WO2021090458A1 - 端末 - Google Patents

端末 Download PDF

Info

Publication number
WO2021090458A1
WO2021090458A1 PCT/JP2019/043770 JP2019043770W WO2021090458A1 WO 2021090458 A1 WO2021090458 A1 WO 2021090458A1 JP 2019043770 W JP2019043770 W JP 2019043770W WO 2021090458 A1 WO2021090458 A1 WO 2021090458A1
Authority
WO
WIPO (PCT)
Prior art keywords
ssb
reception quality
terminal
period
identifier
Prior art date
Application number
PCT/JP2019/043770
Other languages
English (en)
French (fr)
Inventor
卓馬 高田
ユー ジャン
スーイ チン
リフェ ワン
アンシン リ
ラン チン
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2019/043770 priority Critical patent/WO2021090458A1/ja
Publication of WO2021090458A1 publication Critical patent/WO2021090458A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements

Definitions

  • the present invention relates to a terminal that executes wireless communication, particularly a terminal that receives a synchronization signal block.
  • LTE Long Term Evolution
  • LTE-Advanced LTE-Advanced
  • 5G New Radio
  • a radio base station (hereinafter referred to as gNB) forms a plurality of beams directed in different directions, and a plurality of beams are used and associated with a specific synchronization signal block (hereinafter referred to as SSB). It is stipulated that the SSBs of the above are sequentially transmitted (see Non-Patent Document 1).
  • the terminal measures the reception quality of each received SSB and detects a wireless link failure between the terminal and gNB based on the measured reception quality of the SSB.
  • the terminal can receive SSB and expand the communication capacity by increasing the number of beams directed in different directions in one wireless frame.
  • each gNB forming a large number of beams directed in different directions, and in areas where cells overlap, the terminal will receive SSBs from multiple gNBs at the same time. there is a possibility.
  • the terminal since the terminal measures the reception quality of the deteriorated SSB due to the interference of the SSB, the wireless link failure between the terminal and the gNB cannot be detected appropriately.
  • the present invention has been made in view of such a situation, and provides a terminal capable of appropriately detecting a wireless link failure between a terminal and a wireless base station while expanding the communication capacity. The purpose.
  • the terminal (terminal 200) is a receiving unit (reception unit 220) that receives a synchronization signal block associated with each of a plurality of beams formed in different directions in the first period. ), A control unit (for example, control unit 250) that acquires the reception quality of the received synchronization signal block in the first period, the reception quality of the acquired synchronization signal block, and the identifier of the synchronization signal block.
  • the receiving unit is associated with each of the beams less than the plurality of beams in the second period after the first period, and includes a transmitting unit (transmitting unit 210).
  • the control unit receives the reception quality of the received synchronization signal block in the second period, and the control unit receives the synchronization signal block to which the identifier is assigned. Based on the reception quality of the synchronization signal block acquired in the second period, the radio link failure between the terminal and the radio base station is detected.
  • FIG. 1 is an overall schematic configuration diagram of the wireless communication system 10.
  • FIG. 2 is a diagram illustrating an example of synchronous signal block (SSB) transmission.
  • FIG. 3 is a functional block configuration diagram of gNB100A, 100B, and 100C.
  • FIG. 4 is a functional block configuration diagram of the terminal 200.
  • FIG. 5 is a diagram illustrating an example of All SSB transmission.
  • FIG. 6 is a diagram illustrating an example of Partial SSB transmission.
  • FIG. 7 is a diagram showing an operation flow of gNB100A, 100B, 100C in the Partial SSB setting procedure.
  • FIG. 8 is a diagram showing an operation flow (operation example 1) of gNB100A, 100B, 100C in the SSB transmission scheduling procedure.
  • FIG. 1 is an overall schematic configuration diagram of the wireless communication system 10.
  • FIG. 2 is a diagram illustrating an example of synchronous signal block (SSB) transmission.
  • FIG. 3 is a functional block configuration diagram of gNB100
  • FIG. 9 is a diagram illustrating an example of SSB transmission in the operation example 1.
  • FIG. 10 is a diagram showing an operation flow (operation example 2) of gNB100A, 100B, 100C in the SSB transmission scheduling procedure.
  • FIG. 11 is a diagram illustrating an example of SSB transmission in the operation example 2.
  • FIG. 12 is a diagram showing an operation flow (operation example 3) of gNB100A, 100B, 100C in the SSB transmission scheduling procedure.
  • FIG. 13 is a diagram illustrating an example of SSB transmission in the operation example 3.
  • FIG. 14 is a diagram illustrating an example of SSB transmission in the operation example 3.
  • FIG. 15 is a diagram showing a qualitative comparative example of operation examples 1 to 3.
  • FIG. 16 is a diagram showing a quantitative comparative example of operation examples 1 to 3.
  • FIG. 17 is a diagram illustrating an example of radio resource management (RRM).
  • FIG. 18 is a diagram showing an operation flow of the terminal 200 in the beam level measurement procedure.
  • FIG. 19 is a diagram showing an operation flow of the terminal 200 in the complement / exclusion process.
  • FIG. 20 is a diagram showing an operation flow of the terminal 200 in the cell level measurement procedure.
  • FIG. 21 is a diagram illustrating an example of setting of a wireless link monitoring reference signal (RLM-RS).
  • FIG. 22 is a diagram showing an operation flow of the terminal 200 in the setting procedure of RLM-RS.
  • FIG. 23 is a diagram showing an example of the hardware configuration of the terminal 200 and the gNB100A, 100B, 100C.
  • FIG. 1 is an overall schematic configuration diagram of the wireless communication system 10 according to the present embodiment.
  • the radio communication system 10 is a radio communication system according to New Radio (NR), and includes a Next Generation-Radio Access Network (NG-RAN, not shown) and a terminal 200.
  • the terminal is also referred to as User Equipment (UE).
  • NR New Radio
  • NG-RAN Next Generation-Radio Access Network
  • UE User Equipment
  • NG-RAN includes radio base stations 100A, 100B, 100C (hereinafter, gNB100A, 100B, 100C).
  • gNB100A, 100B, 100C radio base stations 100A, 100B, 100C.
  • the specific configuration of the wireless communication system 10 including the number of gNBs and UEs is not limited to the example shown in FIG.
  • NG-RAN actually includes multiple NG-RAN Nodes, specifically gNB (or ng-eNB), and is connected to a core network (5GC, not shown) according to NR.
  • NG-RAN and 5GC may be simply expressed as a network.
  • Each of gNB100A, 100B, and 100C is a wireless base station according to NR, and executes wireless communication according to terminal 200 and NR.
  • Each of gNB100A, 100B, 100C and the terminal 200 bundles Massive MIMO and multiple component carriers (CC) that generate a more directional beam by controlling radio signals transmitted from multiple antenna elements. It can support carrier aggregation (CA) to be used and dual connectivity (DC) that simultaneously communicates between multiple NG-RAN Nodes and terminals.
  • CC is also called a carrier.
  • Each of gNB100A, 100B, and 100C forms one or more cells and manages the cells.
  • the terminal 200 can transition between cells formed by gNB100A, 100B, and 100C.
  • the “transition” typically means a handover between cells or a handover between gNBs, but the behavior of the terminal 200 such that the cell to be connected or the gNB to be connected is changed, such as cell reselection. (Behavior) can be included.
  • Each of gNB100A, 100B, and 100C includes a multi-element antenna, and beamforming can be formed by using a plurality of beams.
  • the terminal 200 can transmit and receive wireless signals between each of the gNB100A, 100B, 100C and the terminal 200 by establishing a beam pair between each of the gNB100A, 100B, 100C and the terminal 200.
  • Each of gNB100A, 100B, and 100C uses a plurality of beams to transmit a plurality of different synchronization signal blocks (SSBs). Each beam is associated with a particular SSB.
  • the SSB is used for initial access when the terminal 200 connects to the gNB, mobility control while the terminal 200 is connected to the gNB, and the like.
  • the SSB includes a sync signal (SS) and a physical broadcast channel (PBCH).
  • SS sync signal
  • PBCH physical broadcast channel
  • SS includes a primary synchronization signal (PSS) and a secondary synchronization signal (SSS).
  • PSS is used by the terminal 200 to synchronize the reception timing and frequency of the downlink signal of each gNB.
  • SSS is used by the terminal 200 to detect the physical cell identifier (ID) of each gNB.
  • ID physical cell identifier
  • PBCH is used to notify the radio parameters commonly used by the terminals in each gNB cell.
  • the frequency domain is composed of a plurality of Orthogonal Frequency Division Multiplexing (OFDM) subcarriers.
  • OFDM Orthogonal Frequency Division Multiplexing
  • NR supports 15kHz, 30kHz, 60kH and 120kHz as OFDM subcarrier spacing (SCS).
  • SCS OFDM subcarrier spacing
  • the time domain is composed of multiple OFDM symbols. Specifically, a plurality of OFDM symbols constitute a slot, a subframe, and a radio frame.
  • the slot consists of 14 OFDM symbols regardless of the SCS value.
  • the subframe is configured as a 1ms section. If the SCS is 15kHz, the subframe consists of one slot. If the SCS is 30kHz, the subframe consists of two slots. If the SCS is 60kHz, the subframe consists of 4 slots. If the SCS is 120kHz, the subframe consists of 8 slots.
  • the wireless frame is configured as a 10ms section.
  • a radio frame consists of 10 subframes regardless of the SCS value.
  • FIG. 2 is a diagram illustrating an example of SSB transmission. Specifically, FIG. 2 shows a configuration of SSB transmission when 64 SSBs (SSB0 to SSB63), an SSB transmission cycle of 20 ms, and an SCS of 120 kHz. One slot contains two SSBs. In this configuration, SSB identifiers 0 to 63 are assigned to 64 SSBs. The SSB identifier is also referred to as the SSB index or SSB number. SSB0 to SSB63 are arranged in one wireless frame according to the transmission pattern corresponding to SCS120kHz.
  • SSB transmission slots Multiple slots including SSB0 to SSB63 are called SSB transmission slots.
  • a plurality of slots including SSB0 to SSB63 are also referred to as SSB transmission periods.
  • SSB0 to SSB63 are transmitted in radio frames 0, 2, 4, 6, and 8 in FIG.
  • each of gNB100A, 100B, and 100C forms a plurality of beams (beams # 0 to # 63) directed in different directions.
  • the cells formed by each of gNB100A, 100B, and 100C are covered by beam # 0 to beam # 63.
  • Beams # 0 to beam # 63 are associated with SSB0 to SSB63, respectively.
  • Each of gNB100A, 100B, and 100C transmits a plurality of SSBs in sequence using a beam associated with a specific SSB.
  • the terminal 200 receives the SSB from each gNB, the terminal 200 acquires the SSB identifier using the PBCH included in the received SSB. As a result, the terminal 200 can identify which SSB received from SSB0 to SSB63.
  • the terminal 200 measures the reception quality of the SSB. For example, the terminal 200 measures the layer 1-reference signal reception power (L1-RSRP) or the layer 3-reference signal reception power (L3-RSRP).
  • L1-RSRP layer 1-reference signal reception power
  • L3-RSRP layer 3-reference signal reception power
  • the terminal 200 reports the reception quality of the SSB and the SSB identifier assigned to the SSB to gNB as the measurement result. If the reception quality of the SSB is L1-RSRP, this report is referred to as L1-RSRP beam reporting. If the reception quality of the SSB is L3-RSRP, this report is referred to as L3-RSRP beam reporting.
  • FIG. 3 is a functional block configuration diagram of gNB100A, 100B, and 100C. Since gNB100A, 100B, and 100C have the same configuration, the description of gNB100B and 100C will be omitted. As shown in FIG. 3, the gNB100A includes a transmission unit 110, a reception unit 120, a processing unit 130, a scheduling unit 140, and a control unit 150.
  • the transmission unit 110 transmits a downlink signal (DL signal) according to the NR.
  • the receiving unit 120 receives the uplink signal (UL signal) according to the NR.
  • the transmitting unit 110 and the receiving unit 120 include a physical uplink control channel (PUCCH), a physical uplink shared channel (PUSCH), a physical downlink control channel (PDCCH), and a physical downlink shared channel (PDSCH).
  • PUCCH physical uplink control channel
  • PUSCH physical uplink shared channel
  • PDCCH physical downlink control channel
  • PDSCH physical downlink control channel
  • PDSCH physical downlink shared channel
  • Wireless communication between the gNB 100A and the terminal 200 is performed via a physical random access channel (PRACH) or the like.
  • PRACH physical random access channel
  • the transmission unit 110 uses a beam to transmit the SSB associated with the beam.
  • the receiving unit 120 receives the reception quality of the SSB and the SSB identifier assigned to the SSB from the terminal 200 located in the cell formed by the gNB 100A.
  • the processing unit 130 forms a plurality of beams directed in different directions. For example, the processing unit 130 forms the beams # 0 to # 63 shown in FIG.
  • the processing unit 130 assigns an SSB identifier to each SSB.
  • the processing unit 130 associates each SSB to which an SSB identifier is assigned with a specific beam. For example, as shown in FIG. 2, the processing unit 130 assigns 64 SSBs to which SSB identifiers 0 to 63 are assigned to beam # 0 to beam # 63, respectively.
  • the processing unit 130 sequentially uses a plurality of beams formed in different directions and sequentially assigns SSBs associated with each beam according to the order of SSBs arranged on the radio frame. Instruct the transmitter 110 to transmit.
  • the first SSB transmission period is the SSB transmission period in radio frame 0 shown in FIG.
  • the processing unit 130 determines a beam that is associated with the SSB to which the SSB identifier received by the receiving unit 120 is assigned and that is smaller than the plurality of beams used in the first SSB transmission period.
  • the determined beam may be referred to as a beam reported from the terminal (UE reported beam).
  • the processing unit 130 stops beams other than the determined beam among the plurality of beams used in the first SSB transmission period.
  • the processing unit 130 uses the determined beam to sequentially transmit the SSB associated with the determined beam to the transmission unit 110. Instruct.
  • the second SSB transmission period is the SSB transmission period in the radio frame 2 shown in FIG.
  • Scheduling unit 140 schedules SSB transmission on the wireless frame.
  • the scheduling unit 140 sets the second SSB transmission period on the wireless frame for each first time interval (for example, 20 ms).
  • the second SSB transmission period set for each first time interval is the SSB transmission period in the radio frames 2, 4, 6, and 8 shown in FIG.
  • the scheduling unit 140 sets the first SSB transmission period for each second time interval (for example, 80 ms) on the wireless frame, and sets the second SSB transmission period for the first time interval (for example, 20 ms). ) Set for each.
  • the second time interval is set longer than the first time interval.
  • the first SSB transmission period set for each second time interval is the SSB transmission period for the radio frames 0 and 8 shown in FIG. 2, and the second SSB transmission period set for each first time interval is set.
  • the SSB transmission period is the SSB transmission period in the radio frames 2, 4, and 5 shown in FIG.
  • the scheduling unit 140 randomly sets the first SSB transmission period on the wireless frame, and sets the second SSB transmission period for each first time interval.
  • the scheduling unit 140 randomly sets the SSB transmission order in the first SSB transmission period and the second SSB transmission period.
  • the control unit 150 controls each functional block constituting the gNB 100A.
  • the control unit 150 controls the operation of the processing unit 130 when performing the Partial SSB setting procedure described later.
  • the control unit 150 controls the operation of the scheduling unit 140 when performing the SSB transmission scheduling procedure described later.
  • the control unit 150 controls the terminal 200 such as initial access and handover based on the reception quality of the SSB. I do.
  • FIG. 4 is a functional block configuration diagram of the terminal 200.
  • the terminal 200 includes a transmission unit 210, a reception unit 220, a measurement unit 230, a monitoring unit 240, and a control unit 250.
  • the transmission unit 210 transmits an uplink signal (UL signal) according to NR.
  • the receiving unit 220 receives the downlink signal (DL signal) according to the NR.
  • the transmitting unit 210 and the receiving unit 220 include a physical uplink control channel (PUCCH), a physical uplink shared channel (PUSCH), a physical downlink control channel (PDCCH), and a physical downlink shared channel (PDSCH).
  • PUCCH physical uplink control channel
  • PUSCH physical uplink shared channel
  • PDCH physical downlink control channel
  • PDSCH physical downlink shared channel
  • Wireless communication between the gNB 100A and the terminal 200 is performed via a physical random access channel (PRACH) or the like.
  • PRACH physical random access channel
  • the transmission unit 210 transmits the reception quality of the SSB received from each of the gNB100A, 100B, and 100C and the SSB identifier assigned to the SSB to the corresponding gNB.
  • the transmission unit 210 transmits the measurement result including the reception quality of SSB received from each of gNB100A, 100B, and 100C to the corresponding gNB.
  • the measurement result is, for example, the reception quality of the SSB subjected to the layer 1 filtering process, the reception quality of the SSB subjected to the layer 3 filtering process, and the like.
  • the receiving unit 220 receives SSB from each of gNB100A, 100B, and 100C.
  • the receiving unit 220 receives the information of the stopped beam from each of gNB100A, 100B, and 100C.
  • the information of the stopped beam includes the SSB identifier assigned to the SSB associated with the beam.
  • the receiver 220 receives from each of the gNB100A, 100B, and 100C the threshold value used to acquire the cell-level reception quality by the radio resource control (RRC) message.
  • the threshold is stored in, for example, the parameter absThreshSS-BlocksConsolidation included in the RRC message.
  • the threshold value may be the threshold value in the event that triggers the measurement report.
  • the receiving unit 220 receives the average number of SSBs used to acquire the cell-level reception quality from each of gNB100A, 100B, and 100C by the RRC message.
  • the average number of SSBs is stored in, for example, the parameter nrofSS-BlocksToAverage included in the RRC message.
  • the receiving unit 220 receives the information of the reference signal (RLM-RS) for wireless link monitoring from each of gNB100A, 100B, and 100C by the RRC message.
  • RLM-RS information is stored, for example, in the parameter RadioLinkMonitoringRS included in the RRC message.
  • the measuring unit 230 acquires the reception quality of SSB received from each of gNB100A, 100B, and 100C.
  • the measuring unit 230 applies the layer 1 filtering process described later to the received quality of the acquired SSB.
  • the measuring unit 230 applies the layer 3 filtering process described later to the received quality of the acquired SSB.
  • the measuring unit 230 applies the reception quality of the SSB to which the SSB identifier included in the stopped beam information is assigned in the first period described later to the reception quality of the SSB in the second period described later.
  • the measuring unit 230 estimates the reception quality of the SSB to which the SSB identifier included in the information of the stopped beam in the second period is assigned by using the reception quality of the SSB received in the second period described later. ..
  • the measurement unit 230 acquires the reception quality without using the SSB to which the SSB identifier included in the stopped beam information is assigned.
  • the measurement unit 230 excludes the reception quality below the threshold value from the reception quality acquired in the second period described later.
  • the monitoring unit 240 detects a wireless link failure between the terminal 200 and the gNB that transmitted the SSB based on the reception quality of the SSB acquired by the measuring unit 230.
  • the monitoring unit 240 detects a radio link failure between the terminal 200 and the gNB that transmitted the SSB based on the reception quality of the SSB other than the SSB to which the SSB identifier included in the stopped beam information is assigned. To do.
  • the control unit 250 controls each functional block constituting the terminal 200.
  • the control unit 250 controls the operation of the measurement unit 230 when performing wireless resource management (RRM) described later.
  • RRM wireless resource management
  • the control unit 250 determines which of the beam level measurement and the cell level measurement is to be performed in the RRM. For example, the control unit 250 determines which of the beam level measurement and the cell level measurement is to be performed based on the instruction from the network.
  • the control unit 250 controls the operation of the monitoring unit 240 when performing wireless link monitoring (RLM) described later. Further, the control unit 250 controls the operation of the measurement unit 230 as necessary when performing RLM.
  • RLM wireless link monitoring
  • FIG. 5 is a diagram illustrating an example of All SSB transmission. As shown in FIG. 5, in All SSB transmission, each gNB uses beam # 0 to beam # 63 (all beams) during the SSB transmission period in the radio frame, and is connected to beam # 0 to beam # 63, respectively. The associated SSB0 to SSB63 (all SSB) are sequentially transmitted (see FIG. 2).
  • FIG. 6 is a diagram illustrating an example of Partial SSB transmission.
  • each gNB corresponds to the part of the beam by using a part of the beams from the beam # 0 to the beam # 63 during the SSB transmission period in the radio frame.
  • the attached SSBs are transmitted in sequence (see FIG. 2).
  • gNB100A uses beam # 0, beam # 1 and beam # 63 to transmit SSB0, SSB1 and SSB63 associated with beam # 0, beam # 1 and beam # 63, respectively.
  • the gNB100B uses beam # 1 and beam # 2 to transmit SSB1 and SSB2 associated with beam # 1 and beam # 2, respectively.
  • the gNB100C uses beam # 0, beam # 4, and beam # 63 to transmit SSB0, SSB4, and SSB63 associated with beam # 0, beam # 4, and beam # 63, respectively.
  • FIG. 7 is a diagram showing an operation flow of gNB100A, 100B, 100C in the Partial SSB setting procedure. Since gNB100A, 100B, 100C perform the same operation flow, the description of gNB100B, 100C is omitted.
  • the gNB100A performs All SSB transmission in the first SSB transmission period before performing the Partial SSB setting procedure, and the SSB reception quality and the SSB assigned to the SSB are transmitted from the terminal 200 located in the cell formed by the gNB100A. Receives an identifier.
  • the first SSB transmission period is the SSB transmission period in radio frame 0 shown in FIG.
  • the gNB100A holds the reception quality of the received SSB and the SSB identifier.
  • gNB100A sets the parameter i to the value 0 (S11). The gNB100A determines whether or not the reception quality of the SSB to which the SSB identifier i is assigned is received from the terminal 200 (S13).
  • the gNB100A When the gNB100A receives the reception quality of the SSB, it maintains the beam associated with the SSB (S15). On the other hand, when the gNB100A does not receive the reception quality of the SSB, the gNB100A stops the beam associated with the SSB (S17).
  • GNB100A determines whether or not the parameter i has reached the value N (S19). For example, as shown in FIG. 2, when the number of SSBs is 64, the value N is 63. When the parameter i does not reach the value N, the gNB100A adds the value 1 to the parameter i (S21) and performs the processing of S13 again. On the other hand, the gNB100A ends its operation when the parameter i reaches the value N.
  • gNB100A sets Partial SSB and performs Partial SSB transmission in the second SSB transmission period.
  • the second SSB transmission period is the SSB transmission period in the radio frame 2 shown in FIG.
  • the gNB100A when the gNB100A determines that the reception quality of the SSB has been received, it may determine whether or not the reception quality of the SSB is equal to or higher than the threshold value.
  • the gNB100A processes S15 when the reception quality of SSB is equal to or higher than the threshold value.
  • gNB100A processes S17 when the reception quality of SSB is less than the threshold value.
  • SSB Transmission Scheduling Procedure (3.3) SSB Transmission Scheduling Procedure
  • gNB100A, 100B, 100C executes the SSB transmission scheduling procedure to set All SSB transmission or Partial SSB transmission for each SSB transmission period on the radio frame.
  • FIG. 8 is a diagram showing an operation flow (operation example 1) of gNB100A, 100B, 100C in the SSB transmission scheduling procedure. Since gNB100A, 100B, 100C perform the same operation flow, the description of gNB100B, 100C is omitted.
  • the gNB100A executes Partial SSB scheduling after setting All SSB transmission for the first SSB transmission period on the wireless frame (S31). Specifically, the gNB100A sets All SSB transmission for the first SSB transmission period on the wireless frame, and sets Partial SSB transmission for the second and subsequent SSB transmission periods.
  • FIG. 9 is a diagram illustrating an example of SSB transmission in the operation example 1. As shown in FIG. 9, due to the scheduling of SSB transmission according to the operation example 1, Partial SSB transmission is performed every 20 ms on the wireless frame. For example, Partial SSB transmission is set for each SSB transmission period of wireless frames 2, 4, 6, and 8 shown in FIG.
  • the above-mentioned second SSB transmission period is periodically set on the wireless frame.
  • FIG. 10 is a diagram showing an operation flow (operation example 2) of gNB100A, 100B, 100C in the SSB transmission scheduling procedure. Since gNB100A, 100B, 100C perform the same operation flow, the description of gNB100B, 100C is omitted.
  • gNB100A executes All SSB scheduling (S41). Specifically, the gNB100A sets All SSB transmission for the first SSB transmission period on the wireless frame, and cycles All SSB transmission for the second and subsequent SSB transmission periods on the wireless frame. To set.
  • the gNB100A subsequently executes Partial SSB scheduling (S43). Specifically, gNB100A sets Partial SSB transmission for the SSB transmission period in which All SSB transmission is not set.
  • FIG. 11 is a diagram illustrating an example of SSB transmission in the operation example 2. As shown in FIG. 11, due to the scheduling of SSB transmission according to the operation example 2, All SSB transmission is performed every 320 ms on the wireless frame, and Partial SSB transmission is performed between All SSB transmissions in the wireless frame. Performed every 20ms above. The cycle of All SSB transmission is not limited to 320 ms.
  • the above-mentioned first SSB transmission period is set on the wireless frame with a long cycle
  • the above-mentioned second SSB transmission period is set on the wireless frame with a short cycle.
  • FIG. 12 is a diagram showing an operation flow (operation example 3) of gNB100A, 100B, 100C in the SSB transmission scheduling procedure. Since gNB100A, 100B, 100C perform the same operation flow, the description of gNB100B, 100C is omitted.
  • gNB100A executes All SSB scheduling (S51). Specifically, gNB100A sets All SSB transmission for the first SSB transmission period on the wireless frame, and randomly performs All SSB transmission for the second and subsequent SSB transmission periods on the wireless frame. Set to.
  • the gNB100A subsequently executes Partial SSB scheduling (S53). Specifically, gNB100A sets Partial SSB transmission for the SSB transmission period in which All SSB transmission is not set.
  • FIG. 13 is a diagram illustrating an example of SSB transmission in the operation example 3. As shown in FIG. 13, due to the scheduling of SSB transmission according to the operation example 3, All SSB transmission is randomly performed on the wireless frame, and Partial SSB transmission is performed on the wireless frame during All SSB transmission. It is done every 20ms at.
  • FIG. 14 is a diagram illustrating an example of SSB transmission in the operation example 3. As shown in FIG. 14, by setting the transmission order of SSB according to the operation example 3, the SSB is transmitted in a random order in All SSB and Partial SSB.
  • gNB100A may randomly set only the transmission order of SSB in Partial SSB in S55.
  • the gNB100A randomly sets the SSB transmission order in All SSB after executing All SSB scheduling in S51, and after executing Partial SSB scheduling in S53, sets the SSB transmission order in partial SSB. It may be set randomly.
  • the above-mentioned first SSB transmission period is randomly set on the wireless frame, and the SSB transmission order is randomly set in the above-mentioned second SSB transmission period.
  • FIG. 15 is a diagram showing a qualitative comparative example of operation examples 1 to 3.
  • the reference example shown in FIG. 15 is an example that serves as a reference for operation examples 1 to 3. In the reference example, only All SSB transmission is performed during the entire SSB transmission period on the wireless frame.
  • FIG. 15 shows the qualitative relationship between the ratio of terminals that could not be connected to gNB and the qualitative signal-to-interference noise ratio (SINR) measured by the terminals connected to gNB in Reference Examples and Operation Examples 1 to 3. It shows a relationship.
  • SINR represents the ratio of the sum of the noise power and the total interference power to the received power of the SSB. The higher the SINR, the smaller the SSB interference.
  • the percentage of terminals that could not connect to gNB is defined as follows in this evaluation example. First, if the SINR value measured by the terminal is less than -6dB during the second and subsequent specified SSB transmission periods on the radio frame, the terminal enables initial access to gNB using SSB. It is determined that the connection to gNB could not be performed because it could not be performed. Next, the ratio of the terminals that could not connect to the gNB to all the terminals in the cell formed by the gNB is acquired. The definition of "percentage of terminals that could not connect to gNB" is not limited to this.
  • the average of the values acquired in multiple SSB transmission periods is defined as "the ratio of terminals that could not connect to gNB".
  • SINR measured by the terminal connected to gNB is defined as follows in this evaluation example. First, the cumulative distribution function is acquired based on the SINR value measured by the terminal connected to the gNB during the SSB transmission period described above. Next, when the number of terminals that measured SINR values of -6 dB or more based on the acquired cumulative distribution function is added in order from -6 dB to reach half of all terminals connected to gNB. Gets the SINR value of.
  • SINR measured by a terminal connected to gNB is not limited to this.
  • the average of the values acquired in multiple SSB transmission periods is defined as "SINR measured by the terminal connected to gNB".
  • the proportion of terminals that could not connect to gNB in operation example 1 is higher than the proportion of terminals that could not connect to gNB in reference example, operation example 2, and operation example 3.
  • Partial SSB transmission is performed during the second and subsequent SSB transmission periods on the wireless frame. Therefore, in the operation example 1, the possibility that the terminal can receive the SSB is low and the ratio of the terminals that could not connect to the gNB is relatively high as compared with the reference example.
  • the SINR in the terminal connected to the gNB increases in the order of the reference example, the operation example 1, the operation example 2, and the operation example 3. That is, the interference of SSB decreases in the order of the reference example, the operation example 1, the operation example 2, and the operation example 3.
  • partial SSB transmission is performed in a plurality of SSB transmission periods on the wireless frame. Therefore, in the operation example 1 and the operation example 2, the interference of SSB is small and the SINR is relatively high as compared with the reference example.
  • Partial SSB transmission is performed during the SSB transmission period on the wireless frame, in which All SSB transmission is randomly set and All SSB transmission is not performed. Further, in the operation example 3, the transmission order of SSB in each SSB transmission is randomly set. Therefore, in the operation example 3, the interference of SSB is smaller and the SINR is relatively high as compared with the reference example, the operation example 1 and the operation example 2.
  • FIG. 16 is a diagram showing a quantitative comparative example of operation examples 1 to 3.
  • it is an example that serves as a reference for operation examples 1 to 3.
  • only All SSB transmission is performed during the SSB transmission period on the wireless frame.
  • FIG. 16 shows the quantitative relationship between the improvement (dB) of SINR and the ratio of terminals that could not be connected to gNB in the reference example and the operation examples 1 to 3.
  • the improvement value of SINR is from the "SINR value measured by the terminal connected to gNB" in each of the operation examples 1 to 3 to the "SINR value measured by the terminal connected to gNB" in the reference example.
  • the value obtained by subtracting is shown.
  • the improvement of SINR in operation example 1 was + 2.2.dB, and the ratio of terminals that could not connect to gNB was 41%.
  • the improvement of SINR was + 2.2.dB, and the ratio of terminals that could not connect to gNB was 32%.
  • the improvement of SINR was +5.5.dB, and the ratio of terminals that could not connect to gNB was 32%.
  • the percentage of terminals that could not connect to gNB in the standard example was 32%.
  • RRM radio resource management
  • the terminal 200 forms a gNB forming a serving cell or an adjacent cell in the SSB-based RRM measurement timing setting window (SMTC) periodically set on the wireless frame.
  • SMTC SSB-based RRM measurement timing setting window
  • SMTC is also called the SSB measurement period in which the terminal 200 measures the reception quality of SSB.
  • the terminal 200 When the terminal 200 receives the SSB in the SMTC on the wireless frame, the terminal 200 measures the reception quality of the received SSB.
  • the measured reception quality is, for example, reference signal reception power (RSRP), reference signal reception quality (RSRQ), and the like.
  • the terminal 200 When the terminal 200 measures the reception quality of the SSB, it reports the measurement result acquired using the reception quality to the gNB that transmitted the SSB.
  • FIG. 17 is a diagram illustrating an example of RRM.
  • SMTC is set for each SSB transmission period on the wireless frame.
  • All SSB transmission or Partial SSB transmission is performed (see, for example, (3.3.2) Operation Example 2 or (3.3.3) Operation Example 3 described above).
  • the SMTC is referred to as the first period. Further, when SMTC is set in the SSB transmission period in which Partial SSB transmission is performed, the SMTC is referred to as a second period.
  • the terminal 200 receives the SSB in the SMTC and measures the reception quality of the SSB.
  • the measurement of reception quality by the terminal 200 includes the measurement of reception quality at the beam level and the measurement of reception quality at the cell level.
  • FIG. 18 is a diagram showing an operation flow of the terminal 200 in the beam level measurement procedure.
  • the terminal 200 uses the SS or PBCH included in the received SSB to obtain the SSB identifier.
  • the reception quality of the SSB acquired and received is measured (S71).
  • the measurement of reception quality is referred to as acquisition of reception quality at the beam level.
  • the terminal 200 When Partial SSB transmission is performed during the SSB transmission period in SMTC, when the terminal 200 receives the information of the stopped beam from gNB, the terminal 200 complements the reception quality of the SSB associated with the stopped beam in S71 or complements the reception quality of the SSB associated with the stopped beam. Exclude the SSB.
  • the information of the stopped beam includes the SSB identifier assigned to the SSB associated with the beam.
  • FIG. 19 is a diagram showing an operation flow of the terminal 200 in the complement / exclusion process. As shown in FIG. 19, the terminal 200 determines whether or not to complement the reception quality of the SSB associated with the stopped beam (S91).
  • the terminal 200 When complementing the reception quality of SSB, the terminal 200 acquires the SSB identifier from the information of the stopped beam and complements the reception quality of SSB associated with the stopped beam based on the SSB identifier (S93). ..
  • the terminal 200 receives the latest reception quality of the SSB to which the SSB identifier is assigned, which is actually measured in the SMTC before the current SMTC, and the reception of the SSB associated with the stopped beam. Apply to quality. In this way, the terminal 200 estimates the reception quality of the SSB associated with the stopped beam.
  • the terminal 200 may complement the reception quality of the SSB associated with the stopped beam by using the reception quality of the SSB actually measured by the current SMTC.
  • the terminal 200 is connected to SSB3 associated with the stopped beam # 3.
  • the beam # that discriminates adjacent SSB2 and SSB4 and applies statistical processing to the reception quality of SSB2 and the reception quality of SSB4 (for example, the average value of the reception quality of SSB2 and the reception quality of SSB4). Applies to the reception quality of SSB3 associated with 3.
  • the gNB may complement the reception quality of the SSB associated with the stopped beam.
  • gNB corresponds to beam # 2 reported from terminal 200.
  • the value obtained by statistically processing the received quality of SSB2 and the reception quality of SSB4 associated with beam # 4 reported from the terminal 200 (for example, the average of the reception quality of SSB2 and the reception quality of SSB4). Value) is regarded as the reception quality of SSB3 associated with beam # 3.
  • the terminal 200 excludes the SSB associated with the stopped beam (S95) and executes the processing of S71 without using the SSB.
  • the terminal 200 may exclude the SSB associated with the stopped beam by setting a defined threshold value and excluding the reception quality below the threshold value.
  • the terminal 200 when the terminal 200 measures the reception quality of the SSB in the SMTC, the terminal 200 performs a layer 1 filtering process (S73) and a layer 3 filtering process (S75) on the measured reception quality for each SSB identifier.
  • S73 layer 1 filtering process
  • S75 layer 3 filtering process
  • the terminal 200 may omit the layer 1 filtering process depending on the network settings.
  • the terminal 200 may omit the layer 3 filtering process depending on the network setting.
  • the terminal 200 reports to gNB the reception quality that has been filtered for each SSB identifier as the measurement result at the beam level (S77).
  • the measurement result at the beam level is also referred to as "measurement result including reception quality acquired in the second period”.
  • FIG. 20 is a diagram showing an operation flow of the terminal 200 in the cell level measurement procedure.
  • the beam level is similar to that of S91 in FIG. Acquire the reception quality at (S111).
  • the terminal 200 When the reception quality of SSB is measured in the SMTC, the terminal 200 performs a layer 1 filtering process on the measured reception quality for each SSB identifier (S113). The terminal 200 may omit the layer 1 filtering process.
  • the terminal 200 acquires the reception quality at the cell level by performing layer 1 filtering processing on the measured reception quality for each SSB identifier (S115).
  • the terminal 200 selects the reception quality of SSB exceeding the threshold value based on the threshold value notified from the network by the RRC message, and acquires the average value of the reception quality of the selected SSB.
  • the maximum number of SSBs used to acquire the average value is set so as not to exceed the average number of SSBs notified from the network by the RRC message.
  • the terminal 200 determines the reception quality of SSB in S115. Get the maximum value.
  • the terminal 200 When the terminal 200 acquires the average value of the reception quality of SSB exceeding the threshold value or the maximum value of the reception quality of SSB, the terminal 200 performs layer 3 filtering processing on the acquired value (S117). Note that the terminal 200 may omit the layer 3 filtering process depending on the network settings.
  • the terminal 200 reports the value subjected to the layer 3 filtering process to gNB as the measurement result at the cell level (S119).
  • the measurement result at the cell level is also referred to as "measurement result including reception quality acquired in the second period”.
  • Operation example 2 In operation example 2, the terminal 200 stopped at S115 of FIG. 20 without complementing the reception quality of the SSB associated with the stopped beam or excluding the SSB at S111 of FIG. Complement the reception quality of the SSB associated with the beam, or exclude the SSB.
  • Partial SSB transmission is performed during the SSB transmission period in SMTC
  • the terminal 200 receives the information of the stopped beam from gNB, in S115, the SSB associated with the stopped beam is used. Complement or exclude reception quality.
  • the reception quality of the SSB processed in S115 is the reception quality of the SSB subjected to the layer 1 filtering process in S113.
  • the reception quality of SSB in S115 is the reception quality at the beam level acquired in S111.
  • the terminal 200 When the terminal 200 complements the reception quality of SSB in S115, the terminal 200 sets the latest reception quality among the reception qualities of the SSB to which the SSB identifier is assigned, which is actually measured in the SMTC before the current SMTC. Applies to the reception quality of the SSB associated with the stopped beam. In this way, the terminal 200 estimates the reception quality of the SSB associated with the stopped beam.
  • the terminal 200 may complement the reception quality of the SSB associated with the stopped beam by using the reception quality of the SSB actually measured by the current SMTC.
  • the gNB may complement the reception quality of the SSB associated with the stopped beam.
  • the terminal 200 After complementing the reception quality of the SSB associated with the stopped beam, the terminal 200 selects the reception quality of the SSB exceeding the threshold based on the threshold notified from the network by the RRC message, and of the selected SSB. Get the average value of reception quality.
  • the terminal 200 excludes the SSB associated with the stopped beam.
  • the terminal 200 excludes the SSB associated with the stopped beam, and then selects the reception quality of the SSB exceeding the threshold based on the threshold notified from the network by the RRC message, and of the selected SSB. Get the average value of reception quality.
  • the terminal 200 is associated with the stopped beam by excluding the reception quality below the threshold value based on the threshold value notified from the network by the RRC message.
  • SSB may be excluded.
  • RLM wireless link monitoring
  • the terminal 200 receives the setting information of the reference signal for RLM (RLM-RS) by the RRC message.
  • the setting information of RLM-RS includes SSB (SSB for RLM) that can be used for RLM-RS.
  • the terminal 200 When the terminal 200 sets a predetermined number of SSBs out of a plurality of SSBs that can be used for RLM-RS, the terminal 200 measures the reception quality of the set SSBs in each SSB transmission period on the wireless frame and sets the threshold Q out. Monitor the quality of wireless links based on, Q in.
  • the measured reception quality is, for example, a signal-to-noise ratio (SINR), a signal-to-noise ratio (SNR), and the like.
  • the threshold value Q out is a threshold value on the low level side of reception quality, and is set based on the block error rate (BLER) of PDCCH indicating that SSB cannot be sufficiently received. Specifically, the threshold Q out corresponds to the reception quality (eg, SINR) required to satisfy the 10% BLER.
  • BLER block error rate
  • the threshold value Q in is the threshold value on the high level side of the reception quality, and is set based on the BLER of PDCCH indicating that the SSB can be received more reliably. Specifically, the threshold Q in corresponds to the reception quality (eg, SINR) required to satisfy the 2% BLER.
  • SINR reception quality
  • the terminal 200 when the terminal 200 measures the reception quality of a predetermined number of SSBs in each SSB transmission period on the wireless frame, if the reception quality of all the set SSBs falls below the threshold value Q out , the reception quality of the SSBs becomes low. Detects out-of-sync indicating a decrease. When the terminal 200 detects out-of-sync a predetermined number of times in succession, it activates a timer T310 for determining the occurrence of a wireless link failure.
  • the terminal 200 detects an in-sync indicating that the reception quality of the SSB has been restored.
  • the terminal 200 stops the timer T310 when in-sync detects it continuously a predetermined number of times.
  • the terminal 200 detects the wireless link failure when the timer T310 expires without detecting in-sync a predetermined number of times in succession, and reports the detection of the wireless link failure to gNB.
  • FIG. 21 is a diagram illustrating an example of setting the RLM-RS.
  • All SSB transmission or Partial SSB transmission is performed during each SSB transmission period on the wireless frame (for example, the above-mentioned (3.3.2) operation example 2 or (3.3.3)). See operation example 3).
  • RLM-RS1 and RLM-RS2 are set to the SSB associated with the stopped beam in the Partial SSB transmission.
  • the terminal 200 may activate the timer T310 for determining the occurrence of the wireless link failure to detect the wireless link failure.
  • FIG. 22 is a diagram showing an operation flow of the terminal 200 in the setting procedure of RLM-RS.
  • the terminal 200 receives the information of the stopped beam from the gNB in the Partial SSB transmission (S131).
  • the information of the stopped beam includes the SSB identifier assigned to the SSB associated with the beam.
  • the terminal 200 acquires the SSB identifier from the information of the stopped beam, and sets the SSB associated with the beam other than the stopped beam in RLM-RS based on the SSB identifier (S133). That is, the terminal 200 does not set the SSB associated with the stopped beam in RLM-RS in S133.
  • Partial SSB transmission is performed during the SSB transmission period in SMTC
  • the terminal 200 receives the information of the stopped beam from gNB, even if the reception quality of the SSB associated with the stopped beam is complemented. Good.
  • the information of the stopped beam includes the SSB identifier assigned to the SSB associated with the beam.
  • the terminal 200 When complementing the reception quality of SSB, the terminal 200 acquires the SSB identifier from the information of the stopped beam, and complements the reception quality of SSB associated with the stopped beam based on the SSB identifier.
  • the terminal 200 receives the latest reception quality of the SSB to which the SSB identifier is assigned, which is actually measured in the SMTC before the current SMTC, and the reception of the SSB associated with the stopped beam. Apply to quality. In this way, the terminal 200 estimates the reception quality of the SSB associated with the stopped beam.
  • the terminal 200 may complement the reception quality of the SSB associated with the stopped beam by using the reception quality of the SSB actually measured by the current SMTC.
  • the terminal 200 is connected to SSB3 associated with the stopped beam # 3.
  • the beam # that discriminates adjacent SSB2 and SSB4 and applies statistical processing to the reception quality of SSB2 and the reception quality of SSB4 (for example, the average value of the reception quality of SSB2 and the reception quality of SSB4). Applies to the reception quality of SSB3 associated with 3.
  • the terminal 200 can set the RLM-RS to the SSB associated with the stopped beam in the partial SSB transmission. ..
  • the terminal 200 in the second period, provides an SSB associated with each of the beams less than the plurality of beams formed by the gNB in the first period. Receive. The terminal 200 detects a radio link failure between the terminal 200 and the gNB that transmitted the SSB based on the reception quality of the SSB acquired in the first period and the second period.
  • the terminal 200 receives the SSB associated with each of the beams less than the plurality of beams formed by the gNB in the first period, thus causing SSB interference. It can be suppressed.
  • the terminal 200 can appropriately acquire the reception quality of SSB.
  • a beam is formed in the direction in which the terminal 200 was present during the first period, so that the ratio at which each terminal 200 can connect to the gNB is increased also in the second period. Can be done.
  • the terminal 200 can appropriately detect the wireless link failure between the terminal 200 and the gNB while expanding the connection capacity.
  • the terminal 200 detects the wireless link failure in the second period based on the reception quality of the SSB other than the SSB that is not transmitted from the gNB.
  • the terminal 200 can surely acquire the reception quality of SSB in the second period.
  • the terminal 200 receives the SSB identifier of the SSB that the gNB does not transmit in the second period.
  • the terminal 200 applies the reception quality of the SSB to which the SSB identifier is assigned in the first period to the reception quality of the SSB to which the SSB identifier is assigned in the second period.
  • the terminal 200 can appropriately complement the reception quality of the SSB to which the SSB identifier is assigned in the second period.
  • the terminal 200 can surely acquire the reception quality of the SSB.
  • the terminal 200 receives the SSB identifier of the SSB that the gNB does not transmit in the second period.
  • the terminal 200 uses the reception quality of the SSB received in the second period to estimate the reception quality of the SSB to which the SSB identifier is assigned in the second period.
  • the terminal 200 can appropriately complement the reception quality of the SSB to which the SSB identifier is assigned in the second period.
  • the terminal 200 can surely acquire the reception quality of the SSB.
  • each functional block may be realized using one physically or logically coupled device, or two or more physically or logically separated devices can be directly or indirectly (eg, for example). , Wired, wireless, etc.) and may be realized using these plurality of devices.
  • the functional block may be realized by combining the software with the one device or the plurality of devices.
  • Functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, deemed, and notification ( Broadcast, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc., but not limited to these. ..
  • a functional block (constituent unit) for functioning transmission is called a transmitting unit or a transmitter.
  • the method of realizing each of them is not particularly limited.
  • FIG. 23 is a diagram showing an example of the hardware configuration of the device.
  • the device may be configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like.
  • the word “device” can be read as a circuit, device, unit, etc.
  • the hardware configuration of the device may be configured to include one or more of each of the devices shown in the figure, or may be configured not to include some of the devices.
  • Each functional block of the device is realized by any hardware element of the computer device or a combination of the hardware elements.
  • the processor 1001 performs the calculation, controls the communication by the communication device 1004, and the memory. It is realized by controlling at least one of reading and writing of data in 1002 and storage 1003.
  • Processor 1001 operates, for example, an operating system to control the entire computer.
  • the processor 1001 may be composed of a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, a register, and the like.
  • CPU central processing unit
  • the processor 1001 reads a program (program code), a software module, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these.
  • a program program code
  • a program that causes a computer to execute at least a part of the operations described in the above-described embodiment is used.
  • the various processes described above may be executed by one processor 1001 or may be executed simultaneously or sequentially by two or more processors 1001.
  • Processor 1001 may be implemented by one or more chips.
  • the program may be transmitted from the network via a telecommunication line.
  • the memory 1002 is a computer-readable recording medium, and is composed of at least one such as ReadOnlyMemory (ROM), ErasableProgrammableROM (EPROM), Electrically ErasableProgrammableROM (EEPROM), and RandomAccessMemory (RAM). May be done.
  • the memory 1002 may be referred to as a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 can store a program (program code), a software module, or the like that can execute the method according to the embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium, for example, an optical disk such as a Compact Disc ROM (CD-ROM), a hard disk drive, a flexible disk, an optical magnetic disk (for example, a compact disk, a digital versatile disk, or a Blu-ray). It may consist of at least one (registered trademark) disk), smart card, flash memory (eg, card, stick, key drive), floppy (registered trademark) disk, magnetic strip, and the like.
  • Storage 1003 may be referred to as auxiliary storage.
  • the recording medium described above may be, for example, a database, server or other suitable medium containing at least one of memory 1002 and storage 1003.
  • the communication device 1004 is hardware (transmission / reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD). It may be composed of.
  • FDD frequency division duplex
  • TDD time division duplex
  • the input device 1005 is an input device (for example, keyboard, mouse, microphone, switch, button, sensor, etc.) that accepts input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that outputs to the outside.
  • the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by the bus 1007 for communicating information.
  • the bus 1007 may be configured by using a single bus, or may be configured by using a different bus for each device.
  • the device includes hardware such as a microprocessor, a digital signal processor (Digital Signal Processor: DSP), an Application Specific Integrated Circuit (ASIC), a Programmable Logic Device (PLD), and a Field Programmable Gate Array (FPGA).
  • the hardware may implement some or all of each functional block.
  • processor 1001 may be implemented using at least one of these hardware.
  • information notification includes physical layer signaling (for example, Downlink Control Information (DCI), Uplink Control Information (UCI), upper layer signaling (eg, RRC signaling, Medium Access Control (MAC) signaling, broadcast information (Master Information Block)). (MIB), System Information Block (SIB)), other signals or a combination thereof.
  • DCI Downlink Control Information
  • UCI Uplink Control Information
  • RRC signaling may also be referred to as an RRC message, for example, RRC Connection Setup. ) Message, RRC Connection Reconfiguration message, etc. may be used.
  • LTE LongTermEvolution
  • LTE-A LTE-Advanced
  • SUPER3G IMT-Advanced
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • FutureRadioAccess FAA
  • NewRadio NR
  • W-CDMA registered trademark
  • GSM registered trademark
  • CDMA2000 Code Division Multiple Access 2000
  • UMB UltraMobile Broadband
  • IEEE802.11 Wi-Fi (registered trademark)
  • IEEE802.16 WiMAX®
  • IEEE802.20 Ultra-WideBand (UWB), Bluetooth®, and other systems that utilize appropriate systems and at least one of the next generation systems extended based on them.
  • a plurality of systems may be applied in combination (for example, a combination of at least one of LTE and LTE-A and 5G).
  • the specific operation performed by the base station in the present disclosure may be performed by its upper node.
  • various operations performed for communication with the terminal are performed by the base station and other network nodes other than the base station (for example, MME or). It is clear that it can be done by at least one of (but not limited to, S-GW, etc.).
  • S-GW network node
  • the case where there is one network node other than the base station is illustrated above, it may be a combination of a plurality of other network nodes (for example, MME and S-GW).
  • Information and signals can be output from the upper layer (or lower layer) to the lower layer (or upper layer).
  • Input / output may be performed via a plurality of network nodes.
  • the input / output information may be stored in a specific location (for example, memory) or may be managed using a management table. Input / output information can be overwritten, updated, or added. The output information may be deleted. The input information may be transmitted to another device.
  • the determination may be made by a value represented by 1 bit (0 or 1), by a boolean value (Boolean: true or false), or by comparing numerical values (for example, a predetermined value). It may be done by comparison with the value).
  • the notification of predetermined information (for example, the notification of "being X") is not limited to the explicit one, but is performed implicitly (for example, the notification of the predetermined information is not performed). May be good.
  • Software whether referred to as software, firmware, middleware, microcode, hardware description language, or by any other name, is an instruction, instruction set, code, code segment, program code, program, subprogram, software module.
  • Applications, software applications, software packages, routines, subroutines, objects, executable files, execution threads, procedures, features, etc. should be broadly interpreted.
  • software, instructions, information, etc. may be transmitted and received via a transmission medium.
  • a transmission medium For example, a website, where the software uses at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.) and wireless technology (infrared, microwave, etc.).
  • wired technology coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • the information, signals, etc. described in this disclosure may be represented using any of a variety of different techniques.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may be represented by a combination of.
  • a channel and a symbol may be a signal (signaling).
  • the signal may be a message.
  • the component carrier (CC) may be referred to as a carrier frequency, a cell, a frequency carrier, or the like.
  • system and “network” used in this disclosure are used interchangeably.
  • the information, parameters, etc. described in the present disclosure may be expressed using absolute values, relative values from predetermined values, or using other corresponding information. It may be represented.
  • the radio resource may be one indicated by an index.
  • Base Station BS
  • Wireless Base Station Wireless Base Station
  • NodeB NodeB
  • eNodeB eNodeB
  • gNodeB gNodeB
  • Base stations are sometimes referred to by terms such as macrocells, small cells, femtocells, and picocells.
  • the base station can accommodate one or more (for example, three) cells (also called sectors). When a base station accommodates multiple cells, the entire base station coverage area can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (Remote Radio)). Communication services can also be provided by Head: RRH).
  • a base station subsystem eg, a small indoor base station (Remote Radio)
  • Communication services can also be provided by Head: RRH).
  • cell refers to a base station that provides communication services in this coverage, and part or all of the coverage area of at least one of the base station subsystems.
  • MS mobile station
  • UE user equipment
  • terminal terminal
  • Mobile stations can be used by those skilled in the art as subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless. It may also be referred to as a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable term.
  • At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a communication device, or the like.
  • At least one of the base station and the mobile station may be a device mounted on the mobile body, the mobile body itself, or the like.
  • the moving body may be a vehicle (eg, car, airplane, etc.), an unmanned moving body (eg, drone, self-driving car, etc.), or a robot (manned or unmanned). ) May be.
  • at least one of the base station and the mobile station includes a device that does not necessarily move during communication operation.
  • at least one of a base station and a mobile station may be an Internet of Things (IoT) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be read as a mobile station (user terminal, the same applies hereinafter).
  • communication between a base station and a mobile station has been replaced with communication between a plurality of mobile stations (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.).
  • D2D Device-to-Device
  • V2X Vehicle-to-Everything
  • Each aspect / embodiment of the present disclosure may be applied to the configuration.
  • the mobile station may have the functions of the base station.
  • words such as "up” and “down” may be read as words corresponding to inter-terminal communication (for example, "side").
  • an uplink channel, a downlink channel, and the like may be read as a side channel.
  • the mobile station in the present disclosure may be read as a base station.
  • the base station may have the functions of the mobile station.
  • the wireless frame may be composed of one or more frames in the time domain. Each one or more frames in the time domain may be referred to as a subframe.
  • the subframe may be further composed of one or more slots in the time domain.
  • the subframe may have a fixed time length (eg, 1 ms) that is independent of numerology.
  • the numerology may be a communication parameter that applies to at least one of the transmission and reception of a signal or channel.
  • Numerology includes, for example, SubCarrier Spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, wireless frame configuration, transmission / reception. It may indicate at least one of a specific filtering process performed by the machine in the frequency domain, a specific windowing process performed by the transmitter / receiver in the time domain, and the like.
  • the slot may be composed of one or more symbols (Orthogonal Frequency Division Multiple Access (OFDM) symbol, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbol, etc.) in the time domain. Slots may be unit of time based on numerology.
  • OFDM Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the slot may include a plurality of mini slots. Each minislot may consist of one or more symbols in the time domain.
  • the mini-slot may also be referred to as a sub-slot.
  • a minislot may consist of a smaller number of symbols than the slot.
  • PDSCH (or PUSCH) transmitted in time units larger than the minislot may be referred to as PDSCH (or PUSCH) mapping type A.
  • the PDSCH (or PUSCH) transmitted using the minislot may be referred to as PDSCH (or PUSCH) mapping type B.
  • the wireless frame, subframe, slot, minislot and symbol all represent the time unit when transmitting a signal.
  • the radio frame, subframe, slot, minislot and symbol may have different names corresponding to each.
  • one subframe may be referred to as a transmission time interval (TTI)
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI slot or one minislot
  • at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, a period shorter than 1ms (eg, 1-13 symbols), or a period longer than 1ms. It may be.
  • the unit representing TTI may be called a slot, a mini slot, or the like instead of a subframe.
  • TTI refers to, for example, the minimum time unit of scheduling in wireless communication.
  • a base station schedules each user terminal to allocate radio resources (frequency bandwidth that can be used in each user terminal, transmission power, etc.) in TTI units.
  • the definition of TTI is not limited to this.
  • the TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation.
  • the time interval for example, the number of symbols
  • the transport block, code block, code word, etc. may be shorter than the TTI.
  • one or more TTIs may be the minimum time unit for scheduling. Further, the number of slots (number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE Rel.8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, or the like.
  • TTIs shorter than normal TTIs may also be referred to as shortened TTIs, short TTIs, partial TTIs (partial or fractional TTIs), shortened subframes, short subframes, minislots, subslots, slots, and the like.
  • the long TTI (for example, normal TTI, subframe, etc.) may be read as a TTI having a time length of more than 1 ms
  • the short TTI (for example, shortened TTI, etc.) may be read as less than the TTI length of the long TTI and 1 ms. It may be read as a TTI having the above TTI length.
  • the resource block (RB) is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain.
  • the number of subcarriers contained in RB may be the same regardless of numerology, and may be, for example, 12.
  • the number of subcarriers contained in the RB may be determined based on numerology.
  • the time domain of RB may include one or more symbols, and may have a length of 1 slot, 1 mini slot, 1 subframe, or 1 TTI.
  • Each 1TTI, 1 subframe, etc. may be composed of one or a plurality of resource blocks.
  • One or more RBs include a physical resource block (Physical RB: PRB), a sub-carrier group (Sub-Carrier Group: SCG), a resource element group (Resource Element Group: REG), a PRB pair, an RB pair, and the like. May be called.
  • Physical RB Physical RB: PRB
  • SCG sub-carrier Group
  • REG resource element group
  • PRB pair an RB pair, and the like. May be called.
  • the resource block may be composed of one or a plurality of resource elements (ResourceElement: RE).
  • RE resource elements
  • 1RE may be a radio resource area of 1 subcarrier and 1 symbol.
  • Bandwidth Part (which may also be called partial bandwidth, etc.) may represent a subset of consecutive common resource blocks (RBs) for a neurology in a carrier. Good.
  • the common RB may be specified by the index of the RB with respect to the common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • BWP may include BWP for UL (UL BWP) and BWP for DL (DL BWP).
  • BWP for UL
  • DL BWP BWP for DL
  • One or more BWPs may be set in one carrier for the UE.
  • At least one of the configured BWPs may be active, and the UE may not expect to send or receive a given signal / channel outside the active BWP.
  • “cell”, “carrier” and the like in this disclosure may be read as “BWP”.
  • the above-mentioned structures such as wireless frames, subframes, slots, mini slots and symbols are merely examples.
  • the number of subframes contained in a wireless frame the number of slots per subframe or wireless frame, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, included in RB.
  • the number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
  • connection means any direct or indirect connection or connection between two or more elements, and each other. It can include the presence of one or more intermediate elements between two “connected” or “combined” elements.
  • the connection or connection between the elements may be physical, logical, or a combination thereof.
  • connection may be read as "access”.
  • the two elements use at least one of one or more wires, cables and printed electrical connections, and, as some non-limiting and non-comprehensive examples, the radio frequency domain.
  • Electromagnetic energies with wavelengths in the microwave and light (both visible and invisible) regions, etc. can be considered to be “connected” or “coupled” to each other.
  • the reference signal can also be abbreviated as Reference Signal (RS), and may be called a pilot (Pilot) depending on the applicable standard.
  • RS Reference Signal
  • Pilot pilot
  • references to elements using designations such as “first”, “second” as used in this disclosure does not generally limit the quantity or order of those elements. These designations can be used in the present disclosure as a convenient way to distinguish between two or more elements. Thus, references to the first and second elements do not mean that only two elements can be adopted there, or that the first element must somehow precede the second element.
  • determining and “determining” used in this disclosure may include a wide variety of actions.
  • “Judgment” and “decision” are, for example, judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (deriving), investigation (investigating), search (looking up, search, inquiry). (For example, searching in a table, database or another data structure), ascertaining may be regarded as “judgment” or “decision”.
  • judgment and “decision” are receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access.
  • Accessing (for example, accessing data in memory) may be regarded as "judgment” or “decision”.
  • judgment and “decision” mean that the things such as solving, selecting, choosing, establishing, and comparing are regarded as “judgment” and “decision”. Can include. That is, “judgment” and “decision” may include considering some action as “judgment” and “decision”. Further, “judgment (decision)” may be read as “assuming”, “expecting”, “considering” and the like.
  • the term "A and B are different” may mean “A and B are different from each other”.
  • the term may mean that "A and B are different from C”.
  • Terms such as “separate” and “combined” may be interpreted in the same way as “different”.
  • Wireless communication system 100A, 100B, 100C gNB 110 transmitter 120 receiver 130 Processing unit 140 Scheduling Department 150 Control unit 200 terminals 210 Transmitter 220 Receiver 230 Measuring unit 240 Monitoring unit 250 control unit 1001 processor 1002 memory 1003 storage 1004 communication device 1005 input device 1006 output device 1007 bus

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

端末200は、第1の期間において、異なる方向に向けて形成された複数のビームの各々に対応付けられた同期信号ブロックを受信する受信部220と、第1の期間において、受信した同期信号ブロックの受信品質を取得する制御部250と、取得した同期信号ブロックの受信品質と、当該同期信号ブロックの識別子とを送信する送信部210と、を備える。受信部220は、第1の期間より後の第2の期間において、複数のビームよりも少ないビームの各々に対応付けられ、かつ、当該識別子が割り当てられた同期信号ブロックを受信する。制御部250は、第2の期間において、受信した同期信号ブロックの受信品質を取得する。制御部250は、第1の期間及び第2の期間において取得した前記同期信号ブロックの受信品質に基づいて、前記端末と無線基地局との間における無線リンク障害を検出する。

Description

端末
 本発明は、無線通信を実行する端末、特に、同期信号ブロックを受信する端末に関する。
 3rd Generation Partnership Project(3GPP)は、Long Term Evolution(LTE)を仕様化し、LTEのさらなる高速化を目的としてLTE-Advanced(以下、LTE-Advancedを含めてLTEという)を仕様化している。また、3GPPでは、さらに、5G又はNew Radio(NR)などと呼ばれるLTEの後継システムの仕様が検討されている。
 NRでは、無線基地局(以下、gNBと呼ぶ)が、異なる方向に向けられる複数のビームを形成し、特定の同期信号ブロック(以下、SSBと呼ぶ)と対応付けられたビームを用いて、複数のSSBを順次送信することが規定されている(非特許文献1参照)。
 端末は、受信した各SSBの受信品質を測定して、測定したSSBの受信品質に基づいて、端末とgNBとの間における無線リンク障害を検出する。
 また、NRでは、1つの無線フレーム内において、異なる方向に向けられるビームの数を増やすことによって、端末がSSBを受信できる可能性を高めて、通信容量を拡大することが検討されている。
TS38.300 V15.7.0 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; NR; NR and NG-RAN Overall Description;Stage 2 (Release 15), 3GPP, 2019年9月
 しかしながら、異なる方向に向けられるビームの数を増やすと、各gNBが、異なる方向に向けられるビームを多数形成することとなり、セルが重複するエリアでは、端末が、複数のgNBからSSBを同時に受信する可能性がある。
 この場合、端末は、SSBの干渉により、劣化したSSBの受信品質を測定するため、端末とgNBとの間における無線リンク障害を適切に検出することができない。
 また、SSBの干渉を抑えるために、異なる方向に向けられるビームの数を単純に減らすと、端末がSSBを受信できる可能性が低くなり、通信容量が低下してしまう。
 そこで、本発明は、このような状況に鑑みてなされたものであり、通信容量を拡大しつつ、端末と無線基地局との間における無線リンク障害を適切に検出し得る端末を提供することを目的とする。
 本発明の一態様に係る端末(端末200)は、第1の期間において、異なる方向に向けて形成された複数のビームの各々に対応付けられた同期信号ブロックを受信する受信部(受信部220)と、前記第1の期間において、受信した同期信号ブロックの受信品質を取得する制御部(例えば、制御部250)と、取得した前記同期信号ブロックの受信品質と、前記同期信号ブロックの識別子とを送信する送信部(送信部210)と、を備え、前記受信部は、前記第1の期間より後の第2の期間において、前記複数のビームよりも少ないビームの各々に対応付けられ、かつ、前記識別子が割り当てられた同期信号ブロックを受信し、前記制御部は、前記第2の期間において、受信した同期信号ブロックの受信品質を取得し、前記制御部は、前記第1の期間及び前記第2の期間において取得した前記同期信号ブロックの受信品質に基づいて、前記端末と無線基地局との間における無線リンク障害を検出する。
図1は、無線通信システム10の全体概略構成図である。 図2は、同期信号ブロック(SSB)送信の一例を説明する図である。 図3は、gNB100A, 100B, 100Cの機能ブロック構成図である。 図4は、端末200の機能ブロック構成図である。 図5は、All SSB送信の一例を説明する図である。 図6は、Partial SSB送信の一例を説明する図である。 図7は、Partial SSB設定手順における、gNB100A, 100B, 100Cの動作フローを示す図である。 図8は、SSB送信スケジューリング手順における、gNB100A, 100B, 100Cの動作フロー(動作例1)を示す図である。 図9は、動作例1におけるSSB送信の一例を説明する図である。 図10は、SSB送信スケジューリング手順における、gNB100A, 100B, 100Cの動作フロー(動作例2)を示す図である。 図11は、動作例2におけるSSB送信の一例を説明する図である。 図12は、SSB送信スケジューリング手順における、gNB100A, 100B, 100Cの動作フロー(動作例3)を示す図である。 図13は、動作例3におけるSSB送信の一例を説明する図である。 図14は、動作例3におけるSSB送信の一例を説明する図である。 図15は、動作例1~3の定性的な比較例を示す図である。 図16は、動作例1~3の定量的な比較例を示す図である。 図17は、無線リソース管理(RRM)の一例を説明する図である。 図18は、ビームレベルの測定手順における、端末200の動作フローを示す図である。 図19は補完・除外処理における、端末200の動作フローを示す図である 図20は、セルレベルの測定手順における、端末200の動作フローを示す図である。 図21は、無線リンク監視用参照信号(RLM-RS)の設定の一例を説明する図である。 図22は、RLM-RSの設定手順における、端末200の動作フローを示す図である。 図23は、端末200及びgNB100A, 100B, 100Cのハードウェア構成の一例を示す図である。
 以下、実施形態を図面に基づいて説明する。なお、同一の機能や構成には、同一又は類似の符号を付して、その説明を適宜省略する。
 (1)無線通信システムの全体概略構成
 図1は、本実施形態に係る無線通信システム10の全体概略構成図である。無線通信システム10は、New Radio(NR)に従った無線通信システムであり、Next Generation-Radio Access Network(NG-RAN、不図示)及び端末200を含む。なお、端末は、User Equipment(UE)とも呼称される。
 NG-RANは、無線基地局100A, 100B, 100C(以下、gNB100A, 100B, 100C)を含む。なお、gNB及びUEの数を含む無線通信システム10の具体的な構成は、図1に示した例に限定されない。
 NG-RANは、実際には複数のNG-RAN Node、具体的には、gNB(またはng-eNB)を含み、NRに従ったコアネットワーク(5GC、不図示)と接続される。なお、NG-RAN及び5GCは、単にネットワークと表現されてもよい。
 gNB100A, 100B, 100Cの各々は、NRに従った無線基地局であり、端末200とNRに従った無線通信を実行する。gNB100A, 100B, 100Cの各々及び端末200は、複数のアンテナ素子から送信される無線信号を制御することによって、より指向性の高いビームを生成するMassive MIMO、複数のコンポーネントキャリア(CC)を束ねて用いるキャリアアグリゲーション(CA)、及び複数のNG-RAN Nodeと端末との間において同時に通信を行うデュアルコネクティビティ(DC)などに対応することができる。なお、CCはキャリアとも呼称される。
 gNB100A, 100B, 100Cの各々は、1つ以上のセルを形成し、当該セルを管理する。端末200は、gNB100A, 100B, 100Cが形成するセル間を遷移することができる。
 「遷移」とは、典型的には、セル間のハンドオーバ、又はgNB間のハンドオーバを意味するが、セル再選択など、接続先のセル又は接続先のgNBが変更されるような端末200の挙動(behavior)を含み得る。
 gNB100A, 100B, 100Cの各々は、多素子アンテナを含んでおり、複数のビームを用いて、ビームフォーミングを形成することができる。端末200は、gNB100A, 100B, 100Cの各々と端末200との間においてビームペアを確立することにより、gNB100A, 100B, 100Cの各々と端末200との間において無線信号の送受信を行うことができる。
 gNB100A, 100B, 100Cの各々は、複数のビームを用いて、異なる複数の同期信号ブロック(SSB)を送信する。各ビームは、特定のSSBに対応付けられている。SSBは、端末200がgNBに接続する際の初期アクセス、端末200がgNBに接続している間におけるモビリティ制御などに用いられる。SSBは、同期信号(SS)及び物理報知チャネル(PBCH)を含む。
 SSは、プライマリ同期信号(PSS)及びセカンダリ同期信号(SSS)を含む。PSSは、端末200が各gNBの下りリンク信号の受信タイミング及び周波数に同期するのに用いられる。SSSは、端末200が各gNBの物理セル識別子(ID)を検出するのに用いられる。PBCHは、各gNBのセル内の端末で共通に用いられる無線パラメータを通知するために用いられる。
 NRにおいて、周波数領域は、複数のOrthogonal Frequency Division Multiplexing(OFDM)サブキャリアによって構成される。NRでは、OFDMサブキャリア間隔(SCS)として、15kHz, 30kHz、60kH及び120kHzがサポートされる。
 NRにおいて、時間領域は、複数のOFDMシンボルによって構成される。具体的には、複数のOFDMシンボルによって、スロット、サブフレーム及び無線フレームが構成される。スロットは、SCSの値に関わらず14個のOFDMシンボルで構成される。
 サブフレームは、1ms区間として構成される。SCSが15kHzである場合、サブフレームは、1個のスロットで構成される。SCSが30kHzである場合、サブフレームは、2個のスロットで構成される。SCSが60kHzである場合、サブフレームは、4個のスロットで構成される。SCSが120kHzである場合、サブフレームは、8個のスロットで構成される。
 無線フレームは、10ms区間として構成される。無線フレームは、SCSの値に関わらず10個のサブフレームで構成される。
 図2は、SSB送信の一例を説明する図である。具体的には、図2は、64個のSSB(SSB0~SSB63)、SSB送信周期20ms、SCS120kHzとしたときのSSB送信の構成を示している。1個のスロットは、2個のSSBを含む。本構成では、64個のSSBには、SSB識別子0~63が割り当てられている。SSB識別子は、SSBインデックス又はSSB番号とも呼称される。SSB0~SSB63は、SCS120kHzに対応した送信パターンに従って、1個の無線フレーム内に配置される。
 SSB0~SSB63を含む複数のスロットは、SSB送信スロットと呼称される。SSB0~SSB63を含む複数のスロットは、SSB送信期間とも呼称される。本構成では、SSB送信周期は20msであるため、SSB0~SSB63は、図2では、無線フレーム0, 2, 4, 6, 8において送信される。
 図2に示すように、gNB100A, 100B, 100Cの各々は、異なる方向に向けられた複数のビーム(ビーム#0~ビーム#63)を形成する。gNB100A, 100B, 100Cの各々が形成するセルは、ビーム#0~ビーム#63によってカバーされる。ビーム#0~ビーム#63は、それぞれSSB0~SSB63に対応付けられている。
 gNB100A, 100B, 100Cの各々は、特定のSSBに対応付けられたビームを用いて、複数のSSBを順次送信する。端末200は、各gNBからSSBを受信すると、受信したSSBに含まれるPBCHを用いてSSB識別子を取得する。これにより、端末200は、SSB0~SSB63のうち、どのSSBを受信したのかを識別することができる。
 端末200は、各gNBからSSBを受信すると、当該SSBの受信品質を測定する。例えば、端末200は、レイヤ1-参照信号受信電力(L1-RSRP)、又はレイヤ3-参照信号受信電力(L3-RSRP)を測定する。なお、「SSBの受信品質を測定する」という表現は、「SSBの送信に用いたビームの受信品質を測定する」とも表現される。
 端末200は、測定結果として、SSBの受信品質と当該SSBに割り当てられたSSB識別子とをgNBに報告する。SSBの受信品質がL1-RSRPである場合、本報告はL1-RSRP beam reportingと呼称される。SSBの受信品質がL3-RSRPである場合、本報告はL3-RSRP beam reportingと呼称される。
 (2)無線通信システムの機能ブロック構成
 次に、無線通信システム10の機能ブロック構成について説明する。具体的には、gNB100A, 100B, 100Cの機能ブロック構成について説明する。以下、本実施形態における特徴に関連する部分についてのみ説明する。したがって、gNB100A, 100B, 100Cは、本実施形態における特徴に直接関係しない他の機能ブロックを備えることは勿論である。
 図3は、gNB100A, 100B, 100Cの機能ブロック構成図である。なお、gNB100A, 100B, 100Cは同じ構成を有するため、gNB100B, 100Cの説明は省略する。図3に示すように、gNB100Aは、送信部110、受信部120、処理部130、スケジューリング部140及び制御部150を備える。
 送信部110は、NRに従った下りリンク信号(DL信号)を送信する。受信部120は、NRに従った上りリンク信号(UL信号)を受信する。具体的には、送信部110及び受信部120は、物理上りリンク制御チャネル(PUCCH)、物理上りリンク共有チャネル(PUSCH)、物理下りリンク制御チャネル(PDCCH)、物理下りリンク共有チャネル(PDSCH)、物理ランダムアクセスチャネル(PRACH)などを介して、gNB100Aと端末200との間における無線通信を実行する。
 送信部110は、ビームを用いて、当該ビームに対応付けられたSSBを送信する。
 受信部120は、gNB100Aが形成するセル内に位置する端末200から、SSBの受信品質と当該SSBに割り当てられたSSB識別子とを受信する。
 処理部130は、異なる方向に向けられる複数のビームを形成する。例えば、処理部130は、図2に示したビーム#0~ビーム#63を形成する。
 処理部130は、各SSBにSSB識別子を割り当てる。処理部130は、SSB識別子が割り当てられた各SSBを特定のビームに対応付ける。例えば、処理部130は、図2に示すように、SSB識別子0~63が割り当てられた64個のSSBを、それぞれビーム#0~ビーム#63に割り当てる。
 処理部130は、第1のSSB送信期間において、異なる方向に向けて形成された複数のビームを用いて、無線フレーム上に配置されたSSBの順番に従って、各ビームに対応付けられたSSBを順次送信するように、送信部110に指示する。例えば、第1のSSB送信期間は、図2に示した無線フレーム0におけるSSB送信期間である。
 処理部130は、後述するように、受信部120で受信したSSB識別子が割り当てられたSSBに対応付けられ、かつ、第1のSSB送信期間で用いた複数のビームよりも少ないビームを決定する。なお、決定したビームは、端末から報告があったビーム(UE reported beam)と呼称されてもよい。処理部130は、後述するように、第1のSSB送信期間で用いた複数のビームのうち、決定したビーム以外の他のビームを停止する。
 処理部130は、第1のSSB送信期間よりも後の第2のSSB送信期間において、決定したビームを用いて、決定したビームに対応付けられたSSBを順次送信するように、送信部110に指示する。例えば、第2のSSB送信期間は、図2に示した無線フレーム2におけるSSB送信期間である。
 スケジューリング部140は、無線フレーム上において、SSB送信をスケジューリングする。
 スケジューリング部140は、無線フレーム上において、第2のSSB送信期間を第1の時間間隔(例えば、20ms)毎に設定する。例えば、第1の時間間隔毎に設定される第2のSSB送信期間は、図2に示した無線フレーム2, 4, 6, 8におけるSSB送信期間である。
 スケジューリング部140は、無線フレーム上において、第1のSSB送信期間を第2の時間間隔(例えば、80ms)毎に設定し、かつ、第2のSSB送信期間を第1の時間間隔(例えば、20ms)毎に設定する。この場合、第2の時間間隔は、第1の時間間隔よりも長く設定される。例えば、第2の時間間隔毎に設定される第1のSSB送信期間は、図2に示した無線フレーム0, 8におけるSSB送信期間であり、第1の時間間隔毎に設定される第2のSSB送信期間は、図2に示した無線フレーム2, 4, 5におけるSSB送信期間である。
 スケジューリング部140は、無線フレーム上において、第1のSSB送信期間をランダムに設定し、かつ、第2のSSB送信期間を第1の時間間隔毎に設定する。
 スケジューリング部140は、第1のSSB送信期間及び第2のSSB送信期間において、SSBの送信順番をランダムに設定する。
 制御部150は、gNB100Aを構成する各機能ブロックを制御する。
 制御部150は、後述するPartial SSB設定手順を行う場合、処理部130の動作を制御する。
 制御部150は、後述するSSB送信スケジューリング手順を行う場合、スケジューリング部140の動作を制御する。
 制御部150は、受信部120が、SSBの受信品質と当該SSBに割り当てられたSSB識別子とを端末200から受信すると、当該SSBの受信品質に基づいて、初期アクセス、ハンドオーバなどの端末200に対する制御を行う。
 図4は、端末200の機能ブロック構成図である。図4に示すように、端末200は、送信部210、受信部220、測定部230、監視部240及び制御部250を備える。
 送信部210は、NRに従った上りリンク信号(UL信号)を送信する。受信部220は、NRに従った下りリンク信号(DL信号)を受信する。具体的には、送信部210及び受信部220は、物理上りリンク制御チャネル(PUCCH)、物理上りリンク共有チャネル(PUSCH)、物理下りリンク制御チャネル(PDCCH)、物理下りリンク共有チャネル(PDSCH)、物理ランダムアクセスチャネル(PRACH)などを介して、gNB100Aと端末200との間における無線通信を実行する。
 送信部210は、gNB100A, 100B, 100Cの各々から受信したSSBの受信品質と、当該SSBに割り当てられたSSB識別子とを、対応するgNBに送信する。
 送信部210は、gNB100A, 100B, 100Cの各々から受信したSSBの受信品質を含む測定結果を、対応するgNBに送信する。当該測定結果は、例えば、レイヤ1フィルタリング処理を施されたSSBの受信品質、レイヤ3フィルタリング処理を施されたSSBの受信品質などである。
 受信部220は、gNB100A, 100B, 100Cの各々からSSBを受信する。
 受信部220は、gNB100A, 100B, 100Cの各々から、停止したビームの情報を受信する。停止したビームの情報は、当該ビームに対応付けられたSSBに割り当てられたSSB識別子を含む。
 受信部220は、gNB100A, 100B, 100Cの各々から、無線リソース制御(RRC)メッセージにより、セルレベルの受信品質を取得するのに用いる閾値を受信する。当該閾値は、例えば、RRCメッセージに含まれるパラメータabsThreshSS-BlocksConsolidationに格納されている。当該閾値は、測定報告をトリガするイベントにおける閾値であってもよい。
 受信部220は、gNB100A, 100B, 100Cの各々から、RRCメッセージにより、セルレベルの受信品質を取得するのに用いる平均化SSB数を受信する。平均化SSB数は、例えば、RRCメッセージに含まれるパラメータnrofSS-BlocksToAverageに格納されている。
 受信部220は、gNB100A, 100B, 100Cの各々から、RRCメッセージにより、無線リンク監視用の参照信号(RLM-RS)の情報を受信する。RLM-RSの情報は、例えば、RRCメッセージに含まれるパラメータRadioLinkMonitoringRSに格納されている。
 測定部230は、gNB100A, 100B, 100Cの各々から受信したSSBの受信品質を取得する。
 測定部230は、後述するレイヤ1フィルタリング処理を、取得したSSBの受信品質に施す。
 測定部230は、後述するレイヤ3フィルタリング処理を、取得したSSBの受信品質に施す。
 測定部230は、後述する第1の期間における、停止したビームの情報に含まれるSSB識別子が割り当てられたSSBの受信品質を、後述する第2の期間における、当該SSBの受信品質に適用する。
 測定部230は、後述する第2の期間において受信したSSBの受信品質を用いて、当該第2の期間における、停止したビームの情報に含まれるSSB識別子が割り当てられたSSBの受信品質を推定する。
 測定部230は、後述する第2の期間において、停止したビームの情報に含まれるSSB識別子が割り当てられたSSBを使用せずに、受信品質の取得を行う。
 測定部230は、後述する第2の期間において取得した受信品質のうち、閾値未満の受信品質を除外する。
 監視部240は、測定部230によって取得されたSSBの受信品質に基づいて、端末200と当該SSBを送信したgNBとの間における無線リンク障害を検出する。
 監視部240は、停止したビームの情報に含まれるSSBの識別子が割り当てられたSSB以外のSSBの受信品質に基づいて、端末200と、当該SSBを送信したgNBとの間における無線リンク障害を検出する。
 制御部250は、端末200を構成する各機能ブロックを制御する。
 制御部250は、後述する無線リソース管理(RRM)を行う場合、測定部230の動作を制御する。
 制御部250は、RRMにおいて、ビームレベルの測定及びセルレベルの測定のうち、どちらの測定を行うか決定する。例えば、制御部250は、ネットワークからの指示に基づいて、ビームレベルの測定及びセルレベルの測定のうち、どちらの測定を行うか決定する。
 制御部250は、後述する無線リンク監視(RLM)を行う場合、監視部240の動作を制御する。また、制御部250は、RLMを行う場合、必要に応じて、測定部230の動作を制御する。
 (3)無線通信システムの動作
 次に、無線通信システム10の動作について説明する。具体的には、Partial SSB設定手順、SSB送信スケジューリング手順、無線リソース管理及び無線リンク監視について順に説明する。
 (3.1)SSB送信の種類
 最初に、SSB送信の種類を説明する。具体的には、全SSB(All SSB)送信、及び部分SSB(Partial SSB)送信について説明する。
 (3.1.1)All SSB送信
 図5は、All SSB送信の一例を説明する図である。図5に示すように、All SSB送信では、各gNBは、無線フレーム内のSSB送信期間において、ビーム#0~ビーム#63(全てのビーム)を用いて、ビーム#0~ビーム#63にそれぞれ対応付けられたSSB0~SSB63(全てのSSB)を順次送信する(図2参照)。
 (3.1.2)Partial SSB送信
 図6は、Partial SSB送信の一例を説明する図である。図6に示すように、Partial SSB送信では、各gNBは、無線フレーム内のSSB送信期間において、ビーム#0~ビーム#63のうちの一部のビームを用いて、当該一部のビームに対応付けられたSSBを順次送信する(図2参照)。
 例えば、gNB100Aは、ビーム#0, ビーム#1及びビーム#63を用いて、ビーム#0, ビーム#1及びビーム#63にそれぞれ対応付けられたSSB0, SSB1及びSSB63を送信する。gNB100Bは、ビーム#1及びビーム#2を用いて、ビーム#1及びビーム#2にそれぞれ対応付けられたSSB1及びSSB2を送信する。gNB100Cは、ビーム#0, ビーム#4及びビーム#63を用いて、ビーム#0, ビーム#4及びビーム#63にそれぞれ対応付けられたSSB0, SSB4及びSSB63を送信する。
 (3.2)Partial SSB設定手順
 次に、上述したPartial SSBを設定する手順について説明する。図7は、Partial SSB設定手順における、gNB100A, 100B, 100Cの動作フローを示す図である。なお、gNB100A, 100B, 100Cは同じ動作フローを行うため、gNB100B, 100Cの説明は省略する。
 gNB100Aは、Partial SSB設定手順を行う前に、第1のSSB送信期間においてAll SSB送信を行い、gNB100Aが形成するセル内に位置する端末200から、SSBの受信品質と当該SSBに割り当てられたSSB識別子とを受信する。例えば、第1のSSB送信期間は、図2に示した無線フレーム0におけるSSB送信期間である。gNB100Aは、受信したSSBの受信品質とSSB識別子とを保持する。
 図7に示すように、gNB100Aは、パラメータiを値0に設定する(S11)。gNB100Aは、SSB識別子iが割り当てられたSSBの受信品質を、端末200から受信したか否かを判定する(S13)。
 gNB100Aは、当該SSBの受信品質を受信した場合には、当該SSBに対応付けられたビームを維持する(S15)。一方、gNB100Aは、当該SSBの受信品質を受信していない場合には、当該SSBに対応付けられたビームを停止する(S17)。
 gNB100Aは、パラメータiが値Nに達したか否かを判定する(S19)。例えば、図2に示すように、SSBの数が64個である場合には、値Nは63である。gNB100Aは、パラメータiが値Nに達していない場合には、パラメータiに値1を加えて(S21)、再度S13の処理を行う。一方、gNB100Aは、パラメータiが値Nに達した場合には、動作を終了する。
 このような動作フローにより、gNB100Aは、Partial SSBを設定して、第2のSSB送信期間においてPartial SSB送信を行う。例えば、第2のSSB送信期間は、図2に示した無線フレーム2におけるSSB送信期間である。
 なお、S13において、gNB100Aは、SSBの受信品質を受信したと判定した場合、当該SSBの受信品質が閾値以上であるか否かを判定してもよい。gNB100Aは、SSBの受信品質が閾値以上である場合には、S15の処理を行う。一方、gNB100Aは、SSBの受信品質が閾値未満である場合には、S17の処理を行う。
 (3.3)SSB送信スケジューリング手順
 次に、SSB送信スケジューリング手順について説明する。gNB100A, 100B, 100Cは、SSB送信スケジューリング手順を実行して、無線フレーム上の各SSB送信期間に対して、All SSB送信又はPartial SSB送信を設定する。
 (3.3.1)動作例1
 図8は、SSB送信スケジューリング手順における、gNB100A, 100B, 100Cの動作フロー(動作例1)を示す図である。なお、gNB100A, 100B, 100Cは同じ動作フローを行うため、gNB100B, 100Cの説明は省略する。
 図8に示すように、gNB100Aは、無線フレーム上の最初のSSB送信期間に対して、All SSB送信を設定した後、Partial SSBのスケジューリングを実行する(S31)。具体的には、gNB100Aは、無線フレーム上の最初のSSB送信期間に対して、All SSB送信を設定し、かつ、2回目以降のSSB送信期間に対して、Partial SSB送信を設定する。
 図9は、動作例1におけるSSB送信の一例を説明する図である。図9に示すように、動作例1にかかるSSB送信のスケジューリングにより、Partial SSB送信は、無線フレーム上にて20ms毎に行われる。例えば、Partial SSB送信は、図2に示した無線フレーム2, 4, 6, 8の各SSB送信期間に設定される。
 このような設定により、上述した第2のSSB送信期間が、無線フレーム上で周期的に設定される。
 (3.3.2)動作例2
 図10は、SSB送信スケジューリング手順における、gNB100A, 100B, 100Cの動作フロー(動作例2)を示す図である。なお、gNB100A, 100B, 100Cは同じ動作フローを行うため、gNB100B, 100Cの説明は省略する。
 図10に示すように、gNB100Aは、All SSBのスケジューリングを実行する(S41)。具体的には、gNB100Aは、無線フレーム上の最初のSSB送信期間に対して、All SSB送信を設定し、かつ、無線フレーム上の2回目以降のSSB送信期間に対して、All SSB送信を周期的に設定する。
 gNB100Aは、続いてPartial SSBのスケジューリングを実行する(S43)。具体的には、gNB100Aは、All SSB送信が設定されていないSSB送信期間に対して、Partial SSB送信を設定する。
 図11は、動作例2におけるSSB送信の一例を説明する図である。図11に示すように、動作例2にかかるSSB送信のスケジューリングにより、All SSB送信は、無線フレーム上にて320ms毎に行われ、かつ、Partial SSB送信は、All SSB送信の間において、無線フレーム上にて20ms毎に行われる。なお、All SSB送信の周期は320msに限定されない。
 なお、動作例2では、All SSB送信が行われる毎に、図7に示したPartial SSB設定手順が実行されて、新規のPartial SSBが設定される。
 このような設定により、上述した第1のSSB送信期間が、無線フレーム上に長周期で設定され、かつ、上述した第2のSSB送信期間が、無線フレーム上に短周期で設定される。
 (3.3.3)動作例3
 図12は、SSB送信スケジューリング手順における、gNB100A, 100B, 100Cの動作フロー(動作例3)を示す図である。なお、gNB100A, 100B, 100Cは同じ動作フローを行うため、gNB100B, 100Cの説明は省略する。
 図12に示すように、gNB100Aは、All SSBのスケジューリングを実行する(S51)。具体的には、gNB100Aは、無線フレーム上の最初のSSB送信期間に対して、All SSB送信を設定し、かつ、無線フレーム上の2回目以降のSSB送信期間に対して、All SSB送信をランダムに設定する。
 gNB100Aは、続いてPartial SSBのスケジューリングを実行する(S53)。具体的には、gNB100Aは、All SSB送信が設定されていないSSB送信期間に対して、Partial SSB送信を設定する。
 図13は、動作例3におけるSSB送信の一例を説明する図である。図13に示すように、動作例3にかかるSSB送信のスケジューリングにより、All SSB送信は、無線フレーム上にてランダムに行われ、かつ、Partial SSB送信は、All SSB送信の間において、無線フレーム上にて20ms毎に行われる。
 図12に戻り、gNB100Aは、Partial SSBのスケジューリングを実行すると、All SSB及びPartial SSBにおけるSSBの送信順番をランダムに設定する(S55)。図14は、動作例3におけるSSB送信の一例を説明する図である。図14に示すように、動作例3にかかるSSBの送信順番の設定により、 All SSB及びPartial SSBにおいて、SSBの送信がランダムな順番で行われる。
 なお、gNB100Aは、S55にて、Partial SSBにおけるSSBの送信順番のみをランダムに設定してもよい。
 gNB100Aは、S51にてAll SSBのスケジューリングを実行した後に、All SSBにおけるSSBの送信順番をランダムに設定し、かつ、S53にてPartial SSBのスケジューリングを実行した後に、partial SSBにおけるSSBの送信順番をランダムに設定してもよい。
 このような設定により、上述した第1のSSB送信期間が、無線フレーム上でランダムに設定され、かつ、上述した第2のSSB送信期間において、SSBの送信順番がランダムに設定される。
 (3.3.4)動作例1~3の評価例
 次に、動作例1~3の評価例について説明する。
 図15は、動作例1~3の定性的な比較例を示す図である。なお、図15に示した基準例は、動作例1~3の基準となる例である。基準例では、無線フレーム上の全SSB送信期間において、All SSB送信のみが行われる。
 図15は、基準例及び動作例1~3における、gNBに接続できなかった端末の割合の定性的な関係と、gNBに接続した端末によって測定された信号対干渉雑音比(SINR)の定性的な関係とを示している。なお、SINRは、SSBの受信電力に対する、雑音電力と総干渉電力との和の比率を表している。SINRが高いほど、SSBの干渉が小さい。
 gNBに接続できなかった端末の割合は、本評価例では、次のように定義される。最初に、無線フレーム上の2回目以降の規定されたSSB送信期間において、端末が測定したSINRの値が-6dB未満である場合、当該端末は、SSBを用いたgNBへの初期アクセスを有効に行えず、gNBに接続することができなかったと判定する。次に、gNBが形成するセル内に在圏する全端末に対する、gNBに接続できなかった端末の割合を取得する。なお、「gNBに接続できなかった端末の割合」の定義は、これに限定されない。
 上述した動作を複数のSSB送信期間で行う。複数のSSB送信期間で取得した値の平均を、「gNBに接続できなかった端末の割合」と定義する。
 gNBに接続した端末によって測定されたSINRは、本評価例では、次のように定義される。最初に、上述したSSB送信期間において、gNBに接続した端末によって測定されたSINRの値に基づいて、累積分布関数を取得する。次に、取得した累積分布関数に基づいて、-6dB以上のSINR値を測定した端末の数を、-6dBから順に加算して、gNBに接続した全端末のうち、半数の端末に達したときのSINRの値を取得する。なお、「gNBに接続した端末によって測定されたSINR」の定義は、これに限定されない。
 上述した動作を複数のSSB送信期間で行う。複数のSSB送信期間で取得した値の平均を、「gNBに接続した端末によって測定されたSINR」と定義する。
 図15に示すように、動作例1におけるgNBに接続できなかった端末の割合は、基準例、動作例2及び動作例3におけるgNBに接続できなかった端末の割合よりも高い。
 動作例1では、無線フレーム上の2回目以降のSSB送信期間において、Partial SSB送信が行わる。このため、動作例1では、基準例と比較して、端末がSSBを受信できる可能性が低く、gNBに接続できなかった端末の割合が相対的に高くなっている。
 一方、動作例2及び動作例3では、無線フレーム上の複数のSSB送信期間において、All SSB送信が行われる。このため、動作例2及び動作例3では、基準例と比較して、端末がSSBを受信できる可能性は同程度であり、gNBに接続できなかった端末の割合が相対的に低くなっている。
 図15に示すように、gNBに接続している端末におけるSINRは、基準例、動作例1、動作例2、及び動作例3の順に高くなる。すなわち、SSBの干渉は、基準例、動作例1、動作例2、及び動作例3の順に低くなる。
 動作例1及び動作例2では、無線フレーム上の複数のSSB送信期間において、Partial SSB送信が行われる。このため、動作例1及び動作例2では、基準例と比較して、SSBの干渉が小さく、SINRが相対的に高くなっている。
 動作例3では、無線フレーム上のSSB送信期間において、All SSB送信がランダムに設定され、かつ、All SSB送信が行われないSSB送信期間では、Partial SSB送信が行われる。また、動作例3では、各SSB送信におけるSSBの送信順番はランダムに設定される。このため、動作例3では、基準例、動作例1及び動作例2と比較して、SSBの干渉がより小さく、SINRが相対的に高くなっている。
 このように、動作例2,3では、gNBに接続できなかった端末の割合を増やさずに、SSBの干渉を低減することができる。
 図16は、動作例1~3の定量的な比較例を示す図である。なお、図16に示した基準例では、動作例1~3の基準となる例である。基準例では、無線フレーム上のSSB送信期間において、All SSB送信のみが行われる。
 図16は、基準例及び動作例1~3における、SINRの改善(dB)の定量的な関係と、gNBに接続できなかった端末の割合の定量的な関係とを示している。
 なお、SINRの改善の値は、動作例1~3の各々における「gNBに接続した端末によって測定されたSINRの値」から、基準例における「gNBに接続した端末によって測定されたSINRの値」を引いた値を示している。
 図16に示すように、動作例1における、SINRの改善は+2.2.dBであり、gNBに接続できなかった端末の割合は41%であった。動作例2における、SINRの改善は+2.2.dBであり、gNBに接続できなかった端末の割合は32%であった。動作例3における、SINRの改善は+5.5.dBであり、gNBに接続できなかった端末の割合は32%であった。なお、基準例におけるgNBに接続できなかった端末の割合は32%であった。
 (3.4)無線リソース管理
 次に、無線リソース管理(RRM)について説明する。RRMは、ハンドオーバなどの端末200のモビリティ動作を適切に制御するために、端末200が在圏するサービングセル、又は当該サービングセルに隣接する隣接セルにおける受信品質を、ネットワーク側が事前に取得するために実行される。
 具体的には、RRMにおいて、端末200は、無線フレーム上に周期的に設定された、SSBに基づくRRM測定タイミングの設定ウィンドウ(SMTC)内において、サービングセルを形成するgNB、又は隣接セルを形成するgNBからSSBを受信する。なお、SMTC周期は、SSB送信周期と一致していなくてもよい。
 SMTCは、端末200がSSBの受信品質を測定するSSB測定期間とも呼称される。
 端末200は、無線フレーム上のSMTC内においてSSBを受信すると、受信したSSBの受信品質を測定する。測定される受信品質は、例えば、参照信号受信電力(RSRP)、参照信号受信品質(RSRQ)などである。
 端末200は、SSBの受信品質を測定すると、当該SSBを送信したgNBに対して、当該受信品質を用いて取得された測定結果を報告する。
 図17は、RRMの一例を説明する図である。図17に示すように、無線フレーム上の各SSB送信期間にSMTCが設定されている。ここで、各SSB送信期間では、All SSB送信又はPartial SSB送信が行われる(例えば、上述した(3.3.2)動作例2又は(3.3.3)動作例3参照)。
 なお、All SSB送信が行われるSSB送信期間にSMTCが設定されている場合、当該SMTCは、第1の期間と呼称される。また、Partial SSB送信が行われるSSB送信期間にSMTCが設定されている場合、当該SMTCは、第2の期間と呼称される。
 このような設定により、端末200は、SMTC内においてSSBを受信して、当該SSBの受信品質を測定する。
 端末200による受信品質の測定は、ビームレベルにおける受信品質の測定と、セルレベルにおける受信品質の測定とを含む。
 (3.4.1)ビームレベルの測定手順
 最初に、ビームレベルにおける受信品質の測定について説明する。
 図18は、ビームレベルの測定手順における、端末200の動作フローを示す図である。図18に示すように、端末200は、無線フレーム上のSMTC内において、特定のビームを用いて送信されたSSBをgNBから受信すると、受信したSSBに含まれるSSまたはPBCHを用いてSSB識別子を取得し、かつ、受信したSSBの受信品質を測定する(S71)。当該受信品質の測定は、ビームレベルでの受信品質の取得と呼称される。
 SMTC内のSSB送信期間において、Partial SSB送信が行われる場合、端末200は、停止したビームの情報をgNBから受信すると、S71にて、停止したビームに対応付けられたSSBの受信品質を補完又は当該SSBを除外する。なお、停止したビームの情報は、当該ビームに対応付けられたSSBに割り当てられたSSB識別子を含む。
 図19は、補完・除外処理における、端末200の動作フローを示す図である。図19に示すように、端末200は、停止したビームに対応付けられたSSBの受信品質を補完するか否かを判定する(S91)。
 端末200は、SSBの受信品質を補完する場合、停止したビームの情報からSSB識別子を取得し、当該SSB識別子に基づいて、停止したビームに対応付けられたSSBの受信品質を補完する(S93)。
 例えば、端末200は、現在のSMTCより前のSMTCにおいて実際に測定した、当該SSB識別子が割り当てられたSSBの受信品質のうち、最新の受信品質を、停止したビームに対応付けられたSSBの受信品質に適用する。このようにして、端末200は、停止したビームに対応付けられたSSBの受信品質を推定する。
 なお、端末200は、現在のSMTCにおいて実際に測定したSSBの受信品質を用いて、停止したビームに対応付けられたSSBの受信品質を補完してもよい。
 例えば、現在のSMTCにおいて、図2に示すビーム#2及びビーム#4が実際に送信され、ビーム#3が停止されている場合、端末200は、停止したビーム#3に対応付けられたSSB3に隣り合うSSB2及びSSB4を識別して、SSB2の受信品質とSSB4の受信品質とに統計処理を施した値(例えば、SSB2の受信品質とSSB4の受信品質との平均値)を、停止したビーム#3に対応付けられたSSB3の受信品質に適用する。
 また、端末200が、停止したビームに対応付けられたSSBの受信品質を補完する代わりに、gNBが、停止したビームに対応付けられたSSBの受信品質を補完してもよい。
 例えば、現在のSMTCにおいて、図2に示すビーム#2及びビーム#4が実際に送信され、ビーム#3が停止されている場合、gNBは、端末200から報告された、ビーム#2に対応付けられたSSB2の受信品質と、端末200から報告された、ビーム#4に対応付けられたSSB4の受信品質とに統計処理を施した値(例えば、SSB2の受信品質とSSB4の受信品質との平均値)を、ビーム#3に対応付けられたSSB3の受信品質と見なす。
 一方、端末200は、SSBの受信品質を補完しない場合、停止したビームに対応付けられたSSBを除外して(S95)、当該SSBを使用せずに、S71の処理を実行する。
 なお、端末200が、SSBを受信せずに、当該SSBのスロットにて受信品質を測定した場合、当該受信品質は極めて小さい値となる。このため、端末200は、規定された閾値を設定して、当該閾値未満の受信品質を除外することにより、停止したビームに対応付けられたSSBを除外してもよい。
 図18に戻り、端末200は、当該SMTCにおいて、SSBの受信品質を測定すると、SSB識別子毎に、測定した受信品質に対して、レイヤ1フィルタリング処理(S73)及びレイヤ3フィルタリング処理(S75)を施す。なお、ネットワークによる設定により、端末200は、レイヤ1フィルタリング処理を省略してもよい。同様に、ネットワークによる設定により、端末200は、レイヤ3フィルタリング処理を省略してもよい。
 端末200は、ビームレベルにおける測定結果として、SSB識別子毎に、フィルタリング処理を施した受信品質をgNBに報告する(S77)。なお、ビームレベルにおける測定結果は、「第2の期間において取得した受信品質を含む測定結果」とも呼称される。
 (3.4.2)セルレベルの測定手順
 次に、セルレベルにおける受信品質の測定について説明する。
 (3.4.2.1)動作例1
 図20は、セルレベルの測定手順における、端末200の動作フローを示す図である。動作例1では、図20に示すように、端末200は、無線フレーム上のSMTC内において、特定のビームを用いて送信されたSSBをgNBから受信すると、図18のS91と同様に、ビームレベルでの受信品質の取得を行う(S111)。
 端末200は、当該SMTCにおいて、SSBの受信品質を測定すると、SSB識別子毎に、測定した受信品質に対して、レイヤ1フィルタリング処理を施す(S113)。なお、端末200は、レイヤ1フィルタリング処理を省略してもよい。
 端末200は、SSB識別子毎に、測定した受信品質に対して、レイヤ1フィルタリング処理を施すと、セルレベルでの受信品質の取得を行う(S115)。
 具体的には、端末200は、RRCメッセージによってネットワークから通知された閾値に基づいて、当該閾値を超えるSSBの受信品質を選択して、選択したSSBの受信品質の平均値を取得する。なお、平均値の取得に用いられるSSBの最大数は、RRCメッセージによってネットワークから通知された平均化SSB数を超えないように設定される。
 また、端末200は、RRCメッセージによって、閾値及び平均化SSB数のうち、少なくとも1つが通知されない場合、又は閾値を超えるSSBの受信品質が存在しない場合には、S115にて、SSBの受信品質の最大値を取得する。
 端末200は、閾値を超えるSSBの受信品質の平均値、又はSSBの受信品質の最大値を取得すると、取得した値に対して、レイヤ3フィルタリング処理を施す(S117)。なお、ネットワークによる設定により、端末200は、レイヤ3フィルタリング処理を省略してもよい。
 端末200は、セルレベルにおける測定結果として、レイヤ3フィルタリング処理を施した値をgNBに報告する(S119)。なお、セルレベルにおける測定結果は、「第2の期間において取得した受信品質を含む測定結果」とも呼称される。
 (3.4.2.2)動作例2
 動作例2では、端末200は、図20のS111にて、停止したビームに対応付けられたSSBの受信品質の補完、又は当該SSBの除外を行わずに、図20のS115にて、停止したビームに対応付けられたSSBの受信品質の補完、又は当該SSBの除外を行う。
 具体的には、SMTC内のSSB送信期間において、Partial SSB送信が行われる場合、端末200は、停止したビームの情報をgNBから受信すると、S115にて、停止したビームに対応付けられたSSBの受信品質を補完又は除外する。
 ここで、S115で処理されるSSBの受信品質は、S113にて、レイヤ1フィルタリング処理を施されたSSBの受信品質である。なお、レイヤ1フィルタリング処理を省略する場合、S115におけるSSBの受信品質は、S111にて取得されたビームレベルにおける受信品質である。
 端末200は、S115にて、SSBの受信品質を補完する場合、現在のSMTCより前のSMTCにおいて実際に測定した、当該SSB識別子が割り当てられたSSBの受信品質のうち、最新の受信品質を、停止したビームに対応付けられたSSBの受信品質に適用する。このようにして、端末200は、停止したビームに対応付けられたSSBの受信品質を推定する。
 なお、端末200は、現在のSMTCにおいて実際に測定したSSBの受信品質を用いて、停止したビームに対応付けられたSSBの受信品質を補完してもよい。
 また、端末200が、停止したビームに対応付けられたSSBの受信品質を補完する代わりに、gNBが、停止したビームに対応付けられたSSBの受信品質を補完してもよい。
 端末200は、停止したビームに対応付けられたSSBの受信品質を補完した後、RRCメッセージによってネットワークから通知された閾値に基づいて、閾値を超えるSSBの受信品質を選択して、選択したSSBの受信品質の平均値を取得する。
 一方、端末200は、S115にて、SSBの受信品質を補完しない場合、停止したビームに対応付けられたSSBを除外する。
 この場合、端末200は、停止したビームに対応付けられたSSBを除外した後、RRCメッセージによってネットワークから通知された閾値に基づいて、閾値を超えるSSBの受信品質を選択して、選択したSSBの受信品質の平均値を取得する。
 なお、端末200は、停止したビームの情報をgNBから受信する代わりに、RRCメッセージによってネットワークから通知された閾値に基づいて、閾値未満の受信品質を除外することにより、停止したビームに対応付けられたSSBを除外してもよい。
 (3.5)無線リンク監視
 次に、無線リンク監視(RLM)について説明する。RLMは、端末200が在圏するサービングセルにおいて、端末200が、gNBと端末200との間における無線リンク障害を検出するために実行される。
 具体的には、端末200は、RRCメッセージによって、RLM用参照信号(RLM-RS)の設定情報を受信する。RLM-RSの設定情報は、RLM-RSに使用可能なSSB(RLM用SSB)などを含む。
 端末200は、RLM-RSに使用可能な複数のSSBのうち、所定数のSSBを設定すると、無線フレーム上の各SSB送信期間において、設定されたSSBの受信品質を測定して、閾値Qout, Qinに基づいて、無線リンクの品質を監視する。測定される受信品質は、例えば、信号対干渉雑音比(SINR)、信号雑音比(SNR)などである。
 閾値Qoutは、受信品質の低レベル側の閾値であり、SSBを十分に受信できないことを示すPDCCHのブロック誤り率(BLER)に基づいて設定される。具体的には、閾値Qoutは、10%のBLERを満たすために必要な受信品質(例えば、SINR)に相当する。
 閾値Qinは、受信品質の高レベル側の閾値であり、SSBをより確かに受信できることを示すPDCCHのBLERに基づいて設定される。具体的には、閾値Qinは、2%のBLERを満たすために必要な受信品質(例えば、SINR)に相当する。
 例えば、端末200は、無線フレーム上の各SSB送信期間において、所定数のSSBの受信品質を測定する場合、設定された全てのSSBの受信品質が閾値Qoutを下回ると、SSBの受信品質が低下したことを示すout-of-syncを検出する。端末200は、out-of-syncを所定回数連続して検出すると、無線リンク障害の発生を判定するためのタイマT310を起動する。
 端末200は、少なくとも1つのSSBの受信品質が閾値Qinを上回ると、SSBの受信品質が回復したことを示すin-syncを検出する。端末200は、in-syncが所定回数連続して検出すると、タイマT310を停止する。
 一方、端末200は、in-syncが所定回数連続して検出されることなく、タイマT310が満了すると、無線リンク障害を検出して、無線リンク障害の検出をgNBに報告する。
 (3.5.1)RLM-RSの設定
 次に、RLM-RSの設定について説明する。図21は、RLM-RSの設定の一例を説明する図である。図21に示すように、無線フレーム上の各SSB送信期間では、All SSB送信又はPartial SSB送信が行われる(例えば、上述した(3.3.2)動作例2又は(3.3.3)動作例3参照)。このような構成において、RLM-RS1及びRLM-RS2が、Partial SSB送信において停止したビームに対応付けられたSSBに設定されている。
 このため、Partial SSB送信が行われるSSB送信期間では、RLM-RS1及びRLM-RS2の受信品質は閾値Qoutを下回る。この場合、無線リンクの品質は良好であるにも関わらず、端末200は、無線リンク障害の発生を判定するためのタイマT310を起動して、無線リンク障害を検出する可能性がある。
 図22は、RLM-RSの設定手順における、端末200の動作フローを示す図である。
 図22に示すように、端末200は、Partial SSB送信において、停止したビームの情報をgNBから受信する(S131)。停止したビームの情報は、当該ビームに対応付けられたSSBに割り当てられたSSB識別子を含む。
 端末200は、停止したビームの情報からSSB識別子を取得し、当該SSB識別子に基づいて、停止したビーム以外の他のビームに対応付けられたSSBをRLM-RSに設定する(S133)。すなわち、端末200は、S133にて、停止したビームに対応付けられたSSBをRLM-RSに設定しない。
 このような動作により、無線リンク障害の誤検出を抑えることができる。
 なお、gNBが、RLM-RSに設定されたSSBを端末200から受信して、無線フレーム上の各SSB送信周期において、当該SSBに対応付けられたビームを停止せずに、必ず送信してもよい。この動作によっても、無線リンク障害の誤検出を抑えることができる。
 また、SMTC内のSSB送信期間において、Partial SSB送信が行われる場合、端末200は、停止したビームの情報をgNBから受信すると、停止したビームに対応付けられたSSBの受信品質を補完してもよい。停止したビームの情報は、当該ビームに対応付けられたSSBに割り当てられたSSB識別子を含む。
 端末200は、SSBの受信品質を補完する場合、停止したビームの情報からSSB識別子を取得し、当該SSB識別子に基づいて、停止したビームに対応付けられたSSBの受信品質を補完する。
 例えば、端末200は、現在のSMTCより前のSMTCにおいて実際に測定した、当該SSB識別子が割り当てられたSSBの受信品質のうち、最新の受信品質を、停止したビームに対応付けられたSSBの受信品質に適用する。このようにして、端末200は、停止したビームに対応付けられたSSBの受信品質を推定する。
 なお、端末200は、現在のSMTCにおいて実際に測定したSSBの受信品質を用いて、停止したビームに対応付けられたSSBの受信品質を補完してもよい。
 例えば、現在のSMTCにおいて、図2に示すビーム#2及びビーム#4が実際に送信され、ビーム#3が停止されている場合、端末200は、停止したビーム#3に対応付けられたSSB3に隣り合うSSB2及びSSB4を識別して、SSB2の受信品質とSSB4の受信品質とに統計処理を施した値(例えば、SSB2の受信品質とSSB4の受信品質との平均値)を、停止したビーム#3に対応付けられたSSB3の受信品質に適用する。
 このように、停止したビームに対応付けられたSSBの受信品質を補完することにより、端末200は、Partial SSB送信において停止したビームに対応付けられたSSBに、RLM-RSを設定することができる。
 (4)作用・効果
 上述した実施形態によれば、端末200は、第2の期間において、第1の期間においてgNBによって形成された複数のビームよりも少ないビームの各々に対応付けられたSSBを受信する。端末200は、第1の期間及び第2の期間において取得したSSBの受信品質に基づいて、端末200と、当該SSBを送信したgNBとの間における無線リンク障害を検出する。
 このような構成により、第2の期間において、端末200は、第1の期間においてgNBによって形成された複数のビームよりも少ないビームの各々に対応付けられたSSBを受信するため、SSBの干渉を抑えることができる。
 このため、端末200は、SSBの受信品質を適切に取得することができる。
 また、第2の期間において、第1の期間中に端末200が存在していた方向にビームが形成されるため、第2の期間においても、各端末200が、gNBに接続できる割合を高めることができる。
 したがって、端末200は、接続容量を拡大しつつ、端末200とgNBとの間における無線リンク障害を適切に検出することができる。
 上述した実施形態によれば、端末200は、第2の期間において、gNBから送信されないSSB以外のSSBの受信品質に基づいて、無線リンク障害を検出する。
 このような構成により、端末200は、第2の期間において、端末200は、SSBの受信品質を確実に取得することができる。
 このため、端末200とgNBとの間における無線リンク障害を適切に検出することができる。
 上述した実施形態によれば、端末200は、gNBが第2の期間において送信しないSSBのSSB識別子を受信する。端末200は、第1の期間における、当該SSB識別子が割り当てられたSSBの受信品質を、第2の期間における、当該SSB識別子が割り当てられたSSBの受信品質に適用する。
 このような構成により、端末200は、第2の期間において、当該SSB識別子が割り当てられたSSBの受信品質を適切に補完することができる。
 このため、端末200は、gNBが送信しないSSBにRLM-RSを設定しても、当該SSBの受信品質を確実に取得することができる。
 上述した実施形態によれば、端末200は、gNBが第2の期間において送信しないSSBのSSB識別子を受信する。端末200は、第2期間において受信したSSBの受信品質を用いて、第2の期間における、当該SSB識別子が割り当てられたSSBの受信品質を推定する。
 このような構成によっても、端末200は、第2の期間において、当該SSB識別子が割り当てられたSSBの受信品質を適切に補完することができる。
 このため、端末200は、gNBが送信しないSSBにRLM-RSを設定しても、当該SSBの受信品質を確実に取得することができる。
 (5)その他の実施形態
 以上、実施形態に沿って本発明の内容を説明したが、本発明はこれらの記載に限定されるものではなく、種々の変形及び改良が可能であることは、当業者には自明である。
 上述した実施形態の説明に用いたブロック構成図(図3及び図4)は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的または論理的に結合した1つの装置を用いて実現されてもよいし、物理的または論理的に分離した2つ以上の装置を直接的または間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置または上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
 機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、みなし、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)や送信機(transmitter)と呼称される。何れも、上述したとおり、実現方法は特に限定されない。
 さらに、上述したgNB100A, 100B, 100C及び端末200は、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図23は、当該装置のハードウェア構成の一例を示す図である。図23に示すように、当該装置は、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006及びバス1007などを含むコンピュータ装置として構成されてもよい。
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。当該装置のハードウェア構成は、図に示した各装置を1つまたは複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 当該装置の各機能ブロックは、当該コンピュータ装置の何れかのハードウェア要素、または当該ハードウェア要素の組み合わせによって実現される。
 また、当該装置における各機能は、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU)によって構成されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。さらに、上述の各種処理は、1つのプロセッサ1001によって実行されてもよいし、2つ以上のプロセッサ1001により同時または逐次に実行されてもよい。プロセッサ1001は、1以上のチップによって実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されてもよい。
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically Erasable Programmable ROM(EEPROM)、Random Access Memory(RAM)などの少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る方法を実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、Compact Disc ROM(CD-ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。上述の記録媒体は、例えば、メモリ1002及びストレージ1003の少なくとも一方を含むデータベース、サーバその他の適切な媒体であってもよい。
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。
 通信装置1004は、例えば周波数分割複信(Frequency Division Duplex:FDD)及び時分割複信(Time Division Duplex:TDD)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001及びメモリ1002などの各装置は、情報を通信するためのバス1007で接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間毎に異なるバスを用いて構成されてもよい。
 さらに、当該装置は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor: DSP)、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部または全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
 また、情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、Downlink Control Information(DCI)、Uplink Control Information(UCI)、上位レイヤシグナリング(例えば、RRCシグナリング、Medium Access Control(MAC)シグナリング、報知情報(Master Information Block(MIB)、System Information Block(SIB))、その他の信号またはこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。
 本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、Future Radio Access(FRA)、New Radio(NR)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及びこれらに基づいて拡張された次世代システムの少なくとも一つに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE及びLTE-Aの少なくとも一方と5Gとの組み合わせなど)適用されてもよい。
 本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 本開示において基地局によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つまたは複数のネットワークノード(network nodes)からなるネットワークにおいて、端末との通信のために行われる様々な動作は、基地局及び基地局以外の他のネットワークノード(例えば、MMEまたはS-GWなどが考えられるが、これらに限られない)の少なくとも1つによって行われ得ることは明らかである。上記において基地局以外の他のネットワークノードが1つである場合を例示したが、複数の他のネットワークノードの組み合わせ(例えば、MME及びS-GW)であってもよい。
 情報、信号(情報等)は、上位レイヤ(または下位レイヤ)から下位レイヤ(または上位レイヤ)へ出力され得る。複数のネットワークノードを介して入出力されてもよい。
 入出力された情報は、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報は、上書き、更新、または追記され得る。出力された情報は削除されてもよい。入力された情報は他の装置へ送信されてもよい。
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:trueまたはfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line:DSL)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、または他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
 本開示において説明した情報、信号などは、様々な異なる技術の何れかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、またはこれらの任意の組み合わせによって表されてもよい。
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一のまたは類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(Component Carrier:CC)は、キャリア周波数、セル、周波数キャリアなどと呼ばれてもよい。
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースはインデックスによって指示されるものであってもよい。
 上述したパラメータに使用する名称はいかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式等は、本開示で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるため、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
 本開示においては、「基地局(Base Station:BS)」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(transmission point)」、「受信ポイント(reception point)、「送受信ポイント(transmission/reception point)」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。
 基地局は、1つまたは複数(例えば、3つ)のセル(セクタとも呼ばれる)を収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head:RRH)によって通信サービスを提供することもできる。
 「セル」または「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局、及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部または全体を指す。
 本開示においては、「移動局(Mobile Station:MS)」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment:UE)」、「端末」などの用語は、互換的に使用され得る。
 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、またはいくつかの他の適切な用語で呼ばれる場合もある。
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型または無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。
 また、本開示における基地局は、移動局(ユーザ端末、以下同)として読み替えてもよい。例えば、基地局及び移動局間の通信を、複数の移動局間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、基地局が有する機能を移動局が有する構成としてもよい。また、「上り」及び「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。
 同様に、本開示における移動局は、基地局として読み替えてもよい。この場合、移動局が有する機能を基地局が有する構成としてもよい。
 無線フレームは時間領域において1つまたは複数のフレームによって構成されてもよい。時間領域において1つまたは複数の各フレームはサブフレームと呼ばれてもよい。
 サブフレームはさらに時間領域において1つまたは複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
 ニューメロロジーは、ある信号またはチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing:SCS)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval:TTI)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。
 スロットは、時間領域において1つまたは複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM))シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)で構成されてもよい。スロットは、ニューメロロジーに基づく時間単位であってもよい。
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つまたは複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(またはPUSCH)は、PDSCH(またはPUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(またはPUSCH)は、PDSCH(またはPUSCH)マッピングタイプBと呼ばれてもよい。
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、何れも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。
 例えば、1サブフレームは送信時間間隔(TTI)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロットまたは1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
 なお、1スロットまたは1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロットまたは1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partialまたはfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
 リソースブロック(RB)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つまたは複数個の連続した副搬送波(subcarrier)を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。
 また、RBの時間領域は、1つまたは複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム、または1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つまたは複数のリソースブロックで構成されてもよい。
 なお、1つまたは複数のRBは、物理リソースブロック(Physical RB:PRB)、サブキャリアグループ(Sub-Carrier Group:SCG)、リソースエレメントグループ(Resource Element Group:REG)、PRBペア、RBペアなどと呼ばれてもよい。
 また、リソースブロックは、1つまたは複数のリソースエレメント(Resource Element:RE)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
 帯域幅部分(Bandwidth Part:BWP)(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。
 BWPには、UL用のBWP(UL BWP)と、DL用のBWP(DL BWP)とが含まれてもよい。UEに対して、1キャリア内に1つまたは複数のBWPが設定されてもよい。
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。
 上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレームまたは無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロットまたはミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix:CP)長などの構成は、様々に変更することができる。
 「接続された(connected)」、「結合された(coupled)」という用語、またはこれらのあらゆる変形は、2またはそれ以上の要素間の直接的または間接的なあらゆる接続または結合を意味し、互いに「接続」または「結合」された2つの要素間に1またはそれ以上の中間要素が存在することを含むことができる。要素間の結合または接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。本開示で使用する場合、2つの要素は、1またはそれ以上の電線、ケーブル及びプリント電気接続の少なくとも一つを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」または「結合」されると考えることができる。
 参照信号は、Reference Signal(RS)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 本開示において使用する「第1」、「第2」などの呼称を使用した要素へのいかなる参照も、それらの要素の量または順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみがそこで採用され得ること、または何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
 本開示において、「含む(include)」、「含んでいる(including)」及びそれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「または(or)」は、排他的論理和ではないことが意図される。
 本開示において、例えば、英語でのa, an及びtheのように、翻訳により冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
 本開示で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
 以上、本開示について詳細に説明したが、当業者にとっては、本開示が本開示中に説明した実施形態に限定されるものではないということは明らかである。本開示は、請求の範囲の記載により定まる本開示の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とするものであり、本開示に対して何ら制限的な意味を有するものではない。
10 無線通信システム
100A, 100B, 100C gNB
110 送信部
120 受信部
130 処理部
140 スケジューリング部
150 制御部
200 端末
210 送信部
220 受信部
230 測定部
240 監視部
250 制御部
1001 プロセッサ
1002 メモリ
1003 ストレージ
1004 通信装置
1005 入力装置
1006 出力装置
1007 バス

Claims (4)

  1.  端末であって、
     第1の期間において、異なる方向に向けて形成された複数のビームの各々に対応付けられた同期信号ブロックを受信する受信部と、
     前記第1の期間において、受信した同期信号ブロックの受信品質を取得する制御部と、
     取得した前記同期信号ブロックの受信品質と、前記同期信号ブロックの識別子とを送信する送信部と、
    を備え、
     前記受信部は、前記第1の期間より後の第2の期間において、前記複数のビームよりも少ないビームの各々に対応付けられ、かつ、前記識別子が割り当てられた同期信号ブロックを受信し、
     前記制御部は、前記第2の期間において、受信した同期信号ブロックの受信品質を取得し、
     前記制御部は、前記第1の期間及び前記第2の期間において取得した前記同期信号ブロックの受信品質に基づいて、前記端末と無線基地局との間における無線リンク障害を検出する端末。
  2.  前記受信部は、前記無線基地局が前記第2の期間において送信しない同期信号ブロックの識別子を受信し、
     前記制御部は、前記第2の期間において、前記識別子が割り当てられた同期信号ブロック以外の同期信号ブロックの受信品質に基づいて、前記無線リンク障害を検出する請求項1に記載の端末。
  3.  前記受信部は、前記無線基地局が前記第2の期間において送信しない同期信号ブロックの識別子を受信し、
     前記制御部は、前記第1の期間における、前記識別子が割り当てられた前記同期信号ブロックの受信品質を、前記第2の期間における、前記識別子が割り当てられた前記同期信号ブロックの受信品質に適用する請求項1に記載の端末。
  4.  前記受信部は、前記無線基地局が前記第2の期間において送信しない同期信号ブロックの識別子を受信し、
     前記制御部は、前記第2の期間において受信した前記同期信号ブロックの受信品質を用いて、前記第2の期間における、前記識別子が割り当てられた前記同期信号ブロックの受信品質を推定する請求項1に記載の端末。
PCT/JP2019/043770 2019-11-07 2019-11-07 端末 WO2021090458A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/043770 WO2021090458A1 (ja) 2019-11-07 2019-11-07 端末

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/043770 WO2021090458A1 (ja) 2019-11-07 2019-11-07 端末

Publications (1)

Publication Number Publication Date
WO2021090458A1 true WO2021090458A1 (ja) 2021-05-14

Family

ID=75849722

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/043770 WO2021090458A1 (ja) 2019-11-07 2019-11-07 端末

Country Status (1)

Country Link
WO (1) WO2021090458A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190268061A1 (en) * 2018-05-14 2019-08-29 Intel Corporation Systems and methods for l1-rsrp measurement accuracy for beam detection
WO2019168762A1 (en) * 2018-02-27 2019-09-06 Qualcomm Incorporated Beam reporting for active beams

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019168762A1 (en) * 2018-02-27 2019-09-06 Qualcomm Incorporated Beam reporting for active beams
US20190268061A1 (en) * 2018-05-14 2019-08-29 Intel Corporation Systems and methods for l1-rsrp measurement accuracy for beam detection

Similar Documents

Publication Publication Date Title
JP7279044B2 (ja) 端末、無線通信方法及びシステム
JP7136797B2 (ja) 端末、無線通信方法及びシステム
JP7370868B2 (ja) 端末、無線通信方法及びシステム
JP7104067B2 (ja) 端末、無線通信方法、基地局及びシステム
WO2019138531A1 (ja) ユーザ端末及び無線通信方法
JP7427666B2 (ja) 端末、基地局、通信システム及び通信方法
JP7248681B2 (ja) 端末、無線通信方法、基地局及びシステム
JPWO2019203187A1 (ja) ユーザ端末及び無線通信方法
JP7223026B2 (ja) 端末、基地局、無線通信システム、及び通信方法
JP7558958B2 (ja) 端末
JPWO2019215897A1 (ja) ユーザ端末及び無線基地局
WO2021001946A1 (ja) 端末
EP4017067A1 (en) User equipment
US20220295300A1 (en) Terminal
WO2019049347A1 (ja) ユーザ端末及び無線通信方法
EP3687211A1 (en) User terminal and wireless communication method
WO2021090417A1 (ja) 無線基地局及び端末
JP7320848B2 (ja) 端末、無線通信方法、基地局及びシステム
WO2022157953A1 (ja) 端末、基地局、および、通信方法
WO2021090458A1 (ja) 端末
WO2021090457A1 (ja) 端末
WO2022208898A1 (ja) 端末、基地局、及び測定方法
WO2022208897A1 (ja) 端末、基地局、及び測定方法
WO2022220092A1 (ja) 端末、及びビーム故障検出方法
WO2022085196A1 (ja) 端末

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19951433

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19951433

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP