WO2018171192A1 - 量子点复合物、中间体及其制备方法和应用 - Google Patents

量子点复合物、中间体及其制备方法和应用 Download PDF

Info

Publication number
WO2018171192A1
WO2018171192A1 PCT/CN2017/108118 CN2017108118W WO2018171192A1 WO 2018171192 A1 WO2018171192 A1 WO 2018171192A1 CN 2017108118 W CN2017108118 W CN 2017108118W WO 2018171192 A1 WO2018171192 A1 WO 2018171192A1
Authority
WO
WIPO (PCT)
Prior art keywords
quantum dot
chain
polymeric chain
coordination unit
present disclosure
Prior art date
Application number
PCT/CN2017/108118
Other languages
English (en)
French (fr)
Inventor
陈卓
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/781,309 priority Critical patent/US10873003B2/en
Publication of WO2018171192A1 publication Critical patent/WO2018171192A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/50Sympathetic, colour changing or similar inks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F292/00Macromolecular compounds obtained by polymerising monomers on to inorganic materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • C08G61/04Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms
    • C08G61/06Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms prepared by ring-opening of carbocyclic compounds
    • C08G61/08Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms prepared by ring-opening of carbocyclic compounds of carbocyclic compounds containing one or more carbon-to-carbon double bonds in the ring
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/36Inkjet printing inks based on non-aqueous solvents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/38Inkjet printing inks characterised by non-macromolecular additives other than solvents, pigments or dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
    • C09K11/881Chalcogenides
    • C09K11/883Chalcogenides with zinc or cadmium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2438/00Living radical polymerisation
    • C08F2438/03Use of a di- or tri-thiocarbonylthio compound, e.g. di- or tri-thioester, di- or tri-thiocarbamate, or a xanthate as chain transfer agent, e.g . Reversible Addition Fragmentation chain Transfer [RAFT] or Macromolecular Design via Interchange of Xanthates [MADIX]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/11Homopolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/16End groups
    • C08G2261/162End groups comprising metal complexes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/33Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain
    • C08G2261/332Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing only carbon atoms
    • C08G2261/3321Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing only carbon atoms derived from cyclopentene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/418Ring opening metathesis polymerisation [ROMP]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/70Post-treatment
    • C08G2261/77Post-treatment grafting
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/96Applications coating of particles

Definitions

  • the present disclosure relates to the field of quantum dot materials, and in particular, the present disclosure relates to quantum dot composites, intermediates, and methods of making and using same. More specifically, the present disclosure relates to quantum dot composites, intermediates, methods of making quantum dot composites, quantum dot inks, and quantum dot light emitting diode devices.
  • the quantum dot light emitting display Compared with the traditional liquid crystal display (LCD) and organic light emitting diode display (OLED), the quantum dot light emitting display (QLED) has the special advantages of narrow luminescence peak, adjustable color of the luminescent color, high luminous efficiency and high color gamut.
  • LCD liquid crystal display
  • OLED organic light emitting diode display
  • QLED quantum dot light emitting display
  • quantum dot luminescent layers In the manufacture and production of QLEDs, it is necessary to prepare quantum dot luminescent layers using quantum dots.
  • the quantum dot material is an inorganic nanoparticle
  • the structure in the QLED such as the quantum dot light-emitting layer cannot be prepared by a conventional vapor deposition method, and needs to be prepared by an inkjet printing method.
  • the first method is to use long-chain, high-viscosity alkanes
  • the second method is to add additives such as surfactants and viscosity modifiers to low-boiling solvents.
  • the present disclosure proposes a quantum dot composite for inkjet printing.
  • the quantum dot composite includes: a quantum dot; and a plurality of polymeric chain ligands, wherein the polymeric chain ligand comprises a coordination unit and at least one polymeric chain, the coordination The unit connects the quantum dot and the polymer chain; wherein a molecular weight distribution (ie, a ratio of a weight average molecular weight to a number average molecular weight) of the plurality of the polymer chains does not exceed 1.3.
  • the inventors of the present application have found through long-term research that the quantum dot composite of the embodiment of the present disclosure has a quantum dot surface coordinately bonded to a plurality of polymeric chain ligands, and the length of the polymer chain is precisely controllable and effective.
  • the viscosity and surface tension of the ink containing the quantum dot composite are controlled to avoid the use of additives, low-boiling solvents, and purity of quantum dots in the ink.
  • quantum dot composite according to the above embodiment of the present disclosure may further have the following additional technical features:
  • the coordination unit comprises a coordination element and/or a coordination group.
  • the coordination element includes at least one of nitrogen, phosphorus, oxygen, and sulfur; and the coordination group includes at least one of a carboxyl group, a hydroxyl group, and an amine group.
  • the polymeric chain comprises at least one selected from the group consisting of polymethyl methacrylate (PMMA), polystyrene (PS), polycyclopentene, polycarbazole, and polyfluorene.
  • the polymeric chain contains an unsaturated group, and the unsaturated group includes an alkenyl group.
  • the coordination unit further includes: at least one branch chain, the branch chain is a carbon chain having a carbon number of 5-10, and the branch chain and the coordination element and/ Or a coordination group is attached.
  • the present disclosure proposes an intermediate for the preparation of the quantum dot complex described above.
  • the intermediate body includes: a quantum dot; and a coordination unit connected to the quantum dot, the coordination unit having a function for initiating active polymerization and forming the The active end of the polymeric chain.
  • the inventors of the present application have found that the intermediates of the embodiments of the present disclosure, while capable of coordinately bonding quantum dots, have active ends capable of initiating living polymerization, which can be used to form polymeric chain ligands linking quantum dots.
  • the polymer chain in .
  • the present disclosure provides a method of preparing the above quantum dot composite.
  • the method comprises: (1) providing a quantum dot; (2) coordinating bonding of a polymeric chain ligand to the quantum dot, wherein the polymeric chain of the polymeric chain ligand The quantum dots are connected by a coordination unit.
  • the inventors of the present application have found through long-term research that the method of the embodiments of the present disclosure can obtain a quantum dot composite whose length of the polymer chain is precisely controllable, and the quantum dot composite can effectively regulate the viscosity of the ink containing the quantum dot. And the surface tension, thereby avoiding the use of additives, and also using a low boiling point solvent, and the preparation method is simple to operate.
  • the features and advantages previously described for quantum dot composites are still applicable to the method of preparing quantum dot composites and will not be described herein.
  • the polymeric chain ligand and the coordination bonding of the quantum dots are achieved by the following steps: (2-1) preparing a quantum dot to which a coordination unit is attached, wherein The coordination unit is coordinately bonded to the quantum dot; (2-2) a polymer chain is prepared by living polymerization, and the polymer chain is connected to the quantum dot to obtain the polymer chain ligand.
  • the living polymerization temperature is lower than 100 ° C
  • the living polymerization solvent includes at least one selected from the group consisting of toluene and tetrahydrofuran.
  • the polymeric chain includes an alkenyl group
  • the method of preparing a quantum dot composite further comprises: (3) adding a crosslinking agent after the preparing the polymeric chain, so that the polymeric chain is The alkenyl group undergoes a crosslinking reaction.
  • the present disclosure provides a method of preparing the above quantum dot composite.
  • the method includes:
  • first element and the second element are used to form the quantum dot
  • the first solvent and the second solvent independently comprise at least one of octadecene, trioctylphosphine and trioctylphosphine;
  • the living polymerization reaction temperature is 90-100 degrees Celsius, and the living polymerization reaction includes Atom Transfer Radical Polymerization (ATRP) and Reversible Addition-Fragmentation Chain Transfer (RAFT). Nitroxide-Mediated Free Radical Polymerization (NMP) and ring-opening olefins Ring-Opening Metathesis Polymerization (ROMP).
  • ATRP Atom Transfer Radical Polymerization
  • RAFT Reversible Addition-Fragmentation Chain Transfer
  • NMP Nitroxide-Mediated Free Radical Polymerization
  • REP Ring-Opening Metathesis Polymerization
  • the inventors of the present application have found through long-term research that by using the preparation method of the embodiments of the present disclosure, a quantum dot complex with a more precise and controllable length of a polymer chain can be obtained, and the quantum dot composite can more effectively regulate the ink containing quantum dots.
  • the viscosity and surface tension can avoid the use of additives, low-boiling solvents can also be used, and the preparation method is simpler to operate.
  • the present disclosure proposes a quantum dot ink.
  • the quantum dot ink includes: the above quantum dot composite; and a low boiling point solvent.
  • the inventors of the present application have found through long-term research that the quantum dot ink of the embodiment of the present disclosure has a precisely controllable length of the polymer chain of the quantum dot composite, so that the quantum dot ink can satisfy the high resolution QLED display of inkjet printing.
  • the viscosity and surface tension requirements, and the use of low boiling point solvents without additives can make the quantum dot ink boiling point below 100 degrees Celsius, thereby reducing the impact of subsequent high temperature processing on the performance of quantum dots, as well as ensuring the printing of ink The purity of quantum dots.
  • Those skilled in the art will appreciate that the features and advantages previously described for quantum dot composites are still applicable to the quantum dot ink and will not be described herein.
  • the present disclosure provides a quantum dot light emitting diode device.
  • the quantum dot light emitting diode device includes a quantum dot light emitting layer prepared using the quantum dot ink described above.
  • the inventors of the present application have found through long-term research that the quantum dot light-emitting diode of the embodiment of the present disclosure has higher quantum dot purity and better luminous efficiency of the quantum dot light-emitting functional layer, thereby enabling the use of the quantum dot light-emitting diode. Better performance.
  • the features and advantages previously described for quantum dot composites, quantum dot inks are still applicable to the quantum dot light emitting diodes, and are not described herein.
  • FIG. 1 is a schematic structural view of a quantum dot composite according to an embodiment of the present disclosure
  • FIG. 2 is a schematic view showing a process of cross-linking a quantum dot composite to form a quantum dot film according to another embodiment of the present disclosure
  • FIG. 3 is a schematic structural view of a quantum dot composite according to another embodiment of the present disclosure.
  • FIG. 4 is a schematic flow chart of a method for preparing a quantum dot composite according to an embodiment of the present disclosure
  • FIG. 5 is a schematic diagram showing the principle of a living polymerization method of a polymerization chain according to an embodiment of the present disclosure
  • Example 6 is a schematic diagram of a chemical reaction formula of the step (1) of Example 1 of the present disclosure.
  • Example 7 is a schematic diagram of a chemical reaction formula of the step (1) of Example 2 of the present disclosure.
  • Figure 8 is a schematic diagram of the chemical reaction formula of the step (1) of Example 3 of the present disclosure.
  • Example 9 is a schematic diagram of a chemical reaction formula of the step (1) of Example 5 of the present disclosure.
  • Fig. 10 is a schematic diagram of the chemical reaction formula of the step (1) of Example 7 of the present disclosure.
  • the inventors have found through in-depth research that this is mainly due to the current quantum dot inkjet printing ink, the solvent has a higher boiling point, and requires a higher post-treatment temperature (for example, higher than 180 ° C) to remove the solvent, and the high temperature treatment will
  • the "impurities" of the film affect the quantum dot film formation and adversely affect its electroluminescence properties.
  • the ink jet printing method requires a quantum dot ink of suitable viscosity and surface tension, and the high boiling point solvent and the surfactant can adjust the above physical parameters of the quantum dot ink, the current quantum dot ink cannot avoid the above high boiling point solvent or Use of additives.
  • an object of the present disclosure is to provide a quantum dot ink which can effectively regulate the viscosity and surface tension of an ink, is additive-free, and is formed using a low boiling point solvent.
  • the inventors of the present invention have found through in-depth research that precisely controlling the length of the quantum dot ligand can adjust the viscosity and surface tension of the quantum dot ink, thereby avoiding the use of additives and ensuring the purity of the quantum dots in the quantum dot ink; meanwhile, due to the quantum dots
  • the viscosity and surface tension of the ink need not be controlled by high-boiling solvents, so quantum dot inks can be prepared using low-boiling solvents to prevent subsequent high-temperature treatment from affecting the performance of quantum dots.
  • a long-chain ligand with precise and controllable ligand chain length can be introduced by precisely adjusting the length of the polymer chain.
  • a quantum dot composite for inkjet printing is presented.
  • the quantum dot composite of the present invention will be described in detail with reference to Figs.
  • a quantum dot composite includes: quantum dots and a plurality of polymeric chain ligands.
  • the polymeric chain ligand further comprises a coordination unit and at least one polymeric chain, and the coordination unit connects the quantum dot and the polymeric chain, and the molecular weight distribution of the polymeric chain (ie, the ratio of the weight average molecular weight to the number average molecular weight) does not exceed 1.3.
  • an ideal quantum dot ink has a viscosity of usually 10-12 cps at 60 ° C, a surface tension of 28-33 dyn/cm, and a density of > 1 mg/mL.
  • the solvent boiling point of the quantum dot ink is less than 100 ° C, so that the process of heating to remove the solvent does not have a serious negative impact on the luminescent properties of the quantum dots.
  • quantum dots also need to have good dispersibility and stability in a solvent.
  • the inventors of the present application have found through long-term studies that the viscosity and surface tension of the solution can be adjusted by controlling the molecular weight and concentration of the polymer added to the solution, thereby adjusting the polymer by adding it to the quantum dot ink system. Viscosity and surface tension meet the requirements of inkjet printing high-resolution QLED display for quantum dot ink.
  • the inventors obtain a quantum dot complex by further connecting to a quantum dot by connecting to a coordination unit by a polymer chain with a precisely controllable degree of polymerization.
  • the regulation of the viscosity and surface tension of the quantum dot ink containing the quantum dot composite can be achieved by controlling the concentration and molecular weight of the polymeric chain.
  • the quantum dot composite is simple in structure and low in cost, and can be mixed with a low boiling point solvent to form a quantum dot ink that satisfies the requirements of inkjet printing without adding an additive.
  • the kind of the quantum dot is not particularly limited as long as the quantum dot can be used for subsequent coordination bonding, has a certain luminescent property, and a quantum dot composite according to an embodiment of the present disclosure can be obtained. Things can be. Those skilled in the art can make selections based on the actual use requirements of inkjet printing or prepared QLED devices.
  • the quantum dot material may be CdTe (cadmium telluride).
  • the size of the quantum dots is not particularly limited, and those skilled in the art can select according to the actual use requirements of inkjet printing.
  • the quantum dots have a particle radius of less than 10 nm.
  • the stability of the formed ink containing the quantum dot composite is better, and the performance of the printed quantum dot functional layer is better. it is good.
  • the quantum dots have a particle radius of 2 to 10 nm. As described above, the quantum dot having the particle radius described above has a better stability and further dispersibility of the ink containing the quantum dot composite, and the printed quantum dot functional layer is more excellent in functionality.
  • the coordination unit comprises a coordination element and/or a coordination group.
  • the “coordination unit” in the present application refers to a coordination element or a coordination group capable of coordinating bonding with the surface of a quantum dot, and has an active end, so that the active end can pass through the subsequent Living polymerization to form a polymeric chain.
  • a quantum dot complex using a coordination element or a coordinating group the coordination unit of which may be formed by a structure of a coordination element or a coordination group such as a lone pair electron, and a surface of a quantum dot of the inorganic nanoparticle Coordination bonding ensures an effective connection between the quantum dots and the polymeric chain ligand, which promotes the dispersion and stability of the quantum dots in the ink.
  • the coordination element includes at least one of nitrogen, phosphorus, oxygen, and sulfur.
  • the lone pair of electrons of the above-mentioned coordination element on the polymeric chain ligand and the surface of the quantum dot can directly form a strong coordination bond.
  • the coordination element may adopt a phosphorus atom, the lone pair of electrons may be coordinately bonded to the surface of the quantum dot, and the polyvalent phosphorus atom may be further chemically bonded with a chlorine atom or the like.
  • the active end of the living polymerization reaction for example, a chlorine atom may be used as an active terminal in a subsequent living polymerization reaction to carry out elongation of a carbon chain by living polymerization, thereby obtaining a polymer chain according to an embodiment of the present disclosure.
  • the coordinating group includes at least one of a carboxyl group, a hydroxyl group, and an amine group.
  • the lone pair of electrons of the above-mentioned coordinating group on the polymeric chain ligand can form a weak coordination bond with the surface of the quantum dot, and the carboxyl group or the hydroxyl group and the polymer chain are connected by a chemical bond, thereby allowing polymerization.
  • the chain can increase the stability and dispersibility of the quantum dots by means of the above-mentioned coordination group.
  • the coordinating group bonded to the quantum dot may be a carboxylic acid.
  • both the oxygen atom and the hydroxyl group of the carboxylic acid group can coordinately bond with the surface of the quantum dot, thereby enhancing the chemical stability of the connection between the polymeric chain ligand and the quantum dot.
  • Properties, such that the polymeric chain can increase the stability and dispersibility of the quantum dots through the coordination group.
  • the coordinating group may adopt a carboxyl group, and the lone pair electrons of the hydroxyl group and the oxygen atom on the carbonyl group may be bonded to the surface of the quantum dot, and the other end of the hydroxyl group may further
  • the carbon chain is chemically bonded, and the carbon chain may contain an active terminal such as a carbon-carbon unsaturated double bond which initiates living polymerization.
  • a carbon-carbon unsaturated double bond can be further extended in the subsequent living polymerization reaction as an active terminal by living polymerization to obtain a polymer chain according to an embodiment of the present disclosure.
  • the coordination unit may further comprise at least one branch, the branch may be a carbon chain having a carbon number of 5-10, and the branch is linked to a coordination element and/or a coordination group.
  • This design allows the steric hindrance of other short carbon chains directly attached to the coordination unit to prevent agglomeration of the quantum dots during the living polymerization to form a polymeric chain.
  • the coordination element is a phosphorus atom
  • the above branch may be covalently bonded to the phosphorus atom.
  • the polymeric chain can be obtained by living polymerization.
  • the inventors of the present application have found through long-term research that the synthesis method of living polymerization can precisely control the polymer chain length. By adjusting the concentration of the polymerizable monomer and the initiator, the chain length and monodispersity of the polymer can be precisely controlled, thereby effectively adjusting the viscosity and surface tension of the polymer solution.
  • the specific kind of the polymeric chain is not particularly limited, and those skilled in the art may select a familiar polymeric chain species to constitute a polymeric chain according to an embodiment of the present disclosure as long as the molecular chain of the kind Chain length and polydispersity can be controlled.
  • the type of the polymeric chain may include at least one selected from the group consisting of PMMA, PS, polycyclopentene, polycarbazole, and polyfluorene.
  • the viscosity, surface tension, dispersibility, and stability of the ink containing the quantum dot composite can be effectively satisfied with the use requirements of the inkjet printing high-resolution QLED display screen, and
  • the above-mentioned polymers have good film forming properties and can form a film layer excellent in performance with quantum dots after printing.
  • the specific chain length of the polymer chain is not particularly limited as long as the chain length of the polymer chain enables the viscosity and surface tension of the ink containing the quantum dot composite to meet printing requirements and maintain quantum
  • the dispersibility and stability of the dots in the ink can be used, and those skilled in the art can adjust according to the actual test conditions.
  • the polymeric chain may have a number average molecular weight of from 300 to 2000.
  • the living polymerizable polymer chain in the above molecular weight range can better adjust the viscosity and surface tension of the ink containing the quantum dot composite, so as to further satisfy the requirements of quantum dot printing, and can also maintain quantum dots in Dispersibility and stability in inks containing low boiling solvents and additives.
  • the polymeric chain may have a number average molecular weight of from 500 to 800.
  • the polymeric chain may further contain an unsaturated group.
  • the unsaturated group may further undergo a crosslinking reaction to cause the film substrate. The strength is increased to obtain a more stable quantum dot functional layer; or, the polymeric chain
  • the above unsaturated groups can also be used to further chemically modify other functional groups for further improvement in the performance of the quantum dot composite.
  • the polymeric chain can contain an unsaturated alkenyl group.
  • an unsaturated alkenyl group may undergo a crosslinking reaction during subsequent drying and solvent removal to form a three-dimensional network structure to impart a film matrix strength. Further increase, thereby obtaining a quantum dot functional layer with better stability.
  • the quantum dot composite may further include: a plurality of non-polymerizable ligands, wherein the non-polymerizable ligand includes a second coordination unit and at least one non-polymerizable branch, and The two coordination units are connected to the quantum dots and the non-polymerizable branches.
  • concentration of the polymerizable ligand and the non-polymerizable ligand the ratio of the short chain and the long chain of the coordination bonding of the quantum dot surface can be controlled, thereby further regulating the viscosity and surface tension of the ink containing the quantum dot complex.
  • the second coordination unit may be the same as the coordination unit, and the non-polymerizable branch may be a carbon chain having a carbon number of 5-10.
  • the concentration of the polymeric chain ligand and the non-polymerizable ligand may be bonded to the surface of the quantum dot simultaneously with the polymeric chain ligand described above.
  • a quantum dot composite wherein a quantum dot surface is coordinately bonded to a plurality of polymeric chain ligands, and the length of the polymeric chain is precisely controllable.
  • the viscosity and surface tension of the ink containing the quantum dot composite can be effectively controlled, thereby avoiding the use of additives, low-boiling solvents, and ensuring the purity of quantum dots in the ink.
  • the intermediate body includes a quantum dot and a coordination unit, wherein the coordination unit is coupled to the quantum dot, and the coordination unit has an active end for initiating living polymerization and forming a polymeric chain.
  • the intermediate is used for preparing the above quantum dot complex, and the active end of the coordination unit is subjected to initiation and living polymerization to form a polymer chain of the above quantum dot complex.
  • the polymer chain in the body is used for preparing the above quantum dot complex, and the active end of the coordination unit is subjected to initiation and living polymerization to form a polymer chain of the above quantum dot complex.
  • the intermediate is used to prepare the quantum dot complex described above, and therefore, the quantum dots and coordination units of the intermediate have the same structure as the quantum dot complex described above.
  • the intermediate has a reactive terminal capable of initiating living polymerization while coordinatingly bonding the quantum dots, which can be used for the shape The polymeric chain in the polymeric chain ligand described above.
  • the preparation method includes:
  • quantum dot materials for subsequent coordination bonding are available.
  • a specific method of providing a quantum dot is not particularly limited, and a quantum dot prepared directly or by any method known in the art may be used as long as the quantum dot can be used for a subsequent coordination bond.
  • the inkjet printing can be combined, and those skilled in the art can select according to the use requirements of the inkjet printing, and details are not described herein again.
  • the quantum dots provided in the previous step are subjected to a coordination bonding reaction with the polymeric chain ligand, and specifically, the coordination unit of the polymeric chain ligand is directly coordinately bonded to the surface of the quantum dot.
  • the manner in which the polymeric chain ligand is specifically obtained is not particularly limited, and those skilled in the art can select a polymer chain ligand according to an embodiment of the present disclosure in a familiar manner.
  • the polymerization chain can be polymerized on the coordination unit by a living polymerization method to form a polymer chain with a precisely controlled length, so that the molecular weight distribution of the polymer chain does not exceed 1.3, and those skilled in the art can select according to actual conditions.
  • a specific method of coordinately bonding a polymeric chain ligand to a quantum dot is not particularly limited as long as a method of coordinately bonding a polymeric chain ligand to a quantum dot can be performed.
  • Those skilled in the art can make a selection according to actual conditions.
  • the polymeric chain ligand and the coordination bonding of the quantum dots can be achieved by the following steps:
  • a quantum dot having a coordination unit is prepared, wherein the coordination unit and the quantum dot are coordinately bonded.
  • the coordination unit bonded to the quantum dot is further connected with an active initiation site capable of forming a polymeric chain.
  • an active initiation site capable of forming a polymeric chain.
  • a liquid phase reaction may be employed, and a coordination unit containing a coordination element or a coordinating group may be coupled to a quantum by a coordination bond while preparing a quantum dot. The surface of the point.
  • a coordination unit with an active priming site can be used instead of the original organic ligand protecting the quantum dot to be added to the reaction solution, and then the same steps and conditions for preparing the quantum dot can be used to directly obtain the surface coordinate bond.
  • the quantum dots combined with the coordination unit containing the active priming site can simplify the operation steps, reduce the production cost, and improve the production efficiency.
  • a polymer chain linked to a coordination unit is prepared by living polymerization to obtain the quantum dot composite.
  • the active end on the coordination unit can be subjected to living polymerization, whereby a polymer chain having a precisely controlled degree of polymerization can be obtained by controlling the concentration of the polymerized monomer.
  • the living polymerization on the coordination unit can make the obtained polymer chain length precise and controllable.
  • specific species of living polymerization may include selected from the group consisting of ATRP (atomic transfer radical polymerization), RAFT (reversible addition-cleavage chain transfer), NMP (nitrogen-oxygen stable radical polymerization), and ROMP ( At least one of a ring-opening olefin metathesis polymerization).
  • RAFT reversible addition-cleavage chain transfer
  • the active end of the coordination unit such as a Cl atom
  • a substitution reaction By connection, a monomer having an unsaturated bond such as styrene is livingly polymerized by a reversible addition-cleavage chain transfer reaction to obtain a PS polymer chain having a precisely controlled chain length.
  • ROMP open-loop olefin metathesis polymerization
  • active ends such as carbon-carbon unsaturated double bonds
  • the coordination unit which may also be used in the second-generation Grubbs catalyst.
  • a monomer having a cyclic structure having an unsaturated bond such as cyclopentene is livingly polymerized, thereby obtaining a polycyclopentene polymer chain having the same precise and controllable chain length.
  • the temperature of the living polymerization is less than 100 ° C
  • the solvent includes at least one selected from the group consisting of, but not limited to, toluene and tetrahydrofuran.
  • a preparation method which can obtain a quantum dot composite whose length of a polymeric chain is precisely controllable, and the quantum dot composite can effectively regulate ink containing quantum dots. Viscosity and surface tension to avoid the use of additives.
  • the preparation method has the advantages of simple operation, low cost, short production cycle and high production efficiency, and is favorable for expanding the large-scale popularization and application of the quantum dot composite.
  • the quantum dot composite prepared by the method can effectively adjust the viscosity and surface tension of the quantum dot ink prepared based on the quantum dot composite, a quantum dot meeting the ink jet printing requirement can be obtained by using a low boiling point solvent. ink.
  • the quantum dot composites prepared by this method have the same features and advantages as the quantum dot complexes described above and will not be further described herein.
  • the preparation method includes:
  • the first mother liquor contains a first element, an organic ligand, and a first solvent.
  • the first element is used to form a quantum dot, for example, when the equivalent sub-point is CdTe, the first element may be Te; the organic ligand is a coordination unit with a reactive polymerizable group, specifically
  • the first solvent is required to be a good solvent for the liquid phase reaction of the first element, such as, for example, octadecene, trioctylphosphine and trioctylphosphine.
  • the ratio of the first element, the organic ligand, and the first solvent in the first mother liquid is not particularly limited, and those skilled in the art can adjust according to the specific composition of the quantum dot composite prepared in actuality.
  • the second mother liquor contains a second element, an organic ligand, and a second solvent.
  • the second element is also used to form a quantum dot, for example, the equivalent sub-point is CdTe, the first element is Te, the second element may be Cd; and the organic ligand is provided with an activatable polymerizable group.
  • the coordination unit of the group specifically, for example, refer to the compound 1 of oleic acid of FIG. 6; and the second solvent needs to be a good solvent for the liquid phase reaction of the second element, specifically, for example, octadecene, trioctylphosphine and trioctyloxy phosphorus.
  • the ratio of the second element, the organic ligand, and the second solvent in the second mother liquid is not particularly limited, and those skilled in the art can adjust according to the specific composition of the quantum dot composite prepared in practice.
  • the first mother liquid is added to the second mother liquid and stirred and heated under an inert atmosphere.
  • the heating temperature is 200-350 degrees Celsius, and after the reaction for 30 s-1 h, the cooling treatment is performed.
  • the quantum dot crystals to be surface-coordinated with a coordination unit capable of initiating a living polymerizable group can be grown to a desired size under the above reaction conditions.
  • the temperature of the heating may be 290 degrees Celsius, and after 15 minutes of reaction, cooling treatment is performed.
  • quantum dot crystals having better size and performance can be obtained.
  • the cooled mixture is subjected to centrifugation, and the precipitate after centrifugation is subjected to a drying treatment to obtain a quantum dot to which a coordination unit is attached.
  • chloroform is first added, centrifuged and the supernatant liquid is taken, then the quantum dots are precipitated by adding methanol, and the lower layer precipitate obtained after centrifugation is the surface coordination with the active polymerization group. Quantum dots of the coordination unit.
  • a quantum dot to which a coordination unit is attached is mixed with an initiator and a monomer to prepare a polymer chain by living polymerization, and the polymer chain is connected to a coordination unit to obtain the quantum dot complex.
  • the temperature of the living polymerization reaction is 90-100 degrees Celsius
  • the living polymerization reaction includes ATRP, RAFT, NMP, and ROMP.
  • a preparation method which can obtain a quantum dot complex with a more precise and controllable length of a polymer chain, and the quantum dot composite can more effectively regulate quantum dots.
  • the viscosity and surface tension of the ink can avoid the use of additives, and can also use low boiling solvents, and the preparation method is simpler to operate.
  • the quantum dot composites prepared by this method have the same features and advantages as the quantum dot complexes described above and will not be further described herein.
  • the quantum dot ink includes: the above quantum dot composite; and a low boiling point solvent.
  • the low boiling point solvent specifically refers to a solvent having a boiling point of less than 100 degrees Celsius.
  • the inventors of the present application have found through long-term research that the length of the quantum dot ligand can be precisely controlled by the method of living polymerization to adjust the viscosity and surface tension of the quantum dot ink, thereby avoiding the use of additives and ensuring the quantum dots in the quantum dot ink. Purity; low-boiling solvents are also used to avoid subsequent high temperature (over 180 °C) treatments affecting the performance of quantum dots.
  • the specific kind of the low boiling point solvent is not particularly limited as long as the boiling point of the solvent is less than 100 degrees Celsius and the quantum dot complex can be sufficiently dissolved, and those skilled in the art can compound according to quantum dots.
  • the specific properties of the object are selected.
  • the low boiling point solvent comprises at least one selected from the group consisting of toluene, xylene, n-hexane, n-heptane, and n-octane.
  • the quantum dot complex can be effectively dissolved by using the above low boiling point solvent, and the boiling point of the quantum dot ink can be lower than 100 degrees Celsius.
  • the weight percent of the quantum dot composite is less than 5% based on the weight of the quantum dot ink.
  • the quantum dot ink formed by using the quantum dot composite of the above volume ratio and the low boiling point solvent not only makes the quantum dot ink further satisfy the printing requirement for fabricating the quantum dot layer, but also makes the boiling point of the quantum dot ink lower than 100 degrees Celsius. Therefore, it is further avoided that the temperature of the subsequent drying and removing the solvent is too high, which may affect the performance of the quantum dots.
  • the weight percent of the quantum dot composite is from 1 to 2% based on the weight of the quantum dot ink.
  • a quantum dot ink wherein the length of the polymer chain of the quantum dot composite is precisely controllable, so that the quantum dot ink can satisfy the inkjet printing high resolution QLED.
  • the viscosity and surface tension of the display are required, and the low boiling point solvent is used without additives, so that the boiling point of the quantum dot ink is lower than 100 degrees Celsius, thereby reducing the influence of subsequent high temperature treatment on the performance of the quantum dots, and also ensuring printing The purity of the quantum dots in the ink.
  • a quantum dot light emitting diode device is presented.
  • the quantum dot light emitting diode device includes a quantum dot light emitting layer that is fabricated using the quantum dot ink described above. It can be understood by those skilled in the art that the quantum dot light emitting diode device may include other necessary components or structures in addition to the quantum dot light emitting layer, such as a substrate, an upper and lower electrode layer, an electron injecting and transporting layer, and a hole transporting layer.
  • the hole injection layer, the light output coupling layer, and the like can be designed by those skilled in the art according to the actual use requirements of the quantum dot light emitting diode, and will not be described herein.
  • the specific kind of the quantum dot light emitting diode device is not particularly limited as long as the quantum dot light emitting diode device emits light through the quantum dot light emitting layer, and any quantum known in the art.
  • a variety of point light emitting diode devices are available, and those skilled in the art can design according to the actual use requirements of the quantum dot light emitting diodes, and details are not described herein again.
  • a quantum dot light emitting diode device wherein a quantum dot light emitting functional layer has higher quantum dot purity and better luminous efficiency, thereby making the quantum dot light emitting diode device The performance is better.
  • quantum dots use CdTe quantum dots.
  • a quantum dot composite was prepared by a RAFT living polymerization method, and a quantum dot ink was formed.
  • the type of the polymerization chain is PS.
  • a quantum dot composite was prepared by an NMP living polymerization method, and a quantum dot ink was formed.
  • the toluene solution of the intermediate 2 is taken, and the intermediate 2 and the TENPO-OH are synthesized in a condition containing NaH, the solvent is THF, and the temperature is 60 ° C, Further, compound 5 and styrene are subjected to NMP active polymerization in a solution containing AIBN and a solvent toluene at a temperature of 90 ° C to form a quantum dot complex 6 having a long-chain polymer ligand, wherein the molecular weight of the polymer chain
  • the GPC test was obtained as 500.
  • a quantum dot 7 having a surface-coordinated bonding unit containing an active initiating group is obtained; after drying, the intermediate 7 is soluble in toluene and is formulated into a 10 mg/mL solution.
  • a quantum dot composite was prepared by a RAFT living polymerization method, and a quantum dot ink was formed.
  • a quantum dot composite was prepared by a ROMP living polymerization method, and a quantum dot ink was formed.
  • the quantum dot composite was dissolved in toluene to prepare a quantum dot ink, and the concentration of the quantum dot complex was 1 wt%.
  • the viscosity was 14 cps and the surface tension was 30.4 dyn/cm (20 ° C).
  • a quantum dot light emitting diode was prepared using the quantum dot ink of Example 5.
  • the back sheet was transferred to a vacuum evaporation chamber, and a 100 nm thick aluminum electrode was vapor-deposited.
  • the quantum dot surface of the quantum dot complex according to the embodiment of the present invention is coordinately bonded to a plurality of polymeric chain ligands, and the length of the polymer chain is precisely controllable, and can be effectively
  • the viscosity and surface tension of the ink containing the quantum dot composite are regulated, thereby avoiding the use of additives, low-boiling solvents, and ensuring the purity of quantum dots in the ink.
  • the preparation method is simple in operation.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” or “second” may include at least one of the features, either explicitly or implicitly.
  • the meaning of "a plurality" is at least two, such as two, three, etc., unless specifically defined otherwise.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Electroluminescent Light Sources (AREA)
  • Ink Jet Recording Methods And Recording Media Thereof (AREA)

Abstract

公开了量子点复合物、中间体及其制备方法和应用,该量子点复合物包括:量子点;以及多个聚合链配体,其中,聚合链配体包括配位单元和至少一个聚合链,配位单元连接量子点以及聚合链,聚合链的分子量分布不超过1.3。该量子点复合物的量子点表面配位键合多个聚合链配体,并且其聚合链的长度是精确可控的,能有效地调控含有该量子点复合物的墨水的粘度和表面张力,从而可避免使用添加剂,还可采用低沸点溶剂,又可保证墨水中量子点的纯度。

Description

量子点复合物、中间体及其制备方法和应用 技术领域
本公开涉及量子点材料领域,具体的,本公开涉及量子点复合物、中间体及其制备方法和应用。更具体的,本公开涉及量子点复合物、中间体、制备量子点复合物的方法、量子点墨水和量子点发光二极管器件。
背景技术
相较于传统的液晶显示(LCD)和有机发光二极管显示(OLED),量子点发光显示(QLED)具有发光峰窄、发光颜色随自身尺寸可调、发光效率高、色域高等特殊优势,在业内被认为是下一代新型显示技术的有力候选者。
QLED的制造和生产,需要利用量子点制备量子点发光层。但是,由于量子点材料是一种无机纳米粒子,因此导致量子点发光层等QLED中的结构无法使用常规的蒸镀法来制备获得,而需要采用喷墨打印法来制备。现阶段,量子点墨水调配方法有两类:第一种方法是使用长链、粘度大的烷烃,第二种方法是在低沸点溶剂中加入表面活性剂、粘度调节剂等添加剂。
所以,目前的用于喷墨打印的量子点墨水仍有待改进。
发明内容
第一方面,本公开提出了一种用于喷墨打印的量子点复合物。
根据本公开的至少一实施例,所述量子点复合物包括:量子点;以及多个聚合链配体,其中,所述聚合链配体包括配位单元和至少一个聚合链,所述配位单元连接所述量子点以及所述聚合链;其中,多个所述聚合链的分子量分布(即重均分子量与数均分子量的比值)不超过1.3。
本申请的发明人经过长期地研究发现,本公开实施例的量子点复合物,其量子点表面配位键合多个聚合链配体,并且其聚合链的长度是精确可控的,能有效地调控含有该量子点复合物的墨水的粘度和表面张力,从而可避免使用添加剂,还可采用低沸点溶剂,又可保证墨水中量子点的纯度。
另外,根据本公开上述实施例的量子点复合物,还可以具有如下附加的技术特征:
根据本公开的至少一实施例,所述配位单元包括配位元素和/或配位基团。
根据本公开的至少一实施例,所述配位元素包括氮、磷、氧和硫中的至少之一;所述配位基团包括羧基、羟基以及胺基中的至少之一。
根据本公开的至少一实施例,所述聚合链包括选自聚甲基丙烯酸甲酯(PMMA)、聚苯乙烯(PS)、聚环戊烯、聚咔唑以及聚嘌呤的至少之一。
根据本公开的至少一实施例,所述聚合链含有不饱和基团,且所述不饱和基团包括烯基。
根据本公开的至少一实施例,所述配位单元进一步包括:至少一个支链,所述支链为碳数为5-10的碳链,且所述支链与所述配位元素和/或配位基团相连。
第二方面,本公开提出了一种用于制备上述的量子点复合物的中间体。
根据本公开的至少一实施例,所述中间体包括:量子点;以及配位单元,所述配位单元与所述量子点相连,所述配位单元具有用于引发活性聚合并形成所述聚合链的活性末端。
本申请的发明人研究发现,本公开实施例的中间体,在能够配位键合量子点的同时,还具有能够引发活性聚合的活性末端,其能够用于形成连接量子点的聚合链配体中的聚合链。
第三方面,本公开提出了一种制备上述的量子点复合物的方法。
根据本公开的至少一实施例,所述方法包括:(1)提供量子点;(2)将聚合链配体与所述量子点配位键合,其中,所述聚合链配体的聚合链通过配位单元与所述量子点相连。
本申请的发明人经过长期地研究发现,采用本公开实施例的方法,能获得聚合链的长度是精确可控的量子点复合物,该量子点复合物能有效地调控含有量子点墨水的粘度和表面张力,从而可避免使用添加剂,还可采用低沸点溶剂,并且该制备方法操作简单。本领域技术人员能够理解的是,前面针对量子点复合物所描述的特征和优点,仍适用于该制备量子点复合物的方法,在此不再赘述。
另外,根据本公开上述实施例的方法,还可以具有如下附加的技术特征:
根据本公开的至少一实施例,所述聚合链配体以及所述量子点的配位键合是通过以下步骤实现的:(2-1)制备连接有配位单元的量子点,其中,所述配位单元与所述量子点之间是配位键合的;(2-2)通过活性聚合制备聚合链,所述聚合链与所述量子点相连,以便获得所述聚合链配体。
根据本公开的至少一实施例,所述活性聚合的温度低于100℃,且所述活性聚合的溶剂包括选自甲苯、四氢呋喃的至少一种。
根据本公开的至少一实施例,所述聚合链包括烯基,所述制备量子点复合物的方法进一步包括:(3)在所述制备聚合链之后加入交联剂,以便所述聚合链中的烯基发生交联反应。
第四方面,本公开提出了一种制备上述的量子点复合物的方法。
根据本公开的至少一实施例,所述方法包括:
(1)提供第一母液,所述第一母液含有第一元素、有机配体以及第一溶剂;
(2)提供第二母液,所述第二母液含有第二元素、所述有机配体以及第二溶剂;
(3)在惰性气氛下,将所述第一母液加入所述第二母液中,搅拌并加热,所述加热的温度为200-350摄氏度,反应30s-1hr时间后,进行冷却处理;
(4)对经过所述冷却处理的混合液进行离心处理,取所述离心处理后的沉淀进行干燥处理,以便获得连接有配位单元的量子点;
(5)将所述连接有配位单元的量子点与引发剂以及单体混合,以便利用活性聚合反应制备聚合链,所述聚合链与所述配位单元相连,以便获得所述量子点复合物;
其中,所述第一元素以及第二元素用于形成所述量子点,
所述第一溶剂以及第二溶剂分别独立地包括十八烯、三辛基膦和三辛基氧磷的至少一种;
所述活性聚合反应的温度为90-100摄氏度,所述活性聚合反应包括原子转移自由基聚合(Atom Transfer Radical Polymerization,ATRP)、可逆加成-裂解链转移(Reversible Addition-Fragmentation Chain Transfer,RAFT)、氮氧稳定自由基聚合(Nitroxide-Mediated Free Radical Polymerization,NMP)和开环烯 烃复分解聚合(Ring-Opening Metathesis Polymerization,ROMP)。
本申请的发明人经过长期地研究发现,采用本公开实施例的制备方法,能获得聚合链的长度更精确可控的量子点复合物,该量子点复合物能更有效地调控含有量子点墨水的粘度和表面张力,从而可避免使用添加剂,还可采用低沸点溶剂,并且该制备方法操作更简单。本领域技术人员能够理解的是,前面针对量子点复合物所描述的特征和优点,仍适用于该制备量子点复合物的方法,在此不再赘述。
第五方面,本公开提出了一种量子点墨水。
根据本公开的至少一实施例,所述量子点墨水包括:上述的量子点复合物;以及低沸点溶剂。
本申请的发明人经过长期地研究发现,本公开实施例的量子点墨水,其量子点复合物的聚合链的长度精确可控,使得该量子点墨水能满足喷墨打印高分辨率QLED显示屏的粘度和表面张力的使用要求,并且采用低沸点溶剂的同时无需添加剂,能使量子点墨水的沸点低于100摄氏度,从而降低后续高温处理对量子点性能的影响,也可保证打印出墨水中量子点的纯度。本领域技术人员能够理解的是,前面针对量子点复合物所描述的特征和优点,仍适用于该量子点墨水,在此不再赘述。
第六方面,本公开提出了一种量子点发光二极管器件。
根据本公开的至少一实施例,所述量子点发光二极管器件包括:量子点发光层,该量子点发光层是利用上述的量子点墨水制备的。
本申请的发明人经过长期地研究发现,本公开实施例的量子点发光二极管器,其量子点发光功能层的量子点纯度更高、发光效率更好,从而使该量子点发光二极管器的使用性能更优异。本领域技术人员能够理解的是,前面针对量子点复合物、量子点墨水所描述的特征和优点,仍适用于该量子点发光二极管器,在此不再赘述。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是本公开一个实施例的量子点复合物的结构示意图;
图2是本公开另一个实施例的量子点复合物交联形成量子点膜的过程示意图;
图3是本公开另一个实施例的量子点复合物的结构示意图;
图4是本公开一个实施例的制备量子点复合物方法的流程示意图;
图5是本公开一个实施例的聚合链的活性聚合方法的原理示意图;
图6是本公开的实施例1的步骤(1)的化学反应式的示意图;
图7是本公开的实施例2的步骤(1)的化学反应式的示意图;
图8是本公开的实施例3的步骤(1)的化学反应式的示意图;
图9是本公开的实施例5的步骤(1)的化学反应式的示意图;
图10是本公开的实施例7的步骤(1)的化学反应式的示意图。
具体实施方式
本发明人在研究过程中发现,现有的量子点喷墨打印墨水,普遍存在制备出的量子点膜发光效果不佳的问题。发明人经过深入研究发现,这主要是由于目前的量子点喷墨打印墨水,墨水中溶剂的沸点较高,需要较高的后处理温度(例如高于180℃)来除去溶剂,而高温处理会影响量子点的性能;而利用低沸点溶剂制备的量子点喷墨打印墨水,其中表面活性剂等添加剂的添加量可高达10%至50%,而上述表面活性剂、粘度调节剂会成为量子点膜的“杂质”,影响量子点成膜并对其电致发光性能造成不良影响。鉴于使用喷墨打印法需要适合的粘度和表面张力的量子点墨水,而高沸点溶剂以及表面活性剂可以调节量子点墨水的上述物理参数,因此目前的量子点墨水无法避免上述高沸点溶剂或是添加剂的使用。
有鉴于此,本公开的一个目的在于提出一种能有效调控墨水的粘度和表面张力可控、无添加剂且利用低沸点溶剂形成的量子点墨水。本发明的发明人经过深入研究发现,精确控制量子点配体的长度,可以调节量子点墨水的粘度和表面张力,从而避免使用添加剂,保证量子点墨水中量子点的纯度;同时,由于量子点墨水的粘度和表面张力无需采用高沸点溶剂调控,因此还可使用低沸点溶剂制备量子点墨水,避免后续高温处理会对量子点的使用性能造成影响。通过量子点表面引发活性聚合的方式,可以通过精确调整其聚合链长度,引入配体链长精确可控的长链配体。
在本公开的一个方面,提出了一种用于喷墨打印的量子点复合物。参照图1~3,对本发明的量子点复合物进行详细的描述。
根据本公开的至少一实施例,参考图1,量子点复合物包括:量子点以及多个聚合链配体。其中,聚合链配体进一步包括配位单元和至少一个聚合链,并且配位单元连接量子点和聚合链,而聚合链的分子量分布(即重均分子量与数均分子量的比值)不超过1.3。
本申请的发明人经过长期地研究发现,理想的量子点墨水,在60℃时粘度通常为10-12cps、表面张力为28-33dyn/cm,且密度>1mg/mL。另外,由于高温处理过程将会影响量子点的发光性能,因此量子点墨水的溶剂沸点小于100℃时,可以使加热去除溶剂的过程不会对量子点的发光性能造成严重的负面影响。考虑到喷墨打印的要求,量子点还需要在溶剂中具有良好的分散性和稳定性。
本申请的发明人经过长期地研究发现,溶液的粘度和表面张力能够通过控制向溶液中加入的聚合物的分子量和浓度来调节,从而可通过将聚合物加入至量子点墨水体系中来调节其粘度和表面张力,满足喷墨打印高分辨率QLED显示屏对量子点墨水的要求。在本申请中,发明人将聚合度精准可控的聚合链,通过连接到配位单元上来实现与量子点的进一步连接获得量子点复合物。通过对聚合链的浓度和分子量的调控,可实现对含有该量子点复合物的量子点墨水的粘度和表面张力的调控。该量子点复合物结构简单、成本低廉,与低沸点溶剂混合即可形成满足喷墨打印需求的量子点墨水,而无需加入添加剂。
根据本公开的至少一实施例,量子点的种类不受特别的限制,只要该量子点能用于后续配位键合,具有一定的发光性能,且可以获得根据本公开实施例的量子点复合物即可。本领域技术人员可根据喷墨打印或是制备的QLED器件的的实际使用要求进行选择。在本公开的一些实施例中,量子点材料可以为CdTe(碲化镉)。
根据本公开的至少一实施例,量子点的尺寸不受特别的限制,本领域技术人员可根据喷墨打印的实际使用要求进行选择。在本公开的一些实施例中,量子点的粒子半径小于10nm。如此,采用上述粒子半径的量子点,形成的含有该量子点复合物的墨水的稳定性较好,打印出的量子点功能层的性能较 好。在本公开的一些具体示例中,量子点的粒子半径为2~10nm。如此,采用上述粒子半径的量子点,形成的含有该量子点复合物的墨水的稳定性进而分散性更好,打印出的量子点功能层的功能性更加优异。
根据本公开的至少一实施例,配位单元包括配位元素和/或配位基团。需要说明的是,本申请中的“配位单元”是指带有能与量子点表面发生配位键合的配位元素或配位基团,且具有活性末端,从而活性末端可以通过后续的活性聚合,形成聚合链。如此,采用配位元素或者配位基团的量子点复合物,其配位单元可通过其配位元素或者配位基团的诸如孤对电子等结构,与无机纳米粒子的量子点的表面发生配位键合,从而保证了量子点与聚合链配体间的有效连接,可促进量子点在墨水中的分散性和稳定性。
根据本公开的至少一实施例,配位元素包括氮、磷、氧和硫中的至少之一。如此,聚合链配体上的上述配位元素的孤对电子与量子点的表面可直接形成较强的配位键合。在本公开的一些具体示例中,配位元素可以采用磷原子,其孤对电子可与量子点表面配位键合而相连,而多价的磷原子还可进一步化学键合有氯原子等可引发活性聚合反应的活性末端。例如,氯原子可以在后续的活性聚合反应中,作为活性末端,通过活性聚合进行碳链的延长,从而获得根据本公开实施例的聚合链。
根据本公开的至少一实施例,配位基团包括羧基、羟基以及胺基中的至少之一。如此,聚合链配体上的上述配位基团的孤对电子与量子点的表面可形成较弱的配位键合,并且羧基或羟基与聚合链之间是通过化学键相连的,从而使聚合链借助上述配位基团能增加量子点的稳定性和分散性。在本公开的一些实施例中,与量子点键合的配位基团可以是羧酸。如此,采用羧酸基团作为配位基团,羧酸基团的氧原子和羟基均可与量子点表面发生配位键合,从而增强了聚合链配体与量子点之间连接的化学稳定性,从而使聚合链通过配位基团能增加量子点的稳定性和分散性。在本公开的一些具体示例中,配位基团可以采用羧基,其羟基和羰基上的氧原子的孤对电子均可与量子点表面配位键合而相连,而羟基的另一端还可进一步化学键合上碳链,该碳链上可含有碳碳不饱和双键等可引发活性聚合反应的活性末端。例如,碳碳不饱和双键可以在后续的活性聚合反应中,作为活性末端,通过活性聚合进行碳链的进一步延长,从而获得根据本公开实施例的聚合链。
在一些具体的实施示例中,配位单元还可进一步包括至少一个支链,支链可以是碳数为5-10的碳链,且该支链与配位元素和/或配位基团相连。如此设计,可利用与配位单元直接相连的其他短碳链的空间位阻,从而在活性聚合形成聚合链的过程中能防止量子点发生团聚。例如,当配位元素为磷原子时,上述支链可以与磷原子之间共价连接。
根据本公开的至少一实施例,该聚合链可以是通过活性聚合获得的。本申请的发明人经过长期地研究发现,活性聚合的合成方法能精准地控制聚合物链长。通过调节聚合单体和引发剂的浓度,即可精确地控制聚合物的链长和单分散性,从而有效地调控聚合物溶液的粘度与表面张力。
根据本公开的至少一实施例,该聚合链的具体种类不受特别的限制,本领域技术人员可以选择熟悉的聚合链种类构成根据本公开实施例的聚合链,只要该种类的聚合链的分子链长度和多分散性可控即可。在本公开的一些实施例中,该聚合链的种类可包括选自PMMA、PS、聚环戊烯、聚咔唑以及聚嘌呤的至少之一。如此,采用上述聚合物种类的聚合链,可有效地使含有量子点复合物的墨水的粘度、表面张力、分散性和稳定性等性能满足喷墨打印高分辨率QLED显示屏的使用要求,并且上述种类的聚合物具有良好的成膜性,在打印后可与量子点形成性能优异的膜层。
根据本公开的至少一实施例,该聚合链的具体链长不受特别的限制,只要该链长的聚合链能使含有量子点复合物的墨水的粘度和表面张力满足打印要求、且保持量子点在墨水中的分散性和稳定性即可,本领域技术人员可根据实际的试验情况进行调节。在本公开的一些实施例中,该聚合链的数均分子量可以为300-2000。如此,在上述分子量范围内的可活性聚合的聚合链,能更好地调节含有量子点复合物的墨水的粘度和表面张力,使其进一步满足量子点打印的要求,且还可保持量子点在含有低沸点溶剂、不含添加剂的墨水中的分散性和稳定性。在本公开的一些具体示例中,该聚合链的数均分子量可以为500-800。
根据本公开的至少一实施例,该聚合链可进一步含有不饱和基团。如此,在含有不饱和基团的聚合链的量子点复合物的墨水在打印之后,继续进行后续干燥除溶剂的过程中,参考图2,不饱和基团可进一步发生交联反应而使膜基体强度增大,从而可获得稳定性更好的量子点功能层;或者,该聚合链 上的不饱和基团也可用于进一步化学修饰上其他官能团,用于对量子点复合物的性能进行进一步的改进。在本公开的一些实施例中,该聚合链可含有不饱和的烯基。如此,含有烯基的聚合链,具体例如聚合链为聚环戊烯的情况下,在后续干燥除溶剂过程中不饱和烯基可发生交联反应,形成三维网状的结构而使膜基体强度进一步增大,从而可获得稳定性更好的量子点功能层。
根据本公开的至少一实施例,参考图3,量子点复合物可进一步包括:多个不可聚合配体,其中,不可聚合配体包括第二配位单元和至少一个不可聚合支链,并且第二配位单元连接量子点和不可聚合支链。如此,通过调节可聚合配体和不可聚合配体的浓度,可以控制量子点表面配位键合的短链和长链的比例,从而进一步调控含有该量子点复合物的墨水的粘度和表面张力。在本公开的一些实施例中,第二配位单元可以与配位单元相同,不可聚合支链可以为是碳数为5-10的碳链。如此,有利于通过调节聚合链配体和不可聚合配体的浓度,即可有效地控制量子点表面的长短链比例,从而可以使得基于该量子点复合物制备的量子点墨水更加适用于喷墨打印。上述不可聚合配体可以和前面描述的聚合链配体同步键合在量子点表面。
综上所述,根据本公开的至少一实施例,提出了一种量子点复合物,其量子点表面配位键合多个聚合链配体,并且其聚合链的长度是精确可控的,能有效地调控含有该量子点复合物的墨水的粘度和表面张力,从而可避免使用添加剂,还可采用低沸点溶剂,又可保证墨水中量子点的纯度。
在本公开的另一个方面,提出了一种用于制备上述的量子点复合物的中间体。
根据本公开的至少一实施例,该中间体包括量子点和配位单元,其中,配位单元与量子点相连,且配位单元具有用于引发活性聚合并形成聚合链的活性末端。本领域技术人员可以理解的是,该中间体是用于制备上述量子点复合物的,而该配位单元上的活性末端经过引发并进行活性聚合后可形成上述量子点复合物的聚合链配体中的聚合链。
根据本公开的至少一实施例,该中间体是用于制备前面描述的量子点复合物的,因此,该中间体的量子点和配位单元具有与前面描述的量子点复合物的相应结构相同的特征以及优点,在此不再赘述。总的来说,该中间体在可配位键合量子点的同时,还具有可引发活性聚合的活性末端,其可用于形 成前面描述的聚合链配体中的聚合链。
在本公开的另一个方面,提出了一种制备上述的量子点复合物的方法。参照图4~5,对本公开的制备量子点复合物的方法进行详细的描述。根据本公开的至少一实施例,参照图4,该制备方法包括:
S100:提供量子点。
在该步骤中,可获得用于后续配位键合的量子点材料。根据本公开的至少一实施例,提供量子点的具体方法不受特别的限制,直接购买或者采用本领域任何已知的方法制备的量子点均可,只要该量子点能用于后续配位键合和喷墨打印即可,本领域技术人员可根据喷墨打印的使用要求进行选择,在此不再赘述。
S200:配位键合。
在该步骤中,将前一步骤提供的量子点与聚合链配体进行配位键合反应,具体的,令聚合链配体的配位单元与量子点表面直接配位键合。
根据本公开的至少一实施例,聚合链配体具体的获得方式不受特别的限制,本领域技术人员可以选择熟悉的方式,获得根据本公开实施例的聚合链配体。具体例如可通过活性聚合的方法,在配位单元上聚合形成长度精准可控的聚合链,使得聚合链的分子量分布不超过1.3,本领域技术人员可根据实际情况进行选择。
根据本公开的至少一实施例,聚合链配体与量子点配位键合的具体方法,不受特别的限制,只要能使聚合链配体与量子点进行配位键合的方法即可,本领域技术人员可根据实际情况进行选择。
在本公开的一些实施例中,聚合链配体以及量子点的配位键合可以是通过以下步骤实现的:
S210:制备连接有配位单元的量子点。
根据本公开的至少一实施例,参考图5,在该步骤中,制备具有配位单元的量子点,其中,配位单元与量子点之间是配位键合的。其中,键合至量子点上的配位单元上,还连接有可以形成聚合链的活性引发位点。由此,便于在后续步骤中,利用该活性引发位点形成与配位单元连接的聚合链。例如,根据本公开的具体实施例,可以采用液相反应,在制备获得量子点的同时,将含有配位元素或是配位基团的配位单元,通过配位键合作用,连接在量子 点的表面。如此,可以采用带有活性引发位点的配位单元,代替原有的保护量子点的有机配体加入反应溶液中,进而可以采用相同的制备量子点的步骤和条件,直接获得表面配位键合有含有活性引发位点的配位单元的量子点,从而可以简化操作步骤,降低生产成本,提高生产效率。
S220:活性聚合。
根据本公开的至少一实施例,在该步骤中,通过活性聚合,制备与配位单元连接的聚合链,以便获得该量子点复合物。具体的,配位单元上的活性末端,可进行活性聚合,从而可通过控制聚合单体的浓度,获得聚合度精确可控的聚合链。
根据本公开的至少一实施例,配位单元上的活性聚合可以使获得的聚合链长度精准可控。在本公开的一些实施例中,活性聚合的具体种类可以包括选自ATRP(原子转移自由基聚合)、RAFT(可逆加成-裂解链转移)、NMP(氮氧稳定自由基聚合)和ROMP(开环烯烃复分解聚合)的至少一种。如此,采用上述种类的活性聚合方法,可使聚合物的分子量分布不超过1.3,从而更有效地对该量子点复合物组成的墨水的浓度和表面张力进行精准调控。
例如,根据本公开的具体实施例,可以采用RAFT(可逆加成-裂解链转移),利用配位单元的活性末端(如Cl原子),通过诸如取代反应,与
Figure PCTCN2017108118-appb-000001
相连,通过可逆加成-裂解链转移反应,将诸如苯乙烯等具有不饱和键的单体进行活性聚合,获得链长精确可控的PS聚合链。
例如,根据本公开的具体实施例,可以采用ROMP(开环烯烃复分解聚合),利用配位单元上的活性末端(如碳碳不饱和双键),该双键还可在第二代Grubbs催化剂的条件下,通过开环烯烃复分解聚合反应,将诸如环戊烯等具有不饱和键的环状结构的单体进行活性聚合,因此,可获得链长同样精确可控的聚环戊烯聚合链。根据本公开的至少一实施例,活性聚合的温度低于100℃,且溶剂包括选自包括但不限于甲苯、四氢呋喃的至少一种。如此,采用上述活性聚合的条件,能保证聚合链在量子点表面的配位单元上能精准可控地生长,还能避免过高的反应温度或是不良溶剂影响量子点的使用性能,从而能保证打印出的量子点功能层的性能。
综上所述,根据本公开的至少一实施例,提出了一种制备方法,能获得聚合链的长度是精确可控的量子点复合物,该量子点复合物能有效地调控含有量子点墨水的粘度和表面张力,从而可避免使用添加剂。该制备方法操作简单、成本低廉、生产周期短,生产效率高,有利于扩大该量子点复合物的大规模推广应用。如前所述,由于该方法制备的量子点复合物可以有效调控基于该量子点复合物制备的量子点墨水的粘度和表面张力,因此采用低沸点溶剂即可获得满足喷墨打印需求的量子点墨水。本领域技术人员能够理解的是,利用该方法制备的量子点复合物,具有与前面描述的量子点复合物相同的特征以及优点,在此不再赘述。
在本公开的另一个方面,提出了一种制备上述的量子点复合物的方法。
根据本公开的至少一实施例,该制备方法包括:
(1)提供第一母液。
第一母液中含有第一元素、有机配体以及第一溶剂。根据本公开的具体实施例,第一元素用于形成量子点,例如当量子点为CdTe时,第一元素可以为Te;有机配体为带有可引发活性聚合基团的配位单元,具体例如参考附图6的化合物1、油酸;而第一溶剂需为第一元素的液相反应的良溶剂,具体例如十八烯、三辛基膦和三辛基氧磷。其中,第一母液中第一元素、有机配体以及第一溶剂的配比不受特别限制,本领域技术人员可以根据实际需要制备的量子点复合物的具体组成进行调节。
(2)提供第二母液。
第二母液中含有第二元素、有机配体以及第二溶剂。根据本公开的具体实施例,第二元素也用于形成量子点,例如当量子点为CdTe,第一元素为Te时,第二元素可以为Cd;有机配体为带有可引发活性聚合基团的配位单元,具体例如参考附图6的化合物1、油酸;而第二溶剂需为第二元素的液相反应良溶剂,具体例如十八烯、三辛基膦和三辛基氧磷。其中,第二母液中第二元素、有机配体以及第二溶剂的配比不受特别限制,本领域技术人员可以根据实际需要制备的量子点复合物的具体组成进行调节。
(3)混合第一母液以及第二母液。
在该步骤中,在惰性气氛下,将第一母液加入第二母液中搅拌并加热,该加热的温度为200-350摄氏度,反应30s-1h时间后,进行冷却处理。由此, 可以在上述的反应条件下,待表面配位带有可引发活性聚合基团的配位单元的量子点晶体,生长至所需大小。在本公开的一些实施例中,加热的温度可以为290摄氏度,反应15min时间后,进行冷却处理。如此,在上述反应条件下,可获得尺寸和性能更优的量子点晶体。
(4)离心处理。
在该步骤中,对经过冷却处理的混合液进行离心处理,取离心处理后的沉淀进行干燥处理,以便获得连接有配位单元的量子点。根据本公开的具体实施例,先加入氯仿,离心并取上层清液,然后加入甲醇将量子点沉淀下来,再离心后得到的下层沉淀,即为表面配位带有可引发活性聚合基团的配位单元的量子点。
(5)活性聚合。
在该步骤中,将连接有配位单元的量子点与引发剂以及单体混合,以便利用活性聚合反应制备聚合链,聚合链与配位单元相连,以便获得所述量子点复合物。根据本公开的至少一实施例,活性聚合反应的温度为90-100摄氏度,活性聚合反应包括ATRP、RAFT、NMP和ROMP。如此,采用上述种类的活性聚合方法,可使聚合链配体上聚合链的分子量误差不超过50,从而更有效地对该量子点复合物组成的墨水的浓度和表面张力进行精准调控。
综上所述,根据本公开的至少一实施例,提出了一种制备方法,能获得聚合链的长度更精确可控的量子点复合物,该量子点复合物能更有效地调控含有量子点墨水的粘度和表面张力,从而可避免使用添加剂,还可采用低沸点溶剂,并且该制备方法操作更简单。本领域技术人员能够理解的是,利用该方法制备的量子点复合物,具有与前面描述的量子点复合物相同的特征以及优点,在此不再赘述。
在本公开的另一个方面,提出了一种量子点墨水。根据本公开的至少一实施例,该量子点墨水包括:上述的量子点复合物;以及低沸点溶剂。需要说明的是,低沸点溶剂具体是指沸点低于100摄氏度的溶剂。
本申请的发明人经过长期地研究发现,通过活性聚合的方式可精确控制量子点配体的长度来调节量子点墨水的粘度和表面张力,从而避免使用添加剂,保证了量子点墨水中量子点的纯度;同时还使用低沸点溶剂,从而避免了后续过高温度(超过180℃)的处理会对量子点的使用性能造成影响。
根据本公开的至少一实施例,低沸点溶剂的具体种类不受特别的限制,只要该溶剂的沸点低于100摄氏度且能充分溶解量子点复合物即可,本领域技术人员可根据量子点复合物的具体性能进行选择。在本公开的一些实施例中,该低沸点溶剂包括选自甲苯、二甲苯、正己烷、正庚烷和正辛烷的至少一种。如此,采用上述低沸点溶剂,能有效地溶解量子点复合物,且该量子点墨水的沸点能够低于100摄氏度。
根据本公开的至少一实施例,基于该量子点墨水的重量,量子点复合物的重量百分数小于5%。如此,采用上述体积比的量子点复合物与低沸点溶剂形成的量子点墨水,不仅使量子点墨水进一步满足了制作量子点层的打印要求,还可使量子点墨水的沸点低于100摄氏度,从而进一步避免后续干燥去除溶剂的温度过高而会影响量子点的使用性能。在本公开的一些实施例中,基于该量子点墨水的重量,量子点复合物的重量百分数为1~2%。
综上所述,根据本公开的至少一实施例,提出了一种量子点墨水,其量子点复合物的聚合链的长度精确可控,使得该量子点墨水能满足喷墨打印高分辨率QLED显示屏的粘度和表面张力的使用要求,并且采用低沸点溶剂的同时无需添加剂,能使量子点墨水的沸点低于100摄氏度,从而降低后续高温处理对量子点性能的影响,也可保证打印出墨水中量子点的纯度。本领域技术人员能够理解的是,前面针对量子点复合物所描述的特征和优点,仍适用于该量子点墨水,在此不再赘述。
在本公开的另一个方面,提出了一种量子点发光二极管器件。
根据本公开的至少一实施例,该量子点发光二极管器件包括量子点发光层,该量子点发光层是利用上述的量子点墨水制备的。本领域技术人员可以理解的是,该量子点发光二极管器件除了量子点发光层以外,还可以包括其他必要的组成或结构,具体例如基板、上下电极层、电子注入及传输层、空穴传输层、空穴注入层、光输出耦合层,等等,本领域技术人员可根据实际的量子点发光二极管的使用要求进行设计,在此不再赘述。
根据本公开的至少一实施例,该量子点发光二极管器件的具体种类有不受特别的限制,只要该量子点发光二极管器件是通过量子点发光层发光的即可,本领域任何已知的量子点发光二极管器件种类均可,本领域技术人员可根据实际的量子点发光二极管的使用要求进行设计,在此不再赘述。
综上所述,根据本公开的至少一实施例,提出了一种量子点发光二极管器,其量子点发光功能层的量子点纯度更高、发光效率更好,从而使该量子点发光二极管器的使用性能更优异。本领域技术人员能够理解的是,前面针对量子点复合物、量子点墨水所描述的特征和优点,仍适用于该量子点发光二极管器,在此不再赘述。
下面详细描述本公开的一些实施例,本技术领域人员会理解,这些实施例旨在用于解释本发明,而不应视为对本发明的限制。除非特别说明,在下面实施例中没有明确描述具体技术或条件的,本领域技术人员可以按照本领域内的常用的技术或条件或按照产品说明书进行。所用试剂或仪器未注明生产厂商者,均为可通过市购到的常规产品。
实施例1 制备中间体
在该实施例中,制备出用于制备量子点复合物的中间体。其中,量子点采用CdTe量子点。
具体的操作步骤如下:
(1)参考图6所示的化学反应式,将
Figure PCTCN2017108118-appb-000002
在含有NaH、溶剂为THF且温度为65℃的条件下,合成带有可引发活性聚合的配位单元的化合物1;该化合物1的1H NMR谱的峰位置分别为:1H NMR(CDCl3):δ(ppm):7.20-7.25,m,4H;4.65,s,2H;2.94,s,2H;1.65-1.70,m,4H;1.25-1.30,m,20H;0.88,t,6H。
(2)称取0.01g Te粉以及0.054g化合物1,在氮气气氛下溶于2.5mL十八烯(ODE),制得Te的储备液;
(3)称取0.015g CdO和0.12g硬脂酸放入三颈烧瓶中,在氮气气氛下加入5mL十八烯,加热至160℃以上,搅拌直至CdO完全溶解;将反应体系降至室温后,加入1.5g十六胺(HAD)和0.1g实施例1的化合物1;在氮气气氛下搅拌加热至290℃,然后将步骤(2)的Te的储备液快速加入,在290摄氏度保持一段时间,待量子点晶体生长至所需的大小后,将反应体系迅速降温;
(4)往上述反应混合物中加入氯仿,离心并取上层清液,再加入甲醇将量子点沉淀下来;离心后得到的下层沉淀,即为表面配位键合有含可活性引发基团的配位单元的中间体2;干燥后量子点可溶于甲苯中保存,配成10mg/mL溶液。
实施例2 制备量子点复合物
在该实施例中,使用实施例1制备的中间体2,通过RAFT活性聚合方法制备出量子点复合物,并可形成量子点墨水。其中,聚合链种类为PS。
具体的反应步骤为:
(1)按图7所示的RAFT活性聚合的步骤,取中间体2的甲苯溶液,将中间体2与
Figure PCTCN2017108118-appb-000003
在含有Bu4NI、K2CO3、溶剂为THF且温度为60℃的条件下,反应生成化合物3,再将化合物3与苯乙烯在含有AIBN、溶剂为甲苯(toluene)且温度为90℃下,进行RAFT活性聚合生成具有长链聚合物配体的量子点复合物4,其中聚合链的分子量(通过GPC检测获得)为500;
(2)将上述量子点复合物4溶解于甲苯中,量子点复合物的浓度为1%。测得该量子点墨水的粘度为17cps,表面张力为31.3dyn/cm(20℃)。
实施例3 制备量子点复合物
在该实施例中,使用实施例1制备的中间体2,通过NMP活性聚合方法制备出量子点复合物,并可形成量子点墨水。
具体步骤的区别如下:
(1)参照图8所示的NMP活性聚合的步骤,取中间体2的甲苯溶液,将中间体2与TENPO-OH在含有NaH、溶剂为THF且温度为60℃的条件下合成化合物5,再将化合物5与苯乙烯在含有AIBN、溶剂为甲苯(toluene)且温度为90℃下,进行NMP活性聚合生成具有长链聚合物配体的量子点复合物6,其中聚合链的分子量(通过GPC检测获得)为500。
(2)将上述量子点复合物6溶解于甲苯中,量子点复合物的浓度为1%。测得该量子点墨水的粘度为17cps,表面张力为31.3dyn/cm(20℃)。
实施例4 制备中间体
在该实施例中,按照与实施例1基本相同的方法和条件,制备出中间体。区别在于,在该实施例中:
(2)称取0.01g Te粉以及0.018g化合物1、0.051g三正辛基氧膦(化合物1与三正辛基氧膦摩尔比为1:3);
(3)加入1.5g十六胺(HAD)和0.03g化合物1以及0.085g三正辛基氧膦(化合物1与三正辛基氧膦摩尔比为1:3);
(4)获得表面配位键合有含可活性引发基团的配位单元的量子点7;干燥后中间体7可溶于甲苯中保存,配成10mg/mL溶液。
实施例5 制备量子点复合物
在该实施例中,使用实施例4制备的中间体7,通过RAFT活性聚合方法制备出量子点复合物,并可形成量子点墨水。
具体反应步骤为:
(1)参照图9所示的RAFT活性聚合的步骤,取中间体7的甲苯溶液,将中间体7与
Figure PCTCN2017108118-appb-000004
在含有Bu4NI、K2CO3、溶剂为THF且温度为60℃的条件下,反应生成化合物8(其中,图9中化合物8的3个不可聚合配体的结构和量子点7的相同,只是图9中化合物8的3个不可聚合配体用简图表示),再将化合物8与苯乙烯在含有AIBN、溶剂为甲苯(toluene)且温度为90℃下,进行RAFT活性聚合生成具有长链聚合物配体的量子点复合物9,其中聚合链的分子量(使用吡啶洗出后通过GPC检测获得)为500。
(2)将上述量子点复合物9溶解于甲苯中,量子点复合物的浓度为1wt%。测得该量子点墨水的粘度为11cps,表面张力为28.3dyn/cm(20℃)。
实施例6 制备中间体
在该实施例中,按照与实施例1基本相同的方法和条件,制备出中间体。区别在于,在该实施例中:
无步骤(1);
(2)称取0.01g Te粉以及0.054g油酸;
(3)只是用“加入1.5g十六胺(HAD)和0.1g油酸”替代“加入1.5g十 六胺(HAD)和0.1g实施例1的化合物1”,其他与实施例1的步骤(3)基本相同;
(4)和实施例1的步骤(4)基本相同,获得中间体10的10mg/mL甲苯溶液。
实施例7 制备量子点复合物
在该实施例中,使用实施例6制备的中间体10,通过ROMP活性聚合方法制备出量子点复合物,并可形成量子点墨水。
具体的反应步骤为:
(1)取浓度为10mg/mL的1mL中间体10的甲苯溶液,再用甲苯稀释至10mL,加入6.8mg环戊烯,通氮气20分钟以除去溶剂中的氧气,然后加入8.5mg第二代Grubbs催化剂(Grubbs’Cat Gen2),常温搅拌下进行参照图10所示的ROMP活性聚合反应2小时;将反应体系浓缩后,加入甲醇将量子点复合物沉淀下来;该量子点复合物即含有指定聚合链长度(分子量~830)的聚合链配体。
(2)将该量子点复合物溶于甲苯制成量子点墨水,量子点复合物的浓度为1wt%。粘度为14cps,表面张力为30.4dyn/cm(20℃)。
实施例8 制备可交联量子点墨水
在该实施例中,在实施例7合成的量子点复合物6的墨水中,再添加0.01%的过氧化苯甲酰,即可制成可交联量子点墨水。需低温保存,以防止可交联量子点墨水在喷墨打印前就发生交联反应,影响喷墨打印效果。
实施例9 制备量子点发光二极管
在该实施例中,使用实施例5的量子点墨水,制备量子点发光二极管。
具体步骤如下:
(1)在定义好像素的背板上,使用Dimatix桌面式喷墨打印机,在像素点上打印PEDOT:PSS,并于140℃干燥;
(2)在PEDOT:PSS之上,打印PVK,并于130℃干燥;
(3)在PVK膜层上,使用实施例3所得的量子点墨水进行打印,然后在120℃下干燥,干燥过程中量子点将发生交联;
(4)在量子点膜层上打印ZnO纳米粒子,并于80℃干燥;
(5)将背板转移至真空蒸镀腔中,蒸镀100nm厚铝电极。
综合实施例1~9可得出,根据本发明实施例的量子点复合物的量子点表面配位键合多个聚合链配体,并且其聚合链的长度是精确可控的,能有效地调控含有该量子点复合物的墨水的粘度和表面张力,从而可避免使用添加剂,还可采用低沸点溶剂,又可保证墨水中量子点的纯度。并且,该制备方法操作简单。
在本发明的描述中,需要理解的是,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本公开的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。
本申请要求于2017年3月22日递交的中国专利申请第201710175606.2号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。

Claims (14)

  1. 一种用于喷墨打印的量子点复合物,包括:
    量子点;以及
    多个聚合链配体,其中,所述聚合链配体包括配位单元和至少一个聚合链,所述配位单元连接所述量子点以及所述聚合链;
    其中,聚合链的分子量分布不超过1.3。
  2. 根据权利要求1所述的量子点复合物,其中所述配位单元包括配位元素和/或配位基团。
  3. 根据权利要求2所述的量子点复合物,其中,
    所述配位元素包括氮、磷、氧和硫中的至少之一;
    所述配位基团包括羧基、羟基以及胺基中的至少之一。
  4. 根据权利要求3所述的量子点复合物,其中所述聚合链包括选自PMMA、PS、聚环戊烯、聚咔唑以及聚嘌呤的至少之一。
  5. 根据权利要求4所述的量子点复合物,其中所述聚合链含有不饱和基团,且所述不饱和基团包括烯基。
  6. 根据权利要求2所述的量子点复合物,其中所述配位单元进一步包括:
    至少一个支链,所述支链为碳数为5-10的碳链,且所述支链与所述配位元素和/或配位基团相连。
  7. 一种用于制备权利要求1-6任一项所述的量子点复合物的中间体,包括:
    量子点;以及
    配位单元,所述配位单元与所述量子点相连,所述配位单元具有用于引发活性聚合并形成所述聚合链的活性末端。
  8. 一种制备权利要求1-6任一项所述的量子点复合物的方法,包括:
    (1)提供量子点;
    (2)将聚合链配体与所述量子点配位键合,其中,所述聚合链配体的聚合链通过配位单元与所述量子点相连。
  9. 根据权利要求8所述的方法,其中所述聚合链配体以及所述量子点的配位键合是通过以下步骤实现的:
    (2-1)制备连接有配位单元的量子点,其中,所述配位单元与所述量子点之间是配位键合的;
    (2-2)通过活性聚合制备聚合链,所述聚合链通过所述配位单元与所述量子点相连,以便获得所述聚合链配体。
  10. 根据权利要求8所述的方法,其中所述活性聚合的温度低于100℃,且所述活性聚合的溶剂包括选自甲苯、四氢呋喃的至少一种。
  11. 根据权利要求9所述的方法,其中所述聚合链包括烯基,所述方法进一步包括:
    (3)在制备聚合链之后加入交联剂,以便所述聚合链配体中的烯基发生交联反应。
  12. 一种制备权利要求1-6任一项所述的量子点复合物的方法,包括:
    (1)提供第一母液,所述第一母液含有第一元素、有机配体以及第一溶剂;
    (2)提供第二母液,所述第二母液含有第二元素、所述有机配体以及第二溶剂;
    (3)在惰性气氛下,将所述第一母液加入所述第二母液中,搅拌并加热,所述加热的温度为200-350摄氏度,反应30s-1h时间后,进行冷却处理;
    (4)对经过所述冷却处理的混合液进行离心处理,取所述离心处理后的沉淀进行干燥处理,以便获得连接有配位单元的量子点;
    (5)将所述连接有配位单元的量子点与引发剂以及单体混合,以便利用活性聚合反应制备聚合链,其中所述聚合链与所述配位单元相连以便获得所述量子点复合物;
    其中,所述第一元素以及第二元素用于形成所述量子点,
    所述第一溶剂以及第二溶剂分别独立地包括十八烯、三辛基膦和三辛基氧磷的至少一种;
    所述活性聚合反应的温度为90-100摄氏度,所述活性聚合反应包括ATRP、RAFT、NMP或ROMP。
  13. 一种量子点墨水,包括:
    权利要求1-6任一项所述的量子点复合物;以及
    低沸点溶剂。
  14. 一种量子点发光二极管器件,包括:
    量子点发光层,所述量子点发光层是利用权利要求13所述的量子点墨水制备的。
PCT/CN2017/108118 2017-03-22 2017-10-27 量子点复合物、中间体及其制备方法和应用 WO2018171192A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/781,309 US10873003B2 (en) 2017-03-22 2017-10-27 Quantum dot complex and its manufacturing method, intermediate and applications

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710175606.2 2017-03-22
CN201710175606.2A CN106905497B (zh) 2017-03-22 2017-03-22 量子点复合物、中间体及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2018171192A1 true WO2018171192A1 (zh) 2018-09-27

Family

ID=59194058

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/108118 WO2018171192A1 (zh) 2017-03-22 2017-10-27 量子点复合物、中间体及其制备方法和应用

Country Status (3)

Country Link
US (1) US10873003B2 (zh)
CN (1) CN106905497B (zh)
WO (1) WO2018171192A1 (zh)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106905497B (zh) 2017-03-22 2021-01-12 京东方科技集团股份有限公司 量子点复合物、中间体及其制备方法和应用
CN109266350B (zh) * 2017-07-17 2020-11-24 京东方科技集团股份有限公司 配体修饰量子点组合物及其制备方法、量子点发光二极管
CN109932285B (zh) * 2017-12-15 2021-11-23 Tcl科技集团股份有限公司 量子点表面配体含量的测定方法与量子点墨水配制方法
CN110511335A (zh) * 2018-05-21 2019-11-29 Tcl集团股份有限公司 一种嵌段共聚物、一种复合颗粒
CN110511334A (zh) * 2018-05-21 2019-11-29 Tcl集团股份有限公司 一种嵌段共聚物、一种复合颗粒
CN110713755B (zh) * 2018-07-11 2022-06-14 Tcl科技集团股份有限公司 嵌段共聚物、复合颗粒、油墨及其制备方法和应用
CN110713754B (zh) * 2018-07-11 2022-05-31 Tcl科技集团股份有限公司 嵌段共聚物、复合颗粒、油墨及其制备方法和应用
JP6838690B2 (ja) * 2018-11-06 2021-03-03 Tdk株式会社 磁壁移動素子、磁壁移動型磁気記録素子及び磁気記録アレイ
CN111378323B (zh) * 2018-12-29 2022-01-14 Tcl科技集团股份有限公司 油墨及量子点薄膜和量子点发光二极管
CN110643346A (zh) * 2019-09-05 2020-01-03 深圳市华星光电半导体显示技术有限公司 量子点的配位方法、量子点以及显示装置
CN111029474A (zh) * 2019-11-14 2020-04-17 深圳市华星光电半导体显示技术有限公司 一种有机发光器件
CN112831222B (zh) * 2019-11-22 2023-05-02 Tcl科技集团股份有限公司 油墨及量子点薄膜和量子点发光二极管
CN112831221B (zh) * 2019-11-22 2023-04-18 Tcl科技集团股份有限公司 油墨及量子点薄膜和量子点发光二极管
CN111073648B (zh) * 2019-12-31 2024-01-30 苏州星烁纳米科技有限公司 量子点、量子点墨水及显示装置
KR20210090780A (ko) 2020-01-10 2021-07-21 삼성디스플레이 주식회사 발광 소자 및 이를 포함하는 디스플레이 장치
WO2022000369A1 (zh) * 2020-07-01 2022-01-06 北京大学深圳研究生院 一种光敏化材料的制备方法及应用
CN111876020B (zh) * 2020-08-06 2021-11-05 中国科学院长春应用化学研究所 一种有机发光材料墨水及其制备方法和喷墨打印方法
CN115537072B (zh) * 2021-06-29 2024-04-02 广东聚华印刷显示技术有限公司 量子点墨水、量子点发光二极管及其制备方法、显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010089545A1 (en) * 2009-02-05 2010-08-12 Nanoco Technologies Ltd Encapsulated nanoparticles
US20110105643A1 (en) * 2009-10-29 2011-05-05 Doris Pik-Yiu Chun Polymer-encapsulated nanoparticles
CN102295745A (zh) * 2011-07-06 2011-12-28 上海大学 氧化锌量子点改性的聚芴类蓝色高分子发光材料的制备方法
CN106009930A (zh) * 2016-04-25 2016-10-12 苏州星烁纳米科技有限公司 量子点墨水
CN106905497A (zh) * 2017-03-22 2017-06-30 京东方科技集团股份有限公司 量子点复合物、中间体及其制备方法和应用

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7077329B2 (en) * 2003-06-24 2006-07-18 National Research Council Of Canada Spectral coding by fluorescent semiconductor nanocrystals for document identification and security applications
GB0409877D0 (en) * 2004-04-30 2004-06-09 Univ Manchester Preparation of nanoparticle materials
WO2006134798A1 (ja) * 2005-06-13 2006-12-21 Sintokogio, Ltd. 鋳枠無し上・下鋳型の造型方法、その装置および中子入れ方法
EP2125028A1 (en) * 2007-01-31 2009-12-02 Agency for Science, Technology And Research Polymer-coated nanoparticles
AU2009288017A1 (en) * 2008-09-03 2010-03-11 Emory University Quantum dots, methods of making quantum dots, and methods of using quantum dots
EP2499213B1 (en) * 2009-11-09 2019-01-16 University Of Washington Center For Commercialization Functionalized chromophoric polymer dots and bioconjugates thereof
CN102675565A (zh) * 2012-05-09 2012-09-19 天津大学 一种碳量子点—聚n-异丙基丙烯酰胺复合材料及其制备方法
US9595363B2 (en) * 2012-12-06 2017-03-14 The Regents Of The University Of California Surface chemical modification of nanocrystals
WO2015132673A2 (en) * 2014-03-04 2015-09-11 Nanoco Technologies, Ltd. Methods for fabricating quantum dot polymer films
CN105018092A (zh) * 2014-04-29 2015-11-04 Tcl集团股份有限公司 一种量子点/聚合物复合物及其制备方法及用途
KR101686713B1 (ko) 2014-12-08 2016-12-14 엘지전자 주식회사 양자점-고분자 복합체의 제조 방법, 양자점-고분자 복합체, 이를 포함하는 광 변환 필름, 백라이트 유닛 및 표시장치
KR102427698B1 (ko) * 2015-12-17 2022-07-29 삼성전자주식회사 양자점-폴리머 미분 복합체, 그의 제조 방법 및 이를 포함하는 성형품과 전자 소자
CN105542746B (zh) * 2015-12-18 2018-07-20 湖南科技大学 一种聚异丙基丙烯酰胺功能化的荧光硅量子点材料及其制备方法
CN106032468B (zh) * 2015-12-31 2017-11-21 苏州星烁纳米科技有限公司 可聚合的量子点及其应用
CN106362162B (zh) * 2016-11-01 2019-02-22 西北师范大学 ZnO@PMAA-b-PHPMA量子点纳米材料及其制备和作为药物载体的应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010089545A1 (en) * 2009-02-05 2010-08-12 Nanoco Technologies Ltd Encapsulated nanoparticles
US20110105643A1 (en) * 2009-10-29 2011-05-05 Doris Pik-Yiu Chun Polymer-encapsulated nanoparticles
CN102295745A (zh) * 2011-07-06 2011-12-28 上海大学 氧化锌量子点改性的聚芴类蓝色高分子发光材料的制备方法
CN106009930A (zh) * 2016-04-25 2016-10-12 苏州星烁纳米科技有限公司 量子点墨水
CN106905497A (zh) * 2017-03-22 2017-06-30 京东方科技集团股份有限公司 量子点复合物、中间体及其制备方法和应用

Also Published As

Publication number Publication date
US20190267510A1 (en) 2019-08-29
US10873003B2 (en) 2020-12-22
CN106905497B (zh) 2021-01-12
CN106905497A (zh) 2017-06-30

Similar Documents

Publication Publication Date Title
WO2018171192A1 (zh) 量子点复合物、中间体及其制备方法和应用
CN107359264B (zh) 一种qled、制备方法及显示装置
KR101744904B1 (ko) 양자점-블록공중합체 하이브리드 및 이의 제조 방법과 분산 방법, 그리고 양자점 블록공중합체 하이브리드를 포함하는 발광 소자 및 이의 제조 방법
US7589240B2 (en) Quantum dots tailored with electronically-active polymers
Kelly et al. Template approaches to conjugated polymer micro-and nanoparticles
JP5630752B2 (ja) 有機無機複合体及び有機無機複合体形成用組成物並びにインク
Zheng et al. High-brightness perovskite quantum dot light-emitting devices using inkjet printing
CN110511614B (zh) 一种油墨及其制备方法和应用
KR20140137676A (ko) 광학필름용 폴리머닷 및 이를 포함하는 광학필름
KR101789380B1 (ko) 블록공중합체-결합 양자점 전구체 및 레이저 유도 어닐링을 이용한 양자점 나노구조체 및 양자점 패턴
CN111378323B (zh) 油墨及量子点薄膜和量子点发光二极管
Liu et al. White light emission transparent polymer nanocomposites with novel poly (p-phenylene vinylene) derivatives and surface functionalized CdSe/ZnS NCs
CN110713755B (zh) 嵌段共聚物、复合颗粒、油墨及其制备方法和应用
CN110511607B (zh) 一种油墨及其制备方法和应用
CN113831909A (zh) 量子点薄膜及其制备方法、量子点发光二极管及其制备方法
CN113583512B (zh) 油墨及量子点薄膜和量子点发光二极管
CN104845052B (zh) 发射波长可控的聚对亚苯基亚乙烯共轭高分子荧光纳米粒子及制备方法
CN112831222B (zh) 油墨及量子点薄膜和量子点发光二极管
CN112831221B (zh) 油墨及量子点薄膜和量子点发光二极管
WO2021035937A1 (zh) 一种发光器件及其制备方法
Jung et al. Intimate organic–inorganic nanocomposites via rationally designed conjugated polymer-grafted precursors
CN113583511B (zh) 油墨及量子点薄膜和量子点发光二极管
JP4401687B2 (ja) 有機電界発光素子用インキ、有機電界発光素子、及び発光パネル
CN113801470B (zh) 复合材料的制备方法和发光二极管
WO2024075697A1 (ja) カルコゲナイドペロブスカイト

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17901495

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17901495

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16/03/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17901495

Country of ref document: EP

Kind code of ref document: A1