WO2018171631A1 - 无线链路失败检测方法和用户设备 - Google Patents

无线链路失败检测方法和用户设备 Download PDF

Info

Publication number
WO2018171631A1
WO2018171631A1 PCT/CN2018/079851 CN2018079851W WO2018171631A1 WO 2018171631 A1 WO2018171631 A1 WO 2018171631A1 CN 2018079851 W CN2018079851 W CN 2018079851W WO 2018171631 A1 WO2018171631 A1 WO 2018171631A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel quality
transmit
beams
condition
reference signal
Prior art date
Application number
PCT/CN2018/079851
Other languages
English (en)
French (fr)
Inventor
王静
刘柳
蒋惠玲
原田浩树
Original Assignee
株式会社Ntt都科摩
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ntt都科摩 filed Critical 株式会社Ntt都科摩
Priority to CN201880019680.8A priority Critical patent/CN110447176B/zh
Priority to US16/495,734 priority patent/US11451313B2/en
Priority to JP2019552039A priority patent/JP7136797B2/ja
Priority to EP18771089.2A priority patent/EP3605859A4/en
Publication of WO2018171631A1 publication Critical patent/WO2018171631A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0408Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more beams, i.e. beam diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/19Connection re-establishment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals

Definitions

  • the present disclosure relates to radio link failure detection, and more particularly to a method of radio link failure detection in a multi-beam scenario and corresponding user equipment.
  • the downlink channel quality between a User Equipment (UE) and a Base Station (BS) may be degraded due to changes in the wireless environment, etc., resulting in Radio Link Failure (RLF), thereby affecting the UE and Communication between base stations.
  • RLF Radio Link Failure
  • the UE monitors the channel quality of the downlink to detect radio link failure (RLF), and performs RRC re-establishment when RLF is detected.
  • the UE periodically measures the radio quality of a downlink channel (eg, a downlink control channel (PDCCH)) at the L1/L2 layer, and compares the radio quality with a threshold Qout . If the wireless quality is lower than Qout , an Out-Of-Sync (OOS) indication is sent from the L1/L2 layer to the L3 layer. If the L3 layer continuously receives N310 out-of-synchronization indications, the T310 timer is started. Then, the UE compares the radio quality with a threshold Q in , and if the radio quality is higher than Q in , sends an In-Sync (IS) indication from the L1/L2 layer to the L3 layer.
  • a downlink channel eg, a downlink control channel (PDCCH)
  • OOS Out-Of-Sync
  • the L3 layer continuously receives N311 synchronization indications during T310 startup, it may be determined that no RLF has occurred and the T310 timer is stopped. On the other hand, if N311 synchronization indications are not continuously received before the expiration of T310, it can be determined that the RLF occurs. Subsequently, the UE starts the RRC re-establishment process.
  • a multi-beam technique is used in which the base station can transmit signals to the UE using multiple transmit beams, and the UE can receive signals transmitted by the base station using multiple receive beams.
  • a method of detecting RLF has not been proposed.
  • a radio link failure detecting method performed by a user equipment, the user equipment being configured with a plurality of beam pairs, each beam pair comprising a transmitting beam used by a base station to transmit a signal And the user equipment is configured to receive a corresponding receiving beam of the signal, and the method includes: in a lower layer, measuring, by using a receiving beam received in each beam pair, the base station uses a transmitting beam corresponding to the receiving beam.
  • the out-of-synchronization indication information is sent to the upper layer, so that the upper layer determines whether the radio link failure occurs according to the out-of-synchronization indication information.
  • a user equipment configured with a plurality of beam pairs, each beam pair comprising a transmit beam used by a base station to transmit a signal and one of the user equipments to receive the signal a corresponding receiving beam
  • the user equipment comprising: a measuring unit configured to measure, in a lower layer, a quality of a reference signal transmitted by a base station using a transmit beam corresponding to the receive beam received by a receive beam in each beam pair a channel quality of the plurality of transmit beams included in the plurality of beam pairs; a determining unit configured to determine whether a channel quality of the plurality of transmit beams satisfies a first condition; and a transmitting unit configured to determine the When the unit determines that the channel quality of the multiple transmit beams meets the first condition, the uplink sends the out-of-synchronization indication information to the upper layer, so that the upper layer determines, according to the out-of-synchronization indication information, whether a radio link failure occurs.
  • a radio link failure detecting method performed by a user equipment, the user equipment being configured with a plurality of first beam pairs and a plurality of second beam pairs, each first beam a first type of transmit beam including a base station for transmitting a signal and a corresponding second type of receive beam used by the user equipment to receive the signal, each second beam pair including a base station for transmitting a signal a second type of transmit beam and a corresponding second type of receive beam used by the user equipment to receive the signal, the method comprising: in a lower layer, measuring using a first one of each first beam pair a quality of a reference signal transmitted by a base station using a first type of transmit beam corresponding to the first type of receive beam, and a plurality of first type of transmissions included in the plurality of first beam pairs Channel quality of the beam, and the measurement uses the second type of receive beam received in each of the second beam pairs, the base station uses a corresponding one of the second type of receive beams
  • a radio link failure detecting method performed by a user equipment, the user equipment being configured with a plurality of first beam pairs and a plurality of second beam pairs, each first beam a first type of transmit beam including a base station for transmitting a signal and a corresponding second type of receive beam used by the user equipment to receive the signal, each second beam pair including a base station for transmitting a signal a second type of transmit beam and a corresponding second type of receive beam used by the user equipment to receive the signal, the method comprising: receiving, at an upper layer, a first number of first out-of-synchronization indications transmitted from a lower layer Information and a second number of second out-of-synchronization indication information, wherein the first out-of-synchronization indication information is received by the first type of receiving beam in each of the first beam pairs by measurement, and the base station uses the first type When the channel quality of the plurality of first type of transmission beams obtained by the quality of the reference signal transmitted by the first type of transmission beam corresponding
  • a user equipment configured with a plurality of first beam pairs and a plurality of second beam pairs, each first beam pair comprising a first type of signal used by a base station to transmit signals a transmit beam and a corresponding second type of receive beam used by the user equipment to receive the signal, each second beam pair comprising a second type of transmit beam used by the base station to transmit signals and the user equipment Receiving a corresponding second type of receive beam of the signal, the user equipment comprising: a measurement unit configured to, in a lower layer, measure using a first type of receive beam received in each first beam pair And the base station uses the quality of the reference signal transmitted by the first type of transmit beam corresponding to the first type of receive beam as the channel quality of the plurality of first type of transmit beams included in the plurality of first beam pairs, and Measuring, using a second type of receive beam received in each second beam pair, the base station using a second type of transmit wave corresponding to the second type of receive beam
  • the quality of the transmitted reference signal configured to, in a lower layer
  • a user equipment configured with a plurality of first beam pairs and a plurality of second beam pairs, each first beam pair comprising a first type of signal used by a base station to transmit signals a transmit beam and a corresponding first type of receive beam used by the user equipment to receive the signal, each second beam pair comprising a second type of transmit beam used by the base station to transmit signals and the user equipment Receiving a corresponding second type of receive beam of the signal, the user equipment comprising: a receiving unit configured to receive, at an upper layer, a first quantity of first out-of-synchronization indication information sent from a lower layer and a second quantity a second out-of-synchronization indication information, where the first out-of-synchronization indication information is received by the base station using the first type of receiving beam in each of the first beam pairs, and the base station uses the first type corresponding to the first type of receiving beam Transmitted when the channel quality of the plurality of first type of transmission beams obtained by the quality of the reference signal transmitted by the transmission
  • the determining unit is configured to, in the upper layer, according to the first quantity of the first out-of-step indication information and/or Describe a second number of second out-of-synchronization indication information to determine whether a radio link failure has occurred.
  • FIG. 1 is a schematic diagram of a mobile communication system in accordance with an embodiment of the present disclosure.
  • 2A and 2B are schematic diagrams of beams used in communication between a base station and user equipment.
  • FIG. 3 is a flowchart of a method of detecting an RLF according to a first embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram of determining a radio link failure in accordance with a first embodiment of the present disclosure.
  • FIG. 5 is a block diagram of a UE in accordance with a first embodiment of the present invention.
  • FIG. 6 is a schematic diagram of determining a radio link failure in accordance with a second embodiment of the present disclosure.
  • FIG. 7 is a flowchart of a method of detecting a failure of a wireless link according to a second embodiment of the present disclosure.
  • Figure 8 is a block diagram of a UE in accordance with a second embodiment of the present invention.
  • FIG. 9 is a flowchart of a method of detecting a failure of a wireless link in accordance with a third embodiment of the present disclosure.
  • Figure 10 is a block diagram of a UE in accordance with a third embodiment of the present invention.
  • FIG. 11 is a flowchart of a method of detecting a failure of a wireless link according to a fourth embodiment of the present disclosure.
  • FIG. 12 is a block diagram of a UE according to a fourth embodiment of the present disclosure.
  • FIG. 13 is a diagram showing an example of a hardware configuration of a radio base station and a user terminal according to the present disclosure.
  • the wireless communication system includes a base station (BS) 10 and a user equipment (UE) 20.
  • the UE 20 receives the signal transmitted by the base station 10 and transmits a signal to the base station 10.
  • the base station may also be referred to as a transmit and receive point (TRP), which may also be referred to as a mobile station (MS) or a user terminal.
  • TRP transmit and receive point
  • MS mobile station
  • multiple beam pairs are configured for the user equipment.
  • the base station may send a signal to the UE by using multiple transmit beams, and the UE may receive the signal sent by the base station by using multiple receive beams.
  • the transmit beam and the receive beam may be a first type of beam, and the first type of beam is used to transmit a downlink control channel (PDCCH) and/or a downlink data channel (PDSCH) for performing CSI measurement and reporting and/or L1 layer reference signal received power (RSRP) measurement and reporting (ie beam management), CSI-RS for radio resource management measurements, and the like.
  • the base station can transmit data to the UE using the first type of transmit beams B21, B22, B23 and/or B24.
  • the transmit beams may include service beams (e.g., B22 and B23) and candidate beams (e.g., B21 and B24).
  • the base station dynamically schedules in the serving beam.
  • the base station may switch the serving beam to the candidate beam to perform beam recovery.
  • the UE may receive data transmitted by the base station using a certain transmit beam using one of the plurality of first type of receive beams b1, b2, b3, and b4.
  • the base station transmits data using a certain transmit beam (for example, B22)
  • the UE selects a receive beam (eg, b2) that can obtain a desired reception quality (eg, an optimal reception quality) in the receive beams b1-b4 to receive the data.
  • the transmit beam and the receive beam form a beam pair.
  • each transmit beam there is a corresponding receive beam that can achieve the desired receive quality, whereby the multiple transmit beams and the multiple receive beams can form multiple beam pairs.
  • a plurality of beam pairs formed by a beam of a first type may be referred to as a plurality of first beam pairs.
  • the transmit beam and the receive beam may be a second type of beam for transmitting a sync block (SS block), including a sync signal or a physical broadcast channel.
  • SS block sync block
  • the base station can transmit a signal to the UE using a second type of transmit beam (eg, B1, B2, or B3).
  • the second type of transmit beam may include a serving beam and a candidate beam, and the transmit beam may be used and switched in the same manner as the first type of beam.
  • the UE may use one of a plurality of second types of receive beams (not shown in FIG. 2B) to receive signals transmitted by the base station using a certain transmit beam.
  • each transmit beam and a receive beam for which the transmit beam can achieve a desired receive quality form a beam pair, thereby forming a plurality of beam pairs.
  • a plurality of beam pairs formed by the second type of beam may be referred to as a plurality of second beam pairs.
  • the second type of beam is wider than the first type of beam, and therefore, in the following, the first type of beam is also referred to as a fine beam, and the second type of beam is referred to. It is a rough beam.
  • the UE may be configured with multiple first beam pairs or multiple second beam pairs, or multiple first beam pairs and multiple seconds may be configured for the UE. Beam pair.
  • the beam recovery operation described above is performed when a beamforming beam failure event is served in the L1/L2 layer. In case certain conditions are met, it can be determined that the beam recovery fails. At this time, an out-of-synchronization indication is sent from the L1/L2 layer to the L3 layer, so that the L3 layer can determine whether a radio link failure (RLF) has occurred based at least in part on the out-of-synchronization indication.
  • RLF radio link failure
  • the method can be performed by the UE.
  • the UE is configured with multiple beam pairs, each beam pair including a transmit beam used by the base station to transmit signals and a corresponding receive beam used by the user equipment to receive the signals.
  • the beam of the transmitting pair may include only the first type of beam, only the second type of beam, or may include both the first type of beam and the second type of beam.
  • the quality of the reference signal transmitted by the base station using the transmit beam corresponding to the receive beam received by the receive beam in each beam pair is measured as The channel quality of multiple transmit beams included in multiple beam pairs.
  • the lower layer may be an L1 layer (physical layer) and/or an L2 layer (MAC layer and/or RLC layer), that is, an L1/L2 layer, and accordingly, the upper layer described below may be an L3 layer (RRC layer).
  • the UE can monitor multiple beam pairs configured for the UE. Specifically, when the base station sends a reference signal to the UE by using the transmit beam in the beam pair, the UE may use the receive beam corresponding to the transmit beam in the beam pair to receive the reference signal, and measure the reception quality of the reference signal. As the (downstream) channel quality of the transmit beam. Thereby, the UE can measure the channel quality of the multiple transmit beams included in the multiple beam pairs.
  • the beam pairs monitored by the UE may be configured by higher layer signaling, such as Radio Resource Control (RRC) signaling.
  • RRC Radio Resource Control
  • the reference signal may be a channel state information reference signal (CSI-RS) for radio resource management (RRM) measurement, for channel state information (CSI) measurement ( a CSI-RS including an L1-RSRP measurement, or a demodulation reference signal (DMRS) for a downlink control channel (PDCCH);
  • the reference signal when the UE monitors a second beam pair, the reference signal may be a synchronization signal Block (SS block), synchronization signal (SS), demodulation reference signal (DMRS) for physical broadcast channel (PBCH), or channel state information reference signal (CSI-RS) for radio resource management (RRM) measurement .
  • SS block synchronization signal Block
  • SS synchronization signal
  • DMRS demodulation reference signal
  • PBCH physical broadcast channel
  • CSI-RS channel state information reference signal
  • the CSI-RS and the PDCCH transmitted to the UE may be configured by higher layer signaling (eg, RRC signaling).
  • RRC signaling e.g. RRC signaling.
  • the correspondence between the DMRSs (which may be referred to as a Quasi Co-location relationship) makes it possible to know, based on the correspondence, which channel of the control channel (PDCCH) the measurement of the reference signal is obtained.
  • step S302 it is determined whether the channel quality of the plurality of transmit beams satisfies the first condition.
  • a channel quality of a certain one of the plurality of transmit beams (represented as P1) is below a certain threshold (denoted as TH1) within a certain period of time (represented as T1) Determining that a channel quality of the plurality of transmit beams satisfies a first condition.
  • the plurality of transmit beams include a service beam and a candidate beam.
  • the ratio P1 can be flexibly set as needed, for example, can be set to 70%, 90%, 100% or other suitable values.
  • the time period T1 can also be flexibly set as needed.
  • the threshold TH1 can be flexibly set as needed, for example, can be set to Q out , wherein the signal and the block error rate (BLER) of the reference channel or the control channel can be greater than a certain value (for example, 10%).
  • the interference plus noise ratio (SINR) is set to Q out .
  • the plurality of transmit beams include a service beam and a candidate beam.
  • a service beam in the plurality of transmit beams when a service beam in the plurality of transmit beams generates a beam failure event (in the L1/L2 layer), and a channel ratio of a candidate beam (represented as P2) in the candidate beam
  • P2 T2, and TH2 can be flexibly set as needed, and can be the same or different from P1, T1, and TH1, respectively.
  • the threshold TH2 may be Qout as described above, or may be other values.
  • P2 may be 100%, or may be 80% or other suitable value.
  • the beam failure event in the L1/L2 layer may be any event capable of reflecting that the service beam is unavailable, and may be appropriately defined according to the actual situation of the wireless communication system and/or the wireless environment, or may be Pre-defined events, such as beam failure events as defined in the 3GPP standard. For example, when the channel quality of the service beam of a certain proportion (represented as P3) of the plurality of transmission beams is lower than the threshold TH3 in the period T3, the service beam occurrence beam failure event in the plurality of transmission beams may be considered. .
  • the P3, T3, and TH3 can be flexibly set as needed, and can be the same or different from the aforementioned ratios, time periods, and thresholds, respectively.
  • the threshold TH3 may be Qout as described above, or may be other values.
  • P3 can be 100%, or can be 80% or other suitable value.
  • the serving beam may be considered to be a beam when the channel quality of the serving beam is below a certain threshold for a certain period of time and the channel quality of the candidate beam is above a certain threshold for a certain period of time. Failure event.
  • a transmit beam-forming beam failure event of the serving beam occurs within a certain period of time (denoted as T4), determining that the channel quality of the plurality of transmit beams meets the first condition.
  • a serving beam occurs a beam failure event (such as the beam failure event described above)
  • the base station will switch one or more candidate beams to a serving beam.
  • the base station will switch another one or more candidate beams to the serving beam.
  • the channel quality of the beam currently available to the UE is poor, so that the channel quality of the multiple transmit beams can be determined to satisfy the first condition,
  • a beam failure event occurs in a transmission beam of a certain ratio (represented as P4) of the plurality of transmission beams in the period T4, it is determined that the channel quality of the plurality of transmission beams satisfies the first condition.
  • step S303 when the channel quality of the multiple transmit beams meets the first condition, the out-of-synchronization indication information is sent to the upper layer, so that the upper layer determines whether a radio link failure occurs according to the out-of-synchronization indication information.
  • the channel quality of the multiple transmit beams meets the first condition, the channel quality of the transmit beam that can be used for the UE may be determined to be poor, and therefore, an out-of-synchronization indication indicating that the UE and the base station lose synchronization may be sent to the upper layer.
  • the information enables the upper layer to determine whether a radio link failure has occurred based on the out-of-synchronization indication information.
  • the upper layer may be an L3 layer, and hereinafter, the L3 layer will be described as an example.
  • the UE periodically repeats the above steps S301 to S303, that is, periodically measures the quality of the reference signal in the L1/L2 layer, thereby determining the channel quality of the plurality of transmission beams, and when the channel quality satisfies the first condition,
  • the L3 layer sends out-of-synchronization indication information.
  • the UE may determine whether the channel quality of the multiple transmit beams meets the second condition at the L1/L2 layer, and send a synchronization indication to the L3 layer when the channel quality of the multiple transmit beams meets the second condition information. For example, when the channel quality of a certain one of the plurality of transmit beams (represented as P5) is higher than a certain threshold (denoted as TH5) within a certain period of time (represented as T5), the The channel quality of the plurality of transmit beams satisfies the second condition.
  • the P5, T5 and TH5 can be flexibly set as needed.
  • the threshold TH5 may be set to Q in , where the signal to interference plus noise ratio (SINR) when the block error rate (BLER) of the reference signal or control channel is lower than a certain value (for example, 2%) may be set to Q in .
  • SINR signal to interference plus noise ratio
  • BLER block error rate
  • P5 can be 100%, or can be 80% or other suitable value. It can be seen that when the channel quality of the multiple transmit beams meets the second condition, the channel quality of the transmit beam that can be used for the UE is better, so it can be determined that synchronization is obtained between the UE and the base station, and therefore can be sent to the L3 layer. Synchronization instructions.
  • the L3 layer also uses the synchronization indication information to determine if a radio link failure has occurred.
  • the UE determines that the channel quality of the multiple transmit beams meets the second condition at the L1/L2 layer, the UE transmits synchronization indication information to the L3 layer.
  • the condition that the channel quality of the transmission beam of the ratio P5 of the plurality of transmission beams is higher than the threshold TH5 in the period T5 further conditions may be added so that when these conditions are satisfied, it is determined that The channel quality of the transmit beams satisfies the second condition.
  • the additional condition may be, for example, that in a case where the channel quality of the transmission beam of the ratio P5 among the plurality of transmission beams is higher than the threshold TH5 in the period T5, the transmission beam having the channel quality higher than the threshold TH5 and the previous service beam At least one of the same.
  • the reason for attaching this condition is that if the transmission beam whose channel quality is higher than the threshold TH5 is completely different from the previously used service beam, it means that the channel quality of the beam available to the UE is still unstable, and there is a possibility of losing synchronization, so it is not suitable to transmit. Synchronization instructions.
  • the L3 layer counts the out-of-synchronization indication information.
  • the L3 layer starts a timer T310, and then counts the received synchronization indication information. If the L3 layer continuously receives N311 pieces of synchronization indication information during the start of T310, the L3 layer determines that no radio link failure has occurred, and stops the timer T310.
  • the L3 layer determines that a radio link failure has occurred, thereby starting the RRC re-establishment process.
  • the UE may perform the RRC re-establishment procedure in a manner well known in the art. For example, the UE may perform RRM measurement based on the synchronization signal and perform RRC reconstruction through a random access procedure.
  • step S302 when a predetermined number of transmission beams meet various requirements, it may be determined that the channel quality of the plurality of transmission beams satisfies the first condition or the second condition.
  • the channel quality of a certain number (for example, 1) of the plurality of transmit beams is higher than the threshold TH5 in the period T5, the channel quality of the multiple transmit beams may be determined to meet the Two conditions.
  • the UE may be configured with a plurality of first beam pairs and a plurality of second beam pairs such that the UE is configured with a first type of transmit beam and a second type of transmit beam.
  • the first type of transmit beam and the second type of transmit beam may be distinguished, that is, the first type of transmit beam and the second type may be measured.
  • the channel quality of the transmitted beam is transmitted, and subsequent operations are performed according to the quality of the channel.
  • the UE is configured with a plurality of beam pairs, each beam pair comprising a transmit beam used by the base station to transmit signals and a corresponding receive beam used by the user equipment to receive the signals.
  • the beam of the transmitting pair may include only the first type of beam, only the second type of beam, or may include both the first type of beam and the second type of beam. Since the operation of the user equipment is substantially the same as the details of the corresponding steps of the method described with reference to FIG. 3, the description of the same content is omitted here.
  • the UE 50 includes a measurement unit 501, a determination unit 502, and a transmission unit 503.
  • the measurement unit 501 measures the quality of the reference signal transmitted by the base station using the transmission beam corresponding to the reception beam, which is received by the reception beam in each beam pair, in the lower layer (for example, the L1/L2 layer) as the plurality of beams.
  • the beam pairs monitored by the UE can be configured by higher layer signaling (eg, RRC signaling).
  • the reference signal when the UE monitors the first beam pair, the reference signal may be a CSI-RS for RRM measurement, a CSI-RS for CSI measurement, or a DMRS for PDCCH; when the UE monitors In the case of two beam pairs, the reference signal may be a synchronization signal (SS), a DMRS for PBCH, or a CSI-RS for RRM measurement.
  • the reference signal is a synchronization signal, or a CSI-RS for RRM measurement
  • the CSI-RS and the DMRS of the PDCCH transmitted to the UE may be configured by higher layer signaling (eg, RRC signaling).
  • the correspondence relationship (the same positioning relationship) makes it possible to know, based on the correspondence, which channel of the control channel (PDCCH) the monitoring of the reference signal is obtained.
  • the determining unit 502 can determine whether the channel quality of the plurality of transmit beams satisfies the first condition.
  • the determining unit 502 may determine that the channel quality of the multiple transmit beams meets the first condition.
  • the plurality of transmit beams include a service beam and a candidate beam.
  • the ratio P1 and the period T1 can also be flexibly set as needed.
  • the threshold TH1 can be flexibly set as needed, for example, can be set to Q out .
  • the plurality of transmit beams include a service beam and a candidate beam.
  • a service beam in the plurality of transmit beams when a service beam in the plurality of transmit beams generates a beam failure event, and a channel quality of a candidate beam of the ratio P2 in the candidate beam is lower than a threshold TH2 in a period T2, determining the The channel quality of the plurality of transmit beams satisfies the first condition.
  • P2, T2, and TH2 can be flexibly set as needed, and can be the same or different from P1, T1, and TH1, respectively.
  • the threshold TH2 may be Qout as described above, or may be other values.
  • this beam failure event of the L1/L2 layer may be any event capable of reflecting that the service beam is unavailable, and may be appropriately defined according to the actual situation of the wireless communication system and/or the wireless environment, Or it may be a predefined event, such as a beam failure event as defined in the 3GPP standard.
  • a beam failure event as defined in the 3GPP standard.
  • the threshold TH3 may be Qout as described above, or may be other values.
  • the serving beam may be considered to be a beam when the channel quality of the serving beam is below a certain threshold for a certain period of time and the channel quality of the candidate beam is above a certain threshold for a certain period of time. Failure event.
  • the determining unit 502 may determine that the channel quality of the plurality of transmit beams satisfies the first condition.
  • the determining unit 502 may determine that the channel quality of the plurality of transmission beams satisfies the first condition.
  • the sending unit 503 may send the out-of-synchronization indication information to the upper layer when the determining unit 502 determines that the channel quality of the multiple transmit beams meets the first condition, so that the upper layer determines, according to the out-of-synchronization indication information, whether a radio link failure occurs.
  • the respective units of the UE 50 periodically repeat the above operations, that is, periodically measure the quality of the reference signal in the L1/L2 layer, thereby determining the channel quality of the plurality of transmission beams, and when the channel quality satisfies the first condition,
  • the out-of-synchronization indication information is sent to the L3 layer.
  • the determining unit 502 may determine whether the channel quality of the multiple transmit beams satisfies the second condition at the L1/L2 layer, and when the determining unit 502 determines that the channel quality of the multiple transmit beams satisfies the second condition,
  • the transmitting unit 503 transmits synchronization indication information to the L3 layer. For example, when the channel quality of the transmission beam of the ratio P5 of the plurality of transmission beams is higher than the threshold TH5 in the period T5, it may be determined that the channel quality of the plurality of transmission beams satisfies the second condition.
  • the P5, T5 and TH5 can be flexibly set as needed.
  • the threshold TH5 can be set to Q in .
  • the UE may determine whether a radio link failure occurs at the L3 layer according to the out-of-synchronization indication information and/or the synchronization indication information according to the method described above with reference to FIG.
  • a similar description is omitted for the sake of simplicity.
  • the UE is configured with multiple first beam pairs and multiple second beam pairs, that is, the UE is configured with multiple first types of transmit beams (fine transmit beams) and multiple second types. Transmit beam (coarse transmit beam).
  • the method of detecting a failure of a wireless link according to the second embodiment of the present disclosure is different from the method of detecting a failure of a wireless link according to the first embodiment of the present disclosure, in the L1/L2 layer.
  • the UE performs the backoff to detect the radio link failure according to the coarse transmit beam.
  • step S701 in the L1/L2 layer, channel quality of the plurality of thin transmit beams is measured, and whether a plurality of thin transmit beams have a beam failure event is determined.
  • the quality of the reference signal transmitted by the base station using the thin transmit beam corresponding to the thin receive beam received by the thin receive beam in each first beam pair may be measured as a channel of the multiple thin transmit beams. quality.
  • the beam failure event in the L1/L2 layer may be an event that is appropriately defined according to the actual conditions of the wireless communication system and/or the wireless environment.
  • the plurality of thin transmit beams may be considered to generate a beam failure event, wherein the ratio The time period and threshold can be flexibly set as needed.
  • the channel quality of the plurality of thin transmit beams may be measured in the L1/L2 layer, and it is determined whether the channel quality of the plurality of thin transmit beams satisfies the first condition.
  • step S701 If it is determined in step S701 that the plurality of thin transmit beam generation beam failure events (ie, after determining the plurality of fine transmit beam generation beam failure events in the L1/L2 layer), or determining the plurality of fine transmit beams If the channel quality satisfies the first condition, then in step S702, the UE falls back to a state in which coarse transmission beam detection is used to detect whether RLF has occurred.
  • the quality of the reference signal transmitted by the base station using the coarse transmit beam corresponding to the coarse receive beam received by the coarse receive beam in each second beam pair is measured in the L1/L2 layer as Channel quality of a plurality of coarse transmit beams included in the plurality of second beam pairs.
  • the reference signal may be a synchronization signal (SS), a DMRS for PBCH, or a CSI-RS for RRM measurement.
  • a correspondence between the reference signal and a DMRS of a PDCCH transmitted to the UE may be configured by higher layer signaling (eg, RRC signaling) (
  • the quasi-coordinated relationship is such that the channel quality of which control channel (PDCCH) is obtained by monitoring the measurement of the reference signal can be known according to the correspondence.
  • step S704 it is determined whether the channel quality of the plurality of transmit beams satisfies the first condition.
  • the out-of-synchronization indication information is sent to the upper layer, so that the upper layer determines whether a radio link failure occurs according to the out-of-synchronization indication information.
  • Steps S703 to S705 in the method according to the second embodiment of the present disclosure are the same as steps S301 to S303 in the method according to the first embodiment of the present disclosure except that the object to be targeted is limited to the thick beam, which is omitted here for the sake of simplicity. A description of the same content.
  • the UE may determine whether the channel quality of the multiple transmit beams meets the second condition at the L1/L2 layer, and send synchronization indication information to the L3 layer when the channel quality of the multiple transmit beams meets the second condition.
  • the UE may determine whether a radio link failure occurs based on the out-of-synchronization indication information and the synchronization indication information in the manner described above with respect to FIG.
  • the UE is configured with multiple first beam pairs and multiple second beam pairs, that is, the UE is configured with multiple first types of transmit beams (fine transmit beams) and multiple second types of transmit beams (rough transmission) Beam). Further, the details of the operations performed by the UE are the same as the respective steps of the method described above with reference to FIG. 6, and thus the description of the same contents is omitted here.
  • the UE 80 includes a measurement unit 801, a determination unit 802, and a transmission unit 803.
  • the measuring unit 801 measures the reception quality of the plurality of thin transmit beams in the L1/L2 layer, and the determining unit 802 determines whether the plurality of thin transmit beams have a beam failure event. Specifically, the measuring unit 801 may measure the quality of the reference signal transmitted by the base station using the thin transmit beam corresponding to the thin receive beam, which is received by the thin receive beam in each first beam pair, as the multiple thin send. The channel quality of the beam. Then, the determining unit 802 determines, according to the channel quality of the plurality of thin transmit beams, whether the plurality of thin transmit beams generate a beam failure event. Alternatively, the determining unit 802 may determine whether the channel quality of the plurality of thin transmit beams satisfies the first condition.
  • the determining unit 802 determines the plurality of thin transmit beam generation beam failure events (ie, after determining the plurality of thin transmit beam generation beam failure events in the L1/L2 layer), or determining the plurality of thin transmit beams When the channel quality satisfies the first condition, the UE falls back to a state in which coarse transmit beam detection is used to detect whether RLF has occurred.
  • the measuring unit 801 measures the quality of the reference signal transmitted by the base station using the coarse transmit beam corresponding to the coarse receive beam, which is received by the coarse receive beam in each second beam pair, as the plurality of second beam pairs are included Channel quality of multiple coarse transmit beams. Then, the determining unit 802 determines whether the channel quality of the plurality of transmission beams satisfies the first condition. When the channel quality of the multiple transmit beams meets the first condition, the sending unit 803 sends the out-of-synchronization indication information to the upper layer.
  • the determining unit 802 may determine whether the channel quality of the multiple transmit beams satisfies the second condition at the L1/L2 layer, and when the determining unit 802 determines that the channel quality of the multiple transmit beams satisfies the second condition, the sending unit 803 can send synchronization indication information to the L3 layer.
  • the UE may determine whether a radio link failure occurs based on the out-of-synchronization indication information and the synchronization indication information in the manner described above with reference to FIG. 4.
  • the UE is configured with multiple first beam pairs and multiple second beam pairs, that is, the UE is configured with multiple first types of transmit beams (fine transmit beams) and multiple second types. Transmit beam (coarse transmit beam).
  • step S901 in the L1/L2 layer, a reference signal transmitted by the base station using the thin transmit beam corresponding to the thin receive beam received by the fine receive beam in each first beam pair is measured.
  • Quality as the channel quality of the plurality of thin transmit beams, and measuring the quality of the reference signal transmitted by the base station using the coarse transmit beam corresponding to the coarse receive beam received by the coarse receive beam in each second beam pair As the channel quality of the plurality of coarse transmit beams.
  • the measurement steps described above are substantially the same as the measurement steps described with reference to FIG. 3 except that there may be differences in the beam to which the measurement is directed, and are not described herein again.
  • step S902 it is determined whether the channel quality of the plurality of thin transmit beams satisfies the first condition, and whether the channel quality of the plurality of coarse transmit beams meets the second condition.
  • the determining step is substantially the same as the determining step described with reference to FIG. 3 except that the beam may be different, and details are not described herein again.
  • the first condition and the second condition may differ only in one or more of the respective time periods, thresholds, and ratios, and the rest of the content is the same.
  • step S903 when the channel quality of the plurality of thin transmit beams satisfies the first condition, and/or the channel quality of the multiple coarse transmit beams satisfies the second condition, the out-of-synchronization indication information is sent to the L3 layer, so that The upper layer determines whether a radio link failure occurs according to the out-of-synchronization indication information.
  • the condition for transmitting the out-of-synchronization indication information to L3 can be set as needed. For example, setting may be performed such that the out-of-synchronization indication information is transmitted to the L3 layer only when the channel quality of the plurality of thin transmission beams satisfies the first condition, or only the channel quality of the plurality of second-type transmission beams is satisfied. Sending out-of-synchronization indication information to the L3 layer when the second condition is met, or when the channel quality of the plurality of thin transmit beams satisfies the first condition, and the channel quality of the multiple coarse transmit beams meets the second condition, to the L3 layer Send out of step indication information.
  • the UE may determine whether the channel quality of the plurality of thin transmit beams satisfies the second condition at the L1/L2 layer, and determine whether the channel quality of the plurality of coarse transmit beams satisfies the second condition, and And when the channel quality of the plurality of thin transmit beams satisfies the second condition, and/or the channel quality of the multiple coarse transmit beams meets the second condition, the synchronization indication information is sent to the L3 layer.
  • the UE may determine whether a radio link failure occurs based on the out-of-synchronization indication information and the synchronization indication information in the manner described above with reference to FIG. 4.
  • the UE is configured with multiple first beam pairs and multiple second beam pairs, that is, the UE is configured with multiple first types of transmit beams (fine transmit beams) and multiple second types. Transmit beam (coarse transmit beam). Since the operation details of the UE are the same as those described above with reference to FIG. 9, the description of the same content is omitted here.
  • the UE 100 includes a measurement unit 101, a determination unit 102, and a transmission unit 103.
  • the measuring unit 101 measures, in the L1/L2 layer, the quality of the reference signal transmitted by the base station using the thin transmit beam corresponding to the thin receive beam, which is received by the thin receive beam in each first beam pair, as the plurality of Finely transmitting the channel quality of the beam, and measuring the quality of the reference signal transmitted by the base station using the coarse transmit beam corresponding to the coarse receive beam received by the coarse receive beam in each second beam pair, as the plurality of coarse transmissions The channel quality of the beam.
  • the determining unit 102 determines whether the channel quality of the plurality of thin transmit beams satisfies the first condition, and determines whether the channel quality of the plurality of coarse transmit beams satisfies the second condition.
  • the first condition and the second condition may differ only in one or more of a corresponding time period, a threshold, and a ratio, and the rest of the content is the same.
  • the sending unit 103 may send an out-of-synchronization indication to the L3 layer when the determining unit 102 determines that the channel quality of the multiple thin transmit beams satisfies the first condition, and/or the channel quality of the multiple coarse transmit beams meets the second condition.
  • the information is such that the upper layer determines whether a radio link failure occurs according to the out-of-synchronization indication information.
  • the determining unit 102 may further determine, at the L1/L2 layer, whether the channel quality of the plurality of thin transmit beams satisfies the second condition, and determine whether the channel quality of the plurality of coarse transmit beams satisfies the second condition.
  • the sending unit 103 may send the synchronization indication information to the L3 layer. .
  • the UE may determine whether a radio link failure occurs based on the out-of-synchronization indication information and the synchronization indication information in the manner described above with reference to FIG. 4.
  • the UE is configured with multiple first beam pairs and multiple second beam pairs, that is, the UE is configured with multiple first types of transmit beams (fine transmit beams) and multiple second types. Transmit beam (coarse transmit beam).
  • step S1101 a continuous first number of first out-of-step indication information and a second consecutive number of second out-of-synchronization indication information transmitted from the L1/L2 layer are received at the L3 layer.
  • the first out-of-step indication information is obtained by measuring a quality of a reference signal transmitted by a base station using a thin transmit beam corresponding to the thin receive beam, which is received by a thin receive beam in each first beam pair. Transmitted when the channel quality of multiple thin transmit beams meets the first condition.
  • the second out-of-synchronization indication information is obtained by measuring a quality of a reference signal transmitted by a base station using a coarse transmission beam corresponding to the coarse reception beam, which is received by using a coarse reception beam in each second beam pair.
  • Transmitted when the channel quality of multiple coarse transmit beams meets the second condition For example, whether the channel quality of the plurality of thin transmit beams satisfies the first condition and whether the channel quality of the plurality of coarse transmit beams satisfies the second condition may be determined according to the manner described above with reference to FIG. 3, and Transmitting the first out-of-synchronization indication information when the channel quality of the plurality of thin transmit beams meets the first condition, and transmitting the second out-of-synchronization indication information when the channel quality of the multiple coarse transmit beams meets the second condition .
  • the first condition and the second condition may be the same or different, and the first quantity and the second quantity may be the same or different.
  • step S1102 in the L3 layer, determining whether a radio link failure occurs according to the first number of first out-of-synchronization indication information and/or the second number of second out-of-synchronization indication information.
  • whether to start the timer T310 may be determined according to the first number of first out-of-step indication information, in which case, when the first quantity reaches N310 1 for the beamlet setting, the device may be started. Timer T310. Alternatively, it may be determined whether to start the timer T310 only according to the second number of second out-of-step indication information, in which case, when the second quantity reaches N310 2 for the coarse beam setting, Start timer T310. Alternatively, whether to start the timer T310 may be determined according to both the first number of first out-of-step indication information and the second number of second out-of-synchronization indication information.
  • the timer T310 may be started when the first number reaches N310 1 for the beamlet setting and the second number reaches N310 2 for the coarse beam setting for a certain period of time.
  • N310 1 and N310 2 may be the same or different.
  • a continuous third number of first synchronization indication information and/or a fourth number of second synchronization indication information transmitted from the L1/L2 layer may also be received at the L3 layer.
  • the first synchronization indication information is sent when a channel quality of the multiple thin transmit beams meets a second condition, where the first synchronization indication information is when a channel quality of the multiple coarse transmit beams meets a second condition When sent.
  • whether to stop the timer T310 may be determined according to the third number of first synchronization indication information and/or the fourth number of second synchronization indication information.
  • the timer T310 may be stopped when the third number reaches N311 1 for the beamlet setting.
  • the timer T310 may be determined whether to stop the timer T310 according to the third quantity of the first synchronization indication information and the fourth quantity of the second synchronization indication information, in which case the third quantity may be in a certain time
  • the timer T310 is stopped.
  • the UE can determine whether a radio link failure has occurred.
  • the UE is configured with multiple first beam pairs and multiple second beam pairs, that is, the UE is configured with multiple first types of transmit beams (fine transmit beams) and multiple second types. Transmit beam (coarse transmit beam). Since the operation details of the UE are the same as those described above with reference to FIG. 11, the description of the same content is omitted here.
  • the UE 120 includes a receiving unit 1201 and a determining unit 1202.
  • the receiving unit 1201 receives, in the L3 layer, a continuous first number of first out-of-step indication information and a second number of second out-of-synchronization indication information transmitted from the L1/L2 layer.
  • the determining unit 1202 determines, in the L3 layer, whether a radio link failure occurs according to the first number of first out-of-step indication information and/or the second number of second out-of-synchronization indication information. Specifically, whether to start the timer T310 may be determined according to the first number of first out-of-step indication information, or may be determined according to the second number of second out-of-step indication information, whether to start the timer T310. Or determining whether to start the timer T310 according to the first number of the first out-of-synchronization indication information and the second quantity of the second out-of-synchronization indication information.
  • the receiving unit 1201 may further receive a third number of first synchronization indication information and/or a fourth number of second synchronization indication information transmitted from the L1/L2 layer at the L3 layer. Then, the determining unit 1202 may determine whether to stop the timer T310 according to the third number of first synchronization indication information and/or the fourth number of second synchronization indication information. For example, the determining unit 1202 may determine whether to stop the timer T310 according to only the third number of first synchronization indication information, or may determine whether to stop the timer T310 according to only the fourth number of second synchronization indication information, or may be according to the third quantity.
  • the timer T310 Determining whether to stop the timer T310 in the first synchronization indication information and the fourth synchronization indication information, in which case the N311 1 for the beamlet setting and the fourth may be reached in the third number When the number reaches N311 2 for the coarse beam setting, the timer T310 is stopped.
  • the UE can determine if a radio link failure has occurred.
  • N310 and N311 and the timer T311 are used to determine if a radio link failure has occurred, in some embodiments, modifications may be made thereto.
  • N310 can be omitted so that the timer T310 can be started whenever the out-of-synchronization indication information is received.
  • T310 and N311 may be omitted such that when N310 out-of-synchronization indication information is continuously received, it may be determined that a radio link failure has occurred.
  • these three parameters may be omitted so that as long as the out-of-synchronization indication information is received, it can be determined that the radio link failure has occurred.
  • wireless link failure can be conveniently detected in a multi-beam scenario.
  • each functional block may be implemented by one device that is physically and/or logically combined, or two or more devices that are physically and/or logically separated, directly and/or indirectly (eg, This is achieved by a plurality of devices as described above by a wired and/or wireless connection.
  • the wireless base station, the user equipment (or user terminal), and the like in the embodiments of the present disclosure can function as a computer that performs processing of the wireless communication method of the present invention.
  • FIG. 13 is a diagram showing an example of a hardware configuration of a radio base station and a user terminal according to an embodiment of the present disclosure.
  • the radio base station 10 and the user terminal 20 described above may be configured as a computer device that physically includes the processor 1001, the memory 1002, the memory 1003, the communication device 1004, the input device 1005, the output device 1006, the bus 1007, and the like.
  • the hardware structures of the wireless base station 10 and the user terminal 20 may include one or more of the devices shown in the figures, or may not include some of the devices.
  • the processor 1001 only illustrates one, but may be multiple processors.
  • the processing may be performed by one processor, or may be performed by one or more processors simultaneously, sequentially, or by other methods.
  • the processor 1001 can be installed by more than one chip.
  • the functions of the wireless base station 10 and the user terminal 20 are realized, for example, by reading a predetermined software (program) into hardware such as the processor 1001 and the memory 1002, thereby causing the processor 1001 to perform an operation, and the communication device
  • the communication performed by 1004 is controlled, and the reading and/or writing of data in the memory 1002 and the memory 1003 is controlled.
  • the processor 1001 causes the operating system to operate to control the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with a peripheral device, a control device, an arithmetic device, a register, and the like.
  • CPU central processing unit
  • the above determining unit may be implemented by the processor 1001.
  • the processor 1001 reads out programs (program codes), software modules, data, and the like from the memory 1003 and/or the communication device 1004 to the memory 1002, and executes various processes in accordance therewith.
  • programs program codes
  • the program a program for causing a computer to execute at least a part of the operations explained in the above embodiments can be employed.
  • the determining unit of the user terminal 20 can be implemented by a control program stored in the memory 1002 and operated by the processor 1001, and can be similarly implemented for other functional blocks.
  • the memory 1002 is a computer readable recording medium, and may be, for example, a read only memory (ROM), an EEPROM (Erasable Programmable ROM), an electrically programmable read only memory (EEPROM), or an electrically programmable read only memory (EEPROM). At least one of a random access memory (RAM) and other suitable storage medium is used.
  • the memory 1002 may also be referred to as a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 can store an executable program (program code), a software module, and the like for implementing the wireless communication method according to an embodiment of the present invention.
  • the memory 1003 is a computer readable recording medium, and may be, for example, a flexible disk, a soft (registered trademark) disk (floppy disk), a magneto-optical disk (for example, a CD-ROM (Compact Disc ROM), etc.). Digital Versatile Disc, Blu-ray (registered trademark) disc, removable disk, hard drive, smart card, flash device (eg card, stick, key driver), magnetic stripe, database At least one of a server, a server, and other suitable storage medium.
  • the memory 1003 may also be referred to as an auxiliary storage device.
  • the communication device 1004 is hardware (transmission and reception device) for performing communication between computers through a wired and/or wireless network, and is also referred to as a network device, a network controller, a network card, a communication module, and the like, for example.
  • the communication device 1004 may include a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc., in order to implement, for example, Frequency Division Duplex (FDD) and/or Time Division Duplex (TDD).
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • the above-described measurement unit, transmission unit, and the like can be implemented by the communication device 1004.
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, a light emitting diode (LED) lamp, etc.) that performs an output to the outside.
  • the input device 1005 and the output device 1006 may also be an integrated structure (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected via a bus 1007 for communicating information.
  • the bus 1007 may be composed of a single bus or a different bus between devices.
  • the wireless base station 10 and the user terminal 20 may include a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), and a programmable logic device (PLD).
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • PLD programmable logic device
  • Hardware such as Field Programmable Gate Array (FPGA) can realize some or all of each functional block by this hardware.
  • the processor 1001 can be installed by at least one of these hardwares.
  • the channel and/or symbol can also be a signal (signaling).
  • the signal can also be a message.
  • the reference signal may also be simply referred to as an RS (Reference Signal), and may also be referred to as a pilot (Pilot), a pilot signal, or the like according to applicable standards.
  • a component carrier may also be referred to as a cell, a frequency carrier, a carrier frequency, or the like.
  • the information, parameters, and the like described in the present specification may be expressed by absolute values, may be represented by relative values with predetermined values, or may be represented by other corresponding information.
  • wireless resources can be indicated by a specified index.
  • the formula or the like using these parameters may be different from those explicitly disclosed in the present specification.
  • the information, signals, and the like described in this specification can be expressed using any of a variety of different techniques.
  • data, commands, instructions, information, signals, bits, symbols, chips, etc. which may be mentioned in all of the above description, may pass voltage, current, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of them. Combined to represent.
  • information, signals, and the like may be output from the upper layer to the lower layer, and/or from the lower layer to the upper layer.
  • Information, signals, etc. can be input or output via a plurality of network nodes.
  • Information or signals input or output can be stored in a specific place (such as memory) or managed by a management table. Information or signals input or output may be overwritten, updated or supplemented. The output information, signals, etc. can be deleted. The input information, signals, etc. can be sent to other devices.
  • the notification of the information is not limited to the modes/embodiments described in the specification, and may be performed by other methods.
  • the notification of the information may be through physical layer signaling (for example, Downlink Control Information (DCI), Uplink Control Information (UCI), and upper layer signaling (for example, radio resource control).
  • RRC Radio Resource Control
  • MIB Master Information Block
  • SIB System Information Block
  • MAC Media Access Control
  • the physical layer signaling may be referred to as L1/L2 (Layer 1/Layer 2) control information (L1/L2 control signal), L1 control information (L1 control signal), and the like.
  • the RRC signaling may also be referred to as an RRC message, and may be, for example, an RRC Connection Setup message, an RRC Connection Reconfiguration message, or the like.
  • the MAC signaling can be notified, for example, by a MAC Control Unit (MAC CE).
  • MAC CE MAC Control Unit
  • the notification of the predetermined information is not limited to being explicitly performed, and may be performed implicitly (for example, by not notifying the predetermined information or by notifying the other information).
  • determination or determination it may be performed by a value represented by 1 bit (0 or 1), or by a true or false value (boolean value) represented by true (true) or false (false), and may also be numerically
  • the comparison is performed (for example, comparison with a prescribed value).
  • Software whether referred to as software, firmware, middleware, microcode, hardware description language, or other names, should be interpreted broadly to mean commands, command sets, code, code segments, program code, programs, sub- Programs, software modules, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, steps, functions, and the like.
  • software, commands, information, and the like may be transmitted or received via a transmission medium.
  • a transmission medium For example, when using wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and/or wireless technology (infrared, microwave, etc.) from a website, server, or other remote source
  • wired technology coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • base station BS
  • radio base station eNB
  • gNB gNodeB
  • cell a cell group
  • carrier cell group
  • component carrier a fixed station
  • NodeB a NodeB
  • eNodeB eNodeB
  • access point a transmission point
  • reception point a reception point
  • femto cell a small cell
  • a base station can accommodate one or more (eg, three) cells (also referred to as sectors). When the base station accommodates multiple cells, the entire coverage area of the base station can be divided into a plurality of smaller areas, and each smaller area can also pass through the base station subsystem (for example, a small indoor base station (RFH, remote head (RRH), Remote Radio Head))) to provide communication services.
  • the term "cell” or “sector” refers to a portion or the entirety of the coverage area of a base station and/or base station subsystem that performs communication services in the coverage.
  • Mobile stations are also sometimes used by those skilled in the art as subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless Terminals, remote terminals, handsets, user agents, mobile clients, clients, or several other appropriate terms are used.
  • the wireless base station in this specification can also be replaced with a user terminal.
  • each mode/embodiment of the present invention can be applied to a configuration in which communication between a radio base station and a user terminal is replaced with communication between a plurality of user-to-device (D2D) devices.
  • D2D user-to-device
  • the function of the above-described wireless base station 10 can be regarded as a function of the user terminal 20.
  • words such as "upstream” and "downstream” can also be replaced with "side”.
  • the uplink channel can also be replaced with a side channel.
  • the user terminal in this specification can also be replaced with a wireless base station.
  • the function of the user terminal 20 described above can be regarded as a function of the wireless base station 10.
  • LTE Long Term Evolution
  • LTE-A Advanced Long Term Evolution
  • LTE-B Long Term Evolution-Beyond
  • Super 3rd Generation Mobile communication system SUPER 3G
  • IMT-Advanced 4th generation mobile communication system
  • 4G 5th generation mobile communication system
  • 5G Future Radio Access
  • New-RAT Radio Access Technology
  • New Radio NR, New Radio
  • New Radio Access NX
  • New Generation FX New Generation radio access
  • GSM registered trademark
  • GSM Global System for Mobile Communications
  • CDMA2000 Code Division Multiple Access 2000
  • UMB Ultra Mobile Broadband
  • IEEE 802.11 Wi-Fi (registered trademark)
  • IEEE 802.16 WiMAX (registered trademark)
  • IEEE 802.20 Ultra Wideband (UWB, Ultra-WideBand)
  • any reference to an element using the names "first”, “second”, etc., as used in the specification and claims, does not fully limit the number or order of the elements. These names can be used in this specification as a convenient method of distinguishing between two or more elements. Thus, the reference to the first element and the second element does not mean that only two elements may be employed or the first element must prevail over the second element in several forms.
  • determining as used in this specification sometimes includes a wide variety of actions. For example, with regard to “determination”, calculations, calculations, processing, deriving, investigating, and looking up (eg, tables, databases, or other data structures) can be performed. Search, confirmation (ascertaining), etc. are considered to be “determined.” In addition, regarding “determination”, receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and accessing (for example, accessing memory) may also be performed. The data in the data) is considered to be “determined”. Further, regarding “determination”, it is also possible to consider “resolving", “selecting”, selecting (choosing), establishing (comparing), comparing (comparing), etc. as “determining”. That is to say, regarding “determination”, several actions can be considered as “determining”.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

公开了一种无线链路失败检测方法和用户设备。所述用户设备被配置了多个波束对,每个波束对包括基站用来发送信号的一个发送波束和所述用户设备用来接收所述信号的一个对应的接收波束,所述方法包括:在下层中,测量利用每个波束对中的接收波束接收的、基站使用与该接收波束对应的发送波束发送的参考信号的质量,作为所述多个波束对包含的多个发送波束的信道质量;确定所述多个发送波束的信道质量是否满足第一条件;当所述多个发送波束的信道质量满足第一条件时,向上层发送失步指示信息,使得上层根据该失步指示信息确定是否发生无线链路失败。由此,可以在多波束场景中检测无线链路失败。

Description

无线链路失败检测方法和用户设备 技术领域
本公开涉及无线链路失败(radio link failure)检测,并且更具体地涉及一种在多波束场景中进行无线链路失败检测的方法以及对应的用户设备。
背景技术
在长期演进(LTE)中,由于无线环境变化等原因,用户设备(UE)与基站(BS)之间的下行链路信道质量可能变差,导致无线链路失败(RLF),从而影响UE与基站之间的通信。为了避免这一问题,UE监视下行链路的信道质量,以检测无线链路失败(RLF),并且在检测到RLF时,进行RRC重建。
具体地,UE在L1/L2层定期地测量下行链路信道(例如下行链路控制信道(PDCCH))的无线质量,并且将所述无线质量与阈值Q out进行比较。如果所述无线质量低于Q out,则从L1/L2层向L3层发送失步(Out-Of-Sync,OOS)指示。如果L3层连续接收到N310个失步指示,则启动T310定时器。然后,UE将所述无线质量与阈值Q in进行比较,如果所述无线质量高于Q in,则从L1/L2层向L3层发送同步(In-Sync,IS)指示。如果在T310启动期间,L3层连续接收到N311个同步指示,则可以确定没有发生RLF,并且停止T310定时器。另一方面,如果在T310到期之前没有连续接收到N311个同步指示,则可以确定发生RLF。随后,UE开始进行RRC重建过程。
在新的无线接入系统中,使用了多波束技术,其中,基站可以使用多个发送波束向UE发送信号,UE可以使用多个接收波束接收基站发送的信号。然而,在这种多波束场景中,尚未提出检测RLF的方法。
发明内容
根据本公开的一个实施例,提供了一种由用户设备执行的无线链路失败检测方法,所述用户设备被配置了多个波束对,每个波束对包括基站用来发送信号的一个发送波束和所述用户设备用来接收所述信号的一个对应的接收 波束,所述方法包括:在下层中,测量利用每个波束对中的接收波束接收的、基站使用与该接收波束对应的发送波束发送的参考信号的质量,作为所述多个波束对包含的多个发送波束的信道质量;确定所述多个发送波束的信道质量是否满足第一条件;当所述多个发送波束的信道质量满足第一条件时,向上层发送失步指示信息,使得上层根据该失步指示信息确定是否发生无线链路失败。
根据本公开的另一实施例,提供一种用户设备,被配置了多个波束对,每个波束对包括基站用来发送信号的一个发送波束和所述用户设备用来接收所述信号的一个对应的接收波束,所述用户设备包括:测量单元,被配置为在下层中,测量利用每个波束对中的接收波束接收的、基站使用与该接收波束对应的发送波束发送的参考信号的质量,作为所述多个波束对包含的多个发送波束的信道质量;确定单元,被配置为确定所述多个发送波束的信道质量是否满足第一条件;发送单元,被配置为当所述确定单元确定所述多个发送波束的信道质量满足第一条件时,向上层发送失步指示信息,使得上层根据该失步指示信息确定是否发生无线链路失败。值得注意的是,用户被配置的多个波束对可以是相同类型的波束对,也可以是不同类型的波束对。
根据本公开的另一实施例,提供一种由用户设备执行的无线链路失败检测方法,所述用户设备被配置了多个第一波束对和多个第二波束对,每个第一波束对包括基站用来发送信号的一个第一类型的发送波束和所述用户设备用来接收所述信号的一个对应的第二类型的接收波束,每个第二波束对包括基站用来发送信号的一个第二类型的发送波束和所述用户设备用来接收所述信号的一个对应的第二类型的接收波束,所述方法包括:在下层中,测量利用每个第一波束对中的第一类型的接收波束接收的、基站使用与该第一类型的接收波束对应的第一类型的发送波束发送的参考信号的质量,作为所述多个第一波束对包含的多个第一类型的发送波束的信道质量,并且测量利用每个第二波束对中的第二类型的接收波束接收的、基站使用与该第二类型的接收波束对应的第二类型的发送波束发送的参考信号的质量,作为所述多个第二波束对包含的多个第二类型的发送波束的信道质量;确定所述多个第一类型的发送波束的信道质量是否满足第一条件,并且确定所述多个第二类型的发送波束的信道质量是否满足第二条件;当所述多个第一类型的发送波束的 信道质量满足第一条件,并且/或者所述多个第二类型的发送波束的信道质量满足第二条件时,向上层发送失步指示信息,使得上层根据该失步指示信息确定是否发生无线链路失败。
根据本公开的另一实施例,提供一种由用户设备执行的无线链路失败检测方法,所述用户设备被配置了多个第一波束对和多个第二波束对,每个第一波束对包括基站用来发送信号的一个第一类型的发送波束和所述用户设备用来接收所述信号的一个对应的第二类型的接收波束,每个第二波束对包括基站用来发送信号的一个第二类型的发送波束和所述用户设备用来接收所述信号的一个对应的第二类型的接收波束,所述方法包括:在上层接收从下层发送的第一数量的第一失步指示信息和第二数量的第二失步指示信息,所述第一失步指示信息是在通过测量利用每个第一波束对中的第一类型的接收波束接收的、基站使用与该第一类型的接收波束对应的第一类型的发送波束发送的参考信号的质量而获得的所述多个第一类型的发送波束的信道质量满足第一条件时发送的,所述第二失步指示信息是在通过测量利用每个第二波束对中的第二类型的接收波束接收的、基站使用与该第二类型的接收波束对应的第二类型的发送波束发送的参考信号的质量而获得的所述多个第二类型的发送波束的信道质量满足第二条件时发送的;在上层中,根据所述第一数量的第一失步指示信息和/或所述第二数量的第二失步指示信息,确定是否发生无线链路失败。
根据本公开的另一实施例,提供一种用户设备,被配置了多个第一波束对和多个第二波束对,每个第一波束对包括基站用来发送信号的一个第一类型的发送波束和所述用户设备用来接收所述信号的一个对应的第二类型的接收波束,每个第二波束对包括基站用来发送信号的一个第二类型的发送波束和所述用户设备用来接收所述信号的一个对应的第二类型的接收波束,所述用户设备包括:测量单元,被配置为在下层中,测量利用每个第一波束对中的第一类型的接收波束接收的、基站使用与该第一类型的接收波束对应的第一类型的发送波束发送的参考信号的质量,作为所述多个第一波束对包含的多个第一类型的发送波束的信道质量,并且测量利用每个第二波束对中的第二类型的接收波束接收的、基站使用与该第二类型的接收波束对应的第二类型的发送波束发送的参考信号的质量,作为所述多个第二波束对包含的多个 第二类型的发送波束的信道质量;确定单元,被配置为确定所述多个第一类型的发送波束的信道质量是否满足第一条件,并且确定所述多个第二类型的发送波束的信道质量是否满足第二条件;发送单元,被配置为当所述确定单元确定所述多个第一类型的发送波束的信道质量满足第一条件,并且/或者所述多个第二类型的发送波束的信道质量满足第二条件时,向上层发送失步指示信息,使得上层根据该失步指示信息确定是否发生无线链路失败。
根据本公开的另一实施例,提供一种用户设备,被配置了多个第一波束对和多个第二波束对,每个第一波束对包括基站用来发送信号的一个第一类型的发送波束和所述用户设备用来接收所述信号的一个对应的第一类型的接收波束,每个第二波束对包括基站用来发送信号的一个第二类型的发送波束和所述用户设备用来接收所述信号的一个对应的第二类型的接收波束,所述用户设备包括:接收单元,被配置为在上层接收从下层发送的第一数量的第一失步指示信息以及第二数量的第二失步指示信息,所述第一失步指示信息是在通过测量利用每个第一波束对中的第一类型的接收波束接收的、基站使用与该第一类型的接收波束对应的第一类型的发送波束发送的参考信号的质量而获得的所述多个第一类型的发送波束的信道质量满足第一条件时发送的,所述第二失步指示信息是在通过测量利用每个第二波束对中的第二类型的接收波束接收的、基站使用与该第二类型的接收波束对应的第二类型的发送波束发送的参考信号的质量而获得的所述多个第二类型的发送波束的信道质量满足第二条件时发送的;确定单元,被配置为在上层中,根据所述第一数量的第一失步指示信息和/或所述第二数量的第二失步指示信息,确定是否发生无线链路失败。
附图说明
通过结合附图对本公开实施例进行更详细的描述,本公开的上述以及其它目的、特征和优势将变得更加明显。附图用来提供对本公开实施例的进一步理解,并且构成说明书的一部分,与本公开实施例一起用于解释本公开,并不构成对本公开的限制。在附图中,相同的参考标号通常代表相同部件或步骤。
图1是根据本公开实施例的移动通信系统的示意图。
图2A和图2B是在基站与用户设备之间的通信中使用的波束的示意图。
图3是根据本公开第一实施例的检测RLF的方法的流程图。
图4是根据本公开第一实施例的确定无线链路失败的示意图。
图5是根据本发明第一实施例的UE的框图。
图6是根据本公开第二实施例的确定无线链路失败的示意图。
图7是根据本公开第二实施例的检测无线链路失败的方法的流程图。
图8是根据本发明第二实施例的UE的框图。
图9是根据本公开第三实施例的检测无线链路失败的方法的流程图。
图10是根据本发明第三实施例的UE的框图。
图11是根据本公开第四实施例的检测无线链路失败的方法的流程图。
图12是根据本公开第四实施例的UE的框图。
图13是根据本公开无线基站和用户终端的硬件结构的一例的图。
具体实施方式
为了使得本公开的目的、技术方案和优点更为明显,下面将参照附图详细描述根据本公开的示例实施例。
首先,参照图1来描述可在其中应用本公开的实施例的无线通信系统。如图1所示,该无线通信系统包括基站(BS)10和用户设备(UE)20。UE20接收基站10发送的信号,并且向基站10发送信号。需要认识到,尽管在图1中示出了一个基站和一个UE,但这只是示意性的,该无线通信系统可以包括多个基站和/或多个UE。可以认识到,所述基站也可以称为发送接收点(TRP),所述UE也可以称为移动台(MS)或用户终端。
在多波束场景中,对用户设备配置多个波束对。具体地,基站可以使用多个发送波束向UE发送信号,UE可以使用多个接收波束接收基站发送的信号。
所述发送波束和所述接收波束可以是第一类型的波束,所述第一类型的波束用于传输下行链路控制信道(PDCCH)和/或下行链路数据信道(PDSCH)、用来进行CSI测量与报告和/或L1层参考信号接收功率(RSRP)测量与报告(即进行波束管理)、用来进行无线资源管理测量的CSI-RS等。如图2A所示,基站可以使用第一类型的发送波束B21、B22、B23和/或B24向UE发 送数据。所述发送波束可以包括服务波束(例如B22和B23)以及候选波束(例如B21和B24)。在发送数据时,基站在服务波束中进行动态地调度。当服务波束发生波束失败事件时,基站可以将服务波束切换为所述候选波束,从而执行波束恢复。另一方面,UE可以使用多个第一类型的接收波束b1、b2、b3和b4中的一个接收基站使用某个发送波束发送的数据。具体地,当基站使用某个发送波束(例如B22)发送数据时,UE在接收波束b1-b4中选择可获得期望接收质量(例如最佳接收质量)的接收波束(例如b2)来接收该数据,在这种情况下,所述发送波束和所述接收波束形成一个波束对。类似地,对于每个发送波束,存在一个对应的可获得期望接收质量的接收波束,由此,所述多个发送波束和所述多个接收波束可以形成多个波束对。在下文中,为便于描述,可以将由第一类型的波束形成的多个波束对称为多个第一波束对。
可替换地,所述发送波束和所述接收波束可以是第二类型的波束,用于发送同步信号块(SS block),包括同步信号或物理广播信道。如图2B所示,基站可以使用第二类型的发送波束(例如B1、B2或B3)来向UE发送信号。同样,所述第二类型的发送波束可以包括服务波束和候选波束,并且可以按照与第一类型的波束相同的方式使用和切换所述发送波束。另一方面,UE可以使用多个第二类型的接收波束(图2B中未示出)中的一个接收基站使用某个发送波束发送的信号。类似地,每个发送波束和对于该发送波束可获得期望接收质量的接收波束形成一个波束对,从而形成多个波束对。在下文中,为便于描述,可以将由第二类型的波束形成的多个波束对称为多个第二波束对。如图2A和2B所示,通常,第二类型的波束比第一类型的波束宽,因此,在下文中,也将第一类型的波束称为细(fine)波束,将第二类型的波束称为粗(rough)波束。需要认识到,在配置用户进行下行链路质量监视时,可以只给UE配置多个第一波束对或多个第二波束对,也可以给UE配置多个第一波束对和多个第二波束对。
下面,将详细描述本公开的实施例。在本公开的实施例中,当在L1/L2层中服务波束发生波束失败事件时,执行上述波束恢复操作。在满足某些条件的情况下,可以确定波束恢复失败。此时,从L1/L2层向L3层发送失步指示,使得L3层可以至少部分地根据该失步指示确定是否发生无线链路失 败(RLF)。
首先,将参照图3来描述根据本公开第一实施例的检测RLF的方法。该方法可以由UE执行。如上文所述,该UE被配置了多个波束对,每个波束对包括基站用来发送信号的一个发送波束和所述用户设备用来接收所述信号的一个对应的接收波束。所述发送对的波束可以只包括第一类型的波束,只包括第二类型的波束,或者可以包括第一类型的波束和第二类型的波束二者。
如图3所示,在步骤S301中,在L1/L2层中,测量利用每个波束对中的接收波束接收的、基站使用与该接收波束对应的发送波束发送的参考信号的质量,作为所述多个波束对包含的多个发送波束的信道质量。在这里,作为示例,所述下层可以是L1层(物理层)和/或L2层(MAC层和/或RLC层),即L1/L2层,相应地,下文所述的上层可以是L3层(RRC层)。
UE可以监视配置给该UE的多个波束对。具体地,当基站使用波束对中的发送波束向UE发送参考信号时,UE可以使用该波束对中与所述发送波束对应的接收波束来接收所述参考信号,并且测量该参考信号的接收质量,作为该发送波束的(下行)信道质量。由此,UE可以测量得到所述多个波束对包含的多个发送波束的信道质量。
可以通过高层信令(例如无线资源控制(RRC)信令)来配置UE监视的波束对。此外,当UE监视的是第一波束对时,所述参考信号可以是用于无线资源管理(RRM)测量的信道状态信息参考信号(CSI-RS)、用于信道状态信息(CSI)测量(包括L1-RSRP测量)的CSI-RS、或者用于下行链路控制信道(PDCCH)的解调参考信号(DMRS);当UE监视的是第二波束对时,所述参考信号可以是同步信号块(SS block)、同步信号(SS)、用于物理广播信道(PBCH)的解调参考信号(DMRS)、或用于无线资源管理(RRM)测量的信道状态信息参考信号(CSI-RS)。在所述参考信号是同步信号块或同步信号,或用于RRM测量的CSI-RS的情况下,可以通过高层信令(例如RRC信令)来配置该CSI-RS与发送给UE的PDCCH的DMRS之间的对应关系(可称为准同定位(Quasi Co-location)关系),使得可以根据该对应关系知道监视该参考信号的测量得到的是哪个控制信道(PDCCH)的信道质量。
继续参照图3,在步骤S302中,确定所述多个发送波束的信道质量是否满足第一条件。
在第一实现方式中,当所述多个发送波束中某一比例(表示为P1)的发送波束的信道质量在某个时段(表示为T1)内低于某个阈值(表示为TH1)时,确定所述多个发送波束的信道质量满足第一条件。在该实现方式中,所述多个发送波束包括服务波束和候选波束。此外,所述比例P1可以根据需要灵活地设置,例如可以设置为70%、90%、100%或者其他适当的值。所述时段T1也可以根据需要灵活地设置。此外,所述阈值TH1可以根据需要灵活地设置,例如可以设置为Q out,其中,可以将参考信号或控制信道的块误码率(BLER)大于某个值(例如10%)时的信号与干扰加噪声比(SINR)设置为Q out。在该实现方式中,所述多个发送波束包括服务波束和候选波束。
在第二实现方式中,当所述多个发送波束中的服务波束发生波束失败事件(L1/L2层中),并且所述候选波束中某个比例(表示为P2)的候选波束的信道质量在某个时段(表示为T2)内低于某个阈值(表示为TH2)时,确定所述多个发送波束的信道质量满足第一条件。P2、T2和TH2可以根据需要灵活地设置,并且可以分别与P1、T1和TH1相同或不同。例如,阈值TH2可以是上文所述的Q out,也可以是其他值。此外,P2可以是100%,或者可以是80%或其他适当的值。
在该实现方式中,L1/L2层中的这一波束失败事件可以是能够反映服务波束不可用的任何事件,并且可以根据无线通信系统的实际情况和/或无线环境适当地定义,或者可以是预先定义的事件,例如3GPP标准中定义的波束失败事件。例如,当所述多个发送波束中某个比例(表示为P3)的服务波束的信道质量在时段T3内低于阈值TH3时,可以认为所述多个发送波束中的服务波束发生波束失败事件。所述P3、T3和TH3可以根据需要灵活地设置,并且可以分别与前述的比例、时段和阈值相同或不同。例如,阈值TH3可以是上文所述的Qout,也可以是其他值。此外,P3可以是100%,或者可以是80%或其他适当的值。作为另一示例,当服务波束的信道质量在某一时段内低于某一阀值,并且候选波束的信道质量在某一时段内高于某一阀值时,可以认为所述服务波束发生波束失败事件。
在第三实现方式中,当在某个时段(表示为T4)内成为服务波束的发送波束发生波束失败事件时,确定所述多个发送波束的信道质量满足第一条件。具体地,当服务波束发生波束失败事件(例如上文所述的波束失败事件)时, 基站将把一个或多个候选波束切换为服务波束。然而,如果切换后的服务波束仍然发生波束失败事件,则基站将把另外的一个或多个候选波束切换为服务波束。如果在时段T4内,成为服务波束的发送波束都发生波束失败事件,则说明当前可用于UE的波束的信道质量不佳,从而可以确定所述多个发送波束的信道质量满足第一条件,以执行后续操作。可替换地,当在时段T4内所述多个发送波束中某个比例(表示为P4)的发送波束发生波束失败事件时,确定所述多个发送波束的信道质量满足第一条件。
继续参照图3,在步骤S303中,当所述多个发送波束的信道质量满足第一条件时,向上层发送失步指示信息,使得上层根据该失步指示信息确定是否发生无线链路失败。
具体地,当所述多个发送波束的信道质量满足第一条件时,可以确定可用于UE的发送波束的信道质量不佳,因此,可以向上层发送指示该UE与基站失去同步的失步指示信息,使得上层能够基于该失步指示信息来确定是否发生无线链路失败。如上文所述,所述上层可以是L3层,在下文中,以L3层为例来进行说明。
UE定期地重复上述步骤S301至S303,即,定期地在L1/L2层中测量所述参考信号的质量,从而确定多个发送波束的信道质量,并且在该信道质量满足第一条件时,向L3层发送失步指示信息。
另一方面,UE可以在L1/L2层确定所述多个发送波束的信道质量是否满足第二条件,并且当所述多个发送波束的信道质量满足第二条件时,向L3层发送同步指示信息。例如,当所述多个发送波束中某个比例(表示为P5)的发送波束的信道质量在某个时段(表示为T5)内高于某个阈值(表示为TH5)时,可以确定所述多个发送波束的信道质量满足第二条件。所述P5、T5和TH5可以根据需要灵活地设置。例如,阈值TH5可以设置为Q in,其中,可以将参考信号或控制信道的块误码率(BLER)低于某个值(例如2%)时的信号与干扰加噪声比(SINR)设置为Q in。此外,P5可以是100%,或者可以是80%或其他适当的值。可以看到,所述多个发送波束的信道质量满足第二条件时,可用于UE的发送波束的信道质量较好,因此可以确定在UE与基站之间取得了同步,因此可以向L3层发送同步指示信息。L3层也使用该同步指示信息来确定是否发生无线链路失败。同样,每当UE在L1/L2层 确定所述多个发送波束的信道质量满足第二条件时,都向L3层发送同步指示信息。可替换地,除了所述多个发送波束中比例P5的发送波束的信道质量在时段T5内高于阈值TH5这一条件以外,可以附加进一步的条件,使得当这些条件均满足时,才确定多个发送波束的信道质量满足第二条件。所附加的条件例如可以是,在所述多个发送波束中比例P5的发送波束的信道质量在时段T5内高于阈值TH5的情况下,信道质量高于阈值TH5的发送波束与先前的服务波束至少有一个相同。附加这一条件的原因在于,如果信道质量高于阈值TH5的发送波束与先前使用的服务波束完全不同,这说明UE可用的波束的信道质量仍然不稳定,存在失去同步的可能性,因此不宜发送同步指示信息。
下面,参照图4来描述根据本公开第一实施例的、在L3层确定无线链路失败的具体方式。具体地,当如上所述在步骤S303中,从L1/L2层向L3层发送了失步指示信息时,L3层对该失步指示信息进行计数。当L3层连续接收到N310个失步指示信息时,L3层启动定时器T310,然后对接收到的同步指示信息进行计数。如果在T310启动期间,L3层连续接收到N311个同步指示信息,则L3层确定没有发生无线链路失败,并且停止定时器T310。否则,如果直到T310过期为止,L3层没有连续接收到N311个同步指示信息,则L3层确定发生无线链路失败,从而开始执行RRC重建过程。UE可以按照本领域公知的方式执行该RRC重建过程。例如,UE可以基于同步信号执行RRM测量,并且通过随机接入过程来执行RRC重建。
利用上述方法,在多波束场景中,可以方便地检测无线链路失败。应当认识到,上文描述的方法只是说明性的,而非限制性的。例如,尽管在上文中描述所述方法时,使用了各种比例,但可以将其替换为数量。例如,在步骤S302中,可以在预定数量的发送波束符合各种要求时,确定所述多个发送波束的信道质量满足第一条件或第二条件。此外,例如,可以在所述多个发送波束中某个数量的(例如1个)发送波束的信道质量在时段T5内高于阈值TH5时,可以确定所述多个发送波束的信道质量满足第二条件。
此外,如上文所述,可以给UE配置多个第一波束对和多个第二波束对,从而UE被配置了第一类型的发送波束和第二类型的发送波束。在这种情况下,在测量多个发送波束的信道质量时,可以不区分第一类型的发送波束和 第二类型的发送波束,即,可以测量包括第一类型的发送波束和第二类型的发送波束的信道质量,并且根据该信道质量执行后续操作。
下面,将参照图5来描述根据本发明第一实施例的UE。该UE被配置了多个波束对,每个波束对包括基站用来发送信号的一个发送波束和所述用户设备用来接收所述信号的一个对应的接收波束。所述发送对的波束可以只包括第一类型的波束,只包括第二类型的波束,或者可以包括第一类型的波束和第二类型的波束二者。由于该用户设备的操作与参照图3描述的方法的相应步骤的细节基本相同,因此在这里省略对相同内容的描述。
如图5所示,UE 50包括测量单元501、确定单元502和发送单元503。
测量单元501在下层(例如L1/L2层)中,测量利用每个波束对中的接收波束接收的、基站使用与该接收波束对应的发送波束发送的参考信号的质量,作为所述多个波束对包含的多个发送波束的信道质量。如上文所述,可以通过高层信令(例如RRC信令)来配置UE监视的波束对。此外,当UE监视的是第一波束对时,所述参考信号可以是用于RRM测量的CSI-RS、用于CSI测量的CSI-RS、或者用于PDCCH的DMRS;当UE监视的是第二波束对时,所述参考信号可以是同步信号(SS)、用于PBCH的DMRS、或用于RRM测量的CSI-RS。在所述参考信号是同步信号,或用于RRM测量的CSI-RS的情况下,可以通过高层信令(例如RRC信令)来配置该CSI-RS与发送给UE的PDCCH的DMRS之间的对应关系(准同定位关系),使得可以根据该对应关系知道监视该参考信号的测量得到的是哪个控制信道(PDCCH)的信道质量。
确定单元502可以确定所述多个发送波束的信道质量是否满足第一条件。
在第一实现方式中,当所述多个发送波束中比例P1的发送波束的信道质量在时段T1内低于阈值TH1时,确定单元502可以确定所述多个发送波束的信道质量满足第一条件。在该实现方式中,所述多个发送波束包括服务波束和候选波束。此外,比例P1和时段T1也可以根据需要灵活地设置。此外,所述阈值TH1可以根据需要灵活地设置,例如可以设置为Q out。在该实现方式中,所述多个发送波束包括服务波束和候选波束。
在第二实现方式中,当所述多个发送波束中的服务波束发生波束失败事件,并且所述候选波束中比例P2的候选波束的信道质量在时段T2内低于阈 值TH2时,确定所述多个发送波束的信道质量满足第一条件。P2、T2和TH2可以根据需要灵活地设置,并且可以分别与P1、T1和TH1相同或不同。例如,阈值TH2可以是上文所述的Qout,也可以是其他值。在该实现方式中,如上所述,L1/L2层的这一波束失败事件可以是能够反映服务波束不可用的任何事件,并且可以根据无线通信系统的实际情况和/或无线环境适当地定义,或者可以是预先定义的事件,例如3GPP标准中定义的波束失败事件。例如,当所述多个发送波束中比例P3的服务波束的信道质量在时段T3内低于阈值TH3时,可以认为所述多个发送波束中的服务波束发生波束失败事件。所述P3、T3和TH3可以根据需要灵活地设置。例如,阈值TH3可以是上文所述的Qout,也可以是其他值。作为另一示例,当服务波束的信道质量在某一时段内低于某一阀值,并且候选波束的信道质量在某一时段内高于某一阀值时,可以认为所述服务波束发生波束失败事件。
在第三实现方式中,当在时段T4内成为服务波束的发送波束发生波束失败事件时,确定单元502可以确定所述多个发送波束的信道质量满足第一条件。可替换地,当在时段T4内所述多个发送波束中比例P4的发送波束发生波束失败事件时,确定单元502可以确定所述多个发送波束的信道质量满足第一条件。
发送单元503可以在所述确定单元502确定所述多个发送波束的信道质量满足第一条件时,向上层发送失步指示信息,使得上层根据该失步指示信息确定是否发生无线链路失败。
UE 50的各个单元定期地重复上述操作,即,定期地在L1/L2层中测量所述参考信号的质量,从而确定多个发送波束的信道质量,并且在该信道质量满足第一条件时,向L3层发送失步指示信息。
另一方面,确定单元502可以在L1/L2层确定所述多个发送波束的信道质量是否满足第二条件,并且当确定单元502确定所述多个发送波束的信道质量满足第二条件时,发送单元503向L3层发送同步指示信息。例如,当所述多个发送波束中比例P5的发送波束的信道质量在时段T5内高于阈值TH5时,可以确定所述多个发送波束的信道质量满足第二条件。所述P5、T5和TH5可以根据需要灵活地设置。例如,阈值TH5可以设置为Q in
然后,UE可以按照在上文中参照图4描述的方法,根据所述失步指示 信息和/或所述同步指示信息,在L3层确定是否发生无线链路失败。在这里,为简单起见而省略其相似描述。
下面,将描述根据本公开第二实施例的检测无线链路失败的方法。在该实施例中,对UE配置了多个第一波束对和多个第二波束对,即,对UE配置了多个第一类型的发送波束(细发送波束)和多个第二类型的发送波束(粗发送波束)。
如图6所示,在根据本公开第二实施例的检测无线链路失败的方法与根据本公开第一实施例的检测无线链路失败的方法的不同之处在于,在L1/L2层中检测出细发送波束发生波束失败事件时,或者在L1/L2层中检测出细发送波束的信道质量满足第一条件时,UE执行回退,以根据粗发送波束来检测无线链路失败。
具体地,参照图7,在步骤S701中,在L1/L2层中,测量所述多个细发送波束的信道质量,并且确定所述多个细发送波束是否发生波束失败事件。具体地,可以通过测量利用每个第一波束对中的细接收波束接收的、基站使用与该细接收波束对应的细发送波束发送的参考信号的质量,作为所述多个细发送波束的信道质量。然后,根据所述多个细发送波束的信道质量确定所述多个细发送波束是否发生波束失败事件。如上文所述,L1/L2层中的波束失败事件可以是根据无线通信系统的实际情况和/或无线环境适当地定义的事件。例如,当所述多个细发送波束中某个比例的细发送波束的信道质量在某个时段内低于阈值时,可以认为所述多个细发送波束发生波束失败事件,其中,所述比例、时段和阈值可以根据需要灵活地设置。可替换地,在该步骤中,可以在L1/L2层中测量所述多个细发送波束的信道质量,并且确定所述多个细发送波束的信道质量是否满足第一条件。
如果在步骤S701中确定所述多个细发送波束发生波束失败事件(即,在L1/L2层中确定所述多个细发送波束发生波束失败事件之后),或者确定所述多个细发送波束的信道质量满足第一条件,则在步骤S702中,UE回退到使用粗发送波束检测来检测是否发生RLF的状态。
接下来,在步骤S703中,在L1/L2层中测量利用每个第二波束对中的粗接收波束接收的、基站使用与该粗接收波束对应的粗发送波束发送的参考信号的质量,作为所述多个第二波束对包含的多个粗发送波束的信道质量。 在第二实施例中,所述参考信号可以是同步信号(SS)、用于PBCH的DMRS、或用于RRM测量的CSI-RS。在所述参考信号是SS或用于RRM测量的CSI-RS的情况下,可以通过高层信令(例如RRC信令)来配置该参考信号与发送给UE的PDCCH的DMRS之间的对应关系(准同定位关系),使得可以根据对应关系知道监测该参考信号的测量得到的是哪个控制信道(PDCCH)的信道质量。
继续参照图7,在步骤S704中,确定所述多个发送波束的信道质量是否满足第一条件。当所述多个发送波束的信道质量满足第一条件时,在步骤S705中,向上层发送失步指示信息,使得上层根据该失步指示信息确定是否发生无线链路失败。除了针对的对象被限制为粗波束以外,根据本公开第二实施例的方法中的步骤S703到S705与根据本公开第一实施例的方法中的步骤S301到S303相同,在这里为简单起见省略对相同内容的描述。
此外,UE可以在L1/L2层确定所述多个发送波束的信道质量是否满足第二条件,并且当所述多个发送波束的信道质量满足第二条件时,向L3层发送同步指示信息。
继而,UE可以按照在上文中针对图4描述的方式,基于所述失步指示信息和所述同步指示信息,确定是否发生无线链路失败。
下面,参照图8描述根据本公开第二实施例的UE。该UE被配置了多个第一波束对和多个第二波束对,即,对UE配置了多个第一类型的发送波束(细发送波束)和多个第二类型的发送波束(粗发送波束)。此外,该UE执行的操作的细节与在上文中参照图6描述的方法的各个步骤相同,因此在这里省略对相同内容的描述。
如图8所示,UE 80包括测量单元801、确定单元802和发送单元803。
测量单元801在L1/L2层中测量所述多个细发送波束的接收质量,并且确定单元802确定所述多个细发送波束是否发生波束失败事件。具体地,测量单元801可以通过测量利用每个第一波束对中的细接收波束接收的、基站使用与该细接收波束对应的细发送波束发送的参考信号的质量,作为所述多个细发送波束的信道质量。然后,确定单元802根据所述多个细发送波束的信道质量确定所述多个细发送波束是否发生波束失败事件。可替换地,确定单元802可以确定所述多个细发送波束的信道质量是否满足第一条件。
如果确定单元802确定所述多个细发送波束发生波束失败事件(即,在L1/L2层中确定所述多个细发送波束发生波束失败事件之后),或者确定所述多个细发送波束的信道质量满足第一条件,则UE回退到使用粗发送波束检测来检测是否发生RLF的状态。
然后,测量单元801测量利用每个第二波束对中的粗接收波束接收的、基站使用与该粗接收波束对应的粗发送波束发送的参考信号的质量,作为所述多个第二波束对包含的多个粗发送波束的信道质量。然后,所述确定单元802确定所述多个发送波束的信道质量是否满足第一条件。当所述多个发送波束的信道质量满足第一条件时,所述发送单元803向上层发送失步指示信息。
此外,确定单元802可以在L1/L2层确定所述多个发送波束的信道质量是否满足第二条件,并且当确定单元802确定所述多个发送波束的信道质量满足第二条件时,发送单元803可以向L3层发送同步指示信息。
继而,UE可以按照在上文中参考图4描述的方式,基于所述失步指示信息和所述同步指示信息,确定是否发生无线链路失败。
下面,参照图9描述根据本公开第三实施例的检测无线链路失败的方法。在该实施例中,对UE配置了多个第一波束对和多个第二波束对,即,对UE配置了多个第一类型的发送波束(细发送波束)和多个第二类型的发送波束(粗发送波束)。
如图9所示,在步骤S901中,在L1/L2层中,测量利用每个第一波束对中的细接收波束接收的、基站使用与该细接收波束对应的细发送波束发送的参考信号的质量,作为所述多个细发送波束的信道质量,并且测量利用每个第二波束对中的粗接收波束接收的、基站使用与该粗接收波束对应的粗发送波束发送的参考信号的质量,作为所述多个粗发送波束的信道质量。在这里,除了测量所针对的波束可能存在不同以外,上述测量步骤与参照图3描述的测量步骤基本相同,在这里不再赘述。
在步骤S902中,确定所述多个细发送波束的信道质量是否满足第一条件,并且确定所述多个粗发送波束的信道质量是否满足第二条件。在这里,除了所针对的波束可能存在不同以外,上述确定步骤与参照图3描述的确定步骤基本相同,在这里不再赘述。此外,所述第一条件与所述第二条件可以 仅在相应的时段、阈值和比例中的一个或多个上有所不同,其余内容相同。在步骤S903中,当所述多个细发送波束的信道质量满足第一条件,并且/或者所述多个粗发送波束的信道质量满足第二条件时,向L3层发送失步指示信息,使得上层根据该失步指示信息确定是否发生无线链路失败。
在这里,可以根据需要进行设置向L3发送失步指示信息的条件。例如,可以进行设置,使得仅在所述多个细发送波束的信道质量满足第一条件时向L3层发送失步指示信息,或者仅在所述多个第二类型的发送波束的信道质量满足第二条件时向L3层发送失步指示信息,或者在所述多个细发送波束的信道质量满足第一条件,并且所述多个粗发送波束的信道质量满足第二条件时,向L3层发送失步指示信息。
同样,在该方法中,UE可以在L1/L2层确定所述多个细发送波束的信道质量是否满足第二条件,并且确定所述多个粗发送波束的信道质量是否满足第二条件,并且当所述多个细发送波束的信道质量满足第二条件,并且/或者所述多个粗发送波束的信道质量满足第二条件时,向L3层发送同步指示信息。
继而,UE可以按照在上文中参考图4描述的方式,基于所述失步指示信息和所述同步指示信息,确定是否发生无线链路失败。
下面,参照图10来描述根据本公开第三实施例的UE。在该实施例中,对UE配置了多个第一波束对和多个第二波束对,即,对UE配置了多个第一类型的发送波束(细发送波束)和多个第二类型的发送波束(粗发送波束)。由于该UE的操作细节与在上文中参照图9描述的方法相同,因此在这里省略对相同内容的描述。
如图10所示,UE 100包括测量单元101、确定单元102和发送单元103。测量单元101在L1/L2层中,测量利用每个第一波束对中的细接收波束接收的、基站使用与该细接收波束对应的细发送波束发送的参考信号的质量,作为所述多个细发送波束的信道质量,并且测量利用每个第二波束对中的粗接收波束接收的、基站使用与该粗接收波束对应的粗发送波束发送的参考信号的质量,作为所述多个粗发送波束的信道质量。
确定单元102确定所述多个细发送波束的信道质量是否满足第一条件,并且确定所述多个粗发送波束的信道质量是否满足第二条件。所述第一条件 与所述第二条件可以仅在相应的时段、阈值和比例中的一个或多个上有所不同,其余内容相同。
发送单元103可以在确定单元102确定所述多个细发送波束的信道质量满足第一条件,并且/或者所述多个粗发送波束的信道质量满足第二条件时,向L3层发送失步指示信息,使得上层根据该失步指示信息确定是否发生无线链路失败。
此外,确定单元102还可以在L1/L2层确定所述多个细发送波束的信道质量是否满足第二条件,并且确定所述多个粗发送波束的信道质量是否满足第二条件。当确定单元102确定所述多个细发送波束的信道质量满足第二条件,并且/或者所述多个粗发送波束的信道质量满足第二条件时,发送单元103可以向L3层发送同步指示信息。
继而,UE可以按照在上文中参考图4描述的方式,基于所述失步指示信息和所述同步指示信息,确定是否发生无线链路失败。
下面,参照图11描述根据本公开第四实施例的检测无线链路失败的方法。在该实施例中,对UE配置了多个第一波束对和多个第二波束对,即,对UE配置了多个第一类型的发送波束(细发送波束)和多个第二类型的发送波束(粗发送波束)。
如图11所示,在步骤S1101中,在L3层接收从L1/L2层发送的连续的第一数量的第一失步指示信息和连续的第二数量的第二失步指示信息。所述第一失步指示信息是在通过测量利用每个第一波束对中的细接收波束接收的、基站使用与该细接收波束对应的细发送波束发送的参考信号的质量而获得的所述多个细发送波束的信道质量满足第一条件时发送的。所述第二失步指示信息是在通过测量利用每个第二波束对中的粗接收波束接收的、基站使用与该粗接收波束对应的粗发送波束发送的参考信号的质量而获得的所述多个粗发送波束的信道质量满足第二条件时发送的。例如,可以按照在上文中参照图3描述的方式来确定所述多个细发送波束的信道质量是否满足第一条件以及所述多个粗发送波束的信道质量是否满足第二条件,并且在所述多个细发送波束的信道质量满足第一条件时发送所述第一失步指示信息,并且在所述多个粗发送波束的信道质量满足第二条件时发送所述第二失步指示信息。需要注意的是,所述第一条件与所述第二条件可以相同,也可以不同,并且所 述第一数量与所述第二数量可以相同,也可以不同。
在步骤S1102中,在L3层中,根据所述第一数量的第一失步指示信息和/或所述第二数量的第二失步指示信息,确定是否发生无线链路失败。
具体地,可以仅根据所述第一数量的第一失步指示信息来决定是否启动定时器T310,在这种情况下,当所述第一数量达到针对细波束设置的N310 1时,可以启动定时器T310。可替换地,可以仅根据所述第二数量的第二失步指示信息来决定是否启动定时器T310,在这种情况下,当所述第二数量达到针对粗波束设置的N310 2时,可以启动定时器T310。可替换地,可以根据所述第一数量的第一失步指示信息和所述第二数量的第二失步指示信息二者来决定是否启动定时器T310。在这种情况下,当某段时间内所述第一数量达到针对细波束设置的N310 1并且所述第二数量达到针对粗波束设置的N310 2时,可以启动定时器T310。在这里,N310 1和N310 2可以相同,也可以不同。
在定时器T310启动之后,还可以在L3层接收从L1/L2层发送的连续的第三数量的第一同步指示信息和/或第四数量的第二同步指示信息。所述第一同步指示信息是当所述多个细发送波束的信道质量满足第二条件时发送的,所述第一同步指示信息是当所述多个粗发送波束的信道质量满足第二条件时发送的。然后,可以根据第三数量的第一同步指示信息和/或第四数量的第二同步指示信息,确定是否停止定时器T310。例如,可以仅根据第三数量的第一同步指示信息确定是否停止定时器T310,在这种情况下,可以在所述第三数量达到针对细波束设置的N311 1时,停止定时器T310。可替换地,可以仅根据第四数量的第二同步指示信息确定是否停止定时器T310,在这种情况下,可以在所述第四数量达到针对粗波束设置的N311 2时,停止定时器T310。可替换地,可以根据第三数量的第一同步指示信息和第四数量的第二同步指示信息,确定是否停止定时器T310,在这种情况下,可以在某一时间内所述第三数量达到针对细波束设置的N311 1并且所述第四数量达到针对粗波束设置的N311 2时,停止定时器T310。
由此,UE可以确定是否发生无线链路失败。
接下来,参照图12来描述根据本公开第四实施例的UE。在该实施例中,对UE配置了多个第一波束对和多个第二波束对,即,对UE配置了多个第一类型的发送波束(细发送波束)和多个第二类型的发送波束(粗发送波束)。 由于该UE的操作细节与在上文中参照图11描述的方法相同,因此在这里省略对相同内容的描述。
如图12所示,UE 120包括接收单元1201和确定单元1202。
接收单元1201在L3层接收从L1/L2层发送的连续的第一数量的第一失步指示信息和第二数量的第二失步指示信息。
确定单元1202在L3层中,根据所述第一数量的第一失步指示信息和/或所述第二数量的第二失步指示信息,确定是否发生无线链路失败。具体地,可以仅根据所述第一数量的第一失步指示信息来决定是否启动定时器T310,或者可以仅根据所述第二数量的第二失步指示信息来决定是否启动定时器T310,或者可以根据所述第一数量的第一失步指示信息和所述第二数量的第二失步指示信息二者来决定是否启动定时器T310。
在定时器T310启动之后,接收单元1201还可以在L3层接收从L1/L2层发送的第三数量的第一同步指示信息和/或第四数量的第二同步指示信息。然后,确定单元1202可以根据第三数量的第一同步指示信息和/或第四数量的第二同步指示信息,确定是否停止定时器T310。例如,确定单元1202可以仅根据第三数量的第一同步指示信息确定是否停止定时器T310,或者可以仅根据第四数量的第二同步指示信息确定是否停止定时器T310,或者可以根据第三数量的第一同步指示信息和第四数量的第二同步指示信息,确定是否停止定时器T310,在这种情况下,可以在所述第三数量达到针对细波束设置的N311 1并且所述第四数量达到针对粗波束设置的N311 2时,停止定时器T310。
由此,在多波束场景中,UE可以确定是否发生无线链路失败。
在上文中,描述了根据本公开实施例的检测无线链路失败的方法和对应的移动台。应当认识到,这些实施例只是说明性的,而不是限制性的。例如,尽管在上述各个实施例中,使用计数值N310和N311以及定时器T311来确定是否发生无线链路失败,但在某些实施例中,可以对其作出修改。例如,可以省略N310,使得每当收到失步指示信息,就可以启动定时器T310。可替换地,可以省略T310和N311,使得当连续接收到N310个失步指示信息时,可以确定发生无线链路失败。可替换地,可以省略这三个参数,使得只要接收到失步指示信息,就可以确定发生无线链路失败。
可以看到,利用根据本公开实施例的上述方法和对应的移动台,可以在多波束场景中,方便地检测无线链路失败。
上述实施例的说明中使用的框图示出了以功能为单位的块。这些功能块(结构单元)通过硬件和/或软件的任意组合来实现。此外,各功能块的实现手段并不特别限定。即,各功能块可以通过在物理上和/或逻辑上相结合的一个装置来实现,也可以将在物理上和/或逻辑上相分离的两个以上装置直接地和/或间接地(例如通过有线和/或无线)连接从而通过上述多个装置来实现。
例如,本公开的实施例中的无线基站、用户设备(或用户终端)等可以作为执行本发明的无线通信方法的处理的计算机来发挥功能。图13是示出本公开的实施例所涉及的无线基站和用户终端的硬件结构的一例的图。上述的无线基站10和用户终端20可以作为在物理上包括处理器1001、内存1002、存储器1003、通信装置1004、输入装置1005、输出装置1006、总线1007等的计算机装置来构成。
另外,在上述说明中,“装置”这样的文字也可替换为电路、设备、单元等。无线基站10和用户终端20的硬件结构可以包括一个或多个图中所示的各装置,也可以不包括部分装置。
例如,处理器1001仅图示出一个,但也可以为多个处理器。此外,可以通过一个处理器来执行处理,也可以通过一个以上的处理器同时、依次、或采用其它方法来执行处理。另外,处理器1001可以通过一个以上的芯片来安装。
无线基站10和用户终端20中的各功能例如通过如下方式实现:通过将规定的软件(程序)读入到处理器1001、内存1002等硬件上,从而使处理器1001进行运算,对由通信装置1004进行的通信进行控制,并对内存1002和存储器1003中的数据的读出和/或写入进行控制。
处理器1001例如使操作系统进行工作从而对计算机整体进行控制。处理器1001可以由包括与周边装置的接口、控制装置、运算装置、寄存器等的中央处理器(CPU,Central Processing Unit)构成。例如,上述确定单元可以通过处理器1001实现。
此外,处理器1001将程序(程序代码)、软件模块、数据等从存储器1003和/或通信装置1004读出到内存1002,并根据它们执行各种处理。作为程序, 可以采用使计算机执行在上述实施例中说明的动作中的至少一部分的程序。例如,用户终端20的确定单元可以通过保存在内存1002中并通过处理器1001来工作的控制程序来实现,对于其它功能块,也可以同样地来实现。
内存1002是计算机可读取记录介质,例如可以由只读存储器(ROM,Read Only Memory)、可编程只读存储器(EPROM,Erasable Programmable ROM)、电可编程只读存储器(EEPROM,Electrically EPROM)、随机存取存储器(RAM,Random Access Memory)、其它适当的存储介质中的至少一个来构成。内存1002也可以称为寄存器、高速缓存、主存储器(主存储装置)等。内存1002可以保存用于实施本发明的一实施例所涉及的无线通信方法的可执行程序(程序代码)、软件模块等。
存储器1003是计算机可读取记录介质,例如可以由软磁盘(flexible disk)、软(注册商标)盘(floppy disk)、磁光盘(例如,只读光盘(CD-ROM(Compact Disc ROM)等)、数字通用光盘、蓝光(Blu-ray,注册商标)光盘)、可移动磁盘、硬盘驱动器、智能卡、闪存设备(例如,卡、棒(stick)、密钥驱动器(key driver))、磁条、数据库、服务器、其它适当的存储介质中的至少一个来构成。存储器1003也可以称为辅助存储装置。
通信装置1004是用于通过有线和/或无线网络进行计算机间的通信的硬件(发送接收设备),例如也称为网络设备、网络控制器、网卡、通信模块等。通信装置1004为了实现例如频分双工(FDD,Frequency Division Duplex)和/或时分双工(TDD,Time Division Duplex),可以包括高频开关、双工器、滤波器、频率合成器等。例如,上述的测量单元、发送单元等可以通过通信装置1004来实现。
输入装置1005是接受来自外部的输入的输入设备(例如,键盘、鼠标、麦克风、开关、按钮、传感器等)。输出装置1006是实施向外部的输出的输出设备(例如,显示器、扬声器、发光二极管(LED,Light Emitting Diode)灯等)。另外,输入装置1005和输出装置1006也可以为一体的结构(例如触控面板)。
此外,处理器1001、内存1002等各装置通过用于对信息进行通信的总线1007连接。总线1007可以由单一的总线构成,也可以由装置间不同的总线构成。
此外,无线基站10和用户终端20可以包括微处理器、数字信号处理器(DSP,Digital Signal Processor)、专用集成电路(ASIC,Application Specific Integrated Circuit)、可编程逻辑器件(PLD,Programmable Logic Device)、现场可编程门阵列(FPGA,Field Programmable Gate Array)等硬件,可以通过该硬件来实现各功能块的部分或全部。例如,处理器1001可以通过这些硬件中的至少一个来安装。
另外,关于本说明书中说明的用语和/或对本说明书进行理解所需的用语,可以与具有相同或类似含义的用语进行互换。例如,信道和/或符号也可以为信号(信令)。此外,信号也可以为消息。参考信号也可以简称为RS(Reference Signal),根据所适用的标准,也可以称为导频(Pilot)、导频信号等。此外,分量载波(CC,Component Carrier)也可以称为小区、频率载波、载波频率等。
此外,本说明书中说明的信息、参数等可以用绝对值来表示,也可以用与规定值的相对值来表示,还可以用对应的其它信息来表示。例如,无线资源可以通过规定的索引来指示。进一步地,使用这些参数的公式等也可以与本说明书中明确公开的不同。
在本说明书中用于参数等的名称在任何方面都并非限定性的。例如,各种各样的信道(物理上行链路控制信道(PUCCH)、物理下行链路控制信道(PDCCH)等)和信息单元可以通过任何适当的名称来识别,因此为这些各种各样的信道和信息单元所分配的各种各样的名称在任何方面都并非限定性的。
本说明书中说明的信息、信号等可以使用各种各样不同技术中的任意一种来表示。例如,在上述的全部说明中可能提及的数据、命令、指令、信息、信号、比特、符号、芯片等可以通过电压、电流、电磁波、磁场或磁性粒子、光场或光子、或者它们的任意组合来表示。
此外,信息、信号等可以从上层向下层、和/或从下层向上层输出。信息、信号等可以经由多个网络节点进行输入或输出。
输入或输出的信息、信号等可以保存在特定的场所(例如内存),也可以通过管理表进行管理。输入或输出的信息、信号等可以被覆盖、更新或补充。输出的信息、信号等可以被删除。输入的信息、信号等可以被发往其它装置。 信息的通知并不限于本说明书中说明的方式/实施例,也可以通过其它方法进行。例如,信息的通知可以通过物理层信令(例如,下行链路控制信息(DCI,Downlink Control Information)、上行链路控制信息(UCI,Uplink Control Information))、上层信令(例如,无线资源控制(RRC,Radio Resource Control)信令、广播信息(主信息块(MIB,Master Information Block)、系统信息块(SIB,System Information Block)等)、媒体存取控制(MAC,Medium Access Control)信令)、其它信号或者它们的组合来实施。
另外,物理层信令也可以称为L1/L2(第1层/第2层)控制信息(L1/L2控制信号)、L1控制信息(L1控制信号)等。此外,RRC信令也可以称为RRC消息,例如可以为RRC连接建立(RRC Connection Setup)消息、RRC连接重配置(RRC Connection Reconfiguration)消息等。此外,MAC信令例如可以通过MAC控制单元(MAC CE(Control Element))来通知。
此外,规定信息的通知(例如,“为X”的通知)并不限于显式地进行,也可以隐式地(例如,通过不进行该规定信息的通知,或者通过其它信息的通知)进行。
关于确定或判定,可以通过由1比特表示的值(0或1)来进行,也可以通过由真(true)或假(false)表示的真假值(布尔值)来进行,还可以通过数值的比较(例如与规定值的比较)来进行。
软件无论被称为软件、固件、中间件、微代码、硬件描述语言,还是以其它名称来称呼,都应宽泛地解释为是指命令、命令集、代码、代码段、程序代码、程序、子程序、软件模块、应用程序、软件应用程序、软件包、例程、子例程、对象、可执行文件、执行线程、步骤、功能等。
此外,软件、命令、信息等可以经由传输介质被发送或接收。例如,当使用有线技术(同轴电缆、光缆、双绞线、数字用户线路(DSL,Digital Subscriber Line)等)和/或无线技术(红外线、微波等)从网站、服务器、或其它远程资源发送软件时,这些有线技术和/或无线技术包括在传输介质的定义内。
此外,说明书中使用的“系统”和“网络”这样的用语可以互换使用。
此外,在本说明书中,“基站(BS)”、“无线基站”、“eNB”、“gNB”、“小区”、“扇区”、“小区组”、“载波”以及“分量载波”这样的用语可以互换使用。 基站有时也以固定台(fixed station)、NodeB、eNodeB(eNB)、接入点(access point)、发送点、接收点、毫微微小区、小小区等用语来称呼。
基站可以容纳一个或多个(例如三个)小区(也称为扇区)。当基站容纳多个小区时,基站的整个覆盖区域可以划分为多个更小的区域,每个更小的区域也可以通过基站子系统(例如,室内用小型基站(射频拉远头(RRH,Remote Radio Head)))来提供通信服务。“小区”或“扇区”这样的用语是指在该覆盖中进行通信服务的基站和/或基站子系统的覆盖区域的一部分或整体。
在本说明书中,“移动台(MS)”、“用户终端(user terminal)”、“用户设备(UE)”以及“终端”这样的用语可以互换使用。移动台有时也被本领域技术人员以用户台、移动单元、用户单元、无线单元、远程单元、移动设备、无线设备、无线通信设备、远程设备、移动用户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或者若干其它适当的用语来称呼。
此外,本说明书中的无线基站也可以用用户终端来替换。例如,对于将无线基站和用户终端间的通信替换为多个用户终端间(D2D,Device-to-Device)的通信的结构,也可以应用本发明的各方式/实施例。此时,可以将上述的无线基站10所具有的功能当作用户终端20所具有的功能。此外,“上行”和“下行”等文字也可以替换为“侧”。例如,上行信道也可以替换为侧信道。同样,本说明书中的用户终端也可以用无线基站来替换。此时,可以将上述的用户终端20所具有的功能当作无线基站10所具有的功能。
本说明书中说明的各方式/实施例可以单独使用,也可以组合使用,还可以在执行过程中进行切换来使用。此外,本说明书中说明的各方式/实施例的处理步骤、序列、流程图等只要没有矛盾,就可以更换顺序。例如,关于本说明书中说明的方法,以示例性的顺序给出了各种各样的步骤单元,而并不限定于给出的特定顺序。
本说明书中说明的各方式/实施例可以应用于利用长期演进(LTE)、高级长期演进(LTE-A,LTE-Advanced)、超越长期演进(LTE-B,LTE-Beyond)、超级第3代移动通信系统(SUPER 3G)、高级国际移动通信(IMT-Advanced)、第4代移动通信系统(4G,4th generation mobile communication system)、第5代移动通信系统(5G,5th generation mobile communication system)、未来 无线接入(FRA,Future Radio Access)、新无线接入技术(New-RAT,Radio Access Technology)、新无线(NR,New Radio)、新无线接入(NX,New radio access)、新一代无线接入(FX,Future generation radio access)、全球移动通信系统(GSM(注册商标),Global System for Mobile communications)、码分多址接入2000(CDMA2000)、超级移动宽带(UMB,Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(注册商标))、IEEE 802.16(WiMAX(注册商标))、IEEE802.20、超宽带(UWB,Ultra-WideBand)、蓝牙(Bluetooth(注册商标))、其它适当的无线通信方法的系统和/或基于它们而扩展的下一代系统。
本说明书中使用的“根据”这样的记载,只要未在其它段落中明确记载,则并不意味着“仅根据”。换言之,“根据”这样的记载是指“仅根据”和“至少根据”这两者。
本说明书和权利要求书中使用的对使用“第一”、“第二”等名称的元素的任何参照,均非全面限定这些元素的数量或顺序。这些名称可以作为区别两个以上元素的便利方法而在本说明书中使用。因此,第一元素和第二元素的参照并不意味着仅可采用两个元素或者第一元素必须以若干形式占先于第二元素。
本说明书中使用的“确定(determining)”这样的用语有时包含多种多样的动作。例如,关于“确定”,可以将计算(calculating)、推算(computing)、处理(processing)、推导(deriving)、调查(investigating)、搜索(looking up)(例如表、数据库、或其它数据结构中的搜索)、确认(ascertaining)等视为是进行“确定”。此外,关于“确定”,也可以将接收(receiving)(例如接收信息)、发送(transmitting)(例如发送信息)、输入(input)、输出(output)、存取(accessing)(例如存取内存中的数据)等视为是进行“确定”。此外,关于“确定”,还可以将解决(resolving)、选择(selecting)、选定(choosing)、建立(establishing)、比较(comparing)等视为是进行“确定”。也就是说,关于“确定”,可以将若干动作视为是进行“确定”。
在本说明书或权利要求书中使用“包括(including)”、“包含(comprising)”、以及它们的变形时,这些用语与用语“具备”同样是开放式的。进一步地,在本说明书或权利要求书中使用的用语“或(or)”并非是异或。
以上对本发明进行了详细说明,但对于本领域技术人员而言,显然,本 发明并非限定于本说明书中说明的实施例。本发明在不脱离由权利要求书的记载所确定的本发明的宗旨和范围的前提下,可以作为修改和变更方式来实施。因此,本说明书的记载是以示例说明为目的,对本发明而言并非具有任何限制性的意义。

Claims (20)

  1. 一种由用户设备执行的无线链路失败检测方法,所述用户设备被配置了多个波束对,每个波束对包括基站用来发送信号的一个发送波束和所述用户设备用来接收所述信号的一个对应的接收波束,所述方法包括:
    在下层中,测量利用每个波束对中的接收波束接收的、基站使用与该接收波束对应的发送波束发送的参考信号的质量,作为所述多个波束对包含的多个发送波束的信道质量;
    确定所述多个发送波束的信道质量是否满足第一条件;
    当所述多个发送波束的信道质量满足第一条件时,向上层发送失步指示信息,使得上层根据该失步指示信息确定是否发生无线链路失败。
  2. 如权利要求1所述的方法,其中,确定所述多个发送波束的信道质量是否满足第一条件包括:
    当所述多个发送波束中第一比例或第一数量的发送波束的信道质量在第一时段内低于第一阈值时,确定所述多个发送波束的信道质量满足第一条件。
  3. 如权利要求1所述的方法,其中,所述多个发送波束包括服务波束和候选波束,并且其中,确定所述多个发送波束的信道质量是否满足第一条件包括:
    当所述服务波束发生波束失败事件,并且所述候选波束中第一比例或第一数量的候选波束的信道质量在第一时段内低于第一阈值时,确定所述多个发送波束的信道质量满足第一条件。
  4. 如权利要求1所述的方法,其中,确定所述多个发送波束的信道质量是否满足第一条件包括:
    当在第一时段内成为服务波束的发送波束发生波束失败事件时,或者当在第一时段内所述多个发送波束中第一比例或第一数量的发送波束发生波束失败事件时,确定所述多个发送波束的信道质量满足第一条件。
  5. 如权利要求1至4之一所述的方法,还包括:
    确定所述多个发送波束的信道质量是否满足第二条件;
    当所述多个发送波束的信道质量满足第二条件时,向上层发送同步指示信息。
  6. 如权利要求5所述的方法,其中,确定所述多个发送波束的信道质量是否满足第二条件包括:
    当所述多个发送波束中第二比例或第二数量的发送波束的信道质量在第二时段内高于第二阈值时,确定所述多个发送波束的信道质量满足第二条件。
  7. 如权利要求1至6之一所述的方法,其中,所述参考信号是用于无线资源管理测量的信道状态信息参考信号、用于信道状态信息测量的信道状态信息参考信号、或者用于下行链路控制信道的解调参考信号。
  8. 如权利要求1至7之一所述的方法,其中,每个波束对包括的发送波束是第一类型的发送波束或第二类型的发送波束。
  9. 如权利要求1所述的方法,其中,所述参考信号是同步信号、用于物理广播信道的解调参考信号、或用于无线资源管理测量的信道状态信息参考信号。
  10. 如权利要求7或9所述的方法,其中,在所述参考信号是同步信号或用于无线资源管理测量的信道状态信息参考信号的情况下,通过高层信令配置该信道状态信息参考信号与发送给用户设备的下行链路控制信道的解调参考信号之间的对应关系。
  11. 一种用户设备,被配置了多个波束对,每个波束对包括基站用来发送信号的一个发送波束和所述用户设备用来接收所述信号的一个对应的接收波束,所述用户设备包括:
    测量单元,被配置为在下层中,测量利用每个波束对中的接收波束接收的、基站使用与该接收波束对应的发送波束发送的参考信号的质量,作为所述多个波束对包含的多个发送波束的信道质量;
    确定单元,被配置为确定所述多个发送波束的信道质量是否满足第一条件;
    发送单元,被配置为当所述确定单元确定所述多个发送波束的信道质量满足第一条件时,向上层发送失步指示信息,使得上层根据该失步指示信息确定是否发生无线链路失败。
  12. 如权利要求11所述的用户设备,其中,当所述多个发送波束中第一比例或第一数量的发送波束的信道质量在第一时段内低于第一阈值时,所述确定单元确定所述多个发送波束的信道质量满足第一条件。
  13. 如权利要求11所述的用户设备,其中,所述多个发送波束包括服务波束和候选波束,并且其中,当所述服务波束发生波束失败事件,并且所述候选波束中第一比例或第一数量的候选波束的信道质量在第一时段内低于第一阈值时,所述确定单元确定所述多个发送波束的信道质量满足第一条件。
  14. 如权利要求11所述的用户设备,其中,
    当在第一时段内成为服务波束的发送波束发生波束失败事件时,或者当在第一时段内所述多个发送波束中第一比例或第一数量的发送波束发生波束失败事件时,所述确定单元确定所述多个发送波束的信道质量满足第一条件。
  15. 如权利要求11至14之一所述的用户设备,其中,所述确定单元还被配置为确定所述多个发送波束的信道质量是否满足第二条件,并且当所述多个发送波束的信道质量满足第二条件时,向上层发送同步指示信息。
  16. 如权利要求15所述的用户设备,其中,当所述多个发送波束中第二比例或第二数量的发送波束的信道质量在第二时段内高于第二阈值时,所述确定单元确定所述多个发送波束的信道质量满足第二条件。
  17. 如权利要求11至16之一所述的用户设备,其中,所述参考信号是用于无线资源管理测量的信道状态信息参考信号、用于信道状态信息测量的信道状态信息参考信号、或者用于下行链路控制信道的解调参考信号。
  18. 如权利要求11至17之一所述的用户设备,其中,每个波束对包括的发送波束是第一类型的发送波束或第二类型的发送波束。
  19. 如权利要求11所述的用户设备,其中,所述参考信号是同步信号、用于物理广播信道的解调参考信号、或用于无线资源管理测量的信道状态信息参考信号。
  20. 如权利要求17或19所述的用户设备,其中,在所述参考信号是同步信号或用于无线资源管理测量的信道状态信息参考信号的情况下,通过高层信令配置该信道状态信息参考信号与发送给用户设备的下行链路控制信道的解调参考信号之间的对应关系。
PCT/CN2018/079851 2017-03-22 2018-03-21 无线链路失败检测方法和用户设备 WO2018171631A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880019680.8A CN110447176B (zh) 2017-03-22 2018-03-21 检测方法和用户设备
US16/495,734 US11451313B2 (en) 2017-03-22 2018-03-21 Detection method and user equipment
JP2019552039A JP7136797B2 (ja) 2017-03-22 2018-03-21 端末、無線通信方法及びシステム
EP18771089.2A EP3605859A4 (en) 2017-03-22 2018-03-21 METHOD OF DETECTING RADIO COMMUNICATION FAULTS AND USER DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710175178.3A CN108631889A (zh) 2017-03-22 2017-03-22 无线链路失败检测方法和用户设备
CN201710175178.3 2017-03-22

Publications (1)

Publication Number Publication Date
WO2018171631A1 true WO2018171631A1 (zh) 2018-09-27

Family

ID=63585902

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/079851 WO2018171631A1 (zh) 2017-03-22 2018-03-21 无线链路失败检测方法和用户设备

Country Status (5)

Country Link
US (1) US11451313B2 (zh)
EP (1) EP3605859A4 (zh)
JP (1) JP7136797B2 (zh)
CN (2) CN108631889A (zh)
WO (1) WO2018171631A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022511237A (ja) * 2018-10-30 2022-01-31 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 欠落参照信号の場合に測定を実行するユーザ機器

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK3606168T3 (da) * 2017-03-23 2022-01-24 Sharp Kk Terminalanordning, kommunikationsfremgangsmåde og integreret kredsløb
US10602520B2 (en) * 2017-03-24 2020-03-24 Qualcomm Incorporated Multi-link control beam switching
CN109246732B (zh) * 2017-04-28 2020-05-15 维沃移动通信有限公司 波束失败恢复方法和终端
EP3652869A1 (en) * 2017-08-01 2020-05-20 Huawei Technologies Co., Ltd. A receiving device and a method thereof
KR20200052295A (ko) * 2017-09-12 2020-05-14 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 정보 처리 방법, 상위 계층 기능 엔티티 및 컴퓨터 저장 매체
EP3841685A4 (en) * 2018-08-20 2022-04-13 Telefonaktiebolaget Lm Ericsson (Publ) NETWORK NODE AND METHOD FOR MANAGING BEAMS IN A WIRELESS COMMUNICATIONS NETWORK
CN111132204B (zh) * 2018-10-31 2021-08-03 成都华为技术有限公司 检测波束失败的方法和装置
CN111106885A (zh) 2018-11-12 2020-05-05 维沃移动通信有限公司 测量方法、指示方法、装置、终端、网络设备及介质
CN112997425A (zh) * 2018-11-12 2021-06-18 Oppo广东移动通信有限公司 无线通信方法和终端设备
KR20200060965A (ko) * 2018-11-23 2020-06-02 삼성전자주식회사 무선 네트워크에서 라디오 링크 페일을 결정하기 위한 전자 장치 및 그에 관한 방법
CN112673666B (zh) * 2018-12-04 2023-05-09 Oppo广东移动通信有限公司 无线链路的检测方法及终端设备
CN111263394B (zh) * 2018-12-17 2022-07-08 维沃移动通信有限公司 信号资源测量方法及终端
CN111479333B (zh) * 2019-01-23 2022-09-02 华为技术有限公司 通信方法和通信装置
WO2020164071A1 (en) * 2019-02-14 2020-08-20 Zte Corporation Link measurements for vehicular device-to-device links
US11317351B2 (en) * 2019-04-30 2022-04-26 Mediatek Inc. Electronic device and method for beam management with power saving
CN112104395B (zh) * 2019-06-18 2022-03-29 华为技术有限公司 一种波束检测的方法以及波束检测装置
CN112436875B (zh) * 2019-08-26 2022-08-05 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
WO2021168865A1 (zh) * 2020-02-29 2021-09-02 华为技术有限公司 一种通信方法及装置
US11147032B1 (en) 2020-03-26 2021-10-12 T-Mobile Innovations Llc System and methods for dynamic synchronization signal block periodicity modifications

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130301454A1 (en) * 2012-05-10 2013-11-14 Samsung Electronics Co. Ltd. Communication method and apparatus using analog and digital hybrid beamforming
CN103891161A (zh) * 2011-10-19 2014-06-25 三星电子株式会社 无线通信系统中的上行链路控制方法和装置
CN104412519A (zh) * 2012-07-03 2015-03-11 三星电子株式会社 在使用波束成形的无线通信系统中进行随机接入的装置和方法
CN106470062A (zh) * 2015-08-14 2017-03-01 中兴通讯股份有限公司 一种数据传输方法及系统

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7123628B1 (en) * 1998-05-06 2006-10-17 Lg Electronics Inc. Communication system with improved medium access control sub-layer
JP2012503450A (ja) * 2008-09-22 2012-02-02 インターデイジタル パテント ホールディングス インコーポレイテッド Drxモードにおけるlte無線リンク障害判定のための方法および装置
US9585164B2 (en) * 2009-09-25 2017-02-28 Blackberry Limited System and method for multi-carrier network operation
JPWO2011039969A1 (ja) * 2009-09-29 2013-02-21 パナソニック株式会社 無線通信装置、無線通信基地局及び無線通信システム
JP5548265B2 (ja) * 2010-04-01 2014-07-16 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおける信号処理方法及びそのための装置
JP2011223135A (ja) 2010-04-06 2011-11-04 Sony Corp 通信装置及び通信方法、並びに通信システム
JP6238305B2 (ja) 2011-09-16 2017-11-29 サムスン エレクトロニクス カンパニー リミテッド 無線通信システムにおけるビーム割り当て装置及び方法
US8971881B2 (en) * 2012-03-23 2015-03-03 Google Technology Holdings LLC Radio link monitoring in a wireless communication device for an enhanced control channel
JP6242857B2 (ja) * 2012-04-19 2017-12-06 サムスン エレクトロニクス カンパニー リミテッド 協力マルチーポイント通信システムに対する基準シンボルポートの準共存識別のための方法及び装置
CN103765946B (zh) * 2012-08-21 2017-08-18 华为技术有限公司 一种无线链路监测的方法和装置
JP6342904B2 (ja) 2012-10-04 2018-06-13 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおいてアンテナポートの関係を考慮した下りリンク信号送受信方法および装置
JP2014093651A (ja) 2012-11-02 2014-05-19 Ntt Docomo Inc 無線通信方法、無線通信システム、無線基地局及びユーザ端末
JP6105257B2 (ja) * 2012-11-02 2017-03-29 株式会社Nttドコモ 無線通信システム、ユーザ端末、及び無線通信方法
KR20140090533A (ko) * 2012-12-20 2014-07-17 삼성전자주식회사 이동통신시스템에서의 신호 송신장치 및 방법
US20150049600A1 (en) * 2013-08-15 2015-02-19 Qualcomm Incorporated Prioritizing frequencies in embms multi-frequency deployment during rlf/oos
KR102363547B1 (ko) * 2014-11-26 2022-02-17 삼성전자주식회사 빔포밍을 이용한 통신 방법 및 장치
JP2017092511A (ja) * 2015-11-02 2017-05-25 富士通株式会社 基地局装置
US10270514B2 (en) * 2016-01-14 2019-04-23 Samsung Electronics Co., Ltd. Method and apparatus for generating beam measurement information in a wireless communication system
CN108781103B (zh) * 2016-03-23 2022-03-01 瑞典爱立信有限公司 波束质量测量信号向多个无线设备的高效调度
US10638484B2 (en) * 2016-07-21 2020-04-28 Lg Electronics Inc. Method for transmitting or receiving downlink control information in wireless communication system and device therefor
CN115715010A (zh) * 2017-01-05 2023-02-24 三星电子株式会社 用于终端标识和寻呼信号传输的方法、装置和系统
KR102014802B1 (ko) * 2017-02-06 2019-08-27 엘지전자 주식회사 무선 통신 시스템에서 단말의 무선링크 모니터링 수행 방법 및 이를 지원하는 장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103891161A (zh) * 2011-10-19 2014-06-25 三星电子株式会社 无线通信系统中的上行链路控制方法和装置
US20130301454A1 (en) * 2012-05-10 2013-11-14 Samsung Electronics Co. Ltd. Communication method and apparatus using analog and digital hybrid beamforming
CN104412519A (zh) * 2012-07-03 2015-03-11 三星电子株式会社 在使用波束成形的无线通信系统中进行随机接入的装置和方法
CN106470062A (zh) * 2015-08-14 2017-03-01 中兴通讯股份有限公司 一种数据传输方法及系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MEDIATEK INC: "RLM and RLF in HF NR", 3GPP TSG-RAN WG2 #97, R2-1700898, 17 February 2017 (2017-02-17), pages 1 - 2, XP051211677 *
See also references of EP3605859A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022511237A (ja) * 2018-10-30 2022-01-31 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 欠落参照信号の場合に測定を実行するユーザ機器
JP7414801B2 (ja) 2018-10-30 2024-01-16 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ ユーザ機器、基地局、方法及び集積回路

Also Published As

Publication number Publication date
JP2020511872A (ja) 2020-04-16
EP3605859A1 (en) 2020-02-05
CN110447176B (zh) 2023-07-25
CN110447176A (zh) 2019-11-12
JP7136797B2 (ja) 2022-09-13
EP3605859A4 (en) 2020-11-18
US20200028603A1 (en) 2020-01-23
CN108631889A (zh) 2018-10-09
US11451313B2 (en) 2022-09-20

Similar Documents

Publication Publication Date Title
WO2018171631A1 (zh) 无线链路失败检测方法和用户设备
US11825323B2 (en) System and method for periodic beam failure measurements
JPWO2020012619A1 (ja) ユーザ端末
JP2020516141A (ja) 異なる基準信号の混合に基づくrlm及びビーム障害検出
WO2018228468A1 (zh) 一种无线链路监控方法和装置
JP2021532630A (ja) 無線リンク検出方法、装置及び通信システム
WO2018171426A1 (zh) 波束配置方法、移动台和基站
EP3949579B1 (en) Indication of downlink clear channel assessment failures
WO2020200116A1 (zh) 无线链路质量或波束质量评估方法及装置
US20220167339A1 (en) Beam failure recovery method and apparatus
EP4387313A1 (en) Measurement method, apparatus and system
WO2020164337A1 (zh) 侧行链路管理方法及装置
WO2019213934A1 (zh) 用于传输信号的方法及相应的用户终端、基站
EP3687211A1 (en) User terminal and wireless communication method
WO2020140288A1 (zh) 无线通信方法及设备
EP4156758A1 (en) Sending device, receiving device, interference information sending method and channel access method
WO2018201928A1 (zh) 数据检测方法和用户设备
CN112236954B (zh) 用于高效链路重配置的客户端设备、网络接入节点和方法
WO2023282352A1 (ja) 通信装置、基地局及び通信方法
WO2023133739A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023282303A1 (ja) 通信装置、基地局及び通信方法
US20240224178A1 (en) Customer premises equipment
WO2023282353A1 (ja) 通信装置、基地局及び通信方法
WO2022151110A1 (zh) 波束失败信息的生成和上报方法以及装置
WO2021090458A1 (ja) 端末

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18771089

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019552039

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018771089

Country of ref document: EP

Effective date: 20191022