WO2023133739A1 - 无线通信的方法、终端设备和网络设备 - Google Patents

无线通信的方法、终端设备和网络设备 Download PDF

Info

Publication number
WO2023133739A1
WO2023133739A1 PCT/CN2022/071668 CN2022071668W WO2023133739A1 WO 2023133739 A1 WO2023133739 A1 WO 2023133739A1 CN 2022071668 W CN2022071668 W CN 2022071668W WO 2023133739 A1 WO2023133739 A1 WO 2023133739A1
Authority
WO
WIPO (PCT)
Prior art keywords
bfd
measurement
terminal device
configuration
cbd
Prior art date
Application number
PCT/CN2022/071668
Other languages
English (en)
French (fr)
Inventor
胡荣贻
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2022/071668 priority Critical patent/WO2023133739A1/zh
Publication of WO2023133739A1 publication Critical patent/WO2023133739A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic

Definitions

  • the embodiments of the present application relate to the communication field, and in particular to a wireless communication method, a terminal device, and a network device.
  • the terminal device can perform link monitoring (Radio Link Monitoring, RLM) to determine whether a radio link failure (Radio Link Failure, RLF) occurs, and the terminal device can perform beam detection (Beam Detection, BD) (including Beam Failure Detection (BFD) and New Beam Selection (New Beam Identification, NBI)) mechanisms to determine whether to trigger Beam Failure Recovery (BFR).
  • RLM Radio Link Monitoring
  • BD Beam Detection
  • BFD Beam Failure Detection
  • NBI New Beam Identification
  • RLM and BD are similar, but the parameters used for measurement are different. How to implement RLM and BD to reduce the complexity of terminal equipment is an urgent problem to be solved.
  • the present application provides a wireless communication method, a terminal device and a network device.
  • the terminal device can execute RLM and BD based on a unified measurement model, which is beneficial to reduce the complexity of the terminal device.
  • a wireless communication method including: a terminal device performs radio link monitoring RLM and beam detection according to a first measurement model, wherein the beam detection includes beam failure detection BFD and candidate beam detection CBD.
  • a wireless communication method including: a network device sends first configuration information to a terminal device, where the first configuration information is used to configure a first measurement model and/or a model of the first measurement model Parameters, the first measurement model is used by the terminal device to perform radio link monitoring RLM and beam detection, where the beam detection includes beam failure detection BFD and candidate beam detection CBD.
  • a terminal device configured to execute the method in the foregoing first aspect or various implementation manners thereof.
  • the terminal device includes a functional module for executing the method in the above first aspect or its various implementation manners.
  • a network device configured to execute the method in the foregoing second aspect or various implementation manners thereof.
  • the network device includes a functional module for executing the method in the above second aspect or each implementation manner thereof.
  • a terminal device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the method in the above first aspect or its various implementations.
  • a sixth aspect provides a network device, including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the method in the above second aspect or its various implementations.
  • a chip is provided for implementing any one of the above first aspect to the second aspect or the method in each implementation manner thereof.
  • the chip includes: a processor, configured to call and run a computer program from the memory, so that the device installed with the device executes any one of the above-mentioned first to second aspects or any of the implementations thereof. method.
  • a computer-readable storage medium for storing a computer program, and the computer program causes a computer to execute any one of the above-mentioned first to second aspects or the method in each implementation manner thereof.
  • a ninth aspect provides a computer program product, including computer program instructions, the computer program instructions cause a computer to execute any one of the above first to second aspects or the method in each implementation manner.
  • a computer program which, when running on a computer, causes the computer to execute any one of the above-mentioned first to second aspects or the method in each implementation manner.
  • the terminal device can execute RLM and BD based on a unified measurement model, which is beneficial to reduce the complexity of the terminal device.
  • Fig. 1 is a schematic diagram of an application scenario provided by an embodiment of the present application.
  • Fig. 2 is a schematic diagram of the RLM process in the related art.
  • Fig. 3 is a schematic diagram of a high-level counting process of a terminal device in RLM.
  • Fig. 4 is a schematic diagram of a beam failure recovery process.
  • FIG. 5 is a schematic diagram of a wireless communication method provided by an embodiment of the present application.
  • Fig. 6 is a schematic diagram of a unified measurement model.
  • Fig. 7 is a schematic block diagram of a terminal device according to an embodiment of the present application.
  • Fig. 8 is a schematic block diagram of a network device according to an embodiment of the present application.
  • Fig. 9 is a schematic block diagram of a communication device provided by another embodiment of the present application.
  • Fig. 10 is a schematic block diagram of a chip provided by an embodiment of the present application.
  • Fig. 11 is a schematic block diagram of a communication system provided by an embodiment of the present application.
  • the technical solution of the embodiment of the present application can be applied to various communication systems, such as: Global System of Mobile communication (Global System of Mobile communication, GSM) system, code division multiple access (Code Division Multiple Access, CDMA) system, broadband code division multiple access (Wideband Code Division Multiple Access, WCDMA) system, General Packet Radio Service (GPRS), Long Term Evolution (LTE) system, Advanced long term evolution (LTE-A) system , New Radio (NR) system, evolution system of NR system, LTE (LTE-based access to unlicensed spectrum, LTE-U) system on unlicensed spectrum, NR (NR-based access to unlicensed spectrum) on unlicensed spectrum unlicensed spectrum (NR-U) system, Non-Terrestrial Networks (NTN) system, Universal Mobile Telecommunications System (UMTS), Wireless Local Area Networks (WLAN), Wireless Fidelity (Wireless Fidelity, WiFi), fifth-generation communication (5th-Generation, 5G) system or other communication systems, etc.
  • GSM Global System of Mobile
  • D2D Device to Device
  • M2M Machine to Machine
  • MTC Machine Type Communication
  • V2V Vehicle to Vehicle
  • V2X Vehicle to everything
  • the communication system in the embodiment of the present application may be applied to a carrier aggregation (Carrier Aggregation, CA) scenario, may also be applied to a dual connectivity (Dual Connectivity, DC) scenario, and may also be applied to an independent (Standalone, SA) deployment Web scene.
  • Carrier Aggregation, CA Carrier Aggregation
  • DC Dual Connectivity
  • SA independent deployment Web scene
  • the communication system in the embodiment of the present application may be applied to an unlicensed spectrum, where the unlicensed spectrum may also be considered as a shared spectrum; or, the communication system in the embodiment of the present application may also be applied to a licensed spectrum, where, Licensed spectrum can also be considered as non-shared spectrum.
  • the embodiments of the present application describe various embodiments in conjunction with network equipment and terminal equipment, wherein the terminal equipment may also be referred to as user equipment (User Equipment, UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device, etc.
  • user equipment User Equipment, UE
  • access terminal user unit
  • user station mobile station
  • mobile station mobile station
  • remote station remote terminal
  • mobile device user terminal
  • terminal wireless communication device
  • wireless communication device user agent or user device
  • the terminal device can be a station (STATION, ST) in a WLAN, a cellular phone, a cordless phone, a Session Initiation Protocol (Session Initiation Protocol, SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, a personal digital assistant (Personal Digital Assistant, PDA) devices, handheld devices with wireless communication functions, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, next-generation communication systems such as terminal devices in NR networks, or future Terminal equipment in the evolved public land mobile network (Public Land Mobile Network, PLMN) network, etc.
  • PLMN Public Land Mobile Network
  • the terminal device can be deployed on land, including indoor or outdoor, handheld, wearable or vehicle-mounted; it can also be deployed on water (such as ships, etc.); it can also be deployed in the air (such as aircraft, balloons and satellites) superior).
  • the terminal device may be a mobile phone (Mobile Phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (Virtual Reality, VR) terminal device, an augmented reality (Augmented Reality, AR) terminal Equipment, wireless terminal equipment in industrial control, wireless terminal equipment in self driving, wireless terminal equipment in remote medical, wireless terminal equipment in smart grid , wireless terminal equipment in transportation safety, wireless terminal equipment in smart city, or wireless terminal equipment in smart home.
  • a virtual reality (Virtual Reality, VR) terminal device an augmented reality (Augmented Reality, AR) terminal Equipment
  • wireless terminal equipment in industrial control wireless terminal equipment in self driving
  • wireless terminal equipment in remote medical wireless terminal equipment in smart grid
  • wireless terminal equipment in transportation safety wireless terminal equipment in smart city, or wireless terminal equipment in smart home.
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices, which is a general term for the application of wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable devices are not only a hardware device, but also achieve powerful functions through software support, data interaction, and cloud interaction.
  • Generalized wearable smart devices include full-featured, large-sized, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, etc., and only focus on a certain type of application functions, and need to cooperate with other devices such as smart phones Use, such as various smart bracelets and smart jewelry for physical sign monitoring.
  • the network device may be a device for communicating with the mobile device, and the network device may be an access point (Access Point, AP) in WLAN, a base station (Base Transceiver Station, BTS) in GSM or CDMA , or a base station (NodeB, NB) in WCDMA, or an evolved base station (Evolutional Node B, eNB or eNodeB) in LTE, or a relay station or access point, or a vehicle-mounted device, a wearable device, and an NR network
  • BTS Base Transceiver Station
  • NodeB, NB base station
  • Evolutional Node B, eNB or eNodeB evolved base station
  • LTE Long Term Evolutional Node B, eNB or eNodeB
  • gNB network equipment in the network or the network equipment in the future evolved PLMN network or the network equipment in the NTN network, etc.
  • the network device may have a mobile feature, for example, the network device may be a mobile device.
  • the network equipment may be a satellite or a balloon station.
  • the satellite can be a low earth orbit (low earth orbit, LEO) satellite, a medium earth orbit (medium earth orbit, MEO) satellite, a geosynchronous earth orbit (geosynchronous earth orbit, GEO) satellite, a high elliptical orbit (High Elliptical Orbit, HEO) satellite. ) Satellite etc.
  • the network device may also be a base station installed on land, water, and other locations.
  • the network device may provide services for a cell, and the terminal device communicates with the network device through the transmission resources (for example, frequency domain resources, or spectrum resources) used by the cell, and the cell may be a network device ( For example, a cell corresponding to a base station), the cell may belong to a macro base station, or may belong to a base station corresponding to a small cell (Small cell), and the small cell here may include: a metro cell (Metro cell), a micro cell (Micro cell), a pico cell ( Pico cell), Femto cell, etc. These small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-speed data transmission services.
  • the transmission resources for example, frequency domain resources, or spectrum resources
  • the cell may be a network device (
  • the cell may belong to a macro base station, or may belong to a base station corresponding to a small cell (Small cell)
  • the small cell here may include: a metro cell (Metro cell), a micro cell (Micro
  • the communication system 100 may include a network device 110, and the network device 110 may be a device for communicating with a terminal device 120 (or called a communication terminal, terminal).
  • the network device 110 can provide communication coverage for a specific geographical area, and can communicate with terminal devices located in the coverage area.
  • FIG. 1 exemplarily shows one network device and two terminal devices.
  • the communication system 100 may include multiple network devices and each network device may include other numbers of terminal devices within the coverage area. This application The embodiment does not limit this.
  • the communication system 100 may further include other network entities such as a network controller and a mobility management entity, which is not limited in this embodiment of the present application.
  • network entities such as a network controller and a mobility management entity, which is not limited in this embodiment of the present application.
  • a device with a communication function in the network/system in the embodiment of the present application may be referred to as a communication device.
  • the communication equipment may include a network equipment 110 and a terminal equipment 120 with communication functions.
  • the network equipment 110 and the terminal equipment 120 may be the specific equipment described above, and will not be repeated here.
  • the communication device may also include other devices in the communication system 100, such as network controllers, mobility management entities and other network entities, which are not limited in this embodiment of the present application.
  • the "indication" mentioned in the embodiments of the present application may be a direct indication, may also be an indirect indication, and may also mean that there is an association relationship.
  • a indicates B which can mean that A directly indicates B, for example, B can be obtained through A; it can also indicate that A indirectly indicates B, for example, A indicates C, and B can be obtained through C; it can also indicate that there is an association between A and B relation.
  • the term "corresponding" may indicate that there is a direct or indirect correspondence between the two, or that there is an association between the two, or that it indicates and is indicated, configuration and is configuration etc.
  • predefinition can be realized by pre-saving corresponding codes, tables or other methods that can be used to indicate related information in devices (for example, including terminal devices and network devices).
  • the implementation method is not limited.
  • pre-defined may refer to defined in the protocol.
  • the "protocol” may refer to a standard protocol in the communication field, for example, it may include the LTE protocol, the NR protocol, and related protocols applied in future communication systems, which is not limited in the present application.
  • the configuration information in the embodiment of the present application is sent by at least one of the following signaling: system message, physical layer signaling (such as downlink control information (Downlink Control Information, DCI)), radio resource control (Radio Resource Control, RRC) Signaling and Media Access Control Element (Media Access Control Control Element, MAC CE).
  • system message physical layer signaling (such as downlink control information (Downlink Control Information, DCI)), radio resource control (Radio Resource Control, RRC) Signaling and Media Access Control Element (Media Access Control Element, MAC CE).
  • DCI Downlink Control Information
  • RRC Radio Resource Control
  • Media Access Control Element Media Access Control Element
  • radio link monitoring Radio Link Monitoring, RLM
  • RLM Radio Link Monitoring
  • the RLM is used to monitor and evaluate the downlink channel quality of the serving cell, and generate an in-sync (In-Sync, IS) indication and an out-of-sync (Out-Of-Sync, OSS) indication.
  • In-Sync In-Sync, IS
  • Out-Of-Sync Out-Of-Sync, OSS
  • RLM includes but is not limited to measuring the radio link monitoring reference signal (RLM-RS) on the downlink bandwidth part (BandWidth Part, BWP), and the RLM-RS may include but is not limited to (Synchronization Signal Block , SSB) or Channel State Information Reference Signal (CSI-RS).
  • RLM-RS radio link monitoring reference signal
  • BWP downlink bandwidth part
  • CSI-RS Channel State Information Reference Signal
  • RLM can be applied to primary cell (PCell) or primary secondary cell (PSCell), for example, primary cell in SA NR, NR-DC and NE-DC mode, or primary secondary cell in NR-DC and EN-DC mode.
  • PCell primary cell
  • PSCell primary secondary cell
  • the network device can configure N radio link monitoring reference signals (Radio link monitoring reference signal, RLM-RS) for the terminal device to monitor the radio link and evaluate the quality of the radio link, wherein the radio link monitoring The channel quality is judged by the assumed Physical Downlink Control Channel (PDCCH) Block Error Rate (Block Error Rate, BLER).
  • PDCCH Physical Downlink Control Channel
  • Block Error Rate Block Error Rate
  • the RLM measurement time (or called, measurement evaluation time, evaluation time, measurement evaluation period, evaluation period Evaluation period) may take the SSB period T SSB as the unit (not used Configure the measurement interval (gap).
  • the terminal device may determine whether to report the IS or whether to report the OSS indication according to the measurement result of the SSB.
  • the measurement evaluation cycle of OOS is 10*T SSB
  • T SSB may overlap with a period T SMTCperiod or MGRP of a synchronization signal block measurement timing configuration (SMTC), the measurement evaluation time needs to be scaled.
  • SMTC synchronization signal block measurement timing configuration
  • the network device can configure the IS threshold Q in and the OSS threshold Q out , Q out is defined as the level at which the downlink wireless link cannot be reliably received, and Qin is defined as the level at which the quality of the downlink wireless link can be reliably received, wherein, The reception reliability of Qin is significantly higher than that of Q out .
  • the IS threshold Q in and the OSS threshold Q out are characterized by PDCCH BLER.
  • Q in is 2% PDCCH BLER
  • Q out is 10% PDCCH BLER.
  • the physical layer of the terminal device may perform the following operations:
  • the terminal device sends a Layer 1 (L1) OSS indication to a higher layer of the terminal device (for example, Layer 3 (L3)).
  • L1 Layer 1
  • L3 Layer 3
  • the terminal device sends an L1 IS indication to a higher layer of the terminal device, such as L3.
  • the IS indication and the OSS indication are collectively referred to as L1 indication.
  • the L3 of the terminal device performs L3 filtering on all indications (including IS indications and OSS indications) within the measurement evaluation period.
  • layer 1 may refer to a physical layer
  • layer 3 may refer to a radio resource control (Radio Resource Control, RRC) layer.
  • RRC Radio Resource Control
  • two consecutive L1 indications are at least T Indication_interval apart.
  • T Indication_interval can be max(10ms,T RLM-RS,M ) or, in the case of using DRX, T Indication_interval can also be max(10ms,1.5*DRX cycle length (DRX_cycle_length),1.5*T RLM -RS,M ), wherein T RLM-RS,M is the smallest reference signal period among all RLM-RS resources of the monitored cell.
  • T RLM-RS,M represents the period of the RLM-RS.
  • the L3 filtering method may be based on RRC configuration, or may also be implemented based on the network. For example, you can follow the forward convolution averaging method.
  • the terminal device can measure the reference signal on each monitored cell to obtain the measurement result of each reference signal on the cell, and further based on the measurement result of the reference signal, the reference signal for the reference signal can be obtained.
  • the evaluation results of the cell such as IS or OOS, and then according to the evaluation results of all reference signals on the monitored cell, the evaluation result of the cell is obtained, and further according to the evaluation results of all cells, determine whether to trigger RLF, if it is determined not to trigger RLF , the T310 timing is released, or, if the RLF is triggered, the RRC connection re-establishment is triggered.
  • the network device pre-configures to the terminal device threshold values for IS and OOS, namely Qin and Q out , and the threshold values are given in the form of PDCCH BLER size.
  • the network device pre-configures RLM measurement resources (including reference signal resources) for the terminal device, and the terminal device judges the current channel quality by performing measurement on the given resource.
  • the terminal device detects that the quality of all RLM-RSs is less than the OOS threshold Q out , the physical layer of the terminal device reports the L1 OOS indication to the upper layer of the terminal device.
  • the terminal device detects that at least one RLM-RS is greater than the IS threshold Qin , the physical layer of the terminal device reports the L1 IS indication to the upper layer of the terminal device.
  • the upper layer of the terminal device detects the continuous OOS indication report by N310 (or OSS counter), start timer T310 (or RLF timer), and detect whether there is N311 (or OSS counter) in T310 timer.
  • IS counter consecutive IS indication reports, if there is, stop the timer T310, if not, consider that a radio link failure (Radio Link Failure, RLF) event has occurred, and report the RLF, and trigger the subsequent process, such as The RRC connection is re-established.
  • RLF Radio Link Failure
  • the terminal device determines to send the RLF event, it needs to turn off the transmitting radio frequency unit (Tx RF) within 40ms.
  • Tx RF transmitting radio frequency unit
  • a beam failure recovery (Beam Failure Recovery, BFR) mechanism is designed for the primary cell (PCell) and secondary primary cell (PSCell). It mainly includes the following steps:
  • BFD Beam Failure Detection
  • New Beam Identification New Beam Identification, NBI
  • candidate beam detection Candidate Beam Detecion, CBD
  • BFRQ Beam Failure Recovery ReQest
  • the terminal device monitors the response of the network side to the BFRQ.
  • beam detection may include BFD and CBD.
  • the physical layer of the terminal device measures the beam failure detection reference signal (BFD-RS), and judges whether a beam failure event occurs according to the measurement result.
  • BFD-RS can be periodic CSI-RS or SSB.
  • the judgment condition may be: if it is detected that the link quality corresponding to all serving beams (serving beam) is very poor (for example, less than a threshold), then it is determined to be a beam failure instance (beam failure instance, BFI), and the terminal device
  • the physical layer reports a BFI indication to a high layer of the terminal device (such as a media access control (Media Access Control, MAC) layer). Conversely, if the physical layer of the terminal device determines that no BFI has occurred, no BFI indication will be sent to the upper layers.
  • MAC media access control
  • the upper layer of the terminal device uses a counter (denoted as a BFD counter) and a timer (denoted as a BFD timer) to count the BFI indications reported by the physical layer of the terminal device, and the timer is restarted every time a BFI is received, and the timer expires when the timer expires. Recounting, when the counter reaches the maximum number configured by the network, the end device considers that a beam failure event has occurred.
  • the terminal device will measure a group of candidate beams, and select a beam that meets a certain threshold as a new beam. Then the terminal device notifies the network device that a beam failure has occurred through the beam failure recovery request process BFRQ, and reports a new beam. After the network device receives the BFRQ information sent by a terminal device, it determines that the terminal has beam failure, and chooses to send the PDCCH from the new beam, and the terminal device receives the PDCCH sent by the network device on the new beam, and considers that it has correctly received the PDCCH from the network side. Response message. So far, the beam failure recovery process is successfully completed.
  • Fig. 4 is a schematic diagram of a beam failure recovery process related to the present application. As shown in Figure 4, the following steps may be included:
  • the terminal device performs beam failure detection.
  • S207 For contention-based random access, determine whether the random access is successful.
  • S208 For non-contention random access, determine whether a response from the network is received.
  • judging RLF can include the following two methods:
  • Mode 1 According to the aforementioned timer T310, counters N310 and N311 determine whether RLF occurs.
  • Mode 2 Beam detection fails, that is, BFD fails and CBD fails.
  • both RLM and BD belong to L1 measurement, and the measurement model mainly includes the following parameters:
  • L1 measurement evaluation time reference signal configuration
  • L1 reporting configuration including filter configuration, counter configuration and timer configuration
  • event judgment criteria including event corresponding threshold
  • T Evaluate_out_SSB (ms) Max(200, Ceil(10 ⁇ P) ⁇ T SSB ) for reporting the OSS indication, wherein, P represents the scaling factor, and Ceil represents rounding up.
  • the measurement evaluation time T Evaluate_in_SSB (ms) for reporting the IS indication Max(100, Ceil(5 ⁇ P) ⁇ T SSB ), where P represents the scaling factor, and Ceil represents rounding up.
  • the reporting period T Indication_interval may be max(10ms,T RLM-RS,M ).
  • T Indication_interval max(2ms,T SSB-RS,M )) or max(2ms,T CSI-RS,M ).
  • T SSB-RS,M is the minimum period among all SSB resources used in the monitored cell
  • T CSI-RS,M is the minimum period among all CSI-RS resources used in the monitored cell.
  • the thresholds corresponding to the RLM include the aforementioned Qin and Q out .
  • the terminal device determines whether to report the OOS according to whether Q in reports the IS, and according to Q out .
  • the judgment of OOS is based on the evaluation of the Signal to Interference plus Noise Ratio (SINR) of the hypothetical PDCCH (for example, a threshold of 10%), and the OOS indication is counted by layer 3 of the terminal device.
  • SINR Signal to Interference plus Noise Ratio
  • the threshold corresponding to BFD and the threshold corresponding to CBD For BFD the terminal device judges and evaluates BFD based on the signal to interference plus noise ratio (Signal to Interference plus Noise Ratio, SINR) of the hypothetical PDCCH is lower than a threshold.
  • SINR Signal to Interference plus Noise Ratio
  • the terminal device determines whether a beam failure instance occurs according to the threshold corresponding to the BFD.
  • CBD can be measured by Layer 1 Reference Signal Receiving Power (Layer1-Reference Signal Receiving Power, L1-RSRP) to select a new beam.
  • L1-RSRP Layer 1 Reference Signal Receiving Power
  • the threshold of RSRP can be controlled by Media Access Control (Media Access Control, MAC) layer decision.
  • FIG. 5 is a schematic interactive diagram of a wireless communication method 300 according to an embodiment of the present application. As shown in FIG. 5, the method 300 includes the following content:
  • the terminal device performs radio link monitoring RLM and beam detection according to the first measurement model, where the beam detection includes beam failure detection BFD and candidate beam detection CBD.
  • the terminal device can use a unified measurement model to perform RLM and beam detection, which is beneficial to reduce the complexity of the terminal device.
  • the terminal device performs RLM and beam detection based on a unified measurement model, which may mean that the model structure of the terminal device performing RLM and beam detection is the same, or that the procedures for performing RLM and beam detection are the same .
  • the beam can be replaced by a reference signal.
  • the beam detection can also be expressed as a reference signal detection
  • the beam failure detection can also be expressed as a reference signal failure detection
  • the candidate beam detection can also be expressed as a candidate Reference signal detection.
  • the first measurement model may include the following parts:
  • Layer 1 measurement reporting of layer 1 indications, and event judgment based on the reported layer 1 indications.
  • layer 1 measurement may refer to measurement on a reference signal for RLM, or in other words, measurement on a beam for RLM.
  • layer 1 indications may include OOS indications and/or IS indications.
  • layer 1 measurement may refer to performing measurement on a reference signal used for BFD, or in other words, performing measurement on a beam used for BFD.
  • the layer 1 indication may include a beam failure instance BFI indication.
  • the OOS indication corresponding to the RLM and the BFI indication corresponding to the BFD may adopt a unified model parameter, such as a unified judgment threshold, and/or a unified counter threshold and the like.
  • layer 1 measurement may refer to measuring a reference signal for CBD, or in other words, measuring a beam for CBD to select a new beam.
  • the IS evaluation corresponding to RLM and the new beam selection in the CBD may use unified model parameters, for example, the IS judgment and new beam selection may use a unified judgment threshold, and/or, a unified counter threshold, etc. .
  • the reference signal configuration used for RLM and the reference signal configuration used for BFD may adopt the same configuration. In this way, RLM and BFD may be measured uniformly, which is beneficial to reduce duplication of terminal equipment.
  • the reference signal configuration used for RLM and BFD can configure a group of reference signals with better signal quality (judged according to historical data), so that when the quality of these reference signals deteriorates, it can be considered that a radio link failure or beam failure occurs fail.
  • the reference signal configuration for RLM and BFD may configure reference signals on PCell and PSCell.
  • judging the event according to the reported layer 1 indication may include:
  • Whether to trigger the RLF is determined according to the OOS indication and the IS indication reported by the physical layer of the terminal device.
  • the number of reported OOS indications reaches the counter threshold, it is considered that an RLF event has occurred, or RLF is triggered according to the OOS indications and IS indications reported by the physical layer, for example, when the upper layer of the terminal device detects N310 consecutive OOS After the indication is reported, start the timer, and detect within the timer whether there are N311 consecutive IS indications to report, if yes, stop the timer, if not, consider that an RLF event has occurred.
  • judging the event according to the reported layer 1 indication may include:
  • the beam fails.
  • S310 may include:
  • first model parameters and the second model parameters are at least partially different.
  • the terminal device may perform RLM and beam detection based on the same measurement model and differentiated model parameters.
  • the differentiated model parameters may be determined according to measurement requirements of RLM and beam detection.
  • the first model parameters include at least one of the following:
  • the first measurement evaluation time information the first reference signal configuration, the first filter configuration, the first timer configuration, the first counter configuration, the first reporting time interval, and the first threshold configuration.
  • the first measurement and evaluation time information may refer to the time when the terminal device performs measurement and evaluation on the reference signal used for RLM.
  • the first reference signal configuration is used to configure a reference signal for the terminal device to perform RLM.
  • the first reference signal configuration is used to configure reference signals on the PCell and the PSCell.
  • the first filter configuration is used to configure parameters for the terminal device to filter the RLM measurement result.
  • the first filter configuration is used to configure a filter configuration in which layer 1 of the terminal device filters the RLM-RS measurement result, and/or layer 3 of the terminal device performs a filter configuration for layer 1 of the terminal device Reported layer 1 indicates the filter configuration for filtering.
  • the measurement result of the reference signal may be Signal to Interference plus Noise Ratio (SINR), or it may be other measurement results, for example, Reference Signal Received Power (Reference Signal Receiving Power, RSRP ), Reference Signal Receiving Quality (Reference Signal Receiving Quality, RSRQ), etc.
  • SINR Signal to Interference plus Noise Ratio
  • the first timer configuration is used to configure a timing threshold for the terminal device to trigger RLF.
  • the first timer configuration may include a timer configuration of an RLF timer (for example, T310).
  • T310 timer For functions of the T310 timer, refer to relevant descriptions in the foregoing embodiments, and details are not repeated here.
  • the first counter configuration is used to configure a count value threshold for the terminal device to trigger RLF.
  • the first counter configuration may include the configuration of the OSS counter (ie N310) and/or the IS counter (ie N311).
  • the OSS counter ie N310
  • the IS counter ie N311
  • the first reporting time interval is used to configure the minimum time interval for the physical layer of the terminal device to report the layer 1 indication to the high layer of the terminal device, and corresponds to T Indication_interval in the foregoing.
  • the first threshold configuration is used to configure the judgment threshold of the RLF event and/or the judgment threshold of the layer 1 indication.
  • the judgment threshold of the RLF event may also include the configuration of N311.
  • the judgment threshold indicated by layer 1 may include a threshold corresponding to an IS indication and a threshold corresponding to an OOS indication, respectively corresponding to Qin and Q out in the foregoing embodiments.
  • the Q in and Q out are characterized by PDCCH BLER.
  • the measurement result of the reference signal is mapped to the assumed PDCCH BLER, and the mapped assumed PDCCH BLER is further compared with Q in and Q out to determine whether to report an IS indication or an OOS indication.
  • the second model parameters include at least one of the following:
  • the second measurement evaluation time information The second reference signal configuration, the second filter configuration, the second timer configuration, the second counter configuration, the second reporting time interval, and the second threshold configuration.
  • the second measurement evaluation time information may include:
  • the time at which the terminal device measures and evaluates the reference signal or beam used for BFD and,
  • the time when the terminal device measures and evaluates the reference signal or beam used for the CBD is the time when the terminal device measures and evaluates the reference signal or beam used for the CBD.
  • the second reference signal configuration is used to configure at least one of the following:
  • the terminal device executes a reference signal of BFD
  • the terminal device implements the reference signal of the CBD.
  • the second reference signal configuration is used to configure reference signals on the PCell and the PSCell.
  • the reference signal configuration (for example, the first reference signal configuration, the second reference signal configuration or the third reference signal configuration hereinafter) can be used to configure but not limited to at least one of the following parameters : Bandwidth, subcarrier spacing (Subcarrier spacing, SCS), cyclic prefix (Cyclic Prefix, CP), center frequency point, period and length.
  • the second filter configuration is used to configure parameters for the terminal device to filter the BFD measurement result and/or the CBD measurement result.
  • the second timer is configured to configure a timing threshold for the terminal device to trigger BFR.
  • the second timer configuration is used to configure the timing value of the aforementioned BFD timer.
  • the high layer of the terminal device judges whether the BFI indication reported by the physical layer of the terminal device is received, and if received , restart the BFD timer.
  • the second counter is configured to configure a count value threshold for the terminal device to trigger BFR.
  • the second counter configuration is used to configure the count value threshold of the aforementioned BFD counter, for example, when the upper layer of the terminal device receives a BFI indication, add one to the count value of the BFD counter, and when the count value exceeds the count value threshold Within a limited time, it is determined that a beam failure event has occurred.
  • the second reporting time interval is used to configure a minimum time interval for the physical layer of the terminal device to report a beam failure instance BFI to a high layer of the terminal device.
  • the second threshold configuration is used to configure a BFI judgment threshold (denoted as BFI threshold) and/or a new beam judgment threshold (denoted as NBI threshold).
  • the measurement result of the reference signal used for BFD is smaller than the BFI threshold, it is determined to send the BFI indication.
  • the measurement result of the reference signal used for the CBD is greater than the NBI threshold, it is determined to be a new beam.
  • the BFI threshold may be a SINR threshold, or may be other signal quality thresholds, for example, an RSRP threshold, an RSRQ threshold, and the like.
  • the NBI threshold may be an RSRP threshold, or may also be other signal quality thresholds, for example, an SINR threshold, an RSRQ threshold, and the like.
  • the BFI threshold and the NBI threshold can also be characterized by PDCCH BLER.
  • the measurement result of the reference signal is mapped to the assumed PDCCH BLER, and the mapped assumed PDCCH BLER is further compared with the BFI threshold and the NBI threshold.
  • the difference between the first model parameter and the second model parameter may include at least one of the following:
  • said first measurement evaluation time information and said second measurement evaluation time information are different;
  • the first reference signal configuration is different from the second reference signal configuration
  • the first filter configuration and the second filter configuration are different
  • the first timer configuration is different from the second timer configuration
  • the first counter configuration is different from the second counter configuration
  • the first reporting time interval and the second reporting time interval are different;
  • the first threshold configuration is different from the second threshold configuration.
  • the configuration of the first reference signal being different from the configuration of the second reference signal may include:
  • the first reference signal configuration includes a reference signal configuration for RLM, such as q2, and the second reference signal configuration includes a reference signal configuration for BFD, such as q0, and a reference signal configuration for CBD, such as q1.
  • the terminal device executes RLM based on q2, executes BFD based on q0, and executes CBD based on q1.
  • the first reference signal configuration and the second reference signal configuration are the same. That is, the reference signal or beam configuration used to perform BFD and the reference signal or beam configuration used to perform CBD are the same configuration. That is, BFD, CBD, and RLM are performed using a unified reference signal configuration.
  • the reference signal configuration is used to configure a specific reference signal set.
  • the specific reference signal set may be determined according to historical measurement results and/or usage conditions of reference signals.
  • the specific reference signal set may be a reference signal set with better signal quality in history, or a frequently used The set of reference signals, etc.
  • the specific reference signal set may be a group of reference signals (or representative reference signals) with specific characteristics, for example, a group of reference signals with random distribution or typical distribution characteristics in space. That is to say, performing measurements based on these reference signals is helpful for accurately judging link quality or beam quality.
  • the first counter configuration is different from the second counter configuration may include:
  • the count value threshold corresponding to the OSS counter (such as N310) is different from the count value threshold corresponding to the BFD counter.
  • the difference between the first threshold configuration and the second threshold configuration may include:
  • the judgment threshold for the terminal device to report the layer 1 indication for RLM is different from the judgment threshold for reporting the layer 1 indication for BFD.
  • the first threshold configuration is used to configure Qin and Q out
  • the second threshold configuration is used to configure the threshold of BFD and the threshold of CBD, wherein, the thresholds of Qin and CBD are different, and/or the thresholds of Q out and BFD different.
  • the above thresholds can all be characterized by PDCCH BLER, for example, Q out is 10%, the threshold of BFD is 9%, the threshold of Qin is 2%, and the threshold of CBD is 1%.
  • the measurement result may be mapped to the PDCCH BLER according to the mapping relationship between the measurement result and the PDCCH BLER, and then the comparison is performed.
  • the first measurement evaluation time information and the second measurement evaluation time information are the same.
  • the terminal device performs the layer 1 measurement of RLM at the same time as the layer 1 measurement of beam detection.
  • the second measurement and evaluation time information includes first duration information and second duration information, wherein the first duration information is the measurement and evaluation time for the terminal device to perform BFD, and the second duration The information evaluates the time according to the measurement of the CBD performed by the terminal device.
  • the first measurement evaluation time information is determined according to the first duration information and the second duration information.
  • the first measurement evaluation time information is the sum of the first duration information and the second duration information.
  • the total measurement and evaluation time for the terminal device to perform BFD and CBD is determined as the measurement and evaluation time for the RLM.
  • the first duration information is determined according to the following formula:
  • T Evaluate_BFD represents the first duration information
  • X represents the measurement evaluation time threshold corresponding to BFD
  • M1 represents the number of measurement samples corresponding to BFD
  • K BFD represents the scaling factor corresponding to BFD
  • N1 represents the configured reference signal for BFD or the number of beams
  • T BFD_RS is used for the reference signal period of BFD.
  • X is determined according to the capability of the terminal device.
  • the terminal device may report capability information to the network device, and the network device may evaluate the time required for the terminal device to perform BFD based on the capability information reported by the terminal device, and obtain X.
  • X is 50ms.
  • M1 represents the number of measurement samples corresponding to BFD, or in other words, the number of measurements used to obtain an evaluation result (such as IS or OOS).
  • the M1 may be 10, or other integer values greater than 1.
  • M1 may be considered as the number of measurements in a link monitoring (Link Monitoring, LM) stage, so M1 is also called M LM .
  • Link Monitoring Link Monitoring
  • K BFD represents a scaling factor corresponding to BFD.
  • the K BFD is related to P1 and/or P BFD , where P1 represents a scaling factor caused by performing BFD and other measurements or measurement interval conflicts, and P BFD represents a cell-related scaling factor in BFD.
  • P1 represents a scaling factor caused by performing BFD and other measurements or measurement interval conflicts
  • P BFD represents a cell-related scaling factor in BFD.
  • K BFD P1*P BFD .
  • P1 when there is no conflict between BFD and other measurements or measurement intervals, P1 may be 1.
  • N1 may be the number of reference signals or beams used for BFD on one cell.
  • T BFD_RS may be the SSB period T SSB-RS or the CSI-RS period T CSI-RS used for BFD.
  • the second duration information is determined according to the following formula:
  • T Evaluate_CBD MAX(Y, M2*K CBD *N2*T CBD_RS )
  • T Evaluate_BD represents the second duration information
  • Y represents the measurement evaluation time threshold corresponding to CBD
  • M2 represents the number of measurement samples corresponding to CBD
  • K CBD represents the scaling factor corresponding to CBD
  • N2 represents the configured reference signal for CBD
  • the number or the number of beams, T CBD_RS is used for the reference signal period of the CBD.
  • Y is determined according to the capability of the terminal device.
  • the terminal device may report capability information to the network device, and the network device may evaluate the time required for the terminal device to perform CBD based on the capability information reported by the terminal device, and obtain Y.
  • Y is 25ms.
  • M2 represents the number of measurement samples corresponding to the CBD, or in other words, the number of measurements used to obtain an evaluation result (for example, whether BFI occurs).
  • M2 may be 3, or other integer values greater than 1.
  • M2 may be considered as the number of measurements in the link recovery (Link Recovering, LR) phase, so M2 is also called M LR .
  • K CBD represents a scaling factor corresponding to CBD.
  • the K CBD is related to P2 and/or P CBD , where P2 represents a scaling factor caused by performing CBD and other measurements or conflicts between measurement intervals, and P CBD represents a scaling factor related to a cell in the CBD.
  • P2 represents a scaling factor caused by performing CBD and other measurements or conflicts between measurement intervals
  • P CBD represents a scaling factor related to a cell in the CBD.
  • K CBD P2*P CBD .
  • P2 when there is no conflict between the CBD and other measurements or measurement intervals, P2 may be 1.
  • T CBD_RS may be the SSB period T SSB-RS or the CSI-RS period T CSI-RS used for the CBD.
  • N2 may be the number of reference signals or beams used for CBD on one cell.
  • N2 can be 1.
  • the first measurement evaluation time information is determined according to the following formula:
  • T Evaluate_RLM MAX(X, M1*K BFD *N1*T BFD_RS )+MAX(Y, M2*K CBD *N2*T CBD_RS )
  • T Evaluate_RLM represents the first measurement and evaluation time information, and the meanings of other parameters refer to the descriptions of corresponding parameters in the first duration information and the second duration information, and for the sake of brevity, details are not repeated here.
  • Table 1 presents the change in measurement evaluation time for RLM before and after using the unified measurement model.
  • the measurement and evaluation of wireless link failure and beam failure based on a unified measurement model reduces the complexity of L1 sampling, shortens the time of RLM, and reduces the complexity of terminal equipment.
  • the use of differentiated model parameters, such as two sets of counter and timer configurations is beneficial to avoid the problem of missing some beams due to the unrepresentative configuration of the reference signal set used for measurement, or the link quality If the situation is not bad enough, it is misjudged as the problem of the link failure of the cell.
  • S310 may include:
  • the terminal device can perform RLM and beam detection based on the same measurement model and the same model parameters.
  • the third model parameters include at least one of the following: third measurement evaluation time information, third reference signal configuration, third filter configuration, third timer configuration, third counter configuration, The third reporting interval and the third threshold configuration.
  • the reference signal configured by the third reference signal configuration is used by the terminal device to perform RLM and beam detection.
  • the third reference signal configuration does not distinguish between BFD and CBD, that is, the reference signal configuration for performing BFD and the reference signal configuration for performing CBD are the same configuration. That is to say, the third reference signal is configured for BFD, CBD and RLM.
  • the third reference signal configuration is used to configure a group of specific reference signals, and the specific reference signals are characterized by random distribution or typical distribution in space. That is to say, performing measurements based on these reference signals is helpful for accurately judging link quality or beam quality.
  • the third reference signal configuration may be determined according to historical measurement results and/or usage conditions of reference signals, for example, the third reference signal configuration may be used to configure a group of reference signals with better signal quality in history signal, or, a frequently used set of reference signals, etc.
  • the filter parameters configured by the third filter configuration are used by the terminal device to filter the RLM measurement result, the BFD measurement result, and the CBD measurement result.
  • the timing threshold configured by the third timer configuration is used for the terminal device to trigger RLF and RLF.
  • the timing threshold configured by the third timer configuration may be used for timing the aforementioned BLF timer and BFD timer.
  • the count value threshold configured by the third counter configuration is used for the terminal device to trigger RLF and for the terminal device to trigger BFR.
  • the count value threshold configured by the third count value configuration may be the count value threshold of the aforementioned OSS counter and BFD counter.
  • the time interval threshold configured by the third reporting time interval is used for the physical layer of the terminal device to report the layer 1 indication for RLM and is also used for the physical layer of the terminal device to report the layer for BFD 1 instruction.
  • the time interval threshold configured by the third reporting time interval is used for the physical layer of the terminal device to report the layer 1 indication for RLM and is also used for the physical layer of the terminal device to report the layer for BFD 1 instruction.
  • the minimum time interval for the terminal device to report the layer 1 indication for RLM is the same as the minimum time interval for the layer 1 indication for BFD.
  • the threshold configured by the third threshold configuration is used to determine whether to trigger an RLF event and/or report a layer 1 indication.
  • the third threshold configuration is used to configure a first judgment threshold and a second judgment threshold
  • the first judgment threshold is used to determine whether to report an OOS indication and whether a BFI occurs
  • the second judgment threshold is used to judge whether Report the IS indication and whether it is a new beam.
  • the above thresholds can all be represented by PDCCH BLER, for example, the first judgment threshold is 10%, and the second judgment threshold is 2%.
  • the third measurement evaluation time information is used by the terminal device to perform layer 1 measurements for RLM and layer 1 measurements for BFD and CBD.
  • the measurement evaluation time for the terminal device to perform the layer 1 measurement of RLM is the same as the measurement evaluation time for the terminal device to perform the layer 1 measurement of BFD and CBD.
  • the third measurement and evaluation time information is the sum of the first duration information and the second duration information, wherein the first duration information is the measurement and evaluation time for the terminal device to perform BFD, and the first Second, the duration information is based on the measurement and evaluation time of the terminal device executing the CBD.
  • the third measurement evaluation time information is determined according to the following formula:
  • T Evaluate_RLM MAX(X, M1*K BFD *N1*T BFD_RS )+MAX(Y, M2*K CBD *N2*T CBD_RS )
  • T Evaluate_RLM represents the third measurement evaluation time information
  • X represents the measurement evaluation time threshold corresponding to BFD
  • M1 represents the number of measurement samples corresponding to BFD
  • K BFD represents the scaling factor corresponding to BFD
  • N1 represents the configured BFD
  • the number of reference signals or the number of beams, T BFD_RS is used for the reference signal period of BFD
  • Y indicates the measurement evaluation time threshold corresponding to CBD
  • M2 indicates the number of measurement samples corresponding to CBD
  • K CBD indicates the scaling factor corresponding to CBD
  • N2 indicates configuration
  • T CBD_RS is used for the reference signal period of CBD.
  • the method 300 further includes:
  • the terminal device receives first configuration information of the network device, where the first configuration information is used to configure a first measurement model and/or model parameters of the first measurement model.
  • model parameters of the first measurement model may include the aforementioned first model parameters and second model parameters, or may also include the third model parameters.
  • the method 300 further includes:
  • the terminal device reports capability information of the terminal device to a network device, where the capability information of the terminal device is used by the network device to determine model parameters of the first measurement model.
  • the capability information of the terminal device may refer to measurement-related capability information of the terminal device, which is not limited in this application.
  • the capability information of the terminal device may include but not limited to at least one of the following:
  • the maximum number of reference signals or beams or cells supported by the terminal device on each frequency layer is the maximum number of reference signals or beams or cells supported by the terminal device on each frequency layer.
  • the network device may determine the first model parameter and the second model parameter according to the capability information of the terminal device, or determine the third model parameter according to the capability information of the terminal device.
  • the measurement and evaluation of wireless link failure and beam failure based on a unified measurement model reduces the complexity of L1 sampling, shortens the time of RLM, and reduces the complexity of terminal equipment.
  • the network device may design a measurement model and model parameters applicable to the multiple terminal devices according to the capability information reported by the multiple terminal devices.
  • the measurement model and model parameters are further configured to the plurality of terminal devices.
  • the network device may relate measurement models and model parameters applicable to some terminal devices according to the capability information of the plurality of terminal devices, for example, measurement models and model parameters applicable to terminal devices with stronger processing capabilities. Further, the measurement model and model parameters are configured for these terminal devices. For other terminal devices, independent measurement models may be used to perform RLM and beam detection, that is, RLM and beam detection may be performed in an existing manner.
  • layer 1 measurement is performed based on a unified Link Monitoring (LM) model.
  • LM Link Monitoring
  • RLM and beam detection are performed based on the same measurements evaluating temporal information.
  • RLM and beam detection are performed based on the same reference signal configuration.
  • event judgment is performed based on the same count value threshold.
  • the count value threshold when the number of layer 1 indications reported by the physical layer of the terminal device reaches the count value threshold, it may be considered that the link quality is not good or the beam quality is not good.
  • Link recovery or beam recovery is further performed based on a unified link recovery (Link Recover, LR) model.
  • the terminal device performs CBD to select a new beam.
  • the terminal device continues to measure other reference signals used for RLM, that is, detects new links to determine whether there is a link with good quality.
  • the reference signal configuration for RLM and beam detection is used to configure the reference signal set 1 and the reference signal set 2, for example, in the unified LM model, the terminal device can perform RLM and BFD based on the reference signal set 1 .
  • the terminal device can measure the reference signal set 2 to select a new beam, and for RLM, the terminal device can continue to measure the reference signals in the reference signal set 2 to determine Link quality corresponding to these reference signals.
  • RLF is triggered.
  • RLF is determined, or if the link quality corresponding to all reference signals in the reference signal configuration does not meet the above threshold 1, RLF is determined.
  • layer 1 measurements are performed based on a unified LM model.
  • RLM and beam detection are performed based on the same measurements evaluating temporal information.
  • RLM and beam detection are performed based on the same reference signal configuration.
  • the reference signal configuration for RLM and beam detection is used to configure the reference signal set 1 and the reference signal set 2, for example, in the unified LM model, the terminal device can perform RLM and BFD based on the reference signal set 1 .
  • event judgment is performed based on the same count value threshold.
  • the count value threshold when the number of layer 1 indications reported by the physical layer of the terminal device reaches the count value threshold, it may be considered that the link quality is not good or the beam quality is not good.
  • RLF when the link quality or beam quality corresponding to all reference signals in the reference signal set 1 is not good, RLF may be triggered.
  • Link restoration or beam restoration is further performed based on a unified LR model.
  • the terminal device performs CBD, eg, measures reference signals in reference signal set 2 to select a new beam, and initiates a random access procedure based on the selected new beam.
  • the terminal device initiates a random access procedure based on the reference signals in the reference signal set 2, or on a cell corresponding to the reference signals in the reference signal set 2.
  • the terminal device monitors the response of the network device, and if it receives the response of the network device, it determines that the beam failure recovery is successful, or the link recovery is successful. If no response from the network device is received, the random access process is re-initiated through other reference signals or beams.
  • the terminal device can perform RLM and beam detection based on a unified measurement model.
  • RLM and beam detection can be performed based on a unified measurement model and model parameters, which is beneficial to reduce the complexity of L1 sampling and shorten the RLM The time reduces the complexity of the terminal equipment.
  • performing RLM and beam detection based on a unified measurement model and differentiated model parameters can help reduce the complexity of L1 sampling, shorten the time of RLM, and reduce the complexity of terminal equipment.
  • differentiated model parameters such as different counter configurations or timer configurations, is beneficial to avoid the problem of missing some beams due to the unrepresentative configuration of the reference signal set used for measurement, or, the link If the quality is not bad enough, it is misjudged as the link failure of the cell.
  • Fig. 7 shows a schematic block diagram of a terminal device 400 according to an embodiment of the present application.
  • the terminal device 400 includes:
  • the processing unit 410 is configured to perform radio link monitoring RLM and beam detection according to the first measurement model, where the beam detection includes beam failure detection BFD and candidate beam detection CBD.
  • the processing unit 410 is further configured to: perform RLM according to the first measurement model and first model parameters, and perform beamforming according to the first measurement model and second model parameters
  • first model parameters and the second model parameters are at least partially different.
  • the first model parameters include at least one of the following: first measurement evaluation time information, first reference signal configuration, first filter configuration, first timer configuration, first counter configuration, The first reporting time interval and the first threshold configuration;
  • the second model parameters include at least one of the following: second measurement evaluation time information, second reference signal configuration, second filter configuration, second timer configuration, second counter configuration, second reporting time interval, Second threshold configuration.
  • the first reference signal configuration and the second reference signal configuration are different; and/or
  • the first filter configuration is different from the second filter configuration; and/or, the first timer configuration is different from the second timer configuration; and/or, the first counter configuration is different from the second counter configuration and/or, the first reporting time interval is different from the second reporting time interval; and/or, the first threshold configuration is different from the second threshold configuration.
  • the first measurement and evaluation time information is used to configure the time when the terminal device performs measurement and evaluation on the reference signal used for RLM;
  • the first reference signal configuration is used to configure a reference signal for the terminal device to perform RLM;
  • the first filter configuration is used to configure parameters for the terminal device to filter the RLM measurement result
  • the first timer configuration is used to configure the timing threshold for the terminal device to trigger the radio link failure RLF;
  • the first counter configuration is used to configure the count value threshold for the terminal device to trigger RLF;
  • the first reporting time interval is used to configure the physical layer of the terminal device to report the minimum time interval indicated by layer 1 to the high layer of the terminal device;
  • the first threshold configuration is used to configure the judgment threshold for reporting the layer 1 indication from the physical layer of the terminal device to the high layer of the terminal device.
  • the second measurement and evaluation time information is used to configure the time when the terminal device performs measurement and evaluation on the reference signal used for beam detection;
  • the second reference signal configuration is used to configure a reference signal for the terminal device to perform BFD;
  • the second filter configuration is used to configure parameters for the terminal device to filter the BFD measurement result
  • the second timer configuration is used to configure the timing threshold for the terminal device to trigger beam failure recovery BFR;
  • the second counter configuration is used to configure the count value threshold for the terminal device to trigger BFR;
  • the second reporting time interval is used to configure the minimum time interval for the physical layer of the terminal device to report the beam failure instance BFI to the high layer of the terminal device;
  • the second threshold configuration is used to configure the judgment threshold of the BFI and/or the judgment threshold of the new beam.
  • the first measurement evaluation time information and the second measurement evaluation time information are the same.
  • the first measurement and evaluation time information is the sum of the first duration information and the second duration information, wherein the first duration information is the measurement and evaluation time for the terminal device to perform BFD, and the second duration information is based on The end-device performs the measurement evaluation time of the CBD.
  • the first measurement evaluation time information is determined according to the following formula:
  • T Evaluate_RLM MAX(X, M1*K BFD *N1*T BFD_RS )+MAX(Y, M2*K CBD *N2*T CBD_RS )
  • T Evaluate_RLM represents the first measurement evaluation time information
  • X represents the measurement evaluation time threshold corresponding to BFD
  • M1 represents the number of measurement samples corresponding to BFD
  • K BFD represents the scaling factor corresponding to BFD
  • N1 represents the configured reference for BFD
  • T BFD_RS is used for the reference signal period of BFD
  • Y indicates the measurement evaluation time threshold corresponding to CBD
  • M2 indicates the number of measurement samples corresponding to CBD
  • K CBD indicates the scaling factor corresponding to CBD
  • N2 indicates the configured
  • T CBD_RS is used for the reference signal period of CBD.
  • the second measurement and evaluation time information includes first duration information and second duration information, wherein the first duration information is the measurement and evaluation time for the terminal device to perform BFD, and the second duration information is based on the Measurement evaluation time of device performing CBD.
  • the first duration information is determined according to the following formula:
  • T Evaluate_BFD represents the first duration information
  • X represents the measurement evaluation time threshold corresponding to BFD
  • M1 represents the number of measurement samples corresponding to BFD
  • K BFD represents the scaling factor corresponding to BFD
  • N1 represents the configured reference signal for BFD Number or number of beams
  • T BFD_RS is used for the reference signal period of BFD.
  • the second duration information is determined according to the following formula:
  • T Evaluate_CBD MAX(Y, M2*K CBD *N2*T CBD_RS )
  • T Evaluate_BD represents the second duration information
  • Y represents the measurement evaluation time threshold corresponding to CBD
  • M2 represents the number of measurement samples corresponding to CBD
  • K CBD represents the scaling factor corresponding to CBD
  • N2 represents the configured reference signal for CBD.
  • Quantity or number of beams, T CBD_RS is used for the reference signal period of the CBD.
  • the processing unit 410 is further configured to: perform RLM according to the first measurement model and third model parameters, and perform beam detection according to the first measurement model and the third model parameters.
  • the third model parameters include at least one of the following: third measurement evaluation time information, third reference signal configuration, third filter configuration, third timer configuration, third counter configuration, third Three reporting time intervals, third threshold configuration.
  • the third measurement and evaluation time information is used to configure the time when the terminal device performs measurement and evaluation on the reference signal used for RLM and beam detection;
  • the reference signal configured by the third reference signal configuration is used by the terminal device to perform RLM, BFD and CBD;
  • the filtering parameters configured by the third filter configuration are used by the terminal device to filter the RLM measurement results, the BFD measurement results, and the CBD measurement results;
  • the timing threshold configured by the third timer configuration is used for the terminal device to trigger RLF and BFR;
  • the count value threshold configured by the third counter configuration is used for the terminal device to trigger RLF and BFR;
  • the time interval threshold configured by the third reporting time interval is used for the physical layer of the terminal device to report the layer 1 indication for RLM and the layer 1 indication for BFD;
  • the threshold configured by the third threshold configuration is used for the physical layer of the terminal device to determine whether to report the layer 1 indication for RLM and the layer 1 indication for BFD.
  • the third measurement and evaluation time information is determined according to the sum of the first duration information and the second duration information, wherein the first duration information is the measurement and evaluation time for the terminal device to perform BFD, and the second duration information The evaluation time is measured according to the measurement performed by the end-device for the CBD.
  • the third measurement evaluation time information is determined according to the following formula:
  • T Evaluate_RLM MAX(X, M1*K BFD *N1*T BFD_RS )+MAX(Y, M2*K CBD *N2*T CBD_RS )
  • T Evaluate_RLM represents the third measurement evaluation time information
  • X represents the measurement evaluation time threshold corresponding to BFD
  • M1 represents the number of measurement samples corresponding to BFD
  • K BFD represents the scaling factor corresponding to BFD
  • N1 represents the configured reference for BFD
  • T BFD_RS is used for the reference signal period of BFD
  • Y indicates the measurement evaluation time threshold corresponding to CBD
  • M2 indicates the number of measurement samples corresponding to CBD
  • K CBD indicates the scaling factor corresponding to CBD
  • N2 indicates the configured
  • T CBD_RS is used for the reference signal period of CBD.
  • the X is determined according to the capability of the terminal device.
  • the X is 50 milliseconds.
  • the Y is determined according to the capability of the terminal device.
  • the Y is 25 milliseconds.
  • the terminal device 400 further includes: a communication unit, configured to receive first configuration information of a network device, where the first configuration information is used to configure a first measurement model and/or the first measurement model model parameters.
  • the terminal device further includes: a communication unit, configured to report capability information of the terminal device to a network device, where the capability information of the terminal device is used by the network device to determine the first measurement model model parameters.
  • the above-mentioned communication unit may be a communication interface or a transceiver, or an input-output interface of a communication chip or a system on chip.
  • the aforementioned processing unit may be one or more processors.
  • terminal device 400 may correspond to the terminal device in the method embodiment of the present application, and the above-mentioned and other operations and/or functions of each unit in the terminal device 400 are to realize the For the sake of brevity, the corresponding processes of the terminal device in the shown method 300 are not repeated here.
  • Fig. 8 is a schematic block diagram of a network device according to an embodiment of the present application.
  • the network device 500 of FIG. 8 includes:
  • the communication unit 510 is configured to send first configuration information to the terminal device, where the first configuration information is used to configure a first measurement model and/or model parameters of the first measurement model, and the first measurement model is used by the terminal device to execute Radio link monitoring RLM and beam detection, wherein the beam detection includes beam failure detection BFD and candidate beam detection CBD.
  • the model parameters of the first measurement model include first model parameters and second model parameters, the first model parameters are used for RLM, the second model parameters are used for beam detection, the first model parameters and The second model parameters are at least partially different.
  • the first model parameters include at least one of the following: first measurement evaluation time information, first reference signal configuration, first filter configuration, first timer configuration, first counter configuration, first - reporting time interval, first threshold configuration;
  • the second model parameters include at least one of the following: second measurement evaluation time information, second reference signal configuration, second filter configuration, second timer configuration, second counter configuration, second reporting time interval, second Two threshold configurations.
  • the first reference signal configuration and the second reference signal configuration are different; and/or
  • the first filter configuration is different from the second filter configuration; and/or, the first timer configuration is different from the second timer configuration; and/or, the first counter configuration is different from the second counter configuration and/or, the first reporting time interval is different from the second reporting time interval; and/or, the first threshold configuration is different from the second threshold configuration.
  • the first measurement and evaluation time information is used to configure the time when the terminal device performs measurement and evaluation on the reference signal used for RLM;
  • the first reference signal configuration is used to configure a reference signal for the terminal device to perform RLM;
  • the first filter configuration is used to configure parameters for the terminal device to filter the RLM measurement result
  • the first timer configuration is used to configure the timing threshold for the terminal device to trigger the radio link failure RLF;
  • the first counter configuration is used to configure the count value threshold for the terminal device to trigger RLF;
  • the first reporting time interval is used to configure the physical layer of the terminal device to report the minimum time interval indicated by layer 1 to the high layer of the terminal device;
  • the first threshold configuration is used to configure the judgment threshold for reporting the layer 1 indication from the physical layer of the terminal device to the high layer of the terminal device.
  • the second measurement and evaluation time information is used to configure the time when the terminal device performs measurement and evaluation on the reference signal used for beam detection;
  • the second reference signal configuration is used to configure a reference signal for the terminal device to perform BFD;
  • the second filter configuration is used to configure parameters for the terminal device to filter the BFD measurement result
  • the second timer configuration is used to configure the timing threshold for the terminal device to trigger beam failure recovery BFR;
  • the second counter configuration is used to configure the count value threshold for the terminal device to trigger BFR;
  • the second reporting time interval is used to configure the minimum time interval for the physical layer of the terminal device to report the beam failure instance BFI to the high layer of the terminal device;
  • the second threshold configuration is used to configure the judgment threshold of the BFI and/or the judgment threshold of the new beam.
  • the first measurement evaluation time information and the second measurement evaluation time information are the same.
  • the first measurement and evaluation time information is the sum of the first duration information and the second duration information, wherein the first duration information is the measurement and evaluation time for the terminal device to perform BFD, and the second duration information is based on The end-device performs the measurement evaluation time of the CBD.
  • the first measurement evaluation time information is determined according to the following formula:
  • T Evaluate_RLM MAX(X, M1*K BFD *N1*T BFD_RS )+MAX(Y, M2*K CBD *N2*T CBD_RS )
  • T Evaluate_RLM represents the first measurement evaluation time information
  • X represents the measurement evaluation time threshold corresponding to BFD
  • M1 represents the number of measurement samples corresponding to BFD
  • K BFD represents the scaling factor corresponding to BFD
  • N1 represents the configured reference for BFD
  • T BFD_RS is used for the reference signal period of BFD
  • Y indicates the measurement evaluation time threshold corresponding to CBD
  • M2 indicates the number of measurement samples corresponding to CBD
  • K CBD indicates the scaling factor corresponding to CBD
  • N2 indicates the configured
  • T CBD_RS is used for the reference signal period of CBD.
  • the second measurement and evaluation time information includes first duration information and second duration information, wherein the first duration information is the measurement and evaluation time for the terminal device to perform BFD, and the second duration information is based on the Measurement evaluation time of device performing CBD.
  • the first duration information is determined according to the following formula:
  • T Evaluate_BFD represents the first duration information
  • X represents the measurement evaluation time threshold corresponding to BFD
  • M1 represents the number of measurement samples corresponding to BFD
  • K BFD represents the scaling factor corresponding to BFD
  • N1 represents the configured reference signal for BFD Number or number of beams
  • T BFD_RS is used for the reference signal period of BFD.
  • the second duration information is determined according to the following formula:
  • T Evaluate_CBD MAX(Y, M2*K CBD *N2*T CBD_RS )
  • T Evaluate_BD represents the second duration information
  • Y represents the measurement evaluation time threshold corresponding to CBD
  • M2 represents the number of measurement samples corresponding to CBD
  • K CBD represents the scaling factor corresponding to CBD
  • N2 represents the configured reference signal for CBD.
  • Quantity or number of beams, T CBD_RS is used for the reference signal period of the CBD.
  • the model parameters of the first measurement model include third model parameters for RLM and beam detection.
  • the third model parameters include at least one of the following: third measurement evaluation time information, third reference signal configuration, third filter configuration, third timer configuration, third counter configuration, third Three reporting time intervals, third threshold configuration.
  • the third measurement and evaluation time information is used to configure the time when the terminal device performs measurement and evaluation on the reference signal used for RLM and beam detection;
  • the reference signal configured by the third reference signal configuration is used by the terminal device to perform RLM, BFD and CBD;
  • the filtering parameters configured by the third filter configuration are used by the terminal device to filter the RLM measurement results, the BFD measurement results, and the CBD measurement results;
  • the timing threshold configured by the third timer configuration is used for the terminal device to trigger RLF and BFR;
  • the count value threshold configured by the third counter configuration is used for the terminal device to trigger RLF and BFR;
  • the time interval threshold configured by the third reporting time interval is used for the physical layer of the terminal device to report the layer 1 indication for RLM and the layer 1 indication for BFD;
  • the threshold configured by the third threshold configuration is used for the physical layer of the terminal device to determine whether to report the layer 1 indication for RLM and the layer 1 indication for BFD.
  • the third measurement and evaluation time information is determined according to the sum of the first duration information and the second duration information, wherein the first duration information is the measurement and evaluation time for the terminal device to perform BFD, and the second duration information The evaluation time is measured according to the measurement performed by the end-device for the CBD.
  • the third measurement evaluation time information is determined according to the following formula:
  • T Evaluate_RLM MAX(X, M1*K BFD *N1*T BFD_RS )+MAX(Y, M2*K CBD *N2*T CBD_RS )
  • T Evaluate_RLM represents the third measurement evaluation time information
  • X represents the measurement evaluation time threshold corresponding to BFD
  • M1 represents the number of measurement samples corresponding to BFD
  • K BFD represents the scaling factor corresponding to BFD
  • N1 represents the configured reference for BFD
  • T BFD_RS is used for the reference signal period of BFD
  • Y indicates the measurement evaluation time threshold corresponding to CBD
  • M2 indicates the number of measurement samples corresponding to CBD
  • K CBD indicates the scaling factor corresponding to CBD
  • N2 indicates the configured
  • T CBD_RS is used for the reference signal period of CBD.
  • the X is determined according to the capability of the terminal device.
  • the X is 50 milliseconds.
  • the Y is determined according to the capability of the terminal device.
  • the Y is 25 milliseconds.
  • the communication unit 510 is further configured to: receive capability information of the terminal device reported by the terminal device, where the capability information of the terminal device is used by the network device to determine model parameters of the first measurement model.
  • the above-mentioned communication unit may be a communication interface or a transceiver, or an input-output interface of a communication chip or a system on chip.
  • the aforementioned processing unit may be one or more processors.
  • the network device 500 may correspond to the network device in the method embodiment of the present application, and the above-mentioned and other operations and/or functions of each unit in the network device 500 are to realize the For the sake of brevity, the corresponding flow of the network device in the shown method 300 is not repeated here.
  • FIG. 9 is a schematic structural diagram of a communication device 600 provided by an embodiment of the present application.
  • the communication device 600 shown in FIG. 9 includes a processor 610, and the processor 610 can invoke and run a computer program from a memory, so as to implement the method in the embodiment of the present application.
  • the communication device 600 may further include a memory 620 .
  • the processor 610 can invoke and run a computer program from the memory 620, so as to implement the method in the embodiment of the present application.
  • the memory 620 may be an independent device independent of the processor 610 , or may be integrated in the processor 610 .
  • the communication device 600 may further include a transceiver 630, and the processor 610 may control the transceiver 630 to communicate with other devices, specifically, to send information or data to other devices, or receive other Information or data sent by the device.
  • the transceiver 630 may include a transmitter and a receiver.
  • the transceiver 630 may further include antennas, and the number of antennas may be one or more.
  • the communication device 600 may specifically be the network device of the embodiment of the present application, and the communication device 600 may implement the corresponding processes implemented by the network device in each method of the embodiment of the present application. For the sake of brevity, details are not repeated here. .
  • the communication device 600 may specifically be the mobile terminal/terminal device of the embodiment of the present application, and the communication device 600 may implement the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiment of the present application, for the sake of brevity , which will not be repeated here.
  • FIG. 10 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • the chip 700 shown in FIG. 10 includes a processor 710, and the processor 710 can call and run a computer program from a memory, so as to implement the method in the embodiment of the present application.
  • the chip 700 may further include a memory 720 .
  • the processor 710 can invoke and run a computer program from the memory 720, so as to implement the method in the embodiment of the present application.
  • the memory 720 may be an independent device independent of the processor 710 , or may be integrated in the processor 710 .
  • the chip 700 may also include an input interface 730 .
  • the processor 710 can control the input interface 730 to communicate with other devices or chips, specifically, can obtain information or data sent by other devices or chips.
  • the chip 700 may also include an output interface 740 .
  • the processor 710 can control the output interface 740 to communicate with other devices or chips, specifically, can output information or data to other devices or chips.
  • the chip can be applied to the network device in the embodiment of the present application, and the chip can implement the corresponding processes implemented by the network device in the methods of the embodiment of the present application.
  • the chip can implement the corresponding processes implemented by the network device in the methods of the embodiment of the present application.
  • the chip can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the chip can implement the corresponding processes implemented by the mobile terminal/terminal device in the various methods of the embodiments of the present application.
  • the chip can implement the corresponding processes implemented by the mobile terminal/terminal device in the various methods of the embodiments of the present application.
  • the chip can implement the corresponding processes implemented by the mobile terminal/terminal device in the various methods of the embodiments of the present application.
  • the chip can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the chip can implement the corresponding processes implemented by the mobile terminal/terminal device in the various methods of the embodiments of the present application.
  • the chip mentioned in the embodiment of the present application may also be called a system-on-chip, a system-on-chip, a system-on-a-chip, or a system-on-a-chip.
  • Fig. 11 is a schematic block diagram of a communication system 900 provided by an embodiment of the present application. As shown in FIG. 11 , the communication system 900 includes a terminal device 910 and a network device 920 .
  • the terminal device 910 can be used to realize the corresponding functions realized by the terminal device in the above method
  • the network device 920 can be used to realize the corresponding functions realized by the network device in the above method.
  • the processor in the embodiment of the present application may be an integrated circuit chip, which has a signal processing capability.
  • each step of the above-mentioned method embodiments may be completed by an integrated logic circuit of hardware in a processor or instructions in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application-specific integrated circuit (Application Specific Integrated Circuit, ASIC), an off-the-shelf programmable gate array (Field Programmable Gate Array, FPGA) or other available Program logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the steps of the method disclosed in connection with the embodiments of the present application may be directly implemented by a hardware decoding processor, or implemented by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, register.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a nonvolatile memory, or may include both volatile and nonvolatile memories.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electronically programmable Erase Programmable Read-Only Memory (Electrically EPROM, EEPROM) or Flash.
  • the volatile memory can be Random Access Memory (RAM), which acts as external cache memory.
  • RAM Static Random Access Memory
  • SRAM Static Random Access Memory
  • DRAM Dynamic Random Access Memory
  • Synchronous Dynamic Random Access Memory Synchronous Dynamic Random Access Memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM, DDR SDRAM enhanced synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM synchronous connection dynamic random access memory
  • Synchlink DRAM, SLDRAM Direct Memory Bus Random Access Memory
  • Direct Rambus RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM), etc. That is, the memory in the embodiments of the present application is intended to include, but not be limited to, these and any other suitable types of memory.
  • the embodiment of the present application also provides a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium can be applied to the network device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the network device in the methods of the embodiments of the present application.
  • the computer program enables the computer to execute the corresponding processes implemented by the network device in the methods of the embodiments of the present application.
  • the computer-readable storage medium can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the mobile terminal/terminal device in the various methods of the embodiments of the present application , for the sake of brevity, it is not repeated here.
  • the embodiment of the present application also provides a computer program product, including computer program instructions.
  • the computer program product may be applied to the network device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the Let me repeat for the sake of brevity, the Let me repeat.
  • the computer program product can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the mobile terminal/terminal device in the methods of the embodiments of the present application, For the sake of brevity, details are not repeated here.
  • the embodiment of the present application also provides a computer program.
  • the computer program can be applied to the network device in the embodiment of the present application.
  • the computer program executes the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program executes the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program can be applied to the mobile terminal/terminal device in the embodiment of the present application.
  • the computer program executes each method in the embodiment of the present application to be implemented by the mobile terminal/terminal device
  • the corresponding process will not be repeated here.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the functions described above are realized in the form of software function units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disc and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种无线通信的方法、终端设备和网络设备,该方法包括:终端设备根据第一测量模型执行无线链路监测RLM和波束检测,其中,所述波束检测包括波束失败检测BFD和候选波束检测CBD。

Description

无线通信的方法、终端设备和网络设备 技术领域
本申请实施例涉及通信领域,具体涉及一种无线通信的方法、终端设备和网络设备。
背景技术
在一些场景中,终端设备可以执行链路监测(Radio Link Monitoring,RLM)以确定是否发生无线链路失败(Radio Link Failure,RLF),并且终端设备可以执行波束检测(Beam Detection,BD)(包括波束失败检测(Beam Failure Detection,BFD)和新波束选择(New Beam Identification,NBI))机制以确定是否触发波束失败恢复(Beam Failure Recovery,BFR)。
RLM和BD的流程相似,但是测量所使用的参数不同,如何执行RLM和BD以降低终端设备的复杂度是一项亟需解决的问题。
发明内容
本申请提供了一种无线通信的方法、终端设备和网络设备,终端设备可以基于统一的测量模型执行RLM和BD,有利于降低终端设备的复杂度。
第一方面,提供了一种无线通信的方法,包括:终端设备根据第一测量模型执行无线链路监测RLM和波束检测,其中,所述波束检测包括波束失败检测BFD和候选波束检测CBD。
第二方面,提供了一种无线通信的方法,包括:网络设备向终端设备发送第一配置信息,所述第一配置信息用于配置第一测量模型和/或所述第一测量模型的模型参数,所述第一测量模型用于所述终端设备执行无线链路监测RLM和波束检测,其中,所述波束检测包括波束失败检测BFD和候选波束检测CBD。
第三方面,提供了一种终端设备,用于执行上述第一方面或其各实现方式中的方法。
具体地,该终端设备包括用于执行上述第一方面或其各实现方式中的方法的功能模块。
第四方面,提供了一种网络设备,用于执行上述第二方面或其各实现方式中的方法。
具体地,该网络设备包括用于执行上述第二方面或其各实现方式中的方法的功能模块。
第五方面,提供了一种终端设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第一方面或其各实现方式中的方法。
第六方面,提供了一种网络设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第二方面或其各实现方式中的方法。
第七方面,提供了一种芯片,用于实现上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该装置的设备执行如上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第八方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第九方面,提供了一种计算机程序产品,包括计算机程序指令,所述计算机程序指令使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第十方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
通过上述技术方案,终端设备可以基于统一的测量模型执行RLM和BD,有利于降低终端设备的复杂度。
附图说明
图1是本申请实施例提供的一种应用场景的示意性图。
图2是相关技术中RLM流程的示意图。
图3是RLM中终端设备的高层的计数过程的示意图。
图4是波束失败恢复流程的示意图。
图5是本申请实施例提供的一种无线通信的方法的示意性图。
图6是统一的测量模型的示意性图。
图7是根据本申请实施例的终端设备的示意性框图。
图8是根据本申请实施例的网络设备的示意性框图。
图9是本申请另一实施例提供的一种通信设备的示意性框图。
图10是本申请实施例提供的一种芯片的示意性框图。
图11是本申请实施例提供的一种通信系统的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。针对本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、新无线(New Radio,NR)系统、NR系统的演进系统、非授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、非授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)系统、非地面通信网络(Non-Terrestrial Networks,NTN)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、第五代通信(5th-Generation,5G)系统或其他通信系统等。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,设备到设备(Device to Device,D2D)通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),车辆间(Vehicle to Vehicle,V2V)通信,或车联网(Vehicle to everything,V2X)通信等,本申请实施例也可以应用于这些通信系统。
可选地,本申请实施例中的通信系统可以应用于载波聚合(Carrier Aggregation,CA)场景,也可以应用于双连接(Dual Connectivity,DC)场景,还可以应用于独立(Standalone,SA)布网场景。
可选地,本申请实施例中的通信系统可以应用于非授权频谱,其中,非授权频谱也可以认为是共享频谱;或者,本申请实施例中的通信系统也可以应用于授权频谱,其中,授权频谱也可以认为是非共享频谱。
本申请实施例结合网络设备和终端设备描述了各个实施例,其中,终端设备也可以称为用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。
终端设备可以是WLAN中的站点(STATION,ST),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、下一代通信系统例如NR网络中的终端设备,或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备等。
在本申请实施例中,终端设备可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。
在本申请实施例中,终端设备可以是手机(Mobile Phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self driving)中的无线终端设备、远程医疗(remote medical)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备或智慧家庭(smart home)中的无线终端设备等。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
在本申请实施例中,网络设备可以是用于与移动设备通信的设备,网络设备可以是WLAN中的接入点(Access Point,AP),GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是 WCDMA中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及NR网络中的网络设备(gNB)或者未来演进的PLMN网络中的网络设备或者NTN网络中的网络设备等。
作为示例而非限定,在本申请实施例中,网络设备可以具有移动特性,例如网络设备可以为移动的设备。可选地,网络设备可以为卫星、气球站。例如,卫星可以为低地球轨道(low earth orbit,LEO)卫星、中地球轨道(medium earth orbit,MEO)卫星、地球同步轨道(geostationary earth orbit,GEO)卫星、高椭圆轨道(High Elliptical Orbit,HEO)卫星等。可选地,网络设备还可以为设置在陆地、水域等位置的基站。
在本申请实施例中,网络设备可以为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
示例性的,本申请实施例应用的通信系统100如图1所示。该通信系统100可以包括网络设备110,网络设备110可以是与终端设备120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。
图1示例性地示出了一个网络设备和两个终端设备,可选地,该通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
可选地,该通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1示出的通信系统100为例,通信设备可包括具有通信功能的网络设备110和终端设备120,网络设备110和终端设备120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信系统100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。
在本申请实施例的描述中,术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。
本申请实施例中,"预定义"可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。比如预定义可以是指协议中定义的。
本申请实施例中,所述"协议"可以指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
本申请实施例中的配置信息通过以下信令中的至少一种发送:系统消息、物理层信令(例如下行控制信息(Downlink Control Information,DCI))、无线资源控制(Radio Resource Control,RRC)信令和媒体接入控制单元(Media Access Control Control Element,MAC CE)。
为便于理解本申请实施例的技术方案,对本申请相关的无线链路监测(Radio Link Monitoring,RLM)机制进行说明。
RLM用于监听评估服务小区的下行链路的信道质量,产生同步(In-Sync,IS)指示和不同步(Out-Of-Sync,OSS)指示。
在一些实施例中,RLM包括但不限于对下行带宽部分(BandWidth Part,BWP)上的无线链路监测参考信号(RLM-RS)进行测量,该RLM-RS可以包括但不限于(Synchronization Signal Block,SSB)或信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS)。
RLM可以适用于主小区(PCell)或主辅小区(PSCell),例如,SA NR、NR-DC和NE-DC模式的主小区,或者,NR-DC和EN-DC模式的主辅小区。
在一些实施例中,网络设备可以给终端设备配置N个无线链路监测参考信号(Radio link monitoring reference signal,RLM-RS)用来进行无线链路监测,评估无线链路质量,其中,无线链路 质量通过假设的物理下行控制信道(Physical Downlink Control Channel,PDCCH)误块率(Block Error Rate,BLER)进行判断。
在一些实施例中,以RLM-RS为SSB为例,RLM的测量时间(或称,测量评估时间,评估时间,测量评估周期,评估周期Evaluation period)可以以SSB的周期T SSB为单位(不用配置测量间隔(gap))。可选地,在该测量评估时间内,终端设备可以根据SSB的测量结果确定是否上报IS,或是否上报OSS指示。
在一些实施例中,对于FR1频段,若SSB的周期与测量间隔的周期(MGRP)不重叠,无需对测量评估时间进行缩放。此情况下,可选地,OOS的测量评估周期为10*T SSB,IS的测量评估周期为10*T SSB);否则,对测量评估时间进行缩放,缩放因子为P=1/(1–T SSB/MGRP)倍。
在一些实施例中,对于FR2频段,由于T SSB可能与同步信号块测量时间配置(synchronization signal block measurement timing configuration,SMTC)的周期T SMTCperiod或MGRP发生重叠,因此,需要对测量评估时间进行缩放。
在一些实施例中,网络设备可以配置IS门限Q in和OSS门限Q out,Q out定义为下行无线链路无法可靠接收的级别,Qin定义为下行无线链路质量能够可靠接收的级别,其中,该Qin的接收可靠性显著高于Q out
在一些实施例中,IS门限Q in和OSS门限Q out通过PDCCH BLER表征。例如,Q in为2%PDCCH BLER,Q out为10%PDCCH BLER。
在一些实施例中,对于RLM,终端设备的物理层可以执行如下操作:
例如,若RLM-RS的信号质量低于Q out,终端设备发送一个层1(L1)的OSS指示给终端设备的高层(例如层3(L3))。
例如,若RLM-RS的信号质量高于Q in,终端设备发送一个L1的IS指示给终端设备的高层,例如L3。其中,IS指示和OSS指示统称为L1指示。
例如,终端设备的L3对测量评估周期内的所有指示(包括IS指示和OSS指示)做L3滤波。
在一些实施例中,层1可以指物理层,层3可以指无线资源控制(Radio Resource Control,RRC)成。
在一些实施例中,两个连续的L1指示至少间隔T Indication_interval
可选地,T Indication_interval可以为max(10ms,T RLM-RS,M)或者,在使用DRX的情况下,T Indication_interval也可以为max(10ms,1.5*DRX周期长度(DRX_cycle_length),1.5*T RLM-RS,M),其中,T RLM-RS,M是用于被监测的小区的所有RLM-RS资源中的最小的参考信号周期。
其中,T RLM-RS,M表示RLM-RS的周期。
在一些实施例中,L3滤波的方法可以是基于RRC配置的,或者也可以是基于网络实现的。例如,可以按照向前做卷积平均的方法。
结合图2,说明RLM中,从物理层到高层的整体流程。
如图2所示,终端设备可以对每个被监测的小区上的参考信号进行测量,得到该小区上的每个参考信号的测量结果,进一步基于该参考信号的测量结果可以得到针对该参考信号的评估结果,例如是IS还是OOS,然后根据被监测的小区上的所有参考信号的评估结果,得到该小区的评估结果,进一步根据所有小区的评估结果,确定是否触发RLF,若确定不触发RLF,则解除T310定时,或者,若,触发RLF,则触发RRC连接重建立。
结合图3,说明在RLM中,终端设备的高层的计数操作:
1、网络设备预先配置给终端设备针对IS和OOS的门限值,即Q in和Q out,该门限值以PDCCH BLER大小的形式给出。
2、网络设备预先配置终端设备针对RLM的测量资源(包括参考信号资源),终端设备通过在给定资源上进行测量,判断当前的信道质量。
3、当终端设备检测发现所有的RLM-RS的质量均小于OOS门限Q out时,终端设备的物理层上报L1的OOS指示至终端设备的高层。
4、当终端设备检测发现至少有一个RLM-RS大于IS门限Q in时,终端设备的物理层上报L1的IS指示至终端设备的高层。
5、当终端设备的高层检测到N310(或称,OSS计数器)连续的OOS指示上报后,启动定时器T310(或称RLF定时器),并在T310定时器内检测是否有N311(或称,IS计数器)个连续的IS指示上报,如果有,则停止定时器T310,如果没有,则认为发生了无线链路失败(Radio Link Failure,RLF)事件,并上报RLF,以及触发后续的流程,比如RRC连接重建立。
在一些情况中,在终端设备确定发送RLF事件时,需要在40ms内关闭发射射频单元(Tx RF)。
为便于理解本申请实施例的技术方案,对本申请相关波束检测(Beam Detection,BD)机制进行说明。
在一些场景中,针对主小区(PCell)和辅主小区(PSCell)设计了波束失败恢复(Beam Failure Recovery,BFR)机制。主要包括如下步骤:
波束失败检测(Beam Failure Detection,BFD);
新波束选择(New Beam Identification,NBI),或者,候选波束检测(Candidate Beam Detecion,CBD);
波束失败恢复请求(Beam Failure Recovery ReQest,BFRQ);
终端设备监听网络侧对BFRQ的响应。
在一些实施例中,波束检测可以包括BFD和CBD。
对于BFR,终端设备的物理层对波束失败检测参考信号(BFD-RS)进行测量,并根据测量结果来判断是否发生波束失败事件。BFD-RS可以是周期性的CSI-RS或SSB。判断条件可以为:如果检测出全部服务波束(serving beam)对应的链路质量均很差(例如均小于一个门限)时,则确定为一次波束失败实例(beam fai1ure instance,BFI),终端设备的物理层上报给终端设备的高层(例如媒体接入控制(Media Access Control,MAC)层)一个BFI指示。反之,如果终端设备的物理层确定没有发生BFI,则不向高层发送BFI指示。终端设备的高层使用计数器(记为BFD计数器)和定时器(记为BFD定时器)对终端设备的物理层上报的BFI指示进行计数,每收到一个BFI则重启定时器,定时器超时则计数器重新计数,当计数器达到网络配置的最大次数时,终端设备认为发生了波束失败事件。
对于NBI或CBD,终端设备会对一组候选波束进行测量,从中选择满足一定门限的波束作为新波束。然后终端设备通过波束失败恢复请求流程BFRQ,通知网络设备发生了波束失败,并且上报新波束。网络设备收到一个终端设备发送的BFRQ信息后,确定所述终端发生了波束失败,选择从新波束上发送PDCCH,终端设备在新波束上收到网络设备发送的PDCCH则认为正确接收了网络侧的响应信息。至此,波束失败恢复流程成功完成。
图4是本申请相关的一种波束失败恢复流程的示意性图。如图4所示,可以包括如下步骤:
S201,终端设备进行波束失败检测。
S202,确定是否发生波束失败事件。
若是,则执行S203,若否,则返回S201。
S203,确定是否配置专属BFR资源。
若是,则执行S204,若否,则执行S205。
S204,执行新波束选择确定是否选择到满足条件的新波束。
若是,则执行S206,否则,执行S205。
S205,基于该新波束发起非竞争的随机接入。
S206,发起基于竞争的随机接入。
S207,对于基于竞争的随机接入,确定是否随机接入成功。
若是,则执行S210,否则,执行S211。
S208,对于非竞争的随机接入,确定是否接收到网络的响应。
若是,则执行S210,否则执行S209。
S209,确定发起随机接入的次数是否超过规定次数。
若是执行S211,否则返回S206。
S210,确定波束恢复成功。
S211,确定无线链路失。
综上,判断RLF可以包括如下两种方式:
方式1:根据前述定时器T310,计数器N310和N311判断是否发生RLF。
方式2:波束检测失败,即BFD失败并且CBD失败。
从上述RLM和BD流程可以看出,RLM和BD都属于L1测量,测量模型主要包括如下参数:
L1测量评估时间,参考信号配置,L1上报配置(包括滤波器配置,计数器配置和定时器配置)和事件的判断准则(包括事件对应的门限)。
1、L1测量评估时间及参考信号配置。
以基于SSB的RLM和BFD(对于FR1,不配置DRX时)为例:
1.1、RLM对应的测量评估时间:
用于上报OSS指示的测量评估时间T Evaluate_out_SSB(ms)=Max(200,Ceil(10×P)×T SSB), 其中,P表示缩放因子,Ceil表示向上取整。
用于上报IS指示的测量评估时间T Evaluate_in_SSB(ms)=Max(100,Ceil(5×P)×T SSB),其中,P表示缩放因子,Ceil表示向上取整。
1.2、BFD对应的测量评估时间:
用于BFD的测量评估时间T Evaluate_BFD_SSB=Max(50,Ceil(5×P)×T SSB),其中,P表示缩放因子,Ceil表示向上取整。
由上可见,RLM比BFD的测量评估周期要长,BFD的执行更频繁更密集。
2、上报L1指示的时间间隔(或称L1指示的上报周期):
2.1、RLM对应的上报周期
例如,上报周期T Indication_interval可以为max(10ms,T RLM-RS,M)。
2.2、BFD对应的上报周期
BFD的上报周期T Indication_interval=max(2ms,T SSB-RS,M))或max(2ms,T CSI-RS,M)。其中,T SSB-RS,M是用于被监测的小区的所有SSB资源中的最小的周期,T CSI-RS,M是用于被监测的小区的所有CSI-RS资源中的最小的周期。
3、事件的判断准则
3.1、RLM对应的门限包括前述Q in和Q out
例如,终端设备根据Q in是否上报IS,根据Q out确定是否上报OOS。
RLM中,OOS的判断是基于假想的PDCCH的信号干扰噪声比(Signal to Interference plus Noise Ratio,SINR)评估(例如10%的门限),OOS指示由终端设备的层3来统计。在小区对应的所有参考信号资源(如CSI-RS resource)上的测量结果均满足OOS门限时才判断该小区为链路失败。
3.2、BFD对应的门限和CBD对应的门限对于BFD,终端设备基于假想的PDCCH的信号干扰噪声比(Signal to Interference plus Noise Ratio,SINR)低于一个门限判断评估BFD。
例如,终端设备根据BFD对应的门限确定是否发生波束失败实例。
候选波束检测用于寻找新波束,CBD可以是测量层1参考信号接收功率(Layer1-Reference Signal Receiving Power,L1-RSRP)来选择新beam,RSRP的门限可以由媒体接入控制(Media Access Control,MAC)层决定。
因此,RLM和BD的流程大致相同,但是执行测量所基于的参数不同,因此,如何执行RLM和BD以降低终端设备的复杂度是一项亟需解决的问题。
有鉴于此,本申请实施例提供的一种技术方案,由于RLM和BD都是对L1的参考信号进行测量,且大概率采用相同的参考信号配置进行测量,因此考虑RLM和BD采用统一的测量模型进行测量,有利于降低终端设备的复杂度。
为便于理解本申请实施例的技术方案,以下通过具体实施例详述本申请的技术方案。以上相关技术作为可选方案与本申请实施例的技术方案可以进行任意结合,其均属于本申请实施例的保护范围。本申请实施例包括以下内容中的至少部分内容。
图5是根据本申请实施例的无线通信的方法300的示意性交互图,如图5所示,该方法300包括如下内容:
S310,终端设备根据第一测量模型执行无线链路监测RLM和波束检测,其中,所述波束检测包括波束失败检测BFD和候选波束检测CBD。
因此,终端设备可以采用统一的测量模型执行RLM和波束检测,有利于降低终端设备的复杂度。
需要说明的是,在本申请实施例中,终端设备基于统一的测量模型执行RLM和波束检测,可以指终端设备执行RLM和波束检测的模型结构相同,或者说,执行RLM和波束检测的流程相同。
应理解,在本申请实施例中,波束可以替换为参考信号,对应的,波束检测也可以表述为参考信号检测,波束失败检测也可以表述为参考信号失败检测,候选波束检测也可以表述为候选参考信号检测。
在一些实施例中,所述第一测量模型可以包括如下部分:
层1测量,层1指示的上报,根据上报的层1指示进行事件的判断。
在一些实施例中,对于RLM,层1测量可以指对用于RLM的参考信号进行测量,或者说,对用于RLM的波束进行测量。
在一些实施例中,对于RLM,层1指示可以包括OOS指示和/或IS指示。
在一些实施例中,对于BFD,层1测量可以指对用于BFD的参考信号进行测量,或者说,对用于BFD的波束进行测量。
在一些实施例中,对于BFD,层1指示可以包括波束失败实例BFI指示。
在一些实施例中,RLM对应的OOS指示和BFD对应的BFI指示可以采用统一的模型参数,例如统一的判断门限,和/或,统一的计数器门限等。
在一些实施例中,对于CBD,层1测量可以指对用于CBD的参考信号进行测量,或者说,对用于CBD的波束进行测量以选择新波束。
在一些实施例中,RLM对应的IS评估和CBD中的新波束选择可以采用统一的模型参数,例如,IS的判断和新波束选择可以采用统一的判断门限,和/或,统一的计数器门限等。
在一些实施例中,用于RLM的参考信号配置和用于BFD的参考信号配置可以采用相同的配置,这样,RLM和BFD可以统一测量,有利于降低终端设备的复制度。
例如,用于RLM和BFD的参考信号配置可以配置一组信号质量较优(根据历史数据判断)的参考信号,这样,在这些参考信号的质量变差时,可以认为发生无线链路失败或波束失败。
又例如,用于RLM和BFD的参考信号配置可以配置PCell和PSCell上的参考信号。
在一些实施例中,对于RLM,根据上报的层1指示进行事件的判断可以包括:
根据终端设备的物理层上报的OOS指示确定是否触发RLF;或者
根据终端设备的物理层上报的OOS指示和IS指示确定是否触发RLF。
作为示例,在上报的OOS指示的数量达到计数器门限时,认为发生了RLF事件,或者,根据物理层上报的OOS指示和IS指示触发RLF,例如,当终端设备的高层检测到N310个连续的OOS指示上报后,启动定时器,并在定时器内检测是否有N311个连续的IS指示上报,如果有,则停止定时器,如果没有,则认为发生了RLF事件。
在一些实施例中,对于BFD,根据上报的层1指示进行事件的判断可以包括:
根据终端设备的物理层上报的BFI指示确定是否波束失败。
例如,在终端设备的物理层上报的BFI指示的数量达到计数器门限时,确定波束失败。
以下,结合具体实施例,说明统一的RLM和波束检测方法,或者说,链路失败和波束失败评估方法。
实施例一:
在本申请一些实施例中,S310可以包括:
根据所述第一测量模型和第一模型参数执行RLM,以及
根据所述第一测量模型和第二模型参数执行波束检测;
其中,所述第一模型参数和所述第二模型参数至少部分不同。
即,终端设备执行RLM和波束检测可以基于相同的测量模型和差异化的模型参数。
可选地,该差异化的模型参数可以是根据RLM和波束检测的测量需求确定。
在一些实施例中,所述第一模型参数包括以下中的至少一项:
第一测量评估时间信息、第一参考信号配置、第一滤波器配置、第一定时器配置、第一计数器配置,第一上报时间间隔,第一门限配置。
在一些实施例中,所述第一测量评估时间信息可以指所述终端设备对用于RLM的参考信号进行测量评估的时间。
在一些实施例中,所述第一参考信号配置,用于配置终端设备执行RLM的参考信号。
可选地,第一参考信号配置用于配置PCell和PSCell上的参考信号。
在一些实施例中,所述第一滤波器配置,用于配置终端设备对RLM的测量结果进行滤波的参数。
可选地,所述第一滤波器配置用于配置所述终端设备的层1对RLM-RS的测量结果进行滤波的滤波器配置,和/或,终端设备的层3对终端设备的层1上报的层1指示进行滤波的滤波器配置。
在一些实施例中,参考信号的测量结果可以为信号干扰噪声比(Signal to Interference plus Noise Ratio,SINR),或者,也可以为其他测量结果,例如,参考信号接收功率(Reference Signal Receiving Power,RSRP),参考信号接收质量(Reference Signal Receiving Quality,RSRQ)等。
在一些实施例中,所述第一定时器配置,用于配置所述终端设备触发RLF的定时门限。
可选地,所述第一定时器配置可以包括RLF定时器(例如T310)的定时器配置,该T310定时器的功能参考前述实施例的相关描述,这里不再赘述。
在一些实施例中,所述第一计数器配置,用于配置所述终端设备触发RLF的计数值门限。
可选地,所述第一计数器配置可以包括OSS计数器(即N310)和/或IS计数器(即N311)的配置,该N310和N311的功能参考前述实施例的相关描述,这里不再赘述。
在一些实施例中,所述第一上报时间间隔,用于配置所述终端设备的物理层向所述终端设备的高层上报层1指示的最小时间间隔,对应于前文中的T Indication_interval
在一些实施例中,所述第一门限配置,用于配置RLF事件的判断门限和/或层1指示的判断门限。
可选地,RLF事件的判断门限也可以包括N311的配置。
可选地,层1指示的判断门限可以包括IS指示对应的门限和OOS指示对应的门限,分别对应于前述实施例中的Q in和Q out。可选地,该Q in和Q out通过PDCCH BLER表征。
在一些实施例中,在进行比较时,将参考信号的测量结果映射为假定PDCCH BLER,进一步将映射的假定PDCCH BLER与Q in和Q out进行比较,确定是否上报IS指示或OOS指示。
在一些实施例中,所述第二模型参数包括以下中的至少一项:
第二测量评估时间信息、第二参考信号配置、第二滤波器配置、第二定时器配置、第二计数器配置、第二上报时间间隔,第二门限配置。
在一些实施例中,所述第二测量评估时间信息可以包括:
所述终端设备对用于BFD的参考信号或波束进行测量评估的时间,以及,
所述终端设备对用于CBD的参考信号或波束进行测量评估的时间。
在一些实施例中,所述第二参考信号配置用于配置以下中的至少一项:
所述终端设备执行BFD的参考信号;
所述终端设备执行CBD的参考信号。
可选地,第二参考信号配置用于配置PCell和PSCell上的参考信号。
应理解,在本申请实施例中,参考信号配置(例如,第一参考信号配置,第二参考信号配置或下文中的第三参考信号配置)可以用于配置但不限于以下中的至少一个参数:带宽,子载波间隔(Subcarrier spacing,SCS),循环前缀(Cyclic Prefix,CP),中心频点,周期和长度。
在一些实施例中,所述第二滤波器配置用于配置所述终端设备对BFD的测量结果和/或CBD的测量结果进行滤波的参数。
在一些实施例中,所述第二定时器配置用于配置所述终端设备触发BFR的定时门限。
可选地,在第二定时器配置用于配置前述BFD定时器的定时值,在该BFD定时器运行期间,终端设备的高层判断是否接收到终端设备的物理层上报的BFI指示,如果接收到,则重启BFD定时器。
在一些实施例中,所述第二计数器配置用于配置所述终端设备触发BFR的计数值门限。
可选地,第二计数器配置用于配置前述BFD计数器的计数值门限,例如,在终端设备的高层接收到的BFI指示时,将BFD计数器的计数值加一,在计数值超过该计数值门限时,确定发生波束失败事件。
在一些实施例中,所述第二上报时间间隔用于配置所述终端设备的物理层向所述终端设备的高层上报波束失败实例BFI的最小时间间隔。
在一些实施例中,所述第二门限配置用于配置BFI的判断门限(记为BFI门限)和/或新波束的判断门限(记为NBI门限)。
例如,当用于BFD的参考信号的测量结果小于该BFI门限时,确定发送BFI指示。
又例如,当用于CBD的参考信号的测量结果大于该NBI门限时,确定为新波束。
可选地,该BFI门限可以为SINR门限,或者,也可以为其他信号质量门限,例如,RSRP门限,RSRQ门限等。
可选地,该NBI门限可以为RSRP门限,或者,也可以为其他信号质量门限,例如,SINR门限,RSRQ门限等。
在另一些实施例中,BFI门限和NBI门限也可以通过PDCCH BLER表征。在进行比较时,将参考信号的测量结果映射为假定PDCCH BLER,进一步将映射的假定PDCCH BLER与BFI门限和NBI门限进行比较。
在一些实施例中,所述第一模型参数和所述第二模型参数不同可以包括以下中的至少一项:
所述第一测量评估时间信息和所述第二测量评估时间信息不同;
所述第一参考信号配置和所述第二参考信号配置不同;
所述第一滤波器配置和所述第二滤波器配置不同;
所述第一定时器配置和所述第二定时器配置不同;
所述第一计数器配置和所述第二计数器配置不同;
所述第一上报时间间隔和所述第二上报时间间隔不同;
所述第一门限配置和所述第二门限配置不同。
可选地,所述第一参考信号配置和所述第二参考信号配置不同可以包括:
第一参考信号配置包括用于RLM的参考信号配置,例如q2,第二参考信号配置包括用于BFD的参考信号配置例如q0和用于CBD的参考信号配置例如q1。其中,终端设备基于q2执行RLM,基于q0执行BFD,基于q1执行CBD。
在一些实施例中,第一参考信号配置和第二参考信号配置相同。即用于执行BFD的参考信号或波束配置和用于执行CBD的参考信号或波束配置为同一配置。即采用统一的参考信号配置执行BFD、CBD以及RLM。例如,该参考信号配置用于配置特定参考信号集合。可选地,该特定参考信号集合可以是根据参考信号的历史测量结果和/或使用情况确定的,例如,该特定参考信号集合可以是历史上信号质量较优的参考信号集合,或者,经常使用的参考信号集合等。可选地,该特定参考信号集合可以是一组具有特定特征的参考信号(或者说,具有代表性的参考信号),例如具备空间上的随机分布或典型分布特征的一组参考信号。也就是说,基于这些参考信号进行测量,有利于准确判断链路质量或波束质量。
在一些实施例中,所述第一计数器配置和所述第二计数器配置不同可以包括:
OSS计数器(例如N310)对应的计数值门限和BFD计数器对应的计数值门限不同。
在一些实施例中,所述第一门限配置和所述第二门限配置不同可以包括:
终端设备上报针对RLM的层1指示的判断门限和上报针对BFD的层1指示的判断门限不同。
例如,第一门限配置用于配置Q in和Q out,第二门限配置用于配置BFD的门限和CBD的门限,其中,Q in和CBD的门限不同,和/或,Q out和BFD的门限不同。
可选地,上述门限均可以采用PDCCH BLER表征,例如,Q out为10%,BFD的门限为9%,Q in为2%,CBD的门限为1%。在根据参考信号的测量结果和门限值进行比较时,可以根据测量结果和PDCCH BLER的映射关系将测量结果映射为PDCCH BLER,然后再进行比较。
在一些实施例中,所述第一测量评估时间信息和所述第二测量评估时间信息相同。
即,终端设备执行RLM的层1测量的时间和执行波束检测的层1测量的时间相同。
在一些实施例中,所述第二测量评估时间信息包括第一时长信息和第二时长信息,其中,所述第一时长信息为所述终端设备执行BFD的测量评估时间,所述第二时长信息根据所述终端设备执行CBD的测量评估时间。
在一些实施例中,所述第一测量评估时间信息根据第一时长信息和第二时长信息确定。
例如,所述第一测量评估时间信息为所述第一时长信息和所述第二时长信息之和。
即,将终端设备执行BFD和CBD的总测量评估时间确定为RLM的测量评估时间。
在本申请一些实施例中,所述第一时长信息根据如下公式确定:
T Evaluate_BFD=MAX(X,M1*K BFD*N1*T BFD_RS)
其中,T Evaluate_BFD表示所述第一时长信息,X表示BFD对应的测量评估时间阈值,M1表示BFD对应的测量样本数,K BFD表示BFD对应的缩放因子,N1表示配置的用于BFD的参考信号的数量或波束的数量,T BFD_RS用于BFD的参考信号周期。
在一些实施例中,X根据终端设备的能力确定。
例如终端设备可以向网络设备上报能力信息,网络设备可以终端设备上报的能力信息对终端设备进行BFD所需花费的时间进行评估,得到X。
在一些实施例中,X为50ms。
在一些实施例中,M1表示BFD对应的测量样本数,或者说,用于得到一个评估结果(例如IS或OOS)的测量次数。可选的,该M1可以为10,或者,也可以为其他大于1的整数值。
在一些实施例中,M1可以认为是链路监测(Link Monitoring,LM)阶段的测量次数,因此M1或称M LM
在一些实施例中,K BFD表示BFD对应的缩放因子。
可选地,该K BFD与P1和/或P BFD相关,其中,P1表示执行BFD和其他测量或测量间隔冲突导致的缩放因子,P BFD表示BFD中与小区相关的缩放因子。例如,K BFD=P1*P BFD
可选地,在BFD和其他测量或测量间隔不存在冲突时,该P1可以取1。
可选地,N1可以是一个小区上的用于BFD的参考信号或波束的数量。
可选地,T BFD_RS可以为用于BFD的SSB周期T SSB-RS或CSI-RS周期T CSI-RS
在本申请一些实施例中,所述第二时长信息根据如下公式确定:
T Evaluate_CBD=MAX(Y,M2*K CBD*N2*T CBD_RS)
其中,T Evaluate_BD表示所述第二时长信息,Y表示CBD对应的测量评估时间阈值,M2表示CBD对应的测量样本数,K CBD表示CBD对应的缩放因子,N2表示配置的用于CBD的参考信号的数量或波束的数量,T CBD_RS用于CBD的参考信号周期。在一些实施例中,Y根据终端设备的能力确定。
例如终端设备可以向网络设备上报能力信息,网络设备可以终端设备上报的能力信息对终端设备进行CBD所需花费的时间进行评估,得到Y。
在一些实施例中,Y为25ms。
在一些实施例中,M2表示CBD对应的测量样本数,或者说,用于得到一个评估结果(例如是否发生BFI)的测量次数。可选地,M2可以为3,或者,也可以为其他大于1的整数值。
在一些实施例中,M2可以认为是链路恢复(Link Recovering,LR)阶段的测量次数,因此M2或称M LR
在一些实施例中,K CBD表示CBD对应的缩放因子。
可选地,该K CBD与P2和/或P CBD相关,其中,P2表示执行CBD和其他测量或测量间隔冲突导致的缩放因子,P CBD表示CBD中与小区相关的缩放因子。例如,K CBD=P2*P CBD
可选地,在CBD和其他测量或测量间隔不存在冲突时,该P2可以取1。
可选地,T CBD_RS可以为用于CBD的SSB周期T SSB-RS或CSI-RS周期T CSI-RS
可选地,N2可以是一个小区上的用于CBD的参考信号或波束的数量。
可选地,N2可以为1。
在一些实施例中,所述第一测量评估时间信息根据如下公式确定:
T Evaluate_RLM=MAX(X,M1*K BFD*N1*T BFD_RS)+MAX(Y,M2*K CBD*N2*T CBD_RS)
其中,T Evaluate_RLM表示所述第一测量评估时间信息,其他参数的含义参考第一时长信息和第二时长信息中的对应参数的说明,为了简洁,这里不再赘述。
表1给出了使用统一测量模型前后针对RLM的测量评估时间的变化。
表1
Figure PCTCN2022071668-appb-000001
综上,基于统一的测量模型执行无线链路失败和波束失败的测量评估,减少L1采样的复杂度,缩短了RLM的时间,降低了终端设备的复杂度。并且,采用差异化的模型参数,例如两套计数器和计时器配置,有利于避免因配置的用于测量的参考信号集合不具有代表性而导致漏监测一些波束的问题,或者,将链路质量不够差的情况误判为小区的链路失败的问题。
实施例二:
在本申请另一些实施例中,S310可以包括:
根据所述第一测量模型和第三模型参数执行RLM,以及
根据所述第一测量模型和所述第三模型参数执行波束检测。
即终端设备可以基于相同的测量模型以及相同的模型参数执行RLM和波束检测。
在一些实施例中,所述第三模型参数包括以下中的至少一项:第三测量评估时间信息、第三参考信号配置、第三滤波器配置、第三定时器配置、第三计数器配置、第三上报时间间隔,第三门限配置。
在一些实施例中,所述第三参考信号配置所配置的参考信号用于所述终端设备执行RLM以及波束检测。
可选地,所述第三参考信号配置不区分BFD和CBD,即,用于执行BFD的参考信号配置和用于执行CBD的参考信号配置为同一配置。也就说,第三参考信号配置用于BFD、CBD以及RLM。
在一些实施例中,第三参考信号配置用于配置一组特定参考信号,该特定参考信号具备空间上的随机分布或典型分布特征。也就是说,基于这些参考信号进行测量,有利于准确判断链路质量或波束质量。
在一些实施例中,第三参考信号配置可以是根据参考信号的历史测量结果和/或使用情况确定的,例如,该第三参考信号配置可以用于配置历史上信号质量较优的一组参考信号,或者,经常使用的一组参考信号等。
在一些实施例中,所述第三滤波器配置所配置的滤波参数用于所述终端设备对RLM的测量结果、BFD的测量结果和CBD的测量结果进行滤波。
在一些实施例中,所述第三定时器配置所配置的定时门限用于所述终端设备触发RLF以及RLF。
例如,第三定时器配置所配置的定时门限可以用于前述BLF定时器和BFD定时器的定时。
在一些实施例中,所述第三计数器配置所配置的计数值门限用于所述终端设备触发RLF以及用于所述终端设备触发BFR。
例如,第三计数值配置所配置的计数值门限可以为前述OSS计数器和BFD计数器的计数值门限。
在一些实施例中,所述第三上报时间间隔所配置的时间间隔门限用于所述终端设备的物理层上报针对RLM的层1指示也用于所述终端设备的物理层上报针对BFD的层1指示。
在一些实施例中,所述第三上报时间间隔所配置的时间间隔门限用于所述终端设备的物理层上报针对RLM的层1指示也用于所述终端设备的物理层上报针对BFD的层1指示。
即,终端设备上报针对RLM的层1指示的最小时间间隔和针对BFD的层1指示的最小时间间隔相同。
在一些实施例中,所述第三门限配置所配置的门限用于判断是否触发RLF事件和/或上报层1指示。
在一些实施例中,所述第三门限配置用于配置第一判断门限和第二判断门限,该第一判断门限用于确定是否上报OOS指示以及是否发生BFI,第二判断门限用于判断是否上报IS指示以及是否作为新波束。可选地,上述门限均可以采用PDCCH BLER表征,例如,第一判断门限为10%,第二判断门限2%。在根据参考信号的测量结果(例如SINR)和门限值进行比较时,可以根据测量结果和PDCCH BLER的映射关系将测量结果映射为PDCCH BLER,然后再进行比较。
在一些实施例中,所述第三测量评估时间信息用于所述终端设备执行针对RLM的层1测量以及针对BFD和CBD的层1测量。
即,终端设备执行RLM的层1测量的测量评估时间和终端设备执行BFD和CBD的层1测量的测量评估时间相同。
在一些实施例中,所述第三测量评估时间信息为第一时长信息和第二时长信息之和,其中,所述第一时长信息为所述终端设备执行BFD的测量评估时间,所述第二时长信息根据所述终端设备执行CBD的测量评估时间。
在一些实施例中,所述第三测量评估时间信息根据如下公式确定:
T Evaluate_RLM=MAX(X,M1*K BFD*N1*T BFD_RS)+MAX(Y,M2*K CBD*N2*T CBD_RS)
其中,T Evaluate_RLM表示所述第三测量评估时间信息,X表示BFD对应的测量评估时间阈值,M1表示BFD对应的测量样本数,K BFD表示BFD对应的缩放因子,N1表示配置的用于BFD的参考信号的数量或波束的数量,T BFD_RS用于BFD的参考信号周期,Y表示CBD对应的测量评估时间阈值,M2表示CBD对应的测量样本数,K CBD表示CBD对应的缩放因子,N2表示配置的用于CBD的参考信号的数量或波束的数量,T CBD_RS用于CBD的参考信号周期。
上述各个参数的含义参考前述实施例的相关描述,为了简洁,这里不再赘述。
在本申请一些实施例中,如图5所示,所述方法300还包括:
S321,所述终端设备接收网络设备的第一配置信息,所述第一配置信息用于配置第一测量模型和/或所述第一测量模型的模型参数。
可选地,所述第一测量模型的模型参数可以包括前述第一模型参数和第二模型参数,或者,也可以包括所述第三模型参数。
在本申请一些实施例中,如图5所示,所述方法300还包括:
S301,所述终端设备向网络设备上报所述终端设备的能力信息,所述终端设备的能力信息用于所述网络设备确定所述第一测量模型的模型参数。
应理解,所述终端设备的能力信息可以指终端设备的测量相关的能力信息,本申请对此不作限定。
作为示例,所述终端设备的能力信息可以包括但不限于以下中的至少一项:
所述终端设备支持的参考信号或波束的最大数量;
所述终端设备支持的用于参考信号或波束测量的最大频率层(frequency layer);
所述终端设备在每个频率层上支持的参考信号或波束或小区的最大数量。
例如,所述网络设备可以根据所述终端设备的能力信息确定所述第一模型参数和所述第二模型参数,或者,根据所述终端设备的能力信息确定所述第三模型参数。
综上,基于统一的测量模型执行无线链路失败和波束失败的测量评估,减少L1采样的复杂度,缩短了RLM的时间,降低了终端设备的复杂度。
在一些实施例中,所述网络设备可以根据多个终端设备上报的能力信息设计适用于该多个终端设备的测量模型和模型参数。进一步将该测量模型和模型参数配置给该多个终端设备。
在另一些实施例中,网络设备可以根据该多个终端设备设备的能力信息涉及适用于部分终端设备的测量模型和模型参数,例如适用于处理能力较强的终端设备的测量模型和模型参数。进一步地,给这些终端设备配置该测量模型和模型参数。对于其他终端设备可以采用独立的测量模型执行RLM和波束检测,即采用现有方式执行RLM和波束检测。
结合图6,对本申请实施例的使用统一测量模型执行RLM和波束检测的方法进行说明。
作为一种实现方式:
首先,基于统一的链路监测(Link Monitoring,LM)模型进行层1测量。
例如,基于相同的测量评估时间信息执行RLM和波束检测。
又例如,基于相同的参考信号配置执行RLM和波束检测。
又例如,基于相同的门限(包括门限1)确定是否上报层1指示。
作为示例,对于RLM,在参考信号的质量低于该门限1(对应前述实施例中的Q out)时,上报OOS指示。
作为示例,对于BFD,在参考信号的质量低于该门限1时,上报BFI指示。
进一步地,基于相同的计数值门限进行事件判断。
例如,在终端设备的物理层上报的层1指示的数量达到计数值门限时,可以认为链路质量不好,或者波束质量不好。
进一步基于统一的链路恢复(Link Recover,LR)模型进行链路恢复或波束恢复。在一些实施例中,对于波束检测,终端设备执行CBD以选择新波束。
在一些实施例中,对于RLM,终端设备继续对用于RLM的其他参考信号进行测量,即对新的链路进行检测,确定是否存在质量好的链路。
在一些实施例中,用于RLM和波束检测的参考信号配置用于配置参考信号集合1和参考信号集合2,例如,在统一的LM模型中,终端设备可以基于参考信号集合1进行RLM和BFD。
进一步地,在统一的LR模型中,对于波束检测,终端设备可以对参考信号集合2进行测量以选择新波束,对于RLM,终端设备可以继续对参考信号集合2中的参考信号进行测量,以确定这些参考信号对应的链路质量。
进一步地,若在定时器运行期间,终端设备未发现新波束或者不存在质量好的链路,则触发RLF。
即,BFD失败且CBD失败,则确定RLF,或者,若参考信号配置中的所有参考信号对应的链路质量均不满足上述门限1,则确定RLF。
作为另一种实现方式:
首先,基于统一的LM模型进行层1测量。
例如,基于相同的测量评估时间信息执行RLM和波束检测。
又例如,基于相同的参考信号配置执行RLM和波束检测。
又例如,基于相同的门限(包括门限1,可选还包括门限2)确定是否上报层1指示。
作为示例,对于RLM,在参考信号的质量低于该门限1(对应前述实施例中的Q out)时,上报OOS指示。
可选地,对于RLM,在参考信号的质量高于门限2(对应前述实施例中的Q in)时,上报IS指示。
作为示例,对于BFD,在参考信号的质量低于该门限1时,上报BFI指示。
在一些实施例中,用于RLM和波束检测的参考信号配置用于配置参考信号集合1和参考信号集合2,例如,在统一的LM模型中,终端设备可以基于参考信号集合1进行RLM和BFD。
进一步可选地,基于相同的计数值门限进行事件判断。
例如,在终端设备的物理层上报的层1指示的数量达到计数值门限时,可以认为链路质量不好,或者波束质量不好。
在一些实施例中,对于RLM,在参考信号集合1中的所有参考信号对应的链路质量或波束质量均不好时,可以触发RLF。
在一些实施例中,对于BFD,在参考信号集合2中的所有参考信号对应的链路质量或波束质量均不好时,可以触发执行CBD。
进一步基于统一的LR模型进行链路恢复或波束恢复。
在一些实施例中,对于波束检测,终端设备执行CBD,例如,对参考信号集合2中的参考信号进行测量以选择新波束,并基于选择的新波束发起随机接入过程。
在一些实施例中,对于RLM,终端设备基于参考信号集合2中的参考信号,或者,在参考信号集合2中的参考信号对应的小区上发起随机接入过程。
进一步地,终端设备监听网络设备的响应,若接收到网络设备的响应,确定波束失败恢复成功,或者,链路恢复成功。若未收到网络设备的响应,通过其他参考信号或波束重新发起随机接入过程。
综合本申请实施例,终端设备可以基于统一的测量模型进行RLM和波束检测,例如,基于统一的测量模型和统一的模型参数进行RLM和波束检测,有利于减少L1采样的复杂度,缩短了RLM的时间,降低了终端设备的复杂度。又例如,基于统一的测量模型和差异化的模型参数进行RLM和波束检测,有利于减少L1采样的复杂度,缩短了RLM的时间,降低了终端设备的复杂度。并且,采用差异化的模型参数,例如不同的计数器配置或定时器配置,有利于避免因配置的用于测量的参考信号集合不具有代表性而导致遗漏监测一些波束的问题,或者,将链路质量不够差的情况误判为小区的 链路失败的问题。
上文结合图5至图6,详细描述了本申请的方法实施例,下文结合图7至图12,详细描述本申请的装置实施例,应理解,装置实施例与方法实施例相互对应,类似的描述可以参照方法实施例。
图7示出了根据本申请实施例的终端设备400的示意性框图。如图7所示,该终端设备400包括:
处理单元410,用于根据第一测量模型执行无线链路监测RLM和波束检测,其中,所述波束检测包括波束失败检测BFD和候选波束检测CBD。
在一些实施例中,所述处理单元410还用于:根据所述第一测量模型和第一模型参数执行RLM,以及,根据所述第一测量模型和第二模型参数执行波束
其中,所述第一模型参数和所述第二模型参数至少部分不同。
在一些实施例中,所述第一模型参数包括以下中的至少一项:第一测量评估时间信息、第一参考信号配置、第一滤波器配置、第一定时器配置、第一计数器配置、第一上报时间间隔、第一门限配置;
所述第二模型参数包括以下中的至少一项:第二测量评估时间信息、第二参考信号配置、第二滤波器配置、第二定时器配置、第二计数器配置、第二上报时间间隔、第二门限配置。
在一些实施例中,该第一参考信号配置和该第二参考信号配置不同;和/或
该第一滤波器配置和该第二滤波器配置不同;和/或,该第一定时器配置和该第二定时器配置不同;和/或,该第一计数器配置和该第二计数器配置不同;和/或,该第一上报时间间隔和该第二上报时间间隔不同;和/或,第一门限配置和第二门限配置不同。
在一些实施例中,该第一测量评估时间信息,用于配置该终端设备对用于RLM的参考信号进行测量评估的时间;
该第一参考信号配置,用于配置该终端设备执行RLM的参考信号;
该第一滤波器配置,用于配置该终端设备对RLM的测量结果进行滤波的参数;
该第一定时器配置,用于配置该终端设备触发无线链路失败RLF的定时门限;
该第一计数器配置,用于配置该终端设备触发RLF的计数值门限;
该第一上报时间间隔,用于配置该终端设备的物理层向该终端设备的高层上报层1指示的最小时间间隔;
该第一门限配置,用于配置该终端设备的物理层向该终端设备的高层上报层1指示的判断门限。
在一些实施例中,所述第二测量评估时间信息,用于配置所述终端设备对用于波束检测的参考信号进行测量评估的时间;
该第二参考信号配置,用于配置该终端设备执行BFD的参考信号;
该第二滤波器配置,用于配置该终端设备对BFD的测量结果进行滤波的参数;
该第二定时器配置,用于配置该终端设备触发波束失败恢复BFR的定时门限;
该第二计数器配置,用于配置该终端设备触发BFR的计数值门限;
该第二上报时间间隔,用于配置该终端设备的物理层向该终端设备的高层上报波束失败实例BFI的最小时间间隔;
该第二门限配置,用于配置BFI的判断门限和/或新波束的判断门限。
在一些实施例中,该第一测量评估时间信息和该第二测量评估时间信息相同。
在一些实施例中,该第一测量评估时间信息为第一时长信息和第二时长信息之和,其中,该第一时长信息为该终端设备执行BFD的测量评估时间,该第二时长信息根据该终端设备执行CBD的测量评估时间。
在一些实施例中,该第一测量评估时间信息根据如下公式确定:
T Evaluate_RLM=MAX(X,M1*K BFD*N1*T BFD_RS)+MAX(Y,M2*K CBD*N2*T CBD_RS)
其中,T Evaluate_RLM表示该第一测量评估时间信息,X表示BFD对应的测量评估时间阈值,M1表示BFD对应的测量样本数,K BFD表示BFD对应的缩放因子,N1表示配置的用于BFD的参考信号的数量或波束的数量,T BFD_RS用于BFD的参考信号周期,Y表示CBD对应的测量评估时间阈值,M2表示CBD对应的测量样本数,K CBD表示CBD对应的缩放因子,N2表示配置的用于CBD的参考信号的数量或波束的数量,T CBD_RS用于CBD的参考信号周期。
在一些实施例中,该第二测量评估时间信息包括第一时长信息和第二时长信息,其中,该第一时长信息为该终端设备执行BFD的测量评估时间,该第二时长信息根据该终端设备执行CBD的测量评估时间。
在一些实施例中,该第一时长信息根据如下公式确定:
T Evaluate_BFD=MAX(X,M1*K BFD*N1*T BFD_RS)
其中,T Evaluate_BFD表示该第一时长信息,X表示BFD对应的测量评估时间阈值,M1表示BFD 对应的测量样本数,K BFD表示BFD对应的缩放因子,N1表示配置的用于BFD的参考信号的数量或波束的数量,T BFD_RS用于BFD的参考信号周期。
在一些实施例中,该第二时长信息根据如下公式确定:
T Evaluate_CBD=MAX(Y,M2*K CBD*N2*T CBD_RS)
其中,T Evaluate_BD表示该第二时长信息,Y表示CBD对应的测量评估时间阈值,M2表示CBD对应的测量样本数,K CBD表示CBD对应的缩放因子,N2表示配置的用于CBD的参考信号的数量或波束的数量,T CBD_RS用于CBD的参考信号周期。
在一些实施例中,该处理单元410还用于:根据所述第一测量模型和第三模型参数执行RLM,以及根据所述第一测量模型和所述第三模型参数执行波束检测。
在一些实施例中,该第三模型参数包括以下中的至少一项:第三测量评估时间信息、第三参考信号配置、第三滤波器配置、第三定时器配置、第三计数器配置、第三上报时间间隔、第三门限配置。
在一些实施例中,所述第三测量评估时间信息,用于配置所述终端设备对用于RLM和波束检测的参考信号进行测量评估的时间;
该第三参考信号配置所配置的参考信号用于该终端设备执行RLM、BFD和CBD;
该第三滤波器配置所配置的滤波参数用于该终端设备对RLM的测量结果、BFD的测量结果和CBD的测量结果进行滤波;
该第三定时器配置所配置的定时门限用于该终端设备触发RLF以及BFR;
该第三计数器配置所配置的计数值门限用于该终端设备触发RLF以及BFR;
该第三上报时间间隔所配置的时间间隔门限用于该终端设备的物理层上报针对RLM的层1指示以及针对BFD的层1指示;
该第三门限配置所配置的门限用于该终端设备的物理层判断是否上报针对RLM的层1指示以及针对BFD的层1指示。
在一些实施例中,该第三测量评估时间信息根据第一时长信息和第二时长信息之和确定,其中,该第一时长信息为该终端设备执行BFD的测量评估时间,该第二时长信息根据该终端设备执行CBD的测量评估时间。
在一些实施例中,该第三测量评估时间信息根据如下公式确定:
T Evaluate_RLM=MAX(X,M1*K BFD*N1*T BFD_RS)+MAX(Y,M2*K CBD*N2*T CBD_RS)
其中,T Evaluate_RLM表示该第三测量评估时间信息,X表示BFD对应的测量评估时间阈值,M1表示BFD对应的测量样本数,K BFD表示BFD对应的缩放因子,N1表示配置的用于BFD的参考信号的数量或波束的数量,T BFD_RS用于BFD的参考信号周期,Y表示CBD对应的测量评估时间阈值,M2表示CBD对应的测量样本数,K CBD表示CBD对应的缩放因子,N2表示配置的用于CBD的参考信号的数量或波束的数量,T CBD_RS用于CBD的参考信号周期。
在一些实施例中,该X是根据终端设备的能力确定的。
在一些实施例中,该X为50毫秒。
在一些实施例中,该Y是根据该终端设备的能力确定的。
在一些实施例中,该Y为25毫秒。
在一些实施例中,所述终端设备400还包括:通信单元,用于接收网络设备的第一配置信息,所述第一配置信息用于配置第一测量模型和/或所述第一测量模型的模型参数。
在一些实施例中,所述终端设备还包括:通信单元,用于向网络设备上报所述终端设备的能力信息,所述终端设备的能力信息用于所述网络设备确定所述第一测量模型的模型参数。
可选地,在一些实施例中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上系统的输入输出接口。上述处理单元可以是一个或多个处理器。
应理解,根据本申请实施例的终端设备400可对应于本申请方法实施例中的终端设备,并且终端设备400中的各个单元的上述和其它操作和/或功能分别为了实现图5至图6所示方法300中终端设备的相应流程,为了简洁,在此不再赘述。
图8是根据本申请实施例的网络设备的示意性框图。图8的网络设备500包括:
通信单元510,用于向终端设备发送第一配置信息,该第一配置信息用于配置第一测量模型和/或该第一测量模型的模型参数,该第一测量模型用于该终端设备执行无线链路监测RLM和波束检测,其中,该波束检测包括波束失败检测BFD和候选波束检测CBD。
在一些实施例中,该第一测量模型的模型参数包括第一模型参数和第二模型参数,该第一模型参数用于RLM,该第二模型参数用于波束检测,该第一模型参数和该第二模型参数至少部分不同。
在一些实施例中,该第一模型参数包括以下中的至少一项:第一测量评估时间信息、第一参考信 号配置、第一滤波器配置、第一定时器配置、第一计数器配置、第一上报时间间隔、第一门限配置;
该第二模型参数包括以下中的至少一项:第二测量评估时间信息、第二参考信号配置、第二滤波器配置、第二定时器配置、第二计数器配置、第二上报时间间隔、第二门限配置。
在一些实施例中,该第一参考信号配置和该第二参考信号配置不同;和/或
该第一滤波器配置和该第二滤波器配置不同;和/或,该第一定时器配置和该第二定时器配置不同;和/或,该第一计数器配置和该第二计数器配置不同;和/或,该第一上报时间间隔和该第二上报时间间隔不同;和/或,第一门限配置和第二门限配置不同。
在一些实施例中,该第一测量评估时间信息,用于配置所述终端设备对用于RLM的参考信号进行测量评估的时间;
该第一参考信号配置,用于配置该终端设备执行RLM的参考信号;
该第一滤波器配置,用于配置该终端设备对RLM的测量结果进行滤波的参数;
该第一定时器配置,用于配置该终端设备触发无线链路失败RLF的定时门限;
该第一计数器配置,用于配置该终端设备触发RLF的计数值门限;
该第一上报时间间隔,用于配置该终端设备的物理层向该终端设备的高层上报层1指示的最小时间间隔;
该第一门限配置,用于配置该终端设备的物理层向该终端设备的高层上报层1指示的判断门限。
在一些实施例中,所述第二测量评估时间信息,用于配置所述终端设备对用于波束检测的参考信号进行测量评估的时间;
该第二参考信号配置,用于配置该终端设备执行BFD的参考信号;
该第二滤波器配置,用于配置该终端设备对BFD的测量结果进行滤波的参数;
该第二定时器配置,用于配置该终端设备触发波束失败恢复BFR的定时门限;
该第二计数器配置,用于配置该终端设备触发BFR的计数值门限;
该第二上报时间间隔,用于配置该终端设备的物理层向该终端设备的高层上报波束失败实例BFI的最小时间间隔;
该第二门限配置,用于配置BFI的判断门限和/或新波束的判断门限。
在一些实施例中,该第一测量评估时间信息和该第二测量评估时间信息相同。
在一些实施例中,该第一测量评估时间信息为第一时长信息和第二时长信息之和,其中,该第一时长信息为该终端设备执行BFD的测量评估时间,该第二时长信息根据该终端设备执行CBD的测量评估时间。
在一些实施例中,该第一测量评估时间信息根据如下公式确定:
T Evaluate_RLM=MAX(X,M1*K BFD*N1*T BFD_RS)+MAX(Y,M2*K CBD*N2*T CBD_RS)
其中,T Evaluate_RLM表示该第一测量评估时间信息,X表示BFD对应的测量评估时间阈值,M1表示BFD对应的测量样本数,K BFD表示BFD对应的缩放因子,N1表示配置的用于BFD的参考信号的数量或波束的数量,T BFD_RS用于BFD的参考信号周期,Y表示CBD对应的测量评估时间阈值,M2表示CBD对应的测量样本数,K CBD表示CBD对应的缩放因子,N2表示配置的用于CBD的参考信号的数量或波束的数量,T CBD_RS用于CBD的参考信号周期。
在一些实施例中,该第二测量评估时间信息包括第一时长信息和第二时长信息,其中,该第一时长信息为该终端设备执行BFD的测量评估时间,该第二时长信息根据该终端设备执行CBD的测量评估时间。
在一些实施例中,该第一时长信息根据如下公式确定:
T Evaluate_BFD=MAX(X,M1*K BFD*N1*T BFD_RS)
其中,T Evaluate_BFD表示该第一时长信息,X表示BFD对应的测量评估时间阈值,M1表示BFD对应的测量样本数,K BFD表示BFD对应的缩放因子,N1表示配置的用于BFD的参考信号的数量或波束的数量,T BFD_RS用于BFD的参考信号周期。
在一些实施例中,该第二时长信息根据如下公式确定:
T Evaluate_CBD=MAX(Y,M2*K CBD*N2*T CBD_RS)
其中,T Evaluate_BD表示该第二时长信息,Y表示CBD对应的测量评估时间阈值,M2表示CBD对应的测量样本数,K CBD表示CBD对应的缩放因子,N2表示配置的用于CBD的参考信号的数量或波束的数量,T CBD_RS用于CBD的参考信号周期。
在一些实施例中,该第一测量模型的模型参数包括第三模型参数,该第三模型参数用于RLM和波束检测。
在一些实施例中,该第三模型参数包括以下中的至少一项:第三测量评估时间信息、第三参考信 号配置、第三滤波器配置、第三定时器配置、第三计数器配置、第三上报时间间隔、第三门限配置。
在一些实施例中,该第三测量评估时间信息,用于配置所述终端设备对用于RLM和波束检测的参考信号进行测量评估的时间;
该第三参考信号配置所配置的参考信号用于该终端设备执行RLM、BFD和CBD;
该第三滤波器配置所配置的滤波参数用于该终端设备对RLM的测量结果、BFD的测量结果和CBD的测量结果进行滤波;
该第三定时器配置所配置的定时门限用于该终端设备触发RLF以及BFR;
该第三计数器配置所配置的计数值门限用于该终端设备触发RLF以及BFR;
该第三上报时间间隔所配置的时间间隔门限用于该终端设备的物理层上报针对RLM的层1指示以及针对BFD的层1指示;
该第三门限配置所配置的门限用于该终端设备的物理层判断是否上报针对RLM的层1指示以及针对BFD的层1指示。
在一些实施例中,该第三测量评估时间信息根据第一时长信息和第二时长信息之和确定,其中,该第一时长信息为该终端设备执行BFD的测量评估时间,该第二时长信息根据该终端设备执行CBD的测量评估时间。
在一些实施例中,该第三测量评估时间信息根据如下公式确定:
T Evaluate_RLM=MAX(X,M1*K BFD*N1*T BFD_RS)+MAX(Y,M2*K CBD*N2*T CBD_RS)
其中,T Evaluate_RLM表示该第三测量评估时间信息,X表示BFD对应的测量评估时间阈值,M1表示BFD对应的测量样本数,K BFD表示BFD对应的缩放因子,N1表示配置的用于BFD的参考信号的数量或波束的数量,T BFD_RS用于BFD的参考信号周期,Y表示CBD对应的测量评估时间阈值,M2表示CBD对应的测量样本数,K CBD表示CBD对应的缩放因子,N2表示配置的用于CBD的参考信号的数量或波束的数量,T CBD_RS用于CBD的参考信号周期。
在一些实施例中,该X是根据终端设备的能力确定的。
在一些实施例中,该X为50毫秒。
在一些实施例中,该Y是根据该终端设备的能力确定的。
在一些实施例中,该Y为25毫秒。
在一些实施例中,该通信单元510还用于:接收该终端设备上报的该终端设备的能力信息,该终端设备的能力信息用于该网络设备确定该第一测量模型的模型参数。
可选地,在一些实施例中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上系统的输入输出接口。上述处理单元可以是一个或多个处理器。
应理解,根据本申请实施例的网络设备500可对应于本申请方法实施例中的网络设备,并且网络设备500中的各个单元的上述和其它操作和/或功能分别为了实现图5至图6所示方法300中网络设备的相应流程,为了简洁,在此不再赘述。
图9是本申请实施例提供的一种通信设备600示意性结构图。图9所示的通信设备600包括处理器610,处理器610可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图9所示,通信设备600还可以包括存储器620。其中,处理器610可以从存储器620中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器620可以是独立于处理器610的一个单独的器件,也可以集成在处理器610中。
可选地,如图10所示,通信设备600还可以包括收发器630,处理器610可以控制该收发器630与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器630可以包括发射机和接收机。收发器630还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备600具体可为本申请实施例的网络设备,并且该通信设备600可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备600具体可为本申请实施例的移动终端/终端设备,并且该通信设备600可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
图10是本申请实施例的芯片的示意性结构图。图10所示的芯片700包括处理器710,处理器710可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图10所示,芯片700还可以包括存储器720。其中,处理器710可以从存储器720中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器720可以是独立于处理器710的一个单独的器件,也可以集成在处理器710中。
可选地,该芯片700还可以包括输入接口730。其中,处理器710可以控制该输入接口730与其 他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片700还可以包括输出接口740。其中,处理器710可以控制该输出接口740与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的移动终端/终端设备,并且该芯片可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
图11是本申请实施例提供的一种通信系统900的示意性框图。如图11所示,该通信系统900包括终端设备910和网络设备920。
其中,该终端设备910可以用于实现上述方法中由终端设备实现的相应的功能,以及该网络设备920可以用于实现上述方法中由网络设备实现的相应的功能为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁, 在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的移动终端/终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (51)

  1. 一种无线通信的方法,其特征在于,包括:
    终端设备根据第一测量模型执行无线链路监测RLM和波束检测,其中,所述波束检测包括波束失败检测BFD和候选波束检测CBD。
  2. 根据权利要求1所述的方法,其特征在于,所述终端设备根据第一测量模型执行无线链路监测RLM和波束检测,包括:
    根据所述第一测量模型和第一模型参数执行RLM,以及
    根据所述第一测量模型和第二模型参数执行波束检测;
    其中,所述第一模型参数和所述第二模型参数至少部分不同。
  3. 根据权利要求2所述的方法,其特征在于,所述第一模型参数包括以下中的至少一项:第一测量评估时间信息、第一参考信号配置、第一滤波器配置、第一定时器配置、第一计数器配置、第一上报时间间隔、第一门限配置;
    所述第二模型参数包括以下中的至少一项:第二测量评估时间信息、第二参考信号配置、第二滤波器配置、第二定时器配置、第二计数器配置、第二上报时间间隔、第二门限配置。
  4. 根据权利要求3所述的方法,其特征在于,所述第一参考信号配置和所述第二参考信号配置不同;和/或
    所述第一滤波器配置和所述第二滤波器配置不同;和/或
    所述第一定时器配置和所述第二定时器配置不同;和/或
    所述第一计数器配置和所述第二计数器配置不同;和/或
    所述第一上报时间间隔和所述第二上报时间间隔不同;和/或
    第一门限配置和第二门限配置不同。
  5. 根据权利要求3或4所述的方法,其特征在于,所述第一测量评估时间信息,用于配置所述终端设备对用于RLM的参考信号进行测量评估的时间;
    所述第一参考信号配置,用于配置所述终端设备执行RLM的参考信号;
    所述第一滤波器配置,用于配置所述终端设备对RLM的测量结果进行滤波的参数;
    所述第一定时器配置,用于配置所述终端设备触发无线链路失败RLF的定时门限;
    所述第一计数器配置,用于配置所述终端设备触发RLF的计数值门限;
    所述第一上报时间间隔,用于配置所述终端设备的物理层向所述终端设备的高层上报层1指示的最小时间间隔;
    所述第一门限配置,用于配置所述终端设备的物理层向所述终端设备的高层上报层1指示的判断门限。
  6. 根据权利要求3-5中任一项所述的方法,其特征在于,所述第二测量评估时间信息,用于配置所述终端设备对用于波束检测的参考信号进行测量评估的时间;
    所述第二参考信号配置,用于配置所述终端设备执行BFD和CBD的参考信号;
    所述第二滤波器配置,用于配置所述终端设备对BFD的测量结果进行滤波的参数;
    所述第二定时器配置,用于配置所述终端设备触发波束失败恢复BFR的定时门限;
    所述第二计数器配置,用于配置所述终端设备触发BFR的计数值门限;
    所述第二上报时间间隔,用于配置所述终端设备的物理层向所述终端设备的高层上报波束失败实例BFI的最小时间间隔;
    所述第二门限配置,用于配置BFI的判断门限和/或新波束的判断门限。
  7. 根据权利要求3-6中任一项所述的方法,其特征在于,所述第一测量评估时间信息和所述第二测量评估时间信息相同。
  8. 根据权利要求7所述的方法,其特征在于,所述第一测量评估时间信息为第一时长信息和第二时长信息之和,其中,所述第一时长信息为所述终端设备执行BFD的测量评估时间,所述第二时长信息根据所述终端设备执行CBD的测量评估时间。
  9. 根据权利要求8所述的方法,其特征在于,所述第一测量评估时间信息根据如下公式确定:
    T Evaluate_RLM=MAX(X,M1*K BFD*N1*T BFD_RS)+MAX(Y,M2*K CBD*N2*T CBD_RS)
    其中,T Evaluate_RLM表示所述第一测量评估时间信息,X表示BFD对应的测量评估时间阈值,M1表示BFD对应的测量样本数,K BFD表示BFD对应的缩放因子,N1表示配置的用于BFD的参考信号的数量或波束的数量,T BFD_RS用于BFD的参考信号周期,Y表示CBD对应的测量评估时间阈值,M2表示CBD对应的测量样本数,K CBD表示CBD对应的缩放因子,N2表示配置的用于CBD的参考信号的数量或波束的数量,T CBD_RS用于CBD的参考信号周期。
  10. 根据权利要求7-9中任一项所述的方法,其特征在于,所述第二测量评估时间信息包括第一时长信息和第二时长信息,其中,所述第一时长信息为所述终端设备执行BFD的测量评估时间,所述第二时长信息根据所述终端设备执行CBD的测量评估时间。
  11. 根据权利要求10所述的方法,其特征在于,所述第一时长信息根据如下公式确定:
    T Evaluate_BFD=MAX(X,M1*K BFD*N1*T BFD_RS)
    其中,T Evaluate_BFD表示所述第一时长信息,X表示BFD对应的测量评估时间阈值,M1表示BFD对应的测量样本数,K BFD表示BFD对应的缩放因子,N1表示配置的用于BFD的参考信号的数量或波束的数量,T BFD_RS用于BFD的参考信号周期。
  12. 根据权利要求10或11所述的方法,其特征在于,所述第二时长信息根据如下公式确定:
    T Evaluate_CBD=MAX(Y,M2*K CBD*N2*T CBD_RS)
    其中,T Evaluate_BD表示所述第二时长信息,Y表示CBD对应的测量评估时间阈值,M2表示CBD对应的测量样本数,K CBD表示CBD对应的缩放因子,N2表示配置的用于CBD的参考信号的数量或波束的数量,T CBD_RS用于CBD的参考信号周期。
  13. 根据权利要求1所述的方法,其特征在于,所述终端设备根据第一测量模型执行无线链路监测RLM和波束检测,包括:
    根据所述第一测量模型和第三模型参数执行RLM,以及
    根据所述第一测量模型和所述第三模型参数执行波束检测。
  14. 根据权利要求13所述的方法,其特征在于,所述第三模型参数包括以下中的至少一项:第三测量评估时间信息、第三参考信号配置、第三滤波器配置、第三定时器配置、第三计数器配置、第三上报时间间隔、第三门限配置。
  15. 根据权利要求14所述的方法,其特征在于,
    所述第三测量评估时间信息,用于配置所述终端设备对用于RLM和波束检测的参考信号进行测量评估的时间;
    所述第三参考信号配置所配置的参考信号用于所述终端设备执行RLM、BFD和CBD;
    所述第三滤波器配置所配置的滤波参数用于所述终端设备对RLM的测量结果、BFD的测量结果和CBD的测量结果进行滤波;
    所述第三定时器配置所配置的定时门限用于所述终端设备触发RLF以及BFR;
    所述第三计数器配置所配置的计数值门限用于所述终端设备触发RLF以及BFR;
    所述第三上报时间间隔所配置的时间间隔门限用于所述终端设备的物理层上报针对RLM的层1指示以及针对BFD的层1指示;
    所述第三门限配置所配置的门限用于所述终端设备的物理层判断是否上报针对RLM的层1指示以及针对BFD的层1指示。
  16. 根据权利要求14或15所述的方法,其特征在于,所述第三测量评估时间信息根据第一时长信息和第二时长信息之和确定,其中,所述第一时长信息为所述终端设备执行BFD的测量评估时间,所述第二时长信息根据所述终端设备执行CBD的测量评估时间。
  17. 根据权利要求16所述的方法,其特征在于,所述第三测量评估时间信息根据如下公式确定:
    T Evaluate_RLM=MAX(X,M1*K BFD*N1*T BFD_RS)+MAX(Y,M2*K CBD*N2*T CBD_RS)
    其中,T Evaluate_RLM表示所述第三测量评估时间信息,X表示BFD对应的测量评估时间阈值,M1表示BFD对应的测量样本数,K BFD表示BFD对应的缩放因子,N1表示配置的用于BFD的参考信号的数量或波束的数量,T BFD_RS用于BFD的参考信号周期,Y表示CBD对应的测量评估时间阈值,M2表示CBD对应的测量样本数,K CBD表示CBD对应的缩放因子,N2表示配置的用于CBD的参考信号的数量或波束的数量,T CBD_RS用于CBD的参考信号周期。
  18. 根据权利要求9、11或17所述的方法,其特征在于,所述X是根据终端设备的能力确定的。
  19. 根据权利要求18所述的方法,其特征在于,所述X为50毫秒。
  20. 根据权利要求9、12或17所述的方法,其特征在于,所述Y是根据所述终端设备的能力确定的。
  21. 根据权利要求18所述的方法,其特征在于,所述Y为25毫秒。
  22. 根据权利要求1-21中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收网络设备的第一配置信息,所述第一配置信息用于配置第一测量模型和/或所述第一测量模型的模型参数。
  23. 根据权利要求1-22中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备向网络设备上报所述终端设备的能力信息,所述终端设备的能力信息用于所述网络 设备确定所述第一测量模型的模型参数。
  24. 一种无线通信的方法,其特征在于,包括:
    网络设备向终端设备发送第一配置信息,所述第一配置信息用于配置第一测量模型和/或所述第一测量模型的模型参数,所述第一测量模型用于所述终端设备执行无线链路监测RLM和波束检测,其中,所述波束检测包括波束失败检测BFD和候选波束检测CBD。
  25. 根据权利要求24所述的方法,其特征在于,所述第一测量模型的模型参数包括第一模型参数和第二模型参数,所述第一模型参数用于RLM,所述第二模型参数用于波束检测,所述第一模型参数和所述第二模型参数至少部分不同。
  26. 根据权利要求25所述的方法,其特征在于,所述第一模型参数包括以下中的至少一项:第一测量评估时间信息、第一参考信号配置、第一滤波器配置、第一定时器配置、第一计数器配置、第一上报时间间隔、第一门限配置;
    所述第二模型参数包括以下中的至少一项:第二测量评估时间信息、第二参考信号配置、第二滤波器配置、第二定时器配置、第二计数器配置、第二上报时间间隔、第二门限配置。
  27. 根据权利要求26所述的方法,其特征在于,所述第一参考信号配置和所述第二参考信号配置不同;和/或
    所述第一滤波器配置和所述第二滤波器配置不同;和/或
    所述第一定时器配置和所述第二定时器配置不同;和/或
    所述第一计数器配置和所述第二计数器配置不同;和/或
    所述第一上报时间间隔和所述第二上报时间间隔不同;和/或
    第一门限配置和第二门限配置不同。
  28. 根据权利要求26或27所述的方法,其特征在于,
    所述第一测量评估时间信息,用于配置所述终端设备对用于RLM的参考信号进行测量评估的时间;
    所述第一参考信号配置,用于配置所述终端设备执行RLM的参考信号;
    所述第一滤波器配置,用于配置所述终端设备对RLM的测量结果进行滤波的参数;
    所述第一定时器配置,用于配置所述终端设备触发无线链路失败RLF的定时门限;
    所述第一计数器配置,用于配置所述终端设备触发RLF的计数值门限;
    所述第一上报时间间隔,用于配置所述终端设备的物理层向所述终端设备的高层上报层1指示的最小时间间隔;
    所述第一门限配置,用于配置所述终端设备的物理层向所述终端设备的高层上报层1指示的判断门限。
  29. 根据权利要求26-28中任一项所述的方法,其特征在于,
    所述第二测量评估时间信息,用于配置所述终端设备对用于波束检测的参考信号进行测量评估的时间;
    所述第二参考信号配置,用于配置所述终端设备执行BFD和CBD的参考信号;
    所述第二滤波器配置,用于配置所述终端设备对BFD的测量结果进行滤波的参数;
    所述第二定时器配置,用于配置所述终端设备触发波束失败恢复BFR的定时门限;
    所述第二计数器配置,用于配置所述终端设备触发BFR的计数值门限;
    所述第二上报时间间隔,用于配置所述终端设备的物理层向所述终端设备的高层上报波束失败实例BFI的最小时间间隔;
    所述第二门限配置,用于配置BFI的判断门限和/或新波束的判断门限。
  30. 根据权利要求26-29中任一项所述的方法,其特征在于,所述第一测量评估时间信息和所述第二测量评估时间信息相同。
  31. 根据权利要求30所述的方法,其特征在于,所述第一测量评估时间信息为第一时长信息和第二时长信息之和,其中,所述第一时长信息为所述终端设备执行BFD的测量评估时间,所述第二时长信息根据所述终端设备执行CBD的测量评估时间。
  32. 根据权利要求31所述的方法,其特征在于,所述第一测量评估时间信息根据如下公式确定:
    T Evaluate_RLM=MAX(X,M1*K BFD*N1*T BFD_RS)+MAX(Y,M2*K CBD*N2*T CBD_RS)
    其中,T Evaluate_RLM表示所述第一测量评估时间信息,X表示BFD对应的测量评估时间阈值,M1表示BFD对应的测量样本数,K BFD表示BFD对应的缩放因子,N1表示配置的用于BFD的参考信号的数量或波束的数量,T BFD_RS用于BFD的参考信号周期,Y表示CBD对应的测量评估时间阈值,M2表示CBD对应的测量样本数,K CBD表示CBD对应的缩放因子,N2表示配置的用于CBD的参考 信号的数量或波束的数量,T CBD_RS用于CBD的参考信号周期。
  33. 根据权利要求30-32中任一项所述的方法,其特征在于,所述第二测量评估时间信息包括第一时长信息和第二时长信息,其中,所述第一时长信息为所述终端设备执行BFD的测量评估时间,所述第二时长信息根据所述终端设备执行CBD的测量评估时间。
  34. 根据权利要求33所述的方法,其特征在于,所述第一时长信息根据如下公式确定:
    T Evaluate_BFD=MAX(X,M1*K BFD*N1*T BFD_RS)
    其中,T Evaluate_BFD表示所述第一时长信息,X表示BFD对应的测量评估时间阈值,M1表示BFD对应的测量样本数,K BFD表示BFD对应的缩放因子,N1表示配置的用于BFD的参考信号的数量或波束的数量,T BFD_RS用于BFD的参考信号周期。
  35. 根据权利要求33或34所述的方法,其特征在于,所述第二时长信息根据如下公式确定:
    T Evaluate_CBD=MAX(Y,M2*K CBD*N2*T CBD_RS)
    其中,T Evaluate_BD表示所述第二时长信息,Y表示CBD对应的测量评估时间阈值,M2表示CBD对应的测量样本数,K CBD表示CBD对应的缩放因子,N2表示配置的用于CBD的参考信号的数量或波束的数量,T CBD_RS用于CBD的参考信号周期。
  36. 根据权利要求24所述的方法,其特征在于,所述第一测量模型的模型参数包括第三模型参数,所述第三模型参数用于RLM和波束检测。
  37. 根据权利要求36所述的方法,其特征在于,所述第三模型参数包括以下中的至少一项:第三测量评估时间信息、第三参考信号配置、第三滤波器配置、第三定时器配置、第三计数器配置、第三上报时间间隔、第三门限配置。
  38. 根据权利要求37所述的方法,其特征在于,所述第一测量评估时间信息,用于配置所述终端设备对用于RLM和波束检测的参考信号进行测量评估的时间;
    所述第三参考信号配置所配置的参考信号用于所述终端设备执行RLM、BFD和CBD;
    所述第三滤波器配置所配置的滤波参数用于所述终端设备对RLM的测量结果、BFD的测量结果和CBD的测量结果进行滤波;
    所述第三定时器配置所配置的定时门限用于所述终端设备触发RLF以及BFR;
    所述第三计数器配置所配置的计数值门限用于所述终端设备触发RLF以及BFR;
    所述第三上报时间间隔所配置的时间间隔门限用于所述终端设备的物理层上报针对RLM的层1指示以及针对BFD的层1指示;
    所述第三门限配置所配置的门限用于所述终端设备的物理层判断是否上报针对RLM的层1指示以及针对BFD的层1指示。
  39. 根据权利要求37或38所述的方法,其特征在于,所述第三测量评估时间信息根据第一时长信息和第二时长信息之和确定,其中,所述第一时长信息为所述终端设备执行BFD的测量评估时间,所述第二时长信息根据所述终端设备执行CBD的测量评估时间。
  40. 根据权利要求39所述的方法,其特征在于,所述第三测量评估时间信息根据如下公式确定:
    T Evaluate_RLM=MAX(X,M1*K BFD*N1*T BFD_RS)+MAX(Y,M2*K CBD*N2*T CBD_RS)
    其中,T Evaluate_RLM表示所述第三测量评估时间信息,X表示BFD对应的测量评估时间阈值,M1表示BFD对应的测量样本数,K BFD表示BFD对应的缩放因子,N1表示配置的用于BFD的参考信号的数量或波束的数量,T BFD_RS用于BFD的参考信号周期,Y表示CBD对应的测量评估时间阈值,M2表示CBD对应的测量样本数,K CBD表示CBD对应的缩放因子,N2表示配置的用于CBD的参考信号的数量或波束的数量,T CBD_RS用于CBD的参考信号周期。
  41. 根据权利要求31、34或40所述的方法,其特征在于,所述X是根据终端设备的能力确定的。
  42. 根据权利要求41所述的方法,其特征在于,所述X为50毫秒。
  43. 根据权利要求31、35或40所述的方法,其特征在于,所述Y是根据所述终端设备的能力确定的。
  44. 根据权利要求43所述的方法,其特征在于,所述Y为25毫秒。
  45. 根据权利要求24-44中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备接收所述终端设备上报的所述终端设备的能力信息,所述终端设备的能力信息用于所述网络设备确定所述第一测量模型的模型参数。
  46. 一种终端设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至23中任一项所述的方法。
  47. 一种网络设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述 处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求24至45中任一项所述的方法。
  48. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至23中任一项所述的方法,或者如权利要求24至45中任一项所述的方法。
  49. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至23中任一项所述的方法,或者如权利要求24至45中任一项所述的方法。
  50. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至23中任一项所述的方法,或者如权利要求24至45中任一项所述的方法。
  51. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1至23中任一项所述的方法,或者如权利要求24至45中任一项所述的方法。
PCT/CN2022/071668 2022-01-12 2022-01-12 无线通信的方法、终端设备和网络设备 WO2023133739A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/071668 WO2023133739A1 (zh) 2022-01-12 2022-01-12 无线通信的方法、终端设备和网络设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/071668 WO2023133739A1 (zh) 2022-01-12 2022-01-12 无线通信的方法、终端设备和网络设备

Publications (1)

Publication Number Publication Date
WO2023133739A1 true WO2023133739A1 (zh) 2023-07-20

Family

ID=87280003

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/071668 WO2023133739A1 (zh) 2022-01-12 2022-01-12 无线通信的方法、终端设备和网络设备

Country Status (1)

Country Link
WO (1) WO2023133739A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190081691A1 (en) * 2017-09-11 2019-03-14 Qualcomm Incorporated Radio link monitoring and beam failure recovery resource configuration and operation
CN110740469A (zh) * 2018-07-18 2020-01-31 维沃移动通信有限公司 一种监测结果的确定方法及终端
CN111034338A (zh) * 2017-06-23 2020-04-17 华为技术有限公司 统一rlf检测、nr中的多波束rlm和全分集bfr机制
CN111277344A (zh) * 2019-01-08 2020-06-12 维沃移动通信有限公司 接收模式调整方法、无线链路质量确定方法及终端

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111034338A (zh) * 2017-06-23 2020-04-17 华为技术有限公司 统一rlf检测、nr中的多波束rlm和全分集bfr机制
US20190081691A1 (en) * 2017-09-11 2019-03-14 Qualcomm Incorporated Radio link monitoring and beam failure recovery resource configuration and operation
CN110740469A (zh) * 2018-07-18 2020-01-31 维沃移动通信有限公司 一种监测结果的确定方法及终端
CN111277344A (zh) * 2019-01-08 2020-06-12 维沃移动通信有限公司 接收模式调整方法、无线链路质量确定方法及终端

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MEDIATEK INC.: "Enhancement on multi-beam operation", 3GPP TSG RAN WG1 #102-E, R1-2005619, 8 August 2020 (2020-08-08), XP051917595 *

Similar Documents

Publication Publication Date Title
US20200260246A1 (en) Method for resource selection in d2d communication and terminal device
US11115267B2 (en) Method and device for radio link monitoring
WO2018171631A1 (zh) 无线链路失败检测方法和用户设备
US11451994B2 (en) User equipment involved in performing measurements
US20210297901A1 (en) Wireless communication method, terminal device and network device
CN114097300A (zh) 用于遗漏的唤醒信号的无线装置自主过程
WO2021184197A1 (zh) 无线通信方法和装置以及通信设备
US20230292355A1 (en) Information Sending Method and Apparatus
CN109842915A (zh) 一种通信方法和装置以及系统
WO2021003624A1 (zh) Bwp切换方法和终端设备
JP2021532630A (ja) 無線リンク検出方法、装置及び通信システム
US20210219369A1 (en) Link detection method and apparatus
WO2022036528A1 (zh) 双连接架构下实现最小化路测的方法、终端设备和网络设备
AU2018429021A1 (en) Wireless link monitoring method, terminal device, and network device
US20230261801A1 (en) Communication method and device
WO2023133739A1 (zh) 无线通信的方法、终端设备和网络设备
WO2021072602A1 (zh) 链路失败检测的方法和装置
CN115699873A (zh) 中继节点切换方法、终端设备和网络设备
CN114982269B (zh) 测量模式转换方法、终端设备和网络设备
WO2023123229A1 (zh) 无线通信的方法、终端设备和网络设备
WO2024055197A1 (zh) 模型监测的方法及设备
WO2024045082A1 (zh) 无线通信的方法及设备
WO2023035186A1 (zh) 无线通信方法、终端设备及网络设备
WO2023065156A1 (zh) 无线通信的方法、终端设备和网络设备
WO2021243887A1 (zh) 数据传输的方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22919404

Country of ref document: EP

Kind code of ref document: A1