JP7279044B2 - 端末、無線通信方法及びシステム - Google Patents

端末、無線通信方法及びシステム Download PDF

Info

Publication number
JP7279044B2
JP7279044B2 JP2020529929A JP2020529929A JP7279044B2 JP 7279044 B2 JP7279044 B2 JP 7279044B2 JP 2020529929 A JP2020529929 A JP 2020529929A JP 2020529929 A JP2020529929 A JP 2020529929A JP 7279044 B2 JP7279044 B2 JP 7279044B2
Authority
JP
Japan
Prior art keywords
transmission
trp
user terminal
beam failure
reference signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020529929A
Other languages
English (en)
Other versions
JPWO2020012619A1 (ja
Inventor
祐輝 松村
聡 永田
ジン ワン
ギョウリン コウ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Docomo Inc
Original Assignee
NTT Docomo Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Docomo Inc filed Critical NTT Docomo Inc
Publication of JPWO2020012619A1 publication Critical patent/JPWO2020012619A1/ja
Application granted granted Critical
Publication of JP7279044B2 publication Critical patent/JP7279044B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/06Management of faults, events, alarms or notifications
    • H04L41/0654Management of faults, events, alarms or notifications using network fault recovery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/06Management of faults, events, alarms or notifications
    • H04L41/0677Localisation of faults
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

本発明は、次世代移動通信システムにおけるユーザ端末に関する。
既存のLTEシステム(たとえば、Rel.8-14)では、無線リンク品質のモニタリングである無線リンクモニタリング(RLM:Radio Link Monitoring)が行われる。無線リンクモニタリング(RLM)により無線リンク障害(RLF:Radio Link Failure)が検出されると、ユーザ端末(UE:User Equipment)に対して、RRC(Radio Resource Control)コネクションの再確立(re-establishment)が要求される。
将来の無線通信システム(たとえば、NR(New Radio))では、無線リンク障害(RLF)の発生を抑制するため、特定のビームの品質が悪化する場合に、他のビームへの切り替え手順を実施することが検討されている。
将来の無線通信システム(たとえば、Rel.16以降)では、複数の送信ポイントからノンコヒーレントなDL信号(たとえば、PDSCH(Physical Downlink Shared Channel))が協調して送信されることが検討されている。
複数の送信ポイントからPDSCHが送信されるシナリオにおいて、ビーム障害回復(BFR)手順を再検討する必要がある。
本発明はかかる点に鑑みてなされたものであり、将来の無線通信システムにおいて、複数の送信ポイントを利用して通信を行う場合であっても、ビーム障害回復(BFR)手順を適切に行うことができるユーザ端末を提供することを目的の1つとする。
本発明の端末の一態様は、ビーム障害検出のための複数の第1の参照信号を、複数の送受信ポイントのそれぞれから受信する受信部と、前記複数の第1の参照信号の1つに基づいて、前記複数の送受信ポイントを検出し、前記1つの送受信ポイントでのうちの1つの送受信ポイントのビーム障害発生を検出する制御部と、を有し、前記1つの送受信ポイントは、前記複数の第1の参照信号の1つと関連付けられており、前記複数の第1の参照信号の1つは、前記1つの送受信ポイントから送信され、前記第1の参照信号のインデックスは、TCI(Transmission Configuration Indicator)状態が示すインデックスとそれぞれ同じ値であることを特徴とする。
本発明によれば、将来の無線通信システムにおいて、複数の送信ポイントを利用して通信を行う場合であっても、ビーム障害回復(BFR)手順を適切に行うことができる。
Rel.15 NRにおけるビーム回復手順の一例を示す図である。 図2Aおよび図2Bは、複数の送信ポイントからPDSCHが送信される場合の一例を示す図である。 図3Aおよび図3Bは、それぞれ態様1-1または態様1-2に対応し、マルチTRP送信シナリオにおけるビーム障害回復(BFR)手順の一例を示す図である。 態様1-3に対応し、マルチTRP送信シナリオにおけるビーム障害回復(BFR)手順の一例を示す図である。 図5Aおよび図5Bは、それぞれ態様2-1または態様2-2に対応し、マルチTRP送信シナリオにおけるビーム障害回復(BFR)手順の一例を示す図である。 態様2-3に対応し、マルチTRP送信シナリオにおけるビーム障害回復(BFR)手順の一例を示す図である。 図7Aおよび図7Bは、それぞれ態様3-1または態様3-2に対応し、マルチTRP送信シナリオにおけるビーム障害回復(BFR)手順の一例を示す図である。 態様3-3に対応し、マルチTRP送信シナリオにおけるビーム障害回復(BFR)手順の一例を示す図である。 図9Aおよび図9Bは、態様3-4に対応し、マルチTRP送信シナリオにおけるビーム障害回復(BFR)手順の一例を示す図である。 第1の実施例に対応し、マルチTRP送信シナリオにおけるビーム障害回復(BFR)手順の一例を示す図である。 第2の実施例に対応し、マルチTRP送信シナリオにおけるビーム障害回復(BFR)手順の一例を示す図である。 本実施の形態に係る無線通信システムの概略構成の一例を示す図である。 本実施の形態に係る無線基地局の機能構成の一例を示す図である。 無線基地局のベースバンド信号処理部の機能構成の一例を示す図である。 本実施の形態に係るユーザ端末の機能構成の一例を示す図である。 ユーザ端末のベースバンド信号処理部の機能構成の一例を示す図である。 本発明の一実施形態に係る無線基地局およびユーザ端末のハードウェア構成の一例を示す図である。
将来の無線通信システム(たとえば、5G、5G+、NR、Rel.15以降)では、ビームフォーミング(BF:Beam Forming)を利用して通信を行うことが検討されている。ビームフォーミング(BF)を利用した通信品質を向上するために、複数の信号間の疑似コロケーション(QCL:Quasi-Co-Location)の関係(QCL関係)を考慮して、信号の送信および受信の少なくとも一方を制御することが検討されている。
疑似コロケーション(QCL)とは、チャネルの統計的性質を示す指標である。たとえば、ある信号またはチャネルと他の信号またはチャネルが疑似コロケーション(QCL)の関係である場合、これらの異なる複数の信号またはチャネル間において、ドップラーシフト、ドップラースプレッド、平均遅延、遅延スプレッド、空間パラメータ(たとえば、空間受信パラメータ)の少なくとも1つが同一である、すなわちこれらの少なくとも1つに関して疑似コロケーション(QCL)であると仮定できることを意味していてもよい。
空間受信パラメータは、ユーザ端末の受信ビーム(たとえば、受信アナログビーム)に対応してもよく、空間的疑似コロケーション(QCL)に基づいてビームが特定されてもよい。本開示における疑似コロケーション(QCL)または疑似コロケーション(QCL)の少なくとも1つの要素は、sQCL(spatial QCL)で読み替えられてもよい。
ビームフォーミング(BF)を利用する場合、障害物による妨害の影響を受けやすくなるため、無線リンク品質が悪化し、無線リンク障害(RLF)が頻繁に発生するおそれがある。無線リンク障害(RLF)が発生するとセルの再接続が必要となるため、頻繁な無線リンク障害(RLF)の発生はシステムスループットの低下を招く。
将来の無線通信システム(たとえば、NR)では、無線リンク障害(RLF)の発生を抑制するため、特定のビームの品質が悪化する場合に、他のビームへの切り替え手順を実施することが検討されている。当該他のビームへの切り替え手順は、ビーム回復(BR:Beam Recovery)、ビーム障害回復(BFR:Beam Failure Recovery)、または、L1/L2(Layer 1/Layer 2)ビームリカバリなどと呼ばれてもよい。ビーム障害回復(BFR)手順は、単にBFRと呼ばれてもよい。
本開示におけるビーム障害は、リンク障害と呼ばれてもよい。
図1は、Rel.15 NRのビーム回復手順の一例を示す図である。図1に示すビーム数などは一例であって、これに限られない。
図1の初期状態(ステップS101)において、ユーザ端末(UE)は、2つのビームを利用して送受信ポイント(TRP:Transmission Reception Point)から送信される参照信号(RS:Reference Signal)リソースに基づく測定を実施する。当該参照信号は、同期信号ブロック(SSB:Synchronization Signal Block)およびチャネル状態測定用参照信号(CSI-RS:Channel State Information RS)の少なくとも一方であってもよい。同期信号ブロック(SSB)は、SS/PBCH(Physical Broadcast Channel)ブロックと呼ばれてもよい。
参照信号は、プライマリ同期信号(PSS:Primary SS)、セカンダリ同期信号(SSS:Secondary SS)、モビリティ参照信号(MRS:Mobility RS)、同期信号ブロック(SSB)、SSBに含まれる信号、CSI-RS、復調用参照信号(DMRS:Demodulation RS)またはビーム固有信号の少なくとも1つ、またはこれらを拡張または変更して構成される信号であってもよい。ステップS101において測定される参照信号は、ビーム障害検出のための参照信号(BFD-RS:Beam Failure Detection RS)と呼ばれてもよい。
図1のステップS102において、送受信ポイント(TRP)からの電波が妨害されたことによって、ユーザ端末(UE)は、ビーム障害検出のための参照信号(BFD-RS)を検出できない。このような妨害は、たとえば、ユーザ端末および送受信ポイント(TRP)間の障害物、フェージングまたは干渉などの影響によって発生する。
ユーザ端末(UE)は、所定の条件が満たされると、ビーム障害を検出する。ユーザ端末は、たとえば、設定されたビーム障害検出のための参照信号(BFD-RS)(BFD-RSリソース設定)のすべてについて、BLER(Block Error Rate)がしきい値未満である場合に、ビーム障害の発生を検出してもよい。ビーム障害の発生が検出されると、ユーザ端末の下位レイヤ(物理レイヤ)は、上位レイヤ(MACレイヤ)に対して、ビーム障害インスタンスを通知(指示)してもよい。
ビーム障害の発生の検出の判断の基準(クライテリア)は、BLERに限られず、物理レイヤにおける参照信号受信電力(L1-RSRP:L1-RS Received Power)であってもよい。参照信号(RS)測定の代わりに、または、参照信号(RS)測定に加えて、下り制御チャネル(PDCCH:Physical Downlink Control Channel)などに基づいてビーム障害検出が実施されてもよい。ビーム障害検出のための参照信号(BFD-RS)は、ユーザ端末によってモニタされるPDCCHのDMRSと疑似コロケーション(QCL)であると期待されてもよい。
ビーム障害検出のための参照信号(BFD-RS)に関する情報、たとえば、参照信号のインデックス、リソース、数、ポート数またはプリコーディングなど、および、ビーム障害検出(BFD)に関する情報、たとえば、上述のしきい値などは、上位レイヤシグナリングを用いてユーザ端末(UE)に設定(通知)されてもよい。ビーム障害検出のための参照信号(BFD-RS)に関する情報は、BFD用リソースに関する情報と呼ばれてもよい。
上位レイヤシグナリングは、たとえば、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング、および、ブロードキャスト情報のいずれか1つ、またはこれらの組み合わせであってもよい。
ユーザ端末(UE)のMACレイヤは、ユーザ端末の物理レイヤからビーム障害インスタンス通知を受信した場合に、所定のタイマを開始してもよい。当該タイマは、ビーム障害検出タイマと呼ばれてもよい。ユーザ端末のMACレイヤは、当該タイマが満了するまでにビーム障害インスタンス通知を一定回数(たとえば、RRCで設定されるbeamFailureInstanceMaxCount)以上受信した場合に、ビーム障害回復(BFR)をトリガ(たとえば、後述のランダムアクセス手順のいずれかを開始)してもよい。
送受信ポイント(TRP)は、ユーザ端末(UE)からの通知がない場合、または、ユーザ端末から所定の信号(ステップS104におけるビーム回復要求)を受信した場合に、当該ユーザ端末がビーム障害を検出したと判断してもよい。
図1のステップS103において、ユーザ端末(UE)は、ビーム回復のため、新たに通信に利用するための新候補ビーム(new candidate beam)のサーチを開始する。ユーザ端末は、所定の参照信号(RS)を測定することによって、当該参照信号(RS)に対応する新候補ビームを選択してもよい。ステップS103において測定される参照信号(RS)は、新候補ビーム識別のための参照信号(NCBI-RS:New Candidate Beam Identification RS)と呼ばれてもよい。新候補ビーム識別のための参照信号(NCBI-RS)は、ビーム障害検出のための参照信号(BFD-RS)と同じであってもよいし、異なっていてもよい。新候補ビームは、単に候補ビームと呼ばれてもよい。
ユーザ端末(UE)は、所定の条件を満たす参照信号(RS)に対応するビームを、新候補ビームとして決定してもよい。たとえば、ユーザ端末は、設定された新候補ビーム識別のための参照信号(NCBI-RS)のうち、物理レイヤにおける参照信号受信電力(L1-RSRP)がしきい値を超える参照信号(RS)に基づいて、新候補ビームを決定してもよい。新候補ビーム決定の基準(クライテリア)は、L1-RSRPに限られない。同期信号ブロック(SSB)に関するL1-RSRPは、SS-RSRPと呼ばれてもよい。CSI-RSに関するL1-RSRPは、CSI-RSRPと呼ばれてもよい。
新候補ビーム識別のための参照信号(NCBI-RS)に関する情報、たとえば、参照信号のリソース、数、ポート数またはプリコーディングなど、および、新候補ビーム識別(NCBI)に関する情報、たとえば、上述のしきい値などは、上位レイヤシグナリングを介してユーザ端末(UE)は、に設定(通知)されてもよい。新候補ビーム識別のための参照信号(NCBI-RS)に関する情報は、ビーム障害検出のための参照信号(BFD-RS)に関する情報に基づいて、ユーザ端末に取得されてもよい。新候補ビーム識別のための参照信号(NCBI-RS)に関する情報は、新候補ビーム識別(NCBI)用リソースに関する情報と呼ばれてもよい。
ビーム障害検出のための参照信号(BFD-RS)、および、新候補ビーム識別のための参照信号(NCBI-RS)は、無線リンクモニタリング参照信号(RLM-RS:Radio Link Monitoring RS)で読み替えられてもよい。
図1のステップS104において、新候補ビームを特定したユーザ端末(UE)は、送受信ポイント(TRP)に対して、ビーム回復要求(BFRQ:Beam Failure Recovery Request)を送信する。ビーム回復要求(BFRQ)は、ビーム回復要求信号またはビーム障害回復要求信号などと呼ばれてもよい。
ビーム回復要求(BFRQ)は、たとえば、上り制御チャネル(PUCCH:Physical Uplink Control Channel)、ランダムアクセスチャネル(PRACH:Physical Random Access Channel)、上り共有チャネル(PUSCH:Physical Uplink Shared Channel)、および、設定グラント(configured grant)PUSCHの少なくとも1つを利用して送信されてもよい。
ビーム回復要求(BFRQ)は、ステップS103において特定された新候補ビームの情報を含んでいてもよい。ビーム回復要求(BFRQ)のためのリソースは、当該新候補ビームに関連付けられていてもよい。ビームの情報は、ビームインデックス(BI:Beam Index)、所定の参照信号のポートインデックス、リソースインデックス(たとえば、CSI-RSリソース指標)または同期信号ブロック(SSB)リソース指標(SSBRI)などを利用して通知されてもよい。
将来の無線通信システム(たとえば、Rel.15 NR)では、衝突型ランダムアクセス手順に基づくビーム障害回復(BFR)であるCB-BFR(Contention-Based BFR)、および、非衝突型ランダムアクセス手順に基づくビーム障害回復(BFR)であるCF-BFR(Contention-Free BFR)が検討されている。CR-BFRおよびCF-BFRにおいて、ユーザ端末(UE)は、PRACHリソースを用いてプリアンブルをビーム回復要求(BFRQ)として送信してもよい。当該プリアンブルは、RA(Random Access)プリアンブル、ランダムアクセスチャネル(PRACH)、または、RACHプリアンブルと呼ばれてもよい。
衝突型ランダムアクセス手順に基づくビーム障害回復(CB-BFR)では、ユーザ端末(UE)は、1つまたは複数のプリアンブルからランダムに選択したプリアンブルを送信してもよい。非衝突型ランダムアクセス手順に基づくビーム障害回復(CF-BFR)では、ユーザ端末は、基地局からUE固有に割り当てられたプリアンブルを送信してもよい。CB-BFRでは、基地局は、複数のユーザ端末に対して同一のプリアンブルを割り当ててもよい。CF-BFRでは、基地局は、ユーザ端末個別にプリアンブルを割り当ててもよい。
衝突型ランダムアクセス手順に基づくビーム障害回復(CB-BFR)は、CB PRACHベースBFR(CBRA-BFR:Contention-based PRACH-based BFR)と呼ばれてもよい。非衝突型ランダムアクセス手順に基づくビーム障害回復(CF-BFR)は、CF PRACHベースBFR(CFRA-BFR:Contention-free PRACH-based BFR)と呼ばれてもよい。CBRA-BFRは、BFR用CBRAと呼ばれてもよい。CFRA-BFRは、BFR用CFRAと呼ばれてもよい。
衝突型ランダムアクセス手順に基づくビーム障害回復(CB-BFR)では、基地局は、あるプリアンブルをビーム回復要求(BFRQ)として受信した場合に、当該プリアンブルがどのユーザ端末から送信されたのかを特定できなくてもよい。基地局は、ビーム回復要求(BFRQ)からビーム再構成完了までの間に衝突解決(contention resolution)を行うことによって、当該プリアンブルを送信したユーザ端末の識別子(たとえば、C-RNTI)を特定することができる。
ランダムアクセス手順中にユーザ端末(UE)が送信する信号(たとえば、プリアンブル)は、ビーム回復要求(BFRQ)であると想定されてもよい。
衝突型ランダムアクセス手順に基づくビーム障害回復(CB-BFR)、および、非衝突型ランダムアクセス手順に基づくビーム障害回復(CF-BFR)のいずれであっても、PRACHリソース(RAプリアンブル)に関する情報は、上位レイヤシグナリング(たとえば、RRCシグナリング)によって通知されてもよい。たとえば、当該情報は、検出したDL-RS(ビーム)とPRACHリソースとの対応関係を示す情報を含んでいてもよく、DL-RSごとに異なるPRACHリソースが関連付けられていてもよい。
ビーム障害の検出は、MACレイヤで行われてもよい。衝突型ランダムアクセス手順に基づくビーム障害回復(CB-BFR)に関しては、ユーザ端末(UE)は、自端末に関するC-RNTIに対応するPDCCHを受信した場合に、衝突解決が成功したと判断してもよい。
衝突型ランダムアクセス手順に基づくビーム障害回復(CB-BFR)、および、非衝突型ランダムアクセス手順に基づくビーム障害回復(CF-BFR)のランダムアクセス(RA)パラメータは、同じパラメータセットから構成されてもよいし、それぞれ異なる値が設定されてもよい。
たとえば、ビーム回復要求(BFRQ)後のビーム障害回復応答用CORESET内のgNB応答モニタリング用の時間長を示すパラメータ(ResponseWindowSize-BFR)は、衝突型ランダムアクセス手順に基づくビーム障害回復(CB-BFR)、および、非衝突型ランダムアクセス手順に基づくビーム障害回復(CF-BFR)のいずれか一方のみに適用されてもよい。
図1のステップS105において、ビーム回復要求(BFRQ)を検出した送受信ポイント(たとえば、基地局)は、ユーザ端末(UE)からのビーム回復要求(BFRQ)に対する応答信号を送信する。当該応答信号は、gNBレスポンスと呼ばれてもよい。当該応答信号には、1つまたは複数のビームについての再構成情報(たとえば、DL-RSリソースの構成情報)が含まれていてもよい。
当該応答信号は、たとえばPDCCHのユーザ端末共有サーチスペースにおいて送信されてもよい。当該応答信号は、ユーザ端末の識別子、たとえば、C-RNTI(Cell-Radio Network Temporary Identifier)によって巡回冗長検査(CRCCyclic Redundancy Check)スクランブルされたPDCCHまたは下り制御情報(DCI:Downlink Control Information)を利用して通知されてもよい。ユーザ端末(UE)は、ビーム再構成情報に基づいて、利用する送信ビームおよび受信ビームの少なくとも一方を判断してもよい。
ユーザ端末(UE)は、当該応答信号を、ビーム障害回復(BFR)用の制御リソースセット(CORESET:Control Resource Set)およびビーム障害回復(BFR)等のサーチスペースセットの少なくとも一方に基づいてモニタしてもよい。
衝突型ランダムアクセス手順に基づくビーム障害回復(CB-BFR)に関しては、ユーザ端末(UE)が、自端末に関するC-RNTIに対応するPDCCHを受信した場合に、衝突解決(contention resolution)が成功したと判断してもよい。
ステップS105の処理に関して、ビーム回復要求(BFRQ)に対する送受信ポイント(TRP)からの応答を、ユーザ端末がモニタするための期間が設定されてもよい。当該期間は、たとえば、gNB応答ウィンドウ、gNBウィンドウ、または、ビーム回復要求応答ウィンドウなどと呼ばれてもよい。
ユーザ端末(UE)は、当該ウィンドウ期間内において検出されるgNB応答がない場合、ビーム回復要求(BFRQ)を再送してもよい。
図1のステップS106において、ユーザ端末(UE)は、送受信ポイント(TRP)に対して、ビーム再構成が完了したことを通知するメッセージを送信してもよい。当該メッセージは、たとえば、PUCCHまたはPUSCHによって送信されてもよい。
ビーム回復成功(BR success)とは、たとえば、ステップS106まで到達した場合を指してもよい。ビーム回復失敗(BR failure)とは、たとえば、ビーム回復要求(BFRQ)送信が所定の回数に達したことに該当してもよい。ビーム回復失敗とは、たとえば、ビーム障害回復タイマ(Beam-failure-recovery-timer)が満了したことに該当してもよい。
図1における各ステップの番号は、説明のための番号にすぎず、複数のステップがまとめて実施されてもよいし、ステップの順番が入れ替わってもよい。ビーム障害回復(BFR)手順を実施するか否かは、上位レイヤシグナリングを介してユーザ端末(UE)に設定されてもよい。
将来の無線通信システム(たとえば、Rel.16以降)では、複数の送信ポイントからノンコヒーレント(non-coherent transmission)なDL信号(たとえば、PDSCH)が協調して送信されることが検討されている。複数の送信ポイントから、ノンコヒーレントなDL信号またはDLチャネルを協調して送信することは、NCJT(Non-coherent Joint Transmission)とも呼ばれる。
本明細書において、送信ポイント(TP:Transmission Point)は、送受信ポイント(TRP:Transmission Reception Point)、パネル(panel)またはセルと読み替えられてもよい。
図2は、複数の送信ポイントからPDSCHが送信される場合の一例を示す図である。図2Aは、複数のパネルからPDSCH(たとえば、NCJTを利用したPDSCH)が、ユーザ端末に送信される場合を示している。図2Bは、複数の送受信ポイント(サービングTRPおよび協調TRP)からPDSCH(たとえば、NCJTを利用したPDSCH)が、ユーザ端末に送信される場合を示している。
図2Aに示すマルチパネル送信シナリオ、および、図2Bに示すマルチTRP送信シナリオにおいて、特に、複数の送受信ポイント(TRP)間のバックホールが理想的でない(non-ideal)場合、ビーム障害回復(BFR)手順を再検討する必要がある。
理想的でないバックホールシナリオでは、上述のRel.15のビーム障害回復(BFR)手順によれば、ビーム障害検出のためのすべてのリソースが、ある期間においてしきい値未満である場合にビーム回復要求(BFRQ)が送信されるため、ユーザ端末は、ビーム回復要求(BFRQ)送信の前に、1つの送受信ポイント(TRP)との接続を長時間失うことが想定される。
マルチTRP送信シナリオでは、1つの送受信ポイント(たとえば、ブロードキャスト情報、RRC接続設定を伴うTRP)との接続が失われると、ネットワークとの接続が失われる可能性がある。すなわち、マルチTRP送信シナリオにおいて、複数(たとえば、2つ)の送受信ポイント(TRP)に対するユーザ端末のリンク障害検出を待つのは、遅すぎるおそれがある。
そこで、本発明者らは、将来の無線通信システム(たとえば、Rel.16以降)で、複数の送信ポイントからノンコヒーレントなDL信号が協調して送信されるシナリオにおけるビーム障害回復(BFR)手順について、具体的に検討した。
以下、本実施の形態について添付図面を参照して詳細に説明する。
本実施の形態において、将来の無線通信システム(たとえば、Rel.16以降)で、複数の送信ポイントからノンコヒーレントなDL信号が協調して送信されるシナリオとして、図2Bに示すような複数(たとえば、2つ)の送受信ポイント(TRP)間のバックホールが理想的でないマルチTRP送信シナリオを例に挙げて説明するが、本発明の適用はこの形態に限られない。
(第1の態様)
第1の態様では、将来の無線通信システム(たとえば、Rel.16以降)で、複数の送信ポイントからノンコヒーレントなDL信号が協調して送信されるシナリオにおけるビーム障害回復(BFR)手順の、ビーム障害検出について説明する。
(態様1-1)
ビーム障害回復(BFR)手順において、複数の送受信ポイント(TRP)のビーム障害検出に、複数の独立した参照信号(RS)構成を利用してもよい。
Rel.15のリンク再構成手順に基づいて、マルチパネル送信シナリオおよびマルチTRP送信シナリオでは、ユーザ端末(UE)に対して、複数(たとえば、2つのTRP送信シナリオに対しては2つ)のビーム障害検出用参照信号リソース構成(たとえば、Beam-Failure-Detection-RS-ResourceConfig)のセットが構成されてもよい。各セットは、所定の送受信ポイント(TRP)と関連付けられて構成されてもよい。
ユーザ端末(UE)に、上位レイヤパラメータであるビーム障害検出用参照信号リソース構成(たとえば、Beam-Failure-Detection-RS-ResourceConfig)が提供されていない場合、ユーザ端末は、q(qにオーバーラインを付したもの)の2つのセットを決定してもよい。
本明細書における、q(qにオーバーラインを付したもの)を次の式(1)に示す。本明細書において、式(1)を「q(qにオーバーラインを付したもの)」と表記して説明する。
Figure 0007279044000001
(qにオーバーラインを付したもの)の各セットは、所定の送受信ポイント(TRP)に関連付けられる。各セットには、SS/PBCHブロックインデックスおよび周期的なCSI-RSリソース設定インデックスが含まれる。これらのインデックスは、ユーザ端末が、1つの送受信ポイント(TRP)に関連するPDCCHを監視するように構成された各制御リソースセットのTCI(Transmission Configuration Indicator)状態によって示される参照信号(RS)セット内の参照信号(RS)インデックスと同じ値を有する。
図3Aは、態様1-1に対応し、マルチTRP送信シナリオにおいて、各TRPに関連付けられたビーム障害検出用参照信号リソース構成が2セット構成されている一例を示す。
図3Aにおいて、サービングTRPであるTRP1は、TRP1に関連付けられたビーム障害検出用参照信号リソース構成を送信する。協調TRPであるTRP2は、TRP2に関連付けられたビーム障害検出用参照信号リソース構成を送信する。
ユーザ端末(UE)は、ある期間において、ビーム障害検出のための1つのセットのすべてのリソースがしきい値未満である場合、対応する送受信ポイント(TRP)のビーム障害またはリンク障害を検出する。ユーザ端末は、障害を検出した送受信ポイント(TRP)のために、いくつかのリンク回復手順を実行する。
(態様1-2)
ビーム障害回復(BFR)手順において、マルチパネル送信シナリオおよびマルチTRP送信シナリオで、ビーム障害検出用の参照信号(RS)構成を1つのパネルまたは1つのTRPのみに関連付けるように制限してもよい。
Rel.15のリンク再構成手順に基づいて、上位レイヤパラメータであるビーム障害検出用参照信号リソース構成(たとえば、Beam-Failure-Detection-RS-ResourceConfig)は、1つの送受信ポイント(たとえば、図3Bに示すサービングTRP)に関連付けられた参照信号のみを含んでいてもよい。
ユーザ端末(UE)に、上位レイヤパラメータであるビーム障害検出用参照信号リソース構成(たとえば、Beam-Failure-Detection-RS-ResourceConfig)が提供されていない場合、ユーザ端末は、q(qにオーバーラインを付したもの)のセットを決定してもよい。
(qにオーバーラインを付したもの)のセットは、送受信ポイント(TRP)に関連付けられる。各セットには、SS/PBCHブロックインデックスおよび周期的なCSI-RSリソース設定インデックスが含まれる。これらのインデックスは、ユーザ端末が、1つの送受信ポイント(たとえば、図3Bに示すサービングTRP)に関連するPDCCHを監視するように構成された各制御リソースセットのTCI状態によって示される参照信号(RS)セット内の参照信号(RS)インデックスと同じ値を有する。
図3Bは、態様1-2に対応し、マルチTRP送信シナリオにおいて、サービングTRPに関連付けられたビーム障害検出用参照信号リソース構成のセットが構成されている一例を示す。
図3Bにおいて、サービングTRPであるTRP1は、当該サービングTRPのみに関連付けられたビーム障害検出用参照信号リソース構成を送信する。
ユーザ端末(UE)は、サービングTRPからの参照信号に基づいて、ビーム障害検出のためのすべてのリソースがしきい値未満である場合、サービングTRPのビーム障害またはリンク障害を検出する。この場合、ユーザ端末は、協調TRPのリンク状態にかかわらず、リンク再構成をトリガする。
(態様1-3)
Rel.15のリンク再構成手順に基づいて、マルチパネル送信シナリオおよびマルチTRP送信シナリオにおけるビーム障害検出用の参照信号(RS)構成は、複数のパネルまたはTRPからの参照信号を含んでいてもよい。
Rel.15のリンク再構成手順に基づいて、上位レイヤパラメータであるビーム障害検出用参照信号リソース構成(たとえば、Beam-Failure-Detection-RS-ResourceConfig)は、複数の送受信ポイント(TRP)からの参照信号を含むことができる。
ユーザ端末(UE)に、上位レイヤパラメータであるビーム障害検出用参照信号リソース構成(たとえば、Beam-Failure-Detection-RS-ResourceConfig)が提供されていない場合、ユーザ端末は、q(qにオーバーラインを付したもの)のセットを決定してもよい。
(qにオーバーラインを付したもの)のセットは、送受信ポイント(TRP)に関連付けられる。各セットには、SS/PBCHブロックインデックスおよび周期的なCSI-RSリソース設定インデックスが含まれる。これらのインデックスは、ユーザ端末が、1つまたは複数の送受信ポイント(TRP)に関連するPDCCHを監視するように構成された各制御リソースセットのTCI状態によって示される参照信号(RS)セット内の参照信号(RS)インデックスと同じ値を有する。
図4は、態様1-3に対応し、マルチTRP送信シナリオにおいて、複数のTRPに関連付けられたビーム障害検出用参照信号リソース構成のセットが構成されている一例を示す。
図4において、サービングTRPであるTRP1および協調TRPであるTRP2は、当該サービングTRPおよび協調TRPからの参照信号を含むビーム障害検出用参照信号リソース構成を送信する。
この場合、Rel.15のリンク再構成手順を変更する必要はない。ユーザ端末は、Rel.15のリンク再構成手順に基づいて、ビーム障害またはリンク障害を検出する。ビーム障害検出用参照信号リソース構成に、1つのTRPまたは2つのTRPからの参照信号が含まれているかどうかは、ユーザ端末に対して透過的(transparent)であってもよい。すなわち、ユーザ端末は、ビーム障害検出用参照信号リソース構成に、1つのTRPまたは2つのTRPからの参照信号が含まれているか知っていると想定してもよい。この構成は、ネットワークから上位レイヤシグナリングなどを介して、もしくは、ネットワークからの上位レイヤシグナリングまたは物理レイヤシグナリングなどの組み合わせによって、ユーザ端末に通知されると想定してもよい。
(第2の態様)
第2の態様では、将来の無線通信システム(たとえば、Rel.16以降)で、複数の送信ポイントからノンコヒーレントなDL信号が協調して送信されるシナリオにおけるビーム障害回復(BFR)手順の、新候補ビーム検出について説明する。
(態様2-1)
ビーム障害回復(BFR)手順において、複数の送受信ポイント(TRP)のための新候補ビーム検出に、複数の独立した参照信号(RS)構成を利用してもよい。
Rel.15のリンク再構成手順に基づいて、マルチパネル送信シナリオおよびマルチTRP送信シナリオでは、ユーザ端末(UE)に対して、複数(たとえば、2つのTRP送信シナリオに対しては2つ)の新候補ビーム検出用参照信号リソース構成(たとえば、Candidate-Beam-RS-List)のセットが構成されてもよい。各セットは、所定の送受信ポイント(TRP)と関連付けられて構成されてもよい。
図5Aは、態様2-1に対応し、マルチTRP送信シナリオにおいて、各TRPに関連付けられた新候補ビーム検出用参照信号リソース構成が2セット構成されている一例を示す。
図5Aにおいて、サービングTRPであるTRP1は、TRP1に関連付けられた新候補ビーム検出用参照信号リソース構成を送信する。協調TRPであるTRP2は、TRP2に関連付けられた新候補ビーム検出用参照信号リソース構成を送信する。
ユーザ端末(UE)は、新候補ビームを各送受信ポイント(TRP)について測定することができる。したがって、ユーザ端末は、新候補ビーム検出に続く、ビーム再構成およびリンク再構成を、各送受信ポイント(TRP)ごとに実行することができる。
(態様2-2)
ビーム障害回復(BFR)手順において、マルチパネル送信シナリオおよびマルチTRP送信シナリオで、ビーム障害検出用の参照信号(RS)構成を1つのパネルまたは1つのTRPのみに関連付けるように制限してもよい。
Rel.15のリンク再構成手順に基づいて、上位レイヤパラメータである新候補ビーム検出用参照信号リソース構成(たとえば、Candidate-Beam-RS-List)は、1つの送受信ポイント(たとえば、図5Bに示すサービングTRP)に関連付けられた参照信号のみを含んでいてもよい。
図5Bは、態様2-2に対応し、マルチTRP送信シナリオにおいて、サービングTRPに関連付けられた新候補ビーム検出用参照信号リソース構成が構成されている一例を示す。
図5Bにおいて、サービングTRPであるTRP1は、当該サービングTRPのみに関連付けられた新候補ビーム検出用参照信号リソース構成を送信する。
ユーザ端末(UE)は、サービングTRPからの参照信号に基づいて、サービングTRPの新候補ビームのみを測定する。したがって、ユーザ端末は、新候補ビーム検出に続く、ビーム再構成およびリンク再構成を、サービングTRPに限り実行することができる。
(態様2-3)
Rel.15のリンク再構成手順に基づいて、マルチパネル送信シナリオおよびマルチTRP送信シナリオにおける新候補ビーム検出用の参照信号(RS)構成は、複数のパネルまたはTRPからの参照信号を含んでいてもよい。
Rel.15のリンク再構成手順に基づいて、上位レイヤパラメータである新候補ビーム検出用参照信号リソース構成(たとえば、Candidate-Beam-RS-List)は、複数の送受信ポイント(TRP)からの参照信号を含むことができる。
図6は、態様2-3に対応し、マルチTRP送信シナリオにおいて、複数のTRPに関連付けられた新候補ビーム検出用参照信号リソース構成が構成されている一例を示す。
図6において、サービングTRPであるTRP1および協調TRPであるTRP2は、当該サービングTRPおよび協調TRPからの参照信号を含む新候補ビーム検出用参照信号リソース構成を送信する。
この場合、Rel.15のリンク再構成手順を変更する必要はない。ユーザ端末は、Rel.15のリンク再構成手順に基づいて、新候補ビームを検出する。新候補ビーム検出用参照信号リソース構成に、1つのTRPまたは2つのTRPからの参照信号が含まれているかどうかは、ユーザ端末に対して透過的(transparent)であってもよい。すなわち、ユーザ端末は、ビーム障害検出用参照信号リソース構成に、1つのTRPまたは2つのTRPからの参照信号が含まれているか知っていると想定してもよい。この構成は、ネットワークから上位レイヤシグナリングなどを介して、もしくは、ネットワークからの上位レイヤシグナリングまたは物理レイヤシグナリングなどの組み合わせによって、ユーザ端末に通知されると想定してもよい。
(第3の態様)
第3の態様では、将来の無線通信システム(たとえば、Rel.16以降)で、複数の送信ポイントからノンコヒーレントなDL信号が協調して送信されるシナリオにおけるビーム障害回復(BFR)手順の、ビーム回復要求(BFRQ)送信について説明する。
(態様3-1)
態様1-1に基づいて、ユーザ端末が1つの送受信ポイント(TRP)のビーム障害またはリンク障害を検出すると、ユーザ端末は、ビーム回復要求(BFRQ)またはリンク回復要求を他の送受信ポイント(TRP)を介して送信してもよい。
他の送受信ポイント(TRP)を介して送信されるビーム回復要求(BFRQ)またはリンク回復要求のチャネルまたはフォーマットとして、新しいMAC CEが定義され、PUSCHを介して送信されてもよい。
他の送受信ポイント(TRP)を介して送信されるビーム回復要求(BFRQ)またはリンク回復要求のチャネルまたはフォーマットとして、新しいUCI(Uplink Control Information)が定義され、PUCCHを介して送信されてもよい。
他の送受信ポイント(TRP)を介して送信されるビーム回復要求(BFRQ)またはリンク回復要求の内容として、ビーム回復要求(BFRQ)またはリンク回復要求に加えて、ビーム障害を検出した送受信ポイント(TRP)のTRP ID、BWP IDおよび新候補ビームID(新しいTCI状態指示)の少なくとも1つが含まれていてもよい。
他の送受信ポイント(TRP)を介して送信されるビーム回復要求(BFRQ)またはリンク回復要求の内容として、ビーム回復要求(BFRQ)またはリンク回復要求に加えて、ビーム障害を検出した送受信ポイント(TRP)のTRP ID、BWP IDおよび新候補ビームID(新しいTCI状態指示)が含まれていなくてもよい。
ユーザ端末(UE)が、2つの送受信ポイント(TRP)のビーム障害またはリンク障害を同時に検出すると、Rel.15のビーム回復要求(BFRQ)はPRACHリソースを介してサービングTRPに送信される。ビーム回復要求(BFRQ)のためのPRACHリソース上にRel.15のRRC構成を保持する必要がある。
図7Aは、態様3-1に対応し、マルチTRP送信シナリオにおいて、各TRPに関連付けられたビーム障害検出用参照信号リソース構成が2セット構成されている一例を示す。
図7Aにおいて、ユーザ端末は、協調TRPであるTRP2のビーム障害またはリンク障害を検出する。ユーザ端末は、そのビームまたはリンクが機能しているサービングTRPであるTRP1を介してビーム回復要求(BFRQ)またはリンク回復要求を送信する。
マルチTRP送信シナリオにおいて、1つの送受信ポイント(TRP)のすべてのビームまたはリンクに障害が発生したとしても、ユーザ端末は他の送受信ポイント(TRP)との接続を有しているので、PRACHの代わりに、新しいMAC CEまたは新しいUCIを他のTRPを介して送信することにより、ビーム回復要求(BFRQ)を送信することができる。
マルチTRP送信シナリオにおいて、すべてのビームまたはリンクが動作していない場合のみ、PRACHに基づくRel.15のビーム回復要求(BFRQ)が使用されてもよい。
(態様3-2)
態様1-1に基づいて、ユーザ端末が1つの送受信ポイント(TRP)のビーム障害またはリンク障害を検出すると、ユーザ端末は、当該TRPの構成に基づいてPRACHリソースを介して対応する障害が発生したTRPにビーム回復要求(BFRQ)を送信してもよい。
RRCは、各送受信ポイント(TRP)のビーム回復要求(BFRQ)のために、各TRPから送信するPRACHリソースを構成する。したがって、1つの送受信ポイント(TRP)のビーム障害またはリンク障害の場合、ユーザ端末は、対応するPRACHリソースを、当該障害が発生したTRPに送信する。
図7Bは、態様3-2に対応し、マルチTRP送信シナリオにおいて、各TRPに関連付けられたビーム障害検出用参照信号リソース構成が2セット構成されている一例を示す。
RRCは、サービングTRPおよび協調TRPに対する、ビーム回復要求(BFRQ)のためにサービングTRPおよび協調TRPからそれぞれ送信されるPRACHリソースを構成する。これらのPRACHリソースは、新候補ビーム検出用参照信号と関連付けられていてもよい。
たとえば、TRP1から送信される新候補ビーム検出用参照信号RS1は、TRP1から送信されるビーム回復要求(BFRQ)のためのPRACH1であってもよい。TRP1から送信される新候補ビーム検出用参照信号RS2は、TRP1から送信されるビーム回復要求(BFRQ)のためのPRACH2であってもよい。TRP2から送信される新候補ビーム検出用参照信号RS1は、TRP2から送信されるビーム回復要求(BFRQ)のためのPRACH1であってもよい。TRP2から送信される新候補ビーム検出用参照信号RS2は、TRP2から送信されるビーム回復要求(BFRQ)のためのPRACH2であってもよい。
図7Bにおいて、ユーザ端末が、協調TRPであるTRP2のビーム障害またはリンク障害を検出した場合、ユーザ端末は、当該協調TRPの構成に基づいて、PRACHリソースを介して当該協調TRPへビーム回復要求(BFRQ)を送信する。
もし、ユーザ端末が、サービングTRPであるTRP1のビーム障害またはリンク障害を検出した場合、ユーザ端末は、当該サービングTRPの構成に基づいて、PRACHリソースを介して当該サービングTRPへビーム回復要求(BFRQ)を送信する。
(態様3-3)
態様1-1に基づいて、ユーザ端末が1つの送受信ポイント(TRP)のビーム障害またはリンク障害を検出すると、Rel.15のビーム回復要求(BFRQ)が、PRACHリソースを介してサービングTRPに送信されてもよい。
RRCは、サービングTRPと強調TRPの両方に対してビーム回復要求(BFRQ)のためにサービングTRPから送信するPRACHリソースを構成する。
図8は、態様3-3に対応し、マルチTRP送信シナリオにおいて、各TRPに関連付けられたビーム障害検出用参照信号リソース構成が2セット構成されている一例を示す。
RRCは、サービングTRPおよび協調TRPに対する、ビーム回復要求(BFRQ)のためにサービングTRPから送信されるPRACHリソースを構成する。これらのPRACHリソースは、新候補ビーム検出用参照信号を関連付けられていてもよい。
たとえば、TRP1から送信される新候補ビーム検出用参照信号RS1は、サービングTRPであるTRP1から送信されるビーム回復要求(BFRQ)のためのPRACH1であってもよい。TRP1から送信される新候補ビーム検出用参照信号RS2は、TRP1から送信されるビーム回復要求(BFRQ)のためのPRACH2であってもよい。TRP2から送信される新候補ビーム検出用参照信号RS1は、TRP1から送信されるビーム回復要求(BFRQ)のためのPRACH3であってもよい。TRP2から送信される新候補ビーム検出用参照信号RS2は、TRP1から送信されるビーム回復要求(BFRQ)のためのPRACH4であってもよい。
図8において、ユーザ端末が、サービングTRPであるTRP1のビーム障害またはリンク障害を検出した場合、ユーザ端末は、RRCの構成に基づいて、PRACHリソースを介して当該サービングTRPへビーム回復要求(BFRQ)を送信する。
もし、ユーザ端末が、協調TRPであるTRP2のビーム障害またはリンク障害を検出した場合、ユーザ端末は、RRCの構成に基づいて、PRACHリソースを介してサービングTRPへビーム回復要求(BFRQ)を送信する。
(態様3-4)
態様1-1および態様3-1に基づいて、ユーザ端末が協調TRPのビーム障害またはリンク障害を検出した場合、ユーザ端末は、サービングTRPを介してビーム回復要求(BFRQ)またはリンク回復要求を送信してもよい。ユーザ端末がサービングTRPのビーム障害またはリンク障害を検出した場合、または、ユーザ端末が2つのTRPのビーム障害またはリンク障害を同時に検出した場合、ユーザ端末は、PRACHリソースを介してRel.15のビーム回復要求(BFRQ)を送信してもよい。
他の送受信ポイント(TRP)を介して送信されるビーム回復要求(BFRQ)またはリンク回復要求のチャネルまたはフォーマットは、態様3-1と同様である。
他の送受信ポイント(TRP)を介して送信されるビーム回復要求(BFRQ)またはリンク回復要求の内容として、ビーム障害を検出した送受信ポイント(TRP)のTRP IDと新候補ビームID(新しいTCI状態指示)の両方、またはいずれか一方を含む必要はない。
ビーム回復要求(BFRQ)のためのPRACHリソース上に、Rel.15のRRC構成を保持する必要がある。
図9Aおよび図9Bは、態様3-4に対応し、マルチTRP送信シナリオにおいて、各TRPに関連付けられたビーム障害検出用参照信号リソース構成が2セット構成されている一例を示す。
RRCは、ビーム回復要求(BFRQ)のためにサービングTRPから送信されるPRACHリソースを構成する。このPRACHリソースは、新候補ビーム検出用参照信号と関連付けられていてもよい。
たとえば、TRP1から送信される新候補ビーム検出用参照信号RS1は、TRP1から送信されるビーム回復要求(BFRQ)のためのPRACH1であってもよい。TRP1から送信される新候補ビーム検出用参照信号RS2は、TRP1から送信されるビーム回復要求(BFRQ)のためのPRACH2であってもよい。
ユーザ端末が、サービングTRPとのRRC接続のみを有すると仮定すると、ユーザ端末が、協調TRPのビーム障害またはリンク障害を検出した場合、ユーザ端末は、ビーム回復要求(BFRQ)を、障害の発生していないビームまたはリンクを利用して、サービングTRPを介して送信できる(図9A参照)。当該ビーム回復要求(BFRQ)は、新しいMAC CEまたは新しいUCIを有していてもよい。
ユーザ端末が、サービングTRPとのRRC接続のみを有すると仮定すると、ユーザ端末が、サービングTRPのビーム障害またはリンク障害を検出した場合、ユーザ端末は、ネットワークとの接続を失ったことを意味する。この場合、ユーザ端末は、Rel.15のビーム回復要求(BFRQ)を、PRACHリソースを介して送信する(図9B参照)。
(第4の態様)
第4の態様では、将来の無線通信システム(たとえば、Rel.16以降)で、複数の送信ポイントからノンコヒーレントなDL信号が協調して送信されるシナリオにおけるビーム障害回復(BFR)手順の、ビーム回復要求(BFRQ)に対する応答信号のモニタについて説明する。当該応答信号は、gNBレスポンスと呼ばれてもよい。
(態様4-1)
RRCは、複数のビーム障害回復応答構成(たとえば、Beam-failure-Recovery-Response-CORESET/Search space configuration)を構成してもよい。各構成は、gNBレスポンスのモニタのために、1つの送受信ポイント(TRP)に関連付けられていてもよい。
ユーザ端末は、ビーム回復要求(BFRQ)の送信後、複数のビーム障害回復応答構成からgNBレスポンスのモニタ動作を決定する。
ユーザ端末は、ビーム障害またはリンク障害が発生した送受信ポイント(TRP)に関連付けられたビーム障害回復応答構成から、gNBレスポンスをモニタしてもよい。
ユーザ端末は、ビーム回復送信のための新候補ビームまたは新しいTCI状態が見つかった送受信ポイント(TRP)に関連付けられたビーム障害回復応答構成から、gNBレスポンスをモニタしてもよい。
ユーザ端末は、PRACHリソースを介したビーム回復要求(BFRQ)が送信された送受信ポイント(TRP)に関連付けられたビーム障害回復応答構成から、gNBレスポンスをモニタしてもよい。この方法は、PRACHベースの回復要求送信メカニズムにのみ適用可能である。
ユーザ端末は、新しいMAC CEまたは新しいUCIベースのビーム回復要求(BFRQ)を障害の発生していないビームまたはリンクを介して送信する場合、PDCCHモニタリングのための直前のTCI構成に従うことができる。
ユーザ端末は、PRACHベースのビーム回復要求(BFRQ)を送信した場合のみ、ビーム障害回復応答構成たとえば、Beam-failure-Recovery-Response-CORESET/Search space configuration)の設定を必要とし、gNBレスポンスのモニタのために当該ビーム障害回復応答構成を追跡する。
(態様4-2)
RRCは、gNBレスポンスのモニタのために、固定TRP(たとえば、サービングTRP)に関連付いたビーム障害回復応答構成(たとえば、Beam-failure-Recovery-Response-CORESET/Search space configuration)を構成してもよい。
ユーザ端末は、固定TRPからのgNBレスポンスを常にモニタする。
この方法は、PRACHベースの回復要求送信メカニズムにのみ適用可能である。
ユーザ端末は、新しいMAC CEまたは新しいUCIベースのビーム回復要求(BFRQ)を障害の発生していないビームまたはリンクを介して送信する場合、PDCCHモニタのための直前のTCI構成に従うことができる。
ユーザ端末は、PRACHベースのビーム回復要求(BFRQ)を送信した場合のみ、ビーム障害回復応答構成(たとえば、Beam-failure-Recovery-Response-CORESET/Search space configuration)の設定を必要とし、gNBレスポンスのモニタのために当該ビーム障害回復応答構成を追跡する。
(第1の実施例)
第1の実施例では、態様1-2、態様2-2、態様3-3および態様4-2を組み合わせたビーム障害回復(BFR)手順について説明する。
マルチパネル送信シナリオまたはマルチTRP送信シナリオにおいて、ビーム障害検出用の参照信号(BFD-RS)、新候補ビーム識別のための参照信号(NCBI-RS)、ビーム回復要求(BFRQ)送信およびgNBレスポンスのモニタリング構成は、1つのパネルまたは1つのTRPのみに関連付けられるよう制限されてもよい。
Rel.15のリンク再構成手順に基づいて、上位レイヤパラメータであるビーム障害検出用参照信号リソース構成(たとえば、Beam-Failure-Detection-RS-ResourceConfig)および新候補ビーム検出用参照信号リソース構成(たとえば、Candidate-Beam-RS-List)は、1つのTRP(たとえば、サービングTRP)に関連付けられた参照信号のみを含む。
ユーザ端末(UE)に、上位レイヤパラメータであるビーム障害検出用参照信号リソース構成(たとえば、Beam-Failure-Detection-RS-ResourceConfig)が提供されていない場合、ユーザ端末は、q(qにオーバーラインを付したもの)のセットを決定してもよい。q(qにオーバーラインを付したもの)のセットは、SS/PBCHブロックインデックスおよび周期的なCSI-RSリソース設定インデックスを含む。これらのインデックスは、ユーザ端末が1つのTRP(たとえば、サービングTRP)に関連付けられたPDCCHをモニタするように構成された各制御リソースセットのTCI状態によって示される参照信号(RS)セット内の参照信号(RS)インデックスと同じ値を有する。
上位レイヤパラメータであるビーム障害回復応答構成(たとえば、Beam-failure-Recovery-Response-CORESET/Search space configuration)も、1つのTRP(たとえば、サービングTRP)に関連付けられて構成されてもよい。
図10は、第1の実施例に対応し、マルチTRP送信シナリオにおいて、サービングTRPに関連付けられたビーム障害検出用参照信号リソース構成のセットおよび新候補ビーム検出用参照信号リソース構成が構成されている。
図10において、サービングTRPであるTRP1は、当該サービングTRPのみに関連付けられたビーム障害検出用参照信号リソース構成を送信する(ステップS201)。
ユーザ端末は、サービングTRPからの参照信号に基づいて、サービングTRPのビーム障害を検出する(ステップS202)。
サービングTRPであるTRP1は、当該サービングTRPのみに関連付けられた新候補ビーム検出用参照信号リソース構成を送信する(ステップS203)。
ユーザ端末は、サービングTRPからの参照信号に基づいて、サービングTRPの新候補ビームのみを測定する(ステップS204)。
ユーザ端末は、PRACHリソースを介してサービングTRPへビーム回復要求(BFRQ)を送信する(ステップS205)。このPRACHリソースは、新候補ビーム検出用参照信号(RS)に関連付けられていてもよい。
ユーザ端末は、サービングTRPからのgNBレスポンスのモニタのために、CORESETまたはサーチスペースをモニタする(ステップS206)。
このケースでは、サービングTRPからのビーム障害検出のためのすべてのリソースの検出に失敗すると、協調TRPのリンク状態に関係なく、リンク再構成がトリガされる。
(第2の実施例)
第2の実施例では、態様1-1、態様2-2、態様3-1および態様4-1を組み合わせたビーム障害回復(BFR)手順について説明する。
マルチパネル送信シナリオまたはマルチTRP送信シナリオにおいて、複数の送受信ポイント(TRP)のビーム障害検出に、複数の独立した参照信号(RS)構成を利用してもよい。
新候補ビーム構成および関連するPRACH構成は、サービングTRPに関連付けられていてもよい。
ユーザ端末が、1つの送受信ポイント(TRP)のビーム障害またはリンク障害を検出した場合、ユーザ端末は、ビーム回復要求(BFRQ)またはリンク回復要求を、他の送受信ポイント(TRP)を介して送信してもよい。当該ビーム回復要求(BFRQ)またはリンク回復要求として、新しいMAC CEまたはUCIが定義されてもよい。
ユーザ端末は、他の送受信ポイント(TRP)のための、PDCCHモニタリングのための直前のTCI構成に従ってもよい。
ネットワークは、他の送受信ポイント(TRP)から利用可能なPDCCHまたはPDSCH送信によって、障害が発生した送受信ポイント(TRP)の物理レイヤにおける参照信号受信電力(L1-RSRP)報告をトリガしてもよく、障害が発生した送受信ポイント(TRP)のTCIを再構成してもよい。
ユーザ端末が、同時に2つの送受信ポイント(TRP)のビーム障害またはリンク障害を検出した場合のみ、従来のRel.15のビーム回復要求(BFRQ)を、PRACHリソースを介して送信することができる。そして、従来のgNB応答モニタリングが実行される。
図11は、第2の実施例に対応し、マルチTRP送信シナリオにおいて、各TRPに関連付けられたビーム障害検出用参照信号リソース構成が2セット構成されている一例を示す。
図11において、サービングTRPであるTRP1および協調TRPであるTRP2は、それぞれのTRPに関連付けられたビーム障害検出用参照信号リソース構成を送信する(ステップS301)。
ユーザ端末は、協調TRPからの参照信号に基づいて、協調TRPのビーム障害を検出する(ステップS302)。
ユーザ端末は、障害の発生していないサービングTRPを介して、ビーム回復要求(BFRQ)を送信する(ステップS303)。
ユーザ端末は、サービングTRPから、利用可能なPDCCHまたはPDSCH送信を介して、協調TRPのリンク再構成を受信する(ステップS304)。
このケースでは、1つの送受信ポイント(TRP)にビーム障害またはリンク障害が発生した場合であっても、ユーザ端末は他の送受信ポイント(TRP)との接続を有している。したがって、ユーザ端末は、PRACHに代えて、新しいMAC CEまたはUCIとともに当該他の送受信ポイント(TRP)を介してビーム回復要求(BFRQ)を送信できる。
もし、2つの送受信ポイント(TRP)にビーム障害またはリンク障害が発生した場合には、ユーザ端末は、サービングTRPに対してPRACHベースのビーム回復要求(BFRQ)を送信する。
以上説明したように、本実施の形態によれば、将来の無線通信システムにおいて、複数の送信ポイントを利用して通信を行う場合であっても、ビーム障害回復(BFR)手順を適切に行うことができる。
(無線通信システム)
以下、本実施の形態に係る無線通信システムの構成について説明する。この無線通信システムでは、上記実施の形態に係る無線通信方法が適用される。
図12は、本実施の形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1では、LTEシステムのシステム帯域幅(たとえば、20MHz)を1単位とする複数の基本周波数ブロック(コンポーネントキャリア)を一体としたキャリアアグリゲーション(CA)またはデュアルコネクティビティ(DC)を適用することができる。無線通信システム1は、SUPER 3G、LTE-A(LTE-Advanced)、IMT-Advanced、4G、5G、FRA(Future Radio Access)、NR(New Radio)などと呼ばれてもよい。
無線通信システム1は、マクロセルC1を形成する基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する基地局12aから12cと、を備えている。マクロセルC1および各スモールセルC2には、ユーザ端末20が配置されている。セル間で異なるニューメロロジーが適用される構成としてもよい。ニューメロロジーとは、あるRATにおける信号のデザインや、RATのデザインを特徴付ける通信パラメータのセットのことをいう。
ユーザ端末20は、基地局11および基地局12の双方に接続することができる。ユーザ端末20は、異なる周波数を用いるマクロセルC1とスモールセルC2を、キャリアアグリゲーション(CA)またはデュアルコネクティビティ(DC)により同時に使用することが想定される。ユーザ端末20は、複数のセル(CC)(たとえば、2個以上のCC)を用いてキャリアアグリゲーション(CA)またはデュアルコネクティビティ(DC)を適用することができる。ユーザ端末は、複数のセルとしてライセンスドバンドCCとアンライセンスドバンドCCを利用することができる。複数のセルのいずれかに短縮TTIを適用するTDDキャリアが含まれる構成とすることができる。
ユーザ端末20と基地局11との間は、相対的に低い周波数帯域(たとえば、2GHz)で帯域幅が狭いキャリア(既存キャリア、Legacy carrierなどと呼ばれる)を用いて通信を行うことができる。ユーザ端末20と基地局12との間は、相対的に高い周波数帯域(たとえば、3.5GHz、5GHz、30から70GHzなど)で帯域幅が広いキャリアが用いられてもよいし、基地局11との間と同じキャリアが用いられてもよい。各基地局が利用する周波数帯域の構成はこれに限られない。
基地局11と基地局12との間(または、2つの基地局12の間)は、有線接続(たとえば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェースなど)または無線接続する構成とすることができる。
基地局11および各基地局12は、それぞれ上位局装置30に接続され、上位局装置30を介してコアネットワーク40に接続される。上位局装置30には、たとえば、アクセスゲートウェイ装置、無線ネットワークコントローラ(RNC)、モビリティマネジメントエンティティ(MME)などが含まれるが、これに限定されるものではない。各基地局12は、基地局11を介して上位局装置30に接続されてもよい。
基地局11は、相対的に広いカバレッジを有する基地局であり、マクロ基地局、集約ノード、eNB(eNodeB)、送受信ポイント、などと呼ばれてもよい。基地局12は、局所的なカバレッジを有する基地局であり、スモール基地局、マイクロ基地局、ピコ基地局、フェムト基地局、HeNB(Home eNodeB)、RRH(Remote Radio Head)、送受信ポイントなどと呼ばれてもよい。以下、基地局11および12を区別しない場合は、基地局10と総称する。
各ユーザ端末20は、LTE、LTE-A等の各種通信方式に対応した端末であり、移動通信端末だけでなく固定通信端末を含んでもよい。
無線通信システム1においては、無線アクセス方式として、下りリンク(DL)にOFDMA(直交周波数分割多元接続)が適用でき、上りリンク(UL)にSC-FDMA(シングルキャリア-周波数分割多元接続)が適用できる。OFDMAは、周波数帯域を複数の狭い周波数帯域(サブキャリア)に分割し、各サブキャリアにデータをマッピングして通信を行うマルチキャリア伝送方式である。SC-FDMAは、システム帯域幅を端末ごとに1つまたは連続したリソースブロックからなる帯域に分割し、複数の端末が互いに異なる帯域を用いることで、端末間の干渉を低減するシングルキャリア伝送方式である。上りおよび下りの無線アクセス方式は、これらの組み合わせに限られず、ULでOFDMAが用いられてもよい。
無線通信システム1では、DLチャネルとして、各ユーザ端末20で共有される下りデータチャネル(PDSCH:Physical Downlink Shared Channel、下り共有チャネル等ともいう)、ブロードキャストチャネル(PBCH:Physical Broadcast Channel)、L1/L2制御チャネルなどが用いられる。PDSCHにより、ユーザデータや上位レイヤ制御情報、SIB(System Information Block)などが伝送される。PBCHにより、MIB(Master Information Block)が伝送される。
L1/L2制御チャネルは、下り制御チャネル(PDCCH(Physical Downlink Control Channel)、EPDCCH(Enhanced Physical Downlink Control Channel))、PCFICH(Physical Control Format Indicator Channel)、PHICH(Physical Hybrid-ARQ Indicator Channel)などを含む。PDCCHにより、PDSCHおよびPUSCHのスケジューリング情報を含む下り制御情報(DCI:Downlink Control Information)などが伝送される。PCFICHにより、PDCCHに用いるOFDMシンボル数が伝送される。PHICHにより、PUSCHに対するHARQの送達確認情報(ACK/NACK)が伝送される。EPDCCHは、PDSCH(下り共有データチャネル)と周波数分割多重され、PDCCHと同様にDCI等の伝送に用いられる。
無線通信システム1では、ULチャネルとして、各ユーザ端末20で共有される上りデータチャネル(PUSCH:Physical Uplink Shared Channel、上り共有チャネル等ともいう)、上り制御チャネル(PUCCH:Physical Uplink Control Channel)、ランダムアクセスチャネル(PRACH:Physical Random Access Channel)などが用いられる。PUSCHにより、ユーザデータ、上位レイヤ制御情報が伝送される。送達確認情報(ACK/NACK)や無線品質情報(CQI)などの少なくとも1つを含む上り制御情報(UCI:Uplink Control Information)は、PUSCHまたはPUCCHにより、伝送される。PRACHにより、セルとの接続確立のためのランダムアクセスプリアンブルが伝送される。
<基地局>
図13は、本実施の形態に係る基地局の全体構成の一例を示す図である。基地局10は、複数の送受信アンテナ101と、アンプ部102と、送受信部103と、ベースバンド信号処理部104と、呼処理部105と、伝送路インターフェース106と、を備えている。送受信アンテナ101、アンプ部102、送受信部103は、それぞれ1つ以上を含むように構成されればよい。基地局10は、下りデータの送信装置であり、上りデータの受信装置であってもよい。
基地局10からユーザ端末20に送信される下りデータは、上位局装置30から伝送路インターフェース106を介してベースバンド信号処理部104に入力される。
ベースバンド信号処理部104では、下りデータに関して、PDCP(Packet Data Convergence Protocol)レイヤの処理、ユーザデータの分割・結合、RLC(Radio Link Control)再送制御などのRLCレイヤの送信処理、MAC(Medium Access Control)再送制御(たとえば、HARQの送信処理)、スケジューリング、伝送フォーマット選択、チャネル符号化、逆高速フーリエ変換(IFFT:Inverse Fast Fourier Transform)処理、プリコーディング処理などの送信処理が行われて送受信部103に転送される。下り制御信号に関しても、チャネル符号化や逆高速フーリエ変換などの送信処理が行われて、送受信部103に転送される。
送受信部103は、ベースバンド信号処理部104からアンテナごとにプリコーディングして出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部103で周波数変換された無線周波数信号は、アンプ部102により増幅され、送受信アンテナ101から送信される。送受信部103は、本発明に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路または送受信装置から構成することができる。送受信部103は、一体の送受信部として構成されてもよいし、送信部および受信部から構成されてもよい。
上り信号については、送受信アンテナ101で受信された無線周波数信号がアンプ部102で増幅される。送受信部103は、アンプ部102で増幅された上り信号を受信する。送受信部103は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部104に出力する。
ベースバンド信号処理部104では、入力された上り信号に含まれるユーザデータに対して、高速フーリエ変換(FFT:Fast Fourier Transform)処理、逆離散フーリエ変換(IDFT:Inverse Discrete Fourier Transform)処理、誤り訂正復号、MAC再送制御の受信処理、RLCレイヤおよびPDCPレイヤの受信処理がなされ、伝送路インターフェース106を介して上位局装置30に転送される。呼処理部105は、通信チャネルの設定や解放などの呼処理、基地局10の状態管理、および、無線リソースの管理を行う。
伝送路インターフェース106は、所定のインターフェースを介して、上位局装置30と信号を送受信する。伝送路インターフェース106は、基地局間インターフェース(たとえば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェース)を介して他の基地局10と信号を送受信(バックホールシグナリング)してもよい。
送受信部103は、アナログビームフォーミングを実施するアナログビームフォーミング部をさらに有してもよい。アナログビームフォーミング部は、本発明に係る技術分野での共通認識に基づいて説明されるアナログビームフォーミング回路(たとえば、位相シフタ、位相シフト回路)またはアナログビームフォーミング装置(たとえば、位相シフト器)から構成することができる。送受信アンテナ101は、たとえばアレーアンテナにより構成することができる。送受信部103は、シングルBF、マルチBFを適用できるように構成されている。
送受信部103は、送信ビームを用いて信号を送信してもよいし、受信ビームを用いて信号を受信してもよい。送受信部103は、制御部301によって決定された所定のビームを用いて信号を送信および受信してもよい。
送受信部103は、下り信号(たとえば、下り制御信号(下り制御チャネル)、下りデータ信号(下りデータチャネル、下り共有チャネル)、下り参照信号(DM-RS、CSI-RS等)、ディスカバリ信号、同期信号、ブロードキャスト信号など)を送信する。送受信部103は、上り信号(たとえば、上り制御信号(上り制御チャネル)、上りデータ信号(上りデータチャネル、上り共有チャネル)、上り参照信号など)を受信する。
送受信部103は、複数の送信ポイントから送信される下り共有チャネルのスケジューリングに利用する1または複数の下り制御情報を送信してもよい。送受信部103は、ビーム障害検出のための参照信号(BFD-RS)、新候補ビーム識別のための参照信号(NCBI-RS)などの参照信号を送信してもよい。送受信部103は、ユーザ端末20から送信されるビーム回復要求(BFRQ)を受信し、当該ビーム回復要求(BFRQ)に対する応答信号を送信してもよい。
本発明の送信部および受信部は、送受信部103と伝送路インターフェース106の両方、またはいずれか一方により構成される。
図14は、本実施の形態に係る基地局の機能構成の一例を示す図である。この図では、本実施形態における特徴部分の機能ブロックを主に示しており、基地局10は、無線通信に必要な他の機能ブロックも有しているものとする。ベースバンド信号処理部104は、制御部301と、送信信号生成部302と、マッピング部303と、受信信号処理部304と、測定部305と、を少なくとも備えている。
制御部301は、基地局10全体の制御を実施する。制御部301は、本発明に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路または制御装置から構成することができる。
制御部301は、たとえば、送信信号生成部302による信号の生成や、マッピング部303による信号の割り当てを制御する。制御部301は、受信信号処理部304による信号の受信処理や、測定部305による信号の測定を制御する。
制御部301は、下り信号および上り信号のスケジューリング(たとえば、リソース割り当て)を制御する。具体的には、制御部301は、下りデータチャネルのスケジューリング情報を含むDCI(DLアサインメント、DLグラント)、上りデータチャネルのスケジューリング情報を含むDCI(ULグラント)を生成および送信するように、送信信号生成部302、マッピング部303および送受信部103を制御する。
制御部301は、ユーザ端末20に対する無線リンクモニタリング(RLM)およびビーム回復(BR)の少なくとも一方を制御してもよい。制御部301は、ビーム回復要求(BFRQ)に応じて、ユーザ端末20に応答信号を送信するよう制御してもよい。
送信信号生成部302は、制御部301からの指示に基づいて、下り信号(下り制御チャネル、下りデータチャネル、DM-RS等の下り参照信号など)を生成して、マッピング部303に出力する。送信信号生成部302は、本発明に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路または信号生成装置から構成することができる。
マッピング部303は、制御部301からの指示に基づいて、送信信号生成部302で生成された下り信号を、所定の無線リソースにマッピングして、送受信部103に出力する。マッピング部303は、本発明に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路またはマッピング装置から構成することができる。
受信信号処理部304は、送受信部103から入力された受信信号に対して、受信処理(たとえば、デマッピング、復調、復号など)を行う。たとえば、受信信号は、ユーザ端末20から送信される上り信号(上り制御チャネル、上りデータチャネル、上り参照信号など)である。受信信号処理部304は、本発明に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路または信号処理装置から構成することができる。
受信信号処理部304は、受信処理により復号された情報を制御部301に出力する。たとえば、受信処理部304は、プリアンブル、制御情報、ULデータの少なくとも1つを制御部301に出力する。また、受信信号処理部304は、受信信号および受信処理後の信号を、測定部305に出力する。
測定部305は、受信した信号に関する測定を実施する。測定部305は、本発明に係る技術分野での共通認識に基づいて説明される測定器、測定回路または測定装置から構成することができる。
測定部305は、たとえば、受信した信号の受信電力(たとえば、RSRP(Reference Signal Received Power))、受信品質(たとえば、RSRQ(Reference Signal Received Quality))やチャネル状態等について測定してもよい。測定結果は、制御部301に出力されてもよい。
<ユーザ端末>
図15は、本実施の形態に係るユーザ端末の全体構成の一例を示す図である。ユーザ端末20は、複数の送受信アンテナ201と、アンプ部202と、送受信部203と、ベースバンド信号処理部204と、アプリケーション部205と、を備えている。送受信アンテナ201、アンプ部202、送受信部203は、それぞれ1つ以上を含むように構成されればよい。ユーザ端末20は、下りデータの受信装置であり、上りデータの送信装置であってもよい。
送受信アンテナ201で受信された無線周波数信号は、アンプ部202で増幅される。送受信部203は、アンプ部202で増幅された下り信号を受信する。送受信部203は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部204に出力する。送受信部203は、本発明に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路または送受信装置から構成することができる。送受信部203は、一体の送受信部として構成されてもよいし、送信部および受信部から構成されてもよい。
ベースバンド信号処理部204は、入力されたベースバンド信号に対して、FFT処理や、誤り訂正復号、再送制御の受信処理などを行う。下りデータは、アプリケーション部205に転送される。アプリケーション部205は、物理レイヤやMACレイヤより上位のレイヤに関する処理などを行う。下りデータのうち、システム情報や上位レイヤ制御情報もアプリケーション部205に転送される。
上りリンクのユーザデータは、アプリケーション部205からベースバンド信号処理部204に入力される。ベースバンド信号処理部204では、再送制御の送信処理(たとえば、HARQの送信処理)や、チャネル符号化、プリコーディング、離散フーリエ変換(DFT:Discrete Fourier Transform)処理、IFFT処理などが行われて送受信部203に転送される。送受信部203は、ベースバンド信号処理部204から出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部203で周波数変換された無線周波数信号は、アンプ部202により増幅され、送受信アンテナ201から送信される。
送受信部203は、アナログビームフォーミングを実施するアナログビームフォーミング部をさらに有してもよい。アナログビームフォーミング部は、本発明に係る技術分野での共通認識に基づいて説明されるアナログビームフォーミング回路(たとえば、位相シフタ、位相シフト回路)またはアナログビームフォーミング装置(たとえば、位相シフト器)から構成することができる。送受信アンテナ201は、たとえばアレーアンテナにより構成することができる。送受信部203は、シングルBF、マルチBFを適用できるように構成されている。
送受信部203は、送信ビームを用いて信号を送信してもよいし、受信ビームを用いて信号を受信してもよい。送受信部203は、制御部401によって決定された所定のビームを用いて信号を送信および受信してもよい。
送受信部203は、下り信号(たとえば、下り制御信号(下り制御チャネル)、下りデータ信号(下りデータチャネル、下り共有チャネル)、下り参照信号(DM-RS、CSI-RS等)、ディスカバリ信号、同期信号、報知信号など)を受信する。送受信部203は、上り信号(たとえば、上り制御信号(上り制御チャネル)、上りデータ信号(上りデータチャネル、上り共有チャネル)、上り参照信号など)を送信する。
送受信部203は、複数の送信ポイントから送信される下り共有チャネルのスケジューリングに利用する1または複数の下り制御情報を受信してもよい。送受信部203は、ビーム障害検出のための参照信号(BFD-RS)、新候補ビーム識別のための参照信号(NCBI-RS)などの参照信号を受信してもよい。送受信部103は、ビーム回復要求(BFRQ)を送信し、当該ビーム回復要求(BFRQ)に対する応答信号を受信してもよい。
図16は、本実施の形態に係るユーザ端末の機能構成の一例を示す図である。この図では、本実施の形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有しているものとする。ユーザ端末20が有するベースバンド信号処理部204は、制御部401と、送信信号生成部402と、マッピング部403と、受信信号処理部404と、測定部405と、を少なくとも備えている。
制御部401は、ユーザ端末20全体の制御を実施する。制御部401は、本発明に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路または制御装置から構成することができる。
制御部401は、たとえば、送信信号生成部402による信号の生成や、マッピング部403による信号の割り当てを制御する。制御部401は、受信信号処理部404による信号の受信処理や、測定部405による信号の測定を制御する。
制御部401は、ビーム障害検出のための参照信号(BFD-RS)に関連付けられた送受信ポイント(TRP)のビーム障害を検出してもよい。制御部401は、新候補ビーム識別のための参照信号(NCBI-RS)に関連付けられた送受信ポイント(TRP)の新候補ビームを測定してもよい。制御部401は、送受信ポイント(TRP)にビーム回復要求(BFRQ)を送信するよう制御してもよい。
送信信号生成部402は、制御部401からの指示に基づいて、上り信号(上り制御チャネル、上りデータチャネル、上り参照信号など)を生成して、マッピング部403に出力する。送信信号生成部402は、本発明に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路または信号生成装置から構成することができる。
送信信号生成部402は、制御部401からの指示に基づいて上りデータチャネルを生成する。たとえば、送信信号生成部402は、基地局10から通知される下り制御チャネルにULグラントが含まれている場合に、制御部401から上りデータチャネルの生成を指示される。
マッピング部403は、制御部401からの指示に基づいて、送信信号生成部402で生成された上り信号を無線リソースにマッピングして、送受信部203へ出力する。マッピング部403は、本発明に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路またはマッピング装置から構成することができる。
受信信号処理部404は、送受信部203から入力された受信信号に対して、受信処理(たとえば、デマッピング、復調、復号など)を行う。たとえば、受信信号は、基地局10から送信される下り信号(下り制御チャネル、下りデータチャネル、下り参照信号など)である。受信信号処理部404は、本発明に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路または信号処理装置から構成することができる。受信信号処理部404は、本発明に係る受信部を構成することができる。
受信信号処理部404は、制御部401の指示に基づいて、下りデータチャネルの送信および受信をスケジューリングする下り制御チャネルをブラインド復号し、当該DCIに基づいて下りデータチャネルの受信処理を行う。受信信号処理部404は、DM-RSまたはCRSに基づいてチャネル利得を推定し、推定されたチャネル利得に基づいて、下りデータチャネルを復調する。
受信信号処理部404は、受信処理により復号された情報を制御部401に出力する。受信信号処理部404は、たとえば、報知情報、システム情報、RRCシグナリング、DCIなどを、制御部401に出力する。受信信号処理部404は、データの復号結果を制御部401に出力してもよい。受信信号処理部404は、受信信号や、受信処理後の信号を、測定部405に出力する。
測定部405は、受信した信号に関する測定を実施する。測定部405は、本発明に係る技術分野での共通認識に基づいて説明される測定器、測定回路または測定装置から構成することができる。
測定部405は、たとえば、受信した信号の受信電力(たとえば、RSRP)、DL受信品質(たとえば、RSRQ)やチャネル状態などについて測定してもよい。測定結果は、制御部401に出力されてもよい。
(ハードウェア構成)
上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェアおよびソフトウェアの少なくとも一方の任意の組み合わせによって実現される。各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的または論理的に結合した1つの装置を用いて実現されてもよいし、物理的または論理的に分離した2つ以上の装置を直接的または間接的に(たとえば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置または上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
ここで、機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、みなし、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。たとえば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)、送信機(transmitter)などと呼称されてもよい。いずれも、上述したとおり、実現方法は特に限定されない。
たとえば、本開示の一実施形態における基地局、ユーザ端末などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図17は、一実施形態に係る基地局およびユーザ端末のハードウェア構成の一例を示す図である。上述の基地局10およびユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。基地局10およびユーザ端末20のハードウェア構成は、図に示した各装置を1つまたは複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
たとえば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、またはその他の手法を用いて、2以上のプロセッサによって実行されてもよい。プロセッサ1001は、1以上のチップによって実装されてもよい。
基地局10およびユーザ端末20における各機能は、たとえば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002およびストレージ1003におけるデータの読み出しおよび書き込みの少なくとも一方を制御したりすることによって実現される。
プロセッサ1001は、たとえば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)によって構成されてもよい。たとえば、上述のベースバンド信号処理部104(204)、呼処理部105などは、プロセッサ1001によって実現されてもよい。
プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003および通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。たとえば、ユーザ端末20の制御部401は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。
メモリ1002は、コンピュータ読み取り可能な記録媒体であり、たとえば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically EPROM)、RAM(Random Access Memory)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、たとえば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(たとえば、コンパクトディスク(CD-ROM(Compact Disc ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(たとえば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。
通信装置1004は、有線ネットワークおよび無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、たとえばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、たとえば周波数分割複信(FDD:Frequency Division Duplex)および時分割複信(TDD:Time Division Duplex)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。たとえば、上述の送受信アンテナ101(201)、アンプ部102(202)、送受信部103(203)、伝送路インターフェース106などは、通信装置1004によって実現されてもよい。送受信部103は、送信部103aと受信部103bとで、物理的にまたは論理的に分離された実装がなされてもよい。
入力装置1005は、外部からの入力を受け付ける入力デバイス(たとえば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(たとえば、ディスプレイ、スピーカー、LED(Light Emitting Diode)ランプなど)である。入力装置1005および出力装置1006は、一体となった構成(たとえば、タッチパネル)であってもよい。
プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
基地局10およびユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部または全てが実現されてもよい。たとえば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
(変形例)
本開示において説明した用語および本開示の理解に必要な用語については、同一のまたは類似する意味を有する用語と置き換えてもよい。たとえば、チャネルおよびシンボルの少なくとも一方は信号(シグナリング)であってもよい。信号はメッセージであってもよい。参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。コンポーネントキャリア(CC:Component Carrier)は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
無線フレームは、時間領域において1つまたは複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つまたは複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つまたは複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(たとえば、1ms)であってもよい。
ここで、ニューメロロジーとは、ある信号またはチャネルの送信および受信の少なくとも一方に適用される通信パラメータであってもよい。たとえば、サブキャリア間隔(SCS:SubCarrier Spacing)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(TTI:Transmission Time Interval)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。
スロットは、時間領域において1つまたは複数のシンボル(OFDM(Orthogonal Frequency Division Multiplexing)シンボル、SC-FDMA(Single Carrier Frequency Division Multiple Access)シンボルなど)によって構成されてもよい。スロットは、ニューメロロジーに基づく時間単位であってもよい。
スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つまたは複数のシンボルによって構成されてもよい。ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(またはPUSCH)は、PDSCH(PUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(またはPUSCH)は、PDSCH(PUSCH)マッピングタイプBと呼ばれてもよい。
無線フレーム、サブフレーム、スロット、ミニスロットおよびシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロットおよびシンボルは、それぞれに対応する別の呼称が用いられてもよい。
たとえば、1サブフレームは送信時間間隔(TTI:Transmission Time Interval)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロットまたは1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレームおよびTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(たとえば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
ここで、TTIは、たとえば、無線通信におけるスケジューリングの最小時間単位のことをいう。たとえば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。TTIの定義はこれに限られない。
TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(たとえば、シンボル数)は、当該TTIよりも短くてもよい。
1スロットまたは1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロットまたは1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partialまたはfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。
ロングTTI(たとえば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(たとえば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
リソースブロック(RB:Resource Block)は、時間領域および周波数領域のリソース割当単位であり、周波数領域において、1つまたは複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。
RBは、時間領域において、1つまたは複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレームまたは1TTIの長さであってもよい。1TTI、1サブフレームは、それぞれ1つまたは複数のリソースブロックによって構成されてもよい。
1つまたは複数のRBは、物理リソースブロック(PRB:Physical RB)、サブキャリアグループ(SCG:Sub-Carrier Group)、リソースエレメントグループ(REG:Resource Element Group)、PRBペア、RBペアなどと呼ばれてもよい。
リソースブロックは、1つまたは複数のリソースエレメント(RE:Resource Element)によって構成されてもよい。たとえば、1REは、1サブキャリアおよび1シンボルの無線リソース領域であってもよい。
上述した無線フレーム、サブフレーム、スロット、ミニスロットおよびシンボルなどの構造は例示に過ぎない。たとえば、無線フレームに含まれるサブフレームの数、サブフレームまたは無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロットまたはミニスロットに含まれるシンボルおよびRBの数、RBに含まれるサブキャリアの数、ならびにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(CP:Cyclic Prefix)長などの構成は、様々に変更することができる。
本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。たとえば、無線リソースは、所定のインデックスによって指示されてもよい。
本開示においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式などは、本開示において明示的に開示したものと異なってもよい。様々なチャネル(PUCCH(Physical Uplink Control Channel)、PDCCH(Physical Downlink Control Channel)など)および情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネルおよび情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。たとえば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、またはこれらの任意の組み合わせによって表されてもよい。
情報、信号などは、上位レイヤから下位レイヤおよび下位レイヤから上位レイヤの少なくとも一方へ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。
入出力された情報、信号などは、特定の場所(たとえば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新または追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。
情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。たとえば、情報の通知は、物理レイヤシグナリング(たとえば、下り制御情報(DCI:Downlink Control Information)、上り制御情報(UCI:Uplink Control Information))、上位レイヤシグナリング(たとえば、RRC(Radio Resource Control)シグナリング、ブロードキャスト情報(マスタ情報ブロック(MIB:Master Information Block)、システム情報ブロック(SIB:System Information Block)など)、MAC(Medium Access Control)シグナリング)、その他の信号またはこれらの組み合わせによって実施されてもよい。
物理レイヤシグナリングは、L1/L2(Layer 1/Layer 2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。RRCシグナリングは、RRCメッセージと呼ばれてもよく、たとえば、RRC接続セットアップ(RRCConnectionSetup)メッセージ、RRC接続再構成(RRCConnectionReconfiguration)メッセージなどであってもよい。MACシグナリングは、たとえば、MAC制御要素(MAC CE(Control Element))を用いて通知されてもよい。
所定の情報の通知(たとえば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(たとえば、当該所定の情報の通知を行わないことによってまたは別の情報の通知によって)行われてもよい。
判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)または偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(たとえば、所定の値との比較)によって行われてもよい。
ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。たとえば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL:Digital Subscriber Line)など)および無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、または他のリモートソースから送信される場合、これらの有線技術および無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
本開示において使用する「システム」および「ネットワーク」という用語は、互換的に使用され得る。
本開示において、「プリコーディング」、「プリコーダ」、「ウェイト(プリコーディングウェイト)」、「擬似コロケーション(QCL:Quasi-Co-Location)」、「送信電力」、「位相回転」、「アンテナポート」、「アンテナポートグル-プ」、「レイヤ」、「レイヤ数」、「ランク」、「ビーム」、「ビーム幅」、「ビーム角度」、「アンテナ」、「アンテナ素子」、「パネル」などの用語は、互換的に使用され得る。
本開示においては、「基地局(BS:Base Station)」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(transmission point)」、「受信ポイント(reception point)」、「送受信ポイント(transmission/reception point)」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」、「帯域幅部分(BWP:Bandwidth Part)」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。
基地局は、1つまたは複数(たとえば、3つ)のセル(セクタとも呼ばれる)を収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(たとえば、屋内用の小型基地局(RRH:Remote Radio Head))によって通信サービスを提供することもできる。「セル」または「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局および基地局サブシステムの少なくとも一方のカバレッジエリアの一部または全体を指す。
本開示においては、「移動局(MS:Mobile Station)」、「ユーザ端末(user terminal)」、「ユーザ装置(UE:User Equipment)」、「端末」などの用語は、互換的に使用され得る。
移動局は、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアントまたはいくつかの他の適切な用語で呼ばれる場合もある。
基地局および移動局の少なくとも一方は、送信装置、受信装置、通信装置などと呼ばれてもよい。基地局および移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(たとえば、車、飛行機など)であってもよいし、無人で動く移動体(たとえば、ドローン、自動運転車など)であってもよいし、ロボット(有人型または無人型)であってもよい。基地局および移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。たとえば、基地局および移動局の少なくとも一方は、センサなどのIoT(Internet of Things)機器であってもよい。
本開示における基地局は、ユーザ端末で読み替えてもよい。たとえば、基地局およびユーザ端末間の通信を、複数のユーザ端末間の通信(たとえば、D2D(Device-to-Device)、V2X(Vehicle-to-Everything)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能をユーザ端末20が有する構成としてもよい。「上り」、「下り」などの文言は、端末間通信に対応する文言(たとえば、「サイド(side)」)で読み替えられてもよい。たとえば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。
同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を基地局10が有する構成としてもよい。
本開示において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つまたは複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(たとえば、MME(Mobility Management Entity)、S-GW(Serving-Gateway)などが考えられるが、これらに限られない)またはこれらの組み合わせによって行われ得ることは明らかである。
本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。たとえば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
本開示において説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、LTE-B(LTE-Beyond)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、FRA(Future Radio Access)、New-RAT(Radio Access Technology)、NR(New Radio)、NX(New radio access)、FX(Future generation radio access)、GSM(登録商標)(Global System for Mobile communications)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム、これらに基づいて拡張された次世代システムなどに適用されてもよい。また、複数のシステムが組み合わされて(たとえば、LTEまたはLTE-Aと、5Gとの組み合わせなど)適用されてもよい。
本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量または順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1および第2の要素の参照は、2つの要素のみが採用され得ることまたは何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
本開示において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。たとえば、「判断(決定)」は、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(たとえば、テーブル、データベースまたは別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。
「判断(決定)」は、受信(receiving)(たとえば、情報を受信すること)、送信(transmitting)(たとえば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(たとえば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。
「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。
「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
本開示に記載の「最大送信電力」は送信電力の最大値を意味してもよいし、公称最大送信電力(the nominal UE maximum transmit power)を意味してもよいし、定格最大送信電力(the rated UE maximum transmit power)を意味してもよい。
本開示において使用する「接続された(connected)」、「結合された(coupled)」という用語、またはこれらのあらゆる変形は、2またはそれ以上の要素間の直接的または間接的なあらゆる接続または結合を意味し、互いに「接続」または「結合」された2つの要素間に1またはそれ以上の中間要素が存在することを含むことができる。要素間の結合または接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。たとえば、「接続」は「アクセス」で読み替えられてもよい。
本開示において、2つの要素が接続される場合、1つ以上の電線、ケーブル、プリント電気接続などを用いて、ならびにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域、光(可視および不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」または「結合」されると考えることができる。
本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も同様に解釈されてもよい。
本開示において、「含む(include)」、「含んでいる(including)」およびこれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「または(or)」は、排他的論理和ではないことが意図される。
本開示において、たとえば、英語でのa, anおよびtheのように、翻訳によって冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
以上、本開示に係る発明について詳細に説明したが、当業者にとっては、本開示に係る発明が本開示中に説明した実施形態に限定されないということは明らかである。本開示に係る発明は、請求の範囲の記載に基づいて定まる発明の趣旨および範囲を逸脱することなく修正および変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とし、本開示に係る発明に対して何ら制限的な意味をもたらさない。

Claims (5)

  1. ビーム障害検出のための複数の第1の参照信号を、複数の送受信ポイントのそれぞれから受信する受信部と、
    前記複数の第1の参照信号の1つに基づいて、前記複数の送受信ポイントのうちの1つの送受信ポイントを検出し、前記1つの送受信ポイントでのビーム障害発生を検出する制御部と、を有し、
    前記1つの送受信ポイントは、前記複数の第1の参照信号の1つと関連付けられており、前記複数の第1の参照信号の1つは、前記1つの送受信ポイントから送信され、
    前記第1の参照信号のインデックスは、TCI(Transmission Configuration Indicator)状態が示すインデックスとそれぞれ同じ値であることを特徴とする端末。
  2. 前記受信部は、前記1つの送受信ポイントのみに関連付けられた、新候補ビーム検出のための第2の参照信号を受信し、
    前記制御部は、前記第2の参照信号に関連付けられた前記1つの送受信ポイントの新候補ビームを測定することを特徴とする請求項1に記載の端末。
  3. 前記制御部は、前記1つの送受信ポイントに、ビーム回復要求を送信するように制御することを特徴とする請求項1又は2に記載の端末。
  4. ビーム障害検出のための複数の第1の参照信号を、複数の送受信ポイントのそれぞれから受信する工程と、
    前記複数の第1の参照信号の1つに基づいて、前記複数の送受信ポイントのうちの1つの送受信ポイントを検出し、前記1つの送受信ポイントでのビーム障害発生を検出する工程と、を有し、
    前記1つの送受信ポイントは、前記複数の第1の参照信号の1つと関連付けられており、前記複数の第1の参照信号の1つは、前記1つの送受信ポイントから送信され、
    前記第1の参照信号のインデックスは、TCI(Transmission Configuration Indicator)状態が示すインデックスとそれぞれ同じ値である
    ことを特徴とする端末の無線通信方法。
  5. 複数の送受信ポイント及び端末を含むシステムであって、
    前記複数の送受信ポイントは、
    ビーム障害検出のための複数の第1の参照信号を送信する送信部を有し、
    前記端末は、
    前記複数の第1の参照信号を、前記複数の送受信ポイントのそれぞれから受信する受信部と、
    前記複数の第1の参照信号の1つに基づいて、前記複数の送受信ポイントのうちの1つの送受信ポイントを検出し、前記1つの送受信ポイントでのビーム障害発生を検出する制御部と、を有し、
    前記1つの送受信ポイントは、前記複数の第1の参照信号の1つと関連付けられており、前記複数の第1の参照信号の1つは、前記1つの送受信ポイントから送信され、
    前記第1の参照信号のインデックスは、TCI(Transmission Configuration Indicator)状態が示すインデックスとそれぞれ同じ値である
    ことを特徴とするシステム。
JP2020529929A 2018-07-12 2018-07-12 端末、無線通信方法及びシステム Active JP7279044B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/026394 WO2020012619A1 (ja) 2018-07-12 2018-07-12 ユーザ端末

Publications (2)

Publication Number Publication Date
JPWO2020012619A1 JPWO2020012619A1 (ja) 2021-08-02
JP7279044B2 true JP7279044B2 (ja) 2023-05-22

Family

ID=69142398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020529929A Active JP7279044B2 (ja) 2018-07-12 2018-07-12 端末、無線通信方法及びシステム

Country Status (6)

Country Link
US (1) US11470631B2 (ja)
EP (1) EP3823176A4 (ja)
JP (1) JP7279044B2 (ja)
CN (1) CN112673579B (ja)
RU (1) RU2768794C1 (ja)
WO (1) WO2020012619A1 (ja)

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11626920B2 (en) * 2018-08-08 2023-04-11 Lg Electronics Inc. Method for terminal to perform radio link monitoring in wireless communication system for supporting sidelink and apparatus therefor
CN112567839A (zh) * 2018-09-14 2021-03-26 富士通株式会社 评估无线链路质量的方法、参数配置方法、装置和系统
WO2020087361A1 (zh) * 2018-10-31 2020-05-07 富士通株式会社 信号发送方法、天线面板信息的指示方法、装置和系统
WO2020092752A1 (en) * 2018-11-01 2020-05-07 Convida Wireless, Llc Beam failure recovery on a non-failed cell
CN111278122B (zh) * 2019-01-25 2023-03-24 维沃移动通信有限公司 波束失败恢复方法、处理方法、终端及网络侧设备
US11963024B2 (en) * 2019-02-15 2024-04-16 Lg Electronics Inc. Method and apparatus for backhaul status reporting in wireless communication system
US11425624B2 (en) * 2019-04-08 2022-08-23 Qualcomm Incorporated Beam failure recovery in millimeter wave systems with network assisted user equipment cooperation
US20210021329A1 (en) * 2019-07-15 2021-01-21 Qualcomm Incorporated Considerations on beam failure detection and recovery with multiple transmitter receiver points
KR102514416B1 (ko) * 2019-08-15 2023-03-27 엘지전자 주식회사 무선 통신 시스템에서 빔 실패 복구 절차를 수행하는 방법 및 그 장치
CN112584443A (zh) * 2019-09-27 2021-03-30 苹果公司 辅助小区链路恢复请求传输
EP3799518A1 (en) * 2019-09-27 2021-03-31 Apple Inc. Secondary cell link recovery request transmission
CN113259973B (zh) 2020-02-07 2022-11-22 维沃移动通信有限公司 波束失败恢复方法、终端及网络设备
US11589394B2 (en) * 2020-02-13 2023-02-21 Qualcomm Incorporated Managing beam failure recovery random access
CN115315970A (zh) * 2020-04-21 2022-11-08 诺基亚技术有限公司 确定小区间多下行链路控制信息多传输接收点中的波束故障检测参考信号
CN113676929A (zh) * 2020-05-14 2021-11-19 华为技术有限公司 候选波束测量方法、终端、网络设备、芯片系统及介质
US20210376909A1 (en) * 2020-05-26 2021-12-02 Qualcomm Incorporated Beam failure recovery techniques for multiple transmission-reception points in a secondary cell
US11930550B2 (en) * 2020-08-05 2024-03-12 Acer Incorporated Equipment for beam failure reporting and beam failure reporting method
CN112119597B (zh) * 2020-08-21 2022-10-14 北京小米移动软件有限公司 波束失败确定方法、装置、设备及存储介质
CN114258054A (zh) * 2020-09-25 2022-03-29 展讯通信(上海)有限公司 传输接收点的确定方法及装置
US20220103232A1 (en) * 2020-09-29 2022-03-31 Qualcomm Incorporated Transmission reception point (trp)-specific beam failure detection (bfd) reference signal (rs) determination
US11825293B2 (en) * 2020-09-29 2023-11-21 Qualcomm Incorporated Relations between beam group beam failure recovery and cell level beam failure recovery
CN114390568A (zh) * 2020-10-22 2022-04-22 联发科技(新加坡)私人有限公司 波束故障恢复方法及用户设备
CN114390566A (zh) * 2020-10-22 2022-04-22 索尼公司 电子设备、无线通信方法和非暂态计算机可读存储介质
US20220132517A1 (en) * 2020-10-23 2022-04-28 Samsung Electronics Co., Ltd. Method and apparatus for partial beam failure recovery in a wireless communications system
CN117544982A (zh) * 2020-12-07 2024-02-09 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
WO2022133101A1 (en) * 2020-12-16 2022-06-23 Idac Holdings, Inc. Idle/inactive mode operations in highly directional ue-centric systems
CN112840695B (zh) * 2021-01-04 2023-11-14 北京小米移动软件有限公司 波束失败检测bfd资源的确定方法、装置及通信设备
JP2024502624A (ja) * 2021-01-13 2024-01-22 富士通株式会社 ビーム障害情報の生成方法、報告方法及び装置
CN115486192A (zh) * 2021-03-31 2022-12-16 苹果公司 用于基于统一tci框架的波束故障恢复的方法
CN116803191A (zh) * 2021-05-27 2023-09-22 Oppo广东移动通信有限公司 波束失败恢复方法、终端设备和网络设备
JP2023004609A (ja) * 2021-06-28 2023-01-17 株式会社Soken ユーザ装置、基地局、及び通信方法
JP2023004611A (ja) * 2021-06-28 2023-01-17 株式会社Soken ユーザ装置及び通信方法
WO2023010281A1 (en) * 2021-08-03 2023-02-09 Lenovo (Beijing) Limited Methods and apparatuses for a trp related beam failure detection procedure and a mobility scenario
CN116171592A (zh) * 2021-09-24 2023-05-26 苹果公司 支持trp特定波束故障恢复的增强
US11342973B1 (en) * 2021-10-19 2022-05-24 King Faisal University System and method for maintaining link communications in millimeter wave cellular networks
WO2023081549A1 (en) * 2021-11-05 2023-05-11 Qualcomm Incorporated Beam reset in multiple transmit receive point deployments
WO2023130478A1 (zh) * 2022-01-10 2023-07-13 富士通株式会社 波束失败恢复信息发送装置、接收装置及通信系统

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090095434A (ko) * 2008-03-03 2009-09-09 삼성전자주식회사 무선 통신 시스템에서 다중 주파수 밴드를 이용한 신호송수신 시스템 및 방법
US20160105872A1 (en) * 2014-10-14 2016-04-14 Asustek Computer Inc. Method and apparatus for beam tracking in a wireless communication system
WO2016127403A1 (en) * 2015-02-13 2016-08-18 Mediatek Singapore Pte. Ltd. Handling of intermittent disconnection in a millimeter wave (mmw) system
US10327166B2 (en) * 2015-04-21 2019-06-18 Telefonaktiebolaget Lm Ericsson Method and apparatus for monitoring radio link quality
WO2017196612A1 (en) * 2016-05-11 2017-11-16 Idac Holdings, Inc. Systems and methods for beamformed uplink transmission
US10505618B2 (en) * 2016-08-10 2019-12-10 Samsung Electronics Co., Ltd. Method and apparatus for beam measurement and management in wireless systems
CN108024259B (zh) * 2016-11-02 2020-01-24 电信科学技术研究院 新一代无线通信系统传输点或波束指示、传输方法及装置
WO2018083624A1 (en) * 2016-11-04 2018-05-11 Telefonaktiebolaget Lm Ericsson (Publ) Methods and apparatuses for handling beam failure
PL3696988T3 (pl) * 2016-11-04 2023-01-23 Telefonaktiebolaget Lm Ericsson (Publ) Sposoby i systemy zarządzania procesem śledzenia wiązki przy użyciu wskaźników i odpowiadających systemów
CN115242270A (zh) * 2016-11-04 2022-10-25 瑞典爱立信有限公司 使用多于一个波束对链路发送控制信息
US10980066B2 (en) * 2016-11-06 2021-04-13 Lg Electronics Inc. Method and user equipment for transmitting random access signals, and method and base station for receiving random access signals
CN107612602B (zh) * 2017-08-28 2020-04-21 清华大学 毫米波通信系统的波束恢复方法及装置
GB2583323B (en) * 2018-01-04 2023-03-01 Samsung Electronics Co Ltd Semi-persistent channel state information report
US10911201B2 (en) * 2018-06-08 2021-02-02 FG Innovation Company Limited Methods and apparatuses for multi-TRP transmission

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
CATT,Discussion on multi-beam operation for NR-PDCCH[online],3GPP TSG RAN WG1 #90,R1-1712394,Internet<URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_90/Docs/R1-1712394.zip> ,2017年08月12日
CHEN Chih-Hsuan,3GPP NR MIMO introduction[online],Internet<URL:http://std-share.itri.org.tw/Content/Files/Event/Files/2.3GPP NR MIMO introduction.pdf>,Industrial Technology Research Institute,2017年
ERICSSON,Mechanism to recover from beam failure[online],3GPP TSG RAN WG1 #90 R1-1714293,Internet<URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_90/Docs/R1-1714293.zip>,2017年08月12日
ETRI,Multi-beam support for UE-specific NR-PDCCH[online],3GPP TSG RAN WG1 #90,R1-1713813, Internet<URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_90/Docs/R1-1713813.zip> ,2017年08月12日
HUAWEI et al.,Discussion on the multi-TRP/panel transmission in NR[online],3GPP TSG RAN WG1 #93,R1-1807130,Internet<URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_93/Docs/R1-1807130.zip> ,2018年05月12日
LG ELECTRONICS,Discussion on UE-initiated beam recovery[online],3GPP TSG RAN WG1 #88,R1-1702453, Internet<URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_88/Docs/R1-1702453.zip> ,2017年02月07日
QUALCOMM INCORPORATED,Beam failure recovery procedure[online],3GPP TSG RAN WG1 #93 R1-1807342,Internet<URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_93/Docs/R1-1807342.zip>,2018年05月12日
SAMSUNG,Corrections on Beam Failure Recovery[online],3GPP TSG RAN WG1 #92b,R1-1804359,Internet<URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_92b/Docs/R1-1804359.zip> ,2018年04月07日
SAMSUNG,Discussion on Tx beam grouping configuration for multi-panel TRP and multi-TRP[online],3GPP TSG RAN WG1 #90b R1-1717610,Internet<URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_90b/Docs/R1-1717610.zip>,2017年10月02日

Also Published As

Publication number Publication date
RU2768794C1 (ru) 2022-03-24
US20210282168A1 (en) 2021-09-09
CN112673579B (zh) 2024-03-19
EP3823176A1 (en) 2021-05-19
WO2020012619A1 (ja) 2020-01-16
EP3823176A4 (en) 2022-03-02
JPWO2020012619A1 (ja) 2021-08-02
US11470631B2 (en) 2022-10-11
CN112673579A (zh) 2021-04-16

Similar Documents

Publication Publication Date Title
JP7279044B2 (ja) 端末、無線通信方法及びシステム
JP7299218B2 (ja) 端末、無線通信方法及びシステム
JP7320762B2 (ja) 端末、無線通信方法及びシステム
JP7323612B2 (ja) 端末、無線通信方法及びシステム
US11394445B2 (en) User terminal
JP7163391B2 (ja) 端末、無線通信方法、基地局及びシステム
JP7284175B2 (ja) 端末、無線通信方法及びシステム
JP7201691B2 (ja) 端末、無線通信方法、基地局およびシステム
JP7284174B2 (ja) 端末、無線通信方法及びシステム
JP7248681B2 (ja) 端末、無線通信方法、基地局及びシステム
JP7254784B2 (ja) 端末、無線通信方法、基地局及びシステム
JPWO2019146498A1 (ja) ユーザ端末及び無線通信方法
JP7136897B2 (ja) 端末、無線通信方法、基地局及びシステム
WO2019203187A1 (ja) ユーザ端末及び無線通信方法
JPWO2019159370A1 (ja) ユーザ端末及び無線通信方法
CN112889332A (zh) 用户终端以及无线通信方法
JP7279087B2 (ja) 端末、無線通信方法、及びシステム
WO2022079813A1 (ja) 端末、無線通信方法及び基地局
JP7320848B2 (ja) 端末、無線通信方法、基地局及びシステム
WO2022079811A1 (ja) 端末、無線通信方法及び基地局
KR102638575B1 (ko) 단말 및 무선 통신 방법
WO2022249741A1 (ja) 端末、無線通信方法及び基地局
WO2022079812A1 (ja) 端末、無線通信方法及び基地局

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210708

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230510

R150 Certificate of patent or registration of utility model

Ref document number: 7279044

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150