WO2021035937A1 - 一种发光器件及其制备方法 - Google Patents

一种发光器件及其制备方法 Download PDF

Info

Publication number
WO2021035937A1
WO2021035937A1 PCT/CN2019/114344 CN2019114344W WO2021035937A1 WO 2021035937 A1 WO2021035937 A1 WO 2021035937A1 CN 2019114344 W CN2019114344 W CN 2019114344W WO 2021035937 A1 WO2021035937 A1 WO 2021035937A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
emitting
emitting device
layer
mixed
Prior art date
Application number
PCT/CN2019/114344
Other languages
English (en)
French (fr)
Inventor
刘明
Original Assignee
深圳市华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电半导体显示技术有限公司 filed Critical 深圳市华星光电半导体显示技术有限公司
Publication of WO2021035937A1 publication Critical patent/WO2021035937A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight

Definitions

  • the invention relates to the field of display, in particular to a light-emitting device and a preparation method thereof.
  • quantum size effect The more common semiconductor nanoparticles, namely quantum dots, mainly include II-VI, III-V and IV-VI groups. These types of quantum dots are very much in compliance with the quantum size effect, and their properties change regularly with the size, for example, the absorption and emission wavelengths change with the size. Therefore, the advantages of the concentrated emission spectrum and high color purity of quantum dot luminescent materials can greatly improve the color gamut of current displays.
  • the diameter of the light-emitting quantum dots is very small, the particle morphology of the light-emitting quantum dots is very unstable, and it is easy to agglomerate in a solid and lose the quantum size effect, resulting in a sharp drop in luminous efficiency.
  • Connecting long alkyl chain type organic ligands to the periphery of quantum dots can inhibit the agglomeration of light-emitting quantum dots to a certain extent.
  • this method causes the light-emitting quantum dots to have poor charge transport performance, which in turn causes the efficiency of the light-emitting device to decrease and the driving voltage to increase. .
  • the purpose of the present invention is to provide a light-emitting device and a preparation method thereof to solve the technical problems of poor charge transport performance of light-emitting quantum dots, low efficiency of the light-emitting device, and increased driving voltage in the prior art.
  • the present invention provides a light-emitting device including a light-emitting layer, and the material of the light-emitting layer includes organic semiconductor materials and light-emitting quantum dots.
  • the light-emitting device further includes a substrate, a first electrode, a hole transport layer, an electron transport layer, and a second electrode.
  • the first electrode is provided on the substrate; the hole transport layer is provided on the substrate.
  • the light emitting layer is provided on the hole transport layer; the electron transport layer is provided on the light emitting layer; and the second electrode is provided on the electron transport layer.
  • the organic semiconductor material is at least one of the polymer PPOFTPA and the small molecule compound SPPO13; the light-emitting quantum dot has a core-shell structure, and its epitaxial region has a ligand containing a hydroxyl group.
  • the present invention also provides a method for preparing a light-emitting device, which includes the following steps: an ink preparation step: adding organic semiconductor materials to the light-emitting quantum dot mixed solution, heating and stirring, to prepare a mixed ink; and a mixed material preparation step Adding additives to the mixed ink to prepare a mixed material; a mixed film forming step, depositing the material of the light-emitting layer on a substrate, and vacuum drying to form a mixed film; forming a light-emitting layer in nitrogen In an environment, heating and curing the mixed film layer to form a light-emitting layer.
  • the organic semiconductor material is a polymer PPOFTPA and/or a small molecule compound SPPO13;
  • the light-emitting quantum dots have a core-shell structure, and the epitaxial region has a ligand containing a hydroxyl group; the light-emitting quantum dot mixture solution emits light
  • the weight percentage of quantum dots is 1% to 5%.
  • the additive includes a surface tension regulator and a viscosity regulator
  • the surface tension regulator includes one or more of imidazole and its derivatives, phenol, and hydroquinone; and/or, the viscosity
  • the regulator includes one or more of alcohols, ethers, esters, phenols, and amines.
  • the weight ratio of the organic semiconductor material and the light-emitting quantum dot mixed solution is 1:20-1:5, and the light-emitting quantum dot mixed solution is heated to 38°C to 42°C. °C, it was stirred for 11.5 to 12.5 hours.
  • the additive is gradually added to the mixed ink until the viscosity of the mixed material is 1-10 mPa ⁇ s.
  • the mixed film layer is heated to 78° C. to 82° C., and subjected to heat treatment for 0.8 to 1.2 hours.
  • the technical effect of the present invention is to provide a light-emitting device and a manufacturing method thereof.
  • the material of the light-emitting layer includes organic semiconductor materials and light-emitting quantum dots, which can avoid the decrease in luminous efficiency and offset caused by the agglomeration of the light-emitting quantum dots.
  • the organic semiconductor light-emitting material has excellent carrier transport properties, thereby inhibiting the agglomeration of the light-emitting quantum dots and promoting charge transport, helping to improve the overall luminous efficiency and stability of the light-emitting device, and avoiding interference in the light-emitting device
  • the hole transport layer is corroded to improve the luminous efficiency and prolong the service life, thereby improving the performance of the light-emitting device; in addition, in the process of manufacturing the light-emitting layer, the manufacturing method is simple, easy to control, and can improve the efficiency of the manufacturing process.
  • FIG. 1 is a schematic structural diagram of a light emitting device provided by an embodiment of the present invention
  • FIG. 2 is a flowchart of a method for manufacturing a light-emitting device according to an embodiment of the present invention
  • FIG. 3 is a flowchart of a method for preparing a light-emitting layer provided by an embodiment of the present invention.
  • this embodiment provides a light emitting device including a substrate 1, a first electrode 2, a hole transport layer 3, a light emitting layer 4, an electron transport layer 5, and a second electrode 6 in sequence.
  • the substrate 1 is a common array substrate, and a first electrode 2, a hole transport layer 3, a light-emitting layer 4, an electron transport layer 5 and a second electrode 6 are sequentially arranged above the substrate 1 from bottom to top.
  • the first electrode 2 is an anode
  • the second electrode 6 is a cathode.
  • the materials of the light-emitting layer 4 include organic semiconductor materials and light-emitting quantum dots.
  • the organic semiconductor material includes at least one of polymer PPOFTPA and small molecule compound SPPO13, which is an organic conjugated compound.
  • the light-emitting quantum dots are dispersed in the polymer PPOFTPA and/or the small molecule compound SPPO13. Since the content of the light-emitting quantum dots is small, effective nano-scale dispersion can be formed, and a single light-emitting quantum dot is fixed in the organic semiconductor light-emitting material, that is, between the organic conjugated compound main body.
  • This embodiment provides a light-emitting device, which can avoid negative effects such as a decrease in luminous efficiency and offset caused by the agglomeration of the light-emitting quantum dots.
  • the organic semiconductor light-emitting material has excellent carrier transport properties, thereby inhibiting the agglomeration of the light-emitting quantum dots and promoting charge transport, helping to improve the overall luminous efficiency and stability of the light-emitting device, and avoiding the void in the light-emitting device.
  • the hole transport layer is corroded, prolonging the service life.
  • the method for manufacturing the light-emitting device of this embodiment further includes steps S1 to S6.
  • S1 provides a substrate step, and presets a substrate, and the substrate is a common array substrate.
  • a first electrode forming step forming a first electrode on the substrate.
  • the first electrode is an anode, and the anode can be made in any manner.
  • a hole transport layer is deposited on the first electrode, and the hole transport layer mainly balances the transport of holes and electrons to achieve the purpose of improving efficiency and improving life.
  • the light-emitting layer is formed on the hole transport layer.
  • the S4 light-emitting layer forming step includes steps S41 to S42.
  • the quantum dot mixed solution is heated to 38°C to 42°C and stirred for 11.5 to 12.5 hours to prepare a mixed ink .
  • the weight ratio of the organic semiconductor material and the light-emitting quantum dot mixed solution is 1:20-1:5.
  • the weight percentage of light-emitting quantum dots is 1% to 5%, and the rest is a polar solvent.
  • the polar solvent includes alcohols, lipids, amides, etc.;
  • the organic semiconductor material and the light-emitting quantum dots have good solubility in polar solvents.
  • the weight percentage of quantum dots is preferably 1.5%, 1.8%, 2%, 2.4%, 2.8%, 3%, 3.2%, 3.5%, 3.8%, 4.0%, 4.5%, 4.8%.
  • the organic semiconductor material includes at least one of polymer PPOFTPA and small molecule compound SPPO13, which is an organic conjugated compound.
  • the light-emitting quantum dot has a core-shell structure, and its epitaxial region has a ligand containing a hydroxyl group.
  • the mixed material preparation step is to add additives to the mixed ink so that the viscosity of the mixed ink is 1-10 mPa ⁇ s, and then the mixed material is obtained.
  • the additives include surface tension modifiers and viscosity modifiers.
  • the surface tension modifier is a small molecule compound, including one or more of imidazole and its derivatives, phenol, and hydroquinone; the viscosity modifier is one of alcohols, ethers, esters, phenols, and amines.
  • One or more kinds, adjust the viscosity of the system, and the content is 0.1-5wt% of the weight percentage.
  • the mixed material is deposited on the substrate by spin coating or inkjet printing. Since the organic semiconductor material has good film-forming properties, the mixed material is vacuum dried After the treatment, a mixed film layer is formed.
  • the mixed film layer is heated to 78° C. to 82° C., and subjected to a heat curing treatment for 0.8 to 1.2 hours to form a light-emitting layer.
  • the light-emitting quantum dots are dispersed in the polymer PPOFTPA and/or the small molecule compound SPPO13. Since the content of the light-emitting quantum dots is small, it can form an effective dispersion at the nanometer level, and a single light-emitting quantum dot is fixed in the organic semiconductor light-emitting material, that is, between the main bodies of the organic conjugated compound.
  • the organic semiconductor light-emitting material has excellent carrier transport properties, thereby inhibiting the agglomeration of the light-emitting quantum dots and promoting charge transport, helping to improve the overall luminous efficiency and stability of the light-emitting device, and avoiding the void in the light-emitting device.
  • the hole transport layer is corroded, prolonging the service life.
  • an electron transport layer is deposited on the light-emitting layer.
  • a second electrode forming step forming a second electrode on the electron transport layer.
  • the second electrode is an anode, and the cathode can be fabricated in any manner.
  • organic semiconductor materials are added to the light-emitting quantum dot solution, which can avoid negative effects such as a decrease in luminous efficiency and offset caused by the agglomeration of the light-emitting quantum dots; in addition,
  • the organic semiconductor light-emitting material has excellent carrier transport properties, thereby inhibiting the agglomeration of the light-emitting quantum dots and promoting charge transport, helping to improve the overall luminous efficiency and stability of the light-emitting device, and avoiding damage to the hole transport layer in the light-emitting device. Corroded, improve luminous efficiency and extend service life.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种发光器件及其制备方法,发光器件包括发光层(4),发光层(4)的材料中包括有机半导体材料和发光量子点;发光层(4)的制备方法包括墨水配制步骤(S41)、混合材料配制步骤(S42)、混合膜层形成步骤(S43)以及发光层形成步骤(S44),其中,在氮气的环境中,加热固化所述混合膜层,形成发光层(4)。

Description

一种发光器件及其制备方法 技术领域
本发明涉及显示领域,尤其涉及一种发光器件及其制备方法。
背景技术
半导体材料从尺寸逐渐减小至一定临界尺寸(1~20纳米)后,其载流子的波动性变得显著,运动将受限,导致动能的增加,相应的电子结构从尺寸连续的能级结构变成准分裂的不连续,这一现象称作量子尺寸效应。比较常见的半导体纳米粒子即量子点主要有II-VI,III-V以及IV-VI族。这些种类的量子点都十分遵守量子尺寸效应,其性质随尺寸呈现规律性变化,例如吸收及发射波长随尺寸变化而变化。因此,利用量子点发光材料发光光谱集中,色纯度高的优点,可以大幅度提高目前显示器的色域。
因为发光量子点的直径很微小,所以发光量子点的颗粒形态十分不稳定,在固体中容易团聚而失去量子尺寸效应,导致发光效率的急剧下降。在量子点外围连接上长烷基链型有机配体,可以在一定程度上抑制发光量子点的团聚现象。但是,这种方法会导致发光量子点具有很差的电荷传输性能,进而导致发光器件的效率下降,驱动电压升高。。
技术问题
本发明的目的在于,提供一种发光器件及其制备方法,以解决现有技术中的发光量子点的电荷传输性能差、发光器件的效率低以及驱动电压升高的技术问题。
技术解决方案
为实现上述目的,本发明提供一种发光器件,包括发光层,所述发光层的材料中包括有机半导体材料和发光量子点。
进一步地,所述的发光器件,还包括基板、第一电极、空穴传输层、电子传输层以及第二电极,所述第一电极设于所述基板上;所述空穴传输层设于所述第一电极上,所述发光层设于所述空穴传输层上;所述电子传输层设于所述发光层 上;所述第二电极设于所述电子传输层上。
进一步地,所述有机半导体材料为聚合物PPOFTPA、小分子化合物SPPO13中的至少一种;所述发光量子点为核壳结构,其外延区域有含有羟基的配体。
进一步地,所述聚合物PPOFTPA的化学结构式为
Figure PCTCN2019114344-appb-000001
所述小分子化合物SPPO13的化学结构式为
Figure PCTCN2019114344-appb-000002
为实现上述目的,本发明还提供一种发光器件的制备方法,包括以下步骤:墨水配制步骤,将有机半导体材料加入发光量子点混合溶液中,加热并搅拌,配制成混合墨水;混合材料配制步骤,将添加剂添加到所述混合墨水中,配制成混合材料;混合膜层形成步骤,将所述发光层的材料沉积在基底上,真空干燥后,形成混合膜层;发光层形成步骤,在氮气的环境中,加热固化所述混合膜层,形成发光层。
进一步地,所述有机半导体材料为聚合物PPOFTPA和/或小分子化合物SPPO13;所述发光量子点为核壳结构,其外延区域有含有羟基的配体;所述发光量子点混合溶液中,发光量子点的重量百分比为1%~5%。
进一步地,所述添加剂包括表面张力调节剂以及粘度调节剂,所述表面张力调节剂包括咪唑及其衍生物、苯酚、对苯二酚中的一种或几种;和/或,所述粘度调节剂包括醇、醚、酯、酚、胺中的一种或几种。
进一步地,在所述墨水配制步骤中,所述有机半导体材料与所述发光量子点混合溶液的重量比为1:20-1:5,所述发光量子点混合溶液被加热至38℃~42℃,被搅拌处理11.5~12.5小时。
进一步地,在所述混合材料配制步骤中,将所述添加剂逐步添加至所述混合墨水中,直至所述混合材料的粘度1~10mPa·s。
进一步地,在所述发光层形成步骤中,所述混合膜层被加热至78℃~82℃, 被加热处理0.8~1.2小时。
有益效果
本发明的技术效果在于,提供一种发光器件及其制作方法,发光层的材料中包括有机半导体材料和发光量子点,可以避免因所述发光量子点团聚所造成的发光效率下降和偏移等负面效果;所述有机半导体发光材料具有优异的载流子传输性能,从而抑制所述发光量子点团聚及促进电荷传输,有助于提高发光器件整体发光效率和稳定性,避免对发光器件中的空穴传输层被侵蚀,提高发光效率、延长使用寿命,进而提升发光器件的性能;另外,在制作发光层的过程中,制作方法简单,容易控制,并能提高制作工艺的效率。
附图说明
图1是本发明实施例提供发光器件的结构示意图;
图2是本发明实施例提供发光器件的制备方法的流程图;
图3是本发明实施例提供发光层的制备方法的流程图。
附图中部分标识如下:
1基板;                                  2第一电极;
3空穴传输层;                            4发光层;
5电子传输层;                            6第二电极。
本发明的实施方式
以下参考说明书附图介绍本发明的优选实施例,用以举例证明本发明可以实施,这些实施例可以向本领域中的技术人员完整介绍本发明的技术内容,使得本发明的技术内容更加清楚和便于理解。然而本发明可以通过许多不同形式的实施例来得以体现,本发明的保护范围并非仅限于文中提到的实施例。
如图1所示,本实施例提供一种发光器件依次包括基板1、第一电极2、空穴传输层3、发光层4、电子传输层5以及第二电极6。
基板1为常见的阵列基板,基板1上方从下至上依次设有第一电极2、空穴传输层3、发光层4、电子传输层5以及第二电极6。本实施例中,第一电极2 为阳极,第二电极6为阴极。
发光层4的材料中包括有机半导体材料和发光量子点。所述有机半导体材料包括聚合物PPOFTPA、小分子化合物SPPO13中的至少一种,为有机共轭化合物。所述聚合物PPOFTPA的化学结构式为
Figure PCTCN2019114344-appb-000003
所述小分子化合物SPPO13的化学结构式为
Figure PCTCN2019114344-appb-000004
所述聚合物PPOFTPA及所述小分子化合物SPPO13包含磷氧基团(P=O)。所述发光量子点为核壳结构,其外延区域有含有羟基的配体。其中,磷氧基团(P=O)与所述发光量子点配位锚定。在发光层4形成时,所述发光量子点分散于所述聚合物PPOFTPA和/或所述小分子化合物SPPO13中。由于所述发光量子点的含量较少,可形成纳米级的有效分散,单个所述发光量子点固定于所述有机半导体发光材料中,即固定于有机共轭化合物主体之间。
本实施例提供一种发光器件,可以避免因所述发光量子点团聚所造成的发光效率下降和偏移等负面效果。此外,所述有机半导体发光材料具有优异的载流子传输性能,从而抑制所述发光量子点团聚及促进电荷传输,有助于提高发光器件整体发光效率和稳定性,避免对发光器件中的空穴传输层被侵蚀,延长使用寿命。
如图2所示,本实施例所述发光器件的制备方法,还包括步骤S1~S6。
S1提供基板步骤,预设一基板,所述基板为常见的阵列基板。
S2第一电极形成步骤,在基板上形成第一电极。本实施例中,所述第一电极为阳极,可以通过任意方式制作阳极。
S3空穴传输层形成步骤,在所述第一电极上沉积形成空穴传输层,所述空穴传输层主要是使空穴电子传输平衡,以达到提供效率和改善寿命的目的。
S4发光层形成步骤,在所述空穴传输层上形成所述的发光层。
如图3所示,在S4发光层形成步骤中,包括步骤S41~S42。
S41墨水配制步骤,向每10ml发光量子点混合溶液中,添加1g的有机半导体材料加入,所述量子点混合溶液被加热至38℃~42℃,被搅拌处理11.5~12.5小时,配制成混合墨水。其中,所述有机半导体材料与所述发光量子点混合溶液的重量比为1:20-1:5。在所述发光量子点混合溶液中,发光量子点的重量百分比为1%~5%,剩余的为极性溶剂,所述的极性溶剂包括醇类,脂类,酰胺类等;选所用的所述有机半导体材料和所述发光量子点在极性溶剂中具有好的溶解性。其中量子点的重量百分比优选为1.5%、1.8%、2%、2.4%、2.8%、3%、3.2%、3.5%、3.8%、4.0%、4.5%、4.8%。其中,所述有机半导体材料包括聚合物PPOFTPA、小分子化合物SPPO13中的至少一种,为有机共轭化合物。所述聚合物PPOFTPA及所述小分子化合物SPPO13包含磷氧基团(P=O)。所述发光量子点为核壳结构,其外延区域有含有羟基的配体。其中,磷氧基团(P=O)与所述发光量子点配位锚定。S42混合材料配制步骤,将添加剂添加到所述混合墨水中,使得所述混合墨水的粘度为1-10mPa·s,进而得到混合的材料。本实施例中,所述添加剂包括表面张力调节剂及粘度调节剂。所述表面张力调节剂为小分子化合物,包括咪唑及其衍生物、苯酚、对苯二酚中的一种或几种;所述粘度调节剂为醇、醚、酯、酚、胺中的一种或几种,调节体系的黏度,含量重量百分比的0.1~5wt%。
S43混合膜层形成步骤,所述混合的材料通过旋转涂布或者喷墨打印的方法沉积在基底上,由于所述有机半导体材料具有成膜性好的特点,所以所述混合的材料经过真空干燥处理后,形成混合膜层。
S44发光层形成步骤,在氮气的环境中,所述混合膜层被加热至78℃~82℃,被加热固化处理0.8~1.2小时,形成发光层。具体地,在所述发光层形成时,所述发光量子点分散于所述聚合物PPOFTPA和/或所述小分子化合物SPPO13中。由于所述发光量子点的含量较少,可形成纳米级的有效分散,单个所述发光量子点固定于所述有机半导体发光材料中,即固定于有机共轭化合物主体之间。这样的设计可避免因所述发光量子点团聚所造成的发光效率下降和偏移等负面效果。此外,所述有机半导体发光材料具有优异的载流子传输性能,从而抑制所述发光量子点团聚及促进电荷传输,有助于提高发光器件整体发光效率和稳定性,避免对发光器件中的空穴传输层被侵蚀,延长使用寿命。
S5电子传输层形成步骤,在所述发光层上沉积形成电子传输层。
S6第二电极形成步骤,在所述电子传输层上形成第二电极。本实施例中,所述第二电极为阳极,可以通过任意方式制作阴极。
基于此,本实施例提供的发光器件的制备方法,在发光量子点溶液中加入有机半导体材料,可以避免因所述发光量子点团聚所造成的发光效率下降和偏移等负面效果;此外,所述有机半导体发光材料具有优异的载流子传输性能,从而抑制所述发光量子点团聚及促进电荷传输,有助于提高发光器件整体发光效率和稳定性,避免对发光器件中的空穴传输层被侵蚀,提高发光效率、延长使用寿命。以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

  1. 一种发光器件,其中,包括发光层,所述发光层的材料中包括有机半导体材料和发光量子点。
  2. 根据权利要求1所述的发光器件,其中,还包括
    基板;
    第一电极,设于所述基板上;
    空穴传输层,设于所述第一电极上,所述发光层设于所述空穴传输层上;
    电子传输层,设于所述发光层上;
    第二电极,设于所述电子传输层上。
  3. 根据权利要求1所述的发光器件,其中,
    所述有机半导体材料为聚合物PPOFTPA、小分子化合物SPPO13中的至少一种;
    所述发光量子点为核壳结构,其外延区域有含有羟基的配体。
  4. 根据权利要求3所述的发光器件,其中,
    所述聚合物PPOFTPA的化学结构式为
    Figure PCTCN2019114344-appb-100001
    所述小分子化合物SPPO13的化学结构式为
    Figure PCTCN2019114344-appb-100002
  5. 一种发光器件的制备方法,其中,包括以下步骤:
    墨水配制步骤,将有机半导体材料加入发光量子点混合溶液中,加热并搅拌,配制成混合墨水;
    混合材料配制步骤,将添加剂添加到所述混合墨水中,配制成混合材料;
    混合膜层形成步骤,将所述发光层的材料沉积在基底上,真空干燥后,形成混合膜层;
    发光层形成步骤,在氮气的环境中,加热固化所述混合膜层,形成发光层。
  6. 根据权利要求5所述的发光器件的制备方法,其中,
    所述有机半导体材料为聚合物PPOFTPA和/或小分子化合物SPPO13;
    所述发光量子点为核壳结构,其外延区域有含有羟基的配体;
    所述发光量子点混合溶液中,发光量子点的重量百分比为1%~5%。
  7. 如权利要求5所述的发光器件的制备方法,其中,所述添加剂包括
    表面张力调节剂,包括咪唑及其衍生物、苯酚、对苯二酚中的一种或几种;
    和/或,
    粘度调节剂,包括醇、醚、酯、酚、胺中的一种或几种。
  8. 如权利要求5所述的发光器件的制备方法,其中,
    在所述墨水配制步骤中,
    所述有机半导体材料与所述发光量子点混合溶液的重量比为1:20-1:5;
    所述发光量子点混合溶液被加热至38℃~42℃,被搅拌处理11.5~12.5小时。
  9. 如权利要求5所述的发光器件的制备方法,其中,
    在所述混合材料配制步骤中,
    将所述添加剂逐步添加至所述混合墨水中,直至所述混合材料的粘度1~10mPa·s。
  10. 如权利要求5所述的发光器件的制备方法,其中,
    在所述发光层形成步骤中,
    所述混合膜层被加热至78℃~82℃,被加热处理0.8~1.2小时。
PCT/CN2019/114344 2019-08-26 2019-10-30 一种发光器件及其制备方法 WO2021035937A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910792246.XA CN110600625B (zh) 2019-08-26 2019-08-26 一种发光器件及其制备方法
CN201910792246.X 2019-08-26

Publications (1)

Publication Number Publication Date
WO2021035937A1 true WO2021035937A1 (zh) 2021-03-04

Family

ID=68855566

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/114344 WO2021035937A1 (zh) 2019-08-26 2019-10-30 一种发光器件及其制备方法

Country Status (2)

Country Link
CN (1) CN110600625B (zh)
WO (1) WO2021035937A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111952474B (zh) * 2020-08-18 2023-11-03 福州大学 一种基于有机物聚合的量子点发光二极管及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050062903A1 (en) * 2003-09-23 2005-03-24 Eastman Kodak Company Organic laser and liquid crystal display
CN106654068A (zh) * 2017-01-20 2017-05-10 京东方科技集团股份有限公司 一种有机电致发光器件的制作方法及相应装置
CN108922986A (zh) * 2018-05-18 2018-11-30 财团法人交大思源基金会 有机发光组件
CN108944103A (zh) * 2017-11-14 2018-12-07 广东聚华印刷显示技术有限公司 喷墨打印方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105219163B (zh) * 2015-10-16 2020-02-07 Tcl集团股份有限公司 一种喷墨打印用的量子点油墨及制备方法与量子点发光层
CN109037464B (zh) * 2018-07-26 2020-06-23 京东方科技集团股份有限公司 量子点发光层、量子点发光器件及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050062903A1 (en) * 2003-09-23 2005-03-24 Eastman Kodak Company Organic laser and liquid crystal display
CN106654068A (zh) * 2017-01-20 2017-05-10 京东方科技集团股份有限公司 一种有机电致发光器件的制作方法及相应装置
CN108944103A (zh) * 2017-11-14 2018-12-07 广东聚华印刷显示技术有限公司 喷墨打印方法
CN108922986A (zh) * 2018-05-18 2018-11-30 财团法人交大思源基金会 有机发光组件

Also Published As

Publication number Publication date
CN110600625A (zh) 2019-12-20
CN110600625B (zh) 2020-12-08

Similar Documents

Publication Publication Date Title
US10787584B2 (en) Printing ink and electronic device
US20180230321A1 (en) Printing ink composition and electronic device
US20180237691A1 (en) Printing ink and electronic device manufactured by printing with same
CN110205118B (zh) 表面缺陷钝化的金属卤化物钙钛矿纳米晶、其制备和应用
CN109790407B (zh) 印刷油墨组合物及其制备方法和用途
US20180327622A1 (en) Printing formulation and application thereof
WO2017080317A1 (zh) 用于印刷电子的组合物及其在电子器件中的应用
WO2018095380A1 (zh) 用于印刷电子器件的组合物及其制备方法和用途
CN108192593B (zh) 基于无机钙钛矿量子点与共轭有机小分子共晶结构的光学薄膜
WO2017080307A1 (zh) 用于印刷电子器件的组合物及其在电子器件中的应用
WO2017080316A1 (zh) 用于印刷电子的组合物及其在电子器件中的应用
WO2021136002A1 (zh) 一种量子点及其制备方法与量子点发光二极管
WO2019119613A1 (zh) 电致发光材料墨水及其电致发光器件
CN108291103B (zh) 印刷组合物、包含其的电子器件及功能材料薄膜的制备方法
WO2021035937A1 (zh) 一种发光器件及其制备方法
CN109929328A (zh) 一种复合墨水及其制备方法、器件
CN113831909A (zh) 量子点薄膜及其制备方法、量子点发光二极管及其制备方法
JP7172238B2 (ja) インクおよび発光素子
CN113122262A (zh) 复合材料及制备方法、发光薄膜和发光二极管
WO2022214031A1 (zh) 一种混合物及其在光电领域的应用
WO2022227661A1 (zh) 量子点薄膜及其制备方法、量子点发光二极管的制备方法
EP3905360B1 (en) Preparation method for quantum dot light emitting diode
WO2017080324A1 (zh) 含无机纳米材料的印刷组合物及其应用
CN115368777A (zh) 油墨、发光器件及发光器件制作方法
CN109251588B (zh) 无机纳米材料油墨及其制备方法和应用、qled器件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19943733

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19943733

Country of ref document: EP

Kind code of ref document: A1