WO2017063480A1 - 旋转式压缩机及提高其润滑效果的方法 - Google Patents

旋转式压缩机及提高其润滑效果的方法 Download PDF

Info

Publication number
WO2017063480A1
WO2017063480A1 PCT/CN2016/099449 CN2016099449W WO2017063480A1 WO 2017063480 A1 WO2017063480 A1 WO 2017063480A1 CN 2016099449 W CN2016099449 W CN 2016099449W WO 2017063480 A1 WO2017063480 A1 WO 2017063480A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
rotary compressor
pool
oil pool
lubricating oil
Prior art date
Application number
PCT/CN2016/099449
Other languages
English (en)
French (fr)
Inventor
苏晓耕
黄逊彬
纪高锋
Original Assignee
艾默生环境优化技术(苏州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201520802406.1U external-priority patent/CN205064281U/zh
Priority claimed from CN201510670523.1A external-priority patent/CN106567833B/zh
Application filed by 艾默生环境优化技术(苏州)有限公司 filed Critical 艾默生环境优化技术(苏州)有限公司
Publication of WO2017063480A1 publication Critical patent/WO2017063480A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/06Lubrication
    • F04D29/063Lubrication specially adapted for elastic fluid pumps

Definitions

  • the present invention relates to a rotary compressor and a method of improving the lubricating effect of the rotary compressor.
  • the fluid refrigerant in the evaporator cannot be fully changed due to the lower ambient temperature of the evaporator. Heat and evaporate into a gas, causing a large amount of liquid refrigerant to flow back to the compressor and into the oil pool at the bottom of the compressor. At this point, the oil in the oil sump is diluted by the liquid refrigerant, causing a sharp drop in viscosity. The oil after the viscosity is lowered is pumped into the bearing, resulting in a decrease in the thickness of the oil film, and even an inability to form an effective oil film, resulting in bearing wear failure. A similar situation occurs when defrosting at low temperatures.
  • refrigerants with low GWP global greenhouse effect potential
  • the refrigerant with low GWP value generally has a high exhaust gas temperature when operating under heat pump conditions.
  • the suction superheat is lowered, it is inevitably caused that the liquid refrigerant in the evaporator is incompletely evaporated, and the liquid refrigerant flows back to the compressor to cause dilution of the oil in the oil pool.
  • the existing solution system has a large amount of liquid returning, which results in a high degree of oil dilution in the compressor oil pool. However, it has other defects, and it can not solve the problem that the environmentally-friendly refrigerant with low GWP value is high when operating under heat pump conditions. The problem of exhaust temperature.
  • the rotary compressor of the invention can improve the reliability of the compressor at the time of a large amount of liquid return, improve the lubrication effect and the system performance, and is particularly suitable for reducing the exhaust gas by reducing the superheat of the system in the case of using an environmentally friendly refrigerant. Temperature without causing the oil to be diluted to a higher degree.
  • the invention provides a rotary compressor, comprising: a casing; a compression mechanism; an oil pool, a lubricating oil stored in the oil pool; a rotating shaft, a lubricating oil passage connected with the oil pool and a rotating shaft Supported by the upper bearing housing and the lower bearing housing; and a drive mechanism that drives the compression mechanism via the rotating shaft.
  • the oil pool includes a first oil pool and a second oil pool, the first oil pool and the second oil pool are connected via the first oil inlet, the lubricating oil passage is connected to the second oil pool, and the compressor is further provided with a oil return passage.
  • the oil return passage introduces the higher temperature lubricating oil of the rotary compressor into the second oil pool during the operation of the compressor, and the temperature of the higher temperature lubricating oil is higher than the temperature of the lubricating oil in the first oil pool.
  • the first oil pool and the second oil pool are separated by a partition, the partition is provided with a first oil inlet and a second oil inlet, and one end of the oil return passage is disposed in the second oil inlet.
  • the partition is provided with an exhaust pipe arranged substantially vertically, the outlet of the exhaust pipe being higher than the liquid level in the first oil pool.
  • the exhaust pipe includes a curved section, the outlet being located at the end of the curved section and facing vertically downward.
  • the partition has a generally shell shape and has an upper opening and a lower opening, the upper opening being fixed to the lower bearing seat, and the lower opening being pressed against the bottom surface of the housing.
  • the divider has a generally annular plate shape and the radially inner edge of the divider is secured to the lower bearing seat and the radially outer edge is secured to the housing.
  • the first oil sump is located outside the partition and the second oil sump is located inside the partition.
  • the partition is made of a heat insulating material.
  • the compressor is a scroll compressor.
  • the compressor is a low pressure side scroll compressor.
  • the higher temperature lubricating oil is located at the recess of the upper bearing housing and the oil return passage includes a return line.
  • the higher temperature lubricating oil is located in an oil separator connected to the exhaust connection of the compressor.
  • the oil return passage includes a return oil pipe and a capillary pressure reducing portion connected in series with the oil return pipe.
  • a cylindrical tube is disposed outside the housing to form a housing sandwich portion between the housing and the cylindrical tube, and the oil return passage includes a housing sandwich portion disposed at a higher temperature lubricating oil.
  • a first oil return pipe between the portion and the casing sandwich portion, and a second oil return pipe disposed between the casing sandwich portion and the second oil pool.
  • the compressor is a rotor compressor.
  • the higher temperature lubricating oil is located at the oil guiding groove on the inner wall of the upper bearing housing.
  • the invention also provides a method for improving the lubricating effect in a rotary compressor, the compressor comprising: a casing; a compression mechanism; an oil pool, a lubricating oil stored in the oil pool; a rotating shaft, and an oil disposed in the rotating shaft a lubricating oil passage connected to the pool, and the rotating shaft is supported by the upper bearing housing and the lower bearing housing; and a driving mechanism that drives the compression mechanism via the rotating shaft.
  • the method includes: dividing the oil pool into a first oil pool and a second oil pool such that the first oil pool and the second oil pool are connected via the first oil inlet, the lubricating oil passage to the second oil pool; and the compression
  • the oil return passage is set in the machine, and the oil return passage introduces the higher temperature lubricating oil inside or outside the rotary compressor into the second oil pool during the working process of the compressor, and the temperature of the higher temperature lubricating oil is higher than the first The temperature of the lubricating oil in an oil pool.
  • the rotary compressor provided by the present invention, by lubricating the lubricating oil having a relatively high temperature in the compressor (for example, the lubricating oil flowing out from the bearing, due to the friction inside the bearing, the lubricating oil passing through the bearing is more than before entering the bearing A certain temperature rise is introduced back into the second oil pool, mixed with the lower temperature oil in the outer first oil pool, and the mixed oil is supplied to the lubrication passage, which can greatly reduce the lubrication passage
  • the lubricating oil is diluted by the refrigerant to improve the lubrication effect, reduce the wear of moving parts (such as bearings), and improve reliability.
  • the separator for providing the second oil pool is simple in structure, low in cost, and does not require extensive modifications to the existing compressor structure, and has a wide range of applications.
  • Figure 1 shows a cross-sectional view of a rotary compressor in accordance with a first embodiment of the present invention
  • Figure 2 is a partially enlarged cross-sectional view showing the rotary compressor shown in Figure 1;
  • Figure 3 is a partially enlarged cross-sectional view showing a modification of the partition member
  • Figure 4 is a cross-sectional view showing a rotary compressor in accordance with a second embodiment of the present invention.
  • Figure 5 is a cross-sectional view showing a modification of the rotary compressor in accordance with a second embodiment of the present invention.
  • Figure 6 is a cross-sectional view showing another modification of the rotary compressor according to the second embodiment of the present invention.
  • Figure 7 is a cross-sectional view showing a rotary compressor in accordance with a third embodiment of the present invention.
  • Figure 8 is a cross-sectional view showing a rotary compressor in accordance with a fourth embodiment of the present invention.
  • the rotary compressor 100 includes a housing 110 having a substantially closed cylindrical shape, and the housing 110 includes a main body 111 at a middle portion and a top cover 112 and a bottom cover 113 fixed to both axial ends of the main body.
  • An air suction joint 114 is provided on the main body 111 for sucking in refrigerant, and an exhaust joint 115 is mounted on the top cover 112 for discharging the compressed refrigerant.
  • a partition 116 extending substantially laterally is also provided to partition the internal space of the compressor casing 110 into a high pressure side and a low pressure side.
  • the space between the top cover 112 and the partition 116 constitutes a high pressure side space
  • the space between the partition 116 and the bottom cover 113 constitutes a low pressure side space.
  • the bottom of the housing 110 is constructed with an oil sump 117 for containing lubricating oil.
  • a compression mechanism 120 and a drive mechanism 140 that drives the compression mechanism 120 via the rotary shaft 130 are disposed in the low pressure side space.
  • the compression mechanism 120 includes a fixed scroll member 122 and an orbiting scroll member 124 that mesh with each other.
  • the eccentric crank pin 132 of the rotating shaft 130 is inserted into the hub portion 126 of the orbiting scroll member 124 via the bushing 133 to rotationally drive the orbiting scroll member 124.
  • the upper end of the rotating shaft 130 is supported by the upper bearing housing 150, and the lower end is supported by the lower bearing housing 154.
  • the upper bearing housing 150 and the lower bearing housing 154 are fixedly coupled to the housing 110 in a suitable manner.
  • the drive mechanism 140 is, for example, a motor including a stator 142 fixed to the housing 110 and a rotor 144 fixed to the rotating shaft 130.
  • a lubricating oil passage 134 is provided in the rotating shaft 130, and the lubricating oil passage 134 includes a concentric hole 136 at the bottom and an eccentric hole 138 radially offset with respect to the concentric hole 136 (in FIG. 1)
  • the concentric holes 136 are in fluid communication with the oil sump 117, which leads to the eccentric crank pin 132 of the rotating shaft 130.
  • a pumping mechanism 139 may also be provided at the lower end of the rotating shaft 130.
  • the pumping oil mechanism 139 is, for example, an oil fork 139 that is disposed in the concentric hole 136 and rotates together with the rotating shaft 130.
  • the pumping oil mechanism is not limited thereto, and any mechanism capable of supplying lubricating oil to the lubricating oil passage 134 of the rotating shaft 130, such as an impeller pump or the like, may be employed.
  • the inventors of the present application contemplate the following solution: in addition to the crude oil pool, an additional setting
  • the second oil pool, the higher temperature oil in the compressor system (hereinafter referred to as high temperature oil) is led back to the second oil pool, and the lower temperature oil in the second oil pool and the crude oil pool (hereinafter referred to as low temperature)
  • the oil is mixed and the mixed oil is introduced into the inlet of the lubrication passage for lubrication.
  • the amount of refrigerant dissolved in the high temperature oil is small, and on the other hand, the high temperature oil heats the low temperature oil, so that the refrigerant dissolved in the low temperature oil vaporizes and escapes from the oil, therefore, Compared with the original low temperature oil, the amount of refrigerant contained in the mixed oil is smaller than that in the first oil pool.
  • the viscosity of the oil is increased, which helps to form an effective oil film between the moving parts, improves the lubricating effect, and reduces the wear of parts such as bearings.
  • the oil pool 117 of the compressor 100 is divided by the partition member 160 into a first oil pool 117a (located outside) and a second oil pool 117b (located inside).
  • the partition member 160 may be made of metal or non-metal, and for the purpose of heat preservation of the second oil pool 117b, preferably plastic
  • the spacer 160 is made of a heat insulating material such as a material. Thereby, the amount of heat conducted from the second oil pool 117b to the first oil pool 117a can be reduced, and the temperature difference between the second oil pool 117b and the first oil pool 117a can be better maintained.
  • an upper opening 162 is formed at the center of the upper portion of the partition member 160, and an upper flange 164 extending upward in the axial direction and a lower flange 166 extending downward in the axial direction are formed at the periphery of the upper opening 162.
  • the lower bearing housing 154 and its inner rotating shaft 130 are both inserted into the upper opening 162, and the partition 160 is fixed to the lower bearing housing 154 by the cooperation between the flanges 164, 166 and the lower bearing housing 154, at the flange
  • An O-ring (not shown) may be provided between the 164, 166 and the lower bearing housing 154 to enhance the fixing and sealing effect.
  • a lower opening 168 is formed at the center of the bottom of the partition 160, and the portion 169 of the partition 160 at the periphery of the lower opening 168 may be thin to have a certain flexibility.
  • the upper flange 164 is sized such that when its axially upper end abuts against the lower bearing block 154, the flexible portion 169 around the lower opening 168 is pressed against the bottom cover 113, whereby the lower opening 168 is covered by the bottom cover 113. Closed.
  • the partition member 160 is fixed between the lower bearing housing 154 and the bottom cover 113 (the bottom of the housing 110), and separates the first oil pool 117a from the second oil pool 117b so that the rotary shaft 130
  • the lubricating oil passage 134 is in direct communication with the second oil pool 117b to be isolated from the first oil pool 117a (not directly connected).
  • a first oil inlet 170 and a second oil inlet 172 are provided on the partition 160. Although both inlets are shown at the top of the divider 160, it should be understood that the inlet may be provided at any location of the divider 160 as desired.
  • the first oil inlet 170 communicates the first oil pool 117a with the second oil pool 117b.
  • the first oil inlet 170 preferably has a small aperture, but should meet the need to promptly fill in the oil missing from the second oil pool 117b.
  • An oil return passage 174 is provided in the second oil inlet 172.
  • the oil return passage 174 is in the form of a return oil pipe 174a, the lower end of which is inserted into the second oil inlet 172, and the upper end is inserted through the hole 151 in the upper bearing housing 150.
  • a recess 152 that is recessed toward the vertical downward direction of the upper bearing housing 150 (see FIG. 1). Thereby, the lubricating oil remaining in the recess 152 can enter the second oil inlet 172 via the oil return pipe 174a.
  • the oil return pipe 174a extends along the gap G between the stator 142 of the drive mechanism 140 and the casing 110, and when the amount of lubricating oil required is large and the clearance G is small, more than one return pipe 174a may be disposed side by side as needed, and A corresponding number of second oil inlets 172 may be provided in the partition 160, and the oil return pipes 174a are respectively inserted into the corresponding second oil inlets 172.
  • Part of the return line can also be designed outside the compressor housing to solve the problem of insufficient space.
  • the oil return pipe 174a may be a hard pipe of a metal material or a hose of a non-metal material.
  • the oil return pipe 174a is a hose
  • the upper end of the oil return pipe 174a can be fixed to the hole 151 in the upper bearing housing 150 by means of a spring pin (not shown) or the like, and the lower end of the oil return pipe 174a can be It is inserted into the second oil inlet 172 in a transition fit manner.
  • spacer 160 the structure of the spacer 160 described above is merely an example. After reading the present invention, spacers of different shapes may be designed as long as they separate the first oil pool 117a from the second oil pool 117b and are provided with similar two oil inlets.
  • the partition member 160 may not be provided with the lower opening 168 and the surrounding flexible portion 169, but may be formed as a bottom-closed shell-shaped structure.
  • an alternative divider 160 is illustrated that is generally annular in shape with a radially inner edge secured to the lower bearing block 154 and a radially outer edge secured to the bottom cover. The raised portion of 113. It should be understood that the radially outer edge of the divider 160 may also be secured to the housing body 111.
  • the spacers 160 of these structures can also be applied to the second to fourth embodiments described below, and will not be described again.
  • the oil in the second oil pool 117b is continuously sucked into the lubricating oil passage 134 by the oil fork 139.
  • the oil in the lubricating oil passage 134 is discharged from the end portion of the eccentric crank pin 132, and is supplied to the eccentric crank pin 132, the bushing 133, the hub portion 126, and the compression mechanism 120, etc., where most of the lubricating oil flows.
  • the recess 152 of the bearing housing 150 In the recess 152 of the bearing housing 150.
  • the temperature of the lubricating oil in the recess 152 is correspondingly higher, and the lubricating oil passing through the bearing is reduced in the lubricating oil dissolved in the lubricating oil due to the temperature rise and pressure change. Due to the agitation of the rotating shaft 130, the hub portion 126, and the like, and the suction of the oil pumping device 139, the high-temperature lubricating oil in the recess 152 of the upper bearing housing 150 enters the return oil pipe 174a (the oil return passage 174). And returning to the second oil pool 117b via the second oil inlet 172 along the oil return pipe 174a.
  • the lubricated lubricating oil can be returned to the second oil pool 117b for "repetitive" use, and an additional circulating oil passage is formed inside the compressor, and the oil in the circulating oil passage is diluted to a lower extent than the external one.
  • the degree of oil dilution in the first oil pool 117a It can be understood that the amount of oil sucked into the lubricating oil passage 134 in the second oil pool 117b (hereinafter referred to as the oil discharge amount Q1) and the amount of oil returning to the second oil pool 117b via the return oil pipe 174a per unit time are understood.
  • the difference between the high temperature oil intake amount Q2 is made up by the oil in the first oil pool 117a.
  • the volume of the second oil pool 117b can be optimized by experiment to further reduce the degree of oil dilution. Specifically, for a fixed speed compressor, the volume of the second oil pool 117b should be unobstructed The high-temperature oil intake amount Q2 is returned as small as possible in the second oil pool 117b, thereby reducing the amount of "dead oil” in the second oil pool 117b that does not participate in the circulation.
  • the volume of the second oil sump 117b is to satisfy the pumping capacity of the rotating shaft 130, for example equal to or slightly greater than the pumping capacity. Thereby, the degree of oil dilution in the second oil pool 117b can be minimized.
  • the volume of the second oil pool 117b needs to be designed in accordance with the maximum pumping capacity.
  • an exhaust pipe 180 is further disposed on the partition member 160 for discharging the gaseous refrigerant escaping from the oil in the second oil pool 117b to avoid the second oil pool 117b. Containing too much gas to block the reflux of high temperature lubricants or affect the pumping of oil.
  • the exhaust pipe 180 is preferably connected to the top of the space within the partition 160, and the outlet of the exhaust pipe 180 is higher than the liquid level L of the first oil sump 117a of the compressor.
  • the exhaust pipe 180 includes a vertical section 182 and a curved section 184 connected to the upper of the vertical section 182, the opening of the exhaust pipe 180 is located at the end of the curved section 184, and the curved section 184 is curved such that the opening faces vertically downward. It should be understood that the opening may also be oriented at any angle between the sides or sides and below. An advantage of such an arrangement is that when the oil in the first oil pool 117a is shaken, or when oil is dripped in the upper portion, the oil does not enter the exhaust pipe 180 to block the exhaust pipe 180.
  • the exhaust pipe 180 shown in the drawing is disposed in the same plane as the first oil inlet 170 and the second oil inlet 172, this is merely illustrative, the exhaust pipe 180, the first oil inlet 170 And the second oil inlet 172 can be arranged at any relative position without affecting its function.
  • a compressor 200 according to a second embodiment of the present invention will be described below with reference to Figs. 4-6.
  • the compressor 200 is substantially the same as the compressor 100 according to the first embodiment except for the oil return passage, so that the corresponding start with 2 is used.
  • the reference numerals are used to refer to the corresponding elements, and the description will not be repeated.
  • the exhaust pipe is not shown in Figures 4-6, but it should be understood that an exhaust pipe similar to the exhaust pipe 180 of Figures 2 and 3 can also be provided.
  • the lower end of the oil return passage 274 of the compressor 200 according to the second embodiment leads to the second oil inlet 272 of the partition 260, and the upper end is not a recess that leads to the upper bearing housing, but is relatively compressed toward the compression mechanism 220. Downstream of the process.
  • the oil return passage 274 can open to the recess 218 of the diaphragm 216 on the high pressure side.
  • the high temperature, high pressure refrigerant exiting the compression chamber of the compression mechanism 220 carries a quantity of oil that may remain above the separator (i.e., the high pressure side). Since it is located downstream of the compression mechanism 220, the temperature and pressure of the oil here are both high.
  • the oil return passage 274 may also lead to the oil separator 290 outside the compressor 200 instead of passing over the partition 216.
  • the oil separator 290 is connected downstream of the exhaust joint 215, and the oil carried in the refrigerant discharged from the exhaust joint 215 is in the oil separator. Separated in 290.
  • the oil separator 290 is also located downstream of the compression mechanism 220, and the oil separator 290 also retains lubricating oil having a high temperature and pressure.
  • the oil return passage 274 includes a return line 274a and a pressure reducing portion 274b in series with the return line 274a.
  • the pressure reducing portion 274 can reduce the pressure of the introduced oil, avoid the impact of the high pressure oil directly entering the second oil pool 217b on the second oil pool 217b, and avoid leakage due to pressure leakage through the oil return passage 274.
  • the compression efficiency is reduced.
  • the pressure reducing portion 274b is, for example, a capillary tube, but other structures capable of reducing the pressure, such as a valve, may be employed.
  • the oil return pipe 274a may be circumferentially wound a plurality of turns on the drive mechanism 240 (such as the stator 242) to be further heated by the drive mechanism 240, thereby further reducing the amount of refrigerant contained in the oil. (ie reduce the degree of oil dilution). It should be understood that the manner in which the oil return pipe is wound on the drive mechanism can also be applied to the first embodiment of the present invention.
  • a compressor 300 according to a third embodiment of the present invention will be described below with reference to FIG. 7, except that the compressor 300 is substantially the same as the compressor 100 according to the first embodiment, and thus the corresponding drawing starting with 3 is used.
  • the reference numerals refer to the corresponding elements, and the description will not be repeated.
  • the exhaust pipe is not shown in FIG. 7, but it should be understood that an exhaust pipe similar to the exhaust pipe 180 in FIGS. 2 and 3 may also be provided.
  • a substantially cylindrical tube 392 is sealingly fixed to the outside of the compressor casing 310, thereby forming a casing sandwich portion 374a between the casing 310 and the cylindrical pipe 392.
  • the housing sandwich portion 374a is part of the oil return passage 374.
  • the oil return passage 374 includes: a casing sandwich portion 374a; a first oil return pipe portion 374b, the first oil return pipe portion 374b introduces the high-temperature lubricating oil in the concave portion 352 through the casing 310 into the casing sandwich portion 374a; The second oil return pipe portion 374c, the second oil return pipe portion 374c introduces the lubricating oil in the casing sandwich portion 374a through the casing 310 into the second oil pool 317b.
  • the temperature of the driving mechanism 340 is high, the temperature of the housing 310 that is closely mounted with the driving mechanism 340 is also high, and can be further passed through the housing 310 by providing the housing sandwich portion 374a surrounding the compressor housing 310.
  • the oil drawn from the concave portion 352 is heated to further reduce the degree of oil dilution and improve the lubricating effect. Further, it is also possible to retain a certain amount of oil in the sandwich portion 374a to function as a buffer so that even if the flow rate of the oil drawn from the concave portion 352 is unstable, It is also possible to stably supply oil into the second oil pool 317b.
  • the first return oil pipe portion 374b may be connected to a recess above the partition 316 or to an oil separator external to the compressor.
  • the compressors described in the above first to third embodiments are all low-pressure side compressors, that is, compressors in which the drive mechanism is disposed on the low pressure side.
  • the above embodiments may also be applied to a high pressure side compressor.
  • the high-pressure side compressor the amount of the refrigerant contained in the lubricating oil heated by the moving parts and the stator is smaller, so that the lubricating oil in the high-temperature portion is introduced into the separated second oil pool and recycled. It is also possible to reduce the degree of oil dilution by a similar principle.
  • a scroll compressor As an example, the concept of the present invention is not limited to a scroll compressor, but can be applied to other types of compressors including a rotary shaft, such as a screw compressor. , rotor compressors, etc., as well as any type of rotating machinery including rotating shafts and oil pools.
  • a rotor type compressor 400 will be described below with reference to FIG.
  • the rotor compressor 400 includes a housing 410 on which intake pipes 404, 406 and an exhaust pipe 412 are disposed.
  • a compression mechanism 420 and a drive mechanism 440 (such as a motor) that drives the compression mechanism 420 via the rotation shaft 430 are housed in the housing 410.
  • the compression mechanism 420 is a rotor compression mechanism that includes, for example, two compression chambers.
  • the rotating shaft 430 is supported by the upper bearing housing 450 and the lower bearing housing 454 on the upper and lower sides of the compression mechanism 420, respectively.
  • the gaseous refrigerant passes through the gas-liquid separator 402 outside the compressor 400, enters the casing 410 of the compressor 400 via the intake pipes 404 and 406, and then the refrigerant is in the compression mechanism 420.
  • the medium is pressurized to a high temperature and high pressure state and exits the compressor via the exhaust pipe 412.
  • An oil sump 417 is formed at the bottom of the compressor housing 410, and the lubricating oil accumulates in the oil sump 417.
  • the oil pool 417 is also divided into an outer first oil pool 417a and an inner second oil pool 417b by providing a partition 460.
  • the partition 460 may have a structure similar to the partition 160 described in the above first embodiment, and is fixed between the lower bearing housing 454 and the bottom of the compressor housing 410, and is also provided first on the partition 460.
  • the oil inlet 470 and the second oil inlet 472, the first oil inlet 470 connects the first oil pool 417a with the second oil pool 417b, and the oil return passage 474 leads to the second oil pool via the second oil inlet 472 417b.
  • the oil return passage 474 is in the form of a return line 474a.
  • An axial lubricating oil passage 434 is disposed in the rotating shaft 430, and a lubricating oil device 439 communicating with the oil in the second oil pool 417b is disposed in the lubricating oil passage 434 such that when the rotating shaft 430 rotates, the pump oil Device 439 pumps the oil in second oil sump 417b up the oil passage 434.
  • an opening 436 communicating with the lubricating oil passage 434 and a circumferential oil groove 438 located around the opening 436 are provided.
  • An oil guiding groove 452 communicating with the circumferential oil groove 438 of the rotating shaft 430 is disposed on the upper bearing housing 450.
  • the oil guiding groove 452 extends in the axial direction and the circumferential direction from the position of the circumferential oil groove 438, that is, is substantially spiral. extend. Thereby, the lubricating oil in the lubricating oil passage 434 can flow out from the opening 436 into the circumferential oil groove 438, and flows along the oil guiding groove 452 as the rotating shaft 430 rotates, thereby being in the rotating shaft 430 and the upper bearing housing 450. An oil film is produced for lubrication.
  • the upper end of the oil return pipe 474a is inserted through the upper bearing housing 450, and passes through the end of the oil guiding groove 452 opposite to the position of the circumferential oil groove 438.
  • the lower end of the oil return pipe 474a passes through the second oil inlet 472 of the partition member 460. Thereby, the lubricating oil in the oil guiding groove 452 that lubricates between the rotating shaft and the upper bearing housing can be returned to the second oil pool 417b along the oil return pipe 474a.
  • the temperature of the lubricating oil in the oil guiding groove 452 is high, so that this portion of the oil can be lowered in the second oil pool 417b after returning to the second oil pool 417b.
  • the degree of dilution of the oil thereby improving the lubrication effect.
  • the exhaust pipe is not shown in FIG. 8, but an exhaust pipe similar to the exhaust pipe 180 in the first embodiment may be provided on the partition 460, which will not be described again.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

一种旋转式压缩机(100)包括壳体(110);压缩机构(120);油池(117),油池(117)中储存有润滑油;旋转轴(130),旋转轴(130)中设置有与油池(117)连通的润滑油道(134),并且旋转轴(130)由上轴承座(150)和下轴承座(154)支承;以及驱动机构(140),其经由旋转轴(130)驱动压缩机构(120)。油池(117)包括第一油池(117a)和第二油池(117b),第一油池(117a)与第二油池(117b)经由第一进油口(170)连通,润滑油道(134)通向第二油池(117b),并且压缩机(100)还设置有回油通道(174),回油通道(174)在压缩机(100)工作过程中将旋转式压缩机(100)的较高温度润滑油引入到第二油池(117b)中,较高温度润滑油的温度高于第一油池(117a)中的润滑油温度。该压缩机(100)降低了润滑系统中润滑油的稀释度,提高了润滑效果以及改善了可靠性。还提供一种能够提高旋转式压缩机(100)的润滑效果的方法。

Description

旋转式压缩机及提高其润滑效果的方法
本申请要求于2015年10月13日提交的、名称为“旋转式压缩机及提高其润滑效果的方法”的中国发明专利申请No.201510670523.1以及2015年10月13日提交的、名称为“旋转式压缩机”的中国实用新型专利申请No.201520802406.1的优先权,这些申请的全部内容在此并入本文。
技术领域
本发明涉及一种旋转式压缩机及提高该旋转式压缩机的润滑效果的方法。
背景技术
当包括旋转压缩机的空调系统在低温工况下运行时,或者包括旋转压缩机的冷冻系统正常运行时,由于蒸发器所处的环境温度较低,蒸发器内的流体制冷剂无法进行充分换热并蒸发成气体,导致大量的液体制冷剂流回压缩机,掉入压缩机底部的油池中。此时,油池内的油会被液体制冷剂稀释,导致粘度急剧下降。粘度下降后的油被泵入轴承内,导致油膜厚度降低,甚至无法形成有效的油膜,从而导致轴承磨损失效。在低温制热除霜时,也会出现类似的情况。
另外,随着环保要求越发严格,采用低GWP值(全球温室效应潜值)的制冷剂(如R32、R447A等)是未来的趋势。然而,低GWP值的制冷剂在热泵工况下运行时排气温度普遍较高,为此需要降低吸气过热度来控制排气温度,以保证压缩机的可靠性。然而,当降低吸气过热度时,也不可避免地会导致蒸发器中的液体制冷剂蒸发不完全,液体制冷剂流回压缩机,对油池的油造成稀释。
现有的解决系统大量回液导致压缩机油池内油稀释程度高的技术有多种手段,但是会带来其他缺陷,而且均不能解决低GWP值的环保制冷剂在热泵工况下运行时高排气温度的问题。
发明内容
本发明要解决的技术问题
本发明的旋转式压缩机能够提高在大量回液时的压缩机可靠性,提高润滑效果和系统性能,并且特别适用于在采用环保制冷剂的情况下利用降低系统过热度的方法来降低排气温度,而不会导致油稀释程度变高。
技术方案
本发明提供了一种旋转式压缩机,包括:壳体;压缩机构;油池,油池中储存有润滑油;旋转轴,旋转轴中设置有与油池连通的润滑油道,并且旋转轴由上轴承座和下轴承座支承;以及驱动机构,驱动机构经由旋转轴驱动压缩机构。油池包括第一油池和第二油池,第一油池与第二油池经由第一进油口连通,润滑油道通向第二油池,并且压缩机还设置有回油通道,回油通道在压缩机的工作过程中将旋转式压缩机的较高温度润滑油引入到第二油池中,较高温度润滑油的温度高于第一油池中的润滑油温度。
可选地,第一油池和第二油池经由分隔件隔开,分隔件设置有第一进油口和第二进油口,回油通道的一端设置在第二进油口中。
可选地,分隔件设置有大致竖向布置的排气管,排气管的出口高于第一油池中的液位。
可选地,排气管包括弯曲段,出口位于弯曲段的末端并且朝向竖向下方。
可选地,分隔件呈大致壳形,并且具有上开口和下开口,上开口固定于下轴承座,并且下开口被压抵于壳体的底面。
可选地,分隔件呈大致环形板状,并且分隔件的径向内边缘固定于下轴承座,径向外边缘固定至壳体。
可选地,第一油池位于分隔件的外部,第二油池位于分隔件的内部。
可选地,分隔件由隔热材料制成。
可选地,压缩机是涡旋式压缩机。
可选地,压缩机是低压侧式涡旋压缩机。
可选地,较高温度润滑油位于上轴承座的凹部处,并且回油通道包括回油管。
可选地,较高温度润滑油位于与压缩机的排气接头相连的油分离器中。
可选地,回油通道包括回油管和与回油管串联的毛细管降压部。
可选地,在壳体的外部设置有圆筒形管,从而在壳体与圆筒形管之间形成壳体夹层部,回油通道包括壳体夹层部、设置在较高温度润滑油所在部位与壳体夹层部之间的第一回油管、设置在壳体夹层部与第二油池之间的第二回油管。
可选地,压缩机是转子式压缩机。
可选地,较高温度润滑油位于上轴承座的内壁上的导油槽处。
本发明还提供了一种提高旋转式压缩机中的润滑效果的方法,压缩机包括:壳体;压缩机构;油池,油池中储存有润滑油;旋转轴,旋转轴中设置有与油池连通的润滑油道,并且旋转轴由上轴承座和下轴承座支承;以及驱动机构,驱动机构经由旋转轴驱动压缩机构。该方法包括:将油池划分为第一油池和第二油池,使得第一油池与第二油池经由第一进油口连通,润滑油道通向第二油池;以及在压缩机中设置回油通道,回油通道在压缩机的工作过程中将旋转式压缩机的内部或外部的较高温度润滑油引入到第二油池中,较高温度润滑油的温度高于第一油池中的润滑油温度。
有益效果
根据本发明提供的旋转式压缩机,通过将压缩机中温度较高的润滑油(例如从轴承里面流出的润滑油,由于轴承内摩擦力的作用,经过轴承的润滑油要比进入轴承之前有一定的温升)引回到第二油池中,与外部的第一油池中温度较低的油相混合,并将混合后的油供给到润滑通道中,能够大幅度地降低润滑通道中的润滑油被制冷剂稀释的程度,从而提高润滑效果,降低运动部件(如轴承)的磨损,改善可靠性。
用于提供第二油池的这种分隔件结构简单,成本低廉,并且不需要对现有的压缩机结构进行大幅改动,适用范围广。
附图说明
通过以下参照附图的描述,本发明的一个或几个实施例的特征和优点将变得更加容易理解,其中:
图1示出了根据本发明第一实施方式的旋转式压缩机的剖面图;
图2示出了图1所示旋转式压缩机的局部放大剖面图;
图3示出了分隔件的一种变型的局部放大剖面图;
图4示出了根据本发明第二实施方式的旋转式压缩机的剖面图;
图5示出了根据本发明第二实施方式的旋转式压缩机的一种变型的剖面图;
图6示出了根据本发明第二实施方式的旋转式压缩机的另一种变型的剖面图;
图7示出了根据本发明第三实施方式的旋转式压缩机的剖面图;
图8示出了根据本发明第四实施方式的旋转式压缩机的剖面图。
具体实施方式
下面对优选实施方式的描述仅仅是示范性的,而绝不是对本发明及其应用或用法的限制。
在本说明书中,参照附图中的方向使用了“上”、“下”等表示方位的术语,但除非明确说明,否则本发明的各实施方式中的部件的相对关系不限于图中所示的方向,而是可以根据具体应用而作出改变。
下面将参照图1描述根据本发明第一实施方式的旋转式压缩机的基本构造。旋转式压缩机100包括大致呈封闭圆筒形的壳体110,壳体110包括位于中部的主体111和固定至主体的轴向两端的顶盖112和底盖113。在主体111上装配有吸气接头114,用于吸入制冷剂,而在顶盖112上装配有排气接头115,用于排出压缩后的制冷剂。在主体111和顶盖112之 间还设置有大致呈横向地延伸的隔板116,从而将压缩机壳体110的内部空间分隔成高压侧和低压侧。具体地,顶盖112和隔板116之间的空间构成高压侧空间,而隔板116与底盖113之间的空间构成低压侧空间。壳体110的底部构造有用于容纳润滑油的油池117。
在低压侧空间内容置有压缩机构120和经由旋转轴130驱动压缩机构120的驱动机构140。在图1所示的示例中,压缩机构120包括彼此啮合的定涡旋部件122和动涡旋部件124。旋转轴130的偏心曲柄销132经由衬套133插入到动涡旋部件124的毂部126中以旋转驱动动涡旋部件124。旋转轴130的上端由上轴承座150支撑,而下端由下轴承座154支撑。上轴承座150和下轴承座154通过适当的方式固定连接到壳体110。驱动机构140例如为马达,其包括固定于壳体110的定子142和固定于旋转轴130的转子144。
与现有技术中的结构类似,在旋转轴130中设置有润滑油道134,润滑油道134包括位于底部的同心孔136和相对于同心孔136径向偏移的偏心孔138(在图1中以虚线示出),同心孔136与油池117流体连通,偏心孔138通向旋转轴130的偏心曲柄销132。在旋转轴130的下端还可以设置泵油机构139。在图1所示的示例中,泵油机构139例如为设置在同心孔136内并与旋转轴130一起旋转的油叉139。本领域技术人员应该理解,泵油机构不限于此,而是可以采用能够将润滑油供给到旋转轴130的润滑油道134中的任何机构,如叶轮泵等。
为了解决当蒸发器所处的环境温度较低时、大量制冷剂流入压缩机的油池117中并稀释润滑油的问题,本申请的发明人设想了以下解决方案:除原油池外,设置额外的第二油池,将压缩机系统中温度较高的油(以下简称高温油)引回第二油池,并且在第二油池中与原油池中的温度较低的油(以下简称低温油)相混合,将混合后的油引入到润滑通道的入口,用于润滑。一方面,高温油中所溶解的制冷剂的量较少,另一方面,由于高温油对低温油的加热,使得低温油中所溶解的制冷剂气化并从油中逸出,因此,与原低温油相比,混合后的油中所含的制冷剂的量比第一油池中的要减少。当使用混合后的油进行润滑时,油的粘度提高,有助于在运动部件之间形成有效的油膜,提高润滑效果,减少轴承等零件的磨损。
具体地,参见图2和图3,压缩机100的油池117被分隔件160分为第一油池117a(位于外部)和第二油池117b(位于内部)。分隔件160可以由金属或非金属制成,出于为第二油池117b保温的目的,优选地采用塑 料等隔热材料来制造分隔件160。由此,能够减少从第二油池117b向第一油池117a传导的热量,更好地维持第二油池117b与第一油池117a之间的温度差。
如图2所示,在分隔件160的上部中央处形成有上开口162,并且在上开口162的周缘形成有向轴向上方延伸的上凸缘164和向轴向下方延伸的下凸缘166。下轴承座154以及其内部的旋转轴130均插入到上开口162中,并且通过凸缘164、166与下轴承座154之间的配合而将分隔件160固定于下轴承座154,在凸缘164、166与下轴承座154之间可以设置有O形环(未示出)以提高固定和密封效果。另外,在分隔件160的底部中央处形成有下开口168,分隔件160的位于下开口168周缘的部分169可以较薄从而具有一定的柔性。上凸缘164的尺寸设计成使得当其轴向上端抵靠于下轴承座154时,下开口168周围的柔性部分169会压靠于底盖113变形,由此,下开口168被底盖113封闭。以这种方式,分隔件160被固定在下轴承座154与底盖113(壳体110的底部)之间,并将第一油池117a与第二油池117b分隔开,使旋转轴130的润滑油道134与第二油池117b直接连通而与第一油池117a隔离开(没有直接连通)。
在分隔件160上设置有第一进油口170和第二进油口172。虽然图中示出了两个进油口都位于分隔件160的顶部,但应当理解,可以按照需要将进油口设置在分隔件160的任何部位处。第一进油口170将第一油池117a与第二油池117b连通。第一进油口170优选小孔径,但是应满足及时将第二油池117b缺少的油补入的需求。在第二进油口172中设置有回油通道174,回油通道174呈回油管174a的形式,其下端插入到第二进油口172中,上端穿过上轴承座150中的孔151而通向上轴承座150的朝向竖向下方凹入的凹部152(参见图1)。由此,凹部152中所存留的润滑油能够经由回油管174a进入到第二进油口172中。
回油管174a沿着驱动机构140的定子142与壳体110之间的间隙G延伸,当需要的润滑油量较大而间隙G较小时,可以按照需要并排地设置多于一个回油管174a,并且可以在分隔件160上设置相应数量的第二进油口172,回油管174a分别插入到对应的第二进油口172中。部分回油管也可以设计在压缩机壳体外面来解决空间不足的问题。
回油管174a可以是金属材料的硬管,也可以是非金属材料的软管。当回油管174a采用软管时,可以借助于弹簧销(未示出)等装置将回油管174a的上端固定至上轴承座150中的孔151中,而回油管174a的下端可 以以过渡配合的方式插入到第二进油口172中。
应当理解,以上所描述的分隔件160的结构仅仅是示例。在阅读本发明后,可以设计出不同形状的分隔件,只要其将第一油池117a和第二油池117b分隔开,并且设置有类似的两个进油口即可。例如,分隔件160还可以不设置有下开口168以及周围的柔性部分169,而是形成为底部闭合的壳形结构。另外,参见图3,其示出了一种替代性的分隔件160,该分隔件160大致呈环形板状,在其径向内边缘固定至下轴承座154,径向外边缘固定至底盖113的凸起部。应当理解,分隔件160的径向外侧边缘也可以固定至壳体主体111。这些结构的分隔件160也可以应用于以下所述的第二至第四实施方式,并且将不再赘述。
在工作过程中,当油叉139随旋转轴130而旋转时,在油叉139的带动下,第二油池117b中的油被源源不断地抽吸到润滑油道134中。润滑油道134中的油从偏心曲柄销132的端部排出,并被供给到偏心曲柄销132、衬套133、毂部126以及压缩机构120内等需要润滑的部位,大部分润滑油会流向轴承座150的凹部152中。由于轴承的磨擦使得润滑油变得温度较高,所以凹部152中的润滑油的温度也相应地较高,经过轴承的润滑油由于升温和压力变化使得润滑油内所溶解的制冷剂减少。由于旋转轴130、毂部126等部件的搅动作用,以及由于泵油装置139的抽吸作用,上轴承座150的凹部152内的高温润滑油进入到回油管174a(回油通道174)内,并沿着回油管174a经由第二进油口172回到第二油池117b中。即,进行润滑后的润滑油能够回到第二油池117b内以“重复”使用,在压缩机内部形成了一个额外的循环油路,该循环油路中的油的稀释程度低于外部的第一油池117a中的油稀释程度。能够理解,每单位时间内,第二油池117b中被抽吸到润滑油道134中的油量(下称排油量Q1)与经由回油管174a回流到第二油池117b中的油量(高温进油量Q2)之差由第一油池117a中的油补足。由于油叉139的抽吸作用,并且由于第一油池117a中的油位高于第二油池117b中的油位,因此第一油池117a中的油能够容易地经由第一进油口170进入到第二油池117b中,这部分油以下称低温进油量Q3。即,排油量Q1=高温进油量Q2+低温进油量Q3。通过高温油与低温油在第二油池117b中进行混合,形成稀释程度低于外部第一油池117a的油并被泵入润滑油道134中用于润滑。
通过试验能够对第二油池117b的容积进行优化,以进一步降低油稀释程度。具体地,对于定速压缩机来说,第二油池117b的容积应当在不阻碍 高温进油量Q2回到第二油池117b中的情况下尽可能地小,从而减少第二油池117b中的不参与循环的“死油”的量。优选地,第二油池117b的容积要满足旋转轴130的泵油能力,例如等于或者略大于泵油能力。由此,能够使第二油池117b中的油稀释程度最小化。对于变速压缩机,则需按照最大泵油能力来设计第二油池117b的容积。
优选地,如图2所示,在分隔件160上还设置有排气管180,用于排出第二油池117b中的油中逸出的气态制冷剂,以避免由于第二油池117b中含有过多的气体而阻塞高温润滑油的回流或影响油的泵出。排气管180优选地连接至分隔件160内的空间的顶部,并且排气管180的出口高于压缩机第一油池117a的液位L。排气管180包括竖直段182和连接至竖直段182的上方的弯曲段184,排气管180的开口位于弯曲段184的末端,且弯曲段184弯曲成使得开口朝向竖向下方。应当理解,开口也可以朝向侧面或侧面与下方之间的任意角度。这样设置的优点在于当第一油池117a中的油晃动时,或者上部有油滴落时,油不会进入到排气管180内堵塞排气管180。虽然在图中所示的排气管180与第一进油口170和第二进油口172布置在同一平面内,但这仅仅是示意性的,排气管180、第一进油口170和第二进油口172可以布置在任意相对位置而不影响其功能。
下面将参照图4-6描述根据本发明第二实施方式的压缩机200,除了回油通道之外,压缩机200与根据第一实施方式的压缩机100基本相同,因此使用以2开头的相应的附图标记来指代相应的元件,并且将不再重复描述。在图4-6中未示出排气管,但是应当理解,也可以设置与图2和图3中的排气管180类似的排气管。
根据第二实施方式的压缩机200的回油通道274的下端通向分隔件260的第二进油口272,而上端并非通向上轴承座的凹部,而是通向压缩机构220的相对于压缩过程而言的下游。
例如,参见图4,回油通道274可通向隔板216的位于高压侧的凹部218处。在压缩机的运转过程中,从压缩机构220的压缩腔排出的高温高压的制冷剂会携带有一定量的油,这些油可能存留在隔板上方(即高压侧)。由于位于压缩机构220的下游,因此此处的油的温度和压力均较高。
或者,参见图5,回油通道274也可以通向压缩机200的外部的油分离器290,而不是通向隔板216上方。具体地,油分离器290连接至排气接头215的下游,从排气接头215排出的制冷剂中所携带的油在油分离器 290中被分离出来。该油分离器290也位于压缩机构220的下游,油分离器290中也存留有温度和压力均较高的润滑油。
在这两种可选方案中,回油通道274包括回油管274a以及与回油管274a串联的降压部274b。降压部274可减小所引入的油的压力,避免高压的油直接进入第二油池217b的情况下对第二油池217b的冲击,并避免由于压力通过回油通道274泄漏而导致的压缩效率降低。降压部274b例如为毛细管,但也可以采用其它能够降低压力的结构,如阀门。
根据该实施方式,也能够实现与根据第一实施方式的压缩机200的回油通道274类似的效果,即,将所含制冷剂量较少的高温油引回到第二油池217b内,与从第一油池217a进入第二油池217b的低温油相混合并进行润滑。
可选地,如图6所示,可以将回油管274a在驱动机构240(如定子242)上周向地缠绕若干圈,以进一步被驱动机构240加热,从而进一步降低油中所含的制冷剂量(即降低油稀释程度)。应当理解,回油管在驱动机构上缠绕的方式也可以应用于本发明第一实施方式。
下面将参照图7描述根据本发明第三实施方式的压缩机300,除了回油通道之外,压缩机300与根据第实施方式的压缩机100基本相同,因此使用以3开头的相应的附图标记来指代相应的元件,并且将不再重复描述。在图7中未示出排气管,但是应当理解,也可以设置与图2和图3中的排气管180类似的排气管。
在根据该实施方式的压缩机300中,在压缩机壳体310的外部密封地固定有大致圆筒形的管392,从而在壳体310与圆筒形管392之间形成壳体夹层部374a,该壳体夹层部374a作为回油通道374的一部分。由此,回油通道374包括:壳体夹层部374a;第一回油管部374b,第一回油管部374b将凹部352中的高温润滑油穿过壳体310引入到壳体夹层部374a中;第二回油管部374c,第二回油管部374c将壳体夹层部374a中的润滑油穿过壳体310引入到第二油池317b中。
由于驱动机构340的温度较高,因此与驱动机构340紧密地安装在一起的壳体310的温度也较高,通过设置围绕压缩机壳体310的壳体夹层部374a,能够进一步通过壳体310来加热从凹部352中引出的油,以进一步降低油稀释程度,提高润滑效果。另外,还能够在夹层部374a中存留一定量的油,起到缓冲作用,使得即使从凹部352中引出的油的流量不稳定, 也能够稳定地将油供给到第二油池317b中。
虽然该实施方式中以上轴承座350中的凹部352为例进行了描述,但是应当理解,只要能够将高温部位的油引入壳体夹层部即可,例如可以与以上第二实施方式相结合,即,第一回油管部374b可以连接至隔板316上方的凹部,或连接至压缩机外部的油分离器。
以上第一至第三实施方式所描述的压缩机均为低压侧式压缩机,即驱动机构设置在低压侧的压缩机。然而,本领域技术人员能够理解,以上各实施方式也可以应用于高压侧压缩机。在高压侧压缩机中,经过各运动部件以及定子加热后的润滑油中所含有的制冷剂的量更少,因此通过将高温部位的润滑油引入到分隔出的第二油池中并循环利用,也能够通过类似的原理来降低油稀释程度。
另外,虽然上文主要以涡旋压缩机为例进行了描述,但是本发明的理念不限于涡旋压缩机,而是还可以应用于其他类型的包括旋转轴的压缩机,比如螺杆式压缩机、转子式压缩机等,以及包括旋转轴和油池的任何类型的旋转机械。作为本发明第四实施方式,下面将结合图8描述一种转子式压缩机400。
转子式压缩机400包括壳体410,在壳体410上设置有进气管404、406以及排气管412。在壳体410中容纳有压缩机构420以及经由旋转轴430来驱动压缩机构420的驱动机构440(如马达)。该压缩机构420是转子式压缩机构,例如包括两个压缩腔。旋转轴430在压缩机构420的上侧和下侧分别由上轴承座450和下轴承座454支承。在转子式压缩机400的工作过程中,气态制冷剂经过压缩机400外部的气液分离器402后,经由进气管404和406进入压缩机400的壳体410,然后,制冷剂在压缩机构420中被加压到高温高压的状态,并经由排气管412离开压缩机。
在压缩机壳体410的底部形成油池417,润滑油积聚在油池417中。通过设置分隔件460,油池417也被分为外部的第一油池417a和内部的第二油池417b。分隔件460可以具有与以上第一实施方式中所描述的分隔件160类似的结构,并且固定在下轴承座454和压缩机壳体410的底部之间,并且在分隔件460上同样设置有第一进油口470和第二进油口472,第一进油口470使第一油池417a与第二油池417b连通,而回油通道474经由第二进油口472通向第二油池417b。在本实施方式中,回油通道474呈回油管474a的形式。
下面将描述压缩机400的润滑系统。在旋转轴430中设置有轴向的润滑油道434,并且在润滑油道434中设置有与第二油池417b中的油连通的泵油装置439,使得当旋转轴430旋转时,泵油装置439将第二油池417b中的油沿润滑油道434向上泵送。在旋转轴430的与上轴承座450相配合的位置处,设置有与润滑油道434连通的开口436以及位于开口436周围的周向油槽438。在上轴承座450上设置有与旋转轴430的周向油槽438相连通的导油槽452,该导油槽452从周向油槽438的位置起沿轴向和周向延伸,即,大致呈螺旋形延伸。由此,润滑油道434中的润滑油能够从开口436中流出到周向油槽438中,并且随着旋转轴430的旋转而沿导油槽452流动,从而在旋转轴430与上轴承座450之间产生油膜进行润滑。
回油管474a的上端插入穿过上轴承座450,并且通向导油槽452的与周向油槽438所在位置相反的一端。回油管474a的下端穿过分隔件460的第二进油口472。由此,导油槽452中的对旋转轴与上轴承座之间进行润滑后的润滑油能够沿回油管474a回流到第二油池417b中。由于旋转轴430与上轴承座450之间的摩擦,导油槽452中的润滑油的温度很高,因此,这部分油在回到第二油池417b中之后,能够降低第二油池417b中的油的稀释程度,从而提高润滑效果。
在图8中未示出排气管,但是也可以在分隔件460上设置有与第一实施方式中的排气管180类似的排气管,此处将不再赘述。
虽然已经结合多个实施方式描述了本发明的多个特征,但是本领域技术人员理解,在不冲突的情况下,可以将结合某个实施方式所描述的特征与另一实施方式相结合,这些组合都落在本发明的范围内。本发明并不局限于这里详细描述和示出的具体实施方式,在不偏离本发明的实质和范围的情况下可由本领域的技术人员实现其它的变型。所有这些变型都落入本发明的范围内。而且,所有在此描述的构件都可以由其他技术性上等同的构件来代替。

Claims (17)

  1. 一种旋转式压缩机,包括:
    壳体;
    压缩机构;
    油池,所述油池中储存有润滑油;
    旋转轴,所述旋转轴中设置有与所述油池连通的润滑油道,并且所述旋转轴由上轴承座和下轴承座支承;以及
    驱动机构,所述驱动机构经由所述旋转轴驱动所述压缩机构;
    其特征在于,
    所述油池包括第一油池和第二油池,所述第一油池与所述第二油池经由第一进油口连通,所述润滑油道通向所述第二油池,并且
    所述旋转式压缩机还设置有回油通道,所述回油通道在所述旋转式压缩机的工作过程中将所述旋转式压缩机的较高温度润滑油引入到所述第二油池中,所述较高温度润滑油的温度高于所述第一油池中的润滑油温度。
  2. 根据权利要求1所述的旋转式压缩机,其中,所述第一油池和所述第二油池经由分隔件隔开,所述分隔件设置有所述第一进油口和第二进油口,所述回油通道的一端设置在所述第二进油口中。
  3. 根据权利要求2所述的旋转式压缩机,其中,所述分隔件设置有大致竖向布置的排气管,所述排气管的出口高于所述第一油池中的液位。
  4. 根据权利要求3所述的旋转式压缩机,其中,所述排气管包括弯曲段,所述出口位于所述弯曲段的末端并且朝向竖向下方。
  5. 根据权利要求2所述的旋转式压缩机,其中,所述分隔件呈大致壳形,并且具有上开口和下开口,所述上开口固定于所述下轴承座,并且所 述下开口被压抵于所述壳体的底面。
  6. 根据权利要求2所述的旋转式压缩机,其中,所述分隔件呈大致环形板状,并且所述分隔件的径向内边缘固定于所述下轴承座,径向外边缘固定至所述壳体。
  7. 根据权利要求2所述的旋转式压缩机,其中,所述第一油池位于所述分隔件的外部,所述第二油池位于所述分隔件的内部。
  8. 根据权利要求2所述的旋转式压缩机,其中,所述分隔件由隔热材料制成。
  9. 根据权利要求1所述的旋转式压缩机,其中,所述旋转式压缩机是涡旋式压缩机。
  10. 根据权利要求1所述的旋转式压缩机,其中,所述旋转式压缩机是低压侧式涡旋压缩机。
  11. 根据权利要求10所述的旋转式压缩机,其中,所述较高温度润滑油位于所述上轴承座的凹部处,并且所述回油通道包括回油管。
  12. 根据权利要求1所述的旋转式压缩机,其中,所述较高温度润滑油位于与所述旋转式压缩机的排气接头相连的油分离器中。
  13. 根据权利要求12所述的旋转式压缩机,其中,所述回油通道包括回油管和与所述回油管串联的毛细管降压部。
  14. 根据权利要求1所述的旋转式压缩机,其中,在所述壳体的外部设置有圆筒形管,从而在所述壳体与所述圆筒形管之间形成壳体夹层部, 所述回油通道包括所述壳体夹层部、设置在所述较高温度润滑油所在部位与所述壳体夹层部之间的第一回油管、设置在所述壳体夹层部与所述第二油池之间的第二回油管。
  15. 根据权利要求1所述的旋转式压缩机,其中,所述旋转式压缩机是转子式压缩机。
  16. 根据权利要求15所述的旋转式压缩机,其中,所述较高温度润滑油位于所述上轴承座的内壁上的导油槽处。
  17. 一种提高旋转式压缩机中的润滑效果的方法,所述旋转式压缩机包括:壳体;压缩机构;油池,所述油池中储存有润滑油;旋转轴,所述旋转轴中设置有与所述油池连通的润滑油道,并且所述旋转轴由上轴承座和下轴承座支承;以及驱动机构,所述驱动机构经由所述旋转轴驱动所述压缩机构,
    其特征在于,所述方法包括:
    将所述油池划分为第一油池和第二油池,使得所述第一油池与所述第二油池经由第一进油口连通,所述润滑油道通向所述第二油池;以及
    在所述旋转式压缩机中设置回油通道,所述回油通道在所述旋转式压缩机的工作过程中将所述旋转式压缩机的内部或外部的较高温度润滑油引入到所述第二油池中,所述较高温度润滑油的温度高于所述第一油池中的润滑油温度。
PCT/CN2016/099449 2015-10-13 2016-09-20 旋转式压缩机及提高其润滑效果的方法 WO2017063480A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201520802406.1U CN205064281U (zh) 2015-10-13 2015-10-13 旋转式压缩机
CN201520802406.1 2015-10-13
CN201510670523.1A CN106567833B (zh) 2015-10-13 2015-10-13 旋转式压缩机及提高其润滑效果的方法
CN201510670523.1 2015-10-13

Publications (1)

Publication Number Publication Date
WO2017063480A1 true WO2017063480A1 (zh) 2017-04-20

Family

ID=58517762

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/099449 WO2017063480A1 (zh) 2015-10-13 2016-09-20 旋转式压缩机及提高其润滑效果的方法

Country Status (1)

Country Link
WO (1) WO2017063480A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4242461A3 (en) * 2022-03-07 2023-11-01 Thermo King LLC Methods and systems for lubricating a transport climate control system having an auxiliary sump

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1041026A (zh) * 1988-09-16 1990-04-04 特库姆塞制品公司 压缩机杂质颗粒收集器
JPH1037870A (ja) * 1996-07-25 1998-02-13 Mitsubishi Electric Corp スクロール圧縮機
JP2012057595A (ja) * 2010-09-13 2012-03-22 Daikin Industries Ltd 圧縮機及び冷凍装置
CN205064281U (zh) * 2015-10-13 2016-03-02 艾默生环境优化技术(苏州)有限公司 旋转式压缩机

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1041026A (zh) * 1988-09-16 1990-04-04 特库姆塞制品公司 压缩机杂质颗粒收集器
JPH1037870A (ja) * 1996-07-25 1998-02-13 Mitsubishi Electric Corp スクロール圧縮機
JP2012057595A (ja) * 2010-09-13 2012-03-22 Daikin Industries Ltd 圧縮機及び冷凍装置
CN205064281U (zh) * 2015-10-13 2016-03-02 艾默生环境优化技术(苏州)有限公司 旋转式压缩机

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4242461A3 (en) * 2022-03-07 2023-11-01 Thermo King LLC Methods and systems for lubricating a transport climate control system having an auxiliary sump
US11994126B2 (en) 2022-03-07 2024-05-28 Thermo King Llc Methods and systems for lubricating a transport climate control system having an auxiliary sump

Similar Documents

Publication Publication Date Title
US9617996B2 (en) Compressor
US8834139B2 (en) Lubrication of a scroll compressor
US20100326124A1 (en) Expander-integrated compressor and refrigeration cycle apparatus using the same
JP2008101559A (ja) スクロール圧縮機およびそれを用いた冷凍サイクル
KR101971819B1 (ko) 스크롤 압축기
JP5014346B2 (ja) 膨張機一体型圧縮機およびそれを備えた冷凍サイクル装置
US20110064596A1 (en) Scroll compressor
US11680568B2 (en) Compressor oil management system
CN205064281U (zh) 旋转式压缩机
JP4804437B2 (ja) 膨張機一体型圧縮機
JP2007085297A (ja) スクロール圧縮機
EP3325807B1 (en) Compressor bearing housing drain
WO2017063480A1 (zh) 旋转式压缩机及提高其润滑效果的方法
CN106567833B (zh) 旋转式压缩机及提高其润滑效果的方法
JP2006132377A (ja) 流体機械
CN213981182U (zh) 动涡旋组件及包括其的涡旋压缩机
JP5114708B2 (ja) 密閉形スクロール圧縮機
JP2006132332A (ja) 流体機械
JP2020007982A (ja) 二段スクリュー流体機械
CN112412789B (zh) 压缩机及冷冻循环装置
US8944781B2 (en) Electrically driven gas compressor
JP2001304152A (ja) スクロールコンプレッサ
WO2020011192A1 (zh) 膨胀机以及包括膨胀机的流体循环系统
CN109306957B (zh) 压缩机
JP2007247624A (ja) 密閉型圧縮機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16854862

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16854862

Country of ref document: EP

Kind code of ref document: A1