WO2018173354A1 - 膜分離装置および膜分離方法 - Google Patents

膜分離装置および膜分離方法 Download PDF

Info

Publication number
WO2018173354A1
WO2018173354A1 PCT/JP2017/040283 JP2017040283W WO2018173354A1 WO 2018173354 A1 WO2018173354 A1 WO 2018173354A1 JP 2017040283 W JP2017040283 W JP 2017040283W WO 2018173354 A1 WO2018173354 A1 WO 2018173354A1
Authority
WO
WIPO (PCT)
Prior art keywords
membrane
increase rate
surface aeration
transmembrane
concentration
Prior art date
Application number
PCT/JP2017/040283
Other languages
English (en)
French (fr)
Inventor
佳史 林
航 吉田
英二 今村
野田 清治
安永 望
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US16/481,738 priority Critical patent/US20200001240A1/en
Priority to KR1020197026455A priority patent/KR20190112140A/ko
Priority to JP2018507752A priority patent/JP6342101B1/ja
Priority to SG11201906887Y priority patent/SG11201906887YA/en
Priority to CN201780088501.1A priority patent/CN110431111B/zh
Publication of WO2018173354A1 publication Critical patent/WO2018173354A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/12Controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/22Controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/008Control or steering systems not provided for elsewhere in subclass C02F
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/006Regulation methods for biological treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1236Particular type of activated sludge installations
    • C02F3/1268Membrane bioreactor systems
    • C02F3/1273Submerged membrane bioreactors
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/20Activated sludge processes using diffusers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/04Specific process operations in the feed stream; Feed pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/14Pressure control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/24Quality control
    • B01D2311/246Concentration control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2315/00Details relating to the membrane module operation
    • B01D2315/06Submerged-type; Immersion type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2315/00Details relating to the membrane module operation
    • B01D2315/20Operation control schemes defined by a periodically repeated sequence comprising filtration cycles combined with cleaning or gas supply, e.g. aeration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/18Use of gases
    • B01D2321/185Aeration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/40Automatic control of cleaning processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/005Processes using a programmable logic controller [PLC]
    • C02F2209/006Processes using a programmable logic controller [PLC] comprising a software program or a logic diagram
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/03Pressure
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/20Total organic carbon [TOC]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/38Gas flow rate
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/40Liquid flow rate
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/14Maintenance of water treatment installations
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/16Regeneration of sorbents, filters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the present invention relates to a membrane separation apparatus and a membrane separation method for obtaining treated water that permeates through a separation membrane while being diffused toward a separation membrane that is immersed in an organic matter-containing wastewater.
  • Membrane separation activity for treating organic wastewater (hereinafter referred to as “treated water”) by decomposing organic matter in treated water using microorganisms and performing filtration treatment with a separation membrane for solid-liquid separation
  • the sludge method (MBR: Membrane Bio Reactor) is used.
  • MLR Membrane Bio Reactor
  • the filtration performance gradually deteriorates when clogging occurs due to contaminants adhering to the surface of the separation membrane or the pores of the separation membrane with continuous use of the separation membrane. .
  • an air diffuser is provided at the lower part of the separation membrane, air is aerated from the air diffuser toward the separation membrane, and the deposits on the surface of the separation membrane are peeled off by the upward flow of bubbles and water to be treated.
  • a method of suppressing this is used. Since the energy cost required for this aeration is calculated to reach about half of the total operation cost, various techniques for suppressing the aeration amount have been developed.
  • Patent Document 1 discloses a method of measuring the transmembrane pressure difference (TMP: Trans Membrane Pressure) of a filtration membrane and controlling the amount of aeration air so that the transmembrane pressure difference is maintained at a predetermined rising speed set in advance. Proposed. Specifically, the reference value of the transmembrane pressure difference is updated and set to automatically increase at regular intervals, and based on the difference value between the reference value of the transmembrane pressure difference and the measured value at that time, The target value of the aeration air volume is set, and the aeration air volume is controlled according to the target value.
  • TMP Trans Membrane Pressure
  • Patent Document 2 a negative operating differential pressure inside a flat membrane unit is measured by a pressure gauge, and the amount of air diffused from the air diffuser and the suction pump are determined based on the rate of change of the rising speed of the operating differential pressure. It has been proposed to control the intermittent operation time ratio between operation and stop. Further, an optimum pattern of the amount of diffused air and the intermittent operation time ratio is estimated, and control is automatically performed based on this estimation.
  • JP 2013-202472 A Japanese Patent Laid-Open No. 2000-300968
  • the present invention has been made to solve the above-described problems, and it is an object of the present invention to provide a membrane separation apparatus and a membrane separation method aimed at reducing operating costs by suppressing the amount of membrane surface aeration air.
  • a membrane separation apparatus includes a separation membrane for filtering water to be treated in a membrane separation tank, a membrane surface aeration device for supplying air for performing membrane surface aeration of the separation membrane, and an organic matter concentration in the treatment water.
  • An organic matter concentration measuring means for measuring the pressure, a pressure measuring part for measuring the transmembrane differential pressure of the separation membrane, and a transmembrane differential pressure increasing rate RT and pressure selected from the values of the organic matter concentration measured by the organic matter concentration measuring means a transmembrane pressure increase rate comparison means for comparing the measured transmembrane difference increased transmembrane pressure difference is calculated from the pressure velocity R M by the measurement unit, a control unit for controlling the film surface aeration amount of film surface aerator And the transmembrane differential pressure rise rate RT selected from the organic matter concentration value measured by the organic matter concentration measuring means obtained by the transmembrane differential pressure rise rate comparing means and the transmembrane difference measured by the pressure measuring unit. the control unit based on the difference between the transmembrane pressure increase rate R M calculated from pressure The film surface aeration air volume is varied.
  • a membrane separation apparatus includes a separation membrane for filtering the water to be treated in the membrane separation tank, a membrane surface aeration apparatus for supplying air for performing membrane surface aeration of the separation membrane, A first organic substance concentration measuring means for measuring the organic substance concentration; a second organic substance concentration measuring means for measuring the organic substance concentration in the filtrate filtered through the separation membrane; and a pressure measuring unit for measuring the transmembrane pressure difference of the separation membrane.
  • the transmembrane differential pressure increase rate R selected from the organic substance concentration difference obtained by subtracting the organic substance concentration value measured by the second organic substance concentration measuring means from the organic substance concentration value measured by the first organic substance concentration measuring means.
  • the transmembrane pressure increase rate comparison means for comparing membrane differences calculated from the transmembrane pressure difference and a pressure increase rate R M measured by the pressure measuring unit, controls the film surface aeration amount of film surface aerator Control unit, which is obtained by the transmembrane differential pressure increase rate comparison means.
  • Things density measuring device measured the organic matter concentration difference between selected membranes from the value pressure increase rate R T and the pressure measuring section measured transmembrane difference calculated from the pressure difference film pressure increase rate of R M in at The membrane surface aeration air volume is varied by the control unit based on the difference.
  • the membrane separation method according to the present invention, the concentration of organic matter in the treated water when performing membrane surface aeration in which the treated water in the membrane separation tank is filtered through a separation membrane and bubbles are supplied from below the separation membrane through an air diffuser.
  • the target transmembrane pressure increase rate is selected from the measured value, and the difference between the target transmembrane pressure increase rate and the separation membrane pressure increase rate is reduced. In this way, the air volume of the film surface aeration is set.
  • the TMP increase rate is changed by changing the membrane surface aeration volume based on the concentration of organic matter contained in the water to be treated in the membrane separation tank, so that the operating cost required for aeration is reduced. It is possible to achieve an unprecedented remarkable effect such as
  • FIG. 4 is a flowchart of a film surface aeration air volume control procedure according to the first embodiment of the present invention. It is a block diagram of the membrane separator concerning Embodiment 2 of this invention. It is a related figure of TMP raise speed, membrane surface aeration volume, and organic substance concentration when an inflection point changes. It is a block diagram of the database update means in Embodiment 2 of this invention. It is explanatory drawing of the database update method in Embodiment 2 of this invention. It is explanatory drawing of the database update method in Embodiment 2 of this invention. It is a flowchart of the adjustment procedure of the film surface aeration air volume in Embodiment 2 of this invention.
  • Embodiment 2 of this invention It is a flowchart of the database update procedure in Embodiment 2 of this invention. It is a block diagram of the membrane separator concerning Embodiment 3 of this invention. It is explanatory drawing of the organic substance density
  • FIG. 1 is a configuration diagram of a membrane separation device
  • FIG. 2 is an explanatory diagram of organic substance concentration measuring means used in the membrane separation device.
  • the membrane separation apparatus of the present invention separates a membrane separation tank 1 that stores the treated water 9, a separation membrane 2 that is immersed in the membrane separation tank 1, and the treated water 9.
  • a membrane surface aeration apparatus that supplies filtered water 3 that flows through the treated water 10 filtered by the membrane 2, a filtration pump 4 that flows out of the treated water 10, and air for separating contaminants attached to the separation membrane 2.
  • TMP increase rate changing means 12 that changes the transmembrane differential pressure (TMP) increase rate based on the organic substance concentration contained in the water 9 to be treated in the separation tank 1. It is configured. Although the case where activated sludge is contained in the to-be-processed water 9 is demonstrated here, the activated sludge does not necessarily need to exist in the to-be-processed water 9. FIG.
  • Inflow water 8 flows into the membrane separation tank 1, and a filtrate pipe 3 is connected through the separation membrane 2.
  • the membrane separation tank 1 only needs to receive the inflowing water 8 and store the water 9 to be treated, and the material may be any material and structure that does not leak, such as concrete, stainless steel, and resin.
  • the separation membrane 2 may be any means that can separate a solid and a liquid, such as a hollow fiber membrane or a flat membrane, and is not limited to an RO membrane, NF membrane, UF membrane, MF membrane, or the like.
  • the separation membrane 2 is connected to the filtration pump 4 via the filtrate water pipe 3.
  • the separation membrane 2 is immersed in the membrane separation tank 1, and an aeration tube 7 is disposed directly below the separation membrane 2 at the lower part of the membrane separation tank 1.
  • the diffuser tube 7 only needs to be capable of supplying the bubbles 11, and materials such as glass, stainless steel, sintered metal, and resin can be used.
  • the diffuser tube 7 is connected to the membrane surface aeration device 5 via the aeration pipe 6.
  • the membrane surface aeration device 5 may be any device capable of pumping air such as a blower.
  • An organic matter concentration measuring means 19 is disposed in the water 9 to be treated in the membrane separation tank 1.
  • the organic substance concentration measuring means 19 may be any organic substance in water, such as a total organic carbon concentration meter, an ultraviolet absorbance meter, a fluorescence intensity meter, or the like, as long as it can directly or indirectly measure water.
  • Measurement may be performed by immersing an organic substance concentration sensor such as a total organic carbon concentration meter, an ultraviolet absorbance meter, or a fluorescence intensity meter in the membrane separation tank 1, and the treated water 9 in the membrane separation tank 1 is used as the organic substance concentration sensor. You may supply and measure.
  • an organic substance concentration sensor such as a total organic carbon concentration meter, an ultraviolet absorbance meter, or a fluorescence intensity meter
  • a pressure measuring unit 17 is disposed in the filtrate water pipe 3 between the separation membrane 2 and the filtration pump 4.
  • the pressure measuring unit 17 is a meter that can measure pressure, and can be used either digitally or analogly, but preferably has a mechanism that can store pressure values measured over time.
  • the organic matter concentration measuring means 19 and the pressure measuring unit 17 are included in the TMP rising speed changing means 12, and the TMP rising speed changing means 12 is connected to the membrane surface aeration apparatus 5 through a signal line 54.
  • the configuration of the TMP rising speed changing means 12 will be described.
  • a target TMP increase speed setting means 13 a TMP increase speed measuring means 14, a TMP increase speed comparison means 15, and a membrane surface aeration air volume control unit 16 are arranged.
  • the membrane surface aeration air volume control unit 16 is connected to a database 20 described later via a signal line 70.
  • the target TMP increase speed setting means 13 there are an organic substance concentration measuring means 19, a database 20, and a target TMP increase speed selecting section 21, and the organic substance concentration measuring means 19 and the target TMP increase speed selecting section 21 are connected to a database by a signal line 56. 20 and the target TMP increase speed selection unit 21 are connected by a signal line 57, and the target TMP increase speed selection unit 21 is connected to the TMP increase speed comparison means 15 via a signal line 51.
  • the database 20 stores and stores, as a database, the water quality obtained by the conventional water treatment, the time change of TMP, and the like.
  • the target TMP increase rate selection unit 21 compares the data stored in the database 20 with the data acquired by the organic substance concentration measuring means 19 and selects a target TMP increase rate RT .
  • the target TMP increase rate RT is preferably 0.01 to 40 kPa / h.
  • the organic substance concentration measuring means 19 includes UV (ultraviolet light absorbance), TOC (total organic carbon), COD (chemical oxygen demand), BOD (biochemical oxygen demand), humic acid concentration, Organic substance index measuring means 27 for measuring at least one organic substance index of sugar concentration and protein concentration is provided.
  • UV ultraviolet
  • TOC total organic carbon
  • COD chemical oxygen demand
  • BOD biochemical oxygen demand
  • humic acid concentration Organic substance index measuring means 27 for measuring at least one organic substance index of sugar concentration and protein concentration is provided.
  • UV value is 0 to 10 Abs / cm
  • TOC value is 1 to 500 mg / L
  • COD and BOD values are all 1 to 500 mg / L
  • Humic acid concentration, sugar concentration and protein concentration are all 0 to 500 mg
  • the present invention is implemented in the range of / L.
  • TMP increase rate measuring means 14 there are a pressure measurement unit 17 and a TMP increase rate calculation unit 18, which are connected via a signal line 55. Further, the TMP increase speed calculation unit 18 is connected to the TMP increase speed comparison means 15 via a signal line 52. TMP rise speed calculating section 18 is where calculating the TMP from the pressure measured by the pressure measuring unit 17 calculates the TMP increase rate R M based on the time variation of the TMP.
  • the TMP increase speed comparison means 15 is connected to the membrane surface aeration air volume control unit 16 via a signal line 53. Further, the TMP increase speed comparison means 15 is connected to the TMP increase speed calculation unit 18 and the signal line 52 via the target TMP increase speed selection unit 21 and the signal line 51. In TMP rise speed comparison means 15 compares the target TMP increase rate R T which is selected by the TMP increase rate R M and the target TMP rise speed selection unit 21 calculated by TMP rise speed calculation unit 18, the film surface aeration the difference This is sent to the air volume control unit 16 via the signal line 53. The film surface aeration air volume control unit 16 controls the film surface aeration air volume of the film surface aeration apparatus 5 based on the signal obtained from the TMP increase speed comparison means 15. Further, the data used for the control is sent to the database 20 via the signal line 70, and data relating to the film surface aeration air volume is accumulated.
  • a gas such as air is aerated from a diffuser tube 7 installed at the lower part of the separation membrane 2, and the deposits on the surface of the separation membrane 2 are peeled off by the rising flow of the bubbles 11 and the water 9 to be treated generated by the bubbles. 2 clogging is suppressed.
  • the TMP rising speed varies depending on the degree of suppression of clogging, and clogging is less likely as the amount of film surface aeration increases.
  • the degree of clogging of the separation membrane 2 can be grasped from the value of the pressure measurement unit 17.
  • the separation membrane 2 is gradually clogged and TMP rises.
  • Grasped from TMP and time data sent through the signal line 55 from the pressure measuring unit 17 by the TMP increase rate calculating unit 18 calculates the temporal change as TMP increase rate R M.
  • the TMP measurement interval for calculating the TMP increase rate is preferably in the range of once a second to once a day.
  • the TMP increase rate is determined from the time change of TMP in the range of one minute to one month. it is preferable to calculate the R M.
  • the TMP rise rate R M is transmitted via a signal line 52 to the TMP increase rate comparison means 15.
  • the organic substance concentration measuring means 19 measures the organic substance concentration in the water 9 to be treated over time.
  • the measurement interval may be any range from once a minute to once an hour, or even once a day.
  • the measured organic substance concentration value is sent to the target TMP increase speed selection unit 21 via the signal line 56.
  • the target TMP increase rate selection unit 21 the relationship between the organic matter concentration obtained from the organic matter concentration measuring means 19, the water quality such as the past organic matter concentration, the water temperature, the solid matter concentration and the TMP increase rate is stored as data.
  • the target TMP increase speed RT is selected from the data.
  • the selected TMP increase speed RT is sent to the TMP increase speed comparison means 15 via the signal line 51.
  • TMP increase rate comparison means 15 and the TMP increase rate calculating unit 18 TMP increase rate R T, which is selected by the TMP increase rate R M and the target TMP rise speed selection unit 21 calculated in the comparison, the difference is a signal line It is sent to the film surface aeration air volume control unit 16 via 53.
  • the value of the film surface aeration air volume is set so that this difference is small or zero, and the value is sent to the film surface aeration apparatus 5 via the signal line 54. If the value of TMP increase rate calculating unit 18 TMP increase rate R M calculated in is greater than the target TMP rise speed selection unit 21 TMP increase rate R T which is selected in, it is necessary to increase the film surface aeration amount . If the value of TMP increase rate R M calculated by TMP rise speed calculating unit 18 is smaller than the target TMP rise TMP rising speed was selected by the speed selection unit 21 R T is reversed, necessary to reduce the film surface aeration amount There is.
  • the membrane surface aeration apparatus 5 sends a gas such as air from the aeration pipe 6 to the diffuser pipe 7 so that the film surface aeration air volume is controlled by the inverter and according to the value from the membrane surface aeration air volume control unit 16.
  • a gas such as air from the aeration pipe 6
  • the diffuser pipe 7 so that the film surface aeration air volume is controlled by the inverter and according to the value from the membrane surface aeration air volume control unit 16.
  • the present inventors have determined that the TMP increase speed, the membrane surface aeration air volume, and the water quality of the water to be treated 9 in the membrane separation tank 1 are as follows. In particular, it has been clarified that the relationship as shown in FIG. 3 is established between the organic substance concentration contained in the water 9 to be treated. From FIG. 3, it was clarified that the TMP increase rate increases rapidly when the membrane surface aeration air volume is reduced. Here, the point at which the TMP increase rate rapidly increases is referred to as an inflection point.
  • the membrane surface aeration air volume When the membrane surface aeration air volume is reduced, the flow of the water 9 to be treated due to bubbles or bubbles given by the membrane surface aeration from the separation membrane surface is reduced, and substances that cannot permeate the separation membrane 2 such as microorganisms and turbid substances are separated from the separation membrane surface. It adheres to the membrane and inhibits membrane filtration, and the TMP increase rate tends to be high.
  • the higher the organic matter concentration in the water 9 to be treated the larger the air flow rate required to suppress the same TMP increase rate, and the higher the organic matter concentration in the water 9 to be treated, the higher the inflection point membrane surface. It has been discovered that the aeration air volume increases, and that the higher the concentration of organic matter in the water 9 to be treated, the higher the TMP increase rate at the film surface aeration air volume above the inflection point. The smaller the amount of aeration air on the membrane surface, the greater the amount of microorganisms, turbidity, etc. attached to the surface of the separation membrane, and the greater the thickness.
  • the organic matter present in the gap between the water 9 to be treated, the microorganisms, and the turbidity becomes a binder, and the deposit on the surface of the separation membrane is supplied from the surface of the separation membrane by the flow of the water 9 to be treated by bubbles or bubbles supplied by membrane surface aeration It becomes difficult to peel. Therefore, when the concentration of organic matter in the water 9 to be treated increases, the amount of aeration air on the membrane surface necessary for removing the deposits on the separation membrane surface also increases.
  • the organic substance concentration is preferably a value excluding turbidity and turbidity. That is, by measuring the organic matter concentration after removing turbidity and turbidity by centrifugation or filtration in advance, the accuracy of the relationship between the membrane surface aeration rate and the TMP increase rate for each of the above organic matter concentrations is increased. be able to.
  • the effect of measuring the organic substance concentration in the water 9 to be treated will be described with reference to FIGS.
  • the membrane surface aeration air volume was changed so that the TMP increase rate was constant when the value was medium. . That is, when the organic substance concentration increases from medium to high, the TMP increase rate increases when the operation is continued with the aeration air volume at the inflection point where the organic substance concentration is medium. Therefore, as a result of increasing the film surface aeration rate so that the TMP increase rate is constant (FIG. 4), the inflection point of the film surface aeration rate when the organic matter concentration is medium is actually a large value. Therefore, energy consumption increases (FIG. 5).
  • the TMP increase rate is slightly increased, but the film surface aeration rate can be greatly reduced.
  • the energy cost required for membrane surface aeration is significantly higher than the operation cost for cleaning, etc., even if the cleaning frequency increases due to the slight increase in the TMP increase speed shown in FIGS.
  • the operating cost can be reduced by the law.
  • FIG. 6 is a table summarizing the relationship between the amount of aeration air on the membrane surface and the rate of increase in TMP according to the organic substance concentration high, medium and low, and is a database obtained by operating the membrane separation apparatus shown in FIG. As described above, these data are composed of values obtained from the pressure measuring unit 17 and the organic substance concentration measuring means 19 and values obtained from the film surface aeration volume of the film surface aeration apparatus 5.
  • the inflow water 8 changes from moment to moment, and accordingly, the organic matter in the treated water 9 depends on the operating conditions such as SRT (Solid Retention Time) of the membrane separator and dissolved oxygen concentration in the treated water 9.
  • the concentration changes.
  • the organic substance concentration of high, medium, and low for example, as ultraviolet absorbance at any wavelength of 220 to 270 nm, high: 2.000 Abs / cm or more, medium: 0.001 to 1.999 Abs / cm or more, low: 0.000 to 0.001 Abs / cm.
  • Use of 254 nm and 260 nm as the wavelength at the time of measuring the ultraviolet absorbance is considered as the first priority candidate.
  • the film surface aeration air volume is set to 0.01 m 3 / hr / m 2 to 10 m 3 / hr / m 2 . Further, the filtration area per one or one separation membrane 2 is 0.01 to 100 m 2 .
  • FIG. 7 shows a flowchart of the control procedure of the film surface aeration volume in the first embodiment.
  • the organic substance concentration measuring means 19 measures the organic substance concentration in the water 9 to be treated.
  • the target TMP increase rate selection unit 21 selects a target TMP increase rate RT based on the organic substance concentration measured from the data in the database 20. Further, to measure the TMP pressure measuring unit 17, the TMP rise rate R M calculated by TMP rise speed calculating unit 18 from the TMP measured by the pressure measuring unit. Then compared with the target TMP increase rate R T, which is selected by the TMP increase rate R M and the target TMP rise speed selection unit 21, which is calculated by TMP rise speed calculation unit 18.
  • TMP increase rate R M and the target TMP increase rate R T is equal to or TMP increase rate R M and if smaller film surface aeration amount than any set value a is the absolute value of the difference between the target TMP increase rate R T of the maintain.
  • TMP is greater than the rising speed R M is the target TMP increase rate R T, or if TMP increase rate R M is larger value than a set arbitrarily than the target TMP increase rate R T is increased membrane surface aeration amount by ⁇ Q
  • the film surface aeration air volume is decreased by ⁇ Q.
  • the arbitrarily set value a can be set arbitrarily in consideration of the measurement error of the film surface differential pressure increase rate and the ease of operation in air volume control.
  • Variation ⁇ Q of the film surface aeration amount can be arbitrarily set, may be set based on the TMP increase rate R M and the target TMP increase rate R T difference or TMP increase rate R M the rate of change of the organic substance concentration Ya You may set based on the variation
  • TMP increase rate R M Maintaining the film surface aeration amount, or after increased or decreased, to calculate the TMP increase rate R M again. Further compares the TMP increase rate R M and the target TMP increase rate R T, the adjustment of film surface aeration amount in the manner described above. This procedure is repeated until the next step of measuring the organic substance concentration is reached. Therefore TMP increase rate R M and the target TMP increase rate R T is equal, or the value of the film surface aeration amount such that the absolute value is controlled within a value a that is set arbitrarily in the difference is set. When reaching the next step of measuring the organic matter concentration, the organic matter concentration is measured and the above steps are repeated.
  • the target TMP increase rate RT is set based on the organic substance concentration contained in the water 9 to be treated, and the membrane surface aeration is performed so as to be maintained at the target TMP increase rate RT. Since the air volume is controlled, the film surface aeration air volume can be suppressed, and the operation cost of the entire apparatus can be reduced.
  • FIG. 8 is a block diagram of a membrane separation apparatus according to Embodiment 2 of the present invention.
  • the membrane separation apparatus according to the second embodiment of the present invention has a new target TMP increase in the organic substance concentration measured by the organic substance concentration measuring means in the target TMP increase speed setting means 13 of the first embodiment.
  • a database update means 40 is added to calculate the speed and update the relationship between the organic matter concentration in the treated water stored in the database 20 and the TMP increase speed.
  • the database update means 40 is connected to the membrane surface aeration air volume control unit 16 via a signal line 71 and is connected to the database 20 via a signal line 72.
  • Other configurations are the same as those of the first embodiment, and the same or corresponding parts are denoted by the same reference numerals and description thereof is omitted.
  • the relationship between the organic substance concentration in the treated water 9 stored in the database 20 and the TMP rising speed is compared with the relationship between the organic substance concentration in the treated water 9 and the TMP rising speed under actual operation, and the database is appropriately selected. Need to be updated.
  • the database update unit 40 increases the TMP calculated from the TMP increase rate R T selected from the organic substance concentration value measured by the organic substance concentration measuring unit 19 and the TMP measured by the pressure measuring unit.
  • film surface aeration amount Q M and the target TMP increase rate R film surface aeration amount Q T Compare film surface aeration amount comparison means when the T stored in the database when the the speed R M is controlled to be equal 41, a new target at varying film surface aeration amount at the film surface aeration amount control section 16 when the film surface aeration amount comparison means 41 the value of the film surface aeration amount Q M and membrane surface aeration amount Q T are different 'target TMP rise speed calculating means 42 for calculating a new target TMP increase rate calculated by the target TMP rise speed calculating means 42 R T' TMP increase rate R T and its film surface aeration amount Q T when '
  • the database updating unit 43 stores the organic substance concentration value measured by the organic substance concentration measuring means in the database.
  • the target TMP increase rate calculating means 42 sends from the membrane surface aeration air volume fluctuation command unit 44 that sends a command to the membrane surface aeration air volume control unit 16 so as to vary the membrane surface aeration air volume, and the film surface aeration air volume fluctuation command unit 44.
  • a target TMP increase rate calculating unit 45 that calculates a target TMP increase rate R T ′ based on the relationship between the film surface aeration rate when the film surface aeration rate is changed according to the given command and the TMP increase rate at that time. Yes.
  • the membrane surface aeration air volume comparison means 41 is connected to the membrane surface aeration air volume control unit 16 via a signal line 71 a, is connected to the database 20 via a signal line 72 a, and is a target TMP increase rate calculation means via a signal line 73. 42 is connected.
  • the film surface aeration air volume fluctuation command unit 44 is connected to the film surface aeration air volume control unit 16 via a signal line 71b.
  • the target TMP increase speed calculation unit 45 is connected to the TMP increase speed calculation unit 18 via a signal line 74.
  • the database update unit 43 is connected to the target TMP ascending speed calculation means 42 via a signal line 75, and is connected to the database 20 via a signal line 72b.
  • the TMP increase rate R M calculated from the TMP increase rate R T selected from the organic substance concentration value measured by the organic substance concentration measuring means 19 and the TMP measured by the pressure measurement unit 17. are controlled to be equal to each other.
  • the TMP increase rate R M calculated from TMP measured at TMP increase rate R T and the pressure measuring unit 17, which is selected from the values of the measured concentration of organic substances in the organic substance concentration measuring unit 19 is controlled to be equal to the value of the film surface aeration amount Q M is fed to the film surface aeration amount comparing means 41 via a signal line 71a.
  • the value of the film surface aeration air volume Q T stored in the database at the target TMP increase rate RT is sent to the film surface aeration air volume comparison means 41 via the signal line 72a.
  • the TMP increase speed R M calculated from the TMP increase speed RT selected from the organic substance concentration value measured by the organic substance concentration measurement means 19 and the TMP measured by the pressure measurement unit 17. comparing the film surface aeration amount Q T, the target TMP increase the speed difference when the target TMP increase rate R T of bets is stored to the film surface aeration amount Q M and the database at the time which is controlled to be equal
  • the signal is sent to the calculation means 42 via the signal line 43.
  • the TMP increase rate R M calculated from the TMP increase rate RT selected from the organic substance concentration value measured by the organic substance concentration measuring means 19 and the TMP measured by the pressure measuring unit 17. If the value of the film surface aeration air volume Q M when the control is equal to the value of the film surface aeration air volume Q T at the target TMP increase rate RT stored in the database, the database is updated. no but long as different value, calculates a new target TMP increase rate R T 'and the new target TMP increase rate R T' film surface aeration amount Q T during ', the signal line and the value 75 To the database update unit 43 via
  • the target TMP increase rate calculation means 42 includes a membrane surface aeration rate variation command unit 44 and a target TMP increase rate calculation unit 45.
  • the membrane surface aeration air volume fluctuation command unit 44 uses the signal line 71 b to increase the membrane surface aeration air volume control unit.
  • a command is sent to 16. If the film surface aeration amount Q M is larger than the film surface aeration amount Q T is reversed, and sends a command to the film surface aeration amount control section 16 via the signal line 71b so as to reduce the film surface aeration amount.
  • control section 16 After changing the film surface aeration amount at the film surface aeration amount control section 16 calculates the TMP increase rate R M at TMP increase rate calculating unit 18, the target TMP increase rate calculating unit 45 via the signal line 74 and the value Send to. Repeating the calculation of the increase or decrease and TMP increase rate R M of the film surface aeration amount to the film surface aeration amount reaches the film surface aeration amount Q T.
  • the target TMP increase rate calculation unit 45 calculates an inflection point from the relationship between the TMP increase rate obtained by the above operation and the membrane surface aeration air volume, and the TMP increase rate at the inflection point as a new target as described above.
  • the TMP increase rate R T ′ and the film surface aeration rate at the inflection point are calculated as the film surface aeration rate Q T ′ at the new target TMP increase rate R T ′.
  • the inflection point calculation method varies based on the value obtained by dividing the amount of change in the TMP increase rate by the amount of change in the membrane surface aeration rate, that is, the value obtained by calculating the rate of change in the TMP increase rate relative to the amount of change in the membrane surface aeration rate.
  • the inflection point may be calculated using an equation for calculating the operation cost using the membrane surface aeration volume and the TMP rising speed as parameters. For example, there are the following expressions.
  • concentration in the to-be-processed water 9 is measured, and target TMP raise speed RT is selected from a database based on the value. Further controlling the film surface aeration amount as TMP increase rate R M is the target TMP increase rate R T.
  • the film surface aeration air volume at that time is the film surface aeration air volume Q T in the data of the database, but when the film surface aeration air volume Q M is actually the relationship, the relationship between the film surface aeration air volume and the TMP increase rate at the organic substance concentration. Need to be updated. If the film surface aeration amount Q M curtain surface aeration amount Q T is smaller than as shown in FIG.
  • the film surface aeration amount is gradually increased from Q M to Q T, is a film surface aeration amount Q M as shown in FIG. 12 greater than curtain surface aeration amount Q T, the film surface aeration amount is gradually reduced from Q M to Q T, each time, to calculate the TMP increase rate.
  • the inflection point is calculated from the newly calculated relationship diagram between the film surface aeration air volume and the TMP increase speed using the inflection point calculation method as described above, and the inflection point is increased to the new target TMP increase.
  • the speed R T ′ and the film surface aeration air volume Q T ′ at that time are calculated.
  • FIG. 13 shows a flowchart of the adjustment procedure of the film surface aeration air volume in the second embodiment.
  • the flowchart of the adjustment procedure of the film surface aeration volume in the second embodiment of the present invention is obtained by adding a database update procedure to the flowchart of the first embodiment.
  • Other procedures are the same as those in the first embodiment, and a description thereof will be omitted. That is, the adjustment procedure of the film surface aeration air volume in the second embodiment of the present invention is performed by the TMP rising speed RT selected from the organic substance concentration value measured by the organic substance concentration measuring means 19 and the TMP measured by the pressure measuring unit 17. controls film surface aeration amount as the TMP increase rate R M calculated equals from updating the database when it is controlled so as to further its value equal.
  • FIG. 14 shows a flowchart of a database update procedure in the second embodiment.
  • Film surface aeration so that has been a value TMP increase rate was chosen from R T and TMP increase rate was calculated from the measured TMP by pressure measuring unit 17 R M of concentration of organic substances measured by organic concentration measuring means 19 is equal It is controlled by the air volume control unit 16.
  • the value of the film surface aeration air volume Q T at the target TMP increase rate RT is selected from the data in the database 20.
  • control of the been measured TMP increase rate R M are equal value calculated from TMP in TMP rise is selected from the values of the organic matter concentration rate R T and the pressure measuring section 17 measures an organic material concentration measuring device 19 the value of the film surface aeration amount Q M when the calculated by the TMP rise speed calculation unit 18.
  • Film surface aeration amount Q M is larger than the film surface aeration amount Q T, or if the film surface aeration amount Q M is larger the value b greater than or equal to the set arbitrarily than the membrane surface aeration amount Q T is, Delta] Q membrane surface aeration amount Only decrease.
  • the arbitrarily set value b can be set arbitrarily in consideration of the control error of the film surface aeration air volume and the convenience of operation in the air volume control.
  • the change amount ⁇ Q of the film surface aeration air volume can be arbitrarily set, and may be set based on the difference between the film surface aeration air volume Q M and the film surface aeration air volume Q T , or may be set based on the rate of change of the TMP rising speed. Also good.
  • the TMP increase rate is calculated. Repeating the calculation of the film surface aeration amount of change and the TMP increase rate R M to the film surface aeration amount reaches the film surface aeration amount Q T. Therefore, the film surface aeration air volume is changed from the film surface aeration air volume Q M to the film surface aeration air volume Q T, and the TMP increase rate at that time is measured.
  • the target TMP increase rate calculating unit 45 from the relationship between TMP increase rate R M and membrane surface aeration amount Q M obtained by the above operation, to calculate an inflection point, TMP rise at the inflection point as described above
  • the speed is calculated as a new target TMP increase speed R T ′
  • the film surface aeration air volume at the inflection point is calculated as a film surface aeration air volume Q T ′ at the new target TMP increase speed R T ′.
  • the calculated new target TMP increase rate R T ′ and the film surface aeration air volume Q T ′ at the new target TMP increase rate R T ′ are sent to the database 20 to update the database.
  • the film surface aeration air volume is controlled so that the film surface aeration air volume becomes the film surface aeration air volume Q T ′, and the database update procedure is terminated.
  • the invention of the second embodiment updates the relationship between the organic matter concentration in the water to be treated stored in the database and the TMP increase rate so that the target TMP increase rate can be accurately set.
  • the surface aeration air volume can be suppressed, and the operation cost of the entire apparatus can be reduced.
  • FIG. 15 is a block diagram of a membrane separation apparatus according to Embodiment 3 of the present invention.
  • the membrane separator according to Embodiment 3 of the present invention uses the target TMP increase rate setting means 13 of Embodiment 1 to measure the organic matter concentration of the filtrate water in the filtrate pipe 3.
  • a measurement means 22 and an organic substance concentration difference value calculation unit 23 are added.
  • the organic substance concentration measuring means 22 may have the same configuration as the organic substance concentration measuring means for measuring the organic substance concentration of the water 9 to be treated as shown in FIG.
  • the organic matter concentration measuring means 19 for measuring the organic matter concentration of the water to be treated 9 in the membrane separation tank 1 is connected to the organic matter concentration difference value calculation unit 23 via the signal line 58, and the organic matter of the filtrate water in the filtrate pipe 3.
  • the organic substance concentration measuring means 22 for measuring the concentration is connected to an organic substance concentration difference value calculating unit 23 via a signal line 59.
  • the organic substance concentration difference value calculation unit 23 is connected to the target TMP increase speed selection unit 21 via the signal line 60.
  • Other configurations are the same as those of the first embodiment, and the same or corresponding parts are denoted by the same reference numerals and description thereof is omitted.
  • the organic substance concentration measuring means 22 the organic substance concentration in the filtrate water is measured while the treated water filtered by the separation membrane 2 passes through the filtrate water pipe 3.
  • the value of the organic substance concentration measured by the organic substance concentration measuring means 22 is sent to the organic substance concentration difference value calculating unit 23 via the signal line 59.
  • the organic matter concentration difference calculation unit 23 the difference between the organic matter concentrations measured by the organic matter concentration measuring means 19 and the organic matter concentration measuring means 22, specifically, the organic matter concentration is measured from the organic matter concentration measured by the organic matter concentration measuring means 19.
  • the value obtained by subtracting the organic substance concentration measured by the concentration measuring means 22 is sent from the organic substance concentration difference value calculating unit 23 to the target TMP increase speed selecting unit 21 via the signal line 60.
  • the organic matter concentration measuring means 22 is a means for measuring the organic matter concentration contained in the filtered water, and may be measured by installing an organic matter concentration sensor in the filtrate water pipe 3, and the filtrate is supplied to the organic matter concentration sensor and measured. Also good. Moreover, the filtered water discharged
  • the database 20 is connected to the target TMP increase speed selection unit 21 via a signal line 57. The database 20 shows the water quality obtained by the water treatment so far, for example, the value obtained by subtracting the organic substance concentration measured by the organic substance concentration measuring means 22 from the organic substance concentration measured by the organic substance concentration measuring means 19 or the time change of TMP. As stored and stored.
  • the target TMP increase speed selection unit 21 the data stored in the database 20 and the concentration difference calculated by the organic substance concentration difference value calculation unit 23 (from the organic substance concentration measured by the organic substance concentration measuring unit 19, the organic substance concentration measuring unit 22
  • the target TMP increase rate RT is selected based on the value obtained by subtracting the measured organic concentration.
  • the target TMP increase rate RT is preferably 0.01 to 40 kPa / h. Other operations are the same as those in the first embodiment.
  • the amount of organic matter that causes the clogging of the separation membrane 2 can be indirectly calculated. That is, it is possible to indirectly calculate the amount of organic matter that causes the clogging of the separation membrane 2, and in particular, when ultraviolet absorbance is used as the organic matter concentration, the amount of organic matter captured by the separation membrane 2 can be accurately measured. Can be performed instantaneously, so that it can be calculated quickly.
  • the invention of Embodiment 3 is the organic matter that causes the clogging of the membrane by obtaining the difference value between the organic matter concentration contained in the treated water 9 in the membrane separation tank 1 and the organic matter concentration contained in the filtered water.
  • the concentration can be accurately calculated, the target TMP increase rate RT is set according to the difference value, and the film surface aeration air volume is controlled so as to be maintained at the target TMP increase rate RT . Therefore, the amount of air aeration on the membrane surface can be suppressed, and the operation cost of the entire apparatus can be reduced.
  • FIG. 16 is an explanatory diagram of the organic matter concentration measuring means used in the membrane separation apparatus according to Embodiment 4 of the present invention.
  • the organic matter concentration measuring means 19 in Embodiment 4 of the present invention performs solid-liquid separation on the suspended matter in the water 9 to be treated in the membrane separation tank 1 by any one of filtration separation, centrifugation, and precipitation separation.
  • concentration in the liquid phase solid-liquid-separated by the solid-liquid separation part 24 are comprised.
  • the to-be-treated water 9 in the membrane separation tank 1 is supplied to the solid-liquid separation unit 24 and subjected to solid-liquid separation by any one of filtration separation, centrifugation, and precipitation separation, and a solid-liquid separation liquid 26 is obtained.
  • the solid-liquid separation liquid 26 obtained by the solid-liquid separation part 24 is supplied to the organic substance concentration measurement part 25 and the organic substance concentration of the solid-liquid separation liquid 26 is measured.
  • the pore size of the filter paper or filtration membrane used in the filtration separation is preferably 0.2 to 10 ⁇ m. However, it is necessary to make it larger than the pore diameter of the separation membrane 2.
  • the pore size of the filtration separation is smaller than that of the separation membrane 2
  • the amount of organic substances more than the separation membrane 2 is captured by the filter paper used in the filtration separation during the filtration separation, and the amount of organic matter captured by the separation membrane 2 is accurately grasped. Can not do it.
  • the pore size of the filtration membrane is smaller than 0.2 ⁇ m.
  • the pore diameter of the filtration membrane is larger than 10 ⁇ m, the solid matter and the turbidity component cannot pass through the filter paper or the filtration membrane used in the filtration separation to accurately measure the organic matter concentration.
  • the centrifugal separation when the centrifugal separation is performed in the solid-liquid separation unit 24, it is preferable to perform the centrifugal separation at a gravitational acceleration of 1000 to 10,000 G.
  • the gravitational acceleration is less than 1000 G, solid-liquid separation is insufficient, and solids and turbidity components cannot pass through a filter paper or a filtration membrane used for filtration separation to accurately measure the organic matter concentration.
  • the gravitational acceleration is larger than 10,000 G, the apparatus becomes large and cannot be installed beside the membrane separation apparatus.
  • the precipitation time is preferably 15 minutes to 2 hours. If the precipitation time is less than 15 minutes, solid-liquid separation is insufficient, and solids and turbidity components cannot pass through the filter paper or filter membrane used for filtration separation to accurately measure the organic matter concentration. On the other hand, if the precipitation time exceeds 2 hours, the properties of the water 9 to be treated change, and the organic substance concentration cannot be measured accurately.
  • the clogging of the membrane occurs due to the solid matter existing in the water 9 to be treated such as activated sludge being deposited on the membrane surface, but this is suppressed by aeration of the membrane surface.
  • the organic matter in the water 9 to be treated includes organic matter that remains on the surface of the separation membrane 2 due to its large size and does not enter the separation membrane 2 and can be removed by aeration of the membrane surface.
  • Organic substances having a smaller size enter the separation membrane 2, a part is captured by the separation membrane 2, and a part is discharged through the filtration pump 4 together with the treated water 10 filtered through the separation membrane 2.
  • the organic matter captured by the separation membrane 2 is a clogging substance and becomes a factor for increasing TMP.
  • the organic matter captured by the separation membrane 2 can be measured by the above-described method. That is, the organic matter in the treated water 9 that remains on the membrane surface and does not enter the separation membrane 2 is separated by filtration, centrifugation, and precipitation separation. It is possible to select the TMP increase rate with high accuracy by measuring the organic matter concentration of the water 9 to be treated after removing them in advance.
  • the invention of Embodiment 4 is the organic matter in the liquid phase obtained by solid-liquid separation of the water to be treated in the membrane separation tank by any one of filtration separation, centrifugation, and precipitation separation.
  • concentration By measuring the concentration, it is possible to more accurately measure the organic substances that cause the blockage of the membrane.
  • the solid-liquid separation liquid 26 obtained by solid-liquid separation of the water 9 to be treated in the membrane separation tank 1 by the solid-liquid separation unit 24 is supplied to the organic matter index measuring means 27 of the organic matter concentration measuring means 19 described in the first embodiment. May be. By doing in this way, at least any organic index of UV, TOC, COD, BOD, humic acid concentration, sugar concentration, and protein concentration can be measured.
  • the organic substance concentration measured by the organic substance concentration measurement unit 25 is output to the target TMP increase speed selection unit 21, but is output to the organic substance concentration difference value calculation unit 23 described in Embodiment 3 of FIG. 15. May be.
  • FIG. 17 is a configuration diagram of the target TMP increase speed setting means 13 used in the membrane separation apparatus in the fifth embodiment.
  • the target TMP increase rate setting means 13 in Embodiment 5 of the present invention measures the temperature of the water to be treated in the membrane separation tank 1 in addition to the database 20, the organic substance concentration measurement means 19, and the target TMP increase speed selection unit 21.
  • the water temperature measuring means 28 is connected to the target TMP increase speed selecting unit 21 via the signal line 65, the MLSS measuring means is connected via the signal line 66, and the flux measuring means is connected via the signal line 67. Since other configurations are the same as those in the first to fourth embodiments, description thereof will be omitted.
  • the water temperature measuring means 28 is a means for measuring the water temperature of the water 9 to be treated.
  • a water temperature sensor is installed in the membrane separation tank 1 and measured, or the water 9 to be treated is supplied to the water temperature sensor and measured.
  • the MLSS measurement means 29 is a means for measuring the MLSS concentration, turbidity, SS (Suspended Solid), etc. of the water 9 to be treated, and is measured by installing an MLSS concentration sensor, a turbidimeter, etc. in the membrane separation tank 1, Alternatively, the water to be treated may be supplied to an MLSS concentration sensor, a turbidimeter, or the like for measurement.
  • the to-be-processed water 9 is extract
  • the flux measuring means 30 is a means for measuring the filtration flux of the separation membrane 2, and is measured by installing a flow rate sensor in the filtrate water pipe 3, or by measuring the amount of filtrate for a certain time to calculate the flow rate. Further, the filtration flux can be measured by dividing the flow rate value by the membrane area of the separation membrane 2.
  • the values obtained by the water temperature measuring means 28, the MLSS measuring means 29, and the flux measuring means 30 are sent to the target TMP increase speed selecting unit 21 via signal lines 65, 66 and 67, respectively.
  • the target TMP increase speed selection unit 21 past data such as TMP increase speed, membrane surface aeration air volume, organic matter concentration, etc. sent from the database 20, and past data related to the water temperature measuring means 28, MLSS measuring means 29, and flux measuring means 30.
  • a membrane surface aeration amount suitable for the water quality of the water 9 to be treated of the current membrane separation apparatus is selected from the operation data and the data obtained from past experiments.
  • the water temperature is preferably 1 to 50 ° C. When the water temperature is 1 ° C. or lower and when the water temperature is 50 ° C. or higher, the durability of the separation membrane 2 is lowered, and it is difficult to operate the membrane separation apparatus stably.
  • the MLSS concentration and SS concentration are preferably 1 to 30000 mg / L.
  • the turbidity of the water 9 to be treated is preferably 0.1 to 10,000 degrees.
  • the SS concentration is less than 1 mg / L, or the turbidity is less than 0.1, the filtration treatment is unnecessary.
  • the SS concentration is 30000 mg / or more, or the turbidity is 10,000 or more, the separation membrane 2 is immediately clogged, and the water to be treated 9 having such a quality is not suitable for the filtration treatment.
  • the filtration flux of the separation membrane 2 is preferably 0.01 to 10 m / day. If the filtration flux is less than 0.01 m / day, the required amount of the separation membrane 2 becomes enormous, which is not practical for water treatment. Further, when the filtration flux is 10 m / day or more, the separation membrane 2 is immediately clogged, and even if the separation membrane 2 is washed, TMP cannot be recovered, so that the filtration treatment cannot be realized.
  • FIGS. 18A to 18D are used as the database.
  • 18A is a database diagram showing the relationship between the membrane surface aeration rate, TMP increase rate, and UV absorbance
  • FIG. 18B is a database diagram showing the relationship between the membrane surface aeration rate, TMP increase rate, and water temperature
  • FIG. 18D is a database diagram showing the relationship between membrane surface aeration air volume, TMP increase rate, and suspended solids in the mixture in the aeration tank.
  • FIG. 18D is a database diagram showing the relationship between membrane surface aeration air volume, TMP increase rate, and filtration flux. is there. The circles in the figure are inflection points.
  • each organic matter concentration (ultraviolet absorption light intensity UV having a wavelength of 254 nm)
  • each water temperature each MLSS concentration (this value may be SS concentration or turbidity)
  • each filtration flux The relationship between the air flow rate on the membrane surface and the TMP increase rate is stored in the database 20 based on the operation data or the experimental data. At this time, even if not all data is available, it can be used as a database by interpolating each data. For example, there is a database with a water temperature of 15 ° C.
  • a new database may be created by interpolating along an existing database, or a new database may be created by constructing a relationship interpolated from an existing database in advance.
  • an equation for calculating the TMP increase rate may be constructed using the membrane surface aeration volume, organic substance concentration, water temperature, MLSS concentration, and filtration flux as parameters. For example, the following formula. However, instead of the sum of all parameters, a formula in which multiplication, division, cumulative multiplication, and logarithm are mixed may be constructed, and it is important to construct a formula that can reproduce past operation data.
  • [TMP rising speed] ⁇ [membrane aeration air volume] + ⁇ [organic matter concentration] + ⁇ [water temperature] + ⁇ [MLSS concentration] + ⁇ [filtration flux] ( ⁇ , ⁇ , ⁇ , ⁇ , ⁇ are constants) (1)
  • Embodiment 5 even when any one or more of the organic matter concentration, the water temperature, the MLSS concentration, and the filtration flux of the separation membrane 2 in the water to be treated 9 in the membrane separation tank 1 change.
  • the target TMP increase speed can be set more accurately.
  • FIG. 19 is an explanatory diagram of the target TMP increase speed setting means 13 used in the membrane separation apparatus according to Embodiment 6 of the present invention.
  • the second embodiment is the same as the fifth embodiment except that the organic substance concentration difference value calculation unit 23 is connected to the organic substance concentration measurement means 22 via the signal line 59.
  • the amount of organic matter captured by the separation membrane 2 can be confirmed directly, so that it becomes easy to grasp the degree of clogging of the separation membrane 2 with respect to fluctuations in the concentration of organic matter in the water 9 to be treated. It is easy to take measures to reduce the organic matter concentration of the water 9 to be treated, such as reducing the SRT, increasing the SRT, and increasing the dissolved oxygen concentration.
  • the present invention will be described in detail based on examples. However, the present invention is not limited to the following examples.
  • three separation membranes 2a to 2c (subscripts a, b, and c are attached for distinction; the same applies hereinafter) are immersed at the same time,
  • the aeration tubes 7a to 7c were arranged to perform membrane filtration.
  • the TMP rising speed changing means 12 shown in FIG. 1 is applied to one separation membrane 2a
  • the membrane surface aeration air volume control shown in FIG. 21 was performed on the separation membrane 2c.
  • the water temperature of to-be-processed water was 30 degreeC, and MLSS density
  • Example 1 the to-be-processed water 9 in the membrane separation tank 1 was filtered by the separation membrane 2 with a membrane area of 1 m 2 at a filtration flux of 2.0 m / day.
  • the water to be treated 9 was filtered with a filter having a pore size of 1 ⁇ m, and the absorbance (UV254) at a wavelength of 254 nm of the filtrate was measured.
  • the target TMP increase rate is selected from the relationship between the film surface aeration rate and the TMP increase rate shown in FIG. 22 obtained from the database 20, and the measured TMP increase rate is maintained at the target TMP increase rate RT .
  • the membrane surface aeration volume of the membrane surface aeration apparatus was controlled as described above.
  • UV254 was 0.05 Abs / cm, and the TMP increase rate at the inflection point was 0.4 kPa / h. Therefore, the film surface aeration air volume of the film surface aeration apparatus was controlled to 0.60 m 3 / hr / m 2 so that the measured value of the TMP increase speed was maintained at the target TMP increase speed RT . Further, 1 hour after the start of filtration, the quality of the influent water was changed, so the quality of the water 9 to be treated in the membrane separation tank 1 was also changed, and the UV254 was increased to 0.10 Abs / cm. The target TMP increase rate RT at that time was 0.7 kPa / h from the database shown in FIG. 22, and the film surface aeration rate per film area was 0.72 m 3 / hr / m 2 .
  • Example 2 In Example 2, the influent water 8 was supplied to the membrane separation tank 1, and the to-be-treated water 9 in the membrane separation tank 1 was filtered by the separation membrane 2 having a membrane area of 1 m 2 with a filtration flux of 2.0 m / day.
  • the water to be treated 9 was filtered with a filter having a pore diameter of 1 ⁇ m, and UV254 of the filtrate was measured. Furthermore, UV254 of filtered water was measured in order to measure the organic substance density
  • the UV 254 of the filtrate of the water 9 to be treated and the UV 254 of the filtrate water are output to the organic matter concentration difference value calculation unit 23, and the relationship between the membrane surface aeration air amount and the TMP increase rate shown in FIG. Then, the target TMP increase rate was selected, and the film surface aeration air volume of the film surface aeration apparatus was controlled so that the measured TMP increase rate was maintained at the target TMP increase rate.
  • the difference ⁇ UV254 of UV254 between treated water 9 and filtered treated water 1 hour after the start of filtration was 0.02 Abs / cm, and the TMP increase rate at the inflection point was 0.4 kPa / h. Therefore, the film surface aeration air volume of the film surface aeration apparatus was controlled to 0.6 m 3 / hr / m 2 so that the measured value of TMP increase speed was maintained at the target TMP increase speed RT .
  • the target TMP increase rate RT at that time was 0.7 kPa / h from the database shown in FIG. 23, and the film surface aeration rate per film area was 0.72 m 3 / hr / m 2 .
  • Example 2 In the comparative example, the filtration operation was the same as in Example 1 except that the target TMP increase rate RT was set to a fixed value in advance without measuring the organic substance concentration in the water 9 to be treated.
  • the target TMP increase speed input means 31 fixes the target TMP increase speed RT to 0.4 kPa / h and outputs it to the TMP increase speed comparison means 15.
  • the film surface aeration air volume per film area of the film surface aeration apparatus was controlled to 0.6 m 3 / h / m 2 so that the measured value of the TMP increase speed was maintained at the target TMP increase speed RT .
  • the influent water quality changed, so the water quality of the treated water 9 in the membrane separation tank 1 also changed, and the membrane surface set so that the target TMP increase rate could be maintained at 0.4 kPa / h.
  • the aeration air volume was set to 1.2 m 3 / h / m 2 from the broken line circles in FIGS. This value was significantly larger than the film surface aeration volume of Example 1 and Example 2, 0.72 m 3 / hr / m 2 .
  • Example 1 and Example 2 compared with the comparative example, the target TMP increase rate can be changed according to the organic matter concentration of the water to be treated or the difference value between the organic matter concentration of the water to be treated and the organic matter concentration of the filtered water. It was. Therefore, the membrane surface aeration air volume of Example 1 and Example 2 after the property of the water to be treated in the membrane separation tank 1 can be maintained at a TMP increase rate with a value smaller than that of the comparative example. The energy saving operation of the separator was possible.
  • the TMP increase speed changing means 12 includes a processor 100 and a storage device 101 as shown in FIG.
  • the storage device includes a volatile storage device such as a random access memory and a nonvolatile auxiliary storage device such as a flash memory. Further, an auxiliary storage device of a hard disk may be provided instead of the flash memory.
  • the processor 100 executes a program input from the storage device 101. In this case, a program is input from the auxiliary storage device to the processor 100 via the volatile storage device. Further, the processor 100 may output data such as a calculation result to the volatile storage device of the storage device 101, or may store the data in the auxiliary storage device via the volatile storage device.
  • 1 membrane separation tank, 2: separation membrane, 3: filtered water piping, 4: filtration pump, 5: membrane surface aeration device, 6: aeration piping, 7: aeration pipe, 8: inflow water, 9: treated water, 10: treated water (filtrated water), 11: bubbles, 12: TMP rising speed changing means, 13: target TMP rising speed setting means, 14: TMP rising speed measuring means, 15: TMP rising speed comparing means, 16: membrane surface Aeration air volume control unit, 17: pressure measurement unit, 18: TMP increase rate calculation unit, 19: organic substance concentration measurement unit, 20: database, 21: target TMP increase rate selection unit, 22: organic substance concentration measurement unit, 23: organic substance concentration Difference value calculation unit, 24: solid-liquid separation unit, 25: organic substance concentration measurement unit, 27: organic substance index measurement unit, 28: water temperature measurement unit, 29: MLSS measurement unit, 30: flux measurement unit, 31: target TMP increase rate Input means

Abstract

膜面曝気風量を抑制でき、運転コストを低減可能な膜分離装置を提供する。 膜分離槽1内の被処理水をろ過する分離膜2と、分離膜下部に設置した散気管7より膜面曝気を行う膜面曝気装置5と、被処理水中の有機物濃度を測定する有機物濃度測定手段19と、分離膜の膜間差圧を測定する圧力測定部17と、有機物濃度測定手段で測定された有機物濃度の値から選定された膜間差圧上昇速度と圧力測定部で測定された膜間差圧から算出された膜間差圧上昇速度とを比較する膜間差圧上昇速度比較手段15と、膜面曝気装置5の膜面曝気風量を制御する制御部16を備え、膜間差圧上昇速度比較手段15で得られた膜間差圧上昇速度の差異に基づいて制御部16により膜面曝気風量を変動させるようにした。

Description

膜分離装置および膜分離方法
 この発明は、有機物含有の排水に浸漬して配置された分離膜に向けて散気しながら分離膜を透過した処理水を得る膜分離装置および膜分離方法に関するものである。
 有機物含有の排水(以下「被処理水」という)を処理する方法として、微生物を用いて被処理水中の有機物を分解するとともに、分離膜によるろ過処理をして、固液分離を行う膜分離活性汚泥法(MBR:Membrane Bio Reactor)が用いられている。分離膜を用いたろ過処理では、分離膜の継続的な使用に伴い、分離膜の表面または分離膜の孔中に汚濁物質が付着して目詰まりが生じた場合、ろ過性能が徐々に低下する。
 そのため、分離膜の下部に散気装置を設け、この散気装置から分離膜に向けて空気等を曝気し、気泡および被処理水の上昇流によって分離膜表面の付着物を剥離させて目詰まりを抑制する方法が用いられている。この曝気に要するエネルギーコストは全運転コストの約半分にも達すると算出されていることから、曝気量を抑制する技術が種々開発されている。
 特許文献1には、ろ過膜の膜間差圧(TMP:Trans Membrane Pressure)を測定し、膜間差圧が事前に設定した所定の上昇速度に維持されるように曝気風量を制御する方法が提案されている。具体的には膜間差圧の基準値を一定時間毎に自動的に増加するように更新設定し、そのときどきの膜間差圧の基準値と測定値との差分値に基づいて、次の曝気風量の目標値を設定し、目標値に合わせて曝気風量を制御している。
 特許文献2には、圧力計によって平膜ユニットの内部の負の運転差圧を測定し、この運転差圧の上昇速度の変化率に基づいて、散気装置からの散気量及び吸引ポンプの稼働と停止の間欠運転時間比を制御することが提案されている。また、散気量及び間欠運転時間比の最適なパターンを推測し、この推測に基づいて自動的に制御するようにしている。
特開2013-202472号公報 特開2000-300968号公報
 しかし、上述した特許文献1、2のように、ろ過膜の膜間差圧(以下、適宜TMPという)に基づいて曝気風量を制御する方法では、分離膜で固液分離を行う被処理水の水質を測定していないため、曝気風量の目標値に維持するために過大な曝気風量を必要とすることがある。そのため、このような条件では過剰な曝気風量を要求している虞がある。
 この発明は、上記のような課題を解決するためになされたものであり、膜面曝気風量の抑制により運転コストを低減することを目的とした膜分離装置および膜分離方法を得ることにある。
 この発明に係わる膜分離装置は、膜分離槽内の被処理水をろ過する分離膜と、分離膜の膜面曝気を行うための空気を供給する膜面曝気装置と、被処理水中の有機物濃度を測定する有機物濃度測定手段と、分離膜の膜間差圧を測定する圧力測定部と、有機物濃度測定手段で測定された有機物濃度の値から選定された膜間差圧上昇速度Rと圧力測定部で測定された膜間差圧から算出された膜間差圧上昇速度Rとを比較する膜間差圧上昇速度比較手段と、膜面曝気装置の膜面曝気風量を制御する制御部を備え、膜間差圧上昇速度比較手段で得られた有機物濃度測定手段で測定された有機物濃度の値から選定された膜間差圧上昇速度Rと圧力測定部で測定された膜間差圧から算出された膜間差圧上昇速度Rとの差異に基づいて制御部により膜面曝気風量を変動させるようにしたものである。
 また、この発明に係わる膜分離装置は、膜分離槽内の被処理水をろ過する分離膜と、分離膜の膜面曝気を行うための空気を供給する膜面曝気装置と、被処理水中の有機物濃度を測定する第1の有機物濃度測定手段と、分離膜でろ過されたろ過水中の有機物濃度を測定する第2の有機物濃度測定手段と、分離膜の膜間差圧を測定する圧力測定部と、第1の有機物濃度測定手段で測定された有機物濃度の値から第2の有機物濃度測定手段で測定された有機物濃度の値を差し引いた有機物濃度差から選定された膜間差圧上昇速度Rと圧力測定部で測定された膜間差圧から算出された膜間差圧上昇速度Rとを比較する膜間差圧上昇速度比較手段と、膜面曝気装置の膜面曝気風量を制御する制御部を備え、膜間差圧上昇速度比較手段で得られた有機物濃度測定手段で測定された有機物濃度の値から選定された膜間差圧上昇速度Rと圧力測定部で測定された膜間差圧から算出された膜間差圧上昇速度Rとの差異に基づいて制御部により膜面曝気風量を変動させるようにしたものである。
 また、この発明に係わる膜分離方法、膜分離槽内の被処理水を分離膜でろ過し、分離膜の下方から散気管で気泡を供給する膜面曝気を行う際、被処理水中の有機物濃度を測定し、その測定値から目標とする膜間差圧上昇速度を選定し、目標膜間差圧上昇速度と分離膜の膜間差圧の上昇速度とを比較して、その差異が小さくなるように膜面曝気の風量を設定するようにしたものである。
 この発明によれば、膜分離槽内の被処理水に含まれる有機物濃度に基づいて膜面曝気風量を変動させることによりTMP上昇速度を変化させるようにしたから、曝気に要する運転コストを低減することができる、といった従来にない顕著な効果を奏するものである。
この発明の実施の形態1に係わる膜分離装置の構成図である。 この発明の実施の形態1における膜分離装置で使用される有機物濃度測定手段の説明図である。 TMP上昇速度と膜面曝気風量と有機物濃度の関係図である。 有機物濃度によらず設定した目標TMP上昇速度と膜面曝気風量との説明図である。 有機物濃度に基づいて設定した目標TMP上昇速度と膜面曝気風量との説明図である。 この発明の実施の形態1における目標TMP上昇速度設定方法の説明図である。 この発明の実施の形態1における膜面曝気風量の制御手順のフローチャートである。 この発明の実施の形態2に係わる膜分離装置の構成図である。 変曲点が変化した場合のTMP上昇速度と膜面曝気風量と有機物濃度の関係図である。 この発明の実施の形態2におけるデータベース更新手段の構成図である。 この発明の実施の形態2におけるデータベース更新方法の説明図である。 この発明の実施の形態2におけるデータベース更新方法の説明図である。 この発明の実施の形態2における膜面曝気風量の調整手順のフローチャートである。 この発明の実施の形態2におけるデータベース更新手順のフローチャートである。 この発明の実施の形態3に係わる膜分離装置の構成図である。 この発明の実施の形態4における膜分離装置で使用される有機物濃度測定手段の説明図である。 この発明の実施の形態5における膜分離装置で使用される目標TMP上昇速度設定手段の説明図である。 膜面曝気風量とTMP上昇速度と紫外線吸光度との関係を示すデータベースの図である。 膜面曝気風量とTMP上昇速度と水温との関係を示すデータベースの図である。 膜面曝気風量とTMP上昇速度と曝気槽内混合液中の浮遊物質との関係を示すデータベースの図である。 膜面曝気風量とTMP上昇速度とろ過フラックスとの関係を示すデータベースの図である。 この発明の実施の形態6における膜分離装置で使用される目標TMP上昇速度設定手段の説明図である。 実施例1と実施例2と比較例における膜分離装置である。 比較例における膜分離装置の説明図である。 実施例1のデータベースを説明する図である。 実施例2のデータベースを説明する図である。 この発明の実施の形態1等におけるTMP上昇速度変化手段のハードウエアの一例を示す図である。
実施の形態1.
 以下、この発明の実施の形態1に係る膜分離装置について、図1から図7に基づいて説明する。図1は膜分離装置の構成図、図2は膜分離装置に使用される有機物濃度測定手段の説明図である。
 図1に示すように、この発明の膜分離装置は、被処理水9を貯留する膜分離槽1と、膜分離槽1に浸漬して配置された分離膜2と、被処理水9が分離膜2によりろ過された処理水10を流通するろ過水配管3と、処理水10を流出するろ過ポンプ4と、分離膜2に付着した汚濁物質を剥離するための空気を供給する膜面曝気装置5と、膜面曝気装置5から供給される空気を流通する曝気配管6と、曝気配管6からの空気により分離膜2の下方から上方に向かって流れる気泡11を供給する散気管7と、膜分離槽1内の被処理水9に含まれる有機物濃度に基づいて膜間差圧(TMP)上昇速度を変化させる膜間差圧上昇速度変化手段(以下、TMP上昇速度変化手段という)12とで構成されている。
 ここでは被処理水9中に活性汚泥が含まれる場合について説明するが、必ずしも活性汚泥が被処理水9中に存在する必要はない。
 膜分離槽1には流入水8が流入するようになっており、分離膜2を介してろ過水配管3が接続されている。膜分離槽1としては流入水8を受入れて被処理水9が貯留できればよく、材質もコンクリート、ステンレス、樹脂等、水漏れしない材質および構造であればよい。分離膜2としては、中空糸膜や平膜等の固体と液体を分離できる手段であればよく、RO膜、NF膜、UF膜、MF膜等に限らない。また、ろ過水配管3を介して分離膜2がろ過ポンプ4と接続されている。分離膜2は膜分離槽1に浸漬されており、膜分離槽1の下部の分離膜2の真下に散気管7が配置されている。
 散気管7は気泡11を供給できる能力があればよく、ガラス、ステンレス、焼結金属、樹脂等の材質を使用できる。散気管7は膜面曝気装置5と曝気配管6を介して接続されている。膜面曝気装置5はブロワー等空気を圧送できる装置であればよい。膜分離槽1内の被処理水9には有機物濃度測定手段19が配置されている。有機物濃度測定手段19は総有機炭素濃度計、紫外線吸光度計、蛍光強度計等、水中の有機物を直接、もしくは間接的に測定できればよい。膜分離槽1内に総有機炭素濃度計、紫外線吸光度計、蛍光強度計等の有機物濃度センサーを浸漬させて測定してもよく、また膜分離槽1内の被処理水9を有機物濃度センサーに供給して測定してもよい。
 また、分離膜2とろ過ポンプ4の間のろ過水配管3に圧力測定部17が配置されている。圧力測定部17は圧力を測定できる計器であり、デジタルもしくはアナログどちらでも使用可能であるが、経時的に測定した圧力値を保存できる機構があることが好ましい。有機物濃度測定手段19および圧力測定部17はTMP上昇速度変化手段12に含まれており、TMP上昇速度変化手段12は信号線54を介して膜面曝気装置5と接続されている。
 続いてTMP上昇速度変化手段12の構成について説明する。TMP上昇速度変化手段12内には目標TMP上昇速度設定手段13、TMP上昇速度測定手段14、TMP上昇速度比較手段15、および膜面曝気風量制御部16が配置されている。膜面曝気風量制御部16は信号線70を介して後述するデータベース20と接続されている。
 目標TMP上昇速度設定手段13内には、有機物濃度測定手段19、データベース20、目標TMP上昇速度選定部21があり、有機物濃度測定手段19と目標TMP上昇速度選定部21は信号線56で、データベース20と目標TMP上昇速度選定部21は信号線57で接続され、目標TMP上昇速度選定部21は信号線51を介してTMP上昇速度比較手段15と接続されている。
 データベース20はこれまでの水処理で取得した水質、TMPの時間変化等がデータベースとして記憶、保管されている。目標TMP上昇速度選定部21では、データベース20に保管されているデータと有機物濃度測定手段19で取得したデータを比較し、目標とするTMP上昇速度Rを選定するところである。目標TMP上昇速度Rとしては0.01~40kPa/hであることが好ましい。
 有機物濃度測定手段19は、図2に示すように、UV(紫外線吸光度)、TOC(全有機炭素)、COD(化学的酸素要求量)、BOD(生物化学的酸素要求量)、フミン酸濃度、糖濃度、タンパク質濃度の少なくともいずれか1つ以上の有機物指標を測定する有機物指標測定手段27を備えている。
 膜分離槽1内の被処理水9を有機物指標測定手段27に供給することで、UV、TOC、COD、BOD、フミン酸濃度、糖濃度、タンパク質濃度の少なくともいずれかの有機物指標を測定することができる。これらの物質は分離膜2に捕捉されやすく、目詰まりの指標として使用できることを確認しており、膜の閉塞の原因となる有機物を正確に測定できる。
 このとき、UV値は0~10Abs/cm、TOC値は1~500mg/L、CODおよびBODの値はいずれも1~500mg/L、フミン酸濃度、糖濃度およびタンパク質濃度はいずれも0~500mg/Lの範囲でこの発明が実施される。
 また、TMP上昇速度測定手段14内には、圧力測定部17とTMP上昇速度算出部18があり、これらは信号線55を介して接続されている。またTMP上昇速度算出部18は信号線52を介してTMP上昇速度比較手段15と接続されている。TMP上昇速度算出部18は圧力測定部17で測定した圧力からTMPを算出し、そのTMPの時間変化を基にTMP上昇速度Rを算出するところである。
 TMP上昇速度比較手段15は信号線53を介して膜面曝気風量制御部16と接続されている。また、TMP上昇速度比較手段15は目標TMP上昇速度選定部21と信号線51を介して、TMP上昇速度算出部18と信号線52を介して接続されている。TMP上昇速度比較手段15では、TMP上昇速度算出部18で算出したTMP上昇速度Rと目標TMP上昇速度選定部21で選定した目標TMP上昇速度Rとを比較し、その差を膜面曝気風量制御部16に信号線53を介して送る。
 膜面曝気風量制御部16では膜面曝気装置5の膜面曝気風量をTMP上昇速度比較手段15から得た信号を基に制御するところである。さらに制御に使用したデータは信号線70を介してデータベース20に送付され、膜面曝気風量に関するデータが蓄積される。
 以下に膜面曝気風量の制御手順について説明する。分離膜2の下部に設置された散気管7から空気等の気体を曝気し、気泡11および気泡により発生した被処理水9の上昇流によって分離膜2表面の付着物を剥離させて、分離膜2の目詰まりを抑制する。目詰まりを抑制する程度によってTMP上昇速度が変化し、膜面曝気風量が大きいほど目詰まりしにくくなる。この際、分離膜2の膜面積あたりの膜面曝気風量は0.01~10m/hr/(膜ろ過面積m)で制御することが好ましい。
 分離膜2の目詰まりの程度は圧力測定部17の値により把握することができる。ろ過ポンプ4で膜ろ過処理を継続すると徐々に分離膜2が目詰まりし、TMPが上昇する。TMP上昇速度算出部18で圧力測定部17から信号線55を介して送られてきたTMPと時間のデータから把握し、その時間変化をTMP上昇速度Rとして算出する。TMP上昇速度を算出するためのTMPの測定間隔としては一秒に一回から一日に一回の範囲であることが好ましく、一分間から一ヵ月間の範囲のTMPの時間変化からTMP上昇速度Rを算出することが好ましい。このTMP上昇速度Rは信号線52を介してTMP上昇速度比較手段15に送られる。
 一方、有機物濃度測定手段19で被処理水9中の有機物濃度を経時的に測定する。測定間隔は一分に一回から一時間に一回、さらには一日に一回のいずれの範囲でもよい。測定した有機物濃度の値は信号線56を介して目標TMP上昇速度選定部21に送付される。目標TMP上昇速度選定部21では、有機物濃度測定手段19から得られた有機物濃度と、過去の有機物濃度、水温、固形物濃度等の水質とTMP上昇速度との関連をデータとして保管したデータベース20のデータから目標とするTMP上昇速度Rを選定する。選定したTMP上昇速度Rは信号線51を介してTMP上昇速度比較手段15に送られる。
 TMP上昇速度比較手段15では、TMP上昇速度算出部18で算出されたTMP上昇速度Rと目標TMP上昇速度選定部21で選定されたTMP上昇速度Rとが比較され、この差が信号線53を介して膜面曝気風量制御部16に送られる。膜面曝気風量制御部16では、この差が小さく、もしくはゼロとなるよう膜面曝気風量の値が設定され、その値が信号線54を介して膜面曝気装置5に送付される。
 TMP上昇速度算出部18で算出されたTMP上昇速度Rの値が目標TMP上昇速度選定部21で選定されたTMP上昇速度Rよりも大きい場合は、膜面曝気風量を増大させる必要がある。逆にTMP上昇速度算出部18で算出されたTMP上昇速度Rの値が目標TMP上昇速度選定部21で選定されたTMP上昇速度Rよりも小さい場合は、膜面曝気風量を減少させる必要がある。
 膜面曝気装置5は、インバータで制御されて膜面曝気風量制御部16からの値に応じた膜面曝気風量となるよう曝気配管6から空気等の気体を散気管7へ送り、膜面曝気が実施される。定期的にTMP上昇速度Rおよび被処理水9内の有機物濃度が測定され、上記の運転が繰り返される。これらのデータは全て、膜面曝気風量制御部16から信号線70を介してデータベース20に蓄積される。TMPがある値、例えば25kPaに到達した場合、膜ろ過運転を停止し、分離膜2を洗浄する。具体的な曝気風量の値を決定する方法については以降で述べる。
 本発明者らはTMP上昇速度、膜面曝気風量、被処理水の水質との関係について鋭意検討した結果、TMP上昇速度、膜面曝気風量、および膜分離槽1内の被処理水9の水質、特に被処理水9に含まれる有機物濃度との間には図3のような関係が成立することを明らかにした。
 図3より、膜面曝気風量を小さくすると急激にTMP上昇速度が高くなることが明らかとなった。急激にTMP上昇速度が高くなる点をここでは変曲点と言う。膜面曝気風量が小さくなると、分離膜表面から膜面曝気で与えられた気泡や気泡による被処理水9の流れが小さくなり、微生物、濁質等の分離膜2を透過できない物質が分離膜表面に付着して膜ろ過を阻害し、TMP上昇速度が高くなりやすい。
 一方、膜面曝気風量が大きくなると微生物、濁質等が分離膜表面に付着しにくくなるため、TMP上昇速度は低く抑えることができる。急激にTMP上昇速度が高くなる点、すなわち変曲点が存在することは一つの発見であり、TMP上昇速度をモニタリングすることで分離膜表面への微生物、濁質等の付着状況を間接的に把握することができる。さらに、TMP上昇速度が高くなるのは、二つの要因で生じていることを本結果より明らかにした。
 すなわち、分離膜表面への微生物、濁質等の付着、および分離膜内部への有機物の付着である。分離膜表面への微生物、濁質等の付着は分離膜表面を急速に閉塞させるため、変曲点以下の膜面曝気風量でのTMP上昇速度の急激な上昇に寄与している。一方、分離膜内部への有機物の付着の速度は緩やかなため、変曲点以上の膜面曝気風量でのTMP上昇速度の緩やかな変化に寄与している。この発見はTMP上昇速度を制御する上で大変重要な知見である。
 さらに、被処理水9中の有機物濃度が高いほど同じTMP上昇速度を抑制するために必要な膜面曝気風量が大きくなり、さらに被処理水9中の有機物濃度が高いほど変曲点の膜面曝気風量も大きくなること、さらにまた被処理水9中の有機物濃度が高いほど変曲点以上の膜面曝気風量でのTMP上昇速度が大きくなることを発見した。膜面曝気風量が小さいほど分離膜表面への微生物、濁質等の付着量が多く、さらにその厚みも大きくなる。その際、被処理水9や微生物、濁質の間隙に存在する有機物がバインダとなり、分離膜表面の付着物が膜面曝気で供給した気泡や気泡による被処理水9の流れによって分離膜表面から剥離されにくくなる。従って、被処理水9中の有機物濃度が高くなると、分離膜表面の付着物を除去するのに必要な膜面曝気風量も大きくなる。
 変曲点より小さい膜面曝気風量では、上記の有機物のバインダとしての働きが変曲点より大きい膜面曝気風量のときの有機物のバインダとしての働きと比較して顕著となるため、分離膜表面の付着物によるTMP上昇速度が急激に増大する。一方、変曲点より大きい膜面曝気風量では、分離膜表面の付着物量が低減されてそれによるTMP上昇速度への寄与は小さくなるが、それと相対的に分離膜内部への有機物の付着による分離膜の目詰まりが進行する。以上によって被処理水9中の有機物濃度が高いほど分離膜が目詰まりしやすくなり、TMP上昇速度が高くなり、また変曲点の膜面曝気風量も大きくなることが説明できる。
 ここで有機物濃度は濁質、濁度を除いた値とするのが好ましい。すなわち、予め遠心分離やろ過等によって、濁質、濁度を除いた後に有機物濃度を測定することで、上記の各有機物濃度に対する膜面曝気風量とTMP上昇速度の関係性について、その精度を高めることができる。
 ここで図4および図5を用いて、被処理水9中の有機物濃度を測定することの効果を説明する。被処理水9中の有機物濃度が高かったにも拘わらず、有機物濃度を測定していなかったため、その値が中程度とした場合、TMP上昇速度が一定となるように膜面曝気風量を変更した。すなわち、有機物濃度が中→高に増加した場合、有機物濃度が中の変曲点での曝気風量で運転を継続するとTMP上昇速度が増大する。そこでTMP上昇速度が一定となるように膜面曝気風量を増大させた結果(図4)、実際には有機物濃度が中の場合の膜面曝気風量の変曲点も大幅に大きい値となってしまうため(図5)、消費エネルギーが増大する。
 すなわち、被処理水9中の有機物濃度を測定し、それに基づいた膜面曝気風量を設定することで、僅かにTMP上昇速度は上昇するものの、膜面曝気風量を大幅に低減することが可能となる。膜面曝気に要するエネルギーコストは、洗浄等の運転コストと比較して大幅に大きいため、図4、5で示した僅かなTMP上昇速度の増大によって洗浄頻度が増加しても、全体システムとして本法によって運転コストを低減できる。
 以下に図6を使用して、有機物濃度測定値に対応する目標TMP上昇速度から膜面曝気風量の算出方法について説明する。図6は有機物濃度の高、中、低に応じて膜面曝気風量とTMP上昇速度の関係をまとめた図であり、図1に示した膜分離装置を運転して得られたデータベースである。これらのデータは上述したとおり、圧力測定部17、有機物濃度測定手段19から得られた値、および膜面曝気装置5の膜面曝気風量から得られた値とで構成されている。
 流入水8は時々刻々と変化し、それに応じて、膜分離装置のSRT(Solid Retention Time:汚泥滞留時間)や被処理水9内の溶存酸素濃度等の運転条件
によって被処理水9内の有機物濃度が変化する。その有機物濃度の高、中、低に応じて目標とするTMP上昇速度R、すなわち図6内の変曲点の膜面曝気風量Qを設定することで、膜分離装置の膜面曝気に要するエネルギーコストを最小限に維持することが可能である。
 有機物濃度の高、中、低としては、例えば波長220~270nmのいずれかの波長における紫外線吸光度として、高:2.000Abs/cm以上、中:0.001~1.999Abs/cm以上、低:0.000~0.001Abs/cmが挙げられる。紫外線吸光度測定時の波長としては、254nm、260nmを使用することが第一優先候補として考えられる。また、膜面曝気風量としては0.01m/hr/mから10m/hr/mに設定される。また分離膜2の1本もしくは1枚当たりのろ過面積は0.01~100mである。
 図7には、実施の形態1における膜面曝気風量の制御手順のフローチャートを示す。
 有機物濃度測定手段19で被処理水9中の有機物濃度を測定する。目標TMP上昇速度選定部21において、データベース20のデータから測定された有機物濃度に基づいた目標TMP上昇速度Rを選択する。また、圧力測定部17でTMPを測定し、圧力測定部で測定されたTMPからTMP上昇速度RをTMP上昇速度算出部18で算出する。次にTMP上昇速度算出部18で算出されたTMP上昇速度Rと目標TMP上昇速度選定部21で選定された目標TMP上昇速度Rとを比較する。
TMP上昇速度Rと目標TMP上昇速度Rが等しい、またはTMP上昇速度Rと目標TMP上昇速度Rとの差の絶対値が任意に設定した値aよりも小さければ膜面曝気風量を維持する。TMP上昇速度Rが目標TMP上昇速度Rより大きい、またはTMP上昇速度Rが目標TMP上昇速度Rよりも任意に設定した値a以上に大きい場合は、膜面曝気風量をΔQだけ増加させる。TMP上昇速度Rが目標TMP上昇速度Rより小さい、またはTMP上昇速度Rが目標TMP上昇速度Rよりも任意に設定した値a以上に小さい場合は、膜面曝気風量をΔQだけ減少させる。任意に設定した値aは膜面差圧上昇速度の測定誤差や風量制御における運転の簡便さを考慮して任意に設定することができる。膜面曝気風量の変化量ΔQは任意に設定でき、TMP上昇速度Rと目標TMP上昇速度Rの差やTMP上昇速度Rの変化率に基づいて設定してもよいし、有機物濃度や有機物濃度の変化量に基づいて設定してもよい。
膜面曝気風量を維持する、または増減させたのち、再びTMP上昇速度Rを算出する。さらにTMP上昇速度Rと目標TMP上昇速度Rとを比較し、前述の方法で膜面曝気風量の調整を行う。この手順を次の有機物濃度を測定する工程に到達するまで繰り返し行う。したがってTMP上昇速度Rと目標TMP上昇速度Rが等しい、またはその差の絶対値が任意に設定した値a以内に制御されるように膜面曝気風量の値が設定される。次の有機物濃度を測定する工程に到達したら、有機物濃度を測定し、上記工程を繰り返す。
 以上のように実施の形態1の発明は、被処理水9に含まれる有機物濃度に基づいて目標TMP上昇速度Rを設定し、その目標TMP上昇速度Rに維持されるように膜面曝気風量を制御するようにしているから、膜面曝気風量を抑制でき、装置全体の運転コストを低減することができる。
実施の形態2.
 次に、この発明の実施の形態2における膜分離装置を図8に基づいて説明する。図8はこの発明の実施の形態2における膜分離装置の構成図である。
 図8に示すように、この発明の実施の形態2における膜分離装置は、実施の形態1の目標TMP上昇速度設定手段13に、有機物濃度測定手段で測定された有機物濃度における新たな目標TMP上昇速度を算出しデータベース20に保管された被処理水中の有機物濃度とTMP上昇速度との関係を更新するデータベース更新手段40を追加したものである。 
 データベース更新手段40は、信号線71を介して膜面曝気風量制御部16と接続され、信号線72を介してデータベース20と接続されている。その他の構成は実施の形態1と同じにつき、同じまたは相当部分には同じ符号を付して説明を省略する。
 ろ過運転の継続に伴い、ろ過膜の性状変化や無機物の蓄積等が発生する。これらは被処理水9中の有機物濃度に依存せずにTMP上昇速度を変化させる要因となる。そのため、図9に示すように被処理水9中の有機物濃度とTMP上昇速度との関係は変化し、変曲点の膜面曝気風量を設定することが困難になることがある。
そこで、データベース20に保管されている被処理水9中の有機物濃度とTMP上昇速度の関係と実運転下での被処理水9中の有機物濃度とTMP上昇速度の関係とを比較し、適宜データベースを更新する必要がある。
 データベース更新手段40は、図10に示すように、有機物濃度測定手段19で測定された有機物濃度の値から選定されたTMP上昇速度Rと圧力測定部で測定されたTMPから算出されたTMP上昇速度Rとが等しい値に制御された際の膜面曝気風量Qとデータベースに保管されている目標TMP上昇速度Rの際の膜面曝気風量Qを比較する膜面曝気風量比較手段41と、膜面曝気風量比較手段41において膜面曝気風量Qと膜面曝気風量Qの値が異なる場合に膜面曝気風量制御部16にて膜面曝気風量を変動させて新たな目標TMP上昇速度R´を算出する目標TMP上昇速度算出手段42と、目標TMP上昇速度算出手段42により算出された新たな目標TMP上昇速度R´とその際の膜面曝気風量Q´と有機物濃度測定手段で測定された有機物濃度の値を前記データベースに保管するデータベース更新部43で構成させている。さらに、目標TMP上昇速度算出手段42は、膜面曝気風量を変動させるよう膜面曝気風量制御部16に指令を送る膜面曝気風量変動指令部44と、膜面曝気風量変動指令部44から送られた指令により膜面曝気風量を変動させた際の膜面曝気風量とその際のTMP上昇速度の関係に基づき目標TMP上昇速度R´を算出する目標TMP上昇速度算出部45で構成させている。
 膜面曝気風量比較手段41は、信号線71aを介して膜面曝気風量制御部16と接続され、信号線72aを介してデータベース20と接続され、信号線73を介して目標TMP上昇速度算出手段42と接続されている。膜面曝気風量変動司令部44は信号線71bを介して膜面曝気風量制御部16と接続されている。目標TMP上昇速度算出部45は信号線74を介してTMP上昇速度算出部18と接続されている。データベース更新部43は信号線75を介して目標TMP上昇速度算出手段42と接続され、信号線72bを介してデータベース20と接続されている。
 続いて実施の形態2におけるデータベースの更新手順について説明する。膜面曝気風量制御部16では、有機物濃度測定手段19で測定された有機物濃度の値から選定されたTMP上昇速度Rと圧力測定部17で測定されたTMPから算出されたTMP上昇速度Rとが等しくなるように制御する。
有機物濃度測定手段19で測定された有機物濃度の値から選定されたTMP上昇速度Rと圧力測定部17で測定されたTMPから算出されたTMP上昇速度Rとが等しい値に制御された際の膜面曝気風量Qの値は信号線71aを介して膜面曝気風量比較手段41に送られる。データベースに保管されている目標TMP上昇速度Rの際の膜面曝気風量Qの値は信号線72aを介して膜面曝気風量比較手段41に送られる。膜面曝気風量比較手段41では、有機物濃度測定手段19で測定された有機物濃度の値から選定されたTMP上昇速度Rと圧力測定部17で測定されたTMPから算出されたTMP上昇速度Rとが等しくなるように制御された際の膜面曝気風量Qとデータベースに保管されている目標TMP上昇速度Rの際の膜面曝気風量Qを比較し、この差を目標TMP上昇速度算出手段42に信号線43を介して送る。
目標TMP上昇速度算出手段42では、有機物濃度測定手段19で測定された有機物濃度の値から選定されたTMP上昇速度Rと圧力測定部17で測定されたTMPから算出されたTMP上昇速度Rとが等しくなるように制御された際の膜面曝気風量Qとデータベースに保管されている目標TMP上昇速度Rの際の膜面曝気風量Qの値が等しければ、データベースの更新を行わないが、その値が異なっていれば、新たな目標TMP上昇速度R´および新たな目標TMP上昇速度R´の際の膜面曝気風量Q´を算出し、その値を信号線75を介してデータベース更新部43に送る。
目標TMP上昇速度算出手段42は膜面曝気風量変動司令部44と目標TMP上昇速度算出部45を備えている。膜面曝気風量変動司令部44では、膜面曝気風量Qが膜面曝気風量Qよりも小さい場合は、膜面曝気風量を増大させるように信号線71bを介して膜面曝気風量制御部16に指令を送る。逆に膜面曝気風量Qが膜面曝気風量Qよりも大きい場合は、膜面曝気風量を減少させるように信号線71bを介して膜面曝気風量制御部16に指令を送る。膜面曝気風量制御部16にて膜面曝気風量を変更後、TMP上昇速度算出部18にてTMP上昇速度Rを算出し、その値を信号線74を介して目標TMP上昇速度算出部45に送る。膜面曝気風量の増減およびTMP上昇速度Rの算出を膜面曝気風量が膜面曝気風量Qに到達するまで繰り返し行う。
目標TMP上昇速度算出部45では、上記の運転により得られたTMP上昇速度と膜面曝気風量との関係から変曲点を算出し、前述のとおりその変曲点におけるTMP上昇速度を新たな目標TMP上昇速度R´と、その変曲点における膜面曝気風量を新たな目標TMP上昇速度R´の際の膜面曝気風量Q´と算出する。変曲点の算出方法は、TMP上昇速度の変化量を膜面曝気風量の変化量で割った値、つまり膜面曝気風量の変化量に対するTMP上昇速度の変化率を算出した値に基づいて変曲点を算出してもよいし、膜面曝気風量とTMP上昇速度をパラメータとして運転コストを算出する式を用いて、変曲点を算出してもよい。例えば、以下のような式がある。以下の式を用いて算出された運転コストが最小となるTMP上昇速度および膜面曝気風量を変曲点とすればよい。

[運転コスト]=f(TMP上昇速度、膜面曝気風量)
 ここで、図11および図12を用いて、データベース更新手段について説明する。被処理水9中の有機物濃度を測定し、その値に基づいてデータベースから目標TMP上昇速度Rを選定する。さらにTMP上昇速度Rがその目標TMP上昇速度Rになるように膜面曝気風量を制御する。その際の膜面曝気風量はデータベースのデータでは膜面曝気風量Qであるが、実際には膜面曝気風量Qである場合、その有機物濃度における膜面曝気風量とTMP上昇速度の関係図を更新する必要がある。図11のように膜面曝気風量Qが幕面曝気風量Qより小さい場合、膜面曝気風量をQからQまで徐々に増加させ、図12のように膜面曝気風量Qが幕面曝気風量Qより大きい場合、膜面曝気風量をQからQまで徐々に減少させ、その都度、TMP上昇速度を算出する。さらに新たに算出された膜面曝気風量とTMP上昇速度との関係図から前述のような変曲点の算出方法を用いて、変曲点を算出し、その変曲点を新たな目標TMP上昇速度R´およびその際の膜面曝気風量Q´と算出する。 
 データベース更新部43では、目標TMP上昇速度算出手段42で算出された新たな目標TMP上昇速度R´と、新たな目標TMP上昇速度R´の際の膜面曝気風量Q´を信号線72bを介してデータベース20に送り、データベースを更新する。さらに膜面曝気風量変動司令部44では、膜面曝気風量が膜面曝気風量Q´となるように信号線71bを介して膜面曝気風量制御部16に指令を送る。膜面曝気風量が膜面曝気風量Q´となるように膜面曝気風量制御部16で制御したのち、データベースの更新手順を終了する。 
 図13には、実施の形態2における膜面曝気風量の調整手順のフローチャートを示す。
 図13に示すように、この発明の実施の形態2における膜面曝気風量の調整手順のフローチャートは、実施の形態1のフローチャートにデータベースの更新手順を追加したものである。その他の手順は実施の形態1と同じにつき、説明を省略する。つまり、発明の実施の形態2における膜面曝気風量の調整手順は、有機物濃度測定手段19で測定された有機物濃度の値から選定されたTMP上昇速度Rと圧力測定部17で測定されたTMPから算出されたTMP上昇速度Rとが等しくなるように膜面曝気風量を制御し、さらにその値が等しくなるように制御された際にデータベースの更新を行う。
 図14には、実施の形態2におけるデータベースの更新手順のフローチャートを示す。有機物濃度測定手段19で測定された有機物濃度の値から選定されたTMP上昇速度Rと圧力測定部17で測定されたTMPから算出されたTMP上昇速度Rとが等しくなるように膜面曝気風量制御部16にて制御する。データベース20のデータから目標TMP上昇速度Rの際の膜面曝気風量Qの値を選択する。また、有機物濃度測定手段19で測定された有機物濃度の値から選定されたTMP上昇速度Rと圧力測定部17で測定されたTMPから算出されたTMP上昇速度Rとが等しい値に制御された際の膜面曝気風量Qの値をTMP上昇速度算出部18で算出する。
次に膜面曝気風量Qと膜面曝気風量Qとを比較する。膜面曝気風量Qと膜面曝気風量Qが等しい、または膜面曝気風量Qと膜面曝気風量Qとの差の絶対値が任意に設定した値bよりも小さければデータベースの更新を行わない。膜面曝気風量Qが膜面曝気風量Qより小さい、または膜面曝気風量Qが膜面曝気風量Qよりも任意に設定した値b以上に大きい場合は、膜面曝気風量をΔQだけ増加させる。膜面曝気風量Qが膜面曝気風量Qより大きい、または膜面曝気風量Qが膜面曝気風量Qよりも任意に設定した値b以上に大きい場合は、膜面曝気風量をΔQだけ減少させる。任意に設定した値bは膜面曝気風量の制御誤差や風量制御における運転の簡便さを考慮して任意に設定することができる。膜面曝気風量の変化量ΔQは任意に設定でき、膜面曝気風量Qと膜面曝気風量Qの差分に基づいて設定しもよいし、TMP上昇速度の変化率に基づいて設定してもよい。膜面曝気風量を増減させたのち、TMP上昇速度を算出する。この膜面曝気風量の変更とTMP上昇速度Rの算出を膜面曝気風量が膜面曝気風量Qに到達するまで繰り返し行う。したがって膜面曝気風量を膜面曝気風量Qから膜面曝気風量Qまで変化させ、その時々のTMP上昇速度を測定していることになる。
上記の運転により得られたTMP上昇速度Rと膜面曝気風量Qとの関係から目標TMP上昇速度算出部45にて、変曲点を算出し、前述のとおりその変曲点におけるTMP上昇速度を新たな目標TMP上昇速度R´と、その変曲点における膜面曝気風量を新たな目標TMP上昇速度R´の際の膜面曝気風量Q´と算出する。
算出された新たな目標TMP上昇速度R´と、新たな目標TMP上昇速度R´の際の膜面曝気風量Q´をデータベース20に送り、データベースを更新する。最後に膜面曝気風量が膜面曝気風量Q´となるように膜面曝気風量を制御し、データベースの更新手順を終了する。
 以上のように実施の形態2の発明は、データベースに保管された被処理水中の有機物濃度とTMP上昇速度との関係を更新し、正確に目標TMP上昇速度を設定できるようにしているから、膜面曝気風量を抑制でき、装置全体の運転コストを低減することができる。
実施の形態3.
 次に、この発明の実施の形態3における膜分離装置を図15に基づいて説明する。図15はこの発明の実施の形態3における膜分離装置の構成図である。
 図15に示すように、この発明の実施の形態3における膜分離装置は、実施の形態1の目標TMP上昇速度設定手段13に、ろ過水配管3中のろ過水の有機物濃度を測定する有機物濃度測定手段22と有機物濃度差分値算出部23を追加したものである。なお、有機物濃度測定手段22は、図2に示すような被処理水9の有機物濃度を測定する有機物濃度測定手段と全く同じ構成のものでよい。
 膜分離槽1内の被処理水9の有機物濃度を測定する有機物濃度測定手段19は、信号線58を介して有機物濃度差分値算出部23と接続され、ろ過水配管3中のろ過水の有機物濃度を測定する有機物濃度測定手段22は信号線59を介して有機物濃度差分値算出部23と接続されている。有機物濃度差分値算出部23は信号線60を介して目標TMP上昇速度選定部21に接続されている。その他の構成は実施の形態1と同じにつき、同じまたは相当部分には同じ符号を付して説明を省略する。
 続いて実施の形態3における膜分離装置の動作について説明する。有機物濃度測定手段22では、分離膜2でろ過された処理水がろ過水配管3を通る途中でろ過水中の有機物濃度を測定する。有機物濃度測定手段22で測定された有機物濃度の値は信号線59を介して有機物濃度差分値算出部23へ送られる。有機物濃度差分値算出部23では、有機物濃度測定手段19と有機物濃度測定手段22のそれぞれで測定された有機物濃度との差分、具体的には、有機物濃度測定手段19で測定された有機物濃度から有機物濃度測定手段22で測定された有機物濃度を差し引いた値が有機物濃度差分値算出部23から信号線60を介して、目標TMP上昇速度選定部21へ送られる。
 有機物濃度測定手段22はろ過水に含まれる有機物濃度を測定する手段であり、ろ過水配管3に有機物濃度センサーを設置し測定してもよく、ろ過水を有機物濃度センサーに供給し、測定してもよい。また、ろ過ポンプ4により排出されたろ過水を採取し、有機物濃度を測定してもよい。データベース20は信号線57を介して目標TMP上昇速度選定部21と接続されている。データベース20はこれまでの水処理で取得した水質、例えば、有機物濃度測定手段19で測定された有機物濃度から有機物濃度測定手段22で測定された有機物濃度を差し引いた値やTMPの時間変化等がデータベースとして記憶、保管されている。
 目標TMP上昇速度選定部21では、データベース20に保管されているデータと有機物濃度差分値算出部23で算出された濃度差(有機物濃度測定手段19で測定された有機物濃度から有機物濃度測定手段22で測定された有機物濃度を差し引いた値)に基づき、目標とするTMP上昇速度Rを選定するところである。目標TMP上昇速度Rとしては0.01~40kPa/hであることが好ましい。その他の動作は実施の形態1と同じである。
 ここで、膜分離槽1内の被処理水9に含まれる有機物がすべて分離膜2の閉塞の原因になるとは限らず、有機物の一部は分離膜2を透過し、ろ過された処理水10中に含有される。そのため、分離膜2前後の有機物濃度の差分を検出することで、すなわち膜分離槽1内の被処理水9に含まれる有機物濃度とろ過された処理水10に含まれる有機物濃度の差分値を求めることで、ろ過した水量と併せて分離膜2に捕捉された有機物量を把握することができる。すなわち、間接的に分離膜2の閉塞の原因となる有機物量を算出することができ、特に有機物濃度として紫外線吸光度を用いた場合、分離膜2に捕捉された有機物量を精度よく、かつ吸光度測定は瞬間的に実施できるため、迅速に算出することができる。
 以上のように実施の形態3の発明は、膜分離槽1内の被処理水9に含まれる有機物濃度とろ過水に含まれる有機物濃度の差分値を求めることで膜の閉塞の原因となる有機物濃度を正確に算出することができ、この差分値に応じて目標TMP上昇速度Rを設定し、その目標TMP上昇速度Rに維持されるように膜面曝気風量を制御するようにしているから、膜面曝気風量を抑制でき、装置全体の運転コストを低減することができる。
実施の形態4.
 次に、この発明の実施の形態4における膜分離装置を図16に基づいて説明する。図16はこの発明の実施の形態4における膜分離装置に使用される有機物濃度測定手段の説明図である。
 この発明の実施の形態4における有機物濃度測定手段19は、膜分離槽1内の被処理水9の浮遊物を、ろ過分離、遠心分離、沈殿分離のいずれかの方法により固液分離を行う固液分離部24と、固液分離部24で固液分離した液相中の有機物濃度を測定する有機物濃度測定部25で構成されている。
 膜分離槽1内の被処理水9が固液分離部24に供給されて、ろ過分離、遠心分離、沈殿分離のいずれかの方法により固液分離され、固液分離液26が得られる。固液分離部24で得られた固液分離液26を有機物濃度測定部25に供給して固液分離液26の有機物濃度を測定する。
 固液分離部24においてろ過分離を行う場合、ろ過分離で使用するろ紙もしくはろ過膜の孔径は0.2~10μmであることが好ましい。ただし、分離膜2の孔径よりも大きくする必要がある。分離膜2よりもろ過分離の孔径が小さい場合、ろ過分離時に分離膜2以上の量の有機物がろ過分離で使用するろ紙に捕捉されてしまい、分離膜2に捕捉される有機物量を正確に把握することができない。ろ過膜の孔径が0.2μmよりも小さい場合も同様である。また、ろ過膜の孔径が10μmよりも大きい場合、固形物や濁度成分がろ過分離で使用するろ紙もしくはろ過膜を通過して有機物濃度を正確に測定することができない。
 また、固液分離部24において遠心分離を行う場合、1000~10000Gの重力加速度で遠心分離することが好ましい。重力加速度が1000Gより小さい場合は固液分離が不十分で、固形物や濁度成分がろ過分離で使用するろ紙もしくはろ過膜を通過して有機物濃度を正確に測定することができない。重力加速度が10000Gよりも大きい場合、装置が大掛かりになり膜分離装置の横に設置することができない。
 また、固液分離部24において沈殿分離を行う場合、沈殿時間は15分~2時間とするのがよい。沈殿時間が15分未満では固液分離が不十分で、固形物や濁度成分がろ過分離で使用するろ紙もしくはろ過膜を通過して有機物濃度を正確に測定することができない。また沈殿時間が2時間を超えると被処理水9の性状が変化して、有機物濃度を正確に測定することができない。
 活性汚泥などの被処理水9中に存在する固形物が膜面に堆積することにより膜の閉塞が発生するが、膜面曝気を行うことでこれを抑制している。被処理水9中の有機物には、そのサイズが大きいために分離膜2表面に留まって分離膜2内にまで入れない有機物があり、これは膜面曝気で除去できる。それよりもサイズが小さい有機物は分離膜2内に入り込み、一部は分離膜2で捕捉され、一部は分離膜2を通過してろ過された処理水10と共にろ過ポンプ4を通って排出される。この分離膜2で捕捉される有機物が目詰まり物質であり、TMP上昇要因となる。分離膜2で捕捉される有機物を上述の方法で測定することができ、すなわち膜表面に留まって分離膜2内にまで入れない被処理水9中の有機物は、ろ過分離、遠心分離、沈殿分離等で予め取り除き、それらを取り除いた被処理水9の有機物濃度を測定することでTMPの上昇速度を精度よく選定できる。
 以上のように実施の形態4の発明は、膜分離槽内の被処理水を、ろ過分離、遠心分離、沈殿分離のいずれかの方法により固液分離し、固液分離した液相中の有機物濃度を測定することで、膜の閉塞の原因となる有機物をより正確に測定することができる。
 なお、膜分離槽1内の被処理水9を固液分離部24で固液分離した固液分離液26を、実施の形態1に記載した有機物濃度測定手段19の有機物指標測定手段27に供給してもよい。このようにすることで、UV、TOC、COD、BOD、フミン酸濃度、糖濃度、タンパク質濃度の少なくともいずれかの有機物指標を測定することができる。これらの物質は分離膜に捕捉されやすく、目詰まりの指標として使用できることを確認している。
 また、図16では有機物濃度測定部25で測定した有機物濃度を目標TMP上昇速度選定部21に出力しているが、図15の実施の形態3で説明した有機物濃度差分値算出部23に出力してもよい。
実施の形態5.
 次に、この発明の実施の形態5における膜分離装置を図17および図18に基づいて説明する。図17は実施の形態5における膜分離装置に使用される目標TMP上昇速度設定手段13の構成図である。
 この発明の実施の形態5における目標TMP上昇速度設定手段13は、データベース20、有機物濃度測定手段19、目標TMP上昇速度選定部21に加えて、膜分離槽1中の被処理水の水温を測定する水温測定手段28、MLSS(曝気槽内混合液中の浮遊物質:Mixed Liquor Suspended Solid)濃度を測定するMLSS測定手段29、分離膜2のろ過フラックスを測定するフラックス測定手段30のいずれか一つ以上を備えている。
 水温測定手段28は信号線65を介して、MLSS測定手段は信号線66を介して、フラックス測定手段は信号線67を介して目標TMP上昇速度選定部21と接続されている。その他の構成は実施の形態1~4と同様であるので、説明を省略する。
 続いて実施の形態5における膜分離装置の動作について説明する。
 水温測定手段28は、被処理水9の水温を測定する手段であり、膜分離槽1に水温センサーを設置し測定して測定する、もしくは被処理水9を水温センサーに供給し、測定してもよい。MLSS測定手段29は、被処理水9のMLSS濃度や濁度、SS(Suspended Solid)等を測定する手段であり、膜分離槽1にMLSS濃度センサーや濁度計等を設置して測定する、もしくは被処理水をMLSS濃度センサーや濁度計等に供給し、測定してもよい。また、被処理水9を採取して、MLSS濃度、SS濃度、濁度等を手分析で測定してもよい。
 フラックス測定手段30は、分離膜2のろ過フラックスを測定する手段であり、ろ過水配管3に流量センサーを設置して測定する、もしくは一定時間のろ過水量を測定して流量を算出する。さらにその流量値を分離膜2の膜面積で除することで、ろ過フラックスを測定できる。水温測定手段28、MLSS測定手段29、フラックス測定手段30で得られた値はそれぞれ信号線65、66および67を介して目標TMP上昇速度選定部21に送られる。
 目標TMP上昇速度選定部21において、データベース20から送られてきたTMP上昇速度、膜面曝気風量、有機物濃度等の過去データ、また水温測定手段28、MLSS測定手段29、フラックス測定手段30に関する過去の運転データ、さらに過去の実験等で得られたこれらのデータ等から現在の膜分離装置の被処理水9の水質に適した膜面曝気風量を選定する。膜分離装置の運転において、水温は1~50℃であることが好ましい。水温1℃以下では、また水温50℃以上では分離膜2の耐久性が低下し、安定した膜分離装置の運転が困難である。MLSS濃度、SS濃度は1~30000mg/Lであることが好ましい。
 また被処理水9の濁度は0.1~10000度が好ましい。MLSS濃度、SS濃度が1mg/L未満、もしくは濁度が0.1未満の場合はろ過処理が不要となる。また、MLSS濃度、SS濃度が30000mg/以上、もしくは濁度が10000度以上の場合、分離膜2がすぐに目詰まりしてしまい、このような水質の被処理水9はろ過処理に適さない。分離膜2のろ過フラックスは0.01~10m/日であることが好ましい。ろ過フラックスは0.01m/日未満では分離膜2の必要量が膨大となり、水処理として現実的ではない。またろ過フラックス10m/日以上では分離膜2がすぐに目詰まりし、分離膜2を洗浄してもTMPを回復できないため、ろ過処理を実現できない。
 以下、具体的な膜面曝気風量の制御方法について説明する。水温はそれが低いほど水の粘性が高くなるため、TMP上昇速度が大きくなる。また、MLSS濃度、SS濃度、濁度等が高くなると分離膜2が目詰まりしやすくなるため、TMP上昇速度が大きくなる。また、ろ過フラックスが大きくなるほど分離膜2を水が透過する速度が大きくなり、目詰まりしやすくなってTMP上昇速度が大きくなる。従って、これらの水質項目を測定することは、TMP上昇速度を適切な値に保ちつつ膜分離装置を安定して、すなわちTMP上昇速度を制御しながら膜分離装置を運転するために重要である。
 従って、水温が低いほど、MLSS濃度、SS濃度、濁度が高いほど、ろ過フラックスが大きいほどTMP上昇速度は高くなる。なお、水温測定手段28、MLSS測定手段29、フラックス測定手段30のいずれか一つ、もしくは複数、全てを組み合わせて使用することも可能である。
 データベースとしては図18A~18Dに示すものが使用される。即ち、図18Aは膜面曝気風量とTMP上昇速度と紫外線吸光度との関係を示すデータベースの図、図18Bは膜面曝気風量とTMP上昇速度と水温との関係を示すデータベースの図、図18Cは膜面曝気風量とTMP上昇速度と曝気槽内混合液中の浮遊物質との関係を示すデータベースの図、図18Dは膜面曝気風量とTMP上昇速度とろ過フラックスとの関係を示すデータベースの図である。なお図中の○印が変曲点である。
 図18A~18Dに示すように、各有機物濃度(波長254nmの紫外線吸収光度UV)、各水温、各MLSS濃度(本値はSS濃度、濁度でもよい)、および各ろ過フラックスの組み合わせにおいて、過去の運転データもしくは実験データを基に膜面曝気風量とTMP上昇速度の関係をデータベース20に保管しておく。
 その際、全てのデータが揃っていなくても、それぞれのデータを補間することでデータベースとして使用可能である。例えば、水温15℃と水温30℃のデータベースはあるが、水温25℃で運転する場合はそれぞれの水温での各膜面曝気風量と各TMP上昇速度の値の平均値を採用してデータベースとすることも可能である。このようにある現存するデータベースに沿って補間しても新たなデータベースとしてもよいし、予め今あるデータベースから補間した関係を構築して、新たなデータベースとしてもよい。
 すなわち、膜面曝気風量、有機物濃度、水温、MLSS濃度、ろ過フラックスをパラメータとして、TMP上昇速度を算出する式を構築してもよい。例えば、以下のような式である。
 ただし、全てのパラメータの総和ではなく、乗算、除算、累乗算、対数が入り混じった式を構築してもよく、過去の運転データを再現できる式を構築することが重要である。
  [TMP上昇速度]=α[膜面曝気風量]+β[有機物濃度]+γ[水温]+δ[MLSS濃度]+ε[ろ過フラックス]
     (α、β、γ、δ、εは定数)・・・・・(1)
 以上のように実施の形態5の発明によれば、膜分離槽1中の被処理水9の有機物濃度、水温、MLSS濃度、分離膜2のろ過フラックスのいずれか一つ以上が変化した場合でも、目標TMP上昇速度をより正確に設定できる。
実施の形態6.
 次に、この発明の実施の形態6における膜分離装置を図19に基づいて説明する。図19はこの発明の実施の形態6における膜分離装置に使用される目標TMP上昇速度設定手段13の説明図である。
 図19において、有機物濃度差分値算出部23に信号線59を介して有機物濃度測定手段22が接続されている以外は実施の形態5と同じである。
 上述したとおり、膜分離槽1内の被処理水9に含まれる有機物がすべて分離膜2の閉塞の原因になるとは限らず、有機物の一部は分離膜2を透過し、ろ過された処理水10中に含有される。そのため、分離膜2前後の有機物濃度の差分を検出することで、すなわち膜分離槽1内の被処理水9に含まれる有機物濃度とろ過された処理水10に含まれる有機物濃度の差分値を求めることで、ろ過した水量と併せて分離膜2に捕捉された有機物量を把握することができる。これにより直接的に分離膜2に捕捉される有機物量を確認することができるため、被処理水9の有機物濃度の変動に対して分離膜2の目詰まり程度の把握が容易となり、水処理負荷を低下させる、SRTを大きくする、溶存酸素濃度を高める等の被処理水9の有機物濃度を低減する方策を取り易くなる。
 以下、この発明を実施例に基づき詳細に説明する。ただし、この発明は、以下の実施例に制約されるものではない。
 図20に示した膜分離装置により、3本の分離膜2a~2c(区別するため、添字a、b、cを付す。以下、同様)を同時に浸漬して、分離膜2のそれぞれの下部に散気管7a~7cを配置して膜ろ過処理を実施した。その際、1本の分離膜2aに図1に示したTMP上昇速度変化手段12を、もう1本の分離膜2bには図15に示したTMP上昇速度変化手段12を、さらにもう1本の分離膜2cには図21に示す膜面曝気風量制御を実施した。なお、被処理水の水温は30℃であり、MLSS濃度は9000mg/Lであった。
(実施例1)
 実施例1では膜面積1mの分離膜2により膜分離槽1内の被処理水9をろ過フラックス2.0m/日でろ過した。被処理水中の有機物濃度を測定するために被処理水9を孔径1μmのフィルターでろ過し、そのろ液の波長254nmの吸光度(UV254)を測定した。さらに測定したUV254値に基づいてデータベース20から得た図22に示す膜面曝気風量とTMP上昇速度の関係から目標TMP上昇速度を選定し、TMP上昇速度測定値が目標TMP上昇速度Rに維持されるように膜面曝気装置の膜面曝気風量を制御した。
 ろ過開始1時間後のUV254は0.05Abs/cmであり、変曲点のTMP上昇速度は0.4kPa/hであった。そこで、TMP上昇速度測定値が目標TMP上昇速度Rに維持されるよう膜面曝気装置の膜面曝気風量を0.60m/hr/mに制御した。さらにろ過開始1時間後、流入水水質が変動したため膜分離槽1内の被処理水9の水質も変化し、UV254が0.10Abs/cmに上昇した。そのときの目標TMP上昇速度Rは、図22に示したデータベースより0.7kPa/hであり、膜面積当たりの膜面曝気風量は0.72m/hr/mであった。
(実施例2)
 実施例2では流入水8を膜分離槽1に供給し、膜面積1mの分離膜2により膜分離槽1内の被処理水9をろ過フラックス2.0m/日でろ過した。被処理水中の有機物濃度を測定するために被処理水9を孔径1μmのフィルターでろ過し、そのろ液のUV254を測定した。さらに、ろ過された処理水10に含まれる有機物濃度を測定するためにろ過水のUV254を測定した。被処理水9のろ液のUV254とろ過水のUV254を有機物濃度差分値算出部23に出力し、有機物濃度差分値に基づいてデータベース20から図23に示す膜面曝気風量とTMP上昇速度の関係から目標TMP上昇速度を選定し、TMP上昇速度測定値が目標TMP上昇速度に維持されるように膜面曝気装置の膜面曝気風量を制御した。
 ろ過開始1時間後の被処理水9とろ過された処理水10のUV254の差分ΔUV254は0.02Abs/cmであり、変曲点のTMP上昇速度は0.4kPa/hであった。そこで、TMP上昇速度測定値が目標TMP上昇速度Rに維持されるよう膜面曝気装置の膜面曝気風量を0.6m/hr/mに制御した。しかし、ろ過開始さらに1時間後、流入水水質が変動したため膜分離槽1内の被処理水9の水質も変化し、被処理水9と膜ろ過水3のUV254の差分が0.07Abs/cmに上昇した。そのときの目標TMP上昇速度Rは、図23に示したデータベースより0.7kPa/hであり、膜面積当たりの膜面曝気風量は0.72m/hr/mであった。
(比較例)
 比較例では被処理水9中の有機物濃度を測定することなく事前に目標TMP上昇速度Rを固定値に設定した以外は、実施例1と同様のろ過運転とした。目標TMP上昇速度入力手段31にて、目標TMP上昇速度Rを0.4kPa/hに固定し、TMP上昇速度比較手段15に出力した。さらにTMP上昇速度測定値が目標TMP上昇速度Rに維持されるように膜面曝気装置の膜面積当たりの膜面曝気風量を0.6m/h/mに制御した。しかし、ろ過開始さらに1時間後、流入水水質が変動したため膜分離槽1内の被処理水9の水質も変化し、目標TMP上昇速度を0.4kPa/hを維持できるように設定した膜面曝気風量は図22および図23の破線丸印から1.2m/h/mとした。この値は実施例1、実施例2の膜面曝気風量0.72m/hr/mよりも大幅に大きくなった。
 実施例1および実施例2では、比較例と比べて、被処理水の有機物濃度または被処理水の有機物濃度とろ過水の有機物濃度の差分値に応じて目標TMP上昇速度を変化させることができた。そのため、膜分離槽1の被処理水の性状が変化した後の実施例1および実施例2の膜面曝気風量は比較例のそれよりも小さい値でTMP上昇速度を維持することができ、膜分離装置の省エネ運転が可能であった。
 なお、TMP上昇速度変化手段12は、ハードウエアの一例を図24に示すように、プロセッサ100と記憶装置101から構成される。記憶装置は図示していないが、ランダムアクセスメモリ等の揮発性記憶装置と、フラッシュメモリ等の不揮発性の補助記憶装置とを具備する。また、フラッシュメモリの代わりにハードディスクの補助記憶装置を具備してもよい。プロセッサ100は、記憶装置101から入力されたプログラムを実行する。この場合、補助記憶装置から揮発性記憶装置を介してプロセッサ100にプログラムが入力される。また、プロセッサ100は、演算結果等のデータを記憶装置101の揮発性記憶装置に出力してもよいし、揮発性記憶装置を介して補助記憶装置にデータを保存してもよい。
 以上、この発明の実施の形態を記述したが、この発明は実施の形態に限定されるものではなく、種々の設計変更を行うことが可能であり、その発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略することが可能である。
 1:膜分離槽、2:分離膜、3:ろ過水配管、4:ろ過ポンプ、5:膜面曝気装置、6:曝気配管、7:散気管、8:流入水、9:被処理水、10:処理水(ろ過水)、11:気泡、12:TMP上昇速度変化手段、13:目標TMP上昇速度設定手段、14:TMP上昇速度測定手段、15:TMP上昇速度比較手段、16:膜面曝気風量制御部、17:圧力測定部、18:TMP上昇速度算出部、19:有機物濃度測定手段、20:データベース、21:目標TMP上昇速度選定部、22:有機物濃度測定手段、23:有機物濃度差分値算出部、24:固液分離部、25:有機物濃度測定部、27:有機物指標測定手段、28:水温測定手段、29:MLSS測定手段、30:フラックス測定手段、31:目標TMP上昇速度入力手段。

Claims (16)

  1.  膜分離槽内の被処理水をろ過する分離膜と、前記分離膜の膜面曝気を行うための空気を供給する膜面曝気装置と、前記被処理水中の有機物濃度を測定する有機物濃度測定手段と、前記分離膜の膜間差圧を測定する圧力測定部と、前記有機物濃度測定手段で測定された有機物濃度の値から選定された膜間差圧上昇速度Rと前記圧力測定部で測定された膜間差圧から算出された膜間差圧上昇速度Rとを比較する膜間差圧上昇速度比較手段と、前記膜面曝気装置の膜面曝気風量を制御する制御部を備え、前記膜間差圧上昇速度比較手段で得られた前記有機物濃度測定手段で測定された有機物濃度の値から選定された膜間差圧上昇速度Rと前記圧力測定部で測定された膜間差圧から算出された膜間差圧上昇速度Rとの差異に基づいて前記制御部により前記膜面曝気風量を変動させることを特徴とする膜分離装置。
  2.  前記有機物濃度測定手段で測定された有機物濃度の値から膜間差圧上昇速度Rを選定する際に、予め取得された被処理水中の有機物濃度と膜間差圧上昇速度との関係が保管されたデータから選定することを特徴とする請求項1に記載の膜分離装置。
  3.  前記圧力測定部で測定された膜間差圧から膜間差圧上昇速度Rを算出する際に、前記分離膜の膜間差圧の時間変化から算出することを特徴とする請求項1または請求項2に記載の膜分離装置。
  4.  膜分離槽内の被処理水をろ過する分離膜と、前記分離膜の膜面曝気を行うための空気を供給する膜面曝気装置と、前記被処理水中の有機物濃度を測定する有機物濃度測定手段と、前記分離膜の膜間差圧を測定する圧力測定部と、前記被処理水中の有機物濃度の値から目標膜間差圧上昇速度Rを設定する目標膜間差圧上昇速度設定手段と、前記分離膜の膜間差圧から膜間差圧上昇速度Rを算出する膜間差圧上昇速度測定手段と、前記目標膜間差圧上昇速度設定手段からの目標膜間差圧上昇速度Rと前記膜間差圧上昇速度測定手段からの膜間差圧上昇速度Rとを比較する膜間差圧上昇速度比較手段と、前記膜面曝気装置の膜面曝気風量を制御する制御部を備え、前記膜間差圧上昇速度比較手段で得られた前記被処理水中の有機物濃度の値から選定された膜間差圧上昇速度Rと前記圧力測定部で測定された膜間差圧から算出された膜間差圧上昇速度Rとの差異に基づいて前記制御部により前記膜面曝気風量を変動させることを特徴とする膜分離装置。
  5.  前記目標膜間差圧上昇速度設定手段は、予め取得された被処理水中の有機物濃度と膜間差圧上昇速度との関係が保管されたデータベースと、前記有機物濃度測定手段で測定された有機物濃度の値と前記データベースのデータとから目標膜間差圧上昇速度Rを選定する目標膜間差圧上昇速度選定部を備えた請求項4に記載の膜分離装置。
  6.  前記膜間差圧上昇速度測定手段は、前記圧力測定部で測定された膜間差圧から膜間差圧上昇速度Rを算出する膜間差圧上昇速度算出部を備えた請求項4または請求項5に記載の膜分離装置。
  7.  前記制御部は、前記有機物濃度測定手段で測定された有機物濃度の値から選定された膜間差圧上昇速度Rが前記圧力測定部で測定された膜間差圧から算出された膜間差圧上昇速度Rよりも大きい場合に前記膜面曝気風量を減少させ、前記有機物濃度測定手段で測定された有機物濃度の値から選定された膜間差圧上昇速度Rが前記圧力測定部で測定された膜間差圧から算出された膜間差圧上昇速度Rよりも小さい場合に前記膜面曝気風量を増加させることを特徴とする請求項1から請求項6のいずれか1項に記載の膜分離装置。
  8.  前記有機物濃度測定手段で測定された有機物濃度における新たな目的膜間差圧上昇速度R´を算出し、前記データベースに保管された被処理水中の有機物濃度と膜間差圧上昇速度との関係を更新するデータベース更新手段を備えていることを特徴とする請求項5に記載の膜分離装置。
  9.  前記データベース更新手段は、前記有機物濃度測定手段で測定された有機物濃度の値から選定された膜間差圧上昇速度Rと前記圧力測定部で測定された膜間差圧から算出された膜間差圧上昇速度Rとが等しくなるように制御された際の膜面曝気風量Qとデータベースに保管されている目標膜間差圧上昇速度Rの際の膜面曝気風量Qを比較する膜面曝気風量比較手段と、前記膜面曝気風量比較手段において膜面曝気風量Qと膜面曝気風量Qの値が異なる場合に前記制御部にて前記膜面曝気風量を変動させて新たな目標膜間差圧上昇速度R´を算出する目標膜間差圧上昇速度算出手段と、前記目標膜間差圧上昇速度算出手段により算出された新たな目標膜間差圧上昇速度R´とその際の膜面曝気風量Q´と前記有機物濃度測定手段で測定された有機物濃度の値を前記データベースに保管するデータベース更新部を備えた請求項8に記載の膜分離装置。
  10.  前記目標膜間差圧上昇速度算出手段は、前記膜面曝気風量を変動させるよう前記制御部に信号を送る膜面曝気風量変動指令部と、前記膜面曝気風量変動指令部から送られた指令により前記制御部にて前記膜面曝気風量を変動させた際の膜面曝気風量とその際の膜間差圧上昇速度の関係に基づき新たな目標膜間差圧上昇速度R´を算出する目標膜間差圧上昇速度算出部を備えた請求項9に記載の膜分離装置。
  11.  前記膜面曝気風量変動指令部において、膜面曝気風量Qが膜面曝気風量Qよりも大きい場合に前記膜面曝気風量を減少させ、膜面曝気風量Qが膜面曝気風量Qよりも小さい場合に膜面曝気風量を増加させる指令を前記制御部に送り、前記目標膜間差圧上昇速度算出部において、膜面曝気風量をQからQまで変動させた際の膜面曝気風量とその際の膜間差圧上昇速度の関係に基づき新たな目標膜間差圧上昇速度R´を算出することを特徴とする請求項10に記載の膜分離装置。
  12.  膜分離槽内の被処理水をろ過する分離膜と、前記分離膜の膜面曝気を行うための空気を供給する膜面曝気装置と、前記被処理水中の有機物濃度を測定する第1の有機物濃度測定手段と、前記分離膜でろ過されたろ過水中の有機物濃度を測定する第2の有機物濃度測定手段と、前記分離膜の膜間差圧を測定する圧力測定部と、前記第1の有機物濃度測定手段で測定された有機物濃度の値から前記第2の有機物濃度測定手段で測定された有機物濃度の値を差し引いた有機物濃度差から選定された膜間差圧上昇速度Rと前記圧力測定部で測定された膜間差圧から算出された膜間差圧上昇速度Rとを比較する膜間差圧上昇速度比較手段と、前記膜面曝気装置の膜面曝気風量を制御する制御部を備え、前記膜間差圧上昇速度比較手段で得られた前記有機物濃度測定手段で測定された有機物濃度の値から選定された膜間差圧上昇速度Rと前記圧力測定部で測定された膜間差圧から算出された膜間差圧上昇速度Rとの差異に基づいて前記制御部により前記膜面曝気風量を変動させることを特徴とする膜分離装置。
  13.  前記有機物濃度の測定は、前記膜分離槽中の被処理水を、ろ過分離、遠心分離、沈殿分離のいずれかの方法により固液分離し、前記固液分離した後の液中の有機物濃度を測定することを特徴とする請求項1から請求項12のいずれか1項に記載の膜分離装置。
  14.  前記有機物濃度は、紫外線吸光度、総有機炭素濃度、生物化学的酸素要求量、化学的酸素要求量、フミン酸濃度、糖濃度、蛋白質濃度の少なくともいずれか一つ以上を測定するようにしたことを特徴とする請求項1から請求項13のいずれか1項に記載の膜分離装置。
  15.  前記有機物濃度から膜間差圧上昇速度Rを選定する際に、前記被処理水中の水温、浮遊物質濃度、前記分離膜のろ過フラックスの少なくとも一つ以上の値を用いて膜間差圧上昇速度Rを選定することを特徴とする請求項1から請求項14のいずれか1項に記載の膜分離装置。
  16.  膜分離槽内の被処理水を分離膜でろ過し、前記分離膜の下方から散気管で気泡を供給する膜面曝気を行う際、前記被処理水中の有機物濃度を測定し、その測定値から目標とする膜間差圧上昇速度Rを選定し、前記膜間差圧上昇速度Rと前記分離膜の膜間差圧の上昇速度Rとを比較して、その差異が小さくなるように前記膜面曝気の風量を設定することを特徴とする膜分離方法。
PCT/JP2017/040283 2017-03-23 2017-11-08 膜分離装置および膜分離方法 WO2018173354A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/481,738 US20200001240A1 (en) 2017-03-23 2017-11-08 Membrane separation device and membrane separation method
KR1020197026455A KR20190112140A (ko) 2017-03-23 2017-11-08 막 분리 장치 및 막 분리 방법
JP2018507752A JP6342101B1 (ja) 2017-03-23 2017-11-08 膜分離装置および膜分離方法
SG11201906887Y SG11201906887YA (en) 2017-03-23 2017-11-08 Membrane separation device and membrane separation method
CN201780088501.1A CN110431111B (zh) 2017-03-23 2017-11-08 膜分离装置及膜分离方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-057090 2017-03-23
JP2017057090 2017-03-23

Publications (1)

Publication Number Publication Date
WO2018173354A1 true WO2018173354A1 (ja) 2018-09-27

Family

ID=63585299

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/040283 WO2018173354A1 (ja) 2017-03-23 2017-11-08 膜分離装置および膜分離方法

Country Status (5)

Country Link
US (1) US20200001240A1 (ja)
KR (1) KR20190112140A (ja)
CN (1) CN110431111B (ja)
SG (1) SG11201906887YA (ja)
WO (1) WO2018173354A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020199472A (ja) * 2019-06-12 2020-12-17 東芝インフラシステムズ株式会社 膜処理制御システム及び膜処理制御方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3050199B1 (fr) * 2016-04-18 2022-01-21 Degremont Regulation d'un systeme de production d'air centralise pour une usine de traitement des eaux usees
JP6614277B2 (ja) * 2018-05-21 2019-12-04 栗田工業株式会社 除濁システムの診断装置
WO2020055131A1 (ko) 2018-09-11 2020-03-19 주식회사 엘지화학 Maldi 질량분석용 수불용성 물질 시편의 제조방법 및 maldi 질량분석법을 이용한 수불용성 물질의 정량분석방법
WO2021192088A1 (ja) * 2020-03-25 2021-09-30 三菱電機株式会社 水処理装置および水処理方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11319516A (ja) * 1998-05-21 1999-11-24 Nkk Corp 水ろ過処理装置およびその運転方法
JP2005144291A (ja) * 2003-11-13 2005-06-09 Ngk Insulators Ltd 曝気風量の制御方法
WO2011158559A1 (ja) * 2010-06-14 2011-12-22 東レ株式会社 膜モジュールの洗浄方法
JP2012200631A (ja) * 2011-03-24 2012-10-22 Kubota Corp 分離膜のファウリングの評価方法及び膜分離設備の運転方法
WO2013146976A1 (ja) * 2012-03-28 2013-10-03 株式会社クボタ 膜分離装置の運転方法及び膜分離装置
WO2014034836A1 (ja) * 2012-08-30 2014-03-06 東レ株式会社 膜分離活性汚泥法の膜面洗浄方法
JP2015231591A (ja) * 2014-06-09 2015-12-24 三菱レイヨン株式会社 遠隔監視制御システム
WO2017033478A1 (ja) * 2015-08-27 2017-03-02 三菱電機株式会社 水処理方法および水処理装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0775782A (ja) * 1993-09-09 1995-03-20 Kubota Corp 膜分離方法
JP3572992B2 (ja) 1999-04-21 2004-10-06 日立プラント建設株式会社 膜濾過装置の運転方法
JP4603395B2 (ja) * 2005-03-15 2010-12-22 株式会社神鋼環境ソリューション ろ過膜の洗浄方法
JP5822264B2 (ja) * 2011-07-25 2015-11-24 株式会社クボタ 膜分離活性汚泥処理装置の運転方法
JP5841473B2 (ja) * 2012-03-28 2016-01-13 株式会社クボタ 膜分離装置の運転方法及び膜分離装置
JP5841474B2 (ja) 2012-03-28 2016-01-13 株式会社クボタ 膜分離装置の運転方法及び膜分離装置
CN203173880U (zh) * 2013-04-09 2013-09-04 北京国环清华环境工程设计研究院有限公司 用于控制膜池曝气量的系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11319516A (ja) * 1998-05-21 1999-11-24 Nkk Corp 水ろ過処理装置およびその運転方法
JP2005144291A (ja) * 2003-11-13 2005-06-09 Ngk Insulators Ltd 曝気風量の制御方法
WO2011158559A1 (ja) * 2010-06-14 2011-12-22 東レ株式会社 膜モジュールの洗浄方法
JP2012200631A (ja) * 2011-03-24 2012-10-22 Kubota Corp 分離膜のファウリングの評価方法及び膜分離設備の運転方法
WO2013146976A1 (ja) * 2012-03-28 2013-10-03 株式会社クボタ 膜分離装置の運転方法及び膜分離装置
WO2014034836A1 (ja) * 2012-08-30 2014-03-06 東レ株式会社 膜分離活性汚泥法の膜面洗浄方法
JP2015231591A (ja) * 2014-06-09 2015-12-24 三菱レイヨン株式会社 遠隔監視制御システム
WO2017033478A1 (ja) * 2015-08-27 2017-03-02 三菱電機株式会社 水処理方法および水処理装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020199472A (ja) * 2019-06-12 2020-12-17 東芝インフラシステムズ株式会社 膜処理制御システム及び膜処理制御方法
JP7378972B2 (ja) 2019-06-12 2023-11-14 東芝インフラシステムズ株式会社 膜処理制御システム及び膜処理制御方法

Also Published As

Publication number Publication date
KR20190112140A (ko) 2019-10-02
CN110431111B (zh) 2021-09-07
US20200001240A1 (en) 2020-01-02
SG11201906887YA (en) 2019-10-30
CN110431111A (zh) 2019-11-08

Similar Documents

Publication Publication Date Title
WO2018173354A1 (ja) 膜分離装置および膜分離方法
JP6342101B1 (ja) 膜分離装置および膜分離方法
CN104968421B (zh) 用于清洁膜的系统及使用其清洁膜的方法
US20160102003A1 (en) Advanced control system for wastewater treatment plants with membrane bioreactors
KR102329058B1 (ko) 분리막 모듈의 막힘 개소 특정 프로그램을 기록한 컴퓨터 판독 가능한 기록 매체, 조수 시스템 및 조수 방법
JP6479277B1 (ja) 散気量制御システム及び散気量制御方法
JP5822264B2 (ja) 膜分離活性汚泥処理装置の運転方法
JP5595956B2 (ja) 分離膜のファウリングの評価方法及び膜分離設備の運転方法
JPH11319516A (ja) 水ろ過処理装置およびその運転方法
RU2394778C2 (ru) Способ обработки сточных вод
JP2010012434A (ja) Mbr+roシステムの構造および運転方法。
JP2007000727A (ja) 膜分離活性汚泥処理装置の運転方法
KR101522254B1 (ko) 유동적 회수율을 갖는 2단 막여과 시스템 및 이의 운전방법
JP5868217B2 (ja) 膜分離活性汚泥処理方法およびシステム
JP7103526B2 (ja) 造水装置の洗浄トラブル判定方法および洗浄トラブル判定プログラム
JPH11169851A (ja) 水ろ過処理装置およびその運転方法
JP2018008192A (ja) ファウラントの定量方法
JPH10165782A (ja) 膜モジュール及びその運転方法
JP4142401B2 (ja) ろ過式水処理方法及びろ過式水処理装置
JP2005270934A (ja) 膜ろ過方法及び膜ろ過装置
JP2005195499A (ja) Sdi測定方法、sdi測定装置、及び逆浸透膜を用いた造水方法
JP4872391B2 (ja) 膜分離装置及び膜分離方法
JP2003053155A (ja) 膜ろ過方法
JP2018008191A (ja) 水処理方法
Nywening et al. Influence of Operating Conditions on Fouling Behavior in Wastewater Membrane Bioreactor Processes

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018507752

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17901830

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197026455

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17901830

Country of ref document: EP

Kind code of ref document: A1