WO2022079813A1 - 端末、無線通信方法及び基地局 - Google Patents
端末、無線通信方法及び基地局 Download PDFInfo
- Publication number
- WO2022079813A1 WO2022079813A1 PCT/JP2020/038668 JP2020038668W WO2022079813A1 WO 2022079813 A1 WO2022079813 A1 WO 2022079813A1 JP 2020038668 W JP2020038668 W JP 2020038668W WO 2022079813 A1 WO2022079813 A1 WO 2022079813A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- trp
- transmission
- mac
- beam failure
- information
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 88
- 238000004891 communication Methods 0.000 title claims description 61
- 230000005540 biological transmission Effects 0.000 claims abstract description 198
- 238000011084 recovery Methods 0.000 claims description 47
- 230000008569 process Effects 0.000 claims description 15
- 238000001514 detection method Methods 0.000 abstract description 45
- 238000012545 processing Methods 0.000 description 52
- 238000010586 diagram Methods 0.000 description 26
- 230000004044 response Effects 0.000 description 24
- 238000005259 measurement Methods 0.000 description 23
- 230000011664 signaling Effects 0.000 description 20
- 230000001960 triggered effect Effects 0.000 description 17
- 230000009977 dual effect Effects 0.000 description 10
- 238000001914 filtration Methods 0.000 description 9
- 238000010295 mobile communication Methods 0.000 description 9
- 238000007726 management method Methods 0.000 description 8
- 230000008859 change Effects 0.000 description 7
- 238000013507 mapping Methods 0.000 description 7
- 125000004122 cyclic group Chemical group 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 230000003321 amplification Effects 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 4
- 238000012937 correction Methods 0.000 description 4
- 238000012544 monitoring process Methods 0.000 description 4
- 238000003199 nucleic acid amplification method Methods 0.000 description 4
- 230000009471 action Effects 0.000 description 3
- 230000002776 aggregation Effects 0.000 description 3
- 238000004220 aggregation Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000007774 longterm Effects 0.000 description 3
- 238000012790 confirmation Methods 0.000 description 2
- 238000009795 derivation Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 2
- 238000011835 investigation Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000013468 resource allocation Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 101000741965 Homo sapiens Inactive tyrosine-protein kinase PRAG1 Proteins 0.000 description 1
- 102100038659 Inactive tyrosine-protein kinase PRAG1 Human genes 0.000 description 1
- 101150071746 Pbsn gene Proteins 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005562 fading Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000006249 magnetic particle Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- AYEKOFBPNLCAJY-UHFFFAOYSA-O thiamine pyrophosphate Chemical compound CC1=C(CCOP(O)(=O)OP(O)(O)=O)SC=[N+]1CC1=CN=C(C)N=C1N AYEKOFBPNLCAJY-UHFFFAOYSA-O 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 238000012384 transportation and delivery Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W24/00—Supervisory, monitoring or testing arrangements
- H04W24/08—Testing, supervising or monitoring using real traffic
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0686—Hybrid systems, i.e. switching and simultaneous transmission
- H04B7/0695—Hybrid systems, i.e. switching and simultaneous transmission using beam selection
- H04B7/06952—Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping
- H04B7/06964—Re-selection of one or more beams after beam failure
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/022—Site diversity; Macro-diversity
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0613—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
- H04B7/0615—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
- H04B7/0619—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
- H04B7/0621—Feedback content
- H04B7/0628—Diversity capabilities
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W16/00—Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
- H04W16/24—Cell structures
- H04W16/28—Cell structures using beam steering
Definitions
- This disclosure relates to terminals, wireless communication methods and base stations in next-generation mobile communication systems.
- LTE Long Term Evolution
- UMTS Universal Mobile Telecommunications System
- 3GPP Rel.10-14 LTE-Advanced (3GPP Rel.10-14) has been specified for the purpose of further increasing the capacity and sophistication of LTE (Third Generation Partnership Project (3GPP) Release (Rel.) 8, 9).
- a successor system to LTE for example, 5th generation mobile communication system (5G), 5G + (plus), 6th generation mobile communication system (6G), New Radio (NR), 3GPP Rel.15 or later, etc.
- 5G 5th generation mobile communication system
- 6G 6th generation mobile communication system
- NR New Radio
- radio link monitoring radio link monitoring
- UE User Equipment
- BFR Beam Failure Recovery
- Link recovery procedures link recovery procedures
- the terminal communicates using a plurality of transmission / reception points (TRP) / UE panels.
- TRP transmission / reception points
- BFD beam failure detection
- BFR beam failure recovery
- This disclosure has been made in view of this point, and includes terminals, wireless communication methods, and base stations capable of appropriately performing beam failure detection or beam failure recovery even when a plurality of transmission / reception points are used.
- One of the purposes is to provide.
- the terminal includes a control unit that detects a beam failure for each of a plurality of transmission / reception points, a transmission / reception point that detects the beam failure when a beam failure for one or more transmission / reception points is detected, and the transmission / reception point. It is characterized by having a serving cell corresponding to a transmission / reception point for detecting a beam failure, and a transmission unit for transmitting a media access control control element (MAC CE) including information about the beam failure.
- MAC CE media access control control element
- beam failure detection or beam failure recovery can be appropriately performed even when a plurality of transmission / reception points are used.
- FIG. 1 shows Rel. 15 It is a figure which shows an example of the beam recovery procedure in NR.
- FIG. 2 is a diagram showing an example of the BFR procedure according to the first embodiment.
- FIG. 3 is a diagram showing another example of the BFR procedure according to the first embodiment.
- FIG. 4 is a diagram showing an example of a case where the BFR procedure according to the second embodiment is applied.
- FIG. 5 is a diagram showing another example of the case where the BFR procedure according to the second embodiment is applied.
- 6A and 6B are shown in Rel. It is a figure which shows the structure of the BFR MAC CE before 16.
- FIG. 7 is a diagram showing an example of a first MAC CE configuration according to a fourth embodiment.
- FIG. 8 is a diagram showing another example of the first MAC CE configuration according to the fourth embodiment.
- FIG. 9 is a diagram showing an example of a second MAC CE configuration according to the fourth embodiment.
- FIG. 10 is a diagram showing an example of a third MAC CE configuration according to the fourth embodiment.
- FIG. 11 is a diagram showing another example of the third MAC CE configuration according to the fourth embodiment.
- FIG. 12 is a diagram showing another example of the third MAC CE configuration according to the fourth embodiment.
- FIG. 13 is a diagram showing another example of the third MAC CE configuration according to the fourth embodiment.
- FIG. 14 is a diagram showing an example of a fourth MAC CE configuration according to the fourth embodiment.
- FIG. 15 is a diagram showing another example of the fourth MAC CE configuration according to the fourth embodiment.
- FIG. 15 is a diagram showing another example of the fourth MAC CE configuration according to the fourth embodiment.
- FIG. 16 is a diagram showing another example of the fourth MAC CE configuration according to the fourth embodiment.
- FIG. 17 is a diagram showing another example of the fourth MAC CE configuration according to the fourth embodiment.
- FIG. 18 is a diagram showing an example of the BFR procedure according to the fifth embodiment.
- FIG. 19 is a diagram showing another example of the BFR procedure according to the fifth embodiment.
- FIG. 20 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment.
- FIG. 21 is a diagram showing an example of the configuration of a base station according to an embodiment.
- FIG. 22 is a diagram showing an example of the configuration of the user terminal according to the embodiment.
- FIG. 23 is a diagram showing an example of the hardware configuration of the base station and the user terminal according to the embodiment.
- a UE and a base station are a beam used for transmitting a signal (also referred to as a transmission beam, a Tx beam, etc.) and a beam used for receiving a signal (also referred to as a reception beam, an Rx beam, etc.). ) May be used.
- gNB gNodeB
- RadioLink Failure (RadioLink Failure (RLF)
- RLF RadioLink Failure
- BFR Beam Failure Recovery
- L1 / L2 Layer 1 / Layer 2
- the beam failure (BF) in the present disclosure may be referred to as a link failure.
- FIG. 1 shows Rel. 15 It is a figure which shows an example of the beam recovery procedure in NR.
- the number of beams is an example and is not limited to this.
- the UE performs a measurement based on a reference signal (Reference Signal (RS)) resource transmitted using the two beams.
- RS Reference Signal
- the RS may be at least one of a synchronization signal block (Synchronization Signal Block (SSB)) and a channel state measurement RS (Channel State Information RS (CSI-RS)).
- SSB may be referred to as an SS / PBCH (Physical Broadcast Channel) block or the like.
- RS is a primary synchronization signal (Primary SS (PSS)), a secondary synchronization signal (Secondary SS (SSS)), a mobility reference signal (Mobility RS (MRS)), a signal included in the SSB, SSB, CSI-RS, and demodulation. It may be at least one of a reference signal (DeModulation Reference Signal (DMRS)), a beam-specific signal, or a signal configured by expanding or changing these.
- DMRS DeModulation Reference Signal
- the RS measured in step S101 is RS (Beam Failure Detection RS (BFD-RS), RS for beam fault detection) for beam fault detection, RS (BFR-RS) for use in beam recovery procedures, and the like. May be called.
- step S102 the UE cannot detect BFD-RS (or the reception quality of RS deteriorates) because the radio wave from the base station is disturbed.
- Such interference can occur, for example, due to the effects of obstacles, fading, interference, etc. between the UE and the base station.
- the UE detects a beam failure when a predetermined condition is met. For example, the UE may detect the occurrence of a beam failure when the BLER (Block Error Rate) is less than the threshold value for all of the set BFD-RS (BFD-RS resource settings). When the occurrence of a beam failure is detected, the lower layer (physical (PHY) layer) of the UE may notify (instruct) the beam failure instance to the upper layer (MAC layer).
- BLER Block Error Rate
- MAC layer physical (physical (PHY) layer) of the UE may notify (instruct) the beam failure instance to the upper layer (MAC layer).
- the criterion (criteria) for judgment is not limited to BLER, and may be the reference signal reception power (Layer 1 Reference Signal Received Power (L1-RSRP)) in the physical layer. Further, instead of RS measurement or in addition to RS measurement, beam failure detection may be performed based on a downlink control channel (Physical Downlink Control Channel (PDCCH)) or the like.
- the BFD-RS may be expected to be a PDCCH DMRS and pseudo-collocation (Quasi-Co-Location (QCL)) monitored by the UE.
- the QCL is an index showing the statistical properties of the channel. For example, when one signal / channel and another signal / channel have a QCL relationship, a Doppler shift, a Doppler spread, and an average delay are performed between these different signals / channels. ), Delay spread, Spatial parameter (for example, Spatial Rx Parameter) can be assumed to be the same (QCL for at least one of these). You may.
- the spatial reception parameter may correspond to the received beam of the UE (for example, the received analog beam), or the beam may be specified based on the spatial QCL.
- the QCL (or at least one element of the QCL) in the present disclosure may be read as sQCL (spatial QCL).
- BFD-RS eg, RS index, resource, number, number of ports, precoding, etc.
- BFD beam fault detection
- Information on BFD-RS may be referred to as information on resources for BFR.
- the upper layer signaling may be, for example, any one of RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling, broadcast information, or a combination thereof.
- RRC Radio Resource Control
- MAC Medium Access Control
- MAC CE Media access control control element
- MAC PDU Protocol Data Unit
- the broadcast information includes, for example, a master information block (Master Information Block (MIB)), a system information block (System Information Block (SIB)), a minimum system information (Remaining Minimum System Information (RMSI)), and other system information ( Other System Information (OSI)) may be used.
- MIB Master Information Block
- SIB System Information Block
- RMSI Minimum System Information
- OSI Other System Information
- the upper layer of the UE may start a predetermined timer (which may be called a beam failure detection timer) when the beam failure instance notification is received from the PHY layer of the UE.
- a predetermined timer which may be called a beam failure detection timer
- the MAC layer of the UE receives a beam failure instance notification a certain number of times (for example, beamFailureInstanceMaxCount set by RRC) or more before the timer expires, it triggers BFR (for example, one of the random access procedures described later) is started. ) May.
- the base station may determine that the UE has detected a beam failure when there is no notification from the UE or when a predetermined signal (beam recovery request in step S104) is received from the UE.
- step S103 the UE starts searching for a new candidate beam (new candidate beam) to be newly used for communication in order to recover the beam.
- the UE may select a new candidate beam corresponding to a predetermined RS by measuring the predetermined RS.
- the RS measured in step S103 is called a new candidate RS, an RS for identifying a new candidate beam (New Candidate Beam Identification RS (NCBI-RS)), a CBI-RS, a CB-RS (Candidate Beam RS), or the like.
- NCBI-RS may be the same as or different from BFD-RS.
- the new candidate beam may be simply referred to as a candidate beam or a candidate RS.
- the UE may determine a beam corresponding to RS satisfying a predetermined condition as a new candidate beam.
- the UE may determine a new candidate beam based on, for example, the RS of the configured NCBI-RS in which L1-RSRP exceeds the threshold value.
- the criteria for judgment are not limited to L1-RSRP.
- L1-RSRP regarding SSB may be referred to as SS-RSRP.
- L1-RSRP for CSI-RS may be referred to as CSI-RSRP.
- NCBI-RS eg, RS resources, number, number of ports, precoding, etc.
- NCBI new candidate beam identification
- Information about the new candidate RS may be obtained based on information about BFD-RS.
- Information on NCBI-RS may be referred to as information on resources for NBCI.
- BFD-RS may be read as a radio link monitoring reference signal (Radio Link Monitoring RS (RLM-RS)).
- RLM-RS Radio Link Monitoring RS
- the UE that has identified the new candidate beam in step S104 transmits a beam recovery request (Beam Failure Recovery reQuest (BFRQ)).
- the beam recovery request may be referred to as a beam recovery request signal, a beam failure recovery request signal, or the like.
- BFRQ is, for example, uplink control channel (Physical Uplink Control Channel (PUCCH)), random access channel (Physical Random Access Channel (PRACH)), uplink shared channel (Physical Uplink Shared Channel (PUSCH)), configure (setting). It may be transmitted using at least one of the configured grant (CG) PUSCH.
- PUCCH Physical Uplink Control Channel
- PRACH Physical Random Access Channel
- PUSCH Physical Uplink Shared Channel
- the BFRQ may include information on the new candidate beam / new candidate RS specified in step S103.
- Resources for the BFRQ may be associated with the new candidate beam.
- the beam information includes a beam index (Beam Index (BI)), a port index of a predetermined reference signal, an RS index, a resource index (for example, CSI-RS Resource Indicator (CRI)), and an SSB resource index. (SSBRI)) may be notified.
- BI Beam Index
- RS index for example, CSI-RS Resource Indicator (CRI)
- SSBRI SSB resource index.
- CB-BFR Contention-Based BFR
- CF-BFR Contention-Free BFR
- the UE may transmit a preamble (also referred to as RA preamble, Random Access Channel (PRACH), RACH preamble, etc.) as a BFRQ using the PRACH resource.
- RA Random Access Channel
- PRACH Random Access Channel
- the UE may transmit a preamble randomly selected from one or more preambles.
- the UE may transmit a preamble assigned uniquely to the UE from the base station.
- the base station may assign the same preamble to a plurality of UEs.
- the base station may assign a preamble to each UE.
- the CB-BFR and CF-BFR are CB PRACH-based BFR (contention-based PRACH-based BFR (CBRA-BFR)) and CF PRACH-based BFR (contention-free PRACH-based BFR (CFRA-BFR)), respectively. May be called.
- CBRA-BFR may be referred to as CBRA for BFR.
- CFRA-BFR may be referred to as CFRA for BFR.
- information on the PRACH resource may be notified by, for example, higher layer signaling (RRC signaling or the like).
- RRC signaling higher layer signaling
- the information may include information indicating the correspondence between the detected DL-RS (beam) and the PRACH resource, or a different PRACH resource may be associated with each DL-RS.
- the base station that has detected the BFRQ transmits a response signal (which may be called a gNB response or the like) to the BFRQ from the UE.
- the response signal may include reconstruction information for one or more beams (eg, DL-RS resource configuration information).
- the response signal may be transmitted, for example, in the UE common search space of PDCCH.
- the response signal is notified using a PDCCH (DCI) scrambled by a cyclic redundancy check (Cyclic Redundancy Check (CRC)) by a UE identifier (for example, Cell-Radio RNTI (C-RNTI)). May be done.
- DCI PDCCH
- C-RNTI Cell-Radio RNTI
- the UE may monitor the response signal based on at least one of the control resource set for BFR (COntrol REsource SET (CORESET)) and the search space set for BFR.
- control resource set for BFR COntrol REsource SET (CORESET)
- search space set for BFR the search space set for BFR.
- CB-BFR when the UE receives the PDCCH corresponding to C-RNTI related to itself, it may be determined that the contention resolution is successful.
- a period for the UE to monitor the response from the base station (for example, gNB) to the BFRQ may be set.
- the period may be referred to as, for example, a gNB response window, a gNB window, a beam recovery request response window, or the like.
- the UE may retransmit the BFRQ if there is no gNB response detected within the window period.
- the UE may send a message to the base station indicating that the beam reconstruction is completed.
- the message may be transmitted by, for example, PUCCH or PUSCH.
- Successful beam recovery may represent, for example, the case where step S106 is reached.
- the beam recovery failure may correspond to, for example, that the BFRQ transmission has reached a predetermined number of times, or the beam failure recovery timer (Beam-failure-recovery-Timer) has expired.
- Rel. In 15 it is supported to perform a beam recovery procedure (for example, notification of BFRQ) for a beam failure detected by SpCell (PCell / PSCell) by using a random access procedure.
- a beam recovery procedure for example, notification of BFRQ
- the beam recovery procedure for example, notification of BFRQ
- the beam failure detected by SCell is transmitted by PUCCH (for example, scheduling request (SR)) for BFR and MAC CE for BFR (for example, UL-SCH).
- PUCCH for example, scheduling request (SR)
- MAC CE for BFR
- the UE may use two MAC CE-based steps to transmit information about beam faults.
- the information regarding the beam failure may include information about the cell in which the beam failure is detected and information about the new candidate beam (or the new candidate RS index).
- Step 1 When BF is detected, PUCCH-BFR (Scheduling Request (SR)) may be transmitted from the UE to PCell / PSCell.
- the UL grant (DCI) for step 2 below may be transmitted from the PCell / PSCell to the UE.
- step 1 for example, PUCCH transmission
- step 2 is performed.
- MAC CE transmission For example, MAC CE transmission
- the UE uses MAC CE to provide information about the cell in which the beam failure was detected (eg, cell index) and the new candidate beam via the uplink channel (eg, PUSCH). It may be transmitted to a base station (PCell / PSCell). Then, after a predetermined period (for example, 28 symbols) after receiving the response signal from the base station via the BFR procedure, the QCL of PDCCH / PUCCH / PDSCH / PUSCH may be updated to a new beam.
- a predetermined period for example, 28 symbols
- a terminal communicates using a plurality of transmission / reception points (TRPs) / UE panels
- TRPs transmission / reception points
- BFD beam fault detection
- BFR beam fault recovery
- the beam failure recovery procedure (beam failure detection / beam failure recovery request / UE operation based on beam failure recovery) may be applied in units of one or more TRPs / panels, and TRP units / panels.
- the UE may be a UE that transmits / receives to / from the TRP using a plurality of panels.
- Each panel may correspond to a different TRP, one panel may correspond to a plurality of TRPs, or a plurality of panels may correspond to one TRP.
- the panel (or panel index) of the UE may correspond to a specific group.
- the UE may assume that the beam / RS of each group is measured in each panel of the UE.
- the UE may assume that multiple groups of beams are received simultaneously (using different panels).
- the TRP may be read as a TRP (or base station) panel, RS group, antenna port group, spatial relationship group, QCL group, TCI state, TCI state group, CORESET group, CORESET pool, and the like.
- the TRP index may be read as an RS group index, an antenna port group index, a QCL group index, a TCI state index, a TCI state group index, a CORESET group index, a CORESET pool index, and the like.
- the nth TRP (n is an arbitrary integer (eg, 1 or 2)) is the nth TCI state, the nth Code Division Multiplexing (CDM). )) Group may be supported.
- the UE panel may be read as an RS group, an antenna port group, a spatial relation group, a QCL group, a TCI state group, a CORESET group, and the like.
- the panel may be associated with the group index of the SSB / CSI-RS group. Also, in the present disclosure, the panel may be associated with the TRP. Also, in the present disclosure, multiple panels may be associated with a group index in a group beam-based report. Also, in the present disclosure, the panel may be associated with the group index of the SSB / CSI-RS group for group beam based reporting.
- the serving cell / cell may be read as PCell, PSCell, or SCell.
- the case where two TRPs correspond to the serving cell is taken as an example, but three or more TRPs may correspond to the serving cell.
- a BFD RS in which a beam failure is detected a failed BFD RS, a TRP in which a beam failure is detected, a failed TRP, a UE panel in which a beam failure is detected, and a failed UE.
- the panels may be read interchangeably.
- a / B may mean at least one of A and B. In the present disclosure, A / B / may mean at least one of A, B and C.
- the notification regarding BFD may indicate the case where the notification is performed from the physical layer in the UE to the higher layers, or the notification may be performed from the UE to the network (for example, a base station).
- the physical layer may be read as a lower layer.
- the notification regarding BFD may be a notification that a beam failure has been detected, or a notification regarding information regarding a new candidate beam (for example, information regarding RS index, information regarding resource configuration / resource setting).
- a set of one or more reference signals used for beam fault detection may be set for the UE.
- the set of reference signals used for beam fault detection may be referred to as RS set, BFD-RS set, BFR-RS set, and set q0.
- the RS set may include at least one RS or a resource configuration of the RS.
- the RS set may simply be read as RS.
- One or more (hereinafter, also referred to as 1 or more) RS sets may be set separately for each TRP.
- a separate RS / RS set may be associated with each TRP. That is, TRP-specific RS (TRP-specific BFR-RS / BFD-RS) may be set / defined.
- an RS / RS set common to a plurality of TRPs may be set / defined.
- the UE When all the RSs contained in the set RS set (or set q0) are less than a predetermined threshold (threshold), the UE notifies the upper layer from the physical layer regarding beam failure detection (BFD). May be. Notification regarding BFD may be given at predetermined intervals. The UE may give a notification regarding BFD when some RSs, not all RSs, are below a predetermined threshold value.
- a predetermined threshold threshold
- the UE When the RS (all RSs or some RSs) included in the RS set corresponding to some TRPs is less than a predetermined threshold value, the UE notifies the upper layer of BFD from the physical layer. May be. For example, assume that two TRP # 0 and TRP # 1 are set in a certain serving cell, RS set # 0 is set in TRP # 0, and RS set # 1 is set in TRP # 1.
- the UE may notify BFD when only the RS included in the RS set corresponding to one TRP (for example, TRP # 0) is less than the predetermined threshold value.
- the UE may notify the information about the TRP (for example, TRP # 0) that detected the BFD (see FIG. 2).
- the information regarding TRP is at least one of the TRP index (TRP-ID), the reference signal group index (RS group-ID), the RS set index (RS set-ID), and the control resource set pool index (CORESETPoolindex). It may be one.
- TRP-ID the TRP index
- RS group-ID reference signal group index
- RS set-ID the RS set index
- CORESETPoolindex control resource set pool index
- the UE determines from the physical layer to the upper layer when the RS (all RSs or some RSs) included in the RS set corresponding to each TRP (or all TRPs) is less than a predetermined threshold value. Then, the BFD may be notified. For example, assume that two TRP # 0 and TRP # 1 are set in a certain cell, RS set # 0 is set for TRP # 0, and RS set # 1 is set for TRP # 1. ..
- the UE may notify BFD when the RS contained in RS set # 0 corresponding to TRP # 0 and the RS contained in RS set # 1 corresponding to TRP # 1 are less than a predetermined threshold value (BFD notification). See Figure 3).
- BFD notification of TRP # 0 and the BFD notification of TRP # 1 may be performed separately or simultaneously (for example, one notification).
- the UE does not have to include the information about TRP (for example, the TRP index) in the information about BFD.
- the UE may include information about a plurality of TRPs (eg, TRP # 0 and TRP # 1) in the information about BFD (one notification).
- the UE may include specific information (or specific values) in the information about BFD (see FIG. 3). The specific value may indicate the BFD of multiple TRPs (eg, TRP # 0 and TRP # 1).
- a common RS set is set for TPR # 0 and TRP # 1, and the RS included in the common RS set is less than a predetermined threshold value, BFD may be notified.
- the upper layer tells the physical layer whether or not there is an RS whose received power (for example, RSRP) is equal to or higher than a predetermined threshold value, and information about the RS (for example, RSRP). It may be requested to notify at least one of RS index / RS setting index / RSRP).
- RSRP received power
- RSRP information about the RS
- the information about the RS may be a candidate RS corresponding to the new candidate beam, and the RS may be selected from the RS included in a predetermined RS set (or set q1).
- a predetermined RS set (or RS included in the RS set) may be notified / set from the network to the UE by using higher layer signaling or the like.
- the UE When there is a request from the upper layer, the UE notifies the upper layer whether or not there is a candidate RS (candidate RS) that can be used as a new candidate beam. Further, the UE may notify the new candidate RS and the information regarding at least one RSRP (for example, L1-RSRP) having a predetermined threshold value or more from the physical layer to the upper layer in response to the request. ..
- RSRP for example, L1-RSRP
- the content to be notified from the lower layer to the upper layer based on the request may be determined based on at least one of the following options 1-1 and 1-2.
- the UE detects a beam failure for a part (for example, one) of the TRPs among the plurality of TRPs and notifies the upper layer from the lower layer of the BFD related to the part of the TRPs (FIG. 2). reference).
- the UE determines whether or not there is an RS whose received power is equal to or higher than a predetermined threshold value in the RS set (or q1 set) corresponding to the TRP. If it exists, information about the RS may be notified to the upper layer.
- FIG. 2 shows a case where the BFD of TRP # 0 is detected and the BFD of TRP # 1 is not detected.
- Information to be notified to the upper layer is described in Rel. 15 / Rel. It may be the same as the information notified in the 16 BFR procedure.
- the upper layer can determine the candidate beam (or candidate RS) for the TRP in which the beam failure has occurred, based on the information notified from the lower layer.
- the UE detects a beam failure for a plurality of TRPs (for example, two) and notifies the upper layer of the BFD for the plurality of TRPs (see FIG. 3).
- the UE sends information about the new candidate beam / candidate RS corresponding to each TRP (for example, two sets of candidate beam information) to the upper layer. You may notify (option 1-1a).
- the UE informs whether or not there is an RS whose received power is equal to or higher than a predetermined threshold value in the RS set (or q1 set) corresponding to each TRP, and if so, information on the RS corresponding to each TRP. May be notified to the upper layers respectively.
- the UE may determine the order of the information to be notified based on the TRP index. For example, in the notification information, the information of the TRP having a small index and the received power corresponding to the TRP may be arranged first, and then the information of the TRP having a small index and the received power corresponding to the TRP may be arranged.
- the UE may notify the upper layer of information about one (or common / set) new candidate beam (or candidate RS) for multiple TRPs (eg, two TRPs).
- the one (or one set) new candidate beam may be a new candidate beam corresponding to a specific TRP.
- the particular TRP may be the TRP with the smallest (or highest) index.
- Option 1-1b may be applied to a limited number of cells (for example, limited to PCell / PSCell) or may be applied to any cell.
- ⁇ Option 1-2 ⁇ Information about TRP may be included in the request contents from the upper layer. That is, the upper layer may instruct the physical layer to notify the new candidate beam (or candidate RS) for a predetermined TRP. The upper layer may request notification of the new candidate beam for one TRP, or may request notification of the new candidate beam for a plurality of (for example, two) TRPs.
- the UE may provide information on the candidate beam of only the requested TRP from the lower layer to the upper layer. As a result, it is possible to suppress an increase in the amount of information notified from the lower layer to the upper layer.
- ⁇ Second embodiment> when the UE detects a beam failure, the UE transmits a recovery request (or a trigger for the recovery request) for the detected beam failure in TRP units or in TRP set units including a plurality of TRPs. The case of doing so will be described.
- the UE In the beam failure detection (BFD) operation, the UE (or MAC entity) sets a predetermined counter (for example, BFI_COUNTER) and a predetermined timer (for example, beamFailureDetectionTimer) for counting the notification of the beam failure instance (for example, beam failure instance). It may be utilized to control the trigger of a beam fault recovery request (eg, BFR).
- a predetermined counter for example, BFI_COUNTER
- a predetermined timer for example, beamFailureDetectionTimer
- the UE may start (or restart) a predetermined timer and increase the predetermined counter (for example, increment by 1).
- the predetermined counter becomes equal to or more than the maximum count (for example, beamFailureInstanceMaxCount)
- the UE may perform a beam failure recovery operation for the cell. If the cell is a SCell, the UE may trigger a BFR for the SCell. Otherwise (eg, if the cell is a SpCell), the UE may initiate a random access procedure in the SpCell.
- the predetermined counter may be set to 0.
- At least one of a predetermined timer (for example, beamFailureDetectionTimer) and a predetermined counter (for example, BFI_COUNTER) may be set / defined in a TRP unit or a TRP set unit including a plurality of TRPs. That is, a TRP-specific predetermined counter / predetermined timer may be applied to a serving cell in which one or more sets of BFR-RS are set.
- a predetermined timer for example, beamFailureDetectionTimer
- a predetermined counter for example, BFI_COUNTER
- the UE may separately apply a predetermined counter / predetermined timer in each TRP of a predetermined serving cell.
- Counter # 0 may be set / defined for TRP # 0 and counter # 1 may be set / defined for TRP # 1.
- timer # 0 may be set / defined for TRP # 0
- timer # 1 may be set / defined for TRP # 1.
- the maximum count (for example, beamFailureInstanceMaxCount) may be set separately for each TRP (TPP specific), or may be set common to a plurality of TRPs (TRP common).
- the UE may trigger a BFR for the serving cell when either one of the predetermined counter # 0 and the predetermined counter # 1 exceeds the maximum count. That is, even if both the predetermined counter # 0 corresponding to TRP # 0 and the predetermined counter # 1 corresponding to TRP # 1 do not exceed the maximum count, the BFR of the cell containing TRP # 0 and TRP # 1 (for example, BFR of one TRP) may be triggered (see Case 1 / Case 2 in FIG. 4).
- the BFR MAC CE may have a configuration extended from an existing system (for example, Rel. 16) (for example, 2-step with enhanced BFR MAC CE).
- the expanded MAC CE for BFR may include information on TRP and information on a new candidate beam (or new candidate RS) for each TRP of the serving cell.
- the UE may control the beam failure recovery procedure according to the cell type when both the predetermined counter # 0 and the predetermined counter # 1 exceed the maximum count (see Case 3 / Case 4 in FIG. 4).
- a MAC CE-based 2-step BFR (BFR MAC CE) may be triggered (Case 3 in FIG. 4).
- the configuration may be such that the BFR for the SCell is triggered (option 2-1), or the BFR for each TRP of the SCell may be triggered (option 2-2).
- Option 2-1 may notify information about one new candidate RS corresponding to the cell or specific TRP.
- option 2-2 information about the two new candidate RSs corresponding to the two TRPs may be notified.
- the two predetermined counters for the two TRPs are set to 0 and the two predetermined timers for the two TRPs are stopped. You may.
- the predetermined counter for each TRP is set to 0, and the two predetermined timers for each TRP are stopped. May be good.
- the random access procedure may be started in the SpCell (see Case 4 in FIG. 4).
- the UE may apply RACH for BFR.
- the UE may select one candidate RS and apply RACH for BFR.
- the method of selecting one candidate RS from a plurality of candidate RSs may be autonomously selected by the UE by UE implementation, may be selected based on the TRP index, or may be selected based on the TRP index. It may be selected based on the index. For example, the candidate RS corresponding to the TRP having the smallest (or largest) index may be selected. Alternatively, the candidate RS having the smallest (or highest) index of the RS / RS resource may be selected.
- a BFR procedure may be performed. That is, when a beam failure is detected for at least one TRP (for example, when the counter corresponding to at least one TRP exceeds the maximum count), a MAC CE-based 2-step BFR (BFR MAC CE) is triggered. May be (see FIG. 5).
- the BFR procedure (for example, an extended two-step procedure based on the MAC CE for BFR) when the BFR for one or more TRPs is triggered will be described.
- the UE may transmit a MAC CE for BFR. In other cases (eg, if there is no UL-SCH available for transmission of BFR MAC CE), the UE may trigger (or transmit) SR to the BFR for SCell.
- ⁇ Case 3A For example, assume that one BFR is triggered for one or more TRPs in the serving cell (or one TRP BFR is triggered in the serving cell). If a UL-SCH capable of accommodating a BFR MAC CE (or Truncated BFR MAC CE) is available, the UE may transmit a MAC CE for BFR. In other cases (eg, if there is no UL-SCH available for transmission of BFR MAC CE), the UE may trigger (or transmit) SR to the BFR for SCell.
- a UL-SCH capable of accommodating a BFR MAC CE or Truncated BFR MAC CE
- ⁇ Case 3B For example, assume that a plurality of BFRs are triggered for a plurality of (for example, two) TRPs in the serving cell (or a case where the BFRs of the two TRPs are each triggered in the serving cell). If a UL-SCH capable of accommodating a BFR MAC CE (or Truncated BFR MAC CE) is available, the UE may transmit a MAC CE for BFR. In other cases (eg, if there is no UL-SCH available for transmission of BFR MAC CE), the UE may trigger (or transmit) SR to the BFR for SCell.
- a UL-SCH capable of accommodating a BFR MAC CE (or Truncated BFR MAC CE)
- the UE may transmit a MAC CE for BFR. In other cases (eg, if there is no UL-SCH available for transmission of BFR MAC CE), the UE may trigger (or transmit) SR to the BFR for SCell.
- Case 3A / Case 3B if the BFR MAC CE contains information about beam failure detection for one TRP in the serving cell (eg, information about one TRP where beam failure was detected in the serving cell), the UE will: At least one of operation 3-1 and operation 3-2 may be applied.
- the UE may cancel all BFRs triggered for the serving cell (or a plurality of TRPs) (operation 3-1).
- Operation 3-1 may be applied only to SpCell (for example, PCell / PSCell).
- the UE may cancel all BFRs triggered for a given TRP (eg, a TRP that has detected a beam fault) (operation 3-2).
- Operation 3-2 may be applied only to SCell.
- the UE When the BFR MAC CE includes information on beam failure detection of multiple (for example, two) TRPs in the serving cell (for example, information on two TRPs in which beam failure is detected in the serving cell), the UE performs the above operation 3 -1 may be applied.
- the resources used for SR trigger (or SR transmission using PUCCH) may be set separately.
- the SR (or PUCCH transmission) for BFR may be defined / set in at least one of SpCell (PCell / PSCell) and SCell in which a multi-TPR setting (for example, multi-TRP config) is set.
- a multi-TPR setting for example, multi-TRP config
- One SR (or SR index / SR resource / SR setting / PUCCH resource / PUCCH setting) may be set for the two-step BFR (Aspect 3-1).
- the SR may be triggered.
- a TRP-specific SR (for example, TRP-specific SR) may be set for the two-step BFR (Aspect 3-2).
- TRP-specific SR may be set for the two-step BFR.
- multiple (for example, two) TRPs are set, multiple (for example, two) SRs (or SR index / SR resource / SR setting / PUCCH resource / PUCCH setting) are set for the two-step BFR. Each may be set.
- the plurality of SRs may be set based on at least one of the following options 3A to 3C.
- a plurality of SRs (for example, scheduling request IDs) corresponding to each TRP may be set. That is, the SR index may be set separately (independently) for each TRP.
- One SR (for example, a scheduling request ID) may be set, and the SR may have a plurality of PUCCH resources corresponding to each TRP. That is, SR may be set in common for a plurality of TRPs, and PUCCH resources corresponding to the SRs may be set separately for each TRP.
- One SR (for example, scheduling request ID) is set, the SR has one PUCCH resource, and a plurality of QCL / beam / spatial relationships corresponding to each TRP are set for the PUCCH resource. May be good. That is, the SR and the PUCCH resource may be set in common for a plurality of TRPs, and the QCL / beam / spatial relationship corresponding to the PUCCH resource may be set separately for each TRP.
- SR corresponding to another TRP may be transmitted in the 2-step BFR.
- Aspect 3-2 may be applied only to SpCell in which multi-TRP is set. Alternatively, aspect 3-2 may be applied to SCell.
- the following UE capability may be set.
- the following UE capability may be read as a parameter (for example, an upper layer parameter) set in the UE from the network (for example, a base station).
- UE capability information regarding whether or not to support RS of multiple (for example, two) sets / groups may be defined.
- UE capability information regarding whether or not to support RS of a plurality of (for example, two) sets / groups may be defined.
- UE capability information regarding whether or not to support the notification of TRP index information for a predetermined operation may be defined. ..
- the predetermined operation may be at least one of a beam failure detection notification (beam failure indication), a request from a higher layer (request from higher layer), and a new candidate beam information (new candidate beam info).
- the predetermined cell may be, for example, a SpCell (for example, PCell / PSCell) in which a multi-TRP is set.
- SpCell for example, PCell / PSCell
- UE capability information regarding whether or not a plurality of (for example, two) predetermined counters (for example, BFI_COUNTER) are supported for the serving cell may be defined.
- UE capability information regarding whether or not a plurality of (for example, two) predetermined timers (for example, beamFailureDetectionTimer) are supported for the serving cell may be defined.
- UE capability information regarding whether or not multiple (for example, two) BFR triggers are supported for the serving cell may be defined.
- UE capability information regarding whether or not multiple (for example, two) SRs are supported for the serving cell may be defined.
- UE capability information regarding whether or not the configuration in which the SR is associated with the TRP is supported may be defined.
- UE capability information regarding whether extended BFR MAC CE for a given cell is supported may be defined.
- the predetermined cell may be SpCell (for example, PCell / PSCell) / SCell.
- the first to third aspects may be configured to be applied to a UE that supports / reports at least one of the above-mentioned UE capabilities.
- the first to third aspects may be configured to be applied to the UE set from the network.
- MAC CE configuration used for the BFR procedure (for example, 2-step BFR) when the BFR for one or more TRPs is triggered will be described.
- Rel. 16 when the quality of all BFD-RS (or BFR-RS) set in the UE in SCell becomes equal to or less than a certain threshold value, BFR is performed using MAC CE. On the other hand, Rel. After 17, when the quality of BFD-RS (for example, all BFD-RS) corresponding to a certain TRP among the BFD-RS set in the UE becomes equal to or less than a certain threshold value, the BFR is changed by using MAC CE. It may be done.
- the UE determines a beam having the best quality (for example, maximum L1-RSRP) for each set new candidate beam (or new candidate RS).
- the best quality for example, maximum L1-RSRP
- BFR MAC CE before 16 is for a bit field representing a cell in which BF is detected, a reserved bit field, a candidate RS ID or a reserved bit field (may be simply called a candidate RS ID field), and SpCell. At least one of the BFD instruction field and the field indicating the existence of the candidate RS ID may be included.
- the reserved bit field may not be used for notification of information, or may be used freely. In terms of specifications, it may be fixed to a predetermined value (for example, 0).
- FIG. 6A and 6B are shown in Rel. It is a figure which shows the structure of the BFR MAC CE before 16.
- FIG. 6A shows an example of a MAC CE configuration in the case where a field representing a cell in which BF is detected is included for a cell of 8 or less (or a SCell of 7 or less).
- FIG. 6B shows an example of a MAC CE configuration in the case where a field representing a cell in which BF is detected is included for a cell of 32 or less.
- the C n bit (n is an integer of 1 or more) is a bit field representing a cell in which BF is detected, the SP bit is a BFD instruction field for SpCell, and the AC bit is a candidate RS ID. It is a field indicating the existence of, and the R bit is a reserved bit.
- the Cn bit and the R bit in the figure showing the configuration of the MAC CE are the same.
- the detection of beam failure (notification of the cell in which BFD is detected) / notification of the new candidate RS may be controlled for each TRP (or for each TRP).
- the UE may have information about a failed TRP (eg, eg, a new candidate RS index) in addition to information about a cell in which a beam failure was detected (eg, a cell index) and a new beam (eg, a new candidate RS index).
- the TRP index may be transmitted to a base station (for example, PCell / PSCell) using MAC CE (or UL-SCH / PUSCH).
- the information about the TRP in which the beam obstruction was detected is the information about the panel in which the beam detection was detected (eg, the panel index), and the information about the new candidate beam associated with the UE panel / TRP (eg, TRP index). , Candidate RS ID).
- the MAC CE (BFR MAC CE) configuration used for the BFR for notifying the information (for example, the TRP index) regarding the TRP in which the beam failure is detected will be described.
- the TRP index may have a bit length of a specific number of bits (for example, N bits (N ⁇ 1)).
- the MAC CE may be configured to include a TRP field corresponding to each cell (see FIG. 7).
- the TRP field (for example, TRP-ID indication field) may be a field for notifying the TRP index (for example, TRP-ID) corresponding to each cell.
- FIG. 7 shows an example of a BFR MAC CE configuration including a TRP index.
- the MAC CE in FIG. 7 includes at least a field corresponding to 8 or less cells and a TRP field corresponding to each cell.
- Ti, 0 and Ti, 1 correspond to the cell i (Ci).
- T0,0 and T0,1 correspond to cell 0 (C0 / SP)
- T1,0 and T1,1 correspond to cell 1 (C1)
- T7,0 corresponds to cell 7 (C7).
- T7,1 correspond.
- 2 bits for example, 1 bit of Ti, 0 and 1 bit of Ti, 1
- Ci the case where 2 bits (for example, 1 bit of Ti, 0 and 1 bit of Ti, 1) is used for notification of the TRP index corresponding to a certain cell (for example, Ci) is shown, but is limited to this. not.
- the TRP in which the beam failure is detected is appropriate. Can be notified to.
- the predetermined predetermined bit may mean that a beam failure is detected in the cell.
- a field for notifying the new candidate RS index (for example, Candidate RS ID or R bit) is set in MAC CE only for the cell that becomes the predetermined bit (or one or more TRPs corresponding to the cell that becomes the predetermined bit). May be done.
- cell field / TRP When performing beam failure detection notification for cell i for which multi-TRP BFR is not set and notification of the existence of an octet including an AC field for SCell having cell index i (case 4-4), cell field / TRP. It may be controlled as follows by the field.
- the UE may determine the difference between Case 4 and Case 1 based on the BFR setting.
- the number of SCells for which BFR is set is less than 8, that is, when the maximum serving cell index of SCells of the MAC entity for which beam failure detection is set is less than 8.
- the MAC CE configuration shown in FIG. 8 may be applied.
- the MAC CE shown in FIG. 8 shows a case where 8 or more SCells and 1 or more TRP fields corresponding to each SCell are included.
- the TRP fields (Ti, 0, Ti, 1), (Tj, 0, Tj, 1), (Tk, 0, Tk, 1) corresponding to some cells in which beam failure is detected are Indicates the case where it is set.
- one or more TRP fields for example, Ti, 1 and Ti, 0
- the two TRP fields may be arranged in a predetermined order. For example, in the same octet, TRPs having the smallest index may be arranged in order from right to left.
- the TRP fields corresponding to each cell are set in the cell index order (for example, the TRP field corresponding to the cell with the smaller index is placed first). May be.
- One of the methods described in the first BFR CE configuration is applied to the setting method of the TRP field (for example, setting / interpretation of the bit value) and the setting (or presence / absence) of one or more octets including the AC field. May be done.
- the MAC CE may be configured to include a field in which a specific cell index is specified by using a bit (for example, a plurality of bits) as a field for a cell (see, for example, FIG. 10). That is, the MAC CE may be configured to include a cell field corresponding to a cell in which a beam failure is detected and not a cell field corresponding to a cell in which a beam failure is not detected.
- a bit for example, a plurality of bits
- the cell in which the beam failure is detected may be a cell in which the beam failure is detected in at least one TRP of one or more TRPs corresponding to the cell.
- the UE relates to the index of the cell in which the beam failure is detected, the existence or nonexistence of a new candidate beam (new candidate RS index) for one or more TRPs corresponding to the cell, and the new candidate beam when the new candidate beam exists.
- Information is included in MAC CE and notified.
- the UE when it detects a beam failure for cell #i, it notifies the index i using the cell field.
- One or more TRP here, two TRP (or TCI)
- TRP time difference protocol
- the value of each TRP field eg, the bit value
- the value of each TRP field eg, bit value
- the TCI field may be set to the same octet (first octet) as the cell field used for notification of the index of the serving cell.
- the field for new candidate RS used for notification of the new candidate beam (or new candidate RS index) of each TRP may be set to an octet different from the first octet (for example, a second octet).
- the information about new candidate beams of each TRP may be set in different octets.
- an AC field for notifying whether or not a new candidate RS index exists may be set.
- the AC field may be set in the octet in which the field for the new candidate RS of each TRP is set.
- a beam failure is detected in a cell in which a BFR for multi-TRP is not set (for example, a cell in which an existing BFR is set).
- a cell in which a BFR for multi-TRP is not set for example, a cell in which an existing BFR is set.
- only one octet including an AC field (or a field for a new candidate RS) may be set for the cell (see FIG. 11).
- FIG. 11 shows a case where one octet including a new candidate RS field (or AC field) is set for the serving cell #i.
- a beam failure is detected in only one TRP in a cell in which a BFR for multiple TRPs is set (for example, when 1 is set in one TRP field among two TRP fields). .. In such a case, only one octet including an AC field (or a field for a new candidate RS) may be set for the cell (see FIG. 11).
- a beam failure is detected in two TRPs in a cell in which a BFR for multiple TRPs is set (for example, when 1 is set in both TRP fields among the two TRP fields).
- only one octet including the AC field (or the field for the new candidate RS) (for example, the octet corresponding to the field for the new candidate RS of a specific TRP) may be set for the cell (for example). See FIG. 11).
- the particular TRP may be set by higher layer signaling, may be determined based on a predetermined rule (eg, index), or may be determined autonomously by the UE. May be.
- a predetermined rule eg, index
- the correspondence between the new candidate RS index and TRP may be notified to the UE in advance. In this case, the UE may assume that the base station can determine the corresponding TRP based on the new candidate RS index to be notified.
- one new candidate RS index may be reported from the UE to the base station.
- the one new candidate beam (or new candidate RS index) can be used to perform a random access procedure for BFR.
- the beam failure of the TRP can be recovered by reporting the new candidate RS index of at least one TRP from the UE to the base station.
- the recovered beam may also be used to direct other TRPs to beam information selected by normal beam management (eg, beam measurement / reporting).
- two octets (each) containing an AC field (or a field for new candidate RS) for the cell. Octets corresponding to each TRP) may be set (see FIG. 10).
- the AC field may be set to an octet different from the field for the new candidate RS (see FIG. 12). For example, whether or not the new candidate RS index is set in the field for the new candidate RS of a certain octet (or whether or not the reserve bit (for example, R bit) is set) is different in the octet (one before). It may be specified by the AC field of octet). Alternatively, the presence or absence of another octet (the octet in which the field for the new candidate RS is set) may be specified by using the AC field included in one octet.
- the octet containing the cell field contains the first AC (AC1) field
- the octet containing the new candidate RS field of the first TRP contains the second AC (AC2) field.
- the AC1 field may indicate whether the information indicating the new candidate RS index is set in the field 1 for new candidate RS (corresponding to TRP # 0) or whether the reserve bit (R bit) is set.
- the AC2 field may indicate whether or not the next octet exists.
- the AC2 field may notify that the new candidate RS field 2 (corresponding to TRP # 1) is not set / does not exist.
- the AC1 field may indicate whether or not the next octet (octet including the new candidate RS field) exists.
- the AC1 field may notify that the field for the new candidate RS (corresponding to the specific TRP / cell) is not set / does not exist.
- the octet included in the field for the new candidate RS corresponding to other TRP may be configured not to be set / not to exist. That is, AC1 may notify whether or not there is at most one octet.
- Variation 1 shows a case where the position of the AC field in FIG. 10 is changed, but the present invention is not limited to this.
- the position of the AC field in FIG. 11 may be changed (see FIG. 13).
- FIG. 13 shows a case where the first AC (AC1) field is included in the octet including the cell field.
- the AC1 field may indicate whether or not the next octet (for example, the octet in which the field for the new candidate RS is set) exists. If there is no new candidate RS for a given TRP / cell, the AC1 field may notify that the new candidate RS field is not set / does not exist. AC1 may notify the existence of one octet only if a new candidate RS index is present for the TRP / cell in which the beam failure is detected.
- the MAC CE may be configured so that the TRP field corresponding to each cell is not included (see FIG. 14). For example, at least a field for each cell (set cell) and a field for notifying information about the new candidate beam (or new candidate RS index) of the TRP corresponding to each cell (field for new candidate RS). It may be included in the MAC CE.
- the AC field may be included in the MAC CE.
- the AC field notifies whether or not the new candidate RS index is specified in the field for new candidate RS corresponding to each TRP / predetermined cell (or whether or not the field for new candidate RS becomes a reserve bit). It may be used. Alternatively, the AC field may be used to notify whether or not there is an octet in which the new candidate RS field is set.
- the MAC CE shown in FIG. 14 shows a case where a cell field (here, 1 bit) corresponding to each cell and a TRP new candidate RS field corresponding to each cell are set.
- a case where two fields for new candidate RS of TRP are set for each cell is shown.
- the field for the new candidate RS of each TRP may be set to a different octet, and the AC field may be set to each octet.
- each cell field for example, 1 bit
- a configuration in which a cell in which a beam failure is detected is indicated by a plurality of bits may be applied.
- the case where the fields for the new candidate RS of the two TRPs are set to different octets is shown.
- the field for the new candidate RS corresponding to each cell may be configured not to be always set.
- the RS field for a new candidate of TRP corresponding to the cell in which the beam failure is detected (for example, the cell in which the cell field is 1) may be set.
- the number of new candidate RS fields (or octets including the new candidate RS field) corresponding to the cell may be one.
- a new candidate RS field (or an octet containing a new candidate RS field) corresponding to the cell. 2) may be used.
- the AC field included in each octet may specify whether or not a new candidate RS index of TRP corresponding to the octet exists.
- AC1 is used to notify whether or not a new candidate RS index of the first TRP of a predetermined cell exists
- AC2 is used to notify whether or not a new candidate RS index of the second TRP of a predetermined cell exists. It shows the case where it is used for notification.
- FIG. 14 shows a configuration in which an AC field is included in each octet including a field for a new candidate RS of each TRP, but the present invention is not limited to this.
- one of a plurality of (eg, two) octets corresponding to a plurality of (eg, two) TRPs corresponding to a cell may contain a plurality of AC fields corresponding to each octet (for example, two). See FIG. 15).
- a first octet including the field # 1 for the new candidate RS of the first TRP and a second octet including the field # 2 for the new candidate RS of the second TRP are set.
- the first AC1 field and the second AC2 field are included in the first octet.
- the first AC1 field is used to notify whether the new candidate RS field # 1 contains the new candidate RS index
- the second AC2 field is the new candidate RS index in the new candidate RS field # 2. May be used to notify whether or not is included.
- the octet of the new candidate RS field for a certain cell may be set only for the cell in which the beam failure is detected (for example, the cell in which the cell field is set to 1).
- at least one octet (for example, an octet containing a plurality of AC fields) may be set for the cell.
- the AC2 field contained in the first octet may notify whether or not the second octet is set / exists.
- octet When a beam failure is detected in a cell in which BFR for multi-TRP is not set, only one octet may be set for the cell.
- FIG. 15 shows a case where a plurality of (for example, two) octets (or a new candidate RS field of TRP) are set for a cell, but the case is not limited to this.
- One octet may be set for each cell (see FIG. 16).
- one octet (or a new candidate RS field of one TRP) is detected for the cell. May be set.
- the TRP notified of the new candidate RS index may be selected based on a predetermined rule.
- the octet (or the new candidate RS field of TRP) for each cell may be set / exist only for the cell in which the beam failure is detected (for example, the cell in which the cell field is set to 1). ..
- an AC field indicating whether or not a new candidate RS index is set (or whether or not a new candidate beam exists in the TRP) is set.
- a configuration in which some AC fields are not set may be used (see FIG. 17).
- FIG. 17 shows a case where the AC1 field is not set (for example, it becomes a reserve bit).
- AC1 is not notified, and AC2 may be used to notify whether or not a new candidate RS index of the second TRP exists.
- the first TCI may correspond to the first TRP or the second TRP.
- the AC field may be replaced with the reserve bit (R) field.
- the R field may be used to notify the presence / absence of the new candidate RS index / the presence / absence of another octet.
- UE operation after receiving a response signal from the base station UE operation after receiving a response signal from the base station.
- a beam recovery request for one or more TRPs eg, MAC CE transmission including information about a new candidate RS
- the UE sends a MAC CE containing information about the cell in which the beam failure was detected / information about the TRP where the beam failure was detected / information about the cell or the new candidate RS index of the TRP, and then the network (eg, for example).
- the DL signal (or response signal) transmitted from the base station) may be received.
- the DL signal may be a DCI / PDCCH (eg, a PDCCH having a predetermined DCI format) that schedules PUSCH transmission.
- the PUSCH transmission may have the same HARQ process number as the first PUSCH (eg, the PUSCH used to transmit the MAC CE) and may have a toggled NDI field value.
- the UE may update the QCL (or beam) of the PDCCH / PUCCH / PDSCH / PUSCH after a predetermined period (for example, 28 symbols) after receiving the DL signal. That is, the QCL for the PDCCH / PUCCH / PDSCH / PUSCH may be updated with the new beam setting.
- the UE Based on the information about the new candidate beam transmitted by MAC CE, the UE operates the UE for UL transmission / DL reception after receiving the DL signal (for example, beam assumption / TCI assumption / TPC assumption). For example, the UE may apply at least one of the following UE operations.
- the UE is the same as the one associated with the PDCCH monitor in all CORESETs of the SCell specified by the MAC CE to the predetermined index (eg, qnew) corresponding to the reported new candidate RS index after a predetermined period of time after receiving the PDCCH. It may be carried out by using the antenna port pseudo collocation parameters (antenna port quasi co-location parameters) (UE operation 1).
- the UE may transmit the PUCCH in the PUCCH-SCell using the same spatial domain filter (spatial domain filter) corresponding to the predetermined index (for example, qnew) (UE operation 2). ). Further, the transmission power used for PUCCH transmission may be determined based on a predetermined index (for example, qnew) (UE operation 3). qnew may correspond to an index for a predetermined RS received (eg, periodic CSI-RS, or SS / PBCH block).
- a predetermined RS received eg, periodic CSI-RS, or SS / PBCH block.
- Predetermined conditions are that a predetermined upper layer parameter (for example, PUCCH-SpatialRelationInfo) is set for PUCCH, PUCCH having LRR (link recorery request) is not transmitted or transmitted in SpCell, and MAC.
- a predetermined upper layer parameter for example, PUCCH-SpatialRelationInfo
- PUCCH-SpatialRelationInfo for example, PUCCH-SpatialRelationInfo
- PUCCH having LRR link recorery request
- the problem is how to control the UE operation after receiving the DL signal (or response signal) transmitted from the network (for example, the base station) to the MAC CE.
- Cases 1 to 4 shown in FIG. 4 will be described as an example, but the applicable cases are not limited to this.
- the UE detects beam failure with only one TRP out of multiple (for example, two) TRPs and performs BFR MAC CE. It is assumed that the transmission is performed (see FIG. 18).
- FIG. 18 shows a case where the UE detects a beam failure in TRP # 0 and transmits information on the new candidate RS index corresponding to the TRP # 0 by using MAC CE.
- the base station transmits a response signal (or DL signal) to the MAC CE transmitted from the UE.
- the DL signal may be a DCI / PDCCH (eg, a PDCCH having a predetermined DCI format) that schedules PUSCH transmission.
- the PUSCH transmission may have the same HARQ process number as the first PUSCH (eg, the PUSCH used to transmit the MAC CE) and may have a toggled NDI field value.
- the UE may apply a predetermined UE operation to the TRP that has detected a beam failure after a predetermined period (for example, 28 symbols). On the other hand, it is not necessary to apply the predetermined UE operation to the TRP that has not detected the beam failure.
- the predetermined UE operation may be at least one of the above-mentioned UE operation 1 to UE operation 3.
- the TRP that detects the beam failure may be read as the TRP that has notified the information about the new candidate RS index using MAC CE.
- a TRP that has not detected a beam failure may be read as a TRP that has not notified information about the new candidate RS index using MAC CE.
- the UE determines the PDCCH / PUCCH associated with the same index (for example, the control resource pool index (CORESETPoolindex)) as the TRP (or BFD RS set) that detected the beam failure.
- UE operation may be applied. That is, the UE may control to change (or update) the TCI state / spatial relationship corresponding to the TRP that detected the beam failure.
- the UE may control the TCI state / spatial relationship corresponding to other TRPs that have not detected the beam failure so as not to change (or update / update).
- the UE may include information on a plurality of new candidate RS indexes corresponding to a plurality of (for example, two) TRPs in the MAC CE and transmit the information.
- the TCI state / spatial relationship corresponding to each of the plurality of TRPs may be updated.
- the UE detects a beam failure in only one TRP among a plurality of (for example, two) TRPs and transmits a BFR MAC CE to the SCell in which the BFR for the multi-TRP is set. do.
- the base station transmits a response signal (or DL signal) to the MAC CE transmitted from the UE.
- the DL signal may be a DCI / PDCCH (eg, a PDCCH having a predetermined DCI format) that schedules PUSCH transmission.
- the PUSCH transmission may have the same HARQ process number as the first PUSCH (eg, the PUSCH used to transmit the MAC CE) and may have a toggled NDI field value.
- the UE may apply a predetermined UE operation to the TRP that has detected a beam failure in the predetermined SCell after a predetermined period (for example, 28 symbols). On the other hand, it is not necessary to apply the predetermined UE operation to the TRP in which the beam failure is not detected in the predetermined SCell.
- the predetermined UE operation may be at least one of the above-mentioned UE operation 1 to UE operation 3.
- the TRP that detects the beam failure in the predetermined SCell may be read as the TRP that has notified the information about the new candidate RS index using MAC CE.
- a TRP that has not detected a beam failure may be read as a TRP that has not notified information about the new candidate RS index using MAC CE.
- the UE After receiving the DL signal, the UE is assigned to the PDCCH / PUCCH associated with the same index (for example, the control resource pool index (CORESETPoolindex)) as the TRP (or BFD RS set) that detected the beam failure in the predetermined SCell.
- the UE may control to change (or update) the TCI state / spatial relationship corresponding to the TRP that detected the beam failure.
- the UE may control the TCI state / spatial relationship corresponding to another TRP that has not detected a beam failure in the SCell so as not to change (or update / update).
- the UE may include information on a plurality of new candidate RS indexes corresponding to a plurality of (for example, two) TRPs in the MAC CE and transmit the information.
- the TCI state / spatial relationship corresponding to each of the plurality of TRPs may be updated.
- the UE detects a beam fault in each of a plurality of (for example, two) TRPs and transmits a BFR MAC CE to the SCell in which the BFR for the multi-TRP is set (see FIG. 19). ..
- the UE detects beam faults in TRP # 0 and TRP # 1, respectively, and one or both of the information on the new candidate RS index corresponding to TRP # 0 and the information on the new candidate RS index corresponding to TRP # 1. Is shown when transmitting using MAC CE.
- the UE may transmit only one new candidate RS index (for example, a new candidate RS index corresponding to one TRP) using MAC CE for BFR (Case 3-1).
- the UE may transmit a plurality of new candidate RS indexes (for example, a plurality of new candidate RS indexes corresponding to each of the two TRPs) using the MAC CE for BFR (Case 3-2).
- a plurality of new candidate RS indexes for example, a plurality of new candidate RS indexes corresponding to each of the two TRPs
- the MAC CE for BFR (Case 3-2).
- the response signal from the base station may be notified separately, or one notification may be used.
- the base station transmits a response signal (or DL signal) to the MAC CE transmitted from the UE.
- the DL signal may be a DCI / PDCCH (eg, a PDCCH having a predetermined DCI format) that schedules PUSCH transmission.
- the PUSCH transmission may have the same HARQ process number as the first PUSCH (eg, the PUSCH used to transmit the MAC CE) and may have a toggled NDI field value.
- the UE may control the UE operation based on at least one of the following options 5-1 to 5-3.
- the UE may apply a predetermined UE operation (or qnew) to the serving cell after a predetermined period without considering the TRP information. For example, based on the new candidate RS index notified by MAC CE, Rel. The same UE operation as before 16 may be applied.
- the UE when the UE detects a beam failure in multiple TRPs in a cell and reports information about one new candidate RS index, it changes (or updates) the TCI state / spatial relationship corresponding to the serving cell instead of per TRP. ) May be controlled.
- the UE may apply a predetermined UE operation only to a specific TRP among the TRPs that have detected a beam failure in the serving cell.
- the specific TRP may be determined based on a predetermined rule.
- the UE may control the TCI state / spatial relationship corresponding to other TRPs other than the specific TRP so as not to change (or update / update).
- the UE When the UE receives the DL signal transmitted from the base station, among the TRPs that have detected the beam failure in the serving cell, the UE is a predetermined UE only for the TRP to which the information about the new candidate beam is transmitted using the MAC CE.
- the action (or qnew) may be applied.
- the specific TRP to be included in the MAC CE may be determined based on a predetermined rule.
- the UE After receiving the DL signal, the UE sets the TCI state / spatial relationship corresponding to the TRP index (for example, the control resource pool index (CORESETPoolindex)) that transmitted the information about the new candidate RS index using MAC CE to a predetermined value (for example). For example, it may be controlled to update to qnew).
- the TRP index for example, the control resource pool index (CORESETPoolindex)
- the UE may control the TCI state / spatial relationship corresponding to other TRPs that have not transmitted information on the new candidate RS index by using MAC CE so as not to update.
- the UE may control the UE operation based on the following option 5-4.
- the UE When the UE receives the DL signal transmitted from the base station, the UE detects a beam failure in the serving cell, and the plurality of TRP # 0, # 1 (or the plurality of TRP # 0, # 1 that transmit the new candidate beam information).
- a predetermined UE operation may be applied to each of the above (see FIG. 19).
- the UE may apply a predetermined UE operation (or qnew) to the PDCCH / PUCCH associated with each TRP index (or corresponding CORESET pool index). That is, the UE may control to change (or update) the TCI state / spatial relationship corresponding to the plurality of TRPs that have detected the beam failure.
- a predetermined UE operation or qnew
- the UE may control to change (or update) the TCI state / spatial relationship corresponding to the plurality of TRPs that have detected the beam failure.
- the UE In the SpCell where the BFR for multi-TRP is set, the UE detects the beam failure of one TRP and triggers the BFR, before the UE receives the response signal (or DL signal) from the base station. In such a case, the UE may start (or initialize) a random access procedure for the BFR, and a BFR procedure using the MAC CE. May be canceled.
- the fifth embodiment may be applied to a terminal having a predetermined UE capability or a terminal to which a predetermined upper layer parameter is set.
- the UE operation after receiving the response signal from the base station may differ based on the RNTI applied to the CRC scrambling of the response signal (eg, PDCCH).
- the UE may apply the fifth embodiment when it detects a PDCCH to which a predetermined RNTI (for example, BFR-RNTI) is applied.
- a predetermined RNTI for example, BFR-RNTI
- wireless communication system Wireless communication system
- communication is performed using any one of the wireless communication methods according to each of the above-described embodiments of the present disclosure or a combination thereof.
- FIG. 20 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment.
- the wireless communication system 1 may be a system that realizes communication using Long Term Evolution (LTE), 5th generation mobile communication system New Radio (5G NR), etc. specified by Third Generation Partnership Project (3GPP). ..
- the wireless communication system 1 may support dual connectivity (Multi-RAT Dual Connectivity (MR-DC)) between a plurality of Radio Access Technologies (RATs).
- MR-DC is a dual connectivity (E-UTRA-NR Dual Connectivity (EN-DC)) between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR, and a dual connectivity (NR-E) between NR and LTE.
- E-UTRA-NR Dual Connectivity Evolved Universal Terrestrial Radio Access (E-UTRA)
- NR-E dual connectivity
- NE-DC -UTRA Dual Connectivity
- the LTE (E-UTRA) base station (eNB) is the master node (Master Node (MN)), and the NR base station (gNB) is the secondary node (Secondary Node (SN)).
- the base station (gNB) of NR is MN
- the base station (eNB) of LTE (E-UTRA) is SN.
- the wireless communication system 1 has dual connectivity between a plurality of base stations in the same RAT (for example, dual connectivity (NR-NR Dual Connectivity (NN-DC)) in which both MN and SN are NR base stations (gNB). )) May be supported.
- a plurality of base stations in the same RAT for example, dual connectivity (NR-NR Dual Connectivity (NN-DC)) in which both MN and SN are NR base stations (gNB). )
- NR-NR Dual Connectivity NR-DC
- gNB NR base stations
- the wireless communication system 1 includes a base station 11 that forms a macrocell C1 having a relatively wide coverage, and a base station 12 (12a-12c) that is arranged in the macrocell C1 and forms a small cell C2 that is narrower than the macrocell C1. You may prepare.
- the user terminal 20 may be located in at least one cell. The arrangement, number, and the like of each cell and the user terminal 20 are not limited to the mode shown in the figure.
- the base stations 11 and 12 are not distinguished, they are collectively referred to as the base station 10.
- the user terminal 20 may be connected to at least one of a plurality of base stations 10.
- the user terminal 20 may use at least one of carrier aggregation (Carrier Aggregation (CA)) and dual connectivity (DC) using a plurality of component carriers (Component Carrier (CC)).
- CA Carrier Aggregation
- DC dual connectivity
- CC Component Carrier
- Each CC may be included in at least one of a first frequency band (Frequency Range 1 (FR1)) and a second frequency band (Frequency Range 2 (FR2)).
- the macrocell C1 may be included in FR1 and the small cell C2 may be included in FR2.
- FR1 may be in a frequency band of 6 GHz or less (sub 6 GHz (sub-6 GHz)), and FR 2 may be in a frequency band higher than 24 GHz (above-24 GHz).
- the frequency bands and definitions of FR1 and FR2 are not limited to these, and for example, FR1 may correspond to a frequency band higher than FR2.
- the user terminal 20 may perform communication using at least one of Time Division Duplex (TDD) and Frequency Division Duplex (FDD) in each CC.
- TDD Time Division Duplex
- FDD Frequency Division Duplex
- the plurality of base stations 10 may be connected by wire (for example, optical fiber compliant with Common Public Radio Interface (CPRI), X2 interface, etc.) or wirelessly (for example, NR communication).
- wire for example, optical fiber compliant with Common Public Radio Interface (CPRI), X2 interface, etc.
- NR communication for example, when NR communication is used as a backhaul between base stations 11 and 12, the base station 11 corresponding to the higher-level station is an Integrated Access Backhaul (IAB) donor, and the base station 12 corresponding to a relay station (relay) is IAB. It may be called a node.
- IAB Integrated Access Backhaul
- relay station relay station
- the base station 10 may be connected to the core network 30 via another base station 10 or directly.
- the core network 30 may include at least one such as Evolved Packet Core (EPC), 5G Core Network (5GCN), and Next Generation Core (NGC).
- EPC Evolved Packet Core
- 5GCN 5G Core Network
- NGC Next Generation Core
- the user terminal 20 may be a terminal compatible with at least one of communication methods such as LTE, LTE-A, and 5G.
- a wireless access method based on Orthogonal Frequency Division Multiplexing may be used.
- OFDM Orthogonal Frequency Division Multiplexing
- DL Downlink
- UL Uplink
- CP-OFDM Cyclic Prefix OFDM
- DFT-s-OFDM Discrete Fourier Transform Spread OFDM
- OFDMA Orthogonal Frequency Division Multiple. Access
- SC-FDMA Single Carrier Frequency Division Multiple Access
- the wireless access method may be called a waveform.
- another wireless access system for example, another single carrier transmission system, another multi-carrier transmission system
- the UL and DL wireless access systems may be used as the UL and DL wireless access systems.
- a downlink shared channel Physical Downlink Shared Channel (PDSCH)
- a broadcast channel Physical Broadcast Channel (PBCH)
- a downlink control channel Physical Downlink Control
- PDSCH Physical Downlink Control
- the uplink shared channel Physical Uplink Shared Channel (PUSCH)
- the uplink control channel Physical Uplink Control Channel (PUCCH)
- the random access channel shared by each user terminal 20 are used.
- Physical Random Access Channel (PRACH) Physical Random Access Channel or the like may be used.
- User data, upper layer control information, System Information Block (SIB), etc. are transmitted by PDSCH.
- User data, upper layer control information, and the like may be transmitted by the PUSCH.
- the Master Information Block (MIB) may be transmitted by the PBCH.
- Lower layer control information may be transmitted by PDCCH.
- the lower layer control information may include, for example, downlink control information (Downlink Control Information (DCI)) including scheduling information of at least one of PDSCH and PUSCH.
- DCI Downlink Control Information
- the DCI that schedules PDSCH may be called DL assignment, DL DCI, or the like, and the DCI that schedules PUSCH may be called UL grant, UL DCI, or the like.
- the PDSCH may be read as DL data, and the PUSCH may be read as UL data.
- a control resource set (COntrol REsource SET (CORESET)) and a search space (search space) may be used for PDCCH detection.
- CORESET corresponds to a resource for searching DCI.
- the search space corresponds to the search area and search method of PDCCH candidates (PDCCH candidates).
- One CORESET may be associated with one or more search spaces. The UE may monitor the CORESET associated with a search space based on the search space settings.
- One search space may correspond to PDCCH candidates corresponding to one or more aggregation levels.
- One or more search spaces may be referred to as a search space set.
- the "search space”, “search space set”, “search space setting”, “search space set setting”, “CORESET”, “CORESET setting”, etc. of the present disclosure may be read as each other.
- channel state information (Channel State Information (CSI)
- delivery confirmation information for example, it may be called Hybrid Automatic Repeat reQuest ACKnowledgement (HARQ-ACK), ACK / NACK, etc.
- scheduling request (Scheduling Request).
- Uplink Control Information including at least one of SR)
- the PRACH may transmit a random access preamble for establishing a connection with the cell.
- downlinks, uplinks, etc. may be expressed without “links”. Further, it may be expressed without adding "Physical" to the beginning of various channels.
- a synchronization signal (Synchronization Signal (SS)), a downlink reference signal (Downlink Reference Signal (DL-RS)), and the like may be transmitted.
- the DL-RS includes a cell-specific reference signal (Cell-specific Reference Signal (CRS)), a channel state information reference signal (Channel State Information Reference Signal (CSI-RS)), and a demodulation reference signal (DeModulation).
- CRS Cell-specific Reference Signal
- CSI-RS Channel State Information Reference Signal
- DeModulation Demodulation reference signal
- Reference Signal (DMRS)), positioning reference signal (Positioning Reference Signal (PRS)), phase tracking reference signal (Phase Tracking Reference Signal (PTRS)), and the like may be transmitted.
- PRS Positioning Reference Signal
- PTRS Phase Tracking Reference Signal
- the synchronization signal may be, for example, at least one of a primary synchronization signal (Primary Synchronization Signal (PSS)) and a secondary synchronization signal (Secondary Synchronization Signal (SSS)).
- PSS Primary Synchronization Signal
- SSS Secondary Synchronization Signal
- the signal block including SS (PSS, SSS) and PBCH (and DMRS for PBCH) may be referred to as SS / PBCH block, SS Block (SSB) and the like.
- SS, SSB and the like may also be called a reference signal.
- a measurement reference signal Sounding Reference Signal (SRS)
- a demodulation reference signal DMRS
- UL-RS Uplink Reference Signal
- UE-specific Reference Signal UE-specific Reference Signal
- FIG. 21 is a diagram showing an example of the configuration of a base station according to an embodiment.
- the base station 10 includes a control unit 110, a transmission / reception unit 120, a transmission / reception antenna 130, and a transmission line interface 140.
- the control unit 110, the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140 may each be provided with one or more.
- the functional block of the characteristic portion in the present embodiment is mainly shown, and it may be assumed that the base station 10 also has other functional blocks necessary for wireless communication. A part of the processing of each part described below may be omitted.
- the control unit 110 controls the entire base station 10.
- the control unit 110 can be composed of a controller, a control circuit, and the like described based on the common recognition in the technical field according to the present disclosure.
- the control unit 110 may control signal generation, scheduling (for example, resource allocation, mapping) and the like.
- the control unit 110 may control transmission / reception, measurement, and the like using the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140.
- the control unit 110 may generate data to be transmitted as a signal, control information, a sequence, and the like, and transfer the data to the transmission / reception unit 120.
- the control unit 110 may perform call processing (setting, release, etc.) of the communication channel, state management of the base station 10, management of radio resources, and the like.
- the transmission / reception unit 120 may include a baseband unit 121, a Radio Frequency (RF) unit 122, and a measurement unit 123.
- the baseband unit 121 may include a transmission processing unit 1211 and a reception processing unit 1212.
- the transmitter / receiver 120 includes a transmitter / receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitter / receiver circuit, and the like, which are described based on the common recognition in the technical field according to the present disclosure. be able to.
- the transmission / reception unit 120 may be configured as an integrated transmission / reception unit, or may be composed of a transmission unit and a reception unit.
- the transmission unit may be composed of a transmission processing unit 1211 and an RF unit 122.
- the receiving unit may be composed of a receiving processing unit 1212, an RF unit 122, and a measuring unit 123.
- the transmitting / receiving antenna 130 can be composed of an antenna described based on the common recognition in the technical field according to the present disclosure, for example, an array antenna.
- the transmission / reception unit 120 may transmit the above-mentioned downlink channel, synchronization signal, downlink reference signal, and the like.
- the transmission / reception unit 120 may receive the above-mentioned uplink channel, uplink reference signal, and the like.
- the transmission / reception unit 120 may form at least one of a transmission beam and a reception beam by using digital beamforming (for example, precoding), analog beamforming (for example, phase rotation), and the like.
- digital beamforming for example, precoding
- analog beamforming for example, phase rotation
- the transmission / reception unit 120 processes, for example, Packet Data Convergence Protocol (PDCP) layer processing and Radio Link Control (RLC) layer processing (for example, RLC) for data, control information, etc. acquired from control unit 110.
- PDCP Packet Data Convergence Protocol
- RLC Radio Link Control
- MAC Medium Access Control
- HARQ retransmission control HARQ retransmission control
- the transmission / reception unit 120 performs channel coding (may include error correction coding), modulation, mapping, filtering, and discrete Fourier transform (Discrete Fourier Transform (DFT)) for the bit string to be transmitted. Processing (if necessary), inverse Fast Fourier Transform (IFFT) processing, precoding, transmission processing such as digital-analog transformation may be performed, and the baseband signal may be output.
- channel coding may include error correction coding
- modulation modulation
- mapping mapping, filtering
- DFT discrete Fourier Transform
- IFFT inverse Fast Fourier Transform
- precoding coding
- transmission processing such as digital-analog transformation
- the transmission / reception unit 120 may perform modulation, filtering, amplification, etc. on the baseband signal to the radio frequency band, and transmit the signal in the radio frequency band via the transmission / reception antenna 130. ..
- the transmission / reception unit 120 may perform amplification, filtering, demodulation to a baseband signal, or the like on the signal in the radio frequency band received by the transmission / reception antenna 130.
- the transmission / reception unit 120 (reception processing unit 1212) performs analog-digital conversion, fast Fourier transform (FFT) processing, and inverse discrete Fourier transform (IDFT) for the acquired baseband signal. )) Processing (if necessary), filtering, decoding, demodulation, decoding (may include error correction decoding), MAC layer processing, RLC layer processing, PDCP layer processing, and other reception processing are applied. User data and the like may be acquired.
- FFT fast Fourier transform
- IDFT inverse discrete Fourier transform
- the transmission / reception unit 120 may perform measurement on the received signal.
- the measurement unit 123 may perform Radio Resource Management (RRM) measurement, Channel State Information (CSI) measurement, or the like based on the received signal.
- the measuring unit 123 has received power (for example, Reference Signal Received Power (RSRP)) and reception quality (for example, Reference Signal Received Quality (RSRQ), Signal to Interference plus Noise Ratio (SINR), Signal to Noise Ratio (SNR)).
- RSRP Reference Signal Received Power
- RSSQ Reference Signal Received Quality
- SINR Signal to Noise Ratio
- Signal strength for example, Received Signal Strength Indicator (RSSI)
- propagation path information for example, CSI
- the measurement result may be output to the control unit 110.
- the transmission line interface 140 transmits / receives signals (backhaul signaling) to / from a device included in the core network 30, another base station 10, etc., and user data (user plane data) for the user terminal 20 and a control plane. Data or the like may be acquired or transmitted.
- the transmission unit and the reception unit of the base station 10 in the present disclosure may be composed of at least one of the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140.
- the transmission / reception unit 120 may transmit one or more beam failure detection reference signals (Beam Failure Detection Reference Signal (BFD-RS)) corresponding to each of the plurality of transmission / reception points to the terminal.
- BFD-RS Beam Failure Detection Reference Signal
- the transmission / reception unit 120 When a beam failure for one or more transmission / reception points is detected in the terminal, the transmission / reception unit 120 provides information on the transmission / reception point where the beam failure is detected and the serving cell corresponding to the transmission / reception point where the beam failure is detected.
- the included media access control control element (MAC CE) may be received.
- the transmission / reception unit 120 may receive information on the beam failure detected at each of the plurality of transmission / reception points by using the media access control control element (MAC CE).
- the transmission / reception unit 120 may transmit a DL signal corresponding to information regarding a beam obstacle.
- MAC CE media access control control element
- the control unit 110 makes a beam in units of one transmission / reception point or a set of transmission / reception points including a plurality of transmission / reception points. You may control the disaster recovery procedure.
- the control unit 110 may control the recovery procedure of the beam failure for each of a plurality of transmission / reception points.
- control unit 110 may control at least one of the update of the condition applied to UL transmission and the update of the condition applied to DL reception for each transmission / reception point.
- FIG. 22 is a diagram showing an example of the configuration of the user terminal according to the embodiment.
- the user terminal 20 includes a control unit 210, a transmission / reception unit 220, and a transmission / reception antenna 230.
- the control unit 210, the transmission / reception unit 220, and the transmission / reception antenna 230 may each be provided with one or more.
- the functional block of the feature portion in the present embodiment is mainly shown, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication. A part of the processing of each part described below may be omitted.
- the control unit 210 controls the entire user terminal 20.
- the control unit 210 can be composed of a controller, a control circuit, and the like described based on the common recognition in the technical field according to the present disclosure.
- the control unit 210 may control signal generation, mapping, and the like.
- the control unit 210 may control transmission / reception, measurement, and the like using the transmission / reception unit 220 and the transmission / reception antenna 230.
- the control unit 210 may generate data to be transmitted as a signal, control information, a sequence, and the like, and transfer the data to the transmission / reception unit 220.
- the transmission / reception unit 220 may include a baseband unit 221, an RF unit 222, and a measurement unit 223.
- the baseband unit 221 may include a transmission processing unit 2211 and a reception processing unit 2212.
- the transmitter / receiver 220 can be composed of a transmitter / receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitter / receiver circuit, and the like, which are described based on the common recognition in the technical field according to the present disclosure.
- the transmission / reception unit 220 may be configured as an integrated transmission / reception unit, or may be composed of a transmission unit and a reception unit.
- the transmission unit may be composed of a transmission processing unit 2211 and an RF unit 222.
- the receiving unit may be composed of a receiving processing unit 2212, an RF unit 222, and a measuring unit 223.
- the transmitting / receiving antenna 230 can be composed of an antenna described based on the common recognition in the technical field according to the present disclosure, for example, an array antenna.
- the transmission / reception unit 220 may receive the above-mentioned downlink channel, synchronization signal, downlink reference signal, and the like.
- the transmission / reception unit 220 may transmit the above-mentioned uplink channel, uplink reference signal, and the like.
- the transmission / reception unit 220 may form at least one of a transmission beam and a reception beam by using digital beamforming (for example, precoding), analog beamforming (for example, phase rotation), and the like.
- digital beamforming for example, precoding
- analog beamforming for example, phase rotation
- the transmission / reception unit 220 processes, for example, PDCP layer processing, RLC layer processing (for example, RLC retransmission control), and MAC layer processing (for example, for data, control information, etc. acquired from the control unit 210). , HARQ retransmission control), etc., to generate a bit string to be transmitted.
- the transmission / reception unit 220 (transmission processing unit 2211) performs channel coding (may include error correction coding), modulation, mapping, filtering processing, DFT processing (if necessary), and IFFT processing for the bit string to be transmitted. , Precoding, digital-to-analog conversion, and other transmission processing may be performed to output a baseband signal.
- Whether or not to apply the DFT process may be based on the transform precoding setting.
- the transmission / reception unit 220 transmits the channel using the DFT-s-OFDM waveform.
- the DFT process may be performed as the transmission process, and if not, the DFT process may not be performed as the transmission process.
- the transmission / reception unit 220 may perform modulation, filtering, amplification, etc. on the baseband signal to the radio frequency band, and transmit the signal in the radio frequency band via the transmission / reception antenna 230. ..
- the transmission / reception unit 220 may perform amplification, filtering, demodulation to a baseband signal, or the like on the signal in the radio frequency band received by the transmission / reception antenna 230.
- the transmission / reception unit 220 (reception processing unit 2212) performs analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filtering processing, demapping, demodulation, and decoding (error correction) for the acquired baseband signal. Decoding may be included), MAC layer processing, RLC layer processing, PDCP layer processing, and other reception processing may be applied to acquire user data and the like.
- the transmission / reception unit 220 may perform measurement on the received signal.
- the measuring unit 223 may perform RRM measurement, CSI measurement, or the like based on the received signal.
- the measuring unit 223 may measure received power (for example, RSRP), reception quality (for example, RSRQ, SINR, SNR), signal strength (for example, RSSI), propagation path information (for example, CSI), and the like.
- the measurement result may be output to the control unit 210.
- the transmitting unit and the receiving unit of the user terminal 20 in the present disclosure may be configured by at least one of the transmission / reception unit 220 and the transmission / reception antenna 230.
- the transmission / reception unit 220 may receive one or more beam failure detection reference signals (Beam Failure Detection Reference Signal (BFD-RS)) corresponding to each of the plurality of transmission / reception points.
- BFD-RS Beam Failure Detection Reference Signal
- the control unit 210 When the radio link quality of at least a part of the set BFD-RS is less than the threshold value, the control unit 210 is used in units of one transmission / reception point or a set of transmission / reception points including a plurality of transmission / reception points. The beam failure recovery procedure may be controlled. When the radio link quality of at least a part of the set BFD-RS is less than the threshold value, the control unit 210 provides information on the candidate BFD-RS corresponding to one transmission / reception point, or a plurality of transmission / reception. Information about the candidate BFD-RS corresponding to each point may be notified.
- the control unit 210 controls the notification of information on beam fault detection from the lower layer to the upper layer, and is started based on the counter counting based on the notification of information on beam fault detection and the notification of information on beam fault detection. At least one of the timers may be set in units of transmission / reception points or units of transmission / reception points.
- the control unit 210 may notify the beam failure recovery by using a scheduling request set for each transmission / reception point or a scheduling request set for each transmission / reception point set including a plurality of transmission / reception points. ..
- the transmission / reception unit 220 When the transmission / reception unit 220 detects a beam failure for one or more transmission / reception points, the transmission / reception unit 220 includes a media access control control element (contains information regarding the transmission / reception point for detecting the beam failure, the serving cell corresponding to the transmission / reception point for which the beam failure is detected, and the like. MAC CE) may be transmitted.
- a media access control control element (contains information regarding the transmission / reception point for detecting the beam failure, the serving cell corresponding to the transmission / reception point for which the beam failure is detected, and the like. MAC CE) may be transmitted.
- the control unit 210 may detect a beam failure at each of a plurality of transmission / reception points.
- the MAC CE may be configured to include a field for the serving cell and a field for one or more transmission / reception points corresponding to the serving cell.
- the MAC CE may be configured not to include a field for a transmission / reception point corresponding to a serving cell in which beam failure is not detected.
- the MAC CE may be configured to include a field that specifies an index of a serving cell in which a beam failure is detected using a plurality of bits.
- the transmission / reception unit 220 may transmit information regarding a beam failure detected at each of a plurality of transmission / reception points by using a media access control control element (MAC CE).
- MAC CE media access control control element
- the control unit 210 may control at least one of the update of the condition applied to UL transmission and the update of the condition applied to DL reception for each transmission / reception point. ..
- the control unit 210 detects a beam failure for one transmission / reception point among a plurality of transmission / reception points corresponding to a certain cell and transmits information regarding the beam failure of one transmission / reception point using MAC CE, the control unit 210 of the DL signal. Based on the reception, at least one of the conditions applied to UL transmission and the condition applied to DL reception at one transmission / reception point may be updated.
- control unit 210 When the control unit 210 detects a beam failure for a plurality of transmission / reception points corresponding to a certain cell and transmits information regarding the beam failure of one transmission / reception point among the plurality of transmission / reception points using MAC CE, the control unit 210 of the DL signal. Based on the reception, at least one of the conditions applied to UL transmission and the condition applied to DL reception at one transmission / reception point or a specific transmission / reception point may be updated.
- each functional block is realized using one physically or logically coupled device, or two or more physically or logically separated devices can be directly or indirectly (eg, for example). , Wired, wireless, etc.) and may be realized using these plurality of devices.
- the functional block may be realized by combining the software with the one device or the plurality of devices.
- the functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and deemed. , Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc.
- a functional block (configuration unit) for functioning transmission may be referred to as a transmitting unit (transmitting unit), a transmitter (transmitter), or the like.
- the realization method is not particularly limited.
- the base station, user terminal, and the like in one embodiment of the present disclosure may function as a computer that processes the wireless communication method of the present disclosure.
- FIG. 23 is a diagram showing an example of the hardware configuration of the base station and the user terminal according to the embodiment.
- the base station 10 and the user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. ..
- the hardware configuration of the base station 10 and the user terminal 20 may be configured to include one or more of the devices shown in the figure, or may be configured not to include some of the devices.
- processor 1001 may be a plurality of processors. Further, the processing may be executed by one processor, or the processing may be executed simultaneously, sequentially, or by using other methods by two or more processors.
- the processor 1001 may be mounted by one or more chips.
- the processor 1001 For each function in the base station 10 and the user terminal 20, for example, by loading predetermined software (program) on hardware such as the processor 1001 and the memory 1002, the processor 1001 performs an operation and communicates via the communication device 1004. It is realized by controlling at least one of reading and writing of data in the memory 1002 and the storage 1003.
- predetermined software program
- the processor 1001 operates, for example, an operating system to control the entire computer.
- the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, a register, and the like.
- CPU central processing unit
- control unit 110 210
- transmission / reception unit 120 220
- the like may be realized by the processor 1001.
- the processor 1001 reads a program (program code), a software module, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these.
- a program program code
- the control unit 110 may be realized by a control program stored in the memory 1002 and operating in the processor 1001, and may be realized in the same manner for other functional blocks.
- the memory 1002 is a computer-readable recording medium, for example, at least a Read Only Memory (ROM), an Erasable Programmable ROM (EPROM), an Electrically EPROM (EEPROM), a Random Access Memory (RAM), or any other suitable storage medium. It may be composed of one.
- the memory 1002 may be referred to as a register, a cache, a main memory (main storage device), or the like.
- the memory 1002 can store a program (program code), a software module, or the like that can be executed to implement the wireless communication method according to the embodiment of the present disclosure.
- the storage 1003 is a computer-readable recording medium, and is, for example, a flexible disk, a floppy disk (registered trademark) disk, an optical magnetic disk (for example, a compact disc (Compact Disc ROM (CD-ROM), etc.), a digital versatile disk, etc.). At least one of Blu-ray® discs), removable discs, optical disc drives, smart cards, flash memory devices (eg cards, sticks, key drives), magnetic stripes, databases, servers and other suitable storage media. May be configured by.
- the storage 1003 may be referred to as an auxiliary storage device.
- the communication device 1004 is hardware (transmission / reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like.
- the communication device 1004 has, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (Frequency Division Duplex (FDD)) and time division duplex (Time Division Duplex (TDD)). May be configured to include.
- FDD Frequency Division Duplex
- TDD Time Division Duplex
- the transmission / reception unit 120 (220), the transmission / reception antenna 130 (230), and the like described above may be realized by the communication device 1004.
- the transmission / reception unit 120 (220) may be physically or logically separated by the transmission unit 120a (220a) and the reception unit 120b (220b).
- the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts an input from the outside.
- the output device 1006 is an output device (for example, a display, a speaker, a Light Emitting Diode (LED) lamp, etc.) that outputs to the outside.
- the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
- each device such as the processor 1001 and the memory 1002 is connected by the bus 1007 for communicating information.
- the bus 1007 may be configured by using a single bus, or may be configured by using a different bus for each device.
- the base station 10 and the user terminal 20 include a microprocessor, a digital signal processor (Digital Signal Processor (DSP)), an Application Specific Integrated Circuit (ASIC), a Programmable Logic Device (PLD), a Field Programmable Gate Array (FPGA), and the like. It may be configured to include hardware, and a part or all of each functional block may be realized by using the hardware. For example, processor 1001 may be implemented using at least one of these hardware.
- DSP Digital Signal Processor
- ASIC Application Specific Integrated Circuit
- PLD Programmable Logic Device
- FPGA Field Programmable Gate Array
- the terms described in the present disclosure and the terms necessary for understanding the present disclosure may be replaced with terms having the same or similar meanings.
- channels, symbols and signals may be read interchangeably.
- the signal may be a message.
- the reference signal may be abbreviated as RS, and may be referred to as a pilot, a pilot signal, or the like depending on the applied standard.
- the component carrier CC may be referred to as a cell, a frequency carrier, a carrier frequency, or the like.
- the wireless frame may be configured by one or more periods (frames) in the time domain.
- Each of the one or more periods (frames) constituting the radio frame may be referred to as a subframe.
- the subframe may be composed of one or more slots in the time domain.
- the subframe may have a fixed time length (eg, 1 ms) that does not depend on numerology.
- the numerology may be a communication parameter applied to at least one of transmission and reception of a signal or channel.
- Numerology includes, for example, subcarrier spacing (SubCarrier Spacing (SCS)), bandwidth, symbol length, cyclic prefix length, transmission time interval (Transmission Time Interval (TTI)), number of symbols per TTI, and wireless frame configuration.
- SCS subcarrier Spacing
- TTI Transmission Time Interval
- a specific filtering process performed by the transmitter / receiver in the frequency domain, a specific windowing process performed by the transmitter / receiver in the time domain, and the like may be indicated.
- the slot may be composed of one or more symbols in the time area (Orthogonal Frequency Division Multiplexing (OFDM) symbol, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbol, etc.). Further, the slot may be a time unit based on numerology.
- OFDM Orthogonal Frequency Division Multiplexing
- SC-FDMA Single Carrier Frequency Division Multiple Access
- the slot may include a plurality of mini slots.
- Each minislot may be composed of one or more symbols in the time domain. Further, the mini-slot may be referred to as a sub-slot.
- a minislot may consist of a smaller number of symbols than the slot.
- the PDSCH (or PUSCH) transmitted in time units larger than the minislot may be referred to as PDSCH (PUSCH) mapping type A.
- the PDSCH (or PUSCH) transmitted using the minislot may be referred to as PDSCH (PUSCH) mapping type B.
- the wireless frame, subframe, slot, minislot and symbol all represent the time unit when transmitting a signal.
- the radio frame, subframe, slot, minislot and symbol may use different names corresponding to each.
- the time units such as frames, subframes, slots, mini slots, and symbols in the present disclosure may be read as each other.
- one subframe may be called TTI
- a plurality of consecutive subframes may be called TTI
- one slot or one minislot may be called TTI. That is, at least one of the subframe and TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (eg, 1-13 symbols), or a period longer than 1 ms. May be.
- the unit representing TTI may be called a slot, a mini slot, or the like instead of a subframe.
- TTI refers to, for example, the minimum time unit of scheduling in wireless communication.
- the base station schedules each user terminal to allocate radio resources (frequency bandwidth that can be used in each user terminal, transmission power, etc.) in TTI units.
- the definition of TTI is not limited to this.
- TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation.
- the time interval for example, the number of symbols
- the transport block, code block, code word, etc. may be shorter than the TTI.
- one or more TTIs may be the minimum time unit for scheduling. Further, the number of slots (number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
- a TTI having a time length of 1 ms may be referred to as a normal TTI (TTI in 3GPP Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, or the like.
- a TTI shorter than a normal TTI may be referred to as a shortened TTI, a short TTI, a partial TTI (partial or fractional TTI), a shortened subframe, a short subframe, a minislot, a subslot, a slot, or the like.
- the long TTI (eg, normal TTI, subframe, etc.) may be read as a TTI having a time length of more than 1 ms
- the short TTI eg, shortened TTI, etc.
- TTI having the above TTI length may be read as TTI having the above TTI length.
- a resource block is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain.
- the number of subcarriers contained in the RB may be the same regardless of the numerology, and may be, for example, 12.
- the number of subcarriers contained in the RB may be determined based on numerology.
- the RB may include one or more symbols in the time domain, and may have a length of 1 slot, 1 mini slot, 1 subframe or 1 TTI.
- Each 1TTI, 1 subframe, etc. may be composed of one or a plurality of resource blocks.
- one or more RBs are a physical resource block (Physical RB (PRB)), a sub-carrier group (Sub-Carrier Group (SCG)), a resource element group (Resource Element Group (REG)), a PRB pair, and an RB. It may be called a pair or the like.
- PRB Physical RB
- SCG sub-carrier Group
- REG resource element group
- PRB pair an RB. It may be called a pair or the like.
- the resource block may be composed of one or a plurality of resource elements (Resource Element (RE)).
- RE Resource Element
- 1RE may be a radio resource area of 1 subcarrier and 1 symbol.
- Bandwidth Part (which may also be called partial bandwidth) represents a subset of consecutive common resource blocks (RBs) for a neurology in a carrier. May be good.
- the common RB may be specified by the index of the RB with respect to the common reference point of the carrier.
- PRBs may be defined in a BWP and numbered within that BWP.
- the BWP may include UL BWP (BWP for UL) and DL BWP (BWP for DL).
- BWP UL BWP
- BWP for DL DL BWP
- One or more BWPs may be set in one carrier for the UE.
- At least one of the configured BWPs may be active and the UE may not expect to send or receive a given signal / channel outside the active BWP.
- “cell”, “carrier” and the like in this disclosure may be read as “BWP”.
- the above-mentioned structures such as wireless frames, subframes, slots, mini-slots and symbols are merely examples.
- the number of subframes contained in a radio frame the number of slots per subframe or radioframe, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, included in the RB.
- the number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and the like can be changed in various ways.
- the information, parameters, etc. described in the present disclosure may be expressed using an absolute value, a relative value from a predetermined value, or another corresponding information. It may be represented.
- the radio resource may be indicated by a given index.
- the information, signals, etc. described in this disclosure may be represented using any of a variety of different techniques.
- data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may be represented by a combination of.
- information, signals, etc. can be output from the upper layer to the lower layer and from the lower layer to at least one of the upper layers.
- Information, signals, etc. may be input / output via a plurality of network nodes.
- Input / output information, signals, etc. may be stored in a specific location (for example, memory) or may be managed using a management table. Input / output information, signals, etc. can be overwritten, updated, or added. The output information, signals, etc. may be deleted. The input information, signals, etc. may be transmitted to other devices.
- the notification of information is not limited to the embodiment / embodiment described in the present disclosure, and may be performed by using another method.
- the notification of information in the present disclosure includes physical layer signaling (for example, downlink control information (DCI)), uplink control information (Uplink Control Information (UCI))), and higher layer signaling (for example, Radio Resource Control). (RRC) signaling, broadcast information (Master Information Block (MIB), System Information Block (SIB), etc.), Medium Access Control (MAC) signaling), other signals or combinations thereof. May be carried out by.
- DCI downlink control information
- UCI Uplink Control Information
- RRC Radio Resource Control
- MIB Master Information Block
- SIB System Information Block
- MAC Medium Access Control
- the physical layer signaling may be referred to as Layer 1 / Layer 2 (L1 / L2) control information (L1 / L2 control signal), L1 control information (L1 control signal), and the like.
- the RRC signaling may be referred to as an RRC message, and may be, for example, an RRC Connection Setup message, an RRC Connection Reconfiguration message, or the like.
- MAC signaling may be notified using, for example, a media access control element (MAC Control Element (CE)).
- CE media access control element
- the notification of predetermined information is not limited to the explicit notification, but implicitly (for example, by not notifying the predetermined information or another information). May be done (by notification of).
- the determination may be made by a value represented by 1 bit (0 or 1), or by a boolean value represented by true or false. , May be done by numerical comparison (eg, comparison with a given value).
- software, instructions, information, etc. may be transmitted and received via a transmission medium.
- a transmission medium For example, a website where software uses at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and wireless technology (infrared, microwave, etc.).
- wired technology coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.
- wireless technology infrared, microwave, etc.
- the terms “system” and “network” used in this disclosure may be used interchangeably.
- the “network” may mean a device (eg, a base station) included in the network.
- precoding In the present disclosure, “precoding”, “precoder”, “weight (precoding weight)”, “pseudo-colocation (Quasi-Co-Location (QCL))", “Transmission Configuration Indication state (TCI state)”, "space”.
- base station BS
- wireless base station fixed station
- NodeB NodeB
- eNB eNodeB
- gNB gNodeB
- Access point "Transmission point (Transmission Point (TP))
- Reception point Reception Point
- TRP Transmission / Reception Point
- Panel , "Cell”, “sector”, “cell group”, “carrier”, “component carrier” and the like
- Base stations are sometimes referred to by terms such as macrocells, small cells, femtocells, and picocells.
- the base station can accommodate one or more (eg, 3) cells.
- a base station accommodates multiple cells, the entire base station coverage area can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (Remote Radio). Communication services can also be provided by Head (RRH))).
- RRH Head
- the term "cell” or “sector” refers to part or all of the coverage area of at least one of a base station and a base station subsystem that provides communication services in this coverage.
- MS mobile station
- UE user equipment
- terminal terminal
- Mobile stations include subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless terminals, remote terminals. , Handset, user agent, mobile client, client or some other suitable term.
- At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a wireless communication device, or the like.
- At least one of the base station and the mobile station may be a device mounted on the mobile body, a mobile body itself, or the like.
- the moving body may be a vehicle (eg, car, airplane, etc.), an unmanned moving body (eg, drone, self-driving car, etc.), or a robot (manned or unmanned). ) May be.
- at least one of the base station and the mobile station includes a device that does not necessarily move during communication operation.
- at least one of the base station and the mobile station may be an Internet of Things (IoT) device such as a sensor.
- IoT Internet of Things
- the base station in the present disclosure may be read by the user terminal.
- the communication between the base station and the user terminal is replaced with the communication between a plurality of user terminals (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.).
- D2D Device-to-Device
- V2X Vehicle-to-Everything
- Each aspect / embodiment of the present disclosure may be applied to the configuration.
- the user terminal 20 may have the function of the base station 10 described above.
- words such as "up” and “down” may be read as words corresponding to communication between terminals (for example, "side”).
- the upstream channel, the downstream channel, and the like may be read as a side channel.
- the user terminal in the present disclosure may be read as a base station.
- the base station 10 may have the functions of the user terminal 20 described above.
- the operation performed by the base station may be performed by its upper node (upper node) in some cases.
- various operations performed for communication with a terminal are a base station, one or more network nodes other than the base station (for example,).
- Mobility Management Entity (MME), Serving-Gateway (S-GW), etc. can be considered, but it is not limited to these), or it is clear that it can be performed by a combination thereof.
- Each aspect / embodiment described in the present disclosure may be used alone, in combination, or may be switched and used according to the execution. Further, the order of the processing procedures, sequences, flowcharts, etc. of each aspect / embodiment described in the present disclosure may be changed as long as there is no contradiction. For example, the methods described in the present disclosure present elements of various steps using exemplary order, and are not limited to the particular order presented.
- LTE Long Term Evolution
- LTE-A LTE-Advanced
- SUPER 3G IMT-Advanced
- 4G 4th generation mobile communication system
- 5G 5th generation mobile communication system
- 6G 6th generation mobile communication system
- xG xG (xG (x is, for example, integer, fraction)
- Future Radio Access FAA
- RAT New -Radio Access Technology
- NR New Radio
- NX New radio access
- FX Future generation radio access
- GSM registered trademark
- CDMA2000 Code Division Multiple Access
- UMB Ultra Mobile Broadband
- LTE 802.11 Wi-Fi®
- LTE 802.16 WiMAX®
- LTE 802.20 Ultra-WideBand (UWB), Bluetooth®, and other suitable radios. It may be applied to a system using a communication method, a next-generation system extended based on these, and the like.
- UMB Ultra-WideBand
- references to elements using designations such as “first” and “second” as used in this disclosure does not generally limit the quantity or order of those elements. These designations can be used in the present disclosure as a convenient way to distinguish between two or more elements. Thus, references to the first and second elements do not mean that only two elements can be adopted or that the first element must somehow precede the second element.
- determining used in this disclosure may include a wide variety of actions.
- judgment (decision) means judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (deriving), investigation (investigating), search (looking up, search, inquiry) ( For example, searching in a table, database or another data structure), ascertaining, etc. may be considered to be "judgment”.
- judgment (decision) includes receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access (for example). It may be regarded as “determining” such as “accessing” (for example, accessing data in memory).
- judgment (decision) is regarded as “judgment (decision)” such as resolution, selection, selection, establishment, and comparison. May be good. That is, “judgment (decision)” may be regarded as “judgment (decision)” of some action.
- connection are any direct or indirect connections or connections between two or more elements. Means, and can include the presence of one or more intermediate elements between two elements that are “connected” or “bonded” to each other.
- the connection or connection between the elements may be physical, logical, or a combination thereof. For example, "connection” may be read as "access”.
- the radio frequency domain microwaves. It can be considered to be “connected” or “coupled” to each other using frequency, electromagnetic energy having wavelengths in the region, light (both visible and invisible) regions, and the like.
- the term "A and B are different” may mean “A and B are different from each other”.
- the term may mean that "A and B are different from C”.
- Terms such as “separate” and “combined” may be interpreted in the same way as “different”.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本開示の一態様に係る端末は、複数の送受信ポイント毎にビーム障害の検出を行う制御部と、1以上の送受信ポイントに対するビーム障害を検出した場合、前記ビーム障害を検出した送受信ポイントと、前記ビーム障害を検出した送受信ポイントに対応するサービングセルと、に関する情報を含むメディアアクセス制御制御要素(MAC CE)を送信する送信部と、を有する。
Description
本開示は、次世代移動通信システムにおける端末、無線通信方法及び基地局に関する。
Universal Mobile Telecommunications System(UMTS)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてLong Term Evolution(LTE)が仕様化された(非特許文献1)。また、LTE(Third Generation Partnership Project(3GPP) Release(Rel.)8、9)の更なる大容量、高度化などを目的として、LTE-Advanced(3GPP Rel.10-14)が仕様化された。
LTEの後継システム(例えば、5th generation mobile communication system(5G)、5G+(plus)、6th generation mobile communication system(6G)、New Radio(NR)、3GPP Rel.15以降などともいう)も検討されている。
既存のLTEシステム(LTE Rel.8-15)では、無線リンク品質のモニタリング(無線リンクモニタリング(Radio Link Monitoring(RLM)))が行われる。RLMより無線リンク障害(Radio Link Failure(RLF))が検出されると、RRC(Radio Resource Control)コネクションの再確立(re-establishment)がユーザ端末(User Equipment(UE))に要求される。
将来の無線通信システム(例えば、NR)では、ビーム障害を検出して他のビームに切り替える手順(ビーム障害回復(Beam Failure Recovery(BFR))手順、BFR、リンクリカバリ手順(Link recovery procedures)などと呼ばれてもよい)を実施することが検討されている。
Rel.17以降のNRでは、端末(UE)が複数の送受信ポイント(TRP)/UEパネルを利用して通信を行うことも想定される。この場合、複数のTRP/複数のUEパネルにおいてビーム障害検出を行うことが考えられるが、各TRP/UEパネルにおけるビーム障害検出(BFD)又はビーム障害回復(BFR)をどのように制御するかが問題となる。各TRP/UEパネルにおけるビーム障害検出又はビーム障害回復を適切に制御できないと通信スループットの低下又は通信品質の劣化が生じるおそれがある。
本開示はかかる点に鑑みてなされたものであり、複数の送受信ポイントを利用する場合であってもビーム障害検出又はビーム障害回復を適切に行うことが可能な端末、無線通信方法及び基地局を提供することを目的の一つとする。
本開示の一態様に係る端末は、複数の送受信ポイント毎にビーム障害の検出を行う制御部と、1以上の送受信ポイントに対するビーム障害を検出した場合、前記ビーム障害を検出した送受信ポイントと、前記ビーム障害を検出した送受信ポイントに対応するサービングセルと、に関する情報を含むメディアアクセス制御制御要素(MAC CE)を送信する送信部と、を有することを特徴とする。
本開示の一態様によれば、複数の送受信ポイントを利用する場合であってもビーム障害検出又はビーム障害回復を適切に行うことができる。
(ビーム障害検出)
NRでは、ビームフォーミングを利用して通信を行う。例えば、UE及び基地局(例えば、gNB(gNodeB))は、信号の送信に用いられるビーム(送信ビーム、Txビームなどともいう)、信号の受信に用いられるビーム(受信ビーム、Rxビームなどともいう)を用いてもよい。
NRでは、ビームフォーミングを利用して通信を行う。例えば、UE及び基地局(例えば、gNB(gNodeB))は、信号の送信に用いられるビーム(送信ビーム、Txビームなどともいう)、信号の受信に用いられるビーム(受信ビーム、Rxビームなどともいう)を用いてもよい。
ビームフォーミングを用いる場合、障害物による妨害の影響を受けやすくなるため、無線リンク品質が悪化することが想定される。無線リンク品質の悪化によって、無線リンク障害(Radio Link Failure(RLF))が頻繁に発生するおそれがある。RLFが発生するとセルの再接続が必要となるため、頻繁なRLFの発生は、システムスループットの劣化を招く。
NRにおいては、RLFの発生を抑制するために、特定のビームの品質が悪化する場合、他のビームへの切り替え(ビーム回復(Beam Recovery(BR))、ビーム障害回復(Beam Failure Recovery(BFR))、L1/L2(Layer 1/Layer 2)ビームリカバリなどと呼ばれてもよい)手順を実施する。なお、BFR手順は単にBFRと呼ばれてもよい。
なお、本開示におけるビーム障害(beam failure(BF))は、リンク障害(link failure)と呼ばれてもよい。
図1は、Rel.15 NRにおけるビーム回復手順の一例を示す図である。ビームの数などは一例であって、これに限られない。図1の初期状態(ステップS101)において、UEは、2つのビームを用いて送信される参照信号(Reference Signal(RS))リソースに基づく測定を実施する。
当該RSは、同期信号ブロック(Synchronization Signal Block(SSB))及びチャネル状態測定用RS(Channel State Information RS(CSI-RS))の少なくとも1つであってもよい。なお、SSBは、SS/PBCH(Physical Broadcast Channel)ブロックなどと呼ばれてもよい。
RSは、プライマリ同期信号(Primary SS(PSS))、セカンダリ同期信号(Secondary SS(SSS))、モビリティ参照信号(Mobility RS(MRS))、SSBに含まれる信号、SSB、CSI-RS、復調用参照信号(DeModulation Reference Signal(DMRS))、ビーム固有信号などの少なくとも1つ、又はこれらを拡張、変更などして構成される信号であってもよい。ステップS101において測定されるRSは、ビーム障害検出のためのRS(Beam Failure Detection RS(BFD-RS)、ビーム障害検出用RS)、又はビーム回復手順に利用するためのRS(BFR-RS)などと呼ばれてもよい。
ステップS102において、基地局からの電波が妨害されたことによって、UEはBFD-RSを検出できない(又はRSの受信品質が劣化する)。このような妨害は、例えばUE及び基地局間の障害物、フェージング、干渉などの影響によって発生し得る。
UEは、所定の条件が満たされると、ビーム障害を検出する。UEは、例えば、設定されたBFD-RS(BFD-RSリソース設定)の全てについて、BLER(Block Error Rate)が閾値未満である場合、ビーム障害の発生を検出してもよい。ビーム障害の発生が検出されると、UEの下位レイヤ(物理(PHY)レイヤ)は、上位レイヤ(MACレイヤ)に対してビーム障害インスタンスを通知(指示)してもよい。
なお、判断の基準(クライテリア)は、BLERに限られず、物理レイヤにおける参照信号受信電力(Layer 1 Reference Signal Received Power(L1-RSRP))であってもよい。また、RS測定の代わりに又はRS測定に加えて、下り制御チャネル(Physical Downlink Control Channel(PDCCH))などに基づいてビーム障害検出が実施されてもよい。BFD-RSは、UEによってモニタされるPDCCHのDMRSと擬似コロケーション(Quasi-Co-Location(QCL))であると期待されてもよい。
ここで、QCLとは、チャネルの統計的性質を示す指標である。例えば、ある信号/チャネルと他の信号/チャネルがQCLの関係である場合、これらの異なる複数の信号/チャネル間において、ドップラーシフト(doppler shift)、ドップラースプレッド(doppler spread)、平均遅延(average delay)、遅延スプレッド(delay spread)、空間パラメータ(Spatial parameter)(例えば、空間受信パラメータ(Spatial Rx Parameter))の少なくとも1つが同一である(これらの少なくとも1つに関してQCLである)と仮定できることを意味してもよい。
なお、空間受信パラメータは、UEの受信ビーム(例えば、受信アナログビーム)に対応してもよく、空間的QCLに基づいてビームが特定されてもよい。本開示におけるQCL(又はQCLの少なくとも1つの要素)は、sQCL(spatial QCL)で読み替えられてもよい。
BFD-RSに関する情報(例えば、RSのインデックス、リソース、数、ポート数、プリコーディングなど)、ビーム障害検出(BFD)に関する情報(例えば、上述の閾値)などは、上位レイヤシグナリングなどを用いてUEに設定(通知)されてもよい。BFD-RSに関する情報は、BFR用リソースに関する情報などと呼ばれてもよい。
本開示において、上位レイヤシグナリングは、例えば、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング、ブロードキャスト情報などのいずれか、又はこれらの組み合わせであってもよい。
MACシグナリングは、例えば、メディアアクセス制御制御要素(MAC CE(Control Element))、MAC PDU(Protocol Data Unit)などを用いてもよい。ブロードキャスト情報は、例えば、マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))、最低限のシステム情報(Remaining Minimum System Information(RMSI))、その他のシステム情報(Other System Information(OSI))などであってもよい。
UEの上位レイヤ(例えば、MACレイヤ)は、UEのPHYレイヤからビーム障害インスタンス通知を受信した場合に、所定のタイマ(ビーム障害検出タイマと呼ばれてもよい)を開始してもよい。UEのMACレイヤは、当該タイマが満了するまでにビーム障害インスタンス通知を一定回数(例えば、RRCで設定されるbeamFailureInstanceMaxCount)以上受信したら、BFRをトリガ(例えば、後述のランダムアクセス手順のいずれかを開始)してもよい。
基地局は、UEからの通知がない場合、又はUEから所定の信号(ステップS104におけるビーム回復要求)を受信した場合に、当該UEがビーム障害を検出したと判断してもよい。
ステップS103において、UEはビーム回復のため、新たに通信に用いるための新候補ビーム(new candidate beam)のサーチを開始する。UEは、所定のRSを測定することによって、当該RSに対応する新候補ビームを選択してもよい。ステップS103において測定されるRSは、新候補RS、新候補ビーム識別のためのRS(New Candidate Beam Identification RS(NCBI-RS))、CBI-RS、CB-RS(Candidate Beam RS)などと呼ばれてもよい。NCBI-RSは、BFD-RSと同じであってもよいし、異なってもよい。なお、新候補ビームは、単に候補ビーム又は候補RSと呼ばれてもよい。
UEは、所定の条件を満たすRSに対応するビームを、新候補ビームとして決定してもよい。UEは、例えば、設定されたNCBI-RSのうち、L1-RSRPが閾値を超えるRSに基づいて、新候補ビームを決定してもよい。なお、判断の基準(クライテリア)は、L1-RSRPに限られない。SSBに関するL1-RSRPは、SS-RSRPと呼ばれてもよい。CSI-RSに関するL1-RSRPは、CSI-RSRPと呼ばれてもよい。
NCBI-RSに関する情報(例えば、RSのリソース、数、ポート数、プリコーディングなど)、新候補ビーム識別(NCBI)に関する情報(例えば、上述の閾値)などは、上位レイヤシグナリングなどを用いてUEに設定(通知)されてもよい。新候補RS(又は、NCBI-RS)に関する情報は、BFD-RSに関する情報に基づいて取得されてもよい。NCBI-RSに関する情報は、NBCI用リソースに関する情報などと呼ばれてもよい。
なお、BFD-RS、NCBI-RSなどは、無線リンクモニタリング参照信号(Radio Link Monitoring RS(RLM-RS))で読み替えられてもよい。
ステップS104において、新候補ビームを特定したUEは、ビーム回復要求(Beam Failure Recovery reQuest(BFRQ))を送信する。ビーム回復要求は、ビーム回復要求信号、ビーム障害回復要求信号などと呼ばれてもよい。
BFRQは、例えば、上り制御チャネル(Physical Uplink Control Channel(PUCCH))、ランダムアクセスチャネル(Physical Random Access Channel(PRACH))、上り共有チャネル(Physical Uplink Shared Channel(PUSCH))、コンフィギュアド(設定)グラント(configured grant(CG))PUSCHの少なくとも1つを用いて送信されてもよい。
BFRQは、ステップS103において特定された新候補ビーム/新候補RSの情報を含んでもよい。BFRQのためのリソースが、当該新候補ビームに関連付けられてもよい。ビームの情報は、ビームインデックス(Beam Index(BI))、所定の参照信号のポートインデックス、RSインデックス、リソースインデックス(例えば、CSI-RSリソース指標(CSI-RS Resource Indicator(CRI))、SSBリソース指標(SSBRI))などを用いて通知されてもよい。
Rel.15 NRでは、衝突型ランダムアクセス(Random Access(RA))手順に基づくBFRであるCB-BFR(Contention-Based BFR)及び非衝突型ランダムアクセス手順に基づくBFRであるCF-BFR(Contention-Free BFR)が検討されている。CB-BFR及びCF-BFRでは、UEは、PRACHリソースを用いてプリアンブル(RAプリアンブル、ランダムアクセスチャネル(Physical Random Access Channel(PRACH))、RACHプリアンブルなどともいう)をBFRQとして送信してもよい。
CB-BFRでは、UEは、1つ又は複数のプリアンブルからランダムに選択したプリアンブルを送信してもよい。一方、CF-BFRでは、UEは、基地局からUE固有に割り当てられたプリアンブルを送信してもよい。CB-BFRでは、基地局は、複数UEに対して同一のプリアンブルを割り当ててもよい。CF-BFRでは、基地局は、UE個別にプリアンブルを割り当ててもよい。
なお、CB-BFR及びCF-BFRは、それぞれCB PRACHベースBFR(contention-based PRACH-based BFR(CBRA-BFR))及びCF PRACHベースBFR(contention-free PRACH-based BFR(CFRA-BFR))と呼ばれてもよい。CBRA-BFRは、BFR用CBRAと呼ばれてもよい。CFRA-BFRは、BFR用CFRAと呼ばれてもよい。
CB-BFR、CF-BFRのいずれであっても、PRACHリソース(RAプリアンブル)に関する情報は、例えば、上位レイヤシグナリング(RRCシグナリングなど)によって通知されてもよい。例えば、当該情報は、検出したDL-RS(ビーム)とPRACHリソースとの対応関係を示す情報を含んでもよく、DL-RSごとに異なるPRACHリソースが関連付けられてもよい。
ステップS105において、BFRQを検出した基地局は、UEからのBFRQに対する応答信号(gNBレスポンスなどと呼ばれてもよい)を送信する。当該応答信号には、1つ又は複数のビームについての再構成情報(例えば、DL-RSリソースの構成情報)が含まれてもよい。
当該応答信号は、例えばPDCCHのUE共通サーチスペースにおいて送信されてもよい。当該応答信号は、UEの識別子(例えば、セル-無線RNTI(Cell-Radio RNTI(C-RNTI)))によって巡回冗長検査(Cyclic Redundancy Check(CRC))スクランブルされたPDCCH(DCI)を用いて通知されてもよい。UEは、ビーム再構成情報に基づいて、使用する送信ビーム及び受信ビームの少なくとも一方を判断してもよい。
UEは、当該応答信号を、BFR用の制御リソースセット(COntrol REsource SET(CORESET))及びBFR用のサーチスペースセットの少なくとも一方に基づいてモニタしてもよい。
CB-BFRに関しては、UEが自身に関するC-RNTIに対応するPDCCHを受信した場合に、衝突解決(contention resolution)が成功したと判断されてもよい。
ステップS105の処理に関して、BFRQに対する基地局(例えば、gNB)からの応答(レスポンス)をUEがモニタするための期間が設定されてもよい。当該期間は、例えばgNB応答ウィンドウ、gNBウィンドウ、ビーム回復要求応答ウィンドウなどと呼ばれてもよい。UEは、当該ウィンドウ期間内において検出されるgNB応答がない場合、BFRQの再送を行ってもよい。
ステップS106において、UEは、基地局に対してビーム再構成が完了した旨を示すメッセージを送信してもよい。当該メッセージは、例えば、PUCCHによって送信されてもよいし、PUSCHによって送信されてもよい。
ビーム回復成功(BR success)は、例えばステップS106まで到達した場合を表してもよい。一方で、ビーム回復失敗(BR failure)は、例えばBFRQ送信が所定の回数に達した、又はビーム障害回復タイマ(Beam-failure-recovery-Timer)が満了したことに該当してもよい。
Rel.15では、SpCell(PCell/PSCell)で検出されたビーム障害に対するビーム回復手順(例えば、BFRQの通知)を、ランダムアクセス手順を利用して行うことがサポートされている。一方で、Rel.16では、SCellで検出されたビーム障害に対するビーム回復手順(例えば、BFRQの通知)を、BFR用のPUCCH(例えば、スケジューリングリクエスト(SR))送信と、BFR用のMAC CE(例えば、UL-SCH)送信の少なくとも一つを利用して行うことがサポートされる。
例えば、UEは、MAC CEベースの2ステップを利用して、ビーム障害に関する情報を送信してもよい。ビーム障害に関する情報は、ビーム障害を検出したセルに関する情報、新候補ビーム(又は、新候補RSインデックス)に関する情報が含まれていてもよい。
[ステップ1]
BFが検出された場合、UEから、PCell/PSCellに対して、PUCCH-BFR(スケジューリング要求(SR))が送信されてもよい。次いで、PCell/PSCellから、UEに対して、下記ステップ2のためのULグラント(DCI)が送信されてもよい。ビーム障害が検出された場合に、新候補ビームに関する情報を送信するためのMAC CE(又は、UL-SCH)が存在する場合には、ステップ1(例えば、PUCCH送信)を省略して、ステップ2(例えば、MAC CE送信)を行ってもよい。
BFが検出された場合、UEから、PCell/PSCellに対して、PUCCH-BFR(スケジューリング要求(SR))が送信されてもよい。次いで、PCell/PSCellから、UEに対して、下記ステップ2のためのULグラント(DCI)が送信されてもよい。ビーム障害が検出された場合に、新候補ビームに関する情報を送信するためのMAC CE(又は、UL-SCH)が存在する場合には、ステップ1(例えば、PUCCH送信)を省略して、ステップ2(例えば、MAC CE送信)を行ってもよい。
[ステップ2]
次いで、UEは、ビーム障害が検出された(失敗した)セルに関する情報(例えば、セルインデックス)及び新候補ビームに関する情報を、MAC CEを用いて、上りリンクチャネル(例えば、PUSCH)を介して、基地局(PCell/PSCell)に送信してもよい。その後、BFR手順を経て、基地局からの応答信号を受信してから所定期間(例えば、28シンボル)後に、PDCCH/PUCCH/PDSCH/PUSCHのQCLが、新たなビームに更新されてもよい。
次いで、UEは、ビーム障害が検出された(失敗した)セルに関する情報(例えば、セルインデックス)及び新候補ビームに関する情報を、MAC CEを用いて、上りリンクチャネル(例えば、PUSCH)を介して、基地局(PCell/PSCell)に送信してもよい。その後、BFR手順を経て、基地局からの応答信号を受信してから所定期間(例えば、28シンボル)後に、PDCCH/PUCCH/PDSCH/PUSCHのQCLが、新たなビームに更新されてもよい。
なお、これらのステップの番号は説明のための番号に過ぎず、複数のステップがまとめられてもよいし、順番が入れ替わってもよい。また、BFRを実施するか否かは、上位レイヤシグナリングを用いてUEに設定されてもよい。
ところで、将来の無線通信システム(例えば、Rel.17以降)では、複数のパネル(マルチパネル)を有するUEのビーム管理、又は複数の送受信ポイント(マルチTransmission/Reception Point(TRP))を利用したビーム管理の拡張が検討されている。
このように、端末(UE)が複数の送受信ポイント(TRP)/UEパネルを利用して通信を行う場合、複数のTRP/複数のUEパネル毎にビーム障害検出を行うことが考えられる。しかしながら、各TRP/UEパネルにおけるビーム障害検出(BFD)又はビーム障害回復(BFR)手順をどのように制御するかについて検討が十分でない。各TRP/UEパネルにおけるビーム障害回復手順(又は、無線リンク回復手順)を適切に制御できないと通信スループットの低下又は通信品質の劣化が生じるおそれがある。
本発明者らは、1以上のTRP/パネル単位でビーム障害回復手順(ビーム障害検出/ビーム障害回復要求/ビーム障害回復に基づくUE動作)が適用される可能性に着目し、TRP単位/パネル単位でビーム障害回復手順を適切に制御する方法を検討し、本実施の形態を着想した。
以下、本開示に係る実施形態について、図面を参照して詳細に説明する。各実施の態様は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。
本開示において、UEは、複数のパネルを用いて、TRPとの送受信を行うUEであってもよい。各パネルは、それぞれ別々のTRPに対応してもよいし、1つのパネルが複数のTRPに対応してもよいし、複数のパネルが1つのTRPに対応してもよい。
本開示において、UEのパネル(又はパネルインデックス)は、特定のグループに対応してもよい。この場合、UEは、各グループのビーム/RSが、当該UEの各パネルにおいて測定されると想定してもよい。UEは、複数のグループのビームを、(異なるパネルを用いて)同時に受信すると想定してもよい。
本開示において、TRPは、TRP(又は基地局)のパネル、RSグループ、アンテナポートグループ、空間関係グループ、QCLグループ、TCI状態、TCI状態グループ、CORESETグループ、CORESETプールなどと互いに読み替えられてもよい。また、TRPインデックスは、RSグループインデックス、アンテナポートグループインデックス、QCLグループインデックス、TCI状態インデックス、TCI状態グループインデックス、CORESETグループインデックス、CORESETプールインデックスなどと互いに読み替えられてもよい。
本開示において、シングルDCIが適用される場合、第nのTRPは(nは任意の整数(例えば、1又は2))、第nのTCI状態、第nの符号分割多重(Code Division Multiplexing(CDM))グループに対応してもよい。
本開示において、複数(Multiple)DCIが適用される場合、第1のTRPは、CORESETPoolIndexなしのCORESET、または、CORESETPoolIndex=0のCORESET、に対応してもよい。第2のTRPは、CORESETPoolIndex=1のCORESETに対応してもよい。
本開示において、UEのパネルは、RSグループ、アンテナポートグループ、空間関係グループ、QCLグループ、TCI状態グループ、CORESETグループなどと互いに読み替えられてもよい。
本開示において、パネルは、SSB/CSI-RSグループのグループインデックスに関連付けられていてもよい。また、本開示において、パネルは、TRPに関連付けられていてもよい。また、本開示において、複数のパネルは、グループビームベース報告のグループインデックスに関連付けられていてもよい。また、本開示において、パネルは、グループビームベース報告のためのSSB/CSI-RSグループのグループインデックスに関連付けられていてもよい。
本開示において、サービングセル/セルは、PCell、PSCell、又はSCellに読み替えられてもよい。以下の説明では、サービングセルに対して2つのTRPが対応する場合を例に挙げるが、サービングセルに対して3以上のTRPが対応してもよい。
本開示において、ビーム障害が検出されたBFD RS、失敗した(failed)BFD RS、ビーム障害が検出されたTRP、失敗した(failed)TRP、ビーム障害を検出したUEパネル、失敗した(failed)UEパネル、は互いに読み替えられてもよい。
本開示において、A/Bは、A及びBの少なくとも一方を意味してもよい。本開示において、A/B/は、A、B及びCの少なくとも1つを意味してもよい。
(ビーム障害検出/新候補ビームの通知制御)
<第1の実施形態>
第1の実施形態においては、UEが、ビーム障害を検出した場合に当該検出したビーム障害(例えば、BFD)に関する通知をTRP単位、又は複数のTRPを含むTRPセット単位で行う場合について説明する。
<第1の実施形態>
第1の実施形態においては、UEが、ビーム障害を検出した場合に当該検出したビーム障害(例えば、BFD)に関する通知をTRP単位、又は複数のTRPを含むTRPセット単位で行う場合について説明する。
BFDに関する通知は、UEにおける物理レイヤ(physical layer)から上位レイヤ(higher layers)に行われる場合を指してもよいし、UEからネットワーク(例えば、基地局)に行われる場合を指してもよい。物理レイヤは、下位レイヤと読み替えられてもよい。BFDに関する通知は、ビーム障害を検出した旨の通知、又は新候補ビームに関する情報(例えば、RSインデックスに関する情報、リソース構成/リソース設定に関する情報)の通知であってもよい。
UEに対して、ビーム障害検出に利用する1又は複数の参照信号のセットが設定されてもよい。ビーム障害検出に利用する参照信号のセットは、RSセット、BFD-RSセット、BFR-RSセット、セットq0と呼ばれてもよい。RSセットは、少なくとも1以上のRS、又はRSのリソース設定(resource configuration)が含まれていればよい。RSセットは、単にRSと読み替えられてもよい。
1又は複数(以下、1以上とも記す)のRSセットは、TRP毎に別々に設定されてもよい。この場合、各TRPに対して、それぞれ別々のRS/RSセットが関連付けられてもよい。つまり、TRP固有のRS(TRP-specific BFR-RS/BFD-RS)が設定/定義されてもよい。あるいは、複数のTRPに共通のRS/RSセットが設定/定義されてもよい。
UEは、設定されたRSセット(又は、セットq0)に含まれる全てのRSが所定閾値(threshold)未満となる場合、物理レイヤから上位レイヤに対して、ビーム障害検出(BFD)に関する通知を行ってもよい。BFDに関する通知は、所定周期で行われてもよい。なお、UEは、全てのRSでなく、一部のRSが所定閾値未満となる場合にBFDに関する通知を行ってもよい。
UEは、一部のTRPに対応するRSセットに含まれるRS(全てのRS又は一部のRS)が所定の閾値未満となる場合に、物理レイヤから上位レイヤに対して、BFDの通知を行ってもよい。例えば、あるサービングセルに2つのTRP#0、TRP#1が設定され、TRP#0にRSセット#0が設定され、TRP#1にRSセット#1が設定される場合を想定する。
UEは、一方のTRP(例えば、TRP#0)に対応するRSセットに含まれるRSのみが所定閾値未満となる場合、BFDの通知を行ってもよい。この場合、UEは、BFDを検出したTRP(例えば、TRP#0)に関する情報を通知してもよい(図2参照)。本開示において、TRPに関する情報は、TRPインデックス(TRP-ID)、参照信号グループインデックス(RS group-ID)、RSセットインデックス(RS set-ID)、及び制御リソースセットプールインデックス(CORESETPoolindex)の少なくとも一つであってもよい。これにより、ビーム障害を検出した(又は、ビーム障害が発生した)TRPの情報を上位レイヤ側で把握することができる。
あるいは、UEは、各TRP(又は、全てのTRP)にそれぞれ対応するRSセットに含まれるRS(全てのRS又は一部のRS)が所定閾値未満となる場合に、物理レイヤから上位レイヤに対して、BFDの通知を行ってもよい。例えば、あるセルに2つのTRP#0、TRP#1が設定され、TRP#0に対してRSセット#0が設定され、TRP#1に対してRSセット#1が設定される場合を想定する。
UEは、TRP#0に対応するRSセット#0に含まれるRSと、TRP#1に対応するRSセット#1に含まれるRSが所定閾値未満となる場合、BFDの通知を行ってもよい(図3参照)。TRP#0のBFDの通知と、TRP#1のBFDの通知は、別々に行われてもよいし、同時(例えば、1つの通知)で行われてもよい。
この場合、UEは、BFDに関する情報に、TRPに関する情報(例えば、TRPインデックス)は含めなくてよい。あるいは、UEは、BFDに関する情報(1つの通知)に、複数のTRP(例えば、TRP#0とTRP#1)に関する情報を含めてもよい。あるいは、UEは、BFDに関する情報に、特定の情報(又は、特定の値)を含めてもよい(図3参照)。特定の値は、複数のTRP(例えば、TRP#0とTRP#1)のBFDを示してもよい。
なお、TPR#0とTRP#1に共通のRSセットが設定される場合、当該共通のRSセットに含まれるRSが所定の閾値未満となる場合、BFDの通知を行ってもよい。
BFDに関する情報が物理レイヤから上位レイヤに通知された後、上位レイヤは物理レイヤに対して、受信電力(例えば、RSRP)が所定閾値以上となるRSの存在有無、及び当該RSに関する情報(例えば、RSインデックス/RS設定インデックス/RSRP)の少なくとも一つを通知するように要求してもよい。
RSに関する情報は、新候補ビームに対応する候補RSであってもよく、当該RSは、所定のRSセット(又は、セットq1)に含まれるRSから選択されてもよい。所定のRSセット(又は、当該RSセットに含まれるRS)は、ネットワークからUEに上位レイヤシグナリング等を利用して通知/設定されてもよい。
UEは、上位レイヤからの要求があった場合、新候補ビームとして利用できる候補RS(candidate RS)が存在するか否かを上位レイヤに通知する。また、UEは、当該要求に応じて、物理レイヤから上位レイヤに対して、新候補RS、及び所定閾値以上となるRSRP(例えば、L1-RSRP)の少なくとも一つに関する情報を通知してもよい。
当該要求に基づいて下位レイヤから上位レイヤへ通知する内容は以下のオプション1-1及びオプション1-2の少なくとも一つに基づいて決定されてもよい。
≪オプション1-1≫
UEが、複数のTRPのうち一部(例えば、1つ)のTRPに対するビーム障害を検出し、下位レイヤから上位レイヤに対して当該一部のTRPに関するBFDを通知する場合を想定する(図2参照)。当該BFDの通知に基づいて、上位レイヤからリクエストがあった場合、UEは、当該TRPに対応するRSセット(又は、q1セット)に受信電力が所定閾値以上となるRSが存在するか否か、存在する場合には当該RSに関する情報を上位レイヤに対して通知してもよい。
UEが、複数のTRPのうち一部(例えば、1つ)のTRPに対するビーム障害を検出し、下位レイヤから上位レイヤに対して当該一部のTRPに関するBFDを通知する場合を想定する(図2参照)。当該BFDの通知に基づいて、上位レイヤからリクエストがあった場合、UEは、当該TRPに対応するRSセット(又は、q1セット)に受信電力が所定閾値以上となるRSが存在するか否か、存在する場合には当該RSに関する情報を上位レイヤに対して通知してもよい。
図2では、TRP#0のBFDを検出し、TRP#1のBFDを検出しない場合を示している。上位レイヤに通知する情報は、Rel.15/Rel.16のBFR手順で通知される情報と同じであってもよい。上位レイヤは、下位レイヤから通知される情報に基づいて、ビーム障害が発生したTRPに対する候補ビーム(又は、候補RS)を判断することができる。
UEが、複数のTRP(例えば、2つ)のTRPに対するビーム障害を検出し、下位レイヤから上位レイヤに対して当該複数のTRPに対するBFDを通知する場合を想定する(図3参照)。当該BFDの通知に基づいて、上位レイヤからリクエストがあった場合、UEは、各TRPにそれぞれ対応する新候補ビーム/候補RSに関する情報(例えば、2セットの候補ビーム情報)を上位レイヤに対して通知してもよい(オプション1-1a)。
例えば、UEは、各TRPにそれぞれ対応するRSセット(又は、q1セット)に受信電力が所定閾値以上となるRSが存在するか否か、存在する場合には各TRPにそれぞれ対応するRSに関する情報を上位レイヤに対してそれぞれ通知してもよい。UEは、2セットの候補ビーム情報(例えば、RSインデックス/RSRP等)を通知する場合、TRPインデックスに基づいて通知する情報の順序を決定してもよい。例えば、通知情報において、インデックスが小さいTRPと当該TRPに対応する受信電力の情報を最初に配置し、その後にインデックスが小さいTRPと当該TRPに対応する受信電力の情報を配置してもよい。
あるいは、UEは、複数のTRP(例えば、2つのTRP)に対して、1つ(又は、共通/1セット)の新候補ビーム(又は、候補RS)に関する情報を上位レイヤに通知してもよい(オプション1-1b)。当該1つ(又は、1セット)の新候補ビームは、特定のTRPに対応する新候補ビームであってもよい。特定のTRPは、インデックスが最小(又は、最大)のTRPであってもよい。
オプション1-1bは、適用されるセルが限定(例えば、PCell/PSCellに限定)されてもよいし、いずれのセルに適用されてもよい。
≪オプション1-2≫
上位レイヤからの要求内容にTRPに関する情報が含まれていてもよい。つまり、上位レイヤは、所定のTRPに対する新候補ビーム(又は、候補RS)を通知するように物理レイヤに指示してもよい。上位レイヤは、1つのTRPに対する新候補ビームの通知を要求してもよいし、複数(例えば、2つ)のTRPに対する新候補ビームの通知を要求してもよい。
上位レイヤからの要求内容にTRPに関する情報が含まれていてもよい。つまり、上位レイヤは、所定のTRPに対する新候補ビーム(又は、候補RS)を通知するように物理レイヤに指示してもよい。上位レイヤは、1つのTRPに対する新候補ビームの通知を要求してもよいし、複数(例えば、2つ)のTRPに対する新候補ビームの通知を要求してもよい。
UEは、要求されたTRPに対するビーム障害を検出している場合、要求されたTRPのみの候補ビームに関する情報を下位レイヤから上位レイヤに対して提供してもよい。これにより、下位レイヤから上位レイヤへ通知する情報量の増加を抑制することができる。
このように、ビーム障害検出の通知/報告、及び新候補ビームに関する情報の通知/報告をTRP単位で制御することにより、TRP単位でBFR手順を柔軟に制御することが可能となる。
<第2の実施形態>
第2の実施形態においては、UEが、ビーム障害を検出した場合に当該検出したビーム障害に対する回復要求の送信(又は、回復要求のトリガ)をTRP単位、又は複数のTRPを含むTRPセット単位で行う場合について説明する。
第2の実施形態においては、UEが、ビーム障害を検出した場合に当該検出したビーム障害に対する回復要求の送信(又は、回復要求のトリガ)をTRP単位、又は複数のTRPを含むTRPセット単位で行う場合について説明する。
ビーム障害検出(BFD)動作において、UE(又は、MACエンティティ)は、ビーム障害インスタンス(例えば、beam failure instance)の通知をカウントする所定カウンタ(例えば、BFI_COUNTER)と、所定タイマ(例えば、beamFailureDetectionTimer)を利用して、ビーム障害回復要求(例えば、BFR)のトリガを制御してもよい。
UEは、あるセルについて、下位レイヤからビーム障害インスタンスの通知を受信した場合、所定タイマを開始(又は、リスタート)し、所定カウンタを増加(例えば、1だけインクリメント)してもよい。所定カウンタが最大カウント(例えば、beamFailureInstanceMaxCount)以上となった場合、UEは、当該セルに対するビーム障害回復動作を行ってもよい。当該セルがSCellである場合、UEは、当該SCellに対するBFRをトリガしてもよい。それ以外の場合(例えば、当該セルがSpCellの場合)、UEは、SpCellにおいてランダムアクセス手順を開始してもよい。
所定タイマが満了した場合、所定タイマ/最大カウント/BFDに利用される参照信号が再設定された場合、所定カウンタが0に設定されてもよい。
所定タイマ(例えば、beamFailureDetectionTimer)及び所定カウンタ(例えば、BFI_COUNTER)の少なくとも一つは、TRP単位、又は複数のTRPを含むTRPセット単位で設定/定義されてもよい。つまり、1以上のBFR-RSのセットが設定されるサービングセルにおいて、TRP固有の所定カウンタ/所定タイマが適用されてもよい。
例えば、UEは、所定サービングセルの各TRPにおいて、それぞれ所定カウンタ/所定タイマを別々に適用してもよい。TRP#0に対してカウンタ#0が設定/定義され、TRP#1に対してカウンタ#1が設定/定義されてもよい。また、TRP#0に対してタイマ#0が設定/定義され、TRP#1に対してタイマ#1が設定/定義されてもよい。最大カウント(例えば、beamFailureInstanceMaxCount)は、TRP毎に別々(TRP固有)に設定されてもよいし、複数のTRPに対して共通(TRP共通)に設定されてもよい。
UEは、所定カウンタ#0と所定カウンタ#1のいずれか一方が最大カウント以上となった場合、サービングセルに対するBFRをトリガしてもよい。つまり、TRP#0に対応する所定カウンタ#0とTRP#1に対応する所定カウンタ#1の両方が最大カウント以上とならなくてもTRP#0とTRP#1が含まれるセルのBFR(例えば、1つのTRPのBFR)をトリガしてもよい(図4のケース1/ケース2参照)。
この場合、SpCell(PCell/PSCell)であっても、当該セルに含まれる1つのTRPのみにビーム障害が検出された場合に、ランダムアクセス手順ではなく、MAC CEベースの2ステップBFR(BFR MAC CE)がトリガされてもよい。BFR用MAC CEは、既存システム(例えば、Rel.16)から拡張された構成(例えば、2-step with enhanced BFR MAC CE)であってもよい。拡張されたBFR用MAC CEは、TRPに関する情報と、サービングセルのTRP毎の新候補ビーム(又は、新候補RS)に関する情報を含んでいてもよい。
UEは、所定カウンタ#0と所定カウンタ#1の両方が最大カウント以上となった場合、セル種別に応じてビーム障害回復手順を制御してもよい(図4のケース3/ケース4参照)。
例えば、セルがSCellである場合、MAC CEベースの2ステップBFR(BFR MAC CE)がトリガされてもよい(図4のケース3)。この場合、当該SCellに対するBFRをトリガする構成(オプション2-1)としてもよいし、当該SCellの各TRPに対するBFRをそれぞれトリガする構成(オプション2-2)としてもよい。オプション2-1では、セル又は特定TRPに対応する1つの新候補RSに関する情報が通知されてもよい。オプション2-2では、2つのTRPに対応する2つの新候補RSに関する情報が通知されてもよい。
オプション2-1において、当該セルに対するビーム障害回復(beam failure recovery)が成功して完了した場合、2つのTRPに対する2つの所定カウンタが0に設定され、2つのTRPに対する2つの所定タイマが停止されてもよい。
オプション2-2において、当該TRPに対するビーム障害回復(beam failure recovery)が成功して完了した場合、各TRPにそれぞれ対する所定カウンタが0に設定され、当該各TRPに対する2つの所定タイマが停止されてもよい。
それ以外の場合(例えば、セルがSpCellの場合)、当該SpCellにおいてランダムアクセス手順を開始してもよい(図4のケース4参照)。
上位レイヤから1つの候補RS(又は、候補ビーム)が得られる場合、UEは、BFR用のRACHを適用してもよい。上位レイヤから複数(例えば、2つ)の候補RSが得られる場合、UEは、1つの候補RSを選択してBFR用のRACHを適用してもよい。
複数の候補RSから1つの候補RSを選択する方法は、UEインプリ(UE implementation)によりUEが自律的に選択してもよいし、TRPのインデックスに基づいて選択してもよいし、候補RSのインデックスに基づいて選択してもよい。例えば、インデックスが最小(又は、最大)のTRPに対応する候補RSが選択されてもよい。あるいは、RS/RSリソースのインデックスが最小(又は、最大)の候補RSが選択されてもよい。
あるいは、所定カウンタ#0と所定カウンタ#1の両方が最大カウント以上となった場合(又は、複数TRPでBFRが生じた場合)においても、セル種別に関わらずBFR用MAC CEを含む2ステップのBFR手順を行ってもよい。つまり、少なくとも一つのTRPについてビーム障害が検出された場合(例えば、少なくとも一つのTRPに対応するカウンタが最大カウント以上となった場合)、MAC CEベースの2ステップBFR(BFR MAC CE)がトリガされてもよい(図5参照)。
このように、ビーム回復手順における所定タイマ/所定カウンタをTRP単位で制御することにより、TRP単位でBFR手順を柔軟に制御することが可能となる。
<第3の実施形態>
第3の実施形態においては、1又は複数のTRPに対するBFRがトリガされた場合のBFR手順(例えば、BFR用MAC CEに基づく拡張された2ステップ手順)について説明する。
第3の実施形態においては、1又は複数のTRPに対するBFRがトリガされた場合のBFR手順(例えば、BFR用MAC CEに基づく拡張された2ステップ手順)について説明する。
[2ステップBFR]
少なくとも一つのBFRがトリガされた場合、BFR MAC CE(又は、Truncated BFR MAC CE)を収容できるUL-SCHが利用できる場合、UEは、BFR用MAC CEを送信してもよい。それ以外の場合(例えば、BFR MAC CEの送信に利用できるUL-SCHがない場合)、UEは、SCell用のBFRに対してSRをトリガ(又は、送信)してもよい。
少なくとも一つのBFRがトリガされた場合、BFR MAC CE(又は、Truncated BFR MAC CE)を収容できるUL-SCHが利用できる場合、UEは、BFR用MAC CEを送信してもよい。それ以外の場合(例えば、BFR MAC CEの送信に利用できるUL-SCHがない場合)、UEは、SCell用のBFRに対してSRをトリガ(又は、送信)してもよい。
≪ケース3A≫
例えば、サービングセルの1以上のTRPに対する1つのBFRがトリガされる場合(又は、サービングセルにおいて1つのTRPのBFRがトリガされる場合)を想定する。BFR MAC CE(又は、Truncated BFR MAC CE)を収容(accommodate)できるUL-SCHが利用できる場合、UEは、BFR用MAC CEを送信してもよい。それ以外の場合(例えば、BFR MAC CEの送信に利用できるUL-SCHがない場合)、UEは、SCell用のBFRに対してSRをトリガ(又は、送信)してもよい。
例えば、サービングセルの1以上のTRPに対する1つのBFRがトリガされる場合(又は、サービングセルにおいて1つのTRPのBFRがトリガされる場合)を想定する。BFR MAC CE(又は、Truncated BFR MAC CE)を収容(accommodate)できるUL-SCHが利用できる場合、UEは、BFR用MAC CEを送信してもよい。それ以外の場合(例えば、BFR MAC CEの送信に利用できるUL-SCHがない場合)、UEは、SCell用のBFRに対してSRをトリガ(又は、送信)してもよい。
≪ケース3B≫
例えば、サービングセルの複数(例えば、2つ)のTRPに対する複数のBFRがトリガされる場合(又は、サービングセルにおいて2つのTRPのBFRがそれぞれトリガされる場合)を想定する。BFR MAC CE(又は、Truncated BFR MAC CE)を収容できるUL-SCHが利用できる場合、UEは、BFR用MAC CEを送信してもよい。それ以外の場合(例えば、BFR MAC CEの送信に利用できるUL-SCHがない場合)、UEは、SCell用のBFRに対してSRをトリガ(又は、送信)してもよい。
例えば、サービングセルの複数(例えば、2つ)のTRPに対する複数のBFRがトリガされる場合(又は、サービングセルにおいて2つのTRPのBFRがそれぞれトリガされる場合)を想定する。BFR MAC CE(又は、Truncated BFR MAC CE)を収容できるUL-SCHが利用できる場合、UEは、BFR用MAC CEを送信してもよい。それ以外の場合(例えば、BFR MAC CEの送信に利用できるUL-SCHがない場合)、UEは、SCell用のBFRに対してSRをトリガ(又は、送信)してもよい。
ケース3A/ケース3Bにおいて、BFR MAC CEに、サービングセルの1つのTRPのビーム障害検出に関する情報(例えば、サービングセルにおいてビーム障害が検出された1つのTRPに関する情報)が含まれる場合、UEは、下記の動作3-1及び動作3-2の少なくとも一つを適用してもよい。
例えば、UEは、サービングセル(又は、複数のTRP)に対してトリガされた全てのBFRをキャンセルしてもよい(動作3-1)。動作3-1は、SpCell(例えば、PCell/PSCell)にのみ適用してもよい。
あるいは、UEは、所定のTRP(例えば、ビーム障害を検出したTRP)に対してトリガされた全てのBFRをキャンセルしてもよい(動作3-2)。動作3-2は、SCellにのみ適用してもよい。
BFR MAC CEに、サービングセルの複数(例えば、2つ)のTRPのビーム障害検出に関する情報(例えば、サービングセルにおいてビーム障害が検出された2つのTRPに関する情報)が含まれる場合、UEは、上記動作3-1を適用してもよい。
ケース1とケース2において、SRトリガ(又は、PUCCHを利用したSR送信)に利用するリソースは別々に設定されてもよい。
BFR用のSR(又は、PUCCH送信)は、マルチTPR設定(例えば、multi-TRP config)が設定されたSpCell(PCell/PSCell)とSCellの少なくとも一方に定義/設定されてもよい。
2ステップのBFRに対して1つのSR(又は、SRインデックス/SRリソース/SR設定/PUCCHリソース/PUCCH設定)が設定されてもよい(態様3-1)。上記ケース1/ケース2において、MAC CEが利用できない又はUL-SCHにBFR用MAC CEが収容できない場合、当該SRがトリガされてもよい。
あるいは、2ステップのBFRに対してTRP固有のSR(例えば、TRP-specific SR)が設定されてもよい(態様3-2)。複数(例えば、2つ)のTRPが設定される場合、2ステップのBFRに対して複数(例えば、2つ)のSR(又は、SRインデックス/SRリソース/SR設定/PUCCHリソース/PUCCH設定)がそれぞれ設定されてもよい。
態様3-2において、複数のSRは、以下のオプション3A~3Cの少なくとも一つに基づいて設定されてもよい。
≪オプション3A≫
各TRPにそれぞれ対応する複数のSR(例えば、スケジューリングリクエストID)が設定されてもよい。つまり、TRP毎にSRインデックスが別々に(独立して)設定されてもよい。
各TRPにそれぞれ対応する複数のSR(例えば、スケジューリングリクエストID)が設定されてもよい。つまり、TRP毎にSRインデックスが別々に(独立して)設定されてもよい。
≪オプション3B≫
1つのSR(例えば、スケジューリングリクエストID)が設定され、当該SRが、各TRPにそれぞれ対応する複数のPUCCHリソースを有していてもよい。つまり、複数のTRPに対してSRが共通に設定され、当該SRに対応するPUCCHリソースがTRP毎に別々に設定されてもよい。
1つのSR(例えば、スケジューリングリクエストID)が設定され、当該SRが、各TRPにそれぞれ対応する複数のPUCCHリソースを有していてもよい。つまり、複数のTRPに対してSRが共通に設定され、当該SRに対応するPUCCHリソースがTRP毎に別々に設定されてもよい。
≪オプション3C≫
1つのSR(例えば、スケジューリングリクエストID)が設定され、当該SRが1つのPUCCHリソースを有し、当該PUCCHリソースに対して、各TRPにそれぞれ対応する複数のQCL/ビーム/空間関係が設定されてもよい。つまり、複数のTRPに対してSRとPUCCHリソースが共通に設定され、当該PUCCHリソースに対応するQCL/ビーム/空間関係がTRP毎に別々に設定されてもよい。
1つのSR(例えば、スケジューリングリクエストID)が設定され、当該SRが1つのPUCCHリソースを有し、当該PUCCHリソースに対して、各TRPにそれぞれ対応する複数のQCL/ビーム/空間関係が設定されてもよい。つまり、複数のTRPに対してSRとPUCCHリソースが共通に設定され、当該PUCCHリソースに対応するQCL/ビーム/空間関係がTRP毎に別々に設定されてもよい。
例えば、TRP#0においてビーム障害が検出される場合、2ステップBFRにおいて、他のTRP(例えば、TRP#1)に対応するSRが送信されてもよい。
態様3-2は、マルチTRPが設定されたSpCellにのみ適用されてもよい。あるいは、態様3-2は、SCellに対して適用されてもよい。
<UE能力情報>
上記第1の実施形態~第3の実施形態において、以下のUE能力(UE capability)が設定されてもよい。なお、以下のUE能力は、ネットワーク(例えば、基地局)からUEに設定するパラメータ(例えば、上位レイヤパラメータ)と読み替えられてもよい。
上記第1の実施形態~第3の実施形態において、以下のUE能力(UE capability)が設定されてもよい。なお、以下のUE能力は、ネットワーク(例えば、基地局)からUEに設定するパラメータ(例えば、上位レイヤパラメータ)と読み替えられてもよい。
ビーム障害検出において、複数(例えば、2つ)のセット/グループのRSをサポートするか否かに関するUE能力情報が定義されてもよい。
新候補ビーム(又は、新候補RS)の検出において、複数(例えば、2つ)のセット/グループのRSをサポートするか否かに関するUE能力情報が定義されてもよい。
UEにおける物理レイヤ(例えば、UE PHY)と上位レイヤ(例えば、UE higher layer)間の情報交換において、所定動作に対するTRPインデクス情報の通知をサポートするか否かに関するUE能力情報が定義されてもよい。所定動作は、ビーム障害検出通知(beam failure indication)、上位レイヤからの要求(request from higher layer)、及び新候補ビーム情報(new candidate beam info)の少なくとも一つであってもよい。
所定セルに対する2ステップMAC CEベースBFRがサポートされるか否かに関するUE能力情報が定義されてもよい。所定セルは、例えば、マルチTRPが設定されるSpCell(例えば、PCell/PSCell)であってもよい。
サービングセルに対して複数(例えば、2つ)の所定カウンタ(例えば、BFI_COUNTER)がサポートされるか否かに関するUE能力情報が定義されてもよい。
サービングセルに対して複数(例えば、2つ)の所定タイマ(例えば、beamFailureDetectionTimer)がサポートされるか否かに関するUE能力情報が定義されてもよい。
サービングセルに対して複数(例えば、2つ)のBFRトリガがサポートされるか否かに関するUE能力情報が定義されてもよい。
サービングセルに対して複数(例えば、2つ)のSRがサポートされるか否かに関するUE能力情報が定義されてもよい。
SRがTRPに関連付けられる構成がサポートされるか否かに関するUE能力情報が定義されてもよい。
マルチTRPシナリオにおいて、所定セルに対する拡張BFR MAC CEがサポートされるかに関するUE能力情報が定義されてもよい。所定セルは、SpCell(例えば、PCell/PSCell)/SCellであってもよい。
第1の態様~第3の態様は、上述したUE能力の少なくとも一つをサポート/報告するUEに適用される構成としてもよい。あるいは、第1の態様~第3の態様は、ネットワークから設定されたUEに適用される構成としてもよい。
(MAC CE構成)
<第4の実施形態>
第4の実施形態においては、1又は複数のTRPに対するBFRがトリガされた場合のBFR手順(例えば、2ステップBFR)に利用するMAC CE構成ついて説明する。
<第4の実施形態>
第4の実施形態においては、1又は複数のTRPに対するBFRがトリガされた場合のBFR手順(例えば、2ステップBFR)に利用するMAC CE構成ついて説明する。
Rel.16 NRでは、SCellにおいて、UEに設定される全てのBFD-RS(又は、BFR-RS)の品質が、ある閾値以下になった場合、MAC CEを用いてBFRが行われる。一方、Rel.17以降では、UEに設定されるBFD-RSのうち、あるTRPに対応するBFD-RS(例えば、全BFD-RS)の品質が、ある閾値以下になった場合、MAC CEを用いてBFRが行われてもよい。
Rel.16 NRにおいて、UEは、設定された新候補ビーム(又は、新候補RS)ごとに、最良の品質(例えば、最大のL1-RSRP)をもつあるビームを決定することが検討されている。
Rel.16以前のBFR MAC CEは、BFを検出したセルを表すビットフィールド、予約(Reserved)ビットフィールド、候補RS ID又は予約ビットフィールド(単に、候補RS IDフィールドと呼ばれてもよい)、SpCellのためのBFD指示フィールド、候補RS IDの存在を示すフィールド、の少なくとも1つが含まれてもよい。
予約ビットフィールドは、特に情報の通知に利用されなくてもよいし、自由に利用されてもよい。仕様上、所定の値(例えば0)に固定されていてもよい。
図6A及び図6Bは、Rel.16以前のBFR MAC CEの構成を示す図である。図6Aは、8以下のセル(又は、7以下のSCell)についてBFを検出したセルを表すフィールドが含まれる場合のMAC CE構成の一例を示している。図6Bは、32以下のセルについてBFを検出したセルを表すフィールドが含まれる場合のMAC CE構成の一例を示している。
図6A及び図6Bにおいて、Cnビット(nは1以上の整数)はBFを検出したセルを表すビットフィールドであり、SPビットはSpCellのためのBFD指示フィールドであり、ACビットは候補RS IDの存在を示すフィールドであり、Rビットは予約ビットである。以下、本開示において、MAC CEの構成を示す図における、Cnビット及びRビットは同様である。
一方、Rel.17以降では、ビーム障害の検出(BFDを検出したセルの通知)/新候補RSの通知について、TRP毎に(又は、TRP単位で)制御されてもよい。
例えば、UEは、ビーム障害が検出された(失敗した)セルに関する情報(例えば、セルインデックス)及び新たなビームに関する情報(例えば、新候補RSインデックス)に加えて、失敗したTRPに関する情報(例えば、TRPインデックス)を、MAC CE(又は、UL-SCH/PUSCH)を用いて基地局(例えば、PCell/PSCell)に送信してもよい。
ビーム障害が検出されたTRPに関する情報(例えば、TRPインデックス)は、ビーム検出が検出されたパネルに関する情報(例えば、パネルインデックス)、UEパネル/TRPに対応付けられた新たな候補ビームに関する情報(例えば、候補RS ID)、であってもよい。
以下では、ビーム障害が検出されたTRPに関する情報(例えば、TRPインデックス)を通知するためのBFRに用いられるMAC CE(BFR MAC CE)構成について説明する。MAC CEにTRPインデックスが含まれる場合、当該TRPインデックスは、特定のビット数(例えば、Nビット(N≧1))のビット長を有してもよい。
《第1のBFR MAC CE構成》
MAC CEは、各セルにそれぞれ対応するTRP用フィールドを含む構成であってもよい(図7参照)。TRP用フィールド(例えば、TRP-ID indication field)は、各セルにそれぞれ対応するTRPインデックス(例えば、TRP-ID)を通知するためのフィールドであってもよい。
MAC CEは、各セルにそれぞれ対応するTRP用フィールドを含む構成であってもよい(図7参照)。TRP用フィールド(例えば、TRP-ID indication field)は、各セルにそれぞれ対応するTRPインデックス(例えば、TRP-ID)を通知するためのフィールドであってもよい。
図7は、TRPインデックスを含むBFR MAC CE構成の一例を示している。図7のMAC CEは、8以下のセルに対応するフィールドと、各セルに対応するTRP用フィールドとが少なくとも含まれる。例えば、セルi(Ci)にTi,0とTi,1が対応している。具体的には、セル0(C0/SP)にT0,0とT0,1が対応し、セル1(C1)にT1,0とT1,1が対応し、セル7(C7)にT7,0とT7,1が対応している。ここでは、あるセル(例えば、Ci)に対応するTRPインデックスの通知に2ビット(例えば、Ti,0の1ビットとTi,1の1ビット)を利用する場合を示したが、これに限られない。
各セルにそれぞれ対応する複数(ここでは、2つ)のTRP毎にフィールドを設けることにより、一方のTRPにおいてビーム障害が検出された場合であっても、当該ビーム障害が検出されたTRPを適切に通知することができる。
また、TRP用フィールドは、対応するセルインデックスのフィールドが所定ビット(例えば、Ci=1)となる場合にのみ適用されてもよい。所定所定ビットは、当該セルにおいてビーム障害が検出されたことを意味してもよい。また、所定ビットとなるセル(又は、所定ビットなるセルに対応する1以上のTRP)に対してのみ新候補RSインデックスの通知用のフィールド(例えば、Candidate RS ID又はRビット)がMAC CEに設定されてもよい。
例えば、Ci=1、Ti,1=0、Ti,0=1となる場合を想定する(ケース4-1)。この場合、TRP#0(例えば、第1のTRP)に対するビーム障害検出を示すと共に、TRP#0に対するセルインデックスiを有するSCell用のACフィールドを含むオクテットが存在することを示してもよい。なお、ケース1を示すTiフィールドの値はこれに限られず、Ti,1=0、Ti,0=0であってもよい。
例えば、Ci=1、Ti,1=1、Ti,0=0となる場合を想定する(ケース4-2)。この場合、TRP#1(例えば、第2のTRP)に対するビーム障害検出を示すと共に、TRP#1に対するセルインデックスiを有するSCell用のACフィールドを含むオクテットが存在することを示してもよい。なお、ケース2を示すTiフィールドの値はこれに限られず、Ti,1=0、Ti,0=1であってもよい。
例えば、Ci=1、Ti,1=1、Ti,0=1となる場合を想定する(ケース4-3)。この場合、TRP#0(例えば、第1のTRP)に対するビーム障害検出とTRP#1(例えば、第2のTRP)に対するビーム障害検出(両方のTRPのビーム障害検出)を示してもよい。この場合、一方のTRP(又は、TRP#0のみ)に対するセルインデックスiを有するSCell用のACフィールドを含むオクテットが存在することを示してもよい(オプション4-1)。あるいは、両方のTRP(TRP#0とTRP#1)に対するセルインデックスiを有するSCell用のACフィールドを含むオクテット(2個のオクテット)がそれぞれ存在することを示してもよい(オプション4-2)。なお、ケース3を示すTiフィールドの値はこれに限られず、Ti,1=1、Ti,0=0であってもよい。
マルチTRP BFRが設定されないセルiに対するビーム障害検出の通知と、セルインデックスiを有するSCell用のACフィールドを含むオクテットの存在の通知と、を行う場合(ケース4-4)、セル用フィールド/TRP用フィールドにより以下のように制御されてもよい。
Ci=1、Ti,1=1、Ti,0=1の場合、マルチTRP BFR設定が設定されないことを示してもよい(オプション4-A)。
Ci=1、Ti,1=0、Ti,0=1の場合(又は、Ti,1=0、Ti,0=0の場合)、ケース4とケース1(又は、ケース2)とが同じCiとTi値を共有することを意味してもよい。UEは、BFR設定に基づいてケース4とケース1の違いを判断してもよい。
なお、図7では、BFRが設定されるSCell数が8未満の場合、つまりビーム障害検出が設定されるMACエンティティのSCellの最大のサービングセルインデックスが8未満の場合に適用されてもよい。BFRが設定されるSCell数が8以上となる場合、図8に示すMAC CE構成を適用してもよい。図8に示すMAC CEは、8以上のSCellと、各SCellに対応する1以上のTRP用フィールドを含む場合を示している。
《第2のBFR MAC CE構成》
MAC CEは、ビーム障害が検出されたセル(例えば、Ci=1)に対応するTRP用フィールドを含む構成であってもよい(図9参照)。つまり、MAC CEは、ビーム障害が検出されないセル(例えば、Ci=0)に対応するTRP用フィールドは含まない構成としてもよい。
MAC CEは、ビーム障害が検出されたセル(例えば、Ci=1)に対応するTRP用フィールドを含む構成であってもよい(図9参照)。つまり、MAC CEは、ビーム障害が検出されないセル(例えば、Ci=0)に対応するTRP用フィールドは含まない構成としてもよい。
図9では、ビーム障害が検出された一部のセルに対応するTRP用フィールド(Ti,0、Ti,1)、(Tj,0、Tj,1)、(Tk,0、Tk,1)が設定される場合を示している。
これにより、各セルにおけるビーム障害の検出有無に基づいて、TRP用フィールドの設定を柔軟に制御することができる。例えば、Ci=1となるセルに対して1以上のTRP用フィールド(例えば、Ti,1とTi,0)を設定し、Ci=0となるセルに対してTRP用フィールドを設定しない構成としてもよい。
Ci=1となるセルに対して複数(例えば、2つ)のTRP用フィールドが設定される場合、当該2つのTRP用フィールドは所定順序で配置されてもよい。例えば、同じオクテットにおいて、右から左の順にインデックスが小さいTRPから配置されてもよい。Ci=1となるセルが複数存在する場合、各セルに対応するTRP用フィールドは、セルのインデックス順(例えば、インデックスが小さいセルに対応するTRP用フィールドが先に配置されるよう)に設定されてもよい。
また、ビーム障害が検出されるセル数が少なく、あるオクテットにおいて配置されるTRP用フィールドが所定数(例えば、8)より少ない場合、リザーブビット(例えば、R=0)が設定されてもよい(又は、R=0でオクテットが満たされてもよい)。
TRP用フィールドの設定方法(例えば、ビット値の設定/解釈)、ACフィールドを含む1又は複数のオクテットの設定(又は、存在有無)は第1のBFR CE構成で述べたいずれかの方法が適用されてもよい。
《第3のBFR MAC CE構成》
MAC CEは、セル用のフィールドとして、ビット(例えば、複数ビット)を利用して特定のセルインデックスが指定されるフィールドを含む構成であってもよい(例えば、図10参照)。つまり、MAC CEは、ビーム障害が検出されたセルに対応するセル用フィールドを含み、ビーム障害が検出されないセルに対応するセル用フィールドは含まない構成であってもよい。
MAC CEは、セル用のフィールドとして、ビット(例えば、複数ビット)を利用して特定のセルインデックスが指定されるフィールドを含む構成であってもよい(例えば、図10参照)。つまり、MAC CEは、ビーム障害が検出されたセルに対応するセル用フィールドを含み、ビーム障害が検出されないセルに対応するセル用フィールドは含まない構成であってもよい。
ビーム障害が検出されたセルは、当該セルに対応する1以上のTRPの少なくとも一つのTRPにおいてビーム障害が検出されたセルであってもよい。UEは、ビーム障害を検出したセルのインデックスと、当該セルに対応する1以上のTRPに対する新候補ビーム(新候補RSインデックス)の存在有無と、新候補ビームが存在する場合に当該新候補ビームに関する情報をMAC CEに含めて通知する。
例えば、UEは、セル#iに対するビーム障害を検出した場合、セル用フィールドを利用してインデックスiを通知する。セルiに対応する1以上のTRP(ここでは、2つのTRP(又は、TCI))フィールドがMAC CEに含まれてもよい。各TRPフィールドの値(例えば、ビット値)により、どのTRP(又は、両方のTRP)においてビーム障害が発生したかが通知されてもよい。あるいは、各TRPフィールドの値(例えば、ビット値)により、サービングセルにマルチTRPが設定されるか否かが通知されてもよい。
TCI用フィールドは、サービングセルのインデックスの通知に利用されるセル用フィールドと同じオクテット(第1のオクテット)に設定されてもよい。各TRPの新候補ビーム(又は、新候補RSインデックス)の通知に利用される新候補RS用フィールドは、第1のオクテットと異なるオクテット(例えば、第2のオクテット)に設定されてもよい。複数のTRPの新候補ビームに関する情報を通知する場合、各TRPの新候補ビームに関する情報は異なるオクテットに設定されてもよい。
ビーム障害が検出されたTRPについて、新候補RSインデックスが存在するか否か(又は、リザーブビット用のフィールド(Rフィールド)が存在するか否か)を通知するACフィールドが設定されてもよい。ACフィールドは、各TRPの新候補RS用フィールドが設定されるオクテットに設定されてもよい。
マルチTRP用のBFRが設定されないセル(例えば、既存のBFRが設定されるセル)において、ビーム障害が検出される場合を想定する。かかる場合、当該セルに対して、ACフィールド(又は、新候補RS用フィールド)を含む一つのオクテットのみが設定されてもよい(図11参照)。
図11では、サービングセル#iに対して、新候補RS用フィールド(又は、ACフィールド)を含むオクテットが1つ設定される場合を示している。
マルチTRP用のBFRが設定されるセルにおいて、1つのTRPのみにおいてビーム障害が検出される場合(例えば、2つのTRP用フィールドのうち1つのTRP用フィールドに1が設定される場合)を想定する。かかる場合、当該セルに対して、ACフィールド(又は、新候補RS用フィールド)を含む一つのオクテットのみが設定されてもよい(図11参照)。
マルチTRP用のBFRが設定されるセルにおいて、2つのTRPにおいてビーム障害が検出される場合(例えば、2つのTRP用フィールドのうち両方のTRP用フィールドに1が設定される場合)を想定する。かかる場合、当該セルに対して、ACフィールド(又は、新候補RS用フィールド)を含む一つのオクテット(例えば、特定のTRPの新候補RS用フィールドに対応するオクテット)のみが設定されてもよい(図11参照)。
一つのオクテットのみが設定される場合、特定のTRPは、上位レイヤシグナリングで設定されてもよいし、所定ルール(例えば、インデックス)に基づいて決定されてもよいし、UEにより自律的に決定されてもよい。UEが自律的に選択する場合、新候補RSインデックスとTRPの対応関係があらかじめUEに通知されてもよい。この場合、UEは、通知する新候補RSインデックスに基づいて、基地局が対応するTRPを判断することができると想定してもよい。
例えば、2つのTRPにおいてビーム障害が検出された場合であっても、1つの新候補RSインデックスがUEから基地局に報告されればよい。SpCell(PCell/SPCell)では、当該1つの新候補ビーム(又は、新候補RSインデックス)を利用して、BFR用のランダムアクセス手順を行うことができる。
セカンダリセル(SCell)では、少なくとも1つのTRPの新候補RSインデックスがUEから基地局に報告することにより、当該TRPのビーム障害を回復することができる。また、当該回復したビームを利用して、他のTRPに対して通常のビームマネジメント(例えば、ビームメジャメント/報告)により選択されたビーム情報を指示してもよい。
あるいは、マルチTRP用のBFRが設定されるセルにおいて、2つのTRPにおいてビーム障害が検出される場合、当該セルに対してACフィールド(又は、新候補RS用フィールド)をそれぞれ含む2つのオクテット(各TRPにそれぞれ対応するオクテット)が設定されてもよい(図10参照)。これにより、2つのTRPでビーム障害が発生した場合に、MAC CEを利用して各TRPの新候補RSインデックスをそれぞれ通知することが可能となる。
[バリエーション1]
なお、ACフィールドは、新候補RS用フィールドと異なるオクテットに設定されてもよい(図12参照)。例えば、あるオクテットの新候補RS用フィールドに新候補RSインデックスが設定されるか否か(又は、リザーブビット(例えば、Rビット)が設定されるか否か)が、異なるオクテット(1つ前のオクテット)のACフィールドにより指定されてもよい。あるいは、あるオクテットに含まれるACフィールドを利用して、他のオクテット(新候補RS用フィールドが設定されるオクテット)の存在有無を指定してもよい。
なお、ACフィールドは、新候補RS用フィールドと異なるオクテットに設定されてもよい(図12参照)。例えば、あるオクテットの新候補RS用フィールドに新候補RSインデックスが設定されるか否か(又は、リザーブビット(例えば、Rビット)が設定されるか否か)が、異なるオクテット(1つ前のオクテット)のACフィールドにより指定されてもよい。あるいは、あるオクテットに含まれるACフィールドを利用して、他のオクテット(新候補RS用フィールドが設定されるオクテット)の存在有無を指定してもよい。
図12において、セル用フィールドが含まれるオクテットに第1のAC(AC1)フィールドが含まれ、第1のTRPの新候補RS用フィールドが含まれるオクテットに第2のAC(AC2)フィールドが含まれる場合を示している。AC1フィールドは、新候補RS用フィールド1(TRP#0に対応)に新候補RSインデックスを示す情報が設定されるか、リザーブビット(Rビット)が設定されるかを指示してもよい。
AC2フィールドは、次のオクテットが存在するか否かを指示してもよい。TRP#1に対する新候補RSが存在しない場合、AC2フィールドにより、新候補RS用フィールド2(TRP#1に対応)が設定されない/存在しないことが通知されてもよい。
2つのTRPのうち1つのTRPのみにおいてビーム障害を検出した場合(2つのBFR用フィールドの一方のみが1の場合)、あるいはマルチTRP用のBFRが設定されないセルにおいてビーム障害を検出した場合を想定する。かかる場合、AC1フィールドは、次のオクテット(新候補RSフィールドを含むオクテット)が存在するか否かを指示してもよい。特定TRP又はセルに対する新候補RSが存在しない場合、AC1フィールドにより、新候補RS用フィールド(特定TRP/セルに対応)が設定されない/存在しないことが通知されてもよい。
他のTRPに対応する新候補RS用フィールドが含むオクテットは設定されない/存在しない構成としてもよい。つまり、AC1により最大1つのオクテットが存在するか否かが通知されてもよい。
このように、新候補RS用フィールドが含まれるオクテットの存在有無を、当該オクテットと異なるオクテットに含まれるACフィールドで通知する構成とすることにより、通信状況に応じてオクテット数を削減することが可能となる。
[バリエーション2]
バリエーション1では、図10におけるACフィールドの位置を変更する場合を示したが、これに限られない。例えば、図11におけるACフィールドの位置を変更してもよい(図13参照)。
バリエーション1では、図10におけるACフィールドの位置を変更する場合を示したが、これに限られない。例えば、図11におけるACフィールドの位置を変更してもよい(図13参照)。
図13において、セル用フィールドが含まれるオクテットに第1のAC(AC1)フィールドが含まれる場合を示している。AC1フィールドは、次のオクテット(例えば、新候補RS用フィールドが設定されるオクテット)が存在するか否かを指示してもよい。所定TRP/セルに対する新候補RSが存在しない場合、AC1フィールドにより、新候補RS用フィールドが設定されない/存在しないことが通知されてもよい。ビーム障害が検出されたTRP/セルに対して新候補RSインデックスが存在する場合にのみ、AC1により1つのオクテットが存在することが通知されてもよい。
これにより、ビーム障害が検出されたTRP/セルに対する新候補RSインデックスが存在しない場合、オクテット数を削減することが可能となる。
《第4のBFR MAC CE構成》
MAC CEは、各セルにそれぞれ対応するTRP用フィールドが含まれない構成であってもよい(図14参照)。例えば、各セル(設定されたセル)用フィールドと、各セルにそれぞれ対応するTRPの新候補ビーム(又は、新候補RSインデックス)に関する情報を通知するフィールド(新候補RS用フィールド)と、が少なくともMAC CEに含まれてもよい。
MAC CEは、各セルにそれぞれ対応するTRP用フィールドが含まれない構成であってもよい(図14参照)。例えば、各セル(設定されたセル)用フィールドと、各セルにそれぞれ対応するTRPの新候補ビーム(又は、新候補RSインデックス)に関する情報を通知するフィールド(新候補RS用フィールド)と、が少なくともMAC CEに含まれてもよい。
また、ACフィールドがMAC CEに含まれてもよい。ACフィールドは、各TRP/所定セルに対応する新候補RS用フィールドで新候補RSインデックスが指定されるか否か(又は、新候補RS用フィールドがリザーブビットとなるか否か)をの通知に利用されてもよい。あるいは、ACフィールドは、新候補RSフィールドが設定されるオクテットが存在するか否かの通知に利用されてもよい。
図14に示すMAC CEは、各セルに対応するセル用フィールド(ここでは、1ビット)と、各セルに対応するTRPの新候補RS用フィールドがそれぞれ設定される場合を示している。ここでは、セル毎にそれぞれ2つのTRPの新候補RS用フィールドが設定される場合を示している。各TRPの新候補RS用フィールドは、異なるオクテットに設定され、各オクテットにACフィールドが設定されてもよい。なお、ここでは、各セル用フィールド(例えば、1ビット)がそれぞれ設定される場合を示すが、ビーム障害が検出されたセルを複数ビットで示す構成が適用されてもよい。
ここでは、各セル(例えば、SCellに相当するC1-C7)について、それぞれ2つのTRPの新候補RS用フィールドが異なるオクテットに設定される場合を示している。なお、各セルに対応する新候補RS用フィールドは、常に設定されない構成としてもよい。例えば、ビーム障害が検出されたセル(例えば、セル用フィールドが1となるセル)に対応するTRPの新候補用RSフィールドが設定される構成としてもよい。
ビーム障害が検出されたセルにマルチTRP用BFRが設定されない場合、当該セルに対応する新候補RS用フィールド(又は、新候補RS用フィールドが含まれるオクテット)は、1つであってもよい。
ビーム障害が検出されたセルにマルチTRP用BFRが設定される場合、当該セルに対応する新候補RS用フィールド(又は、新候補RS用フィールドが含まれるオクテット)は、少なくとも1つ(又は、常に2つ)であってもよい。この場合、各オクテットに含まれるACフィールドにより、当該オクテットに対応するTRPの新候補RSインデックスが存在するか否かが指定されてもよい。ここでは、AC1が所定セルの第1のTRPの新候補RSインデックスが存在するか否かの通知に利用され、AC2が所定セルの第2のTRPの新候補RSインデックスが存在するか否かの通知に利用される場合を示している。
図14では、各TRPの新候補RS用フィールドが含まれるオクテットにそれぞれACフィールドが含まれる構成を示したが、これに限られない。例えば、あるセルに対応する複数(例えば、2つ)のTRPにそれぞれ対応する複数(例えば、2つ)のオクテットの1つに各オクテットにそれぞれ対応する複数のACフィールドが含まれてもよい(図15参照)。
図15では、セルCiについて、第1のTRPの新候補RS用フィールド#1が含まれる第1のオクテットと、第2のTRPの新候補RS用フィールド#2が含まれる第2のオクテットが設定され、第1のAC1フィールドと第2のAC2フィールドが第1のオクテットに含まれる場合を示している。第1のAC1フィールドは、新候補RS用フィールド#1に新候補RSインデックスが含まれるか否かの通知に利用され、第2のAC2フィールドは、新候補RS用フィールド#2に新候補RSインデックスが含まれるか否かの通知に利用されてもよい。
あるセルに対する新候補RS用フィールドのオクテットは、ビーム障害が検出されたセル(例えば、セル用フィールドが1に設定されるセル)に対してのみ設定されてもよい。マルチTRP用のBFRが設定されるセルにおいてビーム障害が検出された場合、当該セルに対して少なくとも一つのオクテット(例えば、複数のACフィールドが含まれるオクテット)が設定されてもよい。第1のオクテットに含まれるAC2フィールドにより、第2のオクテットが設定されるか否か/存在するか否かが通知されてもよい。
マルチTRP用のBFRが設定されないセルにおいてビーム障害が検出された場合、当該セルに対して一つのオクテットのみが設定されてもよい。
図15では、セルに対して複数(例えば、2つ)のオクテット(又は、TRPの新候補RSフィールド)が設定される場合を示したが、これにかぎられない。各セルに対して1つのオクテットが設定される構成としてもよい(図16参照)。
図16では、セルに対応する複数(例えば、2つ)のTRPにおいてビーム障害が検出された場合であっても、当該セルに対して1つのオクテット(又は、1つのTRPの新候補RSフィールド)が設定されてもよい。新候補RSインデックスが通知されるTRPは、所定ルールに基づいて選択されてもよい。また、各セルに対するオクテット(又は、TRPの新候補RSフィールド)は、ビーム障害が検出されたセル(例えば、セル用フィールドが1に設定されるセル)に対してのみ設定/存在してもよい。
上記説明では、各TRPの新候補RSフィールドにおいて、新候補RSインデックスが設定されるか否か(又は、TRPに新候補ビームが存在するか否か)を示すACフィールドが設定される場合を示したが、これに限られない。一部のACフィールドが設定されない構成としてもよい(図17参照)。
図17では、AC1フィールドが設定されない(例えば、リザーブビットとなる)場合を示している。ACフィールドが設定されない新候補RS用フィールドが第1のTCIに対応し、ACフィールド(ここでは、AC2フィールド)が設定される新候補RS用フィールドが第2のTCIに対応する場合を示している。この場合、AC1は通知されず、AC2は、第2のTRPの新候補RSインデックスが存在するか否かの通知に利用されてもよい。なお、第1のTCIは、第1のTRP又は第2のTRPに対応してもよい。
なお、上述したいずれかの構成において、ACフィールドがリザーブビット(R)フィールドに置き換えられてもよい。この場合、Rフィールドが新候補RSインデックスの存在有無/他のオクテットの存在有無の通知に利用されてもよい。
(基地局からの応答信号受信後のUE動作)
<第5の実施形態>
第5の実施形態においては、1又は複数のTRPに対するビーム回復要求(例えば、新候補RSに関する情報を含むMAC CE送信)に対する基地局からの応答信号を受信した後のUE動作について説明する。
<第5の実施形態>
第5の実施形態においては、1又は複数のTRPに対するビーム回復要求(例えば、新候補RSに関する情報を含むMAC CE送信)に対する基地局からの応答信号を受信した後のUE動作について説明する。
既存システムにおいて、UEは、ビーム障害が検出されたセルに関する情報/ビーム障害が検出されたTRPに関する情報/セル又はTRPの新候補RSインデックスに関する情報を含むMAC CEを送信した後、ネットワーク(例えば、基地局)から送信されるDL信号(又は、応答信号)を受信してもよい。DL信号は、PUSCH送信をスケジュールするDCI/PDCCH(例えば、所定DCIフォーマットを具備するPDCCH)であってもよい。PUSCH送信は、最初のPUSCH(例えば、MAC CEの送信に利用したPUSCH)と同じHARQプロセス番号を有し、且つトグルされたNDIフィールド値を有していてもよい。
UEは、DL信号を受信してから所定期間(例えば、28シンボル)後に、PDCCH/PUCCH/PDSCH/PUSCHのQCL(又は、ビーム)を、更新してもよい。つまり、PDCCH/PUCCH/PDSCH/PUSCHのためのQCLが、新たなビーム設定に伴い更新されてもよい。
UEは、MAC CEで送信した新候補ビームに関する情報に基づいて、DL信号の受信後におけるUL送信/DL受信に対するUE動作(例えば、ビーム想定(beam assumption)/TCI想定/TPC想定(TPC assumption)を制御してもよい。例えば、UEは、以下のUE動作の少なくとも一つを適用してもよい。
UEは、PDCCH受信から所定期間後に、MAC CEにより指定されたSCellの全てのCORESETにおけるPDCCHのモニタを、報告した新候補RSインデックスに対応する所定インデックス(例えば、qnew)に関連づけられたものと同じアンテナポート擬似コロケーションパラメータ(antenna port quasi co-location parameters)を利用して実施してもよい(UE動作1)。
所定条件を満たす場合、UEは、PUCCH-SCellにおけるPUCCHを、所定インデックス(例えば、qnew)に対応するものと同じ空間ドメインフィルタ(spatial domain filter)を利用して送信してもよい(UE動作2)。また、PUCCH送信に利用する送信電力は、所定インデックス(例えば、qnew)に基づいて決定されてもよい(UE動作3)。qnewは、受信した所定RS(例えば、周期CSI-RS、又はSS/PBCHブロック)に対するインデックスに相当してもよい。
所定条件は、PUCCHに対して所定の上位レイヤパラメータ(例えば、PUCCH-SpatialRelationInfo)が設定されること、LRR(link recorery request)を具備するPUCCHがSpCellにおいて送信されなかった又は送信されたこと、MAC-CEで通知されたSCellに含まれること、の少なくとも一つであってもよい。
一方で、Rel.17以降において、UEは、MAC CEに、ビーム障害が検出されたセルに関する情報/ビーム障害が検出されたTRPに関する情報/セル又はTRPの新候補RSインデックスに関する情報を含めて送信することが想定される。かかる場合、MAC CEに対して、ネットワーク(例えば、基地局)から送信されるDL信号(又は、応答信号)を受信した後のUE動作をどのように制御するかが問題となる。
以下に、基地局からの応答信号を受信した後のUE動作の一例について説明する。なお、以下の説明では、図4に示すケース1~ケース4を例に挙げて説明するが、適用可能なケースはこれに限られない。
≪ケース1≫
マルチTRP用のBFRが設定されたSpCell(PCell/PSCell)に対して、UEが、複数(例えば、2つ)のTRPのうち、1つのTRPのみでビーム障害を検出して、BFR MAC CEを送信した場合を想定する(図18参照)。
マルチTRP用のBFRが設定されたSpCell(PCell/PSCell)に対して、UEが、複数(例えば、2つ)のTRPのうち、1つのTRPのみでビーム障害を検出して、BFR MAC CEを送信した場合を想定する(図18参照)。
図18では、UEがTRP#0においてビーム障害を検出し、当該TRP#0に対応する新候補RSインデックスに関する情報をMAC CEを利用して送信する場合を示している。
基地局は、UEから送信されたMAC CEに対して、応答信号(又は、DL信号)を送信する。DL信号は、PUSCH送信をスケジュールするDCI/PDCCH(例えば、所定DCIフォーマットを具備するPDCCH)であってもよい。PUSCH送信は、最初のPUSCH(例えば、MAC CEの送信に利用したPUSCH)と同じHARQプロセス番号を有し、且つトグルされたNDIフィールド値を有していてもよい。
UEは、基地局から送信されたDL信号を受信した場合、所定期間(例えば、28シンボル)後に、ビーム障害を検出したTRPに対して所定のUE動作を適用してもよい。一方で、ビーム障害を検出していないTRPに対して所定のUE動作を適用しなくてもよい。所定のUE動作は、上述したUE動作1~UE動作3の少なくとも一つであってもよい。
ビーム障害を検出したTRPは、MAC CEを利用して新候補RSインデックスに関する情報を通知したTRPと読み替えられてもよい。ビーム障害を検出していないTRPは、MAC CEを利用して新候補RSインデックスに関する情報を通知していないTRPと読み替えられてもよい。
例えば、UEは、DL信号を受信した後、ビーム障害を検出したTRP(又は、BFD RSセット)と同じインデックス(例えば、制御リソースプールインデックス(CORESETPoolindex))に関連づけられたPDCCH/PUCCHに対して所定のUE動作を適用してもよい。つまり、UEは、ビーム障害を検出したTRPに対応するTCI状態/空間関係を変更(又は、アップデート)するように制御してもよい。
一方で、UEは、ビーム障害を検出していない他のTRPに対応するTCI状態/空間関係は変更(又は、更新/アップデート)しないように制御してもよい。
これにより、TRP毎に独立してビーム障害の検出を行う場合、ビーム障害が検出されたTRPにおけるUL送信/DL受信に利用するビーム(TCI状態/空間関係)を選択的にアップデートすることが可能となる。その結果、BFR手順をTRP単位で適切に行うことができる。
なお、ケース1において、UEは、複数(例えば、2つ)のTRPにそれぞれ対応する複数の新候補RSインデックスに関する情報をMAC CEに含めて送信してもよい。この場合、複数のTRPにそれぞれ対応するTCI状態/空間関係がそれぞれアップデートされてもよい。
≪ケース2≫
マルチTRP用のBFRが設定されたSCellに対して、UEが、複数(例えば、2つ)のTRPのうち、1つのTRPのみでビーム障害を検出して、BFR MAC CEを送信した場合を想定する。
マルチTRP用のBFRが設定されたSCellに対して、UEが、複数(例えば、2つ)のTRPのうち、1つのTRPのみでビーム障害を検出して、BFR MAC CEを送信した場合を想定する。
基地局は、UEから送信されたMAC CEに対して、応答信号(又は、DL信号)を送信する。DL信号は、PUSCH送信をスケジュールするDCI/PDCCH(例えば、所定DCIフォーマットを具備するPDCCH)であってもよい。PUSCH送信は、最初のPUSCH(例えば、MAC CEの送信に利用したPUSCH)と同じHARQプロセス番号を有し、且つトグルされたNDIフィールド値を有していてもよい。
UEは、基地局から送信されたDL信号を受信した場合、所定期間(例えば、28シンボル)後に、所定SCellにおいてビーム障害を検出したTRPに対して所定のUE動作を適用してもよい。一方で、当該所定SCellにおいてビーム障害を検出していないTRPに対して所定のUE動作を適用しなくてもよい。所定のUE動作は、上述したUE動作1~UE動作3の少なくとも一つであってもよい。
所定SCellにおいてビーム障害を検出したTRPは、MAC CEを利用して新候補RSインデックスに関する情報を通知したTRPと読み替えられてもよい。ビーム障害を検出していないTRPは、MAC CEを利用して新候補RSインデックスに関する情報を通知していないTRPと読み替えられてもよい。
例えば、UEは、DL信号を受信した後、所定SCellにおいてビーム障害を検出したTRP(又は、BFD RSセット)と同じインデックス(例えば、制御リソースプールインデックス(CORESETPoolindex))に関連づけられたPDCCH/PUCCHに対して所定のUE動作を適用してもよい。つまり、UEは、ビーム障害を検出したTRPに対応するTCI状態/空間関係を変更(又は、アップデート)するように制御してもよい。
一方で、UEは、SCellにおいてビーム障害を検出していない他のTRPに対応するTCI状態/空間関係は変更(又は、更新/アップデート)しないように制御してもよい。
これにより、TRP毎に独立してビーム障害の検出を行う場合、ビーム障害が検出されたTRPにおけるUL送信/DL受信に利用するビーム(TCI状態/空間関係)を選択的にアップデートすることが可能となる。その結果、BFR手順をTRP単位で適切に行うことができる。
なお、ケース2において、UEは、複数(例えば、2つ)のTRPにそれぞれ対応する複数の新候補RSインデックスに関する情報をMAC CEに含めて送信してもよい。この場合、複数のTRPにそれぞれ対応するTCI状態/空間関係がそれぞれアップデータされてもよい。
≪ケース3≫
マルチTRP用のBFRが設定されたSCellに対して、UEが、複数(例えば、2つ)のTRPにおいてそれぞれビーム障害を検出して、BFR MAC CEを送信した場合を想定する(図19参照)。
マルチTRP用のBFRが設定されたSCellに対して、UEが、複数(例えば、2つ)のTRPにおいてそれぞれビーム障害を検出して、BFR MAC CEを送信した場合を想定する(図19参照)。
図19では、UEがTRP#0とTRP#1においてそれぞれビーム障害を検出し、TRP#0に対応する新候補RSインデックスに関する情報とTRP#1に対応する新候補RSインデックスに関する情報の一方又は両方をMAC CEを利用して送信する場合を示している。
例えば、UEは、BFR用のMAC CEを利用して1つの新候補RSインデックス(例えば、1つのTRPに対応する新候補RSインデックス)のみを送信してもよい(ケース3-1)。
あるいは、UEは、BFR用のMAC CEを利用して複数の新候補RSインデックス(例えば、2つのTRPにそれぞれ対応する複数の新候補RSインデックス)を送信してもよい(ケース3-2)。TRP#0に対応する新候補RSインデックスに関する情報とTRP#1に対応する新候補RSインデックスに関する情報を両方送信する場合、別々に通知してもよいし、1つの通知を利用してもよい。また、基地局からの応答信号も別々に通知されてもよいし、1つの通知を利用してもよい。
基地局は、UEから送信されたMAC CEに対して、応答信号(又は、DL信号)を送信する。DL信号は、PUSCH送信をスケジュールするDCI/PDCCH(例えば、所定DCIフォーマットを具備するPDCCH)であってもよい。PUSCH送信は、最初のPUSCH(例えば、MAC CEの送信に利用したPUSCH)と同じHARQプロセス番号を有し、且つトグルされたNDIフィールド値を有していてもよい。
MAC CEにより1つの新候補ビームが通知される場合(ケース3-1)、UEは、以下のオプション5-1~オプション5-3の少なくとも一つに基づいてUE動作を制御してもよい。
[オプション5-1]
UEは、基地局から送信されたDL信号を受信した場合、所定期間後に、TRPの情報を考慮せずに、サービングセルに対して所定のUE動作(又は、qnew)を適用してもよい。例えば、MAC CEで通知した新候補RSインデックスに基づいて、Rel.16以前と同じUE動作を適用してもよい。
UEは、基地局から送信されたDL信号を受信した場合、所定期間後に、TRPの情報を考慮せずに、サービングセルに対して所定のUE動作(又は、qnew)を適用してもよい。例えば、MAC CEで通知した新候補RSインデックスに基づいて、Rel.16以前と同じUE動作を適用してもよい。
つまり、UEは、あるセルにおいて複数のTRPにおいてビーム障害を検出し、1つの新候補RSインデックスに関する情報を報告する場合、TRP毎ではなくサービングセルに対応するTCI状態/空間関係を変更(又は、アップデート)するように制御してもよい。
[オプション5-2]
UEは、基地局から送信されたDL信号を受信した場合、サービングセルにおいてビーム障害を検出したTRPのうち、特定のTRPのみに対して所定のUE動作を適用してもよい。特定のTRPは、所定ルールに基づいて決定されてもよい。
UEは、基地局から送信されたDL信号を受信した場合、サービングセルにおいてビーム障害を検出したTRPのうち、特定のTRPのみに対して所定のUE動作を適用してもよい。特定のTRPは、所定ルールに基づいて決定されてもよい。
例えば、UEは、インデックスが最小のTRP(又は、CORESETプールインデックス=0)に関連付けられたPDCCH/PUCCHに対して所定のUE動作(又は、qnew)を適用してもよい。つまり、UEは、ビーム障害を検出した複数のTRPのうち特定のTRPに対応するTCI状態/空間関係を変更(又は、アップデート)するように制御してもよい。
一方で、UEは、特定のTRP以外の他のTRPに対応するTCI状態/空間関係は変更(又は、更新/アップデート)しないように制御してもよい。
[オプション5-3]
UEは、基地局から送信されたDL信号を受信した場合、サービングセルにおいてビーム障害を検出したTRPのうち、MAC CEを利用して新候補ビームに関する情報が送信されたTRPのみに対して所定のUE動作(又は、qnew)を適用してもよい。MAC CEに含める特定のTRPは、所定ルールに基づいて決定されてもよい。
UEは、基地局から送信されたDL信号を受信した場合、サービングセルにおいてビーム障害を検出したTRPのうち、MAC CEを利用して新候補ビームに関する情報が送信されたTRPのみに対して所定のUE動作(又は、qnew)を適用してもよい。MAC CEに含める特定のTRPは、所定ルールに基づいて決定されてもよい。
UEは、DL信号を受信した後、MAC CEを利用して新候補RSインデックスに関する情報を送信したTRPインデックス(例えば、制御リソースプールインデックス(CORESETPoolindex))に対応するTCI状態/空間関係を所定値(例えば、qnew)にアップデートするように制御してもよい。
一方で、UEは、MAC CEを利用して新候補RSインデックスに関する情報を送信していない他のTRPに対応するTCI状態/空間関係はアップデートしないように制御してもよい。
MAC CEにより複数(例えば、2つ)の新候補ビームが通知される場合(ケース3-2)、UEは、以下のオプション5-4に基づいてUE動作を制御してもよい。
[オプション5-4]
UEは、基地局から送信されたDL信号を受信した場合、サービングセルにおいてビーム障害を検出した複数のTRP#0、#1(又は、新候補ビーム情報を送信した複数のTRP#0、#1)に対してそれぞれ所定のUE動作を適用してもよい(図19参照)。
UEは、基地局から送信されたDL信号を受信した場合、サービングセルにおいてビーム障害を検出した複数のTRP#0、#1(又は、新候補ビーム情報を送信した複数のTRP#0、#1)に対してそれぞれ所定のUE動作を適用してもよい(図19参照)。
例えば、UEは、各TRPインデックス(又は、対応するCORESETプールインデックス)にそれぞれ関連付けられたPDCCH/PUCCHに対して所定のUE動作(又は、qnew)を適用してもよい。つまり、UEは、ビーム障害を検出した複数のTRPに対応するTCI状態/空間関係を変更(又は、アップデート)するように制御してもよい。
≪ケース4≫
SpCell(PCell/PSCell)におけるBFRに対してランダムアクセス(例えば、PRACH)がトリガされる場合を想定する。
SpCell(PCell/PSCell)におけるBFRに対してランダムアクセス(例えば、PRACH)がトリガされる場合を想定する。
マルチTRP用のBFRが設定されるSpCellにおいて、UEが、1つのTRPのビーム障害を検出してBFRをトリガし、UEが基地局からの応答信号((又は、DL信号)を受信する前に、他のTRPに対してビーム障害を検出するケースも考えられる。かかる場合、UEは、BFRに対するランダムアクセス手順を開始(又は、初期化)してもよい。また、MAC CEを利用するBFR手順をキャンセルしてもよい。
これにより、通信環境に応じてBFR手順を柔軟に制御することが可能となる。
第5の実施の形態は、所定のUE能力を具備する端末、又は所定の上位レイヤパラメータが設定された端末に対して適用されてもよい。基地局からの応答信号を受信した後のUE動作は、応答信号(例えば、PDCCH)のCRCスクランブルに適用されるRNTIに基づいて異なっていてもよい。UEは、所定のRNTI(例えば、BFR-RNTI)が適用されたPDCCHを検出した場合に第5の実施の形態を適用してもよい。
(無線通信システム)
以下、本開示の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本開示の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。
以下、本開示の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本開示の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。
図20は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1は、Third Generation Partnership Project(3GPP)によって仕様化されるLong Term Evolution(LTE)、5th generation mobile communication system New Radio(5G NR)などを用いて通信を実現するシステムであってもよい。
また、無線通信システム1は、複数のRadio Access Technology(RAT)間のデュアルコネクティビティ(マルチRATデュアルコネクティビティ(Multi-RAT Dual Connectivity(MR-DC)))をサポートしてもよい。MR-DCは、LTE(Evolved Universal Terrestrial Radio Access(E-UTRA))とNRとのデュアルコネクティビティ(E-UTRA-NR Dual Connectivity(EN-DC))、NRとLTEとのデュアルコネクティビティ(NR-E-UTRA Dual Connectivity(NE-DC))などを含んでもよい。
EN-DCでは、LTE(E-UTRA)の基地局(eNB)がマスタノード(Master Node(MN))であり、NRの基地局(gNB)がセカンダリノード(Secondary Node(SN))である。NE-DCでは、NRの基地局(gNB)がMNであり、LTE(E-UTRA)の基地局(eNB)がSNである。
無線通信システム1は、同一のRAT内の複数の基地局間のデュアルコネクティビティ(例えば、MN及びSNの双方がNRの基地局(gNB)であるデュアルコネクティビティ(NR-NR Dual Connectivity(NN-DC)))をサポートしてもよい。
無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する基地局12(12a-12c)と、を備えてもよい。ユーザ端末20は、少なくとも1つのセル内に位置してもよい。各セル及びユーザ端末20の配置、数などは、図に示す態様に限定されない。以下、基地局11及び12を区別しない場合は、基地局10と総称する。
ユーザ端末20は、複数の基地局10のうち、少なくとも1つに接続してもよい。ユーザ端末20は、複数のコンポーネントキャリア(Component Carrier(CC))を用いたキャリアアグリゲーション(Carrier Aggregation(CA))及びデュアルコネクティビティ(DC)の少なくとも一方を利用してもよい。
各CCは、第1の周波数帯(Frequency Range 1(FR1))及び第2の周波数帯(Frequency Range 2(FR2))の少なくとも1つに含まれてもよい。マクロセルC1はFR1に含まれてもよいし、スモールセルC2はFR2に含まれてもよい。例えば、FR1は、6GHz以下の周波数帯(サブ6GHz(sub-6GHz))であってもよいし、FR2は、24GHzよりも高い周波数帯(above-24GHz)であってもよい。なお、FR1及びFR2の周波数帯、定義などはこれらに限られず、例えばFR1がFR2よりも高い周波数帯に該当してもよい。
また、ユーザ端末20は、各CCにおいて、時分割複信(Time Division Duplex(TDD))及び周波数分割複信(Frequency Division Duplex(FDD))の少なくとも1つを用いて通信を行ってもよい。
複数の基地局10は、有線(例えば、Common Public Radio Interface(CPRI)に準拠した光ファイバ、X2インターフェースなど)又は無線(例えば、NR通信)によって接続されてもよい。例えば、基地局11及び12間においてNR通信がバックホールとして利用される場合、上位局に該当する基地局11はIntegrated Access Backhaul(IAB)ドナー、中継局(リレー)に該当する基地局12はIABノードと呼ばれてもよい。
基地局10は、他の基地局10を介して、又は直接コアネットワーク30に接続されてもよい。コアネットワーク30は、例えば、Evolved Packet Core(EPC)、5G Core Network(5GCN)、Next Generation Core(NGC)などの少なくとも1つを含んでもよい。
ユーザ端末20は、LTE、LTE-A、5Gなどの通信方式の少なくとも1つに対応した端末であってもよい。
無線通信システム1においては、直交周波数分割多重(Orthogonal Frequency Division Multiplexing(OFDM))ベースの無線アクセス方式が利用されてもよい。例えば、下りリンク(Downlink(DL))及び上りリンク(Uplink(UL))の少なくとも一方において、Cyclic Prefix OFDM(CP-OFDM)、Discrete Fourier Transform Spread OFDM(DFT-s-OFDM)、Orthogonal Frequency Division Multiple Access(OFDMA)、Single Carrier Frequency Division Multiple Access(SC-FDMA)などが利用されてもよい。
無線アクセス方式は、波形(waveform)と呼ばれてもよい。なお、無線通信システム1においては、UL及びDLの無線アクセス方式には、他の無線アクセス方式(例えば、他のシングルキャリア伝送方式、他のマルチキャリア伝送方式)が用いられてもよい。
無線通信システム1では、下りリンクチャネルとして、各ユーザ端末20で共有される下り共有チャネル(Physical Downlink Shared Channel(PDSCH))、ブロードキャストチャネル(Physical Broadcast Channel(PBCH))、下り制御チャネル(Physical Downlink Control Channel(PDCCH))などが用いられてもよい。
また、無線通信システム1では、上りリンクチャネルとして、各ユーザ端末20で共有される上り共有チャネル(Physical Uplink Shared Channel(PUSCH))、上り制御チャネル(Physical Uplink Control Channel(PUCCH))、ランダムアクセスチャネル(Physical Random Access Channel(PRACH))などが用いられてもよい。
PDSCHによって、ユーザデータ、上位レイヤ制御情報、System Information Block(SIB)などが伝送される。PUSCHによって、ユーザデータ、上位レイヤ制御情報などが伝送されてもよい。また、PBCHによって、Master Information Block(MIB)が伝送されてもよい。
PDCCHによって、下位レイヤ制御情報が伝送されてもよい。下位レイヤ制御情報は、例えば、PDSCH及びPUSCHの少なくとも一方のスケジューリング情報を含む下り制御情報(Downlink Control Information(DCI))を含んでもよい。
なお、PDSCHをスケジューリングするDCIは、DLアサインメント、DL DCIなどと呼ばれてもよいし、PUSCHをスケジューリングするDCIは、ULグラント、UL DCIなどと呼ばれてもよい。なお、PDSCHはDLデータで読み替えられてもよいし、PUSCHはULデータで読み替えられてもよい。
PDCCHの検出には、制御リソースセット(COntrol REsource SET(CORESET))及びサーチスペース(search space)が利用されてもよい。CORESETは、DCIをサーチするリソースに対応する。サーチスペースは、PDCCH候補(PDCCH candidates)のサーチ領域及びサーチ方法に対応する。1つのCORESETは、1つ又は複数のサーチスペースに関連付けられてもよい。UEは、サーチスペース設定に基づいて、あるサーチスペースに関連するCORESETをモニタしてもよい。
1つのサーチスペースは、1つ又は複数のアグリゲーションレベル(aggregation Level)に該当するPDCCH候補に対応してもよい。1つ又は複数のサーチスペースは、サーチスペースセットと呼ばれてもよい。なお、本開示の「サーチスペース」、「サーチスペースセット」、「サーチスペース設定」、「サーチスペースセット設定」、「CORESET」、「CORESET設定」などは、互いに読み替えられてもよい。
PUCCHによって、チャネル状態情報(Channel State Information(CSI))、送達確認情報(例えば、Hybrid Automatic Repeat reQuest ACKnowledgement(HARQ-ACK)、ACK/NACKなどと呼ばれてもよい)及びスケジューリングリクエスト(Scheduling Request(SR))の少なくとも1つを含む上り制御情報(Uplink Control Information(UCI))が伝送されてもよい。PRACHによって、セルとの接続確立のためのランダムアクセスプリアンブルが伝送されてもよい。
なお、本開示において下りリンク、上りリンクなどは「リンク」を付けずに表現されてもよい。また、各種チャネルの先頭に「物理(Physical)」を付けずに表現されてもよい。
無線通信システム1では、同期信号(Synchronization Signal(SS))、下りリンク参照信号(Downlink Reference Signal(DL-RS))などが伝送されてもよい。無線通信システム1では、DL-RSとして、セル固有参照信号(Cell-specific Reference Signal(CRS))、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、復調用参照信号(DeModulation Reference Signal(DMRS))、位置決定参照信号(Positioning Reference Signal(PRS))、位相トラッキング参照信号(Phase Tracking Reference Signal(PTRS))などが伝送されてもよい。
同期信号は、例えば、プライマリ同期信号(Primary Synchronization Signal(PSS))及びセカンダリ同期信号(Secondary Synchronization Signal(SSS))の少なくとも1つであってもよい。SS(PSS、SSS)及びPBCH(及びPBCH用のDMRS)を含む信号ブロックは、SS/PBCHブロック、SS Block(SSB)などと呼ばれてもよい。なお、SS、SSBなども、参照信号と呼ばれてもよい。
また、無線通信システム1では、上りリンク参照信号(Uplink Reference Signal(UL-RS))として、測定用参照信号(Sounding Reference Signal(SRS))、復調用参照信号(DMRS)などが伝送されてもよい。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。
(基地局)
図21は、一実施形態に係る基地局の構成の一例を示す図である。基地局10は、制御部110、送受信部120、送受信アンテナ130及び伝送路インターフェース(transmission line interface)140を備えている。なお、制御部110、送受信部120及び送受信アンテナ130及び伝送路インターフェース140は、それぞれ1つ以上が備えられてもよい。
図21は、一実施形態に係る基地局の構成の一例を示す図である。基地局10は、制御部110、送受信部120、送受信アンテナ130及び伝送路インターフェース(transmission line interface)140を備えている。なお、制御部110、送受信部120及び送受信アンテナ130及び伝送路インターフェース140は、それぞれ1つ以上が備えられてもよい。
なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、基地局10は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。
制御部110は、基地局10全体の制御を実施する。制御部110は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。
制御部110は、信号の生成、スケジューリング(例えば、リソース割り当て、マッピング)などを制御してもよい。制御部110は、送受信部120、送受信アンテナ130及び伝送路インターフェース140を用いた送受信、測定などを制御してもよい。制御部110は、信号として送信するデータ、制御情報、系列(sequence)などを生成し、送受信部120に転送してもよい。制御部110は、通信チャネルの呼処理(設定、解放など)、基地局10の状態管理、無線リソースの管理などを行ってもよい。
送受信部120は、ベースバンド(baseband)部121、Radio Frequency(RF)部122、測定部123を含んでもよい。ベースバンド部121は、送信処理部1211及び受信処理部1212を含んでもよい。送受信部120は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ(phase shifter)、測定回路、送受信回路などから構成することができる。
送受信部120は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部1211、RF部122から構成されてもよい。当該受信部は、受信処理部1212、RF部122、測定部123から構成されてもよい。
送受信アンテナ130は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。
送受信部120は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを送信してもよい。送受信部120は、上述の上りリンクチャネル、上りリンク参照信号などを受信してもよい。
送受信部120は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。
送受信部120(送信処理部1211)は、例えば制御部110から取得したデータ、制御情報などに対して、Packet Data Convergence Protocol(PDCP)レイヤの処理、Radio Link Control(RLC)レイヤの処理(例えば、RLC再送制御)、Medium Access Control(MAC)レイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。
送受信部120(送信処理部1211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、離散フーリエ変換(Discrete Fourier Transform(DFT))処理(必要に応じて)、逆高速フーリエ変換(Inverse Fast Fourier Transform(IFFT))処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。
送受信部120(RF部122)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ130を介して送信してもよい。
一方、送受信部120(RF部122)は、送受信アンテナ130によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。
送受信部120(受信処理部1212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、高速フーリエ変換(Fast Fourier Transform(FFT))処理、逆離散フーリエ変換(Inverse Discrete Fourier Transform(IDFT))処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。
送受信部120(測定部123)は、受信した信号に関する測定を実施してもよい。例えば、測定部123は、受信した信号に基づいて、Radio Resource Management(RRM)測定、Channel State Information(CSI)測定などを行ってもよい。測定部123は、受信電力(例えば、Reference Signal Received Power(RSRP))、受信品質(例えば、Reference Signal Received Quality(RSRQ)、Signal to Interference plus Noise Ratio(SINR)、Signal to Noise Ratio(SNR))、信号強度(例えば、Received Signal Strength Indicator(RSSI))、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部110に出力されてもよい。
伝送路インターフェース140は、コアネットワーク30に含まれる装置、他の基地局10などとの間で信号を送受信(バックホールシグナリング)し、ユーザ端末20のためのユーザデータ(ユーザプレーンデータ)、制御プレーンデータなどを取得、伝送などしてもよい。
なお、本開示における基地局10の送信部及び受信部は、送受信部120、送受信アンテナ130及び伝送路インターフェース140の少なくとも1つによって構成されてもよい。
送受信部120は、複数の送受信ポイントにそれぞれ対応する1以上のビーム障害検出用参照信号(Beam Failure Detection Reference Signal(BFD-RS))を端末に送信してもよい。
送受信部120は、端末において1以上の送受信ポイントに対するビーム障害が検出された場合、前記ビーム障害が検出された送受信ポイントと、前記ビーム障害が検出された送受信ポイントに対応するサービングセルと、に関する情報を含むメディアアクセス制御制御要素(MAC CE)を受信してもよい。
送受信部120は、複数の送受信ポイント毎に検出されたビーム障害に関する情報をメディアアクセス制御制御要素(MAC CE)を利用して受信してもよい。送受信部120は、ビーム障害に関する情報に対応するDL信号を送信してもよい。
制御部110は、端末においてBFD-RSのうちの少なくとも一部のBFD-RSの無線リンク品質が閾値未満となる場合、1つの送受信ポイント単位又は複数の送受信ポイントを含む送受信ポイントのセット単位でビーム障害回復手順を制御してもよい。
制御部110は、複数の送受信ポイント毎にビーム障害の回復手順を制御してもよい。
制御部110は、DL信号を送信した後に、UL送信に適用する条件の更新及びDL受信に適用する条件の更新の少なくとも一つを送受信ポイント毎に制御してもよい。
(ユーザ端末)
図22は、一実施形態に係るユーザ端末の構成の一例を示す図である。ユーザ端末20は、制御部210、送受信部220及び送受信アンテナ230を備えている。なお、制御部210、送受信部220及び送受信アンテナ230は、それぞれ1つ以上が備えられてもよい。
図22は、一実施形態に係るユーザ端末の構成の一例を示す図である。ユーザ端末20は、制御部210、送受信部220及び送受信アンテナ230を備えている。なお、制御部210、送受信部220及び送受信アンテナ230は、それぞれ1つ以上が備えられてもよい。
なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。
制御部210は、ユーザ端末20全体の制御を実施する。制御部210は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。
制御部210は、信号の生成、マッピングなどを制御してもよい。制御部210は、送受信部220及び送受信アンテナ230を用いた送受信、測定などを制御してもよい。制御部210は、信号として送信するデータ、制御情報、系列などを生成し、送受信部220に転送してもよい。
送受信部220は、ベースバンド部221、RF部222、測定部223を含んでもよい。ベースバンド部221は、送信処理部2211、受信処理部2212を含んでもよい。送受信部220は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ、測定回路、送受信回路などから構成することができる。
送受信部220は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部2211、RF部222から構成されてもよい。当該受信部は、受信処理部2212、RF部222、測定部223から構成されてもよい。
送受信アンテナ230は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。
送受信部220は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを受信してもよい。送受信部220は、上述の上りリンクチャネル、上りリンク参照信号などを送信してもよい。
送受信部220は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。
送受信部220(送信処理部2211)は、例えば制御部210から取得したデータ、制御情報などに対して、PDCPレイヤの処理、RLCレイヤの処理(例えば、RLC再送制御)、MACレイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。
送受信部220(送信処理部2211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、DFT処理(必要に応じて)、IFFT処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。
なお、DFT処理を適用するか否かは、トランスフォームプリコーディングの設定に基づいてもよい。送受信部220(送信処理部2211)は、あるチャネル(例えば、PUSCH)について、トランスフォームプリコーディングが有効(enabled)である場合、当該チャネルをDFT-s-OFDM波形を用いて送信するために上記送信処理としてDFT処理を行ってもよいし、そうでない場合、上記送信処理としてDFT処理を行わなくてもよい。
送受信部220(RF部222)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ230を介して送信してもよい。
一方、送受信部220(RF部222)は、送受信アンテナ230によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。
送受信部220(受信処理部2212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、FFT処理、IDFT処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。
送受信部220(測定部223)は、受信した信号に関する測定を実施してもよい。例えば、測定部223は、受信した信号に基づいて、RRM測定、CSI測定などを行ってもよい。測定部223は、受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、SINR、SNR)、信号強度(例えば、RSSI)、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部210に出力されてもよい。
なお、本開示におけるユーザ端末20の送信部及び受信部は、送受信部220及び送受信アンテナ230の少なくとも1つによって構成されてもよい。
送受信部220は、複数の送受信ポイントにそれぞれ対応する1以上のビーム障害検出用参照信号(Beam Failure Detection Reference Signal(BFD-RS))を受信してもよい。
制御部210は、設定されたBFD-RSのうちの少なくとも一部のBFD-RSの無線リンク品質が閾値未満となる場合、1つの送受信ポイント単位又は複数の送受信ポイントを含む送受信ポイントのセット単位でビーム障害回復手順を制御してもよい。制御部210は、設定されたBFD-RSのうちの少なくとも一部のBFD-RSの無線リンク品質が閾値未満となる場合、1つの送受信ポイントに対応する候補BFD-RSに関する情報、又は複数の送受信ポイントにそれぞれ対応する候補BFD-RSに関する情報を通知してもよい。
制御部210は、下位レイヤから上位レイヤにビーム障害検出に関する情報の通知を制御し、ビーム障害検出に関する情報の通知に基づいてカウントされるカウンタ及びビーム障害検出に関する情報の通知に基づいて開始されるタイマの少なくとも一つが、送受信ポイント単位又は送受信ポイントのセット単位で設定されてもよい。制御部210は、1つの送受信ポイント単位で設定されるスケジューリングリクエスト、又は複数の送受信ポイントを含む送受信ポイントのセット単位で設定されるスケジューリングリクエストを利用して、ビーム障害回復の通知を行ってもよい。
送受信部220は、1以上の送受信ポイントに対するビーム障害を検出した場合、ビーム障害を検出した送受信ポイントと、ビーム障害を検出した送受信ポイントに対応するサービングセルと、に関する情報を含むメディアアクセス制御制御要素(MAC CE)を送信してもよい。
制御部210は、複数の送受信ポイント毎にビーム障害の検出を行ってもよい。MAC CEは、前記サービングセル用のフィールドと、前記サービングセルに対応する1以上の送受信ポイント用のフィールドと、を含む構成であってもよい。MAC CEは、ビーム障害が検出されないサービングセルに対応する送受信ポイント用のフィールドが含まれない構成であってもよい。MAC CEは、複数ビットを利用してビーム障害が検出されたサービングセルのインデックスを指定するフィールドが含まれる構成であってもよい。
送受信部220は、複数の送受信ポイント毎に検出したビーム障害に関する情報をメディアアクセス制御制御要素(MAC CE)を利用して送信してもよい。
制御部210は、ビーム障害に関する情報に対応するDL信号を受信した場合、UL送信に適用する条件の更新及びDL受信に適用する条件の更新の少なくとも一つを送受信ポイント毎に制御してもよい。制御部210は、あるセルに対応する複数の送受信ポイントのうち1つの送受信ポイントについてビーム障害が検出され、1つの送受信ポイントのビーム障害に関する情報をMAC CEを利用して送信する場合、DL信号の受信に基づいて、1つの送受信ポイントにおけるUL送信に適用する条件及びDL受信に適用する条件の少なくとも一つを更新してもよい。
制御部210は、あるセルに対応する複数の送受信ポイントについてビーム障害が検出され、複数の送受信ポイントのうち1つの送受信ポイントのビーム障害に関する情報をMAC CEを利用して送信する場合、DL信号の受信に基づいて、1つの送受信ポイント又は特定の送受信ポイントにおけるUL送信に適用する条件及びDL受信に適用する条件の少なくとも一つを更新してもよい。
(ハードウェア構成)
なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
ここで、機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、みなし、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)、送信機(transmitter)などと呼称されてもよい。いずれも、上述したとおり、実現方法は特に限定されない。
例えば、本開示の一実施形態における基地局、ユーザ端末などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図23は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
なお、本開示において、装置、回路、デバイス、部(section)、ユニットなどの文言は、互いに読み替えることができる。基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、2以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。
基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(Central Processing Unit(CPU))によって構成されてもよい。例えば、上述の制御部110(210)、送受信部120(220)などの少なくとも一部は、プロセッサ1001によって実現されてもよい。
また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、制御部110(210)は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。
メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically EPROM(EEPROM)、Random Access Memory(RAM)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(Compact Disc ROM(CD-ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。
通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(Frequency Division Duplex(FDD))及び時分割複信(Time Division Duplex(TDD))の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信部120(220)、送受信アンテナ130(230)などは、通信装置1004によって実現されてもよい。送受信部120(220)は、送信部120a(220a)と受信部120b(220b)とで、物理的に又は論理的に分離された実装がなされてもよい。
入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、Light Emitting Diode(LED)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
また、基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor(DSP))、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
(変形例)
なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル、シンボル及び信号(シグナル又はシグナリング)は、互いに読み替えられてもよい。また、信号はメッセージであってもよい。参照信号(reference signal)は、RSと略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(Component Carrier(CC))は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル、シンボル及び信号(シグナル又はシグナリング)は、互いに読み替えられてもよい。また、信号はメッセージであってもよい。参照信号(reference signal)は、RSと略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(Component Carrier(CC))は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
ここで、ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing(SCS))、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval(TTI))、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。
スロットは、時間領域において1つ又は複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM)シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。
スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプBと呼ばれてもよい。
無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。なお、本開示におけるフレーム、サブフレーム、スロット、ミニスロット、シンボルなどの時間単位は、互いに読み替えられてもよい。
例えば、1サブフレームはTTIと呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
1msの時間長を有するTTIは、通常TTI(3GPP Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。
なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
リソースブロック(Resource Block(RB))は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。
また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。
なお、1つ又は複数のRBは、物理リソースブロック(Physical RB(PRB))、サブキャリアグループ(Sub-Carrier Group(SCG))、リソースエレメントグループ(Resource Element Group(REG))、PRBペア、RBペアなどと呼ばれてもよい。
また、リソースブロックは、1つ又は複数のリソースエレメント(Resource Element(RE))によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
帯域幅部分(Bandwidth Part(BWP))(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。
BWPには、UL BWP(UL用のBWP)と、DL BWP(DL用のBWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。
設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。
なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix(CP))長などの構成は、様々に変更することができる。
また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。
本開示においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式などは、本開示において明示的に開示したものと異なってもよい。様々なチャネル(PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
また、情報、信号などは、上位レイヤから下位レイヤ及び下位レイヤから上位レイヤの少なくとも一方へ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。
入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。
情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、本開示における情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(Downlink Control Information(DCI))、上り制御情報(Uplink Control Information(UCI)))、上位レイヤシグナリング(例えば、Radio Resource Control(RRC)シグナリング、ブロードキャスト情報(マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))など)、Medium Access Control(MAC)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。
なお、物理レイヤシグナリングは、Layer 1/Layer 2(L1/L2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、メディアアクセス制御制御要素(MAC Control Element(CE))を用いて通知されてもよい。
また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。
判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line(DSL))など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用され得る。「ネットワーク」は、ネットワークに含まれる装置(例えば、基地局)のことを意味してもよい。
本開示において、「プリコーディング」、「プリコーダ」、「ウェイト(プリコーディングウェイト)」、「擬似コロケーション(Quasi-Co-Location(QCL))」、「Transmission Configuration Indication state(TCI状態)」、「空間関係(spatial relation)」、「空間ドメインフィルタ(spatial domain filter)」、「送信電力」、「位相回転」、「アンテナポート」、「アンテナポートグル-プ」、「参照信号(Reference Signal(RS)ポートグループ)」「レイヤ」、「レイヤ数」、「ランク」、「リソース」、「リソースセット」、「リソースグループ」、「ビーム」、「ビーム幅」、「ビーム角度」、「アンテナ」、「アンテナ素子」、「パネル」、「送受信ポイント」などの用語は、互換的に使用され得る。
本開示においては、「基地局(Base Station(BS))」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNB(eNodeB)」、「gNB(gNodeB)」、「アクセスポイント(access point)」、「送信ポイント(Transmission Point(TP))」、「受信ポイント(Reception Point(RP))」、「送受信ポイント(Transmission/Reception Point(TRP))」、「パネル」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。
基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head(RRH)))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。
本開示においては、「移動局(Mobile Station(MS))」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment(UE))」、「端末」などの用語は、互換的に使用され得る。
移動局は、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。
基地局及び移動局の少なくとも一方は、送信装置、受信装置、無線通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。
また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数のユーザ端末間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上り」、「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。
同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を基地局10が有する構成としてもよい。
本開示において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、Mobility Management Entity(MME)、Serving-Gateway(S-GW)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。
本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、LTE-Beyond(LTE-B)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、6th generation mobile communication system(6G)、xth generation mobile communication system(xG)(xG(xは、例えば整数、小数))、Future Radio Access(FRA)、New-Radio Access Technology(RAT)、New Radio(NR)、New radio access(NX)、Future generation radio access(FX)、Global System for Mobile communications(GSM(登録商標))、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム、これらに基づいて拡張された次世代システムなどに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE又はLTE-Aと、5Gとの組み合わせなど)適用されてもよい。
本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
本開示において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。
また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。
また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。
また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
本開示において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。
本開示において、2つの要素が接続される場合、1つ以上の電線、ケーブル、プリント電気接続などを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域、光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。
本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
本開示において、「含む(include)」、「含んでいる(including)」及びこれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
本開示において、例えば、英語でのa, an及びtheのように、翻訳によって冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
以上、本開示に係る発明について詳細に説明したが、当業者にとっては、本開示に係る発明が本開示中に説明した実施形態に限定されないということは明らかである。本開示に係る発明は、請求の範囲の記載に基づいて定まる発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とし、本開示に係る発明に対して何ら制限的な意味をもたらさない。
Claims (6)
- 複数の送受信ポイント毎にビーム障害の検出を行う制御部と、
1以上の送受信ポイントに対するビーム障害を検出した場合、前記ビーム障害を検出した送受信ポイントと、前記ビーム障害を検出した送受信ポイントに対応するサービングセルと、に関する情報を含むメディアアクセス制御制御要素(MAC CE)を送信する送信部と、を有することを特徴とする端末。 - 前記MAC CEは、前記サービングセル用のフィールドと、前記サービングセルに対応する1以上の送受信ポイント用のフィールドと、を含むことを特徴とする請求項1に記載の端末。
- 前記MAC CEは、ビーム障害が検出されないサービングセルに対応する送受信ポイント用のフィールドが含まれないことを特徴とする請求項1に記載の端末。
- 前記MAC CEは、複数ビットを利用してビーム障害が検出されたサービングセルのインデックスを指定するフィールドが含まれることを特徴とする請求項1から請求項3のいずれかに記載の端末。
- 複数の送受信ポイント毎にビーム障害の検出を行う工程と、
1以上の送受信ポイントに対するビーム障害を検出した場合、前記ビーム障害を検出した送受信ポイントと、前記ビーム障害を検出した送受信ポイントに対応するサービングセルと、に関する情報を含むメディアアクセス制御制御要素(MAC CE)を送信する工程と、を有することを特徴とする端末の無線通信方法。 - 複数の送受信ポイント毎にビーム障害の回復手順を制御する制御部と、
端末において1以上の送受信ポイントに対するビーム障害が検出された場合、前記ビーム障害が検出された送受信ポイントと、前記ビーム障害が検出された送受信ポイントに対応するサービングセルと、に関する情報を含むメディアアクセス制御制御要素(MAC CE)を受信する受信部と、を有することを特徴とする基地局。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20957642.0A EP4231688A4 (en) | 2020-10-13 | 2020-10-13 | TERMINAL, WIRELESS COMMUNICATION METHOD AND BASE STATION |
PCT/JP2020/038668 WO2022079813A1 (ja) | 2020-10-13 | 2020-10-13 | 端末、無線通信方法及び基地局 |
CN202080106207.0A CN116368844A (zh) | 2020-10-13 | 2020-10-13 | 终端、无线通信方法以及基站 |
JP2022556734A JP7573045B2 (ja) | 2020-10-13 | 2020-10-13 | 端末、無線通信方法、基地局及びシステム |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2020/038668 WO2022079813A1 (ja) | 2020-10-13 | 2020-10-13 | 端末、無線通信方法及び基地局 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022079813A1 true WO2022079813A1 (ja) | 2022-04-21 |
Family
ID=81214789
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/038668 WO2022079813A1 (ja) | 2020-10-13 | 2020-10-13 | 端末、無線通信方法及び基地局 |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP4231688A4 (ja) |
JP (1) | JP7573045B2 (ja) |
CN (1) | CN116368844A (ja) |
WO (1) | WO2022079813A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024030434A1 (en) * | 2022-08-05 | 2024-02-08 | Intel Corporation | Beam failure detection and link recovery test for multi-trp operation |
EP4312382A3 (en) * | 2022-07-29 | 2024-05-22 | Samsung Electronics Co., Ltd. | Tci framework for multi-trp transmission |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11979756B2 (en) * | 2020-08-05 | 2024-05-07 | Samsung Electronics Co., Ltd. | Method and apparatus for handling beam failure recovery in a wireless communication system |
-
2020
- 2020-10-13 CN CN202080106207.0A patent/CN116368844A/zh active Pending
- 2020-10-13 EP EP20957642.0A patent/EP4231688A4/en active Pending
- 2020-10-13 WO PCT/JP2020/038668 patent/WO2022079813A1/ja unknown
- 2020-10-13 JP JP2022556734A patent/JP7573045B2/ja active Active
Non-Patent Citations (4)
Title |
---|
"Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall description; Stage 2 (Release 8", 3GPP TS 36.300, April 2010 (2010-04-01) |
NTT DOCOMO, INC: "Discussion on beam management for MTRP", 3GPP DRAFT; R1-2006721, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20200817 - 20200828, 7 August 2020 (2020-08-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051915452 * |
OPPO: "Uplink LBT failure recovery for NR-U", 3GPP DRAFT; R2-1912096 - UPLINK LBT FAILURE REVOERY FOR NR-U, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Chongqing, China; 20191014 - 20191018, 3 October 2019 (2019-10-03), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051790149 * |
See also references of EP4231688A4 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4312382A3 (en) * | 2022-07-29 | 2024-05-22 | Samsung Electronics Co., Ltd. | Tci framework for multi-trp transmission |
WO2024030434A1 (en) * | 2022-08-05 | 2024-02-08 | Intel Corporation | Beam failure detection and link recovery test for multi-trp operation |
Also Published As
Publication number | Publication date |
---|---|
EP4231688A1 (en) | 2023-08-23 |
EP4231688A4 (en) | 2024-08-14 |
JP7573045B2 (ja) | 2024-10-24 |
CN116368844A (zh) | 2023-06-30 |
JPWO2022079813A1 (ja) | 2022-04-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020246014A1 (ja) | 端末及び無線通信方法 | |
WO2020246013A1 (ja) | 端末及び無線通信方法 | |
JP7252258B2 (ja) | 端末、無線通信方法及びシステム | |
JPWO2020012594A1 (ja) | ユーザ端末 | |
WO2022097619A1 (ja) | 端末、無線通信方法及び基地局 | |
JPWO2020066023A1 (ja) | ユーザ端末及び無線通信方法 | |
JP7244637B2 (ja) | 端末、無線通信方法、基地局及びシステム | |
WO2022259543A1 (ja) | 端末、無線通信方法及び基地局 | |
WO2022149275A1 (ja) | 端末、無線通信方法及び基地局 | |
JP7279087B2 (ja) | 端末、無線通信方法、及びシステム | |
JP7320859B2 (ja) | 端末、無線通信方法、基地局及びシステム | |
WO2022079813A1 (ja) | 端末、無線通信方法及び基地局 | |
WO2022024327A1 (ja) | 端末、無線通信方法及び基地局 | |
KR102638575B1 (ko) | 단말 및 무선 통신 방법 | |
JP7320860B2 (ja) | 端末、無線通信方法、基地局及びシステム | |
JP7216114B2 (ja) | 端末、無線通信方法及びシステム | |
WO2022079811A1 (ja) | 端末、無線通信方法及び基地局 | |
WO2022039152A1 (ja) | 端末、無線通信方法及び基地局 | |
WO2023007659A1 (ja) | 端末、無線通信方法及び基地局 | |
WO2022034655A1 (ja) | 端末、無線通信方法及び基地局 | |
JP7538860B2 (ja) | 端末、無線通信方法、基地局及びシステム | |
WO2022029853A1 (ja) | 端末、無線通信方法及び基地局 | |
WO2021234878A1 (ja) | 端末、無線通信方法及び基地局 | |
WO2022079812A1 (ja) | 端末、無線通信方法及び基地局 | |
WO2022153450A1 (ja) | 端末、無線通信方法及び基地局 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20957642 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022556734 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2020957642 Country of ref document: EP Effective date: 20230515 |