WO2022227661A1 - 量子点薄膜及其制备方法、量子点发光二极管的制备方法 - Google Patents

量子点薄膜及其制备方法、量子点发光二极管的制备方法 Download PDF

Info

Publication number
WO2022227661A1
WO2022227661A1 PCT/CN2021/141738 CN2021141738W WO2022227661A1 WO 2022227661 A1 WO2022227661 A1 WO 2022227661A1 CN 2021141738 W CN2021141738 W CN 2021141738W WO 2022227661 A1 WO2022227661 A1 WO 2022227661A1
Authority
WO
WIPO (PCT)
Prior art keywords
quantum dot
dot film
proton reagent
proton
initial
Prior art date
Application number
PCT/CN2021/141738
Other languages
English (en)
French (fr)
Inventor
周礼宽
杨一行
Original Assignee
Tcl科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tcl科技集团股份有限公司 filed Critical Tcl科技集团股份有限公司
Publication of WO2022227661A1 publication Critical patent/WO2022227661A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour

Definitions

  • the present application relates to the technical field of quantum dot film-forming technology, in particular to a quantum dot film and a preparation method thereof, and a preparation method of a quantum dot light-emitting diode.
  • Quantum Dot is a nanomaterial with unique luminescent properties. Its luminescent wavelength can be adjusted with the size of quantum dots, and it has a wide color gamut, high luminous efficiency, good photothermal stability, and solution processing. Advantages, it has been widely used in the device research of light-emitting diodes in recent years. Quantum Dot Light Emitting The optoelectronic properties of Diode, QLED) have been greatly improved, and the device structure has been transformed to an organic-inorganic hybrid structure. In the process of optimizing the QLED device structure, the brightness and lifetime of the device have been greatly improved. At the same time, in order to meet the needs of commercial applications, more and more attention has been paid to the research on device stability.
  • the synthesis of quantum dot materials is generally connected with surface ligands through coordination bonds.
  • the surface ligands ensure that the quantum dots can be stably dispersed in the solvent without agglomeration and sedimentation, and on the other hand, they can effectively passivate the vacancies and suspensions on the surface of the quantum dots. key.
  • the surface ligands act as insulating organics, which will increase the interface barrier between the light-emitting layer and the adjacent functional layer, which leads to the difficulty of carrier injection, which leads to quantum
  • the operating voltage of the point light-emitting diode device increases, and at the same time, the photoelectric conversion efficiency of the device is low. Therefore, under the premise of ensuring the dispersibility of the quantum dots in the solvent, controlling the lower content of the surface ligands of the quantum dots is an important factor to ensure the performance of the quantum dot light-emitting diode devices.
  • the external environment is a key factor affecting the efficiency and stability of the electroluminescent device.
  • the process of synthesis, purification, ink preparation, and solution processing of quantum dot materials into the light-emitting layer of quantum dot light-emitting diodes a certain number of defects will inevitably occur on the surface of quantum dots.
  • the high specific surface area characteristics of quantum dots, Atoms not protected by ligands will exist in defect states; these defects have the ability to trap electrons and holes in the delocalized state of the quantum dot, introduce some fast nonradiative channels for the exciton recombination of the quantum dot, and The recombination rate of the non-radiative channel brought about by some defects is much greater than that of the radiative channel, which will reduce the luminous efficiency of quantum dots, that is, when the photoelectric conversion process is performed by external light or electrical excitation, the existence of defect states will be quenched. excitons and increase non-radiative recombination, thereby reducing fluorescence efficiency and optoelectronic properties.
  • One of the purposes of the embodiments of the present application is to provide a quantum dot film, a method for preparing the same, and a method for preparing a quantum dot light-emitting diode.
  • a method for preparing a quantum dot film comprising the steps of:
  • the initial quantum dot film is treated with a proton reagent to obtain a quantum dot film.
  • a quantum dot film is provided, wherein the quantum dot film is obtained by treating an initial quantum dot film with a proton reagent.
  • a method for preparing a quantum dot light-emitting diode comprising the following steps:
  • An initial quantum dot thin film is prepared on the substrate, and then the initial quantum dot thin film is treated with a proton reagent to obtain a quantum dot light-emitting layer.
  • the beneficial effect of the preparation method of the quantum dot film provided by the embodiment of the present application is that: in the embodiment of the present application, the initial quantum dot film is treated with a proton reagent. In this way, the proton reagent is protonated and connected with dangling bonds on the surface of the quantum dot, thereby passivating the surface defects of the quantum dot, reducing the quenching of excitons due to defect states, and finally improving the luminous efficiency and service life of the quantum dot film.
  • the beneficial effect of the quantum dot film provided by the embodiments of the present application is that the quantum dot film of the present application is obtained by treating the initial quantum dot film with a proton reagent, which can reduce the surface defect states of the quantum dots, and therefore has good luminous efficiency and service life.
  • the quantum dot light-emitting layer is obtained by using a proton reagent to process the initial quantum dot film, because the proton reagent will make surface contact with the initial quantum dot film during the treatment process, so that After the proton reagent is protonated, it is connected with dangling bonds on the surface of the quantum dot, so as to passivate the surface defects of the quantum dot and reduce the quenching of the excitons due to the defect state; therefore, the preparation method of the quantum dot light-emitting diode can finally improve the luminous efficiency and luminous efficiency of the device. service life.
  • FIG. 1 is a schematic flowchart of a method for preparing a quantum dot film provided in an embodiment of the present application
  • FIG. 2 is a schematic flowchart of a method for preparing a quantum dot film provided in an embodiment of the present application
  • FIG. 3 is a schematic structural diagram of a quantum dot light-emitting diode device provided in an embodiment of the present application.
  • FIG. 4 is a current efficiency curve diagram of a quantum dot light-emitting diode device provided in an embodiment of the present application
  • FIG. 5 is a life test curve diagram of the quantum dot light emitting diode device provided by the embodiment of the present application.
  • At least one refers to one or more, and “multiple” refers to two or more.
  • At least one item(s) below” or similar expressions refer to any combination of these items, including any combination of single item(s) or plural items(s).
  • Some embodiments of the present application provide a method for preparing a quantum dot film, as shown in FIG. 1 , the preparation method includes the following steps:
  • the initial quantum dot film is treated with a proton reagent.
  • the proton reagent will be in surface contact with the initial quantum dot film.
  • the proton reagent is protonated with The surface of the quantum dots is connected by dangling bonds, thereby passivating the surface defects of the quantum dots and reducing the quenching of excitons due to defect states.
  • the preparation method can improve the luminous efficiency and service life of the quantum dot thin film.
  • the provided initial quantum dot film may be a wet film or a dry film; the wet film may be a wet initial quantum dot film formed by depositing a quantum dot solution on a substrate; the dry film The quantum dot solution can be deposited on the substrate, and the solvent removal treatment is performed to form a dry solid-state initial quantum dot film. All of the above-mentioned initial quantum dot films can be processed by proton reagents, which ultimately improves the luminous efficiency and service life of the quantum dot films.
  • the provided initial quantum dot film is a dry solid-state initial quantum dot film, that is, the initial quantum dot film provided is obtained by depositing a quantum dot solution on a substrate and performing solvent removal treatment.
  • proton reagents are selected to treat the solid initial quantum dot film, which will not affect the stability of the quantum dots in the initial quantum dot film.
  • the solvent can be at least one of saturated or unsaturated alkanes, saturated or unsaturated aromatic hydrocarbons, such as dichloromethane, chloroform, toluene, n-hexane, cyclohexane One or more of alkane, n-heptane, n-octane, cycloheptane and dioxane.
  • the method of synthesizing quantum dot materials is generally connected with surface ligands through coordination bonds.
  • the above-mentioned initial quantum dot films in the embodiments of the present application are obtained by depositing a quantum dot solution on a substrate and performing desolvation treatment, wherein the surface of the quantum dots can also be combined with a surface Ligand, the surface ligand can be a long-chain ligand, such as one or more of oleylamine OLAM, oleic acid OA, tri-n-octylphosphine TOP, tri-n-octylphosphine oxide TOPO, tributylphosphine TBP, etc.
  • oleylamine OLAM oleic acid OA
  • tri-n-octylphosphine TOP tri-n-octylphosphine oxide TOPO
  • tributylphosphine TBP tributylphosphine
  • the proton reagent is mixed with the initial quantum dot film, and the proton reagent is protonated and dehydrogenated at the defect sites on the surface of the quantum dots and forms coordination bonds with cations, passivating dangling bonds, and at the same time, Part of the in situ attached surface ligands will be replaced by protonated proton reagents.
  • the proton reagent is directly added to the quantum dot solution, mixed and modified to form a film, because some proton reagents may be anti-solvents with the solvent in the quantum dot solution, so the proton reagent added to the quantum dot solution affects the solution system.
  • the stability of the quantum dots reduces the dispersibility of the quantum dots in the solvent, and even precipitates and settles from the dispersing solvent, and the surface tension and viscosity of the solvent after mixing will change. Therefore, if the proton reagent is added to the quantum dot solution On the contrary, the form of hybrid modification cannot improve the film quality of the final quantum dot film.
  • the quantum dot solution is first formed into a film to form the initial quantum dot film, even if it is a wet film containing a part of the solvent, if the proton reagent and the solvent are anti-solvents to each other, the quantum dot solution has become a very thin film layer.
  • the proton reagent can also passivate the surface defects of the quantum dots, reduce the quenching effect of the excitons due to the defect state, and do not affect the quality of the film formation.
  • it is a dry solid-state initial quantum dot film, it is less likely to affect the stability of quantum dots in the film layer.
  • the initial quantum dot film formed into a film is treated with a proton reagent, so that the proton reagent is in surface contact with the initial quantum dot film, so as to modify the initial film, instead of using a proton reagent to dope the film in the film. Modification in quantum dot solution.
  • the surface defect state traps of the quantum dot can be passivated, and the quenching of excitons by the defect state can be reduced.
  • the quantum dot film prepared by such a preparation method is used for quantum dots
  • the light-emitting diode as the light-emitting layer can improve the light-emitting performance and working life of the device.
  • the quantum dots include groups II-VI, III-V, IV-VI, VI-VI, VIII-VI, and I-III-VI of the periodic table of elements , at least one of II-IV-VI group, II-IV-V group single or composite structure quantum dots.
  • the composite structure quantum dots include core-shell structure quantum dots, wherein the cores constituting the core-shell structure quantum dots include CdSe, CdS, CdTe, CdSeTe, CdZnS, PbSe, ZnTe, CdSeS, PbS, PbTe, HgS, HgSe, HgTe, GaN, At least one of GaP, GaAs, InP, InAs, InZnP, InGaP and InGaN; the shell constituting the core-shell structure quantum dot contains at least one of ZnSe, ZnS and ZnSeS.
  • the protic reagents provided in the examples of this application refer to reagents with -OH bonds or -NH bonds that can be used as hydrogen bond donors in the molecule, and are also referred to as protic solvents.
  • the protic reagent includes at least one of a hydroxyl-containing protic reagent and an amino-containing protic reagent.
  • the hydroxyl-containing protic reagent includes at least one of water, methanol, ethanol, propanol such as isopropanol, butanol such as n-butanol, pentanol such as n-pentanol, formic acid, acetic acid, propionic acid and butyric acid ;
  • Amino-containing proton reagents include at least one of methylamine, ethylamine and propylamine.
  • step S02 there are two ways to mix the proton reagent and the initial quantum dot film.
  • One is to deposit the liquid proton reagent on the surface of the initial quantum dot film for protonation exchange, and cover the initial quantum dot film. proton reagent, followed by annealing to obtain the final modified quantum dot film.
  • One is to contact the gaseous proton reagent with the initial quantum dot film for protonation exchange, and then anneal to obtain the final modified quantum dot film; wherein, the gaseous proton reagent can be heated, sonicated, It is obtained by atomization by spraying and other methods.
  • the proton reagent is a liquid proton reagent
  • the step of treating the initial quantum dot film with the proton reagent includes: depositing the liquid proton reagent on the surface of the initial quantum dot film, and then annealing.
  • the liquid proton reagent is deposited on the surface of the initial quantum dot film, and then the steps of annealing treatment include: spin-coating the liquid proton reagent in an amount of 3 to 20 ⁇ l/cm 2 for 2 to 5 times each time, that is, with the initial quantum dots
  • the thin film was used as a reference, and 2-20 ⁇ l of liquid proton reagent was spin-coated per unit area of 1 cm 2 , and the spin-coating was performed 2-5 times. Under the above conditions, the liquid proton reagent can be uniformly covered on the surface of the initial quantum dot film.
  • the liquid protic solvent can be dripped multiple times on the initial quantum dot film by using a glue dispenser in a rotating state; wherein, the rotation speed is 1000-3000 rpm, and the volume of the protic solvent added each time is 3-20 ⁇ l/cm 2 . , the number of dripping is 2 to 5 times. Since the proton reagent is in direct contact with the initial quantum dot film, the proton reagent is easy to volatilize. In order to avoid the difference in the contact time between the covered proton reagent and the initial quantum dot film, the proton reagent is rapidly dripped on the surface of the quantum dot in a rotating state.
  • the method of repeated dripping is adopted for many times, so that the protonation can be fully carried out and the quantum dot film can be passivated more effectively.
  • the proton reagent was spin-coated 2 to 5 times in an amount of 3 to 20/cm 2 each time.
  • the liquid proton reagent is deposited on the surface of the initial quantum dot film, and then the temperature of the annealing treatment is 60-100° C. and the time is 5-20 min. Under this condition, the final quantum dot film can be obtained by annealing.
  • the proton reagent is a gaseous proton reagent
  • the step of treating the initial quantum dot film with the proton reagent includes: placing the initial quantum dot film in the gaseous proton reagent for standing treatment, and then annealing.
  • the resting time is 30s ⁇ 5min; if the resting time is less than 30s, the protonation reaction at the surface defects of the quantum dots is not sufficient; if the resting time is longer than 5min, the proton reagent treatment for too long increases the process time .
  • the preparation method When the preparation method is used to prepare the quantum dot light-emitting layer in the quantum dot light-emitting diode, for the structure of the upright device, the above-mentioned static treatment time range will not affect the underlying organic hole transport material, and will not make it degradation.
  • the initial quantum dot film is placed in a gaseous proton reagent for standing treatment, and then the temperature of the annealing treatment is 60-100° C. and the time is 5-20 min. Under this condition, the final quantum dot film can be obtained by annealing.
  • Some embodiments of the present application further provide a quantum dot film, which is prepared by the above-mentioned preparation method of the quantum dot film of the embodiments of the present application, that is, the quantum dot film is obtained by treating the initial quantum dot film with a proton reagent.
  • the quantum dot films provided in the embodiments of the present application are prepared by the unique preparation method of the embodiments of the present application. Because the preparation method uses a proton reagent to process the initial quantum dot films, the quantum dot films can reduce the surface defect states of the quantum dots, and have high Good luminous efficiency and service life.
  • the proton reagent is a liquid proton reagent
  • the step of treating the initial quantum dot film with the proton reagent includes: depositing the liquid proton reagent on the surface of the initial quantum dot film, and then annealing.
  • the proton reagent is a gaseous proton reagent
  • the step of treating the initial quantum dot film with the proton reagent includes: placing the initial quantum dot film in the gaseous proton reagent for standing treatment, and then annealing.
  • the protic reagent includes at least one of a hydroxyl-containing protic reagent and an amino-containing protic reagent.
  • the hydroxyl-containing proton reagent includes at least one of water, methanol, ethanol, propanol, butanol, amyl alcohol, formic acid, acetic acid, propionic acid and butyric acid;
  • the amino-containing proton reagent includes methylamine, ethylamine and At least one of propylamine.
  • the quantum dot films provided by the embodiments of the present application are prepared by the preparation methods of the quantum dot films provided by the embodiments of the present application. Therefore, the optional solutions for the preparation method of the quantum dot film provided in the embodiments of the present application, for example, the preparation of the initial quantum dot film, the quantum dot solution used for the preparation of the initial quantum dot film, the type of quantum dots, and the type of proton reagent, proton Alternative solutions such as reagent treatment methods and process parameters can be used in the technical solutions of the quantum dot films of the embodiments of the present application. Therefore, the quantum dot films of the embodiments of the present application have all the advantages of the optional solutions provided by the above-mentioned preparation method of the quantum dot films, which will not be repeated here.
  • Some embodiments of the present application also provide a preparation method of a quantum dot light-emitting diode, as shown in FIG. 2 , the preparation method includes the following steps:
  • E02 preparing an initial quantum dot thin film on the substrate, and then treating the initial quantum dot thin film with a proton reagent to obtain a quantum dot light-emitting layer.
  • the quantum dot light-emitting layer is obtained by using a proton reagent to process the initial quantum dot film on the substrate, because the proton reagent will make surface contact with the initial quantum dot film during the treatment process.
  • the proton reagent is protonated and connected to the surface of the quantum dot with dangling bonds, so as to passivate the surface defects of the quantum dot and reduce the quenching of the excitons due to the defect state; therefore, the preparation method of the quantum dot light-emitting diode can finally improve the luminescence of the device. Efficiency and service life.
  • an initial quantum dot thin film is formed on the provided substrate, and then the initial quantum dot thin film is treated with a proton reagent to obtain a quantum dot light-emitting layer.
  • the initial quantum dot film may be a wet film or a dry film; in the examples of this application, a dry solid-state initial quantum dot film is selected, that is, the steps of preparing the initial quantum dot film on the substrate are encyclopedia: depositing the quantum dot solution on the substrate , desolventizing treatment to obtain the initial quantum dot film.
  • the proton reagent is a liquid proton reagent
  • the step of treating the initial quantum dot film with the proton reagent includes: depositing the liquid proton reagent on the surface of the initial quantum dot film, and then annealing.
  • the proton reagent is a gaseous proton reagent
  • the step of treating the initial quantum dot film with the proton reagent includes: placing the initial quantum dot film in the gaseous proton reagent for standing treatment, and then annealing.
  • the liquid proton reagent is deposited on the surface of the initial quantum dot film, and then the annealing process includes: spin-coating the liquid proton reagent in an amount of 3-20 ⁇ l/cm 2 for 2-5 times each time; The temperature is 60 ⁇ 100°C, and the time is 5 ⁇ 20min.
  • the initial quantum dot film is placed in a gaseous proton reagent for a standing treatment time of 30s ⁇ 5min, and the subsequent annealing treatment temperature is 60 ⁇ 100°C for 5 ⁇ 20min.
  • the specific contents of the two cases have been described in detail above.
  • the protic reagent includes at least one of a hydroxyl-containing protic reagent and an amino-containing protic reagent.
  • the hydroxyl-containing proton reagent includes at least one of water, methanol, ethanol, propanol, butanol, amyl alcohol, formic acid, acetic acid, propionic acid and butyric acid;
  • the amino-containing proton reagent includes methylamine, ethylamine and At least one of propylamine.
  • the quantum dot light-emitting layer is prepared by substantially adopting the above-mentioned preparation method of the quantum dot film of the embodiment of the present application.
  • Alternative solutions such as the preparation of the initial quantum dot film, the quantum dot solution used for the preparation of the initial quantum dot film, the type of quantum dots, the type of proton reagent, the method of processing the proton reagent, and the process parameters can be used.
  • the manufacturing method of the quantum dot light emitting diode according to the embodiment of the present application has all the advantages of the optional solution provided by the above-mentioned manufacturing method of the quantum dot thin film, which will not be repeated here.
  • the substrate used may be an anode substrate or a cathode substrate.
  • the functional layer can be prepared on the substrate first, and then the above quantum dot light-emitting layer can be prepared.
  • the substrate is an anode substrate, and after a quantum dot light-emitting layer is prepared on the anode substrate, a cathode is then prepared on the quantum dot light-emitting layer.
  • a hole functional layer such as a hole transport layer, or a hole injection layer and a hole transport layer stacked in sequence
  • an electronic functional layer such as an electron transport layer, or an electron transport layer and an electron injection layer stacked in sequence
  • the electron functional layer can be prepared on the quantum dot light-emitting layer.
  • an upright quantum dot light-emitting diode device is obtained.
  • the substrate is a cathode substrate, and after the quantum dot light-emitting layer is prepared on the cathode substrate, an anode is then prepared on the quantum dot light-emitting layer.
  • an electronic functional layer such as an electron transport layer, or an electron injection layer and an electron transport layer stacked in sequence
  • the quantum dot light-emitting layer can be prepared on the electronic functional layer.
  • a hole functional layer (such as a hole transport layer, or a hole transport layer and a hole injection layer stacked in sequence) can be prepared on the quantum dot light-emitting layer first, and then the hole function layer can be prepared on the quantum dot light-emitting layer. prepared anode. Finally, an inverted quantum dot light-emitting diode device is obtained.
  • the embodiment of the present application also provides a quantum dot light-emitting diode, which includes an anode, a cathode, and a quantum dot light-emitting layer located between the anode and the cathode, and the quantum dot light-emitting layer is prepared by the method for preparing the quantum dot film of the embodiment of the present application. The obtained quantum dot film.
  • the quantum dot light-emitting layer in the quantum dot light-emitting diode provided by the embodiment of the present application is the quantum dot film obtained by the unique preparation method of the embodiment of the present application, because the quantum dot film can passivate the surface defect state of the quantum dot, and after passivation
  • the surface defect states of the quantum dots are significantly reduced, the ability to trap electrons and holes in the delocalized state is reduced, and the non-radiative recombination channels for exciton quenching are reduced, so the device has good luminous efficiency and service life.
  • the external quantum efficiency (EQE) of quantum dot light-emitting diode devices has been improved by nearly 30%.
  • a hole transport layer may be provided between the anode of the quantum dot light-emitting diode and the quantum dot light-emitting layer, and a hole injection layer may also be provided between the hole transport layer and the anode; or, the cathode and the quantum dots emit light
  • An electron transport layer may be arranged between the layers, and an electron injection layer may also be arranged between the electron transport layer and the cathode.
  • the quantum dot light-emitting diode can be an upright device or an inverted device.
  • the quantum dot light emitting diode device includes an anode, a hole injection layer, a hole transport layer, a quantum dot light emitting layer, an electron transport layer, and a cathode.
  • the quantum dot light-emitting layer is the quantum dot thin film prepared by the method for preparing the quantum dot thin film of the embodiment of the application.
  • the red quantum dot material CdZnSe/ZnSe/ZnS is used as the light-emitting layer of the device, the electroluminescence wavelength of the quantum dot material is 622 nm, the half-peak width is 22 nm, and the connected surface ligand is oleic acid;
  • the methanol solvent was atomized into steam to treat the light-emitting layer film for 1 min.
  • the maximum current efficiency of the quantum dot light-emitting diode device prepared by this method can reach 30cd/A, and there is no obvious roll-off with the increase of brightness.
  • the maximum current efficiency is 20cd/A, and the efficiency drops significantly at high brightness.
  • a glue dispenser is used to cover the water on the green quantum dot light-emitting layer by spin coating, using a rotation speed of 2000 rpm, dripping 50 ul each time, and repeating it three times;
  • the quantum dot selection structure is CdZnSeS/ZnS,
  • the electroluminescence wavelength is 535nm, the half-peak width is 25nm, and the surface ligand is oleylamine;
  • the anode is selected from one or more of indium tin oxide, fluorine-doped tin oxide, indium zinc oxide, graphene, and carbon nanotubes;
  • the material of the hole injection layer is PEDOT: PSS, oxide One or more of nickel, molybdenum oxide, tungsten oxide, vanadium oxide, molybdenum sulfide, tungsten sulfide, copper oxide;
  • hole transport layer material is one or more of PVK, Poly-TPD, CBP, TCTA and TFB
  • the quantum dot light-emitting layer includes a red light quantum dot light-emitting layer, a green light quantum dot light-emitting layer and a blue light quantum dot light-emitting layer, and the quantum dot light-emitting layer is prepared by the above-mentioned preparation method of the quantum dot film of the present application;
  • the material of the electron transport layer is n one or more of ZnO, TiO 2 , SnO,
  • a quantum dot light-emitting diode as shown in FIG. 3 , includes an anode, a hole injection layer, a hole transport layer, a quantum dot light-emitting layer, an electron transport layer and a cathode in order from bottom to top.
  • the preparation method of the quantum dot light-emitting diode includes:
  • PEDOT:PSS material was spin-coated on the anode layer ITO, and then annealed at 100 °C for 15 min to obtain a hole injection layer; then spin-coated TFB material on the hole injection layer, annealed at 100 °C for 15 min to form a hole transport layer; A CdZnSe/ZnSe/ZnS red quantum dot layer was formed on the hole transport layer in the part, and then the device was placed in an atmosphere of methanol (a gaseous proton reagent) atomized by ultrasonic for 1 min. point light-emitting layer; making a ZnO electron transport layer on the quantum dot light-emitting layer; and finally forming an electroluminescent device by evaporating an Al cathode electrode layer and encapsulating it.
  • methanol a gaseous proton reagent
  • a quantum dot light-emitting diode as shown in FIG. 3 , includes an anode, a hole injection layer, a hole transport layer, a quantum dot light-emitting layer, an electron transport layer and a cathode in order from bottom to top.
  • the preparation method of the quantum dot light-emitting diode includes:
  • PEDOT:PSS material was spin-coated on the anode layer ITO, and then annealed at 100 °C for 15 min to obtain a hole injection layer; then spin-coated TFB material on the hole injection layer, annealed at 100 °C for 15 min to form a hole transport layer; A CdZnSeS/ZnS green quantum dot layer was formed on the hole transport layer in the part, and a distilled water film (liquid proton reagent) was covered on the green quantum dot layer by spin coating with a glue dispenser.
  • a quantum dot light-emitting diode as shown in FIG. 3 , includes an anode, a hole injection layer, a hole transport layer, a quantum dot light-emitting layer, an electron transport layer and a cathode in order from bottom to top.
  • quantum dot light-emitting diode except that the quantum dot light-emitting layer is directly formed on the hole transport layer to form a CdZnSe/ZnSe/ZnS red quantum dot layer, other layers of materials and preparation methods are the same as those in Example 1.
  • a quantum dot light-emitting diode as shown in FIG. 3 , includes an anode, a hole injection layer, a hole transport layer, a quantum dot light-emitting layer, an electron transport layer and a cathode in order from bottom to top.
  • quantum dot light-emitting diode except that the quantum dot light-emitting layer is directly formed on the hole transport layer to form a CdZnSeS/ZnS green quantum dot layer, other layers of materials and preparation methods are the same as those in Example 2.
  • Example 1-2 and Comparative Example 1-2 are tested, and the life test of the device adopts a 128-channel life test system customized by Guangzhou New Vision Company.
  • the system architecture is to drive the QLED with a constant voltage and constant current source, and test the change of voltage or current; the photodiode detector and test system, test the change of the brightness (photocurrent) of the QLED; the luminance meter test and calibrate the brightness (photocurrent) of the QLED; the results are as follows Figure 4, Figure 5 and Table 1.
  • the surface defects of quantum dots can be passivated by treating with proton reagents in the preparation process of the quantum dot light-emitting layer in the quantum dot light-emitting diode. state, thereby improving the luminous efficiency and service life of the device.

Abstract

本申请公开一种量子点薄膜及其制备方法、量子点发光二极管的制备方法。该量子点薄膜的制备方法包括如下步骤:提供初始量子点薄膜;用质子试剂对初始量子点薄膜进行处理,得到量子点薄膜。该量子点薄膜的制备方法可以钝化量子点表面缺陷,减少因缺陷态对激子的猝灭,最终提高了量子点薄膜的发光效率和使用寿命。

Description

量子点薄膜及其制备方法、量子点发光二极管的制备方法
本申请要求于2021年04月25日在中国专利局提交的、申请号为202110447958.5、申请名称为“量子点薄膜及其制备方法和量子点发光二极管及其制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及量子点成膜工艺技术领域,具体涉及一种量子点薄膜及其制备方法、量子点发光二极管的制备方法。
背景技术
量子点(Quantum Dot,QD)作为一种具备独特发光特性的纳米材料,其发光波长可随量子点尺寸大小调节,而且具有色域宽、发光效率高、光热稳定性好、可溶液加工等优点,近年来已经被广泛应用于发光二极管的器件研究中。量子点发光二极管(Quantum Dot Light Emitting Diode,QLED)的光电性能取得了很大的提高,器件结构向有机无机杂化混合结构转变。在QLED器件结构优化的过程中,器件的亮度及寿命已经取得了很大的提高,同时,为了满足商业化应用需求,器件稳定性的研究得到了越来越多的关注。
量子点材料的合成一般通过配位键连接有表面配体,表面配体一方面保证量子点能够稳定的分散在溶剂中不发生团聚沉降,另一方面可以有效钝化量子点表面的空位和悬挂键。但是,量子点用于量子点发光二极管器件的量子点发光层时,表面配体作为绝缘有机物,会增加发光层与相邻功能层之间的界面势垒导致载流子注入困难,从而导致量子点发光二极管器件工作电压升高,同时造成器件的光电转化效率较低。所以,在保证量子点在溶剂中分散性的前提下,控制较低含量的量子点表面配体是保证量子点发光二极管器件性能的重要因素,但是,随着表面配体的减少,由于高比表面积的特性,量子点的表面未被配体保护的原子将以缺陷态存在,这些缺陷态会捕获量子点处于离域状态中电子和空穴,导致激子淬灭,引起器件性能的快速衰减。
无论是量子点发光层的墨水配制,还是量子点发光二极管器件的制备,外界环境对电致发光器件的效率和稳定性都是一个关键影响因素。量子点材料在合成、纯化、墨水配制,再到溶液加工成量子点发光二极管的发光层过程中,不可避免地会在量子点表面产生一定数量的缺陷,同时,量子点的高比表面积特性,未被配体保护的原子将会以缺陷态存在;这些缺陷具有捕获量子点处于离域状态中电子和空穴的能力,会给量子点的激子复合引进一些快速的非辐射通道,而且大部分缺陷所带来的非辐射通道复合速率远大于辐射通道的复合速率,因此会造成量子点发光效率的降低,即当通过外界光或者电激发进行光电转换过程时,缺陷态的存在会淬灭激子并且增加非辐射复合,从而降低荧光效率及光电性能。
技术问题
本申请实施例的目的之一在于:提供一种量子点薄膜及其制备方法、量子点发光二极管的制备方法。
技术解决方案
本申请实施例采用的技术方案是:
第一方面,提供一种量子点薄膜的制备方法,包括如下步骤:
提供初始量子点薄膜;
用质子试剂对所述初始量子点薄膜进行处理,得到量子点薄膜。
第二方面,提供一种量子点薄膜,所述量子点薄膜由初始量子点薄膜经质子试剂处理后得到。
第三方面,提供一种量子点发光二极管的制备方法,包括如下步骤:
提供基板;
在所述基板上制备初始量子点薄膜,然后用质子试剂对所述初始量子点薄膜进行处理,得到量子点发光层。
有益效果
本申请实施例提供的量子点薄膜的制备方法的有益效果在于:本申请实施例用质子试剂对初始量子点薄膜进行处理,该处理过程中,质子试剂会对初始量子点薄膜的进行表面接触,这样质子试剂质子化后与量子点表面悬挂键连接,从而钝化量子点表面缺陷,减少因缺陷态对激子的猝灭,最终提高量子点薄膜的发光效率和使用寿命。
本申请实施例提供的量子点薄膜的有益效果在于:本申请的量子点薄膜由初始量子点薄膜经质子试剂处理后得到,这样可以减少量子点表面缺陷态,因此,具有很好的发光效率和使用寿命。
本申请实施例提供的量子点发光二极管的制备方法,其中量子点发光层采用质子试剂对初始量子点薄膜进行处理得到,因该处理过程中质子试剂会对初始量子点薄膜的进行表面接触,这样质子试剂质子化后与量子点表面悬挂键连接,从而钝化量子点表面缺陷,减少因缺陷态对激子的猝灭;因此,该量子点发光二极管的制备方法最终可以提高器件的发光效率和使用寿命。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或示范性技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1是本申请实施例提供的量子点薄膜的制备方法流程示意图;
图2是本申请实施例提供的量子点薄膜的制备方法流程示意图;
图3是本申请实施例提供的量子点发光二极管器件结构示意图;
图4是本申请实施例提供的量子点发光二极管器件的电流效率曲线图;
图5是本申请实施例提供的量子点发光二极管器件的寿命测试曲线图。
本发明的实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
本申请中,术语“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况。其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。
本申请中,“至少一种”是指一种或者多种,“多种”是指两种或两种以上。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,部分或全部步骤可以并行执行或先后执行,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
在本申请实施例中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。在本申请实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
为了说明本申请所提供的技术方案,以下结合具体附图及实施例进行详细说明。
本申请一些实施例提供一种量子点薄膜的制备方法,如图1所示,该制备方法包括如下步骤:
S01:提供初始量子点薄膜;
S02:用质子试剂对所述初始量子点薄膜进行处理,得到量子点薄膜。
本申请实施例提供的量子点薄膜的制备方法,用质子试剂对初始量子点薄膜进行处理,该过程中,质子试剂会与初始量子点薄膜进行表面接触,具体地,该质子试剂质子化后与量子点表面悬挂键连接,从而钝化量子点表面缺陷,减少因缺陷态对激子的猝灭,最终该制备方法可以提高量子点薄膜的发光效率和使用寿命。
本申请实施例的上述步骤S01中;提供的初始量子点薄膜可以是湿膜也可以是干膜;湿膜可以是将量子点溶液沉积在基板上形成的呈湿润的初始量子点薄膜;干膜可以是将量子点溶液沉积在基板上,进行去溶剂处理,形成干燥的固态初始量子点薄膜。上述初始量子点薄膜均可以被质子试剂进行处理,最终提高量子点薄膜的发光效率和使用寿命。
本申请一个实施例中,提供的初始量子点薄膜为干燥的固态初始量子点薄膜,即提供初始的量子点薄膜是将量子点溶液沉积在基板上,进行去溶剂处理得到的初始量子点薄膜。为防止部分质子试剂可能与量子点溶液中的溶剂互为反溶剂的现象,因此,选用质子试剂对固态的初始量子点薄膜进行处理,这样不会影响量子点在初始量子点薄膜中的稳固。
用于制备初始量子点薄膜的量子点溶液中,溶剂可以是饱和或者不饱和的烷烃、饱和或者不饱和的芳香烃中的至少一种,如二氯甲烷、氯仿、甲苯、正己烷、环己烷、正庚烷、正辛烷、环庚烷和二氧六环中的一种或多种。合成量子点材料的方法一般通过配位键连接有表面配体,本申请实施例的上述初始量子点薄膜由量子点溶液沉积在基板上进行去溶剂处理得到,其中量子点表面也可以结合有表面配体,该表面配体可以是长链配体,如油胺OLAM、油酸OA、三正辛基膦TOP、三正辛基氧膦TOPO、三丁基膦TBP等中的一种或多种;该初始量子点薄膜中,量子点表面会形成一定数量的未被配体保护的阳离子悬挂键,即量子点表面的缺陷态。而本申请实施例中,将质子试剂与该初始量子点薄膜进行混合处理,质子试剂在量子点表面的缺陷位点处质子化脱氢并与阳离子形成配位键,钝化悬挂键,同时,部分原位连接的表面配体会被质子化后的质子试剂取代。最终,本申请实施例通过质子试剂的处理,可以钝化量子点表面缺陷,减少因缺陷态对激子的猝灭,从而提高了量子点薄膜的发光效率和使用寿命。
需要说明的是,如果质子试剂直接加入量子点溶液中混合改性后再成膜,因部分质子试剂可能与量子点溶液中的溶剂互为反溶剂,这样质子试剂加入量子点溶液中影响溶液体系中量子点的稳定,这样降低量子点在溶剂中的分散性,甚至从分散溶剂中析出沉降,而且互混后的溶剂表面张力、粘度等会发生变化,因此,如果质子试剂以加入量子点溶液中混合改性的形式反而不能提升最终量子点薄膜的成膜质量。但本申请实施例中,先将量子点溶液成膜形成初始量子点薄膜,即使是含有部分溶剂的湿膜,如果质子试剂与溶剂互为反溶剂,因量子点溶液已成很薄的薄膜层,在薄膜状态下质子试剂也能钝化量子点表面缺陷,减少因缺陷态对激子的猝灭的效果,不影响成膜质量。而如果是干燥的固态初始量子点薄膜,则更不易影响量子点在膜层中的稳定。
因此,本申请实施例中,将质子试剂对成膜的初始量子点薄膜进行处理,使质子试剂对初始量子点薄膜进行表面接触,以对初始薄膜进行改性,而不是采用质子试剂掺杂在量子点溶液中进行改性。本申请实施例中,通过这样的量子点薄膜的制备方法工艺,可以钝化量子点表面缺陷态陷阱,减少缺陷态对激子的猝灭,这样的制备方法制备的量子点薄膜用于量子点发光二极管作为发光层可以提升器件发光性能和工作寿命。
本申请实施例提供的初始量子点薄膜中,其中量子点包括元素周期表II-VI族、III-V族、IV-VI族、Ⅵ-Ⅵ族、VIII-Ⅵ族、I-III-VI族、II-IV-VI族、II-IV-V族单一或者复合结构量子点中的至少一种。复合结构量子点包括核壳结构量子点,其中,构成核壳结构量子点的核包括CdSe、CdS、CdTe、CdSeTe、CdZnS、PbSe、ZnTe、CdSeS、PbS、PbTe、HgS、HgSe、HgTe、GaN、GaP、GaAs、InP、InAs、InZnP、InGaP和InGaN中的至少一种;构成核壳结构量子点的壳包含ZnSe、ZnS和ZnSeS中的至少一种。
本申请实施例提供的质子试剂即指分子中有可以作为氢键给体的-OH键或者-NH键试剂,也称为质子溶剂。该质子试剂包括含羟基的质子试剂和含氨基的质子试剂中的至少一种。具体地,含羟基的质子试剂包括水、甲醇、乙醇、丙醇如异丙醇、丁醇如正丁醇、戊醇如正戊醇、甲酸、乙酸、丙酸和丁酸中的至少一种;含氨基的质子试剂包括甲胺、乙胺和丙胺中的至少一种。上述质子试剂在与初始量子点薄膜混合时,可在量子点表面的缺陷态位点处脱氢质子化后与量子点表面配位不饱和阳离子结合,同时,量子点表面少部分长链配体也会被质子化试剂替换。
上述步骤S02中,将质子试剂与初始量子点薄膜进行混合处理的方式可以有两种,一种是将呈液态的质子试剂沉积在初始量子点薄膜表面进行质子化交换,将初始量子点薄膜覆盖质子试剂,然后退火得到最终改性后的量子点薄膜。一种是将呈气态的质子试剂与初始量子点薄膜进行接触进行质子化交换,然后退火得到最终改性后的量子点薄膜;其中,气态的质子试剂可以通过对液态的质子试剂加热、超声、喷雾等方式进行雾化得到。
在一个实施例中,质子试剂为液态的质子试剂,用质子试剂对初始量子点薄膜进行处理的步骤包括:将液态的质子试剂沉积在初始量子点薄膜表面,然后退火处理。其中,将液态的质子试剂沉积在初始量子点薄膜表面,然后退火处理的步骤包括:将液态的质子试剂每次以3~20μl/cm 2的量旋涂2~5次,即以初始量子点薄膜为参照,每1cm 2的单位面积上旋涂2~20μl液态的质子试剂,旋涂2~5次。上述条件下,可以将液态的质子试剂均匀覆盖在初始量子点薄膜表面。
具体地,可以使用匀胶机在旋转状态下向初始量子点薄膜上多次滴加液态的质子溶剂;其中,旋转转速1000~3000rpm,每次滴加质子溶剂的体积为3~20μl/cm 2,滴加次数为2~5次。由于质子试剂与初始量子点薄膜直接接触,质子试剂容易挥发,为避免覆盖的质子试剂与初始量子点薄膜接触时间的差异性,采取旋转状态下快速滴加质子试剂的方式在量子点表面进行质子化反应;由于在匀胶机旋转状态下一次滴加的质子溶剂与量子点薄膜表面接触时间较短,故采取多次重复的滴加的方式,以便质子化充分进行,更有效地钝化量子点表面缺陷,具体地,质子试剂每次以3~20/cm 2的量旋涂2~5次。当该制备方法用于在量子点发光二极管中制备量子点发光层时,对于正置器件的结构,滴加次数在2~5次范围内,也不会对下层有机空穴传输材料产生破坏影响。
具体地,将液态的质子试剂沉积在初始量子点薄膜表面,然后退火处理的温度为60~100℃,时间为5~20min。该条件下可以退火可以得到最终的量子点薄膜。
在另一个实施例中,质子试剂为气态的质子试剂,用质子试剂对初始量子点薄膜进行处理的步骤包括:将初始量子点薄膜置于气态的质子试剂中进行静置处理,然后退火处理。其中,静置处理的时间为30s~5min;如果静置时间小于30s时,则量子点表面缺陷处的质子化反应不充分;如果静置时间大于5min,过长时间的质子试剂处理增加工艺时间。当该制备方法用于在量子点发光二极管中制备量子点发光层时,对于正置器件的结构,上述静置处理时间范围内对下层的有机空穴传输材料不会产生影响,不会使其降解。
具体地,将初始量子点薄膜置于气态的质子试剂中进行静置处理,然后退火处理的温度为60~100℃,时间为5~20min。该条件下可以退火可以得到最终的量子点薄膜。
本申请一些实施例还提供一种量子点薄膜,该量子点薄膜由本申请实施例的上述量子点薄膜的制备方法制备得到,即该量子点薄膜由初始量子点薄膜经质子试剂处理后得到。
本申请实施例提供的量子点薄膜由本申请实施例特有的制备方法制备得到,因该制备方法用质子试剂对初始量子点薄膜进行处理,因此该量子点薄膜可以减少量子点表面缺陷态,具有很好的发光效率和使用寿命。
具体地,质子试剂为液态的质子试剂,初始量子点薄膜经质子试剂处理的步骤包括:将液态的质子试剂沉积在初始量子点薄膜表面,然后退火处理。或者质子试剂为气态的质子试剂,初始量子点薄膜经质子试剂处理的步骤包括:将初始量子点薄膜置于气态的质子试剂中进行静置处理,然后退火处理。
具体地,质子试剂包括含羟基的质子试剂和含氨基的质子试剂中的至少一种。其中,含羟基的质子试剂包括水、甲醇、乙醇、丙醇、丁醇、戊醇、甲酸、乙酸、丙酸和丁酸中的至少一种;含氨基的质子试剂包括甲胺、乙胺和丙胺中的至少一种。
本申请实施例提供的量子点薄膜的由本申请实施例提供的量子点薄膜的制备方法制备得到。因此,本申请实施例提供的量子点薄膜的制备方法的可选方案,例如,初始量子点薄膜的制备、初始量子点薄膜制备用的量子点溶液、量子点种类,以及质子试剂的种类,质子试剂处理的方式和工艺参数等可选方案均可以用于本申请实施例的量子点薄膜的技术方案中。因此,本申请实施例的量子点薄膜具有上述量子点薄膜的制备方法提供的可选方案的所有优势,在此不再赘述。
本申请一些实施例还提供一种量子点发光二极管的制备方法,如图2所示,该制备方法包括如下步骤:
E01:提供基板;
E02:在所述基板上制备初始量子点薄膜,然后用质子试剂对所述初始量子点薄膜进行处理,得到量子点发光层。
本申请实施例提供的量子点薄膜的制备方法,其中量子点发光层采用质子试剂对基板上的初始量子点薄膜进行处理得到,因该处理过程中质子试剂会对初始量子点薄膜的进行表面接触,使质子试剂质子化后与量子点表面悬挂键连接,从而钝化量子点表面缺陷,减少因缺陷态对激子的猝灭;因此,该量子点发光二极管的制备方法最终可以提高器件的发光效率和使用寿命。
具体地,在提供的基板上形成初始量子点薄膜,然后用质子试剂对该初始量子点薄膜进行处理,得到量子点发光层。其中,初始量子点薄膜可以是湿膜也可以是干膜;本申请实施例中选用干燥的固态初始量子点薄膜,即在基板上制备初始量子点薄膜的步骤百科:将量子点溶液沉积在基板上,去溶剂处理,得到初始量子点薄膜。
在一些实施例中,质子试剂为液态的质子试剂,用质子试剂对初始量子点薄膜进行处理的步骤包括:将液态的质子试剂沉积在初始量子点薄膜表面,然后退火处理。或者,质子试剂为气态的质子试剂,用质子试剂对初始量子点薄膜进行处理的步骤包括:将初始量子点薄膜置于气态的质子试剂中进行静置处理,然后退火处理。其中,将液态的质子试剂沉积在初始量子点薄膜表面,然后退火处理的步骤包括:将液态的质子试剂每次以3~20 μl/cm 2的量旋涂2~5次;后续退火处理的温度为60~100℃,时间为5~20min。将初始量子点薄膜置于气态的质子试剂中进行静置处理的时间为30s~5min,后续退火处理的温度为60~100℃,时间为5~20min。该两种情况的具体内容上文已详细阐述。
在一些实施例中,质子试剂包括含羟基的质子试剂和含氨基的质子试剂中的至少一种。其中,含羟基的质子试剂包括水、甲醇、乙醇、丙醇、丁醇、戊醇、甲酸、乙酸、丙酸和丁酸中的至少一种;含氨基的质子试剂包括甲胺、乙胺和丙胺中的至少一种。
本申请实施例提供的量子点发光二极管的制备方法,其中制备量子点发光层时实质上采用了本申请实施例的上述量子点薄膜的制备方法进行制备;因此,上述量子点薄膜的制备方法的可选方案,例如,初始量子点薄膜的制备、初始量子点薄膜制备用的量子点溶液、量子点种类,以及质子试剂的种类,质子试剂处理的方式和工艺参数等可选方案均可以用于本申请实施例的量子点发光二极管的制备方法的技术方案中。因此,本申请实施例的量子点发光二极管的制备方法具有上述量子点薄膜的制备方法提供的可选方案的所有优势,在此不再赘述。
上述量子点发光二极管的制备方法中,使用的基板可以是阳极基板,也可以是阴极基板。基板上可以先制备有功能层,再制备上述量子点发光层。
在一个实施例中,该基板为阳极基板,在该阳极基板上制备量子点发光层后,然后在该量子点发光层上制备阴极。其中,制备量子点发光层之前,可以先在阳极基板上制备空穴功能层(如空穴传输层,或依次层叠的空穴注入层和空穴传输层),然后在该空穴功能层上制备量子点发光层;在制备量子点发光层之后,可以先在量子点发光层上制备电子功能层(如电子传输层,或依次层叠的电子传输层和电子注入层),然后在电子功能层上制备阴极。最终得到正置的量子点发光二极管器件。
在一个实施例中,该基板为阴极基板,在该阴极基板上制备量子点发光层后,然后在该量子点发光层上制备阳极。其中,制备量子点发光层之前,可以先在阴极基板上制备电子功能层(如电子传输层,或依次层叠的电子注入层和电子传输层),然后在该电子功能层上制备量子点发光层;在制备量子点发光层之后,可以先在量子点发光层上制备空穴功能层(如空穴传输层,或依次层叠的空穴传输层和空穴注入层),然后在空穴功能层上制备阳极。最终得到倒置的量子点发光二极管器件。
最后,本申请实施例还提供一种量子点发光二极管,包括阳极、阴极以及位于阳极和阴极之间的量子点发光层,而量子点发光层为本申请实施例的量子点薄膜的制备方法制备得到的量子点薄膜。
本申请实施例提供的量子点发光二极管中的量子点发光层为本申请实施例特有的制备方法得到的量子点薄膜,因该由该量子点薄膜可以钝化量子点表面缺陷态,钝化后的量子点表面缺陷态明显减少,捕获离域状态下的电子和空穴能力降低,激子淬灭的非辐射复合通道减少,因此该器件具有很好的发光效率和使用寿命。
具体地,量子点发光二极管器件的外量子效率(EQE)有近30%的提升。
在一个实施例中,该量子点发光二极管的阳极与量子点发光层之间可以设置空穴传输层,空穴传输层与阳极之间还可以设置空穴注入层;或者,阴极与量子点发光层之间可以设置电子传输层,电子传输层与阴极极之间还可以设置电子注入层。该量子点发光二极管可以是正置器件也可以是倒置器件。
在一个实施例中,如图3所示,该量子点发光二极管器件包括阳极、空穴注入层、空穴传输层、量子点发光层、电子传输层和阴极。该量子点发光层为本申请实施例的量子点薄膜的制备方法制备得到的量子点薄膜。
在一个实施例中,采用红色量子点材料CdZnSe/ZnSe/ZnS作为器件发光层,量子点材料的电致发光波长为622nm,半峰宽为22nm,连接的表面配体为油酸;通过超声的方式将甲醇溶剂雾化成蒸汽对发光层薄膜进行处理1min,由此制备得到的量子点发光二极管器件最大电流效率可达30cd/A,且随着亮度的增加没有明显的滚降,测得寿命T 95@1000nit=3170h(T 95@1000nit表示:亮度从1000nit衰减至95%所需要的时间),且在寿命测试初始阶段没有明显的亮度抬升过程,说明量子点表面缺陷的已经被钝化;相比于未经质子试剂处理的器件最大电流效率为20cd/A,并且在高亮度下效率下降明显,T 95@1000nit=1000h,在寿命测试初始阶段存在近5h左右的亮度上升过程,表明量子点材料的表面缺陷在被持续钝化引起亮度的升高;导致该差异主要原因是量子点表面未经钝化的缺陷态对电生的激子产生了持续的淬灭效应,导致发光效率随着电流的增加发生滚降。
在另一个实施例中,采取匀胶机将水通过旋涂的方式覆盖在绿色量子点发光层上,使用2000rpm的转速,每次滴加50ul,重复三次;量子点选用结构为CdZnSeS/ZnS,电致发光波长为535nm,半峰宽为25nm,表面配体为油胺;由此制备的器件,最大电流效率可达80cd/A,且随着亮度的增加没有明显的滚降,测得寿命T 95@1000nit=6400h;未经处理的器件最大电流效率可达55cd/A,且随着亮度的增加没有明显的滚降,测得寿命T 95@1000nit=2600h。
在一个实施方式中,阳极选自铟锡氧化物、氟掺氧化锡、铟锌氧化物、石墨烯、纳米碳管中的一种或多种;空穴注入层的材料为PEDOT:PSS、氧化镍、氧化钼、氧化钨、氧化钒、硫化钼、硫化钨、氧化铜中的一种或多种;空穴传输层材料为PVK、Poly-TPD、CBP、TCTA和TFB中的一种或多种;量子点发光层包括红光量子点发光层、绿光量子点发光层以及蓝光量子点发光层,该量子点发光层由本申请的上述量子点薄膜的制备方法制备得到;电子传输层的材料为n型ZnO、TiO 2、SnO、Ta 2O 3、AlZnO、ZnSnO、InSnO、Alq 3中的一种或多种;阴极选自Al、Ca、Ba、Ag中的一种或多种。
下面结合具体实施例进行说明。
实施例1
一种量子点发光二极管,如图3所示,从下到上依次包括阳极、空穴注入层、空穴传输层、量子点发光层、电子传输层和阴极。
该量子点发光二极管的制备方法包括:
在阳极层ITO上旋涂PEDOT:PSS材料,然后100℃退火15min,得到空穴注入层;然后在空穴注入层上旋涂TFB材料,100℃退火15min,形成空穴传输层;在作为承载部的空穴传输层上形成CdZnSe/ZnSe/ZnS红色量子点层,然后将器件置于利用超声雾化的甲醇(气态的质子试剂)气氛中静置1min,取出后80℃退火10min,得到量子点发光层;在量子点发光层上制作ZnO电子传输层;最后通过蒸镀Al阴极电极层,封装形成电致发光器件。
对该量子点发光二极管器件的光电性能和寿命进行了测试,测试结果如表1和图4-5所示。
实施例2
一种量子点发光二极管,如图3所示,从下到上依次包括阳极、空穴注入层、空穴传输层、量子点发光层、电子传输层和阴极。
该量子点发光二极管的制备方法包括:
在阳极层ITO上旋涂PEDOT:PSS材料,然后100℃退火15min,得到空穴注入层;然后在空穴注入层上旋涂TFB材料,100℃退火15min,形成空穴传输层;在作为承载部的空穴传输层上形成CdZnSeS/ZnS绿色量子点层,利用匀胶机通过旋涂方式在该绿色量子点层上覆盖蒸馏水膜(液态的质子试剂),转速为2000rpm,每次50ul蒸馏水,重复三次,然后在热板上80℃退火10min,得到量子点发光层;在量子点发光层上制作ZnO电子传输层;最后通过蒸镀Ag阴极电极层,封装形成电致发光器件。
对该量子点发光二极管器件的光电性能和寿命进行了测试,测试结果如表1所示。
对比例1
一种量子点发光二极管,如图3所示,从下到上依次包括阳极、空穴注入层、空穴传输层、量子点发光层、电子传输层和阴极。
该量子点发光二极管中,除了量子点发光层是直接在空穴传输层上形成CdZnSe/ZnSe/ZnS红色量子点层,其他各层材料以及制备方法均与实施例1相同。
对该量子点发光二极管器件的光电性能和寿命进行了测试,测试结果如表1和图4-5所示。
对比例2
一种量子点发光二极管,如图3所示,从下到上依次包括阳极、空穴注入层、空穴传输层、量子点发光层、电子传输层和阴极。
该量子点发光二极管中,除了量子点发光层是直接在空穴传输层上形成CdZnSeS/ZnS绿色量子点层,其他各层材料以及制备方法均与实施例2相同。
对该量子点发光二极管器件的光电性能和寿命进行了测试,测试结果如表1所示。
测试结果
对上述实施例1-2和对比例1-2进行测试,器件的寿命测试采用广州新视界公司定制的128路寿命测试系统。系统架构为恒压恒流源驱动QLED,测试电压或电流的变化;光电二极管探测器和测试系统,测试QLED的亮度(光电流)变化;亮度计测试校准QLED的亮度(光电流);结果如图4、图5以及表1所示。
表1
  EL (nm) FWHM (nm) EQE (%) CE (cd/A) T95@1000nit (h)
实施例 1 626 22 19.9 27 3170
实施例 2 535 25 18 80 6400
对比例 1 626 22 10 13.5 1260
对比例 2 535 25 11 55 2600
从表1数据可知:相对未用质子试剂处理的对比例,本申请的实施例通过对量子点发光二极管中的量子点发光层的制备过程中用质子试剂进行处理,可以钝化量子点表面缺陷态,从而提高了器件的发光效率和使用寿命。
以上仅为本申请的可选实施例而已,并不用于限制本申请。对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。

Claims (20)

  1. 一种量子点薄膜的制备方法,其特征在于,包括如下步骤:
    提供初始量子点薄膜;
    用质子试剂对所述初始量子点薄膜进行处理,得到量子点薄膜。
  2. 如权利要求1所述的量子点薄膜的制备方法,其特征在于,所述初始量子点薄膜的制备方法包括:将量子点溶液沉积在基板上,去溶剂处理,得到所述初始量子点薄膜。
  3. 如权利要求1所述的量子点薄膜的制备方法,其特征在于,所述质子试剂为液态的质子试剂,用所述质子试剂对所述初始量子点薄膜进行处理的步骤包括:将所述液态的质子试剂沉积在所述初始量子点薄膜表面,然后退火处理。
  4. 如权利要求3所述的量子点薄膜的制备方法,其特征在于,将所述液态的质子试剂沉积在所述初始量子点薄膜表面,然后退火处理的步骤包括:
    将所述液态的质子试剂每次以3~20 μl/cm 2的量旋涂2~5次;
    和/或所述退火处理的温度为60~100℃,时间为5~20min。
  5. 如权利要求1所述的量子点薄膜的制备方法,其特征在于,所述质子试剂为气态的质子试剂,用所述质子试剂对所述初始量子点薄膜进行处理的步骤包括:将所述初始量子点薄膜置于所述气态的质子试剂中进行静置处理,然后退火处理。
  6. 如权利要求5所述的量子点薄膜的制备方法,其特征在于,所述静置处理的时间为30s~5min;
    和/或所述退火处理的温度为60~100℃,时间为5~20min。
  7. 如权利要求1所述的量子点薄膜的制备方法,其特征在于,所述质子试剂包括含羟基的质子试剂和含氨基的质子试剂中的至少一种。
  8. 如权利要求7所述的量子点薄膜的制备方法,其特征在于,所述含羟基的质子试剂包括水、甲醇、乙醇、丙醇、丁醇、戊醇、甲酸、乙酸、丙酸和丁酸中的至少一种;
    或所述含氨基的质子试剂包括甲胺、乙胺和丙胺中的至少一种。
  9. 一种量子点薄膜,其特征在于,所述量子点薄膜由初始量子点薄膜经质子试剂处理后得到。
  10. 如权利要求9所述的量子点薄膜,其特征在于,所述质子试剂为液态的质子试剂,所述初始量子点薄膜经质子试剂处理的步骤包括:将所述液态的质子试剂沉积在所述初始量子点薄膜表面,然后退火处理;
    或者所述质子试剂为气态的质子试剂,所述初始量子点薄膜经质子试剂处理的步骤包括:将所述初始量子点薄膜置于所述气态的质子试剂中进行静置处理,然后退火处理。
  11. 如权利要求9所述的量子点薄膜,其特征在于,所述质子试剂包括含羟基的质子试剂和含氨基的质子试剂中的至少一种。
  12. 如权利要求11所述的量子点薄膜,其特征在于,所述含羟基的质子试剂包括水、甲醇、乙醇、丙醇、丁醇、戊醇、甲酸、乙酸、丙酸和丁酸中的至少一种;
    或所述含氨基的质子试剂包括甲胺、乙胺和丙胺中的至少一种。
  13. 一种量子点发光二极管的制备方法,其特征在于,包括如下步骤:
    提供基板;
    在所述基板上制备初始量子点薄膜,然后用质子试剂对所述初始量子点薄膜进行处理,得到量子点发光层。
  14. 如权利要求13所述的量子点发光二极管的制备方法,其特征在于,在所述基板上制备初始量子点薄膜的步骤包括:将量子点溶液沉积在所述基板上,去溶剂处理,得到所述初始量子点薄膜。
  15. 如权利要求13所述的量子点发光二极管的制备方法,其特征在于,所述质子试剂为液态的质子试剂,用所述质子试剂对所述初始量子点薄膜进行处理的步骤包括:将所述液态的质子试剂沉积在所述初始量子点薄膜表面,然后退火处理。
  16. 如权利要求15所述的量子点发光二极管的制备方法,其特征在于,将所述液态的质子试剂沉积在所述初始量子点薄膜表面,然后退火处理的步骤包括:
    将所述液态的质子试剂每次以3~20 μl/cm 2的量旋涂2~5次;
    和/或所述退火处理的温度为60~100℃,时间为5~20min。
  17. 如权利要求13所述的量子点发光二极管的制备方法,其特征在于,所述质子试剂为气态的质子试剂,用所述质子试剂对所述初始量子点薄膜进行处理的步骤包括:将所述初始量子点薄膜置于所述气态的质子试剂中进行静置处理,然后退火处理。
  18. 如权利要求17所述的量子点发光二极管的制备方法,其特征在于,所述静置处理的时间为30s~5min;
    和/或所述退火处理的温度为60~100℃,时间为5~20min。
  19. 如权利要求13所述的量子点发光二极管的制备方法,其特征在于,所述质子试剂包括含羟基的质子试剂和含氨基的质子试剂中的至少一种。
  20. 如权利要求19所述的量子点发光二极管的制备方法,其特征在于,所述含羟基的质子试剂包括水、甲醇、乙醇、丙醇、丁醇、戊醇、甲酸、乙酸、丙酸和丁酸中的至少一种;
    或所述含氨基的质子试剂包括甲胺、乙胺和丙胺中的至少一种。
PCT/CN2021/141738 2021-04-25 2021-12-27 量子点薄膜及其制备方法、量子点发光二极管的制备方法 WO2022227661A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110447958.5 2021-04-25
CN202110447958.5A CN115249774A (zh) 2021-04-25 2021-04-25 量子点薄膜及其制备方法和量子点发光二极管及其制备方法

Publications (1)

Publication Number Publication Date
WO2022227661A1 true WO2022227661A1 (zh) 2022-11-03

Family

ID=83697158

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/141738 WO2022227661A1 (zh) 2021-04-25 2021-12-27 量子点薄膜及其制备方法、量子点发光二极管的制备方法

Country Status (2)

Country Link
CN (1) CN115249774A (zh)
WO (1) WO2022227661A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116836703A (zh) * 2023-03-07 2023-10-03 中国计量大学 一种抗溶剂量子点薄膜的制备方法与量子点薄膜

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008140495A2 (en) * 2006-11-22 2008-11-20 The Research Foundation Of State University Of New York A method to produce water-dispersible highly luminescent quantum dots for biomedical imaging
CN109935737A (zh) * 2017-12-15 2019-06-25 Tcl集团股份有限公司 量子点薄膜及其制备方法、qled器件及其制备方法
CN109928903A (zh) * 2017-12-15 2019-06-25 Tcl集团股份有限公司 量子点表面配体、量子点薄膜及其制备方法和应用
CN110224074A (zh) * 2018-12-29 2019-09-10 华南理工大学 一种量子点电致发光器件及其制备方法
CN111129355A (zh) * 2018-10-31 2020-05-08 Tcl集团股份有限公司 量子点薄膜的制备方法和量子点发光二极管的制备方法
CN111584724A (zh) * 2020-05-14 2020-08-25 深圳市华星光电半导体显示技术有限公司 多孔状的量子点发光薄膜及其制造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008140495A2 (en) * 2006-11-22 2008-11-20 The Research Foundation Of State University Of New York A method to produce water-dispersible highly luminescent quantum dots for biomedical imaging
CN109935737A (zh) * 2017-12-15 2019-06-25 Tcl集团股份有限公司 量子点薄膜及其制备方法、qled器件及其制备方法
CN109928903A (zh) * 2017-12-15 2019-06-25 Tcl集团股份有限公司 量子点表面配体、量子点薄膜及其制备方法和应用
CN111129355A (zh) * 2018-10-31 2020-05-08 Tcl集团股份有限公司 量子点薄膜的制备方法和量子点发光二极管的制备方法
CN110224074A (zh) * 2018-12-29 2019-09-10 华南理工大学 一种量子点电致发光器件及其制备方法
CN111584724A (zh) * 2020-05-14 2020-08-25 深圳市华星光电半导体显示技术有限公司 多孔状的量子点发光薄膜及其制造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116836703A (zh) * 2023-03-07 2023-10-03 中国计量大学 一种抗溶剂量子点薄膜的制备方法与量子点薄膜

Also Published As

Publication number Publication date
CN115249774A (zh) 2022-10-28

Similar Documents

Publication Publication Date Title
US11690240B2 (en) Electroluminescent device, manufacturing method thereof, and display apparatus
CN102473800B (zh) 稳定的且所有溶液可加工的量子点发光二极管
US20170352827A1 (en) Quantum dot light emitting device including ligand-substituted quantum dot light emitting layer with polymer having amine groups and method for fabricating the same
WO2018192334A1 (zh) 丙烯酸酯共聚物修饰的金属氧化物及制备方法与量子点发光二极管
CN111192971B (zh) 低滚降准二维钙钛矿发光二极管及其制备方法
CN108807724B (zh) 钙钛矿发光层的制备方法、应用和钙钛矿发光器件及其制备方法
Zhong et al. Improved color purity and efficiency of blue quantum dot light-emitting diodes
CN114566598A (zh) 一种发光器件、显示装置和制作方法
Zhu et al. All-solution-processed high-performance quantum dot light emitting devices employing an inorganic thiocyanate as hole injection layer
WO2022227661A1 (zh) 量子点薄膜及其制备方法、量子点发光二极管的制备方法
CN114284461A (zh) 一种量子点发光二极管及其制备方法
CN113838985B (zh) 氧化锌纳米材料及其制备方法、发光器件
WO2021253923A1 (zh) 量子点发光二极管器件及其制备方法和显示面板
CN112687820A (zh) Qled器件、qled器件的制备方法及显示装置
CN111200066B (zh) 一种量子点发光二极管及其制备方法
CN113948647A (zh) 一种纳米材料及其制备方法与量子点发光二极管
CN114649490A (zh) 一种量子点发光层的处理方法、电致发光器件及其制备方法
CN114039002B (zh) 电子传输墨水、电子传输薄膜、电致发光二极管及显示器件
CN114672314A (zh) 核壳结构量子点及其制备方法,量子点发光薄膜和二极管
WO2021129710A1 (zh) 量子点发光二极管的制备方法
CN113130778A (zh) 量子点发光二极管及其制备方法
He et al. Inverted polymer/quantum-dots hybrid white light emitting diodes
CN113122226A (zh) 量子点的制备方法及量子点复合材料、量子点发光二极管
CN113122260B (zh) 一种量子点材料及其制备方法、量子点发光二极管
WO2023078233A1 (zh) 发光器件的制备方法、发光器件及显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21939120

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21939120

Country of ref document: EP

Kind code of ref document: A1