JP7244637B2 - 端末、無線通信方法、基地局及びシステム - Google Patents

端末、無線通信方法、基地局及びシステム Download PDF

Info

Publication number
JP7244637B2
JP7244637B2 JP2021522598A JP2021522598A JP7244637B2 JP 7244637 B2 JP7244637 B2 JP 7244637B2 JP 2021522598 A JP2021522598 A JP 2021522598A JP 2021522598 A JP2021522598 A JP 2021522598A JP 7244637 B2 JP7244637 B2 JP 7244637B2
Authority
JP
Japan
Prior art keywords
information
reference signal
candidate beam
new candidate
beam reference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021522598A
Other languages
English (en)
Other versions
JPWO2020240863A5 (ja
JPWO2020240863A1 (ja
Inventor
祐輝 松村
聡 永田
ジン ワン
ギョウリン コウ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Docomo Inc
Original Assignee
NTT Docomo Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Docomo Inc filed Critical NTT Docomo Inc
Publication of JPWO2020240863A1 publication Critical patent/JPWO2020240863A1/ja
Publication of JPWO2020240863A5 publication Critical patent/JPWO2020240863A5/ja
Application granted granted Critical
Publication of JP7244637B2 publication Critical patent/JP7244637B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/74Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission for increasing reliability, e.g. using redundant or spare channels or apparatus
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/006Quality of the received signal, e.g. BER, SNR, water filling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/19Connection re-establishment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

本開示は、次世代移動通信システムにおけるユーザ端末及び無線通信方法に関する。
Universal Mobile Telecommunications System(UMTS)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてLong Term Evolution(LTE)が仕様化された(非特許文献1)。また、LTE(Third Generation Partnership Project(3GPP) Release(Rel.)8、9)の更なる大容量、高度化などを目的として、LTE-Advanced(3GPP Rel.10-14)が仕様化された。
LTEの後継システム(例えば、5th generation mobile communication system(5G)、5G+(plus)、New Radio(NR)、3GPP Rel.15以降などともいう)も検討されている。
既存のLTEシステム(LTE Rel.8-14)では、無線リンク品質のモニタリング(無線リンクモニタリング(Radio Link Monitoring:RLM))が行われる。RLMより無線リンク障害(Radio Link Failure:RLF)が検出されると、RRC(Radio Resource Control)コネクションの再確立(re-establishment)がユーザ端末(User Equipment:UE)に要求される。
将来の無線通信システム(例えば、NR)では、ビーム障害(Beam Failure:BF)を検出して他のビームに切り替える手順(ビーム障害回復(Beam Failure Recovery:BFR)手順、BFRなどと呼ばれてもよい)を実施することが検討されている。また、BFR手順において、UEはビーム障害が発生した場合には当該ビーム障害の回復を要求するビーム障害回復要求(Beam Failure Recovery reQuest:BFRQ)を報告する。
また、BFR手順において、UEは新しい候補ビーム(新候補ビームとも呼ぶ)に関する情報を報告することが検討されている。ネットワーク(例えば、基地局)は、UEから報告された新候補ビームを新たに設定することにより、ビーム障害を適切に回復することが可能となる。
しかしながら、BFR手順において、新候補ビーム用の参照信号の設定等をどのように行うかについて十分に検討されていない。BFR手順が適切に行われなければ、BFRの遅延など、システムの性能低下を招くおそれがある。
そこで、本開示は、BFR手順を適切に行うユーザ端末及び無線通信方法を提供することを目的の1つとする。
本開示の一態様に係る端末は、複数のセルを含むセルグループが設定される場合において、候補ビーム用参照信号が設定されるセルの情報と前記候補ビーム用参照信号のインデックスの情報とを受信する受信部と、ビーム障害を検出した場合、前記候補ビーム用参照信号のインデックスの情報に基いて特定の候補ビーム用参照信号インデックスを示す第1の情報及び回復要求を送信する、又はビーム障害を検出した場合、受信電力が所定値以上となる候補ビーム用参照信号が存在しないことを示す第2の情報及び回復要求を送信するように制御する制御部と、を有することを特徴とする。
本開示の一態様によれば、BFR手順を適切に行うことができる。
図1は、Rel.15 NRにおけるBFR手順の一例を示す図である。 図2は、バンド内CAとバンド間CAを説明するための図である。 図3は、新候補ビーム用RSの設定又は選択の一例を示す図である。 図4は、新候補ビーム用RSの設定又は選択の他の例を示す図である。 図5は、新候補ビーム用RSの設定又は選択の他の例を示す図である。 図6は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。 図7は、一実施形態に係る基地局の構成の一例を示す図である。 図8は、一実施形態に係るユーザ端末の構成の一例を示す図である。 図9は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の例を示す図である。
<ビーム障害回復>
NRでは、ビームフォーミングを利用して通信を行うことが検討されている。例えば、UE及び基地局(例えば、gNodeB(gNB))は、信号の送信に用いられるビーム(送信ビーム、Txビームなどともいう)、信号の受信に用いられるビーム(受信ビーム、Rxビームなどともいう)を用いてもよい。
ビームフォーミングを用いる場合、障害物による妨害の影響を受けやすくなるため、無線リンク品質が悪化することが想定される。無線リンク品質の悪化によって、無線リンク障害(Radio Link Failure:RLF)が頻繁に発生するおそれがある。RLFが発生するとセルの再接続が必要となるため、頻繁なRLFの発生は、システムスループットの劣化を招く。
NRにおいては、RLFの発生を抑制するために、特定のビームの品質が悪化する場合、他のビームへの切り替え(ビーム回復(Beam Recovery:BR)、ビーム障害回復(Beam Failure Recovery:BFR)、L1/L2(Layer 1/Layer 2)ビームリカバリなどと呼ばれてもよい)手順を実施することが検討されている。なお、BFR手順は単にBFRと呼ばれてもよい。
なお、本開示におけるビーム障害(Beam Failure:BF)は、リンク障害(link failure)、無線リンク障害(RLF)と呼ばれてもよい。
図1は、Rel.15 NRにおけるビーム回復手順の一例を示す図である。ビームの数などは一例であって、これに限られない。図1の初期状態(ステップS101)において、UEは、2つのビームを用いて送信される参照信号(Reference Signal:RS)リソースに基づく測定を実施する。
当該RSは、同期信号ブロック(Synchronization Signal Block:SSB)及びチャネル状態測定用RS(Channel State Information RS:CSI-RS)の少なくとも1つであってもよい。なお、SSBは、SS/PBCH(Physical Broadcast Channel)ブロックなどと呼ばれてもよい。
RSは、プライマリ同期信号(Primary SS:PSS)、セカンダリ同期信号(Secondary SS:SSS)、モビリティ参照信号(Mobility RS:MRS)、SSBに含まれる信号、SSB、CSI-RS、復調用参照信号(DeModulation Reference Signal:DMRS)、ビーム固有信号などの少なくとも1つ、又はこれらを拡張、変更などして構成される信号であってもよい。ステップS101において測定されるRSは、ビーム障害検出のためのRS(Beam Failure Detection RS:BFD-RS)などと呼ばれてもよい。
ステップS102において、基地局からの電波が妨害されたことによって、UEはBFD-RSを検出できない(又はRSの受信品質が劣化する)。このような妨害は、例えばUE及び基地局間の障害物、フェージング、干渉などの影響によって発生し得る。
UEは、所定の条件が満たされると、ビーム障害を検出する。UEは、例えば、設定されたBFD-RS(BFD-RSリソース設定)の全てについて、ブロック誤り率(Block Error Rate:BLER)が閾値未満である場合、ビーム障害の発生を検出してもよい。ビーム障害の発生が検出されると、UEの下位レイヤ(物理(PHY)レイヤ)は、上位レイヤ(MACレイヤ)に対してビーム障害インスタンスを通知(指示)してもよい。
なお、判断の基準(クライテリア)は、BLERに限られず、物理レイヤにおける参照信号受信電力(Layer 1 Reference Signal Received Power:L1-RSRP)であってもよい。また、RS測定の代わりに又はRS測定に加えて、下り制御チャネル(Physical Downlink Control Channel:PDCCH)などに基づいてビーム障害検出が実施されてもよい。BFD-RSは、UEによってモニタされるPDCCHのDMRSと擬似コロケーション(Quasi-Co-Location:QCL)であると期待されてもよい。
ここで、QCLとは、チャネルの統計的性質を示す指標である。例えば、ある信号/チャネルと他の信号/チャネルがQCLの関係である場合、これらの異なる複数の信号/チャネル間において、ドップラーシフト(Doppler shift)、ドップラースプレッド(Doppler spread)、平均遅延(average delay)、遅延スプレッド(delay spread)、空間パラメータ(Spatial parameter)(例えば、空間受信フィルタ/パラメータ(Spatial Rx Filter/Parameter)、空間送信フィルタ/パラメータ(Spatial Tx (transmission) Filter/Parameter))の少なくとも1つが同一である(これらの少なくとも1つに関してQCLである)と仮定できることを意味してもよい。
なお、空間受信パラメータは、UEの受信ビーム(例えば、受信アナログビーム)に対応してもよく、空間的QCLに基づいてビームが特定されてもよい。本開示におけるQCL(又はQCLの少なくとも1つの要素)は、spatial QCL(sQCL)で読み替えられてもよい。
BFD-RSに関する情報(例えば、RSのインデックス、リソース、数、ポート数、プリコーディングなど)、ビーム障害検出(BFD)に関する情報(例えば、上述の閾値)などは、上位レイヤシグナリングなどを用いてUEに設定(通知)されてもよい。BFD-RSに関する情報は、BFR用リソースに関する情報などと呼ばれてもよい。
本開示において、上位レイヤシグナリングは、例えば、Radio Resource Control(RRC)シグナリング、Medium Access Control(MAC)シグナリング、ブロードキャスト情報などのいずれか、又はこれらの組み合わせであってもよい。
MACシグナリングは、例えば、MAC制御要素(MAC Control Element(CE))、MAC Protocol Data Unit(PDU)などを用いてもよい。ブロードキャスト情報は、例えば、マスタ情報ブロック(Master Information Block:MIB)、システム情報ブロック(System Information Block:SIB)、最低限のシステム情報(Remaining Minimum System Information:RMSI)、その他のシステム情報(Other System Information:OSI)などであってもよい。
UEのMACレイヤは、UEのPHYレイヤからビーム障害インスタンス通知を受信した場合に、所定のタイマ(ビーム障害検出タイマと呼ばれてもよい)を開始してもよい。UEのMACレイヤは、当該タイマが満了するまでにビーム障害インスタンス通知を一定回数(例えば、RRCで設定されるbeamFailureInstanceMaxCount)以上受信したら、BFRをトリガ(例えば、後述のランダムアクセス手順のいずれかを開始)してもよい。
基地局は、UEからの通知がない(例えば、通知がない時間が所定時間を超える)場合、又はUEから所定の信号(ステップS104におけるビーム回復要求)を受信した場合に、当該UEがビーム障害を検出したと判断してもよい。
ステップS103において、UEはビーム回復のため、新たに通信に用いるための新候補ビーム(new candidate beam)のサーチを開始する。UEは、所定のRSを測定することによって、当該RSに対応する新候補ビームを選択してもよい。ステップS103において測定されるRSは、新候補ビーム識別のためのRS(New Candidate Beam Identification RS:NCBI-RS)、CBI-RS、Candidate Beam RS(CB-RS)などと呼ばれてもよい。NCBI-RSは、BFD-RSと同じであってもよいし、異なってもよい。なお、新候補ビームは、新規候補ビーム、候補ビーム又は新規ビームと呼ばれてもよい。
UEは、所定の条件を満たすRSに対応するビームを、新候補ビームとして決定してもよい。UEは、例えば、設定されたNCBI-RSのうち、L1-RSRPが閾値を超えるRSに基づいて、新候補ビームを決定してもよい。なお、判断の基準(クライテリア)は、L1-RSRPに限られない。L1-RSRP、L1-RSRQ、L1-SINR(信号対雑音干渉電力比)のいずれか少なくとも1つを用いて決定しても良い。SSBに関するL1-RSRPは、SS-RSRPと呼ばれてもよい。CSI-RSに関するL1-RSRPは、CSI-RSRPと呼ばれてもよい。同様に、SSBに関するL1-RSRQは、SS-RSRQと呼ばれてもよい。CSI-RSに関するL1-RSRQは、CSI-RSRQと呼ばれてもよい。また、同様に、SSBに関するL1-SINRは、SS-SINRと呼ばれてもよい。CSI-RSに関するL1-SINRは、CSI-SINRと呼ばれてもよい。
NCBI-RSに関する情報(例えば、RSのリソース、数、ポート数、プリコーディングなど)、新候補ビーム識別(NCBI)に関する情報(例えば、上述の閾値)などは、上位レイヤシグナリングなどを用いてUEに設定(通知)されてもよい。NCBI-RSに関する情報は、BFD-RSに関する情報に基づいて取得されてもよい。NCBI-RSに関する情報は、NCBI用リソースに関する情報などと呼ばれてもよい。
なお、BFD-RS、NCBI-RSなどは、無線リンクモニタリング参照信号(RLM-RS:Radio Link Monitoring RS)で読み替えられてもよい。
ステップS104において、新候補ビームを特定したUEは、ビーム回復要求(Beam Failure Recovery reQuest:BFRQ)を送信する。ビーム回復要求は、ビーム回復要求信号、ビーム障害回復要求信号などと呼ばれてもよい。
BFRQは、例えば、上り制御チャネル(Physical Uplink Control Channel:PUCCH)、ランダムアクセスチャネル(Physical Random Access Channel:PRACH)、上り共有チャネル(Physical Uplink Shared Channel:PUSCH)、コンフィギュアドグラント(configured grant)PUSCH、MAC CEの少なくとも1つを用いて送信されてもよい。
BFRQは、ステップS103において特定された新候補ビームの情報を含んでもよい。BFRQのためのリソースが、当該新候補ビームに関連付けられてもよい。ビームの情報は、ビームインデックス(Beam Index:BI)、所定の参照信号のポートインデックス、リソースインデックス(例えば、CSI-RSリソース指標(CSI-RS Resource Indicator:CRI)、SSBリソース指標(SSBRI))などを用いて通知されてもよい。
Rel.15 NRでは、衝突型ランダムアクセス(Random Access:RA)手順に基づくBFRであるCB-BFR(Contention-Based BFR)及び非衝突型ランダムアクセス手順に基づくBFRであるCF-BFR(Contention-Free BFR)が検討されている。CB-BFR及びCF-BFRでは、UEは、PRACHリソースを用いてプリアンブル(RAプリアンブル、ランダムアクセスチャネル(Physical Random Access Channel:PRACH)、RACHプリアンブルなどともいう)をBFRQとして送信してもよい。
また、NRでは、複数のPRACHフォーマット(PRACHプリアンブルフォーマット)が検討されている。各PRACHフォーマットを用いるRandom Access(RA)プリアンブルは、RACH OFDMシンボルを含む。更に、RAプリアンブルは、サイクリックプレフィックス(CP)、ガード期間(GP)の少なくとも1つを含んでもよい。例えば、PRACHフォーマット0~3は、RACH OFDMシンボルにおいて、長系列(long sequence)のプリアンブル系列を用いる。PRACHフォーマットA1~A3、B1~B4、C0、C2は、RACH OFDMシンボルにおいて、短系列(short sequence)のプリアンブル系列を用いる。
キャリアの周波数は、Frequency Range(FR)1及びFR2のいずれかの周波数範囲内であってもよい。FR1は、所定周波数よりも低い周波数範囲であり、FR2は、所定周波数よりも高い周波数範囲であってもよい。
また、上り制御チャネルは、PRACHと比較して時間領域においてより柔軟にリソースを設定可能となる。そのため、BFRQの送信に利用するチャネルとして、上り制御チャネル(PUCCH)を利用することも考えられる。また、MAC CE、PUSCHは、PRACHと比較して時間領域においてより柔軟にリソースを設定可能となる。そのため、BFRQの送信に利用するチャネルとして、MAC CE、PUSCHを利用することも考えられる。
ステップS105において、BFRQを検出した基地局は、UEからのBFRQに対する応答信号(gNBレスポンスなどと呼ばれてもよい)を送信する。当該応答信号には、1つ又は複数のビームについての再構成情報(例えば、DL-RSリソースの構成情報)が含まれてもよい。
当該応答信号は、例えばPDCCHのUE共通サーチスペースにおいて送信されてもよい。当該応答信号は、UEの識別子(例えば、セル-無線RNTI(Cell-Radio RNTI:C-RNTI))によってスクランブルされた巡回冗長検査(Cyclic Redundancy Check:CRC)を有するPDCCH(DCI)を用いて通知されてもよい。UEは、ビーム再構成情報に基づいて、使用する送信ビーム及び受信ビームの少なくとも一方を判断してもよい。
UEは、当該応答信号を、BFR用の制御リソースセット(COntrol REsource SET:CORESET)及びBFR用のサーチスペースセットの少なくとも一方に基づいてモニタしてもよい。例えば、UEは、個別に設定されたCORESET内のBFRサーチスペースにおいて、C-RNTIでスクランブルされたCRCを有するDCIを検出してもよい。
CB-BFRに関しては、UEが自身に関するC-RNTIに対応するPDCCHを受信した場合に、衝突解決(contention resolution)が成功したと判断されてもよい。
ステップS105の処理に関して、BFRQに対する基地局(例えば、gNB)からの応答(レスポンス)をUEがモニタするための期間が設定されてもよい。当該期間は、例えばgNB応答ウィンドウ、gNBウィンドウ、ビーム回復要求応答ウィンドウ、BFRQレスポンスウィンドウなどと呼ばれてもよい。UEは、当該ウィンドウ期間内において検出されるgNB応答がない場合、BFRQの再送を行ってもよい。
ステップS106において、UEは、基地局に対してビーム再構成が完了した旨を示すメッセージを送信してもよい。当該メッセージは、例えば、PUCCHによって送信されてもよいし、PUSCHによって送信されてもよい。
ステップS106において、UEは、PDCCHに用いられるTCI状態の設定を示すRRCシグナリングを受信してもよいし、当該設定のアクティベーションを示すMAC CEを受信してもよい。
ビーム回復成功(BR success)は、例えばステップS106まで到達した場合を表してもよい。一方で、ビーム回復失敗(BR failure)は、例えばBFRQ送信が所定の回数に達した、又はビーム障害回復タイマ(Beam-failure-recovery-Timer)が満了したことに該当してもよい。
なお、これらのステップの番号は説明のための番号に過ぎず、複数のステップがまとめられてもよいし、順番が入れ替わってもよい。また、BFRを実施するか否かは、上位レイヤシグナリングを用いてUEに設定されてもよい。
ところで、上述したように、既存のLTEシステムでは、複数のセルを利用して通信を行う場合に所定セル(例えば、プライマリセル)に対してのみBFRを行うことが規定されていたが、NRでは複数のセルに対してBFR手順を適用することが検討されている。
複数のセルを利用して通信を行う構成としては、例えば、バンド内キャリアアグリゲーション(Intra-band CA)、又はバンド間キャリアアグリゲーション(Inter-band CA)がある(図2参照)。
図2では、複数の周波数バンドとして、第1のバンド#1と第2のバンド#2を用いる場合を示している。なお、適用する周波数バンドは2つに限られず、周波数バンド(又は、周波数領域)を3つ以上に区分してもよい。
図2では、第1のバンド#1にCC#mとCC#nが設定され、第2のバンド#2にCC#pとCC#qが設定される場合を示している。CC#mとCC#n間のCA、又はCC#mとCC#n間のCAはバンド内CAに相当する。一方で、第1のバンド#1に設定されたCC(例えば、CC#m又はCC#n)と、第2のバンドに設定されたCC(例えば、CC#p又はCC#q)との間のCAはバンド間CAに相当する。
また、第1のバンドは、第1の周波数範囲(FR1)に相当し、第2のバンドは、第2の周波数範囲(FR2)に相当する構成としてもよい。例えば、FR1は、6GHz以下の周波数帯(サブ6GHz(sub-6GHz))であってもよいし、FR2は、24GHzよりも高い周波数帯(above-24GHz)であってもよい。
FR1は、サブキャリア間隔(Sub-Carrier Spacing:SCS)として15、30及び60kHzのうちから少なくとも1つが用いられる周波数レンジと定義されてもよいし、FR2は、SCSとして60及び120kHzのうちから少なくとも1つが用いられる周波数レンジと定義されてもよい。なお、FR1及びFR2の周波数帯、定義などはこれらに限られず、例えばFR1がFR2よりも高い周波数帯であってもよい。FR1を利用するセルと、FR2を利用するセルは、異なるニューメロロジー(例えば、サブキャリア間隔等)を適用する構成としてもよい。
上述したように、複数のセル(例えば、SCell)に対してBFR手順を適用する場合を想定する。かかる場合、あるセルにおいてビーム障害が発生した場合、UEは、BFRQをネットワーク(例えば、基地局)へ送信すると共に、新候補ビームを決定して当該新候補ビームに関する情報を送信することが想定される。
UEは、新候補ビームを決定するために、所定のRSを測定することが必要となる。しかし、複数のセルにおけるBFR手順がサポートされる場合、新候補ビームの決定に利用するRSの設定、又は新候補ビームの決定方法をどのように制御するかが問題となる。例えば、新候補ビーム用のRSが設定されない場合、報告する新候補ビームを決定するためにどのRSを適用するかが問題となる。
本発明者等は、新候補ビーム用RSの設定又は選択について検討し本願発明を着想した。
以下、本開示に係る実施形態について、図面を参照して詳細に説明する。以下の各態様は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。
なお、以下の説明では、新候補ビーム決定に利用する測定タイプとして、L1-RSRPを例に挙げて説明するが、適用可能な測定タイプはこれに限られない。他にも、L1-RSRQ、L1-SINRを適用してもよいし、L1-RSRPとL1-RSRQとL1-RSRQとL1-SINRの少なくとも2つを組み合わせて適用してもよい。
また、以下の説明において、新候補ビーム用RSは、新候補ビーム決定用のRS、新候補ビーム決定用に設定されるRS、new beam identification RSと読み替えてもよい。また、以下の説明において、参照信号のセット(RSセット)又は組み合わせは、単に参照信号(RS)と読み替えられてもよいし、参照信号(RS)は、参照信号のセット(RSセット)又は組み合わせと読み替えられてもよい。また、参照信号(RS)は、SSB、CSI-RS、及びTRSの少なくとも一つで読み替えてもよい。
(第1の態様)
第1の態様では、所定セル(例えば、SCell)のBFR手順において、新候補ビーム用RSの設定又は選択について説明する。
例えば、以下のケース1~5の少なくとも一つを利用して新候補ビーム用RSの設定又は選択を制御してもよい。
<ケース1>
新候補ビーム用RSは常に設定される構成としてもよい。例えば、UEは、所定セルのBFR手順(例えば、BFD RS)が設定される場合、当該所定セル(又は、他のセル)において新候補ビーム用RSが常に設定されると想定してもよい。他のセルは、所定セルと同じバンドに属するセル(又は、CC)であってもよい。
ネットワーク(例えば、基地局)は、上位レイヤシグナリング等により新候補ビーム用RSをUEに設定する。UEは、新候補ビーム用RSが設定されない場合、当該BFR手順がエラーであると判断してもよい。この場合、UEは、新候補ビームが把握できない旨を情報を基地局に送信してもよい。
このように、所定セルのBFR手順において新候補ビーム用RSが常に設定される構成とすることにより、ビーム障害を検出した場合に新候補ビーム用RSの測定結果に基づいてUEに好適となる新候補ビームの情報を基地局に適切に報告することができる。
以下のケース2-6では、新候補ビーム用RSが上位レイヤシグナリング等で設定されない場合を想定する。
<ケース2>
新候補ビーム用RSとして、ビーム障害検出用RS(BFD RS)を適用してもよい。例えば、UEは、所定セルのBFR手順(例えば、BFD RS)が設定され、新候補ビーム用RSが設定されない場合、新候補ビームRSがBFD RSと同じであると判断してもよい。
<ケース3>
新候補ビーム用RSとして、制御リソースセットに対応する(又は、制御リソースセットに関連付けられた)所定RSを適用してもよい。例えば、UEは、所定セルのBFR手順(例えば、BFD RS)が設定され、新候補ビーム用RSが設定されない場合、新候補ビームRSが当該セルで設定された制御リソースセットに対応する所定RSであると認識してもよい。
所定RSは、例えば、同期信号ブロック(例えば、SSB、又はSS/PBCH)であってもよい。また、制御リソースセットは、当該セルにおいて設定された一部の制御リソースセットであってもよいし、設定されば全ての制御リソースセットであってもよい。制御リソースセットと所定RSの関連付けに関する情報は、基地局からUEに上位レイヤシグナリング及びMAC制御信号の少なくとも一つにより通知されてもよい。
これにより、UEは、BFR手順が設定された場合に新候補ビーム用RSが設定されない場合であっても、所定RSを利用して新候補ビームに関する情報を基地局に報告することができる。
<ケース4>
新候補ビーム用RSとして、下りチャネルの送信設定指示状態(Transmission Configuration Indication state(TCI状態))に設定される所定RSのセット(又は、所定RSの組み合わせ)を適用してもよい。例えば、UEは、所定セルのBFR手順(例えば、BFD RS)が設定され、新候補ビーム用RSが設定されない場合、新候補ビームRSが当該セル(又は、他のセル)で設定された所定RSのセットであると認識してもよい。
下りチャネルは、下り制御チャネル(例えば、PDCCH)及び下り共有チャネル(例えば、PDSCH)の少なくとも一つであってもよい。所定RSは、チャネル状態情報(例えば、CSI-RS)であってもよい。また、CSI-RSは、周期的CSI-RS(例えば、P-CSI-RS)、非周期的CSI-RS(例えば、A-CSI-RS)、及びセミパーシステントCSI-RS(例えば、SP-CSI-RS)の少なくとも一つであってもよい。
また、所定RSは、下りチャネルのTCI状態に対応するRS(又は、TCI状態に対応して設定されるRS)であってもよい。
[TCI状態]
TCI状態とは、信号/チャネルの疑似コロケーション(Quasi-Co-Location(QCL))に関する情報であり、空間受信パラメータ、空間関係情報(Spatial Relation Information(SRI))などと呼ばれてもよい。TCI状態は、チャネルごと又は信号ごとにUEに設定されてもよい。
QCLとは、信号/チャネルの統計的性質を示す指標である。例えば、ある信号/チャネルと他の信号/チャネルがQCLの関係である場合、これらの異なる複数の信号/チャネル間において、ドップラーシフト(Doppler shift)、ドップラースプレッド(Doppler spread)、平均遅延(average delay)、遅延スプレッド(delay spread)、空間パラメータ(spatial parameter)(例えば、空間受信パラメータ(spatial Rx parameter))の少なくとも1つが同一である(これらの少なくとも1つに関してQCLである)と仮定できることを意味してもよい。
なお、空間受信パラメータは、UEの受信ビーム(例えば、受信アナログビーム)に対応してもよく、空間的QCLに基づいてビームが特定されてもよい。本開示におけるQCL(又はQCLの少なくとも1つの要素)は、sQCL(spatial QCL)で読み替えられてもよい。
QCLは、複数のタイプ(QCLタイプ)が規定されてもよい。例えば、同一であると仮定できるパラメータ(又はパラメータセット)が異なる4つのQCLタイプA-Dが設けられてもよく、以下に当該パラメータについて示す:
・QCLタイプA(QCL-A):ドップラーシフト、ドップラースプレッド、平均遅延及び遅延スプレッド、
・QCLタイプB(QCL-B):ドップラーシフト及びドップラースプレッド、
・QCLタイプC(QCL-C):ドップラーシフト及び平均遅延、
・QCLタイプD(QCL-D):空間受信パラメータ。
所定の制御リソースセット(Control Resource Set(CORESET))、チャネル又は参照信号が、別のCORESET、チャネル又は参照信号と特定のQCL(例えば、QCLタイプD)の関係にあるとUEが想定することは、QCL想定(QCL assumption)と呼ばれてもよい。
UEは、信号/チャネルのTCI状態又はQCL想定に基づいて、当該信号/チャネルの送信ビーム(Txビーム)及び受信ビーム(Rxビーム)の少なくとも1つを決定してもよい。
TCI状態は、例えば、対象となるチャネル(言い換えると、当該チャネル用の参照信号(Reference Signal(RS)))と、別の信号(例えば、別の参照信号(Reference Signal(RS)))とのQCLに関する情報であってもよい。TCI状態は、上位レイヤシグナリング(例えば、RRCシグナリング)、Medium Access Control(MAC)シグナリング、及び物理レイヤシグナリングの少なくとも一つによって設定(指示)されてもよい。
MACシグナリングは、例えば、MAC制御要素(MAC Control Element(MAC CE))、MAC Protocol Data Unit(PDU)などを用いてもよい。物理レイヤシグナリングは、例えば、下り制御情報(Downlink Control Information(DCI))であってもよい。
TCI状態又は空間関係が設定(指定)されるチャネルは、例えば、下り共有チャネル(PDSCH))、下り制御チャネル(PDCCH))、上り共有チャネル(PUSCH))、上り制御チャネル(PUCCH))の少なくとも1つであってもよい。
また、当該チャネルとQCL関係となるRSは、例えば、同期信号ブロック(SSB)、チャネル状態情報参照信号(CSI-RS)、測定用参照信号(Sounding Reference Signal(SRS))、トラッキング用CSI-RS(Tracking Reference Signal(TRS)とも呼ぶ)、QCL検出用参照信号(QRSとも呼ぶ)などの少なくとも1つであってもよい。
上位レイヤシグナリングによって設定されるTCI状態の情報要素(RRCの「TCI-state IE」)は、1つ又は複数のQCL情報(「QCL-Info」)を含んでもよい。QCL情報は、QCL関係となるRSに関する情報(RS関係情報)及びQCLタイプを示す情報(QCLタイプ情報)の少なくとも1つを含んでもよい。RS関係情報は、RSのインデックス(例えば、SSBインデックス、ノンゼロパワーCSI-RS(Non-Zero-Power(NZP) CSI-RS)リソースID(Identifier))、RSが位置するセルのインデックス、RSが位置するBandwidth Part(BWP)のインデックスなどの情報を含んでもよい。
PDCCH及びPDSCHの少なくとも1つのTCI状態として、QCLタイプAのRSとQCLタイプDのRSの両方、又はQCLタイプAのRSのみがUEに対して設定されてもよい。
QCLタイプAのRSとしてTRSが設定される場合、TRSは、PDCCH又はPDSCHのDMRSと異なり、長時間にわたって周期的に同じTRSが送信されることが想定される。UEは、TRSを測定し、平均遅延、遅延スプレッドなどを計算することができる。
PDCCH又はPDSCHのDMRSのTCI状態に、QCLタイプAのRSとして前記TRSを設定されたUEは、PDCCH又はPDSCHのDMRSと前記TRSのQCLタイプAのパラメータ(平均遅延、遅延スプレッドなど)が同じであると想定できるので、前記TRSの測定結果から、PDCCH又はPDSCHのDMRSのタイプAのパラメータ(平均遅延、遅延スプレッドなど)を求めることができる。UEは、PDCCH及びPDSCHの少なくとも1つのチャネル推定を行う際に、前記TRSの測定結果を用いて、より精度の高いチャネル推定を行うことができる。
QCLタイプDのRSを設定されたUEは、QCLタイプDのRSを用いて、UE受信ビーム(空間ドメイン受信フィルタ、UE空間ドメイン受信フィルタ)を決定できる。
[PDCCHのためのTCI状態]
PDCCH(又はPDCCHに関連する復調用参照信号(DeModulation Reference Signal(DMRS))アンテナポート)及び所定のRSとのQCLに関する情報は、PDCCHのためのTCI状態などと呼ばれてもよい。
UEは、UE固有のPDCCH(CORESET)のためのTCI状態を、上位レイヤシグナリングに基づいて判断してもよい。例えば、UEに対して、CORESETごとに、1つ又は複数(K個)のTCI状態がRRCシグナリングによって設定されてもよい。
UEは、各CORESETに対し、RRCシグナリングによって設定された複数のTCI状態の1つを、MAC CEによってアクティベートされてもよい。当該MAC CEは、UE固有PDCCH用TCI状態指示MAC CE(TCI State Indication for UE-specific PDCCH MAC CE)と呼ばれてもよい。UEは、CORESETのモニタを、当該CORESETに対応するアクティブなTCI状態に基づいて実施してもよい。
[PDSCHのためのTCI状態]
PDSCH(又はPDSCHに関連するDMRSアンテナポート)及び所定のRSとのQCLに関する情報は、PDSCHのためのTCI状態などと呼ばれてもよい。
UEは、PDSCH用のM(M≧1)個のTCI状態(M個のPDSCH用のQCL情報)を、上位レイヤシグナリングによって通知(設定)されてもよい。なお、UEに設定されるTCI状態の数Mは、UE能力(UE capability)及びQCLタイプの少なくとも1つによって制限されてもよい。
PDSCHのスケジューリングに用いられるDCIは、当該PDSCH用のTCI状態を示す所定のフィールド(例えば、TCIフィールド、TCI状態フィールドなどと呼ばれてもよい)を含んでもよい。当該DCIは、1つのセルのPDSCHのスケジューリングに用いられてもよく、例えば、DL DCI、DLアサインメント、DCIフォーマット1_0、DCIフォーマット1_1などと呼ばれてもよい。
TCIフィールドがDCIに含まれるか否かは、基地局からUEに通知される情報によって制御されてもよい。当該情報は、DCI内にTCIフィールドが存在するか否か(present or absent)を示す情報(例えば、TCI存在情報、DCI内TCI存在情報、上位レイヤパラメータTCI-PresentInDCI)であってもよい。当該情報は、例えば、上位レイヤシグナリングによってUEに設定されてもよい。
8種類を超えるTCI状態がUEに設定される場合、MAC CEを用いて、8種類以下のTCI状態がアクティベート(又は指定)されてもよい。当該MAC CEは、UE固有PDSCH用TCI状態アクティベーション/ディアクティベーションMAC CE(TCI States Activation/Deactivation for UE-specific PDSCH MAC CE)と呼ばれてもよい。DCI内のTCIフィールドの値は、MAC CEによりアクティベートされたTCI状態の一つを示してもよい。
UEが、PDSCHをスケジュールするCORESET(PDSCHをスケジュールするPDCCH送信に用いられるCORESET)に対して、「有効(enabled)」とセットされたTCI存在情報を設定される場合、UEは、TCIフィールドが、当該CORESET上で送信されるPDCCHのDCIフォーマット1_1内に存在すると想定してもよい。
PDSCHをスケジュールするCORESETに対して、TCI存在情報が設定されない、又は、当該PDSCHがDCIフォーマット1_0によってスケジュールされる場合において、DL DCI(当該PDSCHをスケジュールするDCI)の受信と当該DCIに対応するPDSCHの受信との間の時間オフセットが閾値以上である場合、UEは、PDSCHアンテナポートのQCLを決定するために、当該PDSCHに対するTCI状態又はQCL想定が、当該PDSCHをスケジュールするPDCCH送信に用いられるCORESETに対して適用されるTCI状態又はQCL想定と同一であると想定してもよい。
例えば、UEは、上位レイヤシグナリングで設定されるTCI状態に対応する所定RSのセット(例えば、64個)を新候補ビーム用RSとして利用してもよい。この場合、UEは、所定RSセットの中から所定条件を満たす所定RS(例えば、RSRPが最も高いRS)を選択し、当該所定RSに関する情報(例えば、RSインデックス)を基地局に報告してもよい。
あるいは、UEは、上位レイヤシグナリングで設定されたRSのセットのうち、MAC CEでアクティブ化されたRSのセット(例えば、8個)を新候補ビーム用RSとして利用してもよい。
このように、UEは、BFR手順が設定された場合に新候補ビーム用RSが設定されない場合であっても、所定RSのセットを利用して新候補ビームに関する情報を基地局に報告することができる。
<ケース5>
新候補ビーム用RSとして、所定セル(又は、所定CC)に設定される所定RSのセット、又は他のセルに設定される所定RSのセットを適用してもよい。例えば、UEは、所定セルのBFR手順(例えば、BFD RS)が設定され、新候補ビーム用RSが設定されない場合、新候補ビームRSが当該セル(又は、他のセル)で設定された所定RSのセットであると認識してもよい。
所定RSは、同期信号ブロック(例えば、SSB、又はSS/PBCH)であってもよい。他のセルは、所定セルと同じバンドに属するセル(又は、CC)であってもよい。各セルに設定されるSSBに関する情報は、基地局からUEに上位レイヤシグナリング及びMAC制御信号の少なくとも一つにより通知されてもよい。
これにより、UEは、BFR手順が設定された場合に新候補ビーム用RSが設定されない場合であっても、所定RSのセットを利用して新候補ビームに関する情報を基地局に報告することができる。
また、UEは、所定セルと他のセルが所定のQCL関係(例えば、タイプD-QCL関係)を具備する場合に、他のセルの所定RSを新候補ビーム用RSとして利用できる構成としてもよい。これにより、所定セルでビーム障害が発生した場合、所定のQCL関係を有する他のセルの新候補ビーム用RSに基づいて新候補ビームを選択できるため、新候補ビームを適切に選択することが可能となる。
(第2の態様)
第2の態様では、所定セル(例えば、SCell)のBFR手順において、新候補ビーム用RSの設定又は選択の具体例について説明する。なお、以下の説明では、第1の態様で示したケース1-5の少なくとも一つを組み合わせて適用することも可能である。
<態様1>
図3は、CC#m(又は、セル#m)と、CC#n(又は、セル#n)のうち、一方のCC(ここでは、CC#m)に新候補ビーム用RSが設定されず、他方のCC(ここでは、CC#n)に新候補ビーム用RSが設定される場合の一例を示している。また、CC#mとCC#nは、同じ周波数バンドに属するCCであってもよい。あるいは、CC#mとCC#nは、バンド内CA(intra-band CA)が適用されたCCであってもよい。
UEは、CC#mにおいてビーム障害を検出した場合、当該ビーム障害の検出を報告すると共に、新規候補ビームに関する情報を基地局に報告する。なお、ビーム障害の検出と新候補ビームに関する情報の報告は、異なるタイミングで行ってもよいし、同じタイミングで行ってもよい。ビーム障害の報告又は新候補ビームに関する情報の報告は、CC#mを利用して行ってもよいし、他のCC(例えば、CC#n)を利用して行ってもよい。
新候補ビームに関する情報は、所定のRSインデックス又はビームインデックスを示す情報であってもよい。あるいは、新候補ビームに関する情報は、新候補ビームが存在しない(例えば、所定条件を満たす(例えば、RSRPが所定値以上となる)ビーム又はRSが存在しない)ことを示す情報であってもよい。
UEは、ビーム障害を検出した場合、新候補ビーム用RSに基づいて報告する所定の新候補ビーム用RS(例えば、インデックス)を決定する。ビーム障害を検出したCC(例えば、CC#m)において、新候補ビーム用RSが上位レイヤシグナリング等で設定されている場合、当該設定された新候補ビーム用RSの測定結果(例えば、RSRP、RSSI、RSRQ及びSINRの少なくとも一つ)に応じて所定のRSインデックスを決定する。
UEは、CC#mにおいて新候補ビーム用RSが設定されない(又は、存在しない)場合、他のCC(例えば、CC#n)で設定された新候補ビーム用RSを利用してもよい。つまり、UEは、CC#mにおける新候補ビーム用RSのセットが、CC#nで設定された新候補ビーム用RSセットであると判断してもよい。これにより、CC#mにおいて、新候補ビーム用RSが設定されない場合であっても、CC#mで発生したビーム障害に対して新候補ビームに関する情報を報告することができる。
なお、CC#m以外の複数のCCにおいて新候補ビーム用RSが設定されている場合、UEは、複数のCCのうち所定CCで設定された新候補ビーム用RSを、CC#mにおける新候補ビーム用RSとして適用してもよい。所定CCは、CCインデックス(又は、セルインデックス)に基づいて決定してもよいし、基地局から通知された情報に基づいて決定してもよいし、CC(又は、セル)の種別に基づいて決定してもよい。
例えば、UEは、CCインデックスが最小(又は、最大)のCCで設定された新候補ビーム用RSを、CC#mにおける新候補ビーム用RSに決定してもよい。あるいは、UEは、所定種別のCC(例えば、PCell又はPSCell)で設定された新候補ビーム用RSを、CC#mにおける新候補ビーム用RSに決定してもよい。あるいは、CC#mの新候補ビーム用RSとして利用するCCを基地局からUEに通知してもよい。
あるいは、UEは、CC#mに設定される所定RSと、CC#nに設定される新候補ビーム用RSが所定のQCL関係を具備する場合、CC#mに設定される所定RSを新候補ビーム用RSとして利用してもよい。
<態様2>
図4は、CC#m(又は、セル#m)と、CC#n(又は、セル#n)のうち、少なくとも一方のCC(ここでは、CC#n)に新候補ビーム用RSが設定されない場合の一例を示している。また、CC#mとCC#nに所定RS(又は、RSセット)が設定される場合を示している。CC#mに設定される所定RSセットは、新候補ビーム用RSであってもよいし、他のRSセットでもよい。
ここでは、CC#mのPDCCHのTCI状態が、当該CC#mの参照信号(TRS)とQCL({QCL-A:CC#mのTRS、QCL-D:CC#mのTRS})であると設定される場合を想定する。
また、CC#nのPDCCHのTCI状態が、当該CC#nの参照信号(TRS)とQCL({QCL-A:CC#nのTRS、QCL-D:CC#nのTRS})であると設定される場合(ケースA)と、一部(例えば、QCL-D)がCC#mの参照信号(TRS)とQCL({QCL-A:CC#nのTRS、QCL-D:CC#mのTRS})であると設定される場合(ケースB)を想定する。
UEは、CC#nにおいてビーム障害を検出した(又は、CC#nにBFD RSが設定された)場合、当該ビーム障害の検出を報告すると共に、新規候補ビームに関する情報を基地局に報告する。
一方で、CC#nにおいて新候補ビーム用RSが設定されない(又は、存在しない)場合を想定する。かかる場合、UEは、以下のオプションA及びオプションBの少なくとも一方を適用してもよい。
[オプションA]
UEは、CC#nにおいて所定RS(又は、所定RSセット)が設定されている場合、当該所定RSをCC#nにおける新候補ビーム用RSとして利用してもよい。所定RSは、新候補ビーム用RSとしてではなく、UEに設定されたRSに相当する。つまり、UEは、CC#nで設定された所定RSセットを、CC#nにおける新候補ビーム用RSのセットであると判断してもよい。
この場合、UEは、ビーム障害を検出したCC#nで設定される所定RSに基づいて報告する新候補ビームを決定することができる。
[オプションB]
他のCC(例えば、CC#m)において所定RS(又は、所定RSセット)が設定されている場合、当該所定RSをCC#nにおける新候補ビーム用RSとして利用してもよい。つまり、UEは、CC#nにおける新候補ビーム用RSのセットが、CC#mで設定された所定RSセットであると判断してもよい。
CC#mとCC#nは、同じ周波数バンドに属するCCであってもよい。あるいは、CC#mとCC#nは、バンド内CA(intra-band CA)が適用されたCCであってもよい。この場合、UEは、ビーム障害を検出したCC#nとは異なるCC(例えば、CC#n)で設定される所定RSに基づいて報告する新候補ビームを決定することができる。
なお、CC#nに設定される所定RSと、他のCC(例えば、CC#m)に設定される所定RS(例えば、新候補ビーム用RS又は他の用途のRS)は所定のQCL関係を具備していてもよい(例えば、ケースB)。例えば、オプションBは、CC#nと他のCC(例えば、CC#m)が所定のQCL関係を具備するケース(例えば、ケースB)に限定してもよい。この場合、UEは、ケースAについて、オプションBを適用しないように制御してもよい。
また、UEは、ケースA及びケースBに応じて、オプションAとオプションBを切り替えて適用してもよい。あるいは、ケースに関わらず、オプションAとオプションBの一方を適用する構成としてもよい。適用するケース及びオプションの少なくとも一つは、基地局からUEに設定してもよい。
<態様3>
図5は、複数のCC(例えば、CC#m、CC#n、CC#p)がグループ化され、当該グループ内に含まれる少なくとも一つのCCに新候補ビーム用RSが設定される場合の一例を示している。ここでは、CC#mに新候補ビーム用RSが設定され、CC#n及びCC#pに新候補ビーム用RSが設定されない場合を示している。なお、新候補ビーム用RSが設定されるCC数は1つに限られない。
UEは、複数のCCグループが設定され、当該CCグループに含まれる少なくとも一つのCCにおいて新候補ビーム用RSが設定されると想定してもよい。CCグループに関する情報は、基地局からUEに上位レイヤシグナリング等を利用して設定してもよい。
あるいは、UEは、設定された全てのSCellが同じグループに含まれると想定してもよい。あるいは、UEは、所定範囲(例えば、同じ周波数バンド、又はセカンダリセルグループ)に含まれるSCellを同じグループに含まれると想定してもよい。
また、基地局は、グループ内で新候補ビーム用RSが設定されるCCに関する情報を上位レイヤシグナリング等でUEに通知してもよい。あるいは、基地局は、グループ内に含まれる各CCにおいて新候補ビーム用RSとして適用する所定RSに関する情報(例えば、RSインデックス、又は当該所定RSが設定されるCCに関する情報等)を上位レイヤシグナリング等でUEに通知してもよい。
UEは、ビーム障害が発生した(又は、BFD RSが設定された)CC#nにおいて、新候補ビーム用RSが設定されない場合、他のCC(例えば、CC#m)で設定された新候補ビーム用RSを利用してもよい。つまり、UEは、CC#nにおける新候補ビーム用RSのセットが、同じCCグループ#1に含まれる他のCC#mで設定された新候補ビーム用RSセットであると判断してもよい。
あるいは、UEは、CC#nにおける新候補ビーム用RSのセットが、当該CC#nに設定された所定RSセット、又は同じCCグループ#1に含まれる他のCC#mで設定された所定RSセットであると判断してもよい。
このように、同じCCグループに含まれる他のCCの新候補ビーム用RS又は所定RSセットを、所定CCの新候補ビーム用RSとして利用することにより、各CCに新候補ビーム用RSの設定が不要となる。これにより、リソースの利用効率を向上することができる。
(無線通信システム)
以下、本開示の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本開示の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。
図6は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1は、Third Generation Partnership Project(3GPP)によって仕様化されるLong Term Evolution(LTE)、5th generation mobile communication system New Radio(5G NR)などを用いて通信を実現するシステムであってもよい。
また、無線通信システム1は、複数のRadio Access Technology(RAT)間のデュアルコネクティビティ(マルチRATデュアルコネクティビティ(Multi-RAT Dual Connectivity(MR-DC)))をサポートしてもよい。MR-DCは、LTE(Evolved Universal Terrestrial Radio Access(E-UTRA))とNRとのデュアルコネクティビティ(E-UTRA-NR Dual Connectivity(EN-DC))、NRとLTEとのデュアルコネクティビティ(NR-E-UTRA Dual Connectivity(NE-DC))などを含んでもよい。
EN-DCでは、LTE(E-UTRA)の基地局(eNB)がマスタノード(Master Node(MN))であり、NRの基地局(gNB)がセカンダリノード(Secondary Node(SN))である。NE-DCでは、NRの基地局(gNB)がMNであり、LTE(E-UTRA)の基地局(eNB)がSNである。
無線通信システム1は、同一のRAT内の複数の基地局間のデュアルコネクティビティ(例えば、MN及びSNの双方がNRの基地局(gNB)であるデュアルコネクティビティ(NR-NR Dual Connectivity(NN-DC)))をサポートしてもよい。
無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する基地局12(12a-12c)と、を備えてもよい。ユーザ端末20は、少なくとも1つのセル内に位置してもよい。各セル及びユーザ端末20の配置、数などは、図に示す態様に限定されない。以下、基地局11及び12を区別しない場合は、基地局10と総称する。
ユーザ端末20は、複数の基地局10のうち、少なくとも1つに接続してもよい。ユーザ端末20は、複数のコンポーネントキャリア(Component Carrier(CC))を用いたキャリアアグリゲーション(Carrier Aggregation(CA))及びデュアルコネクティビティ(DC)の少なくとも一方を利用してもよい。
各CCは、第1の周波数帯(Frequency Range 1(FR1))及び第2の周波数帯(Frequency Range 2(FR2))の少なくとも1つに含まれてもよい。マクロセルC1はFR1に含まれてもよいし、スモールセルC2はFR2に含まれてもよい。例えば、FR1は、6GHz以下の周波数帯(サブ6GHz(sub-6GHz))であってもよいし、FR2は、24GHzよりも高い周波数帯(above-24GHz)であってもよい。なお、FR1及びFR2の周波数帯、定義などはこれらに限られず、例えばFR1がFR2よりも高い周波数帯に該当してもよい。
また、ユーザ端末20は、各CCにおいて、時分割複信(Time Division Duplex(TDD))及び周波数分割複信(Frequency Division Duplex(FDD))の少なくとも1つを用いて通信を行ってもよい。
複数の基地局10は、有線(例えば、Common Public Radio Interface(CPRI)に準拠した光ファイバ、X2インターフェースなど)又は無線(例えば、NR通信)によって接続されてもよい。例えば、基地局11及び12間においてNR通信がバックホールとして利用される場合、上位局に該当する基地局11はIntegrated Access Backhaul(IAB)ドナー、中継局(リレー)に該当する基地局12はIABノードと呼ばれてもよい。
基地局10は、他の基地局10を介して、又は直接コアネットワーク30に接続されてもよい。コアネットワーク30は、例えば、Evolved Packet Core(EPC)、5G Core Network(5GCN)、Next Generation Core(NGC)などの少なくとも1つを含んでもよい。
ユーザ端末20は、LTE、LTE-A、5Gなどの通信方式の少なくとも1つに対応した端末であってもよい。
無線通信システム1においては、直交周波数分割多重(Orthogonal Frequency Division Multiplexing(OFDM))ベースの無線アクセス方式が利用されてもよい。例えば、下りリンク(Downlink(DL))及び上りリンク(Uplink(UL))の少なくとも一方において、Cyclic Prefix OFDM(CP-OFDM)、Discrete Fourier Transform Spread OFDM(DFT-s-OFDM)、Orthogonal Frequency Division Multiple Access(OFDMA)、Single Carrier Frequency Division Multiple Access(SC-FDMA)などが利用されてもよい。
無線アクセス方式は、波形(waveform)と呼ばれてもよい。なお、無線通信システム1においては、UL及びDLの無線アクセス方式には、他の無線アクセス方式(例えば、他のシングルキャリア伝送方式、他のマルチキャリア伝送方式)が用いられてもよい。
無線通信システム1では、下りリンクチャネルとして、各ユーザ端末20で共有される下り共有チャネル(Physical Downlink Shared Channel(PDSCH))、ブロードキャストチャネル(Physical Broadcast Channel(PBCH))、下り制御チャネル(Physical Downlink Control Channel(PDCCH))などが用いられてもよい。
また、無線通信システム1では、上りリンクチャネルとして、各ユーザ端末20で共有される上り共有チャネル(Physical Uplink Shared Channel(PUSCH))、上り制御チャネル(Physical Uplink Control Channel(PUCCH))、ランダムアクセスチャネル(Physical Random Access Channel(PRACH))などが用いられてもよい。
PDSCHによって、ユーザデータ、上位レイヤ制御情報、System Information Block(SIB)などが伝送される。PUSCHによって、ユーザデータ、上位レイヤ制御情報などが伝送されてもよい。また、PBCHによって、Master Information Block(MIB)が伝送されてもよい。
PDCCHによって、下位レイヤ制御情報が伝送されてもよい。下位レイヤ制御情報は、例えば、PDSCH及びPUSCHの少なくとも一方のスケジューリング情報を含む下り制御情報(Downlink Control Information(DCI))を含んでもよい。
なお、PDSCHをスケジューリングするDCIは、DLアサインメント、DL DCIなどと呼ばれてもよいし、PUSCHをスケジューリングするDCIは、ULグラント、UL DCIなどと呼ばれてもよい。なお、PDSCHはDLデータで読み替えられてもよいし、PUSCHはULデータで読み替えられてもよい。
PDCCHの検出には、制御リソースセット(COntrol REsource SET(CORESET))及びサーチスペース(search space)が利用されてもよい。CORESETは、DCIをサーチするリソースに対応する。サーチスペースは、PDCCH候補(PDCCH candidates)のサーチ領域及びサーチ方法に対応する。1つのCORESETは、1つ又は複数のサーチスペースに関連付けられてもよい。UEは、サーチスペース設定に基づいて、あるサーチスペースに関連するCORESETをモニタしてもよい。
1つのサーチスペースは、1つ又は複数のアグリゲーションレベル(aggregation Level)に該当するPDCCH候補に対応してもよい。1つ又は複数のサーチスペースは、サーチスペースセットと呼ばれてもよい。なお、本開示の「サーチスペース」、「サーチスペースセット」、「サーチスペース設定」、「サーチスペースセット設定」、「CORESET」、「CORESET設定」などは、互いに読み替えられてもよい。
PUCCHによって、チャネル状態情報(Channel State Information(CSI))、送達確認情報(例えば、Hybrid Automatic Repeat reQuest ACKnowledgement(HARQ-ACK)、ACK/NACKなどと呼ばれてもよい)及びスケジューリングリクエスト(Scheduling Request(SR))の少なくとも1つを含む上り制御情報(Uplink Control Information(UCI))が伝送されてもよい。PRACHによって、セルとの接続確立のためのランダムアクセスプリアンブルが伝送されてもよい。
なお、本開示において下りリンク、上りリンクなどは「リンク」を付けずに表現されてもよい。また、各種チャネルの先頭に「物理(Physical)」を付けずに表現されてもよい。
無線通信システム1では、同期信号(Synchronization Signal(SS))、下りリンク参照信号(Downlink Reference Signal(DL-RS))などが伝送されてもよい。無線通信システム1では、DL-RSとして、セル固有参照信号(Cell-specific Reference Signal(CRS))、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、復調用参照信号(DeModulation Reference Signal(DMRS))、位置決定参照信号(Positioning Reference Signal(PRS))、位相トラッキング参照信号(Phase Tracking Reference Signal(PTRS))などが伝送されてもよい。
同期信号は、例えば、プライマリ同期信号(Primary Synchronization Signal(PSS))及びセカンダリ同期信号(Secondary Synchronization Signal(SSS))の少なくとも1つであってもよい。SS(PSS、SSS)及びPBCH(及びPBCH用のDMRS)を含む信号ブロックは、SS/PBCHブロック、SS Block(SSB)などと呼ばれてもよい。なお、SS、SSBなども、参照信号と呼ばれてもよい。
また、無線通信システム1では、上りリンク参照信号(Uplink Reference Signal(UL-RS))として、測定用参照信号(Sounding Reference Signal(SRS))、復調用参照信号(DMRS)などが伝送されてもよい。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。
(基地局)
図7は、一実施形態に係る基地局の構成の一例を示す図である。基地局10は、制御部110、送受信部120、送受信アンテナ130及び伝送路インターフェース(transmission line interface)140を備えている。なお、制御部110、送受信部120及び送受信アンテナ130及び伝送路インターフェース140は、それぞれ1つ以上が備えられてもよい。
なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、基地局10は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。
制御部110は、基地局10全体の制御を実施する。制御部110は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。
制御部110は、信号の生成、スケジューリング(例えば、リソース割り当て、マッピング)などを制御してもよい。制御部110は、送受信部120、送受信アンテナ130及び伝送路インターフェース140を用いた送受信、測定などを制御してもよい。制御部110は、信号として送信するデータ、制御情報、系列(sequence)などを生成し、送受信部120に転送してもよい。制御部110は、通信チャネルの呼処理(設定、解放など)、基地局10の状態管理、無線リソースの管理などを行ってもよい。
送受信部120は、ベースバンド(baseband)部121、Radio Frequency(RF)部122、測定部123を含んでもよい。ベースバンド部121は、送信処理部1211及び受信処理部1212を含んでもよい。送受信部120は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ(phase shifter)、測定回路、送受信回路などから構成することができる。
送受信部120は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部1211、RF部122から構成されてもよい。当該受信部は、受信処理部1212、RF部122、測定部123から構成されてもよい。
送受信アンテナ130は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。
送受信部120は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを送信してもよい。送受信部120は、上述の上りリンクチャネル、上りリンク参照信号などを受信してもよい。
送受信部120は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。
送受信部120(送信処理部1211)は、例えば制御部110から取得したデータ、制御情報などに対して、Packet Data Convergence Protocol(PDCP)レイヤの処理、Radio Link Control(RLC)レイヤの処理(例えば、RLC再送制御)、Medium Access Control(MAC)レイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。
送受信部120(送信処理部1211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、離散フーリエ変換(Discrete Fourier Transform(DFT))処理(必要に応じて)、逆高速フーリエ変換(Inverse Fast Fourier Transform(IFFT))処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。
送受信部120(RF部122)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ130を介して送信してもよい。
一方、送受信部120(RF部122)は、送受信アンテナ130によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。
送受信部120(受信処理部1212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、高速フーリエ変換(Fast Fourier Transform(FFT))処理、逆離散フーリエ変換(Inverse Discrete Fourier Transform(IDFT))処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。
送受信部120(測定部123)は、受信した信号に関する測定を実施してもよい。例えば、測定部123は、受信した信号に基づいて、Radio Resource Management(RRM)測定、Channel State Information(CSI)測定などを行ってもよい。測定部123は、受信電力(例えば、Reference Signal Received Power(RSRP))、受信品質(例えば、Reference Signal Received Quality(RSRQ)、Signal to Interference plus Noise Ratio(SINR)、Signal to Noise Ratio(SNR))、信号強度(例えば、Received Signal Strength Indicator(RSSI))、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部110に出力されてもよい。
伝送路インターフェース140は、コアネットワーク30に含まれる装置、他の基地局10などとの間で信号を送受信(バックホールシグナリング)し、ユーザ端末20のためのユーザデータ(ユーザプレーンデータ)、制御プレーンデータなどを取得、伝送などしてもよい。
なお、本開示における基地局10の送信部及び受信部は、送受信部120、送受信アンテナ130及び伝送路インターフェース140の少なくとも1つによって構成されてもよい。
なお、送受信部120は、所定セルのビーム障害を検出した場合に新候補ビームに関する情報(例えば、RSインデックス等)を受信する。また、送受信部120は、新候補ビーム用RSに関する情報、所定RSに関する情報を送信してもよい。
制御部110は、各セル(又は、CC)に対する新候補ビーム用RSの設定を制御する。また、制御部110は、新候補ビーム用RSを設定しないセルにおいて、他のRSが新候補ビーム用RSとしてUEに適用されるように制御してもよい。
(ユーザ端末)
図8は、一実施形態に係るユーザ端末の構成の一例を示す図である。ユーザ端末20は、制御部210、送受信部220及び送受信アンテナ230を備えている。なお、制御部210、送受信部220及び送受信アンテナ230は、それぞれ1つ以上が備えられてもよい。
なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。
制御部210は、ユーザ端末20全体の制御を実施する。制御部210は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。
制御部210は、信号の生成、マッピングなどを制御してもよい。制御部210は、送受信部220及び送受信アンテナ230を用いた送受信、測定などを制御してもよい。制御部210は、信号として送信するデータ、制御情報、系列などを生成し、送受信部220に転送してもよい。
送受信部220は、ベースバンド部221、RF部222、測定部223を含んでもよい。ベースバンド部221は、送信処理部2211、受信処理部2212を含んでもよい。送受信部220は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ、測定回路、送受信回路などから構成することができる。
送受信部220は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部2211、RF部222から構成されてもよい。当該受信部は、受信処理部2212、RF部222、測定部223から構成されてもよい。
送受信アンテナ230は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。
送受信部220は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを受信してもよい。送受信部220は、上述の上りリンクチャネル、上りリンク参照信号などを送信してもよい。
送受信部220は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。
送受信部220(送信処理部2211)は、例えば制御部210から取得したデータ、制御情報などに対して、PDCPレイヤの処理、RLCレイヤの処理(例えば、RLC再送制御)、MACレイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。
送受信部220(送信処理部2211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、DFT処理(必要に応じて)、IFFT処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。
なお、DFT処理を適用するか否かは、トランスフォームプリコーディングの設定に基づいてもよい。送受信部220(送信処理部2211)は、あるチャネル(例えば、PUSCH)について、トランスフォームプリコーディングが有効(enabled)である場合、当該チャネルをDFT-s-OFDM波形を用いて送信するために上記送信処理としてDFT処理を行ってもよいし、そうでない場合、上記送信処理としてDFT処理を行わなくてもよい。
送受信部220(RF部222)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ230を介して送信してもよい。
一方、送受信部220(RF部222)は、送受信アンテナ230によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。
送受信部220(受信処理部2212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、FFT処理、IDFT処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。
送受信部220(測定部223)は、受信した信号に関する測定を実施してもよい。例えば、測定部223は、受信した信号に基づいて、RRM測定、CSI測定などを行ってもよい。測定部223は、受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、SINR、SNR)、信号強度(例えば、RSSI)、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部210に出力されてもよい。
なお、本開示におけるユーザ端末20の送信部及び受信部は、送受信部220、及び送受信アンテナ230の少なくとも1つによって構成されてもよい。
なお、送受信部220は、所定セルのビーム障害を検出した場合に新候補ビームに関する情報を送信する。また、送受信部220は、新候補ビーム用RSに関する情報、所定RSに関する情報を受信してもよい。
制御部210は、新候補ビーム用の参照信号が設定されない場合、所定の参照信号を新候補ビーム用の参照信号として利用するように制御する。
所定の参照信号は、ビーム障害検出用に設定された参照信号、所定の制御リソースセットに関連付けられた参照信号、下りチャネルの送信設定指示状態に設定された参照信号のセット、下りチャネルの送信設定指示情報用にアクティブ化された参照信号のセット、及び所定セル又は他セルに設定された参照信号のセットの少なくとも一つであってもよい。
所定の参照信号は、所定セルと異なる他セルに設定された新候補ビーム用の参照信号であってもよい。
所定の参照信号は、所定セル又は他セルに設定された下りチャネルの送信設定指示状態に設定された参照信号のセット、及び下りチャネルの送信設定指示情報用にアクティブ化された参照信号のセットの少なくとも一つであってもよい。
所定の参照信号は、同じセルグループの少なくとも一つのセルに設定された新候補ビーム用の参照信号、下りチャネルの送信設定指示状態に設定された参照信号のセット、及び下りチャネルの送信設定指示情報用にアクティブ化された参照信号のセットの少なくとも一つであってもよい。
(ハードウェア構成)
なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
ここで、機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、みなし、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)、送信機(transmitter)などと呼称されてもよい。いずれも、上述したとおり、実現方法は特に限定されない。
例えば、本開示の一実施形態における基地局、ユーザ端末などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図9は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
なお、本開示において、装置、回路、デバイス、部(section)、ユニットなどの文言は、互いに読み替えることができる。基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、2以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。
基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(Central Processing Unit(CPU))によって構成されてもよい。例えば、上述の制御部110(210)、送受信部120(220)などの少なくとも一部は、プロセッサ1001によって実現されてもよい。
また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、制御部110(210)は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。
メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically EPROM(EEPROM)、Random Access Memory(RAM)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(Compact Disc ROM(CD-ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。
通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(Frequency Division Duplex(FDD))及び時分割複信(Time Division Duplex(TDD))の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信部120(220)、送受信アンテナ130(230)などは、通信装置1004によって実現されてもよい。送受信部120(220)は、送信部120a(220a)と受信部120b(220b)とで、物理的に又は論理的に分離された実装がなされてもよい。
入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、Light Emitting Diode(LED)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
また、基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor(DSP))、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
(変形例)
なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル、シンボル及び信号(シグナル又はシグナリング)は、互いに読み替えられてもよい。また、信号はメッセージであってもよい。参照信号(reference signal)は、RSと略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(Component Carrier(CC))は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
ここで、ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing(SCS))、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval(TTI))、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。
スロットは、時間領域において1つ又は複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM)シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。
スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプBと呼ばれてもよい。
無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。なお、本開示におけるフレーム、サブフレーム、スロット、ミニスロット、シンボルなどの時間単位は、互いに読み替えられてもよい。
例えば、1サブフレームはTTIと呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
1msの時間長を有するTTIは、通常TTI(3GPP Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。
なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
リソースブロック(Resource Block(RB))は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。
また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。
なお、1つ又は複数のRBは、物理リソースブロック(Physical RB(PRB))、サブキャリアグループ(Sub-Carrier Group(SCG))、リソースエレメントグループ(Resource Element Group(REG))、PRBペア、RBペアなどと呼ばれてもよい。
また、リソースブロックは、1つ又は複数のリソースエレメント(Resource Element(RE))によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
帯域幅部分(Bandwidth Part(BWP))(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。
BWPには、UL BWP(UL用のBWP)と、DL BWP(DL用のBWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。
設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。
なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix(CP))長などの構成は、様々に変更することができる。
また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。
本開示においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式などは、本開示において明示的に開示したものと異なってもよい。様々なチャネル(PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
また、情報、信号などは、上位レイヤから下位レイヤ及び下位レイヤから上位レイヤの少なくとも一方へ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。
入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。
情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、本開示における情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(Downlink Control Information(DCI))、上り制御情報(Uplink Control Information(UCI)))、上位レイヤシグナリング(例えば、Radio Resource Control(RRC)シグナリング、ブロードキャスト情報(マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))など)、Medium Access Control(MAC)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。
なお、物理レイヤシグナリングは、Layer 1/Layer 2(L1/L2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC Control Element(CE))を用いて通知されてもよい。
また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。
判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line(DSL))など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用され得る。「ネットワーク」は、ネットワークに含まれる装置(例えば、基地局)のことを意味してもよい。
本開示において、「プリコーディング」、「プリコーダ」、「ウェイト(プリコーディングウェイト)」、「擬似コロケーション(Quasi-Co-Location(QCL))」、「Transmission Configuration Indication state(TCI状態)」、「空間関係(spatial relation)」、「空間ドメインフィルタ(spatial domain filter)」、「送信電力」、「位相回転」、「アンテナポート」、「アンテナポートグル-プ」、「レイヤ」、「レイヤ数」、「ランク」、「リソース」、「リソースセット」、「リソースグループ」、「ビーム」、「ビーム幅」、「ビーム角度」、「アンテナ」、「アンテナ素子」、「パネル」などの用語は、互換的に使用され得る。
本開示においては、「基地局(Base Station(BS))」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNB(eNodeB)」、「gNB(gNodeB)」、「アクセスポイント(access point)」、「送信ポイント(Transmission Point(TP))」、「受信ポイント(Reception Point(RP))」、「送受信ポイント(Transmission/Reception Point(TRP))」、「パネル」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。
基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head(RRH)))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。
本開示においては、「移動局(Mobile Station(MS))」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment(UE))」、「端末」などの用語は、互換的に使用され得る。
移動局は、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。
基地局及び移動局の少なくとも一方は、送信装置、受信装置、無線通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。
また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数のユーザ端末間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上り」、「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。
同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を基地局10が有する構成としてもよい。
本開示において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、Mobility Management Entity(MME)、Serving-Gateway(S-GW)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。
本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、LTE-Beyond(LTE-B)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、Future Radio Access(FRA)、New-Radio Access Technology(RAT)、New Radio(NR)、New radio access(NX)、Future generation radio access(FX)、Global System for Mobile communications(GSM(登録商標))、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム、これらに基づいて拡張された次世代システムなどに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE又はLTE-Aと、5Gとの組み合わせなど)適用されてもよい。
本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
本開示において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。
また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。
また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。
また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
本開示において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。
本開示において、2つの要素が接続される場合、1つ以上の電線、ケーブル、プリント電気接続などを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域、光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。
本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
本開示において、「含む(include)」、「含んでいる(including)」及びこれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
本開示において、例えば、英語でのa, an及びtheのように、翻訳によって冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
以上、本開示に係る発明について詳細に説明したが、当業者にとっては、本開示に係る発明が本開示中に説明した実施形態に限定されないということは明らかである。本開示に係る発明は、請求の範囲の記載に基づいて定まる発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とし、本開示に係る発明に対して何ら制限的な意味をもたらさない。

Claims (5)

  1. 複数のセルを含むセルグループが設定される場合において、候補ビーム用参照信号が設定されるセルの情報と前記候補ビーム用参照信号のインデックスの情報とを受信する受信部と、
    ビーム障害を検出した場合、前記候補ビーム用参照信号のインデックスの情報に基いて特定の候補ビーム用参照信号インデックスを示す第1の情報及び回復要求を送信する、又はビーム障害を検出した場合、受信電力が所定値以上となる候補ビーム用参照信号が存在しないことを示す第2の情報及び回復要求を送信するように制御する制御部と、を有する端末。
  2. 各セルに対応する候補ビーム用参照信号が常に設定される請求項1に記載の端末。
  3. 複数のセルを含むセルグループが設定される場合において、候補ビーム用参照信号が設定されるセルの情報と前記候補ビーム用参照信号のインデックスの情報とを受信する工程と、
    ビーム障害を検出した場合、前記候補ビーム用参照信号のインデックスの情報に基いて特定の候補ビーム用参照信号インデックスを示す第1の情報及び回復要求を送信する、又はビーム障害を検出した場合、受信電力が所定値以上となる候補ビーム用参照信号が存在しないことを示す第2の情報及び回復要求を送信するように制御する工程と、を有する端末の無線通信方法。
  4. 複数のセルを含むセルグループが設定される場合において、候補ビーム用参照信号が設定されるセルの情報と前記候補ビーム用参照信号のインデックスの情報とを端末に送信する送信部と、
    前記端末においてビーム障害が検出された場合、前記候補ビーム用参照信号のインデックスの情報に基いて前記端末から送信される、特定の候補ビーム用参照信号インデックスを示す第1の情報及び回復要求の受信を制御する、又は前記端末においてビーム障害が検出された場合、受信電力が所定値以上となる候補ビーム用参照信号が存在しないことを示す第2の情報及び回復要求の受信を制御する制御部と、を有する基地局。
  5. 端末及び基地局を有するシステムであって、
    前記端末は、
    複数のセルを含むセルグループが設定される場合において、候補ビーム用参照信号が設定されるセルの情報と前記候補ビーム用参照信号のインデックスの情報とを受信する受信部と、
    ビーム障害を検出した場合、前記候補ビーム用参照信号のインデックスの情報に基いて特定の候補ビーム用参照信号インデックスを示す第1の情報及び回復要求を送信する、又はビーム障害を検出した場合、受信電力が所定値以上となる候補ビーム用参照信号が存在しないことを示す第2の情報及び回復要求を送信するように制御する制御部と、を有し、
    前記基地局は、
    前記候補ビーム用参照信号が設定されるセルの情報と前記候補ビーム用参照信号のインデックスの情報とを前記端末に送信する送信部と、
    前記第1の情報及び回復要求の受信を制御する、又は前記第2の情報及び回復要求の受信を制御する制御部と、を有するシステム。
JP2021522598A 2019-05-31 2019-05-31 端末、無線通信方法、基地局及びシステム Active JP7244637B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/021851 WO2020240863A1 (ja) 2019-05-31 2019-05-31 ユーザ端末及び無線通信方法

Publications (3)

Publication Number Publication Date
JPWO2020240863A1 JPWO2020240863A1 (ja) 2020-12-03
JPWO2020240863A5 JPWO2020240863A5 (ja) 2022-03-09
JP7244637B2 true JP7244637B2 (ja) 2023-03-22

Family

ID=73553123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021522598A Active JP7244637B2 (ja) 2019-05-31 2019-05-31 端末、無線通信方法、基地局及びシステム

Country Status (5)

Country Link
US (1) US12113741B2 (ja)
EP (1) EP3979686A1 (ja)
JP (1) JP7244637B2 (ja)
CN (1) CN114208245A (ja)
WO (1) WO2020240863A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12063089B2 (en) * 2018-09-21 2024-08-13 Apple Inc. Signaling to child nodes for backhaul beam failure in fifth generation (5G) new radio (NR) (5G-NR) integrated access and backhaul (IAB)
WO2020240863A1 (ja) * 2019-05-31 2020-12-03 株式会社Nttドコモ ユーザ端末及び無線通信方法
US20210105060A1 (en) * 2019-10-04 2021-04-08 Qualcomm Incorporated Joint failure of component carrier (cc) groups
US11678339B2 (en) * 2019-12-13 2023-06-13 Samsung Electronics Co., Ltd. Method and apparatus for group-based multi-beam operation

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190190582A1 (en) 2017-12-19 2019-06-20 Samsung Electronics Co., Ltd. Method and apparatus for beam reporting in next generation wireless systems

Family Cites Families (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8335466B2 (en) * 2008-12-19 2012-12-18 Research In Motion Limited System and method for resource allocation
US9450719B2 (en) * 2012-03-05 2016-09-20 Lg Electronics Inc. Method and apparatus for transmitting or receiving downlink signal
WO2018043560A1 (ja) * 2016-08-31 2018-03-08 株式会社Nttドコモ ユーザ端末及び無線通信方法
WO2018054498A1 (en) * 2016-09-26 2018-03-29 Telefonaktiebolaget Lm Ericsson (Publ) Beamforming in a wireless communication system
WO2018174769A1 (en) * 2017-03-22 2018-09-27 Telefonaktiebolaget Lm Ericsson (Publ) Methods, network node and wireless terminal for beam tracking when beamforming is employed
CN110268741B (zh) * 2017-03-24 2022-04-29 瑞典爱立信有限公司 用于波束跟踪故障恢复的方法和系统
CN108810940B (zh) * 2017-04-28 2020-06-02 维沃移动通信有限公司 波束恢复处理方法和终端
CN108809580B (zh) 2017-05-05 2023-04-14 北京三星通信技术研究有限公司 传输上行信号的方法、用户设备及基站
US10674383B2 (en) * 2017-07-25 2020-06-02 Mediatek Inc. Channels and procedures for beam failure recovery
US11438897B2 (en) * 2017-08-04 2022-09-06 Samsung Electronics Co., Ltd. Method and user equipment (UE) for beam management framework for carrier aggregation
US10855359B2 (en) * 2017-08-10 2020-12-01 Comcast Cable Communications, Llc Priority of beam failure recovery request and uplink channels
US11337265B2 (en) * 2017-08-10 2022-05-17 Comcast Cable Communications, Llc Beam failure recovery request transmission
CN111052627B (zh) * 2017-09-11 2024-03-15 联想(新加坡)私人有限公司 用于发送设备能力信息的方法和设备
US10892811B2 (en) * 2017-09-11 2021-01-12 Qualcomm Incorporated Beam recovery procedure using a second component carrier
US20190044689A1 (en) * 2017-09-28 2019-02-07 Intel IP Corporation Bandwidth part signaling and measurement handling
ES2853487T3 (es) * 2017-11-17 2021-09-16 Asustek Comp Inc Método y aparato para el comportamiento de monitoreo del equipo de usuario (UE) para la recuperación del haz en un sistema de comunicación inalámbrico
EP3714650B1 (en) * 2017-11-24 2023-01-18 FG Innovation Company Limited Apparatus and method for beam failure recovery in a wireless communication system
US11678374B2 (en) * 2017-12-21 2023-06-13 Samsung Electronics Co., Ltd. System and method of handling bandwidth part inactivity timer
US11172385B2 (en) * 2017-12-27 2021-11-09 Lenovo (Singapore) Pte. Ltd. Beam recovery procedure
WO2019127438A1 (zh) * 2017-12-29 2019-07-04 北京小米移动软件有限公司 随机接入失败处理方法和装置
KR20200096997A (ko) * 2018-01-05 2020-08-14 삼성전자주식회사 이차 셀 상의 빔 복구 장치 및 방법
EP3536091A4 (en) * 2018-01-11 2020-07-01 Telefonaktiebolaget LM Ericsson (publ) METHOD AND SYSTEM FOR RESTORING A BEAM FAILURE
CN111869127B (zh) * 2018-01-12 2023-09-01 诺基亚技术有限公司 在波束恢复过程中利用干扰测量
US11540150B2 (en) * 2018-01-19 2022-12-27 Qualcomm Incorporated Beam recovery procedure using a second component carrier
CN110139391B (zh) * 2018-02-09 2021-02-02 维沃移动通信有限公司 波束失败事件处理方法、装置及终端设备
CN110167055B (zh) * 2018-02-13 2021-12-14 华为技术有限公司 一种用于波束失败检测的方法、装置及系统
US11115892B2 (en) * 2018-02-15 2021-09-07 Ofinno, Llc Beam failure information for radio configuration
PL3780852T3 (pl) * 2018-03-28 2023-07-24 Beijing Xiaomi Mobile Software Co., Ltd. Sposób przesyłania informacji i urządzenie do przesyłania informacji
EP4132185B1 (en) * 2018-03-30 2024-06-26 ResMed, Inc. Scheduling request based beam failure recovery
JP2021519552A (ja) * 2018-04-04 2021-08-10 日本電気株式会社 端末デバイス及び方法
US10939442B2 (en) * 2018-04-06 2021-03-02 Mediatek Inc. Beam selection and resource allocation for beam-formed random access procedure
US11368995B2 (en) * 2018-04-13 2022-06-21 Nokia Technologies Oy Cell grouping for beam management
CN112351501B (zh) * 2018-05-11 2024-01-19 成都华为技术有限公司 通信方法及装置
CN116456462A (zh) * 2018-05-28 2023-07-18 华为技术有限公司 一种资源配置的方法、装置及系统
CA3051139A1 (en) * 2018-08-03 2020-02-03 Comcast Cable Communications, Llc Uplink and downlink synchronization procedures
EP3629492A1 (en) * 2018-09-25 2020-04-01 Comcast Cable Communications LLC Beam configuration for secondary cells
EP3648369A1 (en) * 2018-11-01 2020-05-06 Comcast Cable Communications, LLC Beam failure recovery in carrier aggregation
RU2764261C1 (ru) * 2019-01-08 2022-01-14 ЗедТиИ КОРПОРЕЙШН Восстановление беспроводной линии связи
US11121758B2 (en) * 2019-01-10 2021-09-14 Qualcomm Incorporated Link recovery procedure enhancements
KR102671061B1 (ko) * 2019-02-15 2024-05-31 에프쥐 이노베이션 컴퍼니 리미티드 빔 장애 복구를 위한 방법들 및 장치들
US11211990B2 (en) * 2019-05-01 2021-12-28 Ofinno, Llc Beam failure recovery in multi-TRP scenarios
WO2020240863A1 (ja) * 2019-05-31 2020-12-03 株式会社Nttドコモ ユーザ端末及び無線通信方法
KR20220027865A (ko) * 2019-06-28 2022-03-08 지티이 코포레이션 무선 라디오 링크 복구 방법
JP7266744B2 (ja) * 2019-07-22 2023-04-28 鴻穎創新有限公司 ビーム障害回復方法及び関連する装置
US11152999B2 (en) * 2019-10-11 2021-10-19 Qualcomm Incorporated Physical uplink control channel beam failure recovery configuration
CN112787696B (zh) * 2019-11-07 2024-07-26 苹果公司 多trp传输的无线设备功率节省
CN114287141A (zh) * 2020-07-28 2022-04-05 北京小米移动软件有限公司 方式指示方法和装置、随机接入方法和装置
US20220311501A1 (en) * 2021-03-26 2022-09-29 Nokia Technologies Oy Multiple transmission-reception point (m-trp) operation after beam failure recovery (bfr)

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190190582A1 (en) 2017-12-19 2019-06-20 Samsung Electronics Co., Ltd. Method and apparatus for beam reporting in next generation wireless systems

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Convida Wireless,On Beam Failure Recovery for SCell,3GPP TSG RAN WG1#97 R1-1907466,フランス,3GPP,2019年05月04日
Intel Corporation,Summary 2 on L1-SINR and SCell BFR,3GPP TSG RAN WG1#97 R1- 1907892,フランス,3GPP,2019年05月17日
NEC,Discussion on multi-beam operation,3GPP TSG RAN WG1#97 R1-1906399,フランス,3GPP,2019年05月03日
Nokia, Nokia Shanghai Bell,SCell Beam Failure Recovery,3GPP TSG RAN WG2#102 R2-1808024,フランス,3GPP,2018年05月10日

Also Published As

Publication number Publication date
US12113741B2 (en) 2024-10-08
US20220239437A1 (en) 2022-07-28
EP3979686A1 (en) 2022-04-06
CN114208245A (zh) 2022-03-18
WO2020240863A1 (ja) 2020-12-03
JPWO2020240863A1 (ja) 2020-12-03

Similar Documents

Publication Publication Date Title
JP7320762B2 (ja) 端末、無線通信方法及びシステム
JP7323612B2 (ja) 端末、無線通信方法及びシステム
JP7284174B2 (ja) 端末、無線通信方法及びシステム
JP7201699B2 (ja) 端末、無線通信方法、基地局及びシステム
JP7407726B2 (ja) 端末、無線通信方法及びシステム
JP7284175B2 (ja) 端末、無線通信方法及びシステム
JP7254784B2 (ja) 端末、無線通信方法、基地局及びシステム
JP7227343B2 (ja) 端末、無線通信方法、基地局及びシステム
JP7252258B2 (ja) 端末、無線通信方法及びシステム
JP7244637B2 (ja) 端末、無線通信方法、基地局及びシステム
JP7320868B2 (ja) 端末、無線通信方法、基地局及びシステム
WO2022259543A1 (ja) 端末、無線通信方法及び基地局
JP7320763B2 (ja) 端末、無線通信方法、基地局及びシステム
JP7279087B2 (ja) 端末、無線通信方法、及びシステム
JP7320859B2 (ja) 端末、無線通信方法、基地局及びシステム
JP7290741B2 (ja) 端末、無線通信方法及びシステム
JP7299324B2 (ja) 端末、無線通信方法及びシステム
JP7320860B2 (ja) 端末、無線通信方法、基地局及びシステム
JP7362745B2 (ja) 端末、無線通信方法及びシステム
JP7216114B2 (ja) 端末、無線通信方法及びシステム
WO2022220105A1 (ja) 端末、無線通信方法及び基地局
WO2023007659A1 (ja) 端末、無線通信方法及び基地局
JP7538860B2 (ja) 端末、無線通信方法、基地局及びシステム
JP7573045B2 (ja) 端末、無線通信方法、基地局及びシステム
JP7573044B2 (ja) 端末、無線通信方法、基地局及びシステム

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220114

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230309

R150 Certificate of patent or registration of utility model

Ref document number: 7244637

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150