し、吸込口10の端縁10aから、モータ14側に位置する油溜21へ流入する。このように、吸込側軸支持手段12aを潤滑した油は、雄排油通路部50によって鉛直方向に対して交差する方向(本実施形態では水平方向)に流れたのち、吸込口10の端縁10aから、モータ14側へ流れるように構成されている。
 また、吸込側軸支持手段13aを潤滑し雌油通路17eに流入した油の多くは、雌排出路51aを通り水平方向へ流れ、雌吸込溝18bへ排出される。雌吸込溝18bへ排出された油は、雌吸込溝18bに沿って落下し、吸込口10の端縁10bから、モータ14側に位置する油溜21へ流入する。このように、吸込側軸支持手段13aを潤滑した油は、雌排油通路部51によって鉛直方向に対して交差する方向(本実施形態では水平方向)に流れたのち、吸込口10の端縁10bから、モータ14側へ流れるように構成されている。
 本実施形態のスクリュー流体機械1によれば、雄ロータ5側の雄排油通路部50と、雌ロータ6側の雌排油通路部51とを有するので、吸込口10の両端縁10a、10bから油を通過させることができるので、吸込ガスと油との熱交換を抑制することができる。よって、吸気加熱を低減して高エネルギー効率と高能力を有するスクリュー流体機械1を実現できる。
 次に、本発明の第3の実施形態に係るスクリュー流体機械1について図7を参照して説明する。第1の実施形態に係るスクリュー流体機械1と同一の部材については同一の参照番号を付して説明を省略し、異なる部分についてのみ説明する。
 図7は、第3の実施形態におけるスクリュー流体機械1の図1のC-C線に沿った断面図を示している。
 図7に示すように、雌吸込溝18bを形成する面であって、雌ロータ6の雌ロータ軸6bの下側に位置する部分に、吸込口10よりも下側に油を排出する排油逃げ溝40が形成されている。
 これにより、吸込口10よりも下側から油が戻されるので、油が吸込口10から吸い込まれるガスの主流と混合するのをさらに抑制することができ、吸気加熱をさらに低減することができる。これにより、より高エネルギー効率と高能力を有するスクリュー流体機械1を実現することができる。
 なお、本発明は、上述した実施例に限定されない。当業者であれば、本発明の範囲内で、種々の追加や変更等を行うことができる。
 例えば、モータ14により雄ロータ5を駆動したが、雌ロータ6を駆動してもよい。この場合、排油通路部20を雌油通路17e側ではなく、雄油通路17dに形成してもよい。また、排油逃げ溝40を第2の実施形態の雄吸込溝18a及び雌吸込溝18bの両方に形成してもよい。
1:スクリュー流体機械、4:ケーシング、4A:中間部、4b:雄貫通孔、4c:雌貫通孔、5:雄ロータ、5b:雄ロータ軸、6:雌ロータ、6b:雌ロータ軸、8:端面、10:吸込口、10a、10b:端縁、12a、13a:吸込側軸支持手段、14:モータ、17:給油手段、17d:雄油通路、17e:雌油通路、18a:雄吸込溝 18b:雌吸込溝、20:排油通路部、20a:連通路、20b:排出路、50:雄排油通路部、50a:雄排出路、51:雌排油通路部、51a:雌排出路 

 

Claims (9)

  1.  互いに噛合いながら回転する雄ロータ及び雌ロータと、
     前記雄ロータ及び前記雌ロータの駆動軸を回転可能に支持する軸支持手段と、
     前記雄ロータ及び前記雌ロータを駆動する駆動手段と、
     前記雄ロータ、前記雌ロータ、前記軸支持手段、及び前記駆動手段を収納するケーシングと、
     前記軸支持手段へ油を給油する給油手段と、を備え、
     前記ケーシングは、前記駆動手段と前記雄ロータ及び前記雌ロータとの間に位置する中間部を有し、
     前記中間部には、前記雄ロータの駆動軸が貫通する雄貫通孔と、前記雌ロータの駆動軸を貫通する雌貫通孔と、前記駆動手段側から前記雄ロータ及び前記雌ロータ側へガスを吸い込むための吸込口と、前記雄貫通孔及び前記雌貫通孔に連通し前記軸支持手段を潤滑した油を前記駆動手段側へ戻すための排油通路部と、が形成され、
     前記軸支持手段を潤滑した油を、前記排油通路部を介して、前記吸込口を通過するガスを避けるように、前記吸込口から前記駆動手段側へ戻すように構成された、スクリュー流体機械。
  2.  前記吸入口は、前記雄貫通孔及び前記雌貫通孔の下側に位置し、
     前記軸支持手段を潤滑した油を、前記雄ロータの駆動軸が前記雄貫通孔を貫通することにより形成される雄油通路及び前記雌ロータの駆動軸が前記雌貫通孔を貫通することにより形成される雌油通路を介して、前記排油通路部に流入させて、前記吸込口の水平方向の端縁から前記駆動手段側へ流入させる、請求項1に記載のスクリュー流体機械。
  3.  前記排油通路部は、鉛直方向に対して交差する方向に油を流すように構成されている請求項2に記載のスクリュー流体機械。
  4.  前記排油通路部は、前記雄貫通孔と前記雌貫通孔を連通する連通路と、前記雄貫通孔に連通し前記雌貫通孔から離間する側へ延びる又は前記雌貫通孔に連通し前記雄貫通孔から離間する側へ延びる排出路と、を有する、請求項2又は請求項3に記載のスクリュー流体機械。
  5.  前記駆動手段が前記雄ロータを回転駆動する場合には、前記排出路は、前記雌貫通孔に連通し前記雄貫通孔から離間する側へ延び、
     前記駆動手段が前記雌ロータを回転駆動する場合には、前記排出路は、前記雄貫通孔に連通し前記雌貫通孔から離間する側へ延びる、請求項4に記載のスクリュー流体機械。
  6.  前記中間部の前記雄ロータ及び前記雌ロータ側の端面には、前記雄ロータの駆動軸外周の一部に沿い前記吸込口の水平方向の一方の端部に連通する雄吸込溝及び前記雌ロータの駆動軸の外周の一部に沿い前記吸込口の水平方向の他方の端部に連通する雌吸込溝が形成され、
     前記排油通路部の前記排出路は、前記雄吸込溝又は前記雌吸込溝に開口する、請求項4に記載のスクリュー流体機械。
  7.  前記排油通路部は、前記雄貫通孔に連通し前記雌貫通孔から離間する側へ延びる雄排出路と、前記雌貫通孔に連通し前記雌貫通孔から離間する側へ延びる雌排出路と、を有する、請求項2又は請求項3に記載のスクリュー流体機械。
  8.  前記中間部の前記雄ロータ及び前記雌ロータ側の端面には、前記雄ロータの駆動軸の外周の一部に沿い前記吸入口の水平方向の一方の端部に連通する雄吸込溝及び前記雌ロータの駆動軸の外周の一部に沿い前記吸入口の水平方向の他方の端部に連通する雌吸込溝が形成され、
     前記雄排出路は前記雄吸込溝に開口し、前記雌排出路は前記雌吸込溝に開口する、請求項7に記載のスクリュー流体機械。
  9.  前記雄吸込溝及び/又は前記雌吸込溝を形成する面であって、前記雄ロータ及び/又は前記雌ロータのロータ軸の下側に位置する部分に、吸込口よりも下側に油を排出する排油逃げ溝が形成されている、請求項6又は請求項8に記載のスクリュー流体機械。
PCT/JP2017/041299 2017-03-24 2017-11-16 スクリュー流体機械 WO2018173362A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780003784.5A CN108934174B (zh) 2017-03-24 2017-11-16 螺杆流体机械
EP17861211.5A EP3604814A4 (en) 2017-03-24 2017-11-16 SCREW TYPE FLUID MACHINE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017059472A JP6448698B2 (ja) 2017-03-24 2017-03-24 スクリュー流体機械
JP2017-059472 2017-03-24

Publications (1)

Publication Number Publication Date
WO2018173362A1 true WO2018173362A1 (ja) 2018-09-27

Family

ID=63584423

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/041299 WO2018173362A1 (ja) 2017-03-24 2017-11-16 スクリュー流体機械

Country Status (4)

Country Link
EP (1) EP3604814A4 (ja)
JP (1) JP6448698B2 (ja)
CN (1) CN108934174B (ja)
WO (1) WO2018173362A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021171889A1 (ja) * 2020-02-25 2021-09-02 株式会社日立産機システム 給液式スクリュー圧縮機

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3178104A (en) * 1962-08-20 1965-04-13 Gardner Denver Co Bearing lubrication system for compressor apparatus
JP2001323887A (ja) * 2000-05-12 2001-11-22 Hitachi Ltd 給油式スクリュー圧縮機
JP2015042847A (ja) * 2013-08-26 2015-03-05 日立アプライアンス株式会社 スクリュー圧縮機

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5177081B2 (ja) * 2009-06-01 2013-04-03 株式会社日立プラントテクノロジー スクリュー圧縮機
JP6088212B2 (ja) * 2012-11-07 2017-03-01 株式会社日立産機システム スクリュー圧縮機
CN103821713A (zh) * 2012-11-19 2014-05-28 珠海格力电器股份有限公司 螺杆压缩机和油路循环系统及空调机组
CN104481875A (zh) * 2014-12-19 2015-04-01 珠海格力电器股份有限公司 一种螺杆压缩机

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3178104A (en) * 1962-08-20 1965-04-13 Gardner Denver Co Bearing lubrication system for compressor apparatus
JP2001323887A (ja) * 2000-05-12 2001-11-22 Hitachi Ltd 給油式スクリュー圧縮機
JP2015042847A (ja) * 2013-08-26 2015-03-05 日立アプライアンス株式会社 スクリュー圧縮機

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021171889A1 (ja) * 2020-02-25 2021-09-02 株式会社日立産機システム 給液式スクリュー圧縮機
JP2021134672A (ja) * 2020-02-25 2021-09-13 株式会社日立産機システム 給液式スクリュー圧縮機
CN115151726A (zh) * 2020-02-25 2022-10-04 株式会社日立产机系统 供液式螺杆压缩机
JP7366799B2 (ja) 2020-02-25 2023-10-23 株式会社日立産機システム 給液式スクリュー圧縮機
CN115151726B (zh) * 2020-02-25 2024-03-26 株式会社日立产机系统 供液式螺杆压缩机

Also Published As

Publication number Publication date
EP3604814A1 (en) 2020-02-05
JP2018162694A (ja) 2018-10-18
CN108934174A (zh) 2018-12-04
JP6448698B2 (ja) 2019-01-09
CN108934174B (zh) 2019-12-27
EP3604814A4 (en) 2020-11-18

Similar Documents

Publication Publication Date Title
KR20120109088A (ko) 스크롤 압축기
JP7075407B2 (ja) スクロール型圧縮機
JP5178668B2 (ja) スクロール圧縮機
WO2019076080A1 (zh) 一种带润滑结构的涡旋压缩机
JP6126512B2 (ja) 圧縮機
JP2012177302A (ja) スクロール圧縮機
JP6448698B2 (ja) スクリュー流体機械
JPH02153272A (ja) 斜板式圧縮機の潤滑構造
JP6083408B2 (ja) ベーン型圧縮機
JP6511321B2 (ja) 給油式容積型圧縮機
US20200325899A1 (en) Lubricant supply passage for compressor
JP2017110517A (ja) スクリュー流体機械
JP7229720B2 (ja) スクリュー圧縮機
JP2004052675A (ja) 気体圧縮機
CN106286306B (zh) 卧式滑片压缩机及空调
CN109268272B (zh) 螺旋流体设备
JP2020007982A (ja) 二段スクリュー流体機械
JP4811200B2 (ja) 電動圧縮機
JP2007162679A (ja) 流体機械
WO2017063480A1 (zh) 旋转式压缩机及提高其润滑效果的方法
JP5360264B2 (ja) ロータリ圧縮機
JP7366799B2 (ja) 給液式スクリュー圧縮機
JP5588783B2 (ja) 油冷式スクリュー圧縮機
WO2019224943A1 (ja) スクリュー圧縮機
KR100311466B1 (ko) 저압형로타리압축기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17861211

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE