WO2018169093A1 - 回折光学素子 - Google Patents
回折光学素子 Download PDFInfo
- Publication number
- WO2018169093A1 WO2018169093A1 PCT/JP2018/010729 JP2018010729W WO2018169093A1 WO 2018169093 A1 WO2018169093 A1 WO 2018169093A1 JP 2018010729 W JP2018010729 W JP 2018010729W WO 2018169093 A1 WO2018169093 A1 WO 2018169093A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optical element
- diffractive optical
- shape
- refractive index
- level
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/18—Diffraction gratings
Definitions
- the present invention relates to a diffractive optical element.
- the light source of these sensors has a wavelength distribution, brightness, and spread according to the application.
- As the wavelength of light visible light to infrared light is often used. In particular, infrared light is not easily affected by external light, is invisible, and can be observed somewhat inside, so it is widely used. Yes.
- As the type of light source an LED light source, a laser light source, or the like is often used.
- a laser light source with a small light spread is preferably used for detecting a distant place, and an LED light source is suitably used for detecting a relatively close place or irradiating an area with a certain extent. It is done.
- the size and shape of the target irradiation region do not necessarily match the spread (profile) of light from the light source.
- the light is shaped by a diffuser plate, a lens, a shielding plate, or the like.
- LSD Light Shaping Diffuser
- Another means for shaping the light is a diffractive optical element (DOE). This is an application of the diffraction phenomenon when light passes through a place where materials having different refractive indexes are arranged with periodicity. DOE is basically designed for light of a single wavelength, but theoretically, it is possible to shape light into almost any shape.
- the light intensity in the irradiation region has a Gaussian distribution
- the DOE the uniformity of the light distribution in the irradiation region can be controlled.
- Such a characteristic of the DOE is advantageous in terms of high efficiency by suppressing irradiation to an unnecessary area, miniaturization of the apparatus by reducing the number of light sources, and the like (for example, see Patent Document 1).
- the DOE can be applied to both a parallel light source such as a laser and a diffused light source such as an LED, and can be applied to a wide range of wavelengths from ultraviolet light to visible light and infrared light. .
- 0th-order diffracted light gathers near the center of the irradiation area, for example, which may be an obstacle. This tendency was particularly strong when the light source was a laser. Conventionally, if the 0th-order diffracted light is reduced, the necessary 1st-order diffracted light is reduced accordingly. Therefore, it has been required to reduce the 0th-order diffracted light while suppressing the decrease in the required 1st-order diffracted light.
- An object of the present invention is to provide a diffractive optical element that can further reduce zero-order diffracted light.
- a first invention is a diffractive optical element (10) for shaping light, wherein a high refractive index portion (11) in which a plurality of convex portions (11a) are arranged side by side, and the high refractive index portion (11 ) And a low refractive index part (14) including a concave part (12) formed at least between the convex parts (11a).
- the portion 11a) has a multi-step shape formed by a plurality of step portions having different heights, and the high refractive index portion (11) has the largest area on the deepest surface per unit area. This is a diffractive optical element (10) having the smallest area of the next surface of the upper surface.
- the high refractive index portion (11) has an area of the uppermost surface of the lowermost surface of the high refractive index portion.
- the diffractive optical element (10) is characterized by having an area of 0.6 to 0.9 times.
- the high refractive index portion (11) is a next stage from the deepest surface to the uppermost surface per unit area.
- the diffractive optical element (10) is characterized in that the area of each step portion decreases sequentially toward the surface.
- a fourth invention is a diffractive optical element (10) for shaping light, wherein a high refractive index portion (11) in which a plurality of convex portions (11a) are arranged side by side in a cross-sectional shape, and the high refractive index A refractive layer (15) having a refractive index lower than that of the portion (11) and having a low refractive index portion (14) including at least a concave portion (12) formed between the convex portions (11a),
- the convex portion (11a) has a sawtooth shape, or a shape imitating the sawtooth shape by a multi-stage contour shape, and the sawtooth-shaped or diffractive optical element (10) having a sawtooth shape imitated by a multi-step contour shape.
- the slope inclined with respect to the sheet surface is a diffractive optical element (10) having a concave curved surface that is recessed toward the convex portion (11a).
- the convex portion (11a) has the sawtooth shape by a plurality of step portions having different heights on at least one side of the side surface shape.
- the diffractive optical element (10) is characterized in that the concave curved surface is simulated by having at least one of the height and the width of the step portion different depending on the location. ).
- a sixth invention is the diffractive optical element according to the fourth invention or the fifth invention, wherein the convex portion has the sawtooth shape by a plurality of step portions having different heights on at least one side surface thereof.
- the diffractive optical element has a simulated multi-stage shape, and has the largest area of the deepest surface and the smallest area of the next surface of the uppermost surface per unit area.
- the height per step of the step portion is constant, and the width of the step portion depends on the place.
- the diffractive optical element (10) is characterized by imitating the concave curved surface by being different.
- the x axis is set in the direction in which the convex portions (11a) are arranged, and the direction in which the inclined surface becomes higher is the plus of the x axis.
- the y-axis orthogonal to the sheet surface of the diffractive optical element (10) is set, the protruding direction of the convex part (11a) is the positive direction of the y-axis, and the tip of the convex part (11a)
- the total number of steps counted including L is L, the reduction rate of the width for each level is f, and the number of steps of the target step when counting the lowest position of the recess (12) as 0 is lv.
- the high refractive index portion (11) is a normal of a surface on which an uneven shape is formed.
- the boundary between the convex portion (11a) and the concave portion (12) when viewed from the direction forms a diffraction grating having a pattern including at least one of a curved line and a broken line connecting a plurality of line segments.
- the high refractive index portion (11) is a normal line of a surface on which an uneven shape is formed.
- Grating cell array type also called “Grating Cell Array type” or “GCA type”
- GCA type Grating Cell Array type
- the present invention it is possible to suppress the reduction of the diffraction efficiency of the primary light and reduce the zero-order light.
- FIG. 1 It is a top view which shows the example of the diffractive optical element in which the uneven
- seat surface is formed in the regular or irregular pattern in which the boundary of a convex part and a recessed part contains a curve.
- the top view which shows the example of the diffraction optical element formed in the grid
- FIG. 1 shows the example of the diffractive optical element in which the uneven
- seat surface is formed in the regular or irregular pattern in which the boundary of a convex part and a recessed part contains a curve.
- FIG. 1B is a perspective view showing an example of a partial periodic structure in the example of the irregular diffractive optical element shown in FIG. 1A. It is a perspective view which shows an example of the partial periodic structure in the example of the GCA type
- FIG. 2B is a cross-sectional view of the diffractive optical element cut at a position indicated by an arrow G-G ′ in FIG. 2A. It is a figure explaining a diffractive optical element.
- 3 is a diagram illustrating a concave curved surface of a convex portion 11a in the diffractive optical element 10.
- FIG. It is the figure which showed the diffractive optical element 10 of this embodiment compared with the conventional form.
- the diffractive optical element 10 which has a multistep shape of 8 levels. It is a figure explaining the curve in the cross section of a concave curved surface, and a multistep shape. It is a figure which shows the specific example of a cross-sectional shape of 8 levels. In FIG. 9, the values of x and y are also shown. It is a figure which shows the specific example of a cross-sectional shape of 4 levels. In FIG. 10, the values of x and y are also shown. It is a figure explaining the intensity
- FIG. 27 is a diagram showing the ratio of each surface shown in FIG. 26 to the area of a 4-level diffractive optical element according to the conventional ideal design of FIG.
- FIG. 27 is a diagram showing the ratio of each surface shown in FIG. 26 to the area of the 4-level diffractive optical element of the present invention shown in FIG. It is a figure which shows the ratio of each surface with respect to the area of the 8-level diffractive optical element of this invention. It is the result of the actual measurement which actually manufactured the diffractive optical element based on the data of Fig.26 (a), (b), and measured zero order light. It is a figure which shows the area ratio of three types of diffractive optical elements. It is the figure which looked at the diffractive optical element of ideal design from the normal line direction of the sheet surface.
- FIG. 1A is a plan view showing an example of a diffractive optical element in which the concavo-convex shape of the diffraction grating viewed from the normal direction of the sheet surface is formed in a regular or irregular pattern in which the boundary between the convex part and the concave part includes a curve.
- the present invention can be applied to a diffractive optical element having a concavo-convex pattern that looks irregular as shown in FIG. 1A.
- the diffractive optical element of the type shown in FIG. 1A is also called an irregular type.
- the irregular pattern may be a regular pattern depending on the target emission pattern of the diffractive optical element, the term “irregular” is a convenient name and is limited to irregular. Not what you want.
- the irregular pattern is configured by a curve, but depending on the target emission pattern of the diffractive optical element, a pattern that is a straight line or a broken line that connects line segments made of a curve. May be included. Therefore, in the irregular diffraction grating pattern, the boundary between the convex portion and the concave portion, when viewed from the normal direction of the surface on which the concave and convex shape of the high refractive index portion (described later) is formed, connects the curve and a plurality of line segments. Including at least one of a broken line.
- FIG. 1B shows an example of a diffractive optical element in which the concavo-convex shape of the diffraction grating viewed from the normal direction of the sheet surface is formed into a lattice-like pattern in which a plurality of unit cells in which the same concavo-convex shape is arranged are arranged.
- FIG. 1B shows another example, as shown in FIG. 1B, the present invention may be applied to a diffractive optical element formed in a lattice-like pattern in which a plurality of unit cells in which the same concavo-convex shape is arranged are arranged. it can.
- the grating cell array type diffractive optical element In the grating cell array type diffractive optical element, the direction and angle of the light diffracted by the diffraction grating is different for each unit cell, and diffractive optics that can obtain desired optical characteristics by tiling many unit cells.
- An element is configured. That is, in the grating cell array type diffractive optical element, the high refractive index portion is partitioned in a lattice shape when viewed from the normal direction of the surface on which the concavo-convex shape is formed, and extends in a specific direction within the partition.
- the convex portions having the same shape are arranged side by side in the direction orthogonal to the specific extending direction, and the width and the extending direction of the convex portions are different for each section.
- FIG. 2A is a perspective view showing an example of a partial periodic structure in the example of the irregular diffractive optical element shown in FIG. 1A.
- 2B is a perspective view showing an example of a partial periodic structure in the example of the GCA type diffractive optical element shown in FIG. 1B.
- FIG. 3 is a cross-sectional view of the diffractive optical element taken along the line GG ′ in FIG. 2A.
- the GCA type also has a similar cross-sectional shape by cutting at the position of the arrow GG ′ shown in FIG. 1A, and as described above, the present invention can be similarly applied.
- FIG. 1A is a perspective view showing an example of a partial periodic structure in the example of the irregular diffractive optical element shown in FIG. 1A.
- 2B is a perspective view showing an example of a partial periodic structure in the example of the GCA type diffractive optical element shown in FIG. 1B.
- FIG. 3 is a cross-sectional view of the diffractive optical element taken
- FIG. 4 is a diagram illustrating a diffractive optical element.
- each figure shown below including FIG. 1 is the figure shown typically, and the magnitude
- specific numerical values, shapes, materials, and the like are shown and described, but these can be changed as appropriate.
- the shape and geometric conditions, and terms specifying the degree thereof for example, terms such as “parallel”, “orthogonal”, “same”, length and angle values, etc. Without being limited to a strict meaning, it should be interpreted to include a range where a similar function can be expected.
- shaping the light means controlling the light traveling direction so that the shape of the light projected on the target object or target region (irradiation region) becomes an arbitrary shape.
- a light source unit 210 is prepared that emits light 201 (FIG. 4B) in which the irradiation region 202 becomes circular when directly projected onto a planar screen 200.
- the irradiation region 204 is formed into a target shape such as a square (FIG. 4A), a rectangle, a circle (not shown), “Shaping light”.
- the term “transparent” refers to a material that transmits at least light having a wavelength to be used. For example, even if it does not transmit visible light, as long as it transmits infrared light, it is handled as transparent when used for infrared applications.
- the diffractive optical element 10 of this embodiment is a diffractive optical element (DOE) that shapes light.
- the diffractive optical element 10 has, for example, a cross shape with respect to the light from the light source unit 210 that emits light having a wavelength of 500 nm, specifically, for example, light having a width of ⁇ 50 degrees and a width of ⁇ 3.3 degrees.
- the band is designed to spread the light into a shape with a tolerance of two.
- the depth of the diffractive optical element 10 of this embodiment is different at each of positions A, B, C, and D shown in FIGS. 1A and 1B. That is, the diffractive optical element 10 has a multi-stage shape with four levels of height.
- the diffractive optical element 10 usually has a plurality of regions having different periodic structures (partial periodic structures: for example, regions E and F in FIGS. 1A and 1B).
- partial periodic structures for example, regions E and F in FIGS. 1A and 1B.
- FIG. 2A and FIG. 2B an example of the partial periodic structure is extracted and shown.
- the diffractive optical element 10 includes a high refractive index portion 11 in which a plurality of convex portions 11a are arranged side by side in a cross-sectional shape.
- the high refractive index portion 11 extends in the depth direction of the cross section while maintaining the same cross sectional shape.
- the cross-sectional shape changes when the cross-sectional position changes, and a large number of diffraction gratings having various cross-sectional shapes are arranged.
- the cross-section for specifying the shape of the diffraction grating that is, the cross-sectional structure for specifying the specific shape of the diffraction grating that affects the diffraction phenomenon of the diffracted light is determined by the sheet surface method. It is necessary to have a cross-sectional structure in a cross section cut in a direction orthogonal to a line (curved line or straight line) drawn by the boundary between the convex part and the concave part when viewed from the line direction.
- the high refractive index portion 11 may be formed by processing quartz (SiO 2 , synthetic quartz) by an etching process.
- the high refractive index portion 11 may be obtained by forming a mold from a quartz processed product and curing the ionizing radiation curable resin composition using the mold.
- Various methods for producing such a periodic structure using an ionizing radiation curable resin composition are known, and the high refractive index portion 11 of the diffractive optical element 10 uses these known methods. And can be appropriately manufactured.
- a diffraction layer 15 having a function of shaping light is constituted by a periodic structure in which the high refractive index portions 11 and the low refractive index portions 14 are alternately arranged.
- the convex portion 11a has a multi-stage shape including four step portions having different heights on one side (left side in FIG. 3) of the side surface shape.
- the convex portion 11a includes a level 3 step portion 11a-3 that protrudes most, a level 2 step portion 11a-2 that is one step lower than the level 3 step portion 11a-3, and a level 2 step portion 11a-2.
- a level 1 step portion 11a-1 that is one step lower and a level 0 step portion 11a-0 that is one step lower than the level 1 step portion 11a-1 are provided on one side surface side.
- the other side (right side in FIG. 3) of the side surface shape of the convex portion 11a is a side wall portion 11b that is connected in a straight line from the level 3 step portion 11a-3 to the level 0 step portion 11a-0.
- the convex portion 11a of the present embodiment is a shape imitating a sawtooth shape with a multistage contour shape, and is inclined with respect to the sheet surface of the sawtooth-shaped diffractive optical element 10 imitating a multistage contour shape.
- the slope has a concave curved surface that is recessed toward the convex portion 11a.
- “simulated by a multi-stage contour shape” represents that in this embodiment, a pseudo concave curved surface is formed by a line connecting corner portions of each step portion. Not only the portion but also a line connecting the center of the surface of the stepped portion or a line connecting the corner portions may be used. Further, the term “simulated” indicates that a concave concave curved surface is formed.
- the present embodiment is a concave curved surface when viewed macroscopically, but it is expressed as a staircase when viewed microscopically. In another expression, it may be said to be “approximate”. In the examples described so far, the four-level form has been explained, so it is a form roughly imitated. However, if the number of levels is 16 levels or more, which will be described later, the shape is more accurately imitated. It can be.
- FIG. 5 is a diagram for explaining the concave curved surface of the convex portion 11 a in the diffractive optical element 10.
- FIG. 6A is a diagram showing the diffractive optical element 10 of the present embodiment in comparison with a conventional form.
- FIG. 6A (a) shows a cross section of the conventional diffractive optical element cut at the position of the arrow HH in FIG. 6A (b).
- FIG. 6A (b) is a plan view of a conventional diffractive optical element as viewed from the normal direction of the sheet surface.
- FIG. 6A (c) is a plan view of the diffractive optical element 10 of the present embodiment as viewed from the normal direction of the sheet surface.
- FIG. 6A (d) is a diagram in which FIG. 6A (b) and FIG.
- the slope L0 connecting the corners of each step of the conventional diffractive optical element is a flat surface (a straight line in the cross section).
- the slope L connecting the corner portions of the step portions is a concave curved surface (concave curve in the cross section) that is concave toward the convex portion 11a.
- the depth (height) of each step portion may be changed, the width of each step portion may be changed, or both of them may be combined.
- the method that can be manufactured most simply is a method of changing the width of each stepped portion. Therefore, in the diffractive optical element 10 of the present embodiment, in order to simulate the concave curved surface described above, the width of each step is gradually narrowed as the depth of the concave portion becomes shallow. Therefore, as shown in FIGS. 5 and 6, the width of the convex portion 11 a is also narrowed as a whole.
- the line drawn by the boundary between the convex portion and the concave portion becomes a curve as shown in FIG. 1A.
- the cross-sectional structure that affects the optical characteristics of the diffractive optical element is a cross-sectional structure in a cross section in a direction (normal direction) perpendicular to the curve.
- the line drawn by the boundary between the convex part and the concave part approximates a curve due to a fine polygonal line shape, in particular, a polygonal line shape connecting two orthogonal lines as shown in FIG. 6A. Often made into a shape. This is mainly due to manufacturing reasons.
- FIG. 6B is a diagram in which the original design pattern curve is superimposed on the diagram of FIG. 6A.
- 6B (b) is a diagram in which the curve of the ideal design pattern is superimposed on FIG. 6A (b), and
- FIG. 6B (c) is the curve of the ideal design pattern and the curve of this embodiment on FIG. 6A (c). It is the figure which accumulated the curve of the design pattern.
- FIG. 6B clearly shows that the width of each step is gradually narrowed as the depth of the concave portion becomes shallower.
- a design curve is obtained by a curve connecting vertices as shown in FIG. 6B, and the direction orthogonal to the curve is obtained. It is important to consider the cross-sectional shape and the width dimension.
- FIG. 7 is a diagram showing the diffractive optical element 10 having an eight-level multistage shape.
- FIG. 8 is a diagram for explaining a curve in a cross section of a concave curved surface and a multistage shape.
- Xy orthogonal coordinates as shown in FIG. 8 are provided. That is, the x-axis is set in the direction in which the convex portions 11a are arranged, the direction in which the slope becomes higher is the positive direction of the x-axis, the y-axis orthogonal to the sheet surface of the diffractive optical element 10 is set, and the convex portions 11a Is set as the positive direction of the y-axis.
- x S ⁇ (0.5 ⁇ f ⁇ lv 2 + C ⁇ lv)
- y lv ⁇ h
- the level zero width ratio C indicates the ratio of the level zero width, which is the lowest position of the concave portion, to the width per step when the width of each conventional step portion is constant.
- Theoretical value ht wavelength / ⁇ level number (refractive index-1) ⁇ .
- a diffractive optical element having a maximum diffraction angle of 10 ° or more ⁇ 20 ⁇ C / f ⁇ ⁇ 6, Preferably ⁇ 16 ⁇ C / f ⁇ ⁇ 10.5 ⁇ 0.0275 ⁇ f ⁇ ⁇ 0.0125 And when 0.13 ⁇ C ⁇ 0.4 And C is in this range, preferably ⁇ 0.0225 ⁇ f ⁇ ⁇ 0.0125 It is.
- the ratio of the top width to the deepest plane, zero level width is t, 0.5 ⁇ t ⁇ 0.9 And 0.6 ⁇ t ⁇ 0.8 Is desirable.
- FIG. 9 is a diagram showing a specific example of a cross-sectional shape of 8 levels.
- the values of x ′ and y are also shown.
- This x ′ indicates the horizontal position of the top when the cross section of the staircase structure is viewed
- y indicates the vertical position
- the coordinate data of the cross-sectional shape (staircase structure) shown as a graph in FIG. Vertex coordinates).
- the values in the tables written together with the graph indicate the coordinate data in the graph.
- FIG. Vertex coordinates the values in the tables written together with the graph indicate the coordinate data in the graph.
- FIG. 10 is a diagram showing a specific example of a four-level cross-sectional shape.
- the values of x and y are also shown.
- C / f ⁇ 10.
- x ′ 0.5 ⁇ f ⁇ lv 2 + C ⁇ lv From the above equation, the width from the zero level to the highest level is 0.662, and the width of each level is the width derived from the x value ⁇ 3284 / 0.662. The zero-order light at this time is sufficiently small at 0.2803%.
- FIG. 11 is a diagram for explaining a method of measuring the intensity of the 0th-order diffracted light.
- the 0th-order diffracted light is further emitted by the aperture AP. Only light in a specific range that passes through is allowed to reach the sensor S, and the power meter M measures the intensity when the diffractive optical element 10 is present.
- the power meter M measures the intensity when the diffractive optical element 10 is present.
- the diffractive optical element 10 is removed from the state of FIG. 11 (a), and the intensity when there is no diffractive optical element 10 is measured.
- the intensity of the 0th-order diffracted light can be obtained by (intensity when there is a diffractive optical element 10) / (intensity when there is no diffractive optical element 10).
- the light source LS used for the measurement was a laser light source and a halogen light source, and the wavelength was 850 nm.
- the intensity of the 0th-order diffracted light was measured for the diffractive optical element 10 of the present invention by the above method.
- the diffractive optical element 10 of the present invention the four-level element shown in FIGS. 3 and 5 and the eight-level element shown in FIGS.
- FIG. 12 is a diagram showing a diffractive optical element of a comparative example.
- the line connecting the steps is a straight line in the cross section.
- two types of 4 levels and 8 levels were prepared.
- the height h per stage was the same as the product of the present invention.
- FIG. 13 is a diagram showing the results of measuring the intensity of the 0th-order diffracted light for the diffractive optical element 10 of the present invention and the comparative example.
- two types were prepared as examples in which the slope-corresponding portion which is the product of the present invention has a concave curved surface.
- Example 1 in which the widths of the deep portions were sequentially widened in the same manner as the previous actual measurement product was designated as Example 1.
- Example 2 is a diagram showing the shape of Example 2 in which the height per stage is changed. As described above, the concave curved surface can be imitated also by changing the height per step as shown in FIG.
- FIG. 15 summarizes the results of the simulation.
- the first-order diffracted light is also obtained as a reference value. From the simulation results, it was found that the 0th-order diffracted light can be greatly reduced if the slope-corresponding portion has a concave curved surface.
- FIG. 16 is a diagram illustrating an example in which a sawtooth shape is simulated in 16 steps. Note that if the number of steps is increased, it can be made closer to a smoother slope, and can be regarded as a substantially stepless, that is, a substantially curved surface. From the results of the above actual measurement and simulation, it can be said that the intensity of the 0th-order diffracted light can be lowered if the slope is a concave curved surface, even in the case of a smooth slope.
- FIG. 17 to FIG. 19 show the results of simulating an 8-level structure represented by the following formula with a wavelength of 850 nm and a refractive index of the diffractive optical element of 1.5.
- t is the ratio of the width of the uppermost surface (level-7) to the lowermost surface (level-0).
- S be the ratio of the x coordinate to the pitch.
- a suitable range of C / f at 8-level can be obtained.
- a range in which the zero-order light intensity is 1% or less is set as a suitable range of C / f.
- the zero-order light is 1% or less when 0.18 ⁇ C.
- the zero-order light is 1% or less when ⁇ 0.0275 ⁇ f ⁇ 0.005.
- a preferable range of C / f in 8-level is ⁇ 50 ⁇ C / f ⁇ 9.
- FIG. 20 to FIG. 22 show the results of simulating a 4-level structure represented by the following equation with a wavelength of 850 nm and a refractive index of the diffractive optical element of 1.5.
- t is the ratio of the width of the uppermost surface (level-3) to the lowermost surface (level-0).
- S be the ratio of the x coordinate to the pitch.
- a suitable range of C / f at 4-level can be obtained.
- a range in which the zero-order light intensity is 1% or less is set as a suitable range of C / f.
- the zero-order light is 1% or less when 0.1 ⁇ C.
- the result of FIG. 21 shows that the zero-order light is 1% or less at f ⁇ 0.
- a preferable range of C / f in 4-level is ⁇ 5 ⁇ C / f.
- the preferred range of C / f at 8-level is ⁇ 50 ⁇ C / f ⁇ 9
- the preferred range of C / f at 4-level is ⁇ 5 ⁇ C / f. is there. Therefore, ⁇ 5 ⁇ C / f ⁇ 9 can be set as a suitable range of C / f as a common range.
- the reduction rate f has an inversely proportional relationship of C / f. Therefore, when the above range is rewritten so that the reduction rate f becomes a numerator, it is desirable that the range is ⁇ 0.2 ⁇ f / C ⁇ 0.1.
- the reduction rate f is a reduction rate of the width for each level and is a dimensionless value. If C is constant, it is considered that the change rate of the area is preferably in the above range. Therefore, the reduction rate at which the area of each step portion decreases is desirably in the range of ⁇ 5% to ⁇ 20%.
- t is desirably 0.5 to 0.9
- t is desirably 0.3 to 0.9
- t is the ratio of the width of the uppermost surface (level-3) to the lowermost surface (level-0). Therefore, it can be said that the area of the uppermost surface of the high refractive index portion is desirably 0.5 to 0.9 times the area of the lowermost surface of the high refractive index portion.
- the diffractive optical element in which the locus connecting the vertices of the present invention has a configuration of a concave curved surface
- the diffractive optical element having a configuration in which the vertices that are theoretical structures are arranged in a straight line, and the vertices opposite to the present invention.
- FIG. 23 is a diagram showing a cross-sectional shape and a simulation result of a diffractive optical element in which the locus connecting the vertices of the present invention has a concave curved surface configuration.
- a straight line is also shown with an alternate long and short dash line so that the difference in cross-sectional shape can be easily understood.
- the zero-order light is 0.26%.
- FIG. 24 is a diagram showing a cross-sectional shape and a simulation result of a diffractive optical element having a theoretical structure in which vertices are arranged in a straight line. As shown in FIG.
- FIG. 25 is a diagram showing a cross-sectional shape and a simulation result of a diffractive optical element having a convex curved surface as a trajectory connecting vertices contrary to the present invention.
- the zero-order light is 2.90% in the structure that is convex with respect to the saw-tooth slope of the saw reverse to the present invention. From the results of FIG. 23 to FIG. 25, it can be confirmed that the zero-order light can be reduced in the diffractive optical element in which the locus connecting the vertices has a concave curved surface configuration as in the present invention.
- FIG. 26 is a plan view showing a conventional diffractive optical element and the diffractive optical element of the present invention side by side for comparison.
- FIG. 26A shows each 4-level surface of the diffractive optical element designed by a method known as an ideal design in the past, and is data indicating one to four surfaces.
- FIG. 26B is an improvement of the shape of FIG.
- FIG. 27A is a diagram showing the ratio of each surface shown in FIG. 26 to the area of the 4-level diffractive optical element according to the conventional ideal design of FIG.
- FIG. 27B is a diagram showing the ratio of each surface to the area of an 8-level diffractive optical element according to a conventional ideal design.
- FIG. 28A is a diagram showing the ratio of each surface shown in FIG. 26 to the area of the 4-level diffractive optical element of the present invention shown in FIG. FIG.
- FIGS. 27A and 27B and FIGS. 28A and 28B are diagram showing the ratio of each surface to the area of the 8-level diffractive optical element of the present invention.
- the area ratio was obtained for a square region in which one side of the diffractive optical element (DOE) is 10 ⁇ m, 50 ⁇ m, and 100 ⁇ m.
- DOE diffractive optical element
- the ratio of each surface in the conventional ideal design is approximately 25% for each of the 4-level surfaces and 11 for each of the 8-level surfaces. It can be seen that the ratio is approximately equal at ⁇ 14%.
- FIG. 29 shows results of actual measurement values obtained by actually manufacturing a diffractive optical element based on the data of FIGS. 26A and 26B and measuring zero-order light.
- the actually measured values of 4-level and 8-level are also shown.
- both the 4-level and 8-level are structures according to the present invention, and it can be seen that the zero-order light is smaller than the conventional form.
- the order when arranged in descending order of area, the order was level-0, level-1, level-3, and level-2 (hereinafter referred to as type 1).
- type 2 examples of the order of level-0, level-3, level-1, and level-2 (hereinafter referred to as type 2) will be given in order of increasing area, and the basic ideal design forms will be described below. Comparison was made under the same conditions. In this comparison, the difference in height from level-0 to level-3, that is, the depth of the unevenness (hereinafter also referred to as DOE height) is changed to examine the influence of the DOE height.
- the DOE height is usually determined according to the wavelength of light to be diffracted.
- FIG. 30 is a diagram showing the area ratio of the three types of diffractive optical elements.
- FIG. 31 is a view of an ideally designed diffractive optical element as seen from the normal direction of the sheet surface.
- FIG. 32 is a view of the diffractive optical element of type 1 as viewed from the normal direction of the sheet surface.
- FIG. 33 is a view of the diffractive optical element of type 2 as viewed from the normal direction of the sheet surface.
- FIG. 34 is a diagram showing numerical simulation results of the three types of diffractive optical elements.
- FIG. 35 is a graph showing the simulation results of three types of diffractive optical elements. The simulations of FIGS. 34 and 35 were performed at a wavelength of 850 nm and using rigorous coupled wave theory (RCWA (rigorous coupled-wave analysis)).
- RCWA rigorous coupled wave theory
- type 1 of the present invention the zero-order light intensity of the ideal design zero is lower in type 1 of the present invention even if the DOE height is changed.
- type 2 has a portion where the zero-order light intensity is smaller than the ideal design depending on the DOE height.
- FIG. 36 is a diagram illustrating an example of a black and white (grayscale) image acquired from a laser microscope.
- the image acquired from the laser microscope is a monochrome image as shown in FIG.
- an image obtained by coloring this black and white image with a different color for each step height is also obtained (not shown). What is necessary is just to obtain the area for each colored color.
- FIG. 37 is a diagram showing the result of binarizing a black and white image acquired from a laser microscope.
- FIG. 38 is a diagram illustrating an example in which level-3 is filled.
- FIG. 39 is a diagram illustrating an example in which level-2 is filled.
- FIG. 40 is a diagram illustrating an example in which level-1 is filled.
- FIG. 41 is a diagram illustrating an example in which level-0 is filled.
- Each filled gray pixel is counted using the filled image for each row.
- commercially available image processing software can be used as appropriate.
- the number of gray pixels is counted.
- the count number of level-3 is 15167
- the count number of level-2 is 24859
- the count number of level-1 is 27541
- the count number of level-0 is 29391. . Since this number corresponds to the area, the area ratio can be obtained.
- the microscope output image there is a portion where the boundary of each step is thick, and it is estimated that the thick portion is a slope.
- the slope becomes black and is not included in the calculation of the area ratio. This is an advantage of this measurement method.
- the diffractive optical element 10 has a sawtooth-shaped inclined surface as a concave curved surface or a multi-step shape simulating a concave curved surface. Can be reduced. In addition, reduction of the diffraction efficiency of the primary light can be suppressed.
- the diffractive optical element is shown as a simple form composed of only the high refractive index portion.
- a transparent base material for forming the high refractive index portion may be provided, the low refractive index portion 14 may be made of resin, or a coating layer that covers the diffraction layer is provided. Also good.
- the diffractive optical element configured in a multi-stage shape has been mainly described.
- the present invention is not limited to this, for example, a shape in which the multi-stage shape is formed to the limit and cannot be recognized as a multi-stage, or It may be a diffractive optical element configured by a continuous slope (curved surface) shape.
- Diffractive optical element 11 High refractive index portion 11a Convex portion 11a-0 Level 0 step portion 11a-1 Level 1 step portion 11a-2 Level 2 step portion 11a-3 Level 3 step portion 11b Side wall portion 12 Recess portion 13 Space 14 Low refraction Index part 15 Diffraction layer 200 Screen 201 Light 202 Irradiation area 204 Irradiation area 210 Light source part
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Diffracting Gratings Or Hologram Optical Elements (AREA)
- Optical Couplings Of Light Guides (AREA)
- Optical Integrated Circuits (AREA)
Abstract
0次回折光をさらに低減することができる回折光学素子を提供する。 回折光学素子10は、断面形状において複数の凸部11aが並んで配置されている高屈折率部11と、高屈折率部11よりも屈折率が低く、少なくとも凸部11aの間に形成されている凹部12を含む低屈折率部14と、を有する回折層15を備え、凸部11aは、鋸歯形状、又は、鋸歯形状を多段階の輪郭形状により模した形状であり、鋸歯形状又は多段階の輪郭形状により模した鋸歯形状の回折光学素子10のシート面に対して傾いた斜面は、凸部11aへ向かって凹んだ凹状曲面を有する。
Description
本発明は、回折光学素子に関するものである。
ネットワークの普及によるセキュリティリスク回避のための個人認証へのニーズや、自動車の自動運転化の流れ、又は、いわゆる「モノのインターネット」の普及等、近年、センサシステムを必要とする局面が増大している。センサには色々な種類があり、検出する情報も様々であるが、その中の1つの手段として、光源から対象物に対して光を照射し、反射してきた光から情報を得るというものがある。例えば、パターン認証センサや赤外線レーダ等はその一例である。
これらのセンサの光源は、用途に応じた波長分布や明るさ、広がりをもったものが使用される。光の波長は、可視光~赤外線がよく用いられ、特に赤外線は外光の影響を受けにくく、不可視であり、対象物のやや内部を観察することも可能という特徴があるため、広く用いられている。また、光源の種類としては、LED光源やレーザ光源等が多く用いられる。例えば、遠いところを検知するには光の広がりが少ないレーザ光源が好適に用いられ、比較的近いところを検知する場合や、ある程度の広がりを持った領域を照射するにはLED光源が好適に用いられる。
ところで、対象とする照射領域の大きさや形状は、必ずしも光源からの光の広がり(プロファイル)と一致しているとは限らず、その場合には拡散板やレンズ、遮蔽板等により光を整形する必要がある。最近では、Light Shaping Diffuser(LSD)という、光の形状をある程度整形できる拡散板が開発されている。
また、光を整形する別の手段として、回折光学素子(Diffractive Optical Element :DOE)が挙げられる。これは異なる屈折率を持った材料が周期性を持って配列している場所を光が通過する際の回折現象を応用したものである。DOEは、基本的に単一波長の光に対して設計されるものであるが、理論的には、ほぼ任意の形状に光を整形することが可能である。また、前述のLSDにおいては、照射領域内の光強度がガウシアン分布となるのに対し、DOEでは、照射領域内の光分布の均一性を制御することが可能である。DOEのこのような特性は、不要な領域への照射を抑えることによる高効率化や、光源数の削減等による装置の小型化等の点で有利となる(例えば、特許文献1参照)。
また、DOEは、レーザの様な平行光源や、LEDの様な拡散光源のいずれにも対応可能であり、また、紫外光から可視光、赤外線までの広い範囲の波長に対して適用可能である。
また、光を整形する別の手段として、回折光学素子(Diffractive Optical Element :DOE)が挙げられる。これは異なる屈折率を持った材料が周期性を持って配列している場所を光が通過する際の回折現象を応用したものである。DOEは、基本的に単一波長の光に対して設計されるものであるが、理論的には、ほぼ任意の形状に光を整形することが可能である。また、前述のLSDにおいては、照射領域内の光強度がガウシアン分布となるのに対し、DOEでは、照射領域内の光分布の均一性を制御することが可能である。DOEのこのような特性は、不要な領域への照射を抑えることによる高効率化や、光源数の削減等による装置の小型化等の点で有利となる(例えば、特許文献1参照)。
また、DOEは、レーザの様な平行光源や、LEDの様な拡散光源のいずれにも対応可能であり、また、紫外光から可視光、赤外線までの広い範囲の波長に対して適用可能である。
DOEを用いて所定の領域に光を均一に照射させる場合に、0次回折光が例えば照射領域の中央付近に集まってしまい、邪魔になる場合があった。特に光源がレーザである場合には、その傾向が強かった。従来は、0次回折光を少なくしようとすると、それに伴い必要な1次回折光も減少してしまっていた。そこで、必要な1次回折光の減少を抑えつつ、0次回折光を少なくすることが求められていた。
DOEの格子面を鋸歯形状(ブレーズ)化することにより、特定の波長を特定の次数に効率よく集中させて回折することができるとされており、この鋸歯形状を階段状の多段階形状により模して構成することが従来から行われている(例えば、特許文献1)。
しかし、鋸歯形状(ブレーズ)の形状としただけでは、不要な0次回折光が未だ多く、0次回折光をさらに低減することが望まれていた。
本発明の課題は、0次回折光をさらに低減することができる回折光学素子を提供することである。
本発明は、以下のような解決手段により、前記課題を解決する。なお、理解を容易にするために、本発明の実施形態に対応する符号を付して説明するが、これに限定されるものではない。
第1の発明は、光を整形する回折光学素子(10)であって、複数の凸部(11a)が並んで配置されている高屈折率部(11)と、前記高屈折率部(11)よりも屈折率が低く、少なくとも前記凸部(11a)の間に形成されている凹部(12)を含む低屈折率部(14)と、を有する回折層(15)を備え、前記凸(11a)部は、高さの異なる複数の段部により形成された多段階形状を有しており、前記高屈折率部(11)は、単位面積当り、最も深い面の面積が最も大きく、最上位面の次段の面の面積が最も小さい回折光学素子(10)である。
第2の発明は、第1の発明に記載の回折光学素子(10)において、前記高屈折率部(11)は、最上位面の面積が、前記高屈折率部の最下位面の面積の0.6~0.9倍の面積であること、を特徴とする回折光学素子(10)である。
第3の発明は、第1の発明又は第2の発明に記載の回折光学素子(10)において、前記高屈折率部(11)は、単位面積当り、最も深い面から最上位面の次段の面に向けて、各段部の面積が順次減少していること、を特徴とする回折光学素子(10)である。
第4の発明は、光を整形する回折光学素子(10)であって、断面形状において複数の凸部(11a)が並んで配置されている高屈折率部(11)と、前記高屈折率部(11)よりも屈折率が低く、少なくとも前記凸部(11a)の間に形成されている凹部(12)を含む低屈折率部(14)と、を有する回折層(15)を備え、前記凸部(11a)は、鋸歯形状、又は、鋸歯形状を多段階の輪郭形状により模した形状であり、鋸歯形状又は多段階の輪郭形状により模した鋸歯形状の当該回折光学素子(10)のシート面に対して傾いた斜面は、前記凸部(11a)へ向かって凹んだ凹状曲面を有する回折光学素子(10)である。
第5の発明は、第4の発明に記載の回折光学素子(10)において、前記凸部(11a)は、その側面形状の少なくとも一方側に、高さの異なる複数の段部により前記鋸歯形状を模した多段階形状を有しており、前記段部の高さと幅との少なくとも一方が場所に応じて異なることにより前記凹状曲面を模していること、を特徴とする回折光学素子(10)である。
第6の発明は、第4の発明又は第5の発明に記載の回折光学素子において、前記凸部は、その側面形状の少なくとも一方側に、高さの異なる複数の段部により前記鋸歯形状を模した多段階形状を有しており、単位面積当り、最も深い面の面積が最も大きく、最上位面の次段の面の面積が最も小さいこと、を特徴とする回折光学素子である。
第7の発明は、第5の発明又は第6の発明に記載の回折光学素子(10)において、前記段部の一段当りの高さは一定であり、前記段部の幅が場所に応じて異なることにより前記凹状曲面を模していること、を特徴とする回折光学素子(10)である。
第8の発明は、第7の発明に記載の回折光学素子(10)において、前記凸部(11a)が並ぶ方向にx軸を設定し、前記斜面が高くなっていく向きをx軸のプラスの向きとし、当該回折光学素子(10)のシート面に直交するy軸を設定し、前記凸部(11a)の突出する向きをy軸のプラスの向きとし、前記凸部(11a)の先端を含んで計数した段部の総段数をLとし、レベルごとの幅の減少率をfとし、前記凹部(12)の最も低い位置を0として計数したときの対象の段部の段数をlvとし、前記段部の一段当りの高さをhで一定値とし、レベルゼロの幅比率をCとしたときに、多段階形状により模す前記凹状曲面の断面におけるレベルゼロの凹頂点と各凸部の頂点の軌跡となる曲線は、
ピッチに対するx座標の比率をSとして、
x’=0.5×f×lv2+C×lv
S=P/{tw+Σx’i}
Σは、i=0~L-1
としたときに階段形状の頂部x,y座標が、
x=0.5×f×lv2+C×lv
y=lv×h
で表されること、を特徴とする回折光学素子(10)である。
ピッチに対するx座標の比率をSとして、
x’=0.5×f×lv2+C×lv
S=P/{tw+Σx’i}
Σは、i=0~L-1
としたときに階段形状の頂部x,y座標が、
x=0.5×f×lv2+C×lv
y=lv×h
で表されること、を特徴とする回折光学素子(10)である。
第9の発明は、第1の発明から第8の発明までのいずれかに記載の回折光学素子(10)において、前記高屈折率部(11)は、凹凸形状が形成された面の法線方向から見て前記凸部(11a)と前記凹部(12)との境界が曲線と複数の線分を繋げた折れ線との少なくとも一方を含むパターンを有する回折格子を形成していること、を特徴とする回折光学素子(10)である。
第10の発明は、第1の発明から第8の発明までのいずれかに記載の回折光学素子(10)において、前記高屈折率部(11)は、凹凸形状が形成された面の法線方向から見て同一の凹凸形状が並べて配置された単位セルが複数タイリングされた格子状のパターンに形成されるグレーティングセルアレイ型(「Grating Cell Array 型」又は「GCA型」とも呼ぶ)の回折格子を形成していること、を特徴とする回折光学素子(10)である。
本発明によれば、一次光の回折効率の低減を抑制し、ゼロ次光を低減することができる。
以下、本発明を実施するための最良の形態について図面等を参照して説明する。
(実施形態)
図1Aは、シート面の法線方向から見た回折格子の凹凸形状が、凸部と凹部との境界が曲線を含む規則的又は不規則なパターンに形成される回折光学素子の例を示す平面図である。
本実施形態では、1例として、図1Aに示すような一見不規則に見える凹凸形状のパターンを有する回折光学素子に適用することができる。以下の説明では、この図1Aに示すタイプの回折光学素子を、不規則型とも呼ぶこととする。ただし、この不規則なパターンは、回折光学素子の狙いの出射パターンによっては、規則的なパターンとなる場合もあるので、不規則型との呼び方は便宜上の呼び名であって、不規則に限定するものではない。また、図1Aでは、不規則型のパターンは、曲線により構成されているが、回折光学素子の狙いの出射パターンによっては、直線、又は、曲線からなる線分を繋げた折れ線となっているパターンを含む場合もある。したがって、不規則型の回折格子のパターンは、高屈折率部(後述)の凹凸形状が形成された面の法線方向から見て凸部と凹部との境界が曲線と複数の線分を繋げた折れ線との少なくとも一方を含む。
図1Aは、シート面の法線方向から見た回折格子の凹凸形状が、凸部と凹部との境界が曲線を含む規則的又は不規則なパターンに形成される回折光学素子の例を示す平面図である。
本実施形態では、1例として、図1Aに示すような一見不規則に見える凹凸形状のパターンを有する回折光学素子に適用することができる。以下の説明では、この図1Aに示すタイプの回折光学素子を、不規則型とも呼ぶこととする。ただし、この不規則なパターンは、回折光学素子の狙いの出射パターンによっては、規則的なパターンとなる場合もあるので、不規則型との呼び方は便宜上の呼び名であって、不規則に限定するものではない。また、図1Aでは、不規則型のパターンは、曲線により構成されているが、回折光学素子の狙いの出射パターンによっては、直線、又は、曲線からなる線分を繋げた折れ線となっているパターンを含む場合もある。したがって、不規則型の回折格子のパターンは、高屈折率部(後述)の凹凸形状が形成された面の法線方向から見て凸部と凹部との境界が曲線と複数の線分を繋げた折れ線との少なくとも一方を含む。
図1Bは、シート面の法線方向から見た回折格子の凹凸形状が、同一の凹凸形状が並べて配置された単位セルが複数タイリングされた格子状のパターンに形成される回折光学素子の例を示す平面図である。
本実施形態では、他の例として、図1Bに示すように、同一の凹凸形状が並べて配置された単位セルが複数タイリングされた格子状のパターンに形成される回折光学素子に適用することができる。以下の説明では、この図1Bに示すタイプの回折光学素子を、グレーティングセルアレイ(Grating Cell Array)型、又は、GCA型とも呼ぶこととする。グレーティングセルアレイ型の回折光学素子では、単位セル毎に回折格子により回折される光の向き及び角度が異なっており、多数の単位セルがタイリングされることにより、所望の光学特性を得られる回折光学素子が構成されている。すなわち、グレーティングセルアレイ型の回折光学素子では、高屈折率部は、凹凸形状が形成された面の法線方向から見て、格子状に区画されており、その区画内に特定の方向に延在する同一形状の凸部が前記特定の延在方向と直交する方向に並んで配置されており、区画毎に凸部の幅及び延在方向が異なっている。
本実施形態では、他の例として、図1Bに示すように、同一の凹凸形状が並べて配置された単位セルが複数タイリングされた格子状のパターンに形成される回折光学素子に適用することができる。以下の説明では、この図1Bに示すタイプの回折光学素子を、グレーティングセルアレイ(Grating Cell Array)型、又は、GCA型とも呼ぶこととする。グレーティングセルアレイ型の回折光学素子では、単位セル毎に回折格子により回折される光の向き及び角度が異なっており、多数の単位セルがタイリングされることにより、所望の光学特性を得られる回折光学素子が構成されている。すなわち、グレーティングセルアレイ型の回折光学素子では、高屈折率部は、凹凸形状が形成された面の法線方向から見て、格子状に区画されており、その区画内に特定の方向に延在する同一形状の凸部が前記特定の延在方向と直交する方向に並んで配置されており、区画毎に凸部の幅及び延在方向が異なっている。
図2Aは、図1Aに示した不規則型の回折光学素子の例における部分周期構造の一例を示す斜視図である。
図2Bは、図1Bに示したGCA型の回折光学素子の例における部分周期構造の一例を示す斜視図である。
図3は、図2A中の矢印G-G’の位置で回折光学素子を切断した断面図である。
以下の説明では、GCA型に特有の断面形状の捉え方が必要であることから、主に不規則型を例に挙げて説明を進める。ただし、GCA型についても、図1A中に示した矢印G-G’の位置で切断すれば、同様な断面形状となり、上述したように、本発明は同様に適用可能である。
図4は、回折光学素子を説明する図である。
なお、図1を含め、以下に示す各図は、模式的に示した図であり、各部の大きさ、形状は、理解を容易にするために、適宜誇張して示している。
また、以下の説明では、具体的な数値、形状、材料等を示して説明を行うが、これらは、適宜変更することができる。
図2Bは、図1Bに示したGCA型の回折光学素子の例における部分周期構造の一例を示す斜視図である。
図3は、図2A中の矢印G-G’の位置で回折光学素子を切断した断面図である。
以下の説明では、GCA型に特有の断面形状の捉え方が必要であることから、主に不規則型を例に挙げて説明を進める。ただし、GCA型についても、図1A中に示した矢印G-G’の位置で切断すれば、同様な断面形状となり、上述したように、本発明は同様に適用可能である。
図4は、回折光学素子を説明する図である。
なお、図1を含め、以下に示す各図は、模式的に示した図であり、各部の大きさ、形状は、理解を容易にするために、適宜誇張して示している。
また、以下の説明では、具体的な数値、形状、材料等を示して説明を行うが、これらは、適宜変更することができる。
なお、本発明において用いる、形状や幾何学的条件、及び、それらの程度を特定する用語、例えば、「平行」、「直交」、「同一」等の用語や長さや角度の値等については、厳密な意味に縛られることなく、同様の機能を期待し得る程度の範囲を含めて解釈することとする。
また、本発明において「光を整形する」とは、光の進行方向を制御することにより、対象物又は対象領域に投影された光の形状(照射領域)が任意の形状となるようにすることをいう。例えば、図4の例に示されるように、平面形状のスクリーン200に直接投影した場合に照射領域202が円形となる光201(図4(b))を発光する光源部210を用意する。この光201を、本発明の回折光学素子10を透過させることにより、照射領域204を正方形(図4(a))や、長方形、円形(図示せず)等、目的の形状とすることを、「光を整形する」いう。
なお、光源部210と、光源部210が発光する光が通過する位置に少なくとも1つ配置された、本実施形態の回折光学素子10とを組み合わせることにより、光を整形した状態で照射可能な光照射装置とすることができる。
また、本発明において透明とは、少なくとも利用する波長の光を透過するものをいう。例えば、仮に可視光を透過しないものであっても、赤外線を透過するものであれば、赤外線用途に用いる場合においては、透明として取り扱うものとする。
なお、光源部210と、光源部210が発光する光が通過する位置に少なくとも1つ配置された、本実施形態の回折光学素子10とを組み合わせることにより、光を整形した状態で照射可能な光照射装置とすることができる。
また、本発明において透明とは、少なくとも利用する波長の光を透過するものをいう。例えば、仮に可視光を透過しないものであっても、赤外線を透過するものであれば、赤外線用途に用いる場合においては、透明として取り扱うものとする。
本実施形態の回折光学素子10は、光を整形する回折光学素子(DOE)である。回折光学素子10は、例えば、波長が500nmの光を発光する光源部210からの光に対して十文字形状、具体的には、例えば、±50度に、幅が±3.3度で広がる光の帯が2本公差した形状に光を広げるように設計されている。
本実施形態の回折光学素子10は、図1A,図1Bに示したA,B,C,Dのそれぞれの位置において深さが異なっている。すなわち、回折光学素子10は、4段階の高さの異なる多段階形状により構成されている。そして、回折光学素子10は、通常、異なる周期構造を持つ複数の領域(部分周期構造:例えば、図1A,図1BのE,F領域)を有している。図2A,図2Bでは、部分周期構造の一例を抽出して示している。
回折光学素子10は、図3に示すように、断面形状において複数の凸部11aが並んで配置されている高屈折率部11を備えている。GCA型の回折光学素子では、この高屈折率部11は、同じ断面形状を維持したまま、断面の奥行き方向に延在している。一方、不規則型の回折光学素子では、断面位置が変れば断面形状が変化し、様々な断面形状の回折格子が多数配列されている形態となる。なお、不規則型においては、回折格子の形状を特定するための断面、すなわち、回折光の回折現象に影響を与える回折格子の具体的な形状を特定するための断面構造は、シート面の法線方向から見たときの凸部と凹部との境界が描く線(曲線、又は、直線)に直交する方向に切断する断面における断面構造とすることが必要である。
本実施形態の回折光学素子10は、図1A,図1Bに示したA,B,C,Dのそれぞれの位置において深さが異なっている。すなわち、回折光学素子10は、4段階の高さの異なる多段階形状により構成されている。そして、回折光学素子10は、通常、異なる周期構造を持つ複数の領域(部分周期構造:例えば、図1A,図1BのE,F領域)を有している。図2A,図2Bでは、部分周期構造の一例を抽出して示している。
回折光学素子10は、図3に示すように、断面形状において複数の凸部11aが並んで配置されている高屈折率部11を備えている。GCA型の回折光学素子では、この高屈折率部11は、同じ断面形状を維持したまま、断面の奥行き方向に延在している。一方、不規則型の回折光学素子では、断面位置が変れば断面形状が変化し、様々な断面形状の回折格子が多数配列されている形態となる。なお、不規則型においては、回折格子の形状を特定するための断面、すなわち、回折光の回折現象に影響を与える回折格子の具体的な形状を特定するための断面構造は、シート面の法線方向から見たときの凸部と凹部との境界が描く線(曲線、又は、直線)に直交する方向に切断する断面における断面構造とすることが必要である。
高屈折率部11は、例えば、クオーツ(SiO2、合成石英)をエッチング処理により加工して形成してもよい。また、高屈折率部11は、クオーツを加工した物から型取りを行って成形型を作成し、この成形型を利用して電離放射線硬化性樹脂組成物を硬化したものであってもよい。電離放射線硬化性樹脂組成物を用いてこのような周期構造の物を製造する方法は、様々な手法が公知であり、回折光学素子10の高屈折率部11は、それら公知の手法を利用して、適宜作製することができる。
また、凸部11aの間に形成されている凹部12及び凸部11aの頂部付近の空間13を含む図3の上方の部分は、空気が存在しており、高屈折率部11よりも屈折率が低い低屈折率部14となっている。これら高屈折率部11及び低屈折率部14が交互に並んで配置された周期構造により、光を整形する作用を備える回折層15が構成されている。
凸部11aは、側面形状の一方側(図3では、左側)に、高さの異なる4つの段部を備えた多段階形状を有している。具体的には、凸部11aは、最も突出したレベル3段部11a-3と、レベル3段部11a-3よりも一段低いレベル2段部11a-2と、レベル2段部11a-2よりもさらに一段低いレベル1段部11a-1と、レベル1段部11a-1よりもさらに一段低いレベル0段部11a-0とを一側面側に有している。また、凸部11aの側面形状の他方側(図3では、右側)は、レベル3段部11a-3からレベル0段部11a-0まで直線上につながる側壁部11bとなっている。
ここで、本実施形態の凸部11aは、鋸歯形状を多段階の輪郭形状により模した形状であり、多段階の輪郭形状により模した鋸歯形状の回折光学素子10のシート面に対して傾いた斜面は、凸部11aへ向かって凹んだ凹状曲面を有している。ここで、「多段階の輪郭形状により模した」とは、本実施形態では、各段部の角部分を結んだ線で疑似的に凹状曲面を構成していることを表しているが、角部分に限らず、段部の面の中央を結んだ線であってもよいし、隅部分を結んだ線であてもよい。また、「模した」との文言は、疑似的に凹状曲面を構成したことをあらわしている。本実施形態では、マクロ的に見れば、凹状曲面になっているが、ミクロ的に見れば、階段状に構成されていることを表している。別の表現では、「近似している」といってもよい。ここまで説明した例では、4レベルの形態を説明したので、比較的粗く模した形態となっているが、後述する16レベルや、さらにそれ以上のレベル数とすれば、より正確に模した形状とすることができる。
図5は、回折光学素子10における凸部11aの凹状曲面について説明する図である。
図6Aは、本実施形態の回折光学素子10を従来の形態と比較して示した図である。図6A(a)は、図6A(b)中の矢印H-Hの位置で従来の回折光学素子を切断した断面を示している。図6A(b)は、従来の回折光学素子をシート面の法線方向から見た平面図である。図6A(c)は、本実施形態の回折光学素子10をシート面の法線方向から見た平面図である。図6A(d)は、図6A(b)と図6A(c)とを重ねて示した図である。
従来の回折光学素子では、図5中に二点鎖線で示したように、各段部の一段当りの深さ(高さ)が一定であって、また、幅も一定になっていた。したがって、図5に示す断面において、従来の回折光学素子の各段部の角部分を結んだ斜面L0は、平面(断面では直線)となっていた。
これに対して、本実施形態の回折光学素子10では、各段部の角部分を結んだ斜面Lは、凸部11aへ向かって凹んだ凹状曲面(断面では凹状曲線)となっている。上述の凹状曲面を模すためには、各段部の深さ(高さ)を変えてもよいし、各段部の幅を変えてもよく、これらの両方を組み合わせてもよい。しかし、エッチング処理によって段部を製造する製造方法を考慮すると、最も簡単に製造を行えるのは、各段部の幅を変える方法である。
そこで、本実施形態の回折光学素子10は、上述の凹状曲面を模すために、各段部の幅を、凹部の深さが浅くなるにしたがい、徐々に狭くしている。よって、図5及び図6に示すように、凸部11aの幅も、全体に狭くなっている。
図6Aは、本実施形態の回折光学素子10を従来の形態と比較して示した図である。図6A(a)は、図6A(b)中の矢印H-Hの位置で従来の回折光学素子を切断した断面を示している。図6A(b)は、従来の回折光学素子をシート面の法線方向から見た平面図である。図6A(c)は、本実施形態の回折光学素子10をシート面の法線方向から見た平面図である。図6A(d)は、図6A(b)と図6A(c)とを重ねて示した図である。
従来の回折光学素子では、図5中に二点鎖線で示したように、各段部の一段当りの深さ(高さ)が一定であって、また、幅も一定になっていた。したがって、図5に示す断面において、従来の回折光学素子の各段部の角部分を結んだ斜面L0は、平面(断面では直線)となっていた。
これに対して、本実施形態の回折光学素子10では、各段部の角部分を結んだ斜面Lは、凸部11aへ向かって凹んだ凹状曲面(断面では凹状曲線)となっている。上述の凹状曲面を模すためには、各段部の深さ(高さ)を変えてもよいし、各段部の幅を変えてもよく、これらの両方を組み合わせてもよい。しかし、エッチング処理によって段部を製造する製造方法を考慮すると、最も簡単に製造を行えるのは、各段部の幅を変える方法である。
そこで、本実施形態の回折光学素子10は、上述の凹状曲面を模すために、各段部の幅を、凹部の深さが浅くなるにしたがい、徐々に狭くしている。よって、図5及び図6に示すように、凸部11aの幅も、全体に狭くなっている。
不規則型の回折光学素子10では、図1Aに示したように、設計上は、凸部と凹部との境界が描く線が曲線となる部分が多い。そして、先にも説明したように、回折光学素子の光学特性に影響を与える断面構造は、この曲線に直交する方向(法線方向)の断面における断面構造である。しかし、実際の回折光学素子10では、微細な折れ線形状、特に、図6Aに示すような直交する2方向の直線を繋げた折れ線形状によって凸部と凹部との境界が描く線が曲線に近似した形状に作製される場合が多い。これは主に製造上の都合によるものである。
この場合、図5に示した断面構造を、例えば、図6A(a)のようにして切断した断面で検討してしまうと、各段の幅が切断位置の影響を受けて本来の断面構造として検討すべき幅よりも広くなったり、狭くなったりしてしまい、正しい検討が行えない。
図6Bは、図6Aの図に本来の設計パターンの曲線を重ねて示した図である。図6B(b)は、図6A(b)上に理想設計パターンの曲線を重ねた図であり、図6B(c)は、図6A(c)上に理想設計パターンの曲線と本実施形態の設計パターンの曲線とを重ねた図である。なお、図6B(c)上で実線は、理想設計パターンの曲線であり、破線は、本実施形態の設計パターンの曲線である。
図6Bには、各段部の幅が、凹部の深さが浅くなるにしたがい、徐々に狭くなっている様子が明確に示されている。このように、実際に作製された回折光学素子において、各段部の幅を検討する場合には、図6Bのように頂点を結ぶ曲線により設計上の曲線を得て、その曲線に直交する方向の断面形状や、幅寸法で検討することが重要である。
この場合、図5に示した断面構造を、例えば、図6A(a)のようにして切断した断面で検討してしまうと、各段の幅が切断位置の影響を受けて本来の断面構造として検討すべき幅よりも広くなったり、狭くなったりしてしまい、正しい検討が行えない。
図6Bは、図6Aの図に本来の設計パターンの曲線を重ねて示した図である。図6B(b)は、図6A(b)上に理想設計パターンの曲線を重ねた図であり、図6B(c)は、図6A(c)上に理想設計パターンの曲線と本実施形態の設計パターンの曲線とを重ねた図である。なお、図6B(c)上で実線は、理想設計パターンの曲線であり、破線は、本実施形態の設計パターンの曲線である。
図6Bには、各段部の幅が、凹部の深さが浅くなるにしたがい、徐々に狭くなっている様子が明確に示されている。このように、実際に作製された回折光学素子において、各段部の幅を検討する場合には、図6Bのように頂点を結ぶ曲線により設計上の曲線を得て、その曲線に直交する方向の断面形状や、幅寸法で検討することが重要である。
ここまでの説明では、4レベルの多段階形状の例を示したが、この段数はより多くしてもよい。
図7は、8レベルの多段階形状を有する回折光学素子10を示す図である。
このように段数を多くすると、凹状曲面を模す精度が高くなる。
図7は、8レベルの多段階形状を有する回折光学素子10を示す図である。
このように段数を多くすると、凹状曲面を模す精度が高くなる。
ここで、鋸歯形状の斜面は、凹状曲面を模した形状としているが、この曲面の形状について説明する。
図8は、凹状曲面の断面における曲線と、多段階形状を説明する図である。
図8に示す様なx-y直交座標を設ける。すなわち、凸部11aが並ぶ方向にx軸を設定し、斜面が高くなっていく向きをx軸のプラスの向きとし、回折光学素子10のシート面に直交するy軸を設定し、凸部11aの突出する向きをy軸のプラスの向きとして設定する。
凸部11aの先端を含んで計数した段部の総段数をLとする。また、レベルごとの幅の減少率をfとする。さらに、凹部の最も低い位置を0として係数したときの対象の段部の段数をlvとし、各段部の一段当りの高さをhで一定値とし、レベルゼロの幅比率をCと定義する。そうすると、多段階形状により模す凹状曲面の断面における曲線(レベルゼロの凹頂点と各凸部の頂点の軌跡となる曲線)は、以下の式で表される。
ピッチに対するx座標の比率をSとして、
x’=0.5×f×lv2+C×lv
S=P/{tw+Σx’i}
Σは、i=0~L-1
としたときに階段形状の頂部x,y座標が次のように表される。
x=S×(0.5×f×lv2+C×lv)
y=lv×h
なお、多段形状のレベル数をn、最上位レベルの幅をtwとしたときに、ピッチは、
0.5×f×(n-1)2+C×(n-1)+tw
を正規化したものである。
また、レベルゼロの幅比率Cとは、凹部の最も低い位置であるレベルゼロの幅が従来の各段部の幅が一定である場合における一段当りの幅に対する比率を示している。
ここで、各段部の一段当りの高さをhについては、理論値htに対して、h=ht×1.05~h=ht×1.15とすると良好な結果が得られる。なお、理論値ht=波長/{level数(屈折率-1)}である。
図8は、凹状曲面の断面における曲線と、多段階形状を説明する図である。
図8に示す様なx-y直交座標を設ける。すなわち、凸部11aが並ぶ方向にx軸を設定し、斜面が高くなっていく向きをx軸のプラスの向きとし、回折光学素子10のシート面に直交するy軸を設定し、凸部11aの突出する向きをy軸のプラスの向きとして設定する。
凸部11aの先端を含んで計数した段部の総段数をLとする。また、レベルごとの幅の減少率をfとする。さらに、凹部の最も低い位置を0として係数したときの対象の段部の段数をlvとし、各段部の一段当りの高さをhで一定値とし、レベルゼロの幅比率をCと定義する。そうすると、多段階形状により模す凹状曲面の断面における曲線(レベルゼロの凹頂点と各凸部の頂点の軌跡となる曲線)は、以下の式で表される。
ピッチに対するx座標の比率をSとして、
x’=0.5×f×lv2+C×lv
S=P/{tw+Σx’i}
Σは、i=0~L-1
としたときに階段形状の頂部x,y座標が次のように表される。
x=S×(0.5×f×lv2+C×lv)
y=lv×h
なお、多段形状のレベル数をn、最上位レベルの幅をtwとしたときに、ピッチは、
0.5×f×(n-1)2+C×(n-1)+tw
を正規化したものである。
また、レベルゼロの幅比率Cとは、凹部の最も低い位置であるレベルゼロの幅が従来の各段部の幅が一定である場合における一段当りの幅に対する比率を示している。
ここで、各段部の一段当りの高さをhについては、理論値htに対して、h=ht×1.05~h=ht×1.15とすると良好な結果が得られる。なお、理論値ht=波長/{level数(屈折率-1)}である。
また、各段部(レベル)の幅d0~d7をピッチの割合で以下のように定義する。
di=C+i×f
ただし、iは、0~6の整数である。
ここで、f<0である。
di=C+i×f
ただし、iは、0~6の整数である。
ここで、f<0である。
また、最大回折角が10°以上の回折光学素子においては、
-20≦C/f≦-6であり、
望ましくは、
-16≦C/f≦-10.5
-0.0275≦f≦-0.0125
としたときに、
0.13≦C≦0.4
であり、Cがこの範囲である場合、望ましくは、
-0.0225≦f≦-0.0125
である。
最も深い面であるゼロレベルの幅に対し、最上位の幅の比率をtとしたときに、
0.5≦t≦0.9
であり、
0.6≦t≦0.8
が望ましい。
-20≦C/f≦-6であり、
望ましくは、
-16≦C/f≦-10.5
-0.0275≦f≦-0.0125
としたときに、
0.13≦C≦0.4
であり、Cがこの範囲である場合、望ましくは、
-0.0225≦f≦-0.0125
である。
最も深い面であるゼロレベルの幅に対し、最上位の幅の比率をtとしたときに、
0.5≦t≦0.9
であり、
0.6≦t≦0.8
が望ましい。
以下に、具体例を例示する。
図9は、8レベルの断面形状の具体例を示す図である。図9中の下方に併記した表には、x’、yの値を併記した。このx’は、階段構造の断面を見たときの頂部の横方向位置を示し、yは、縦方向位置を示しており、図9にグラフとして示した断面形状(階段構造)の座標データ(頂点座標)である。なお、以下の図においても、グラフと共に併記した表中の値は、グラフ中の座標データを示すものである。
図9の例では、波長850nm,ピッチ=3284nm(回折角15°),8レベル,f=-0.02,C=0.25,t=0.8,h=850/8*1.1*(n-1),n=1.5となっている。この場合、C/f=-12.5となる。
x’=0.5×f×lv2+C×lv
による式から、ゼロレベルから最上位レベルまでの幅は1.4542となり、各レベルの幅は、x値から導出される幅×3284/1.4542となる。このときのゼロ次光強度は、0.15776%と、充分に小さくなる。
図9は、8レベルの断面形状の具体例を示す図である。図9中の下方に併記した表には、x’、yの値を併記した。このx’は、階段構造の断面を見たときの頂部の横方向位置を示し、yは、縦方向位置を示しており、図9にグラフとして示した断面形状(階段構造)の座標データ(頂点座標)である。なお、以下の図においても、グラフと共に併記した表中の値は、グラフ中の座標データを示すものである。
図9の例では、波長850nm,ピッチ=3284nm(回折角15°),8レベル,f=-0.02,C=0.25,t=0.8,h=850/8*1.1*(n-1),n=1.5となっている。この場合、C/f=-12.5となる。
x’=0.5×f×lv2+C×lv
による式から、ゼロレベルから最上位レベルまでの幅は1.4542となり、各レベルの幅は、x値から導出される幅×3284/1.4542となる。このときのゼロ次光強度は、0.15776%と、充分に小さくなる。
図10は、4レベルの断面形状の具体例を示す図である。図10中には、x、yの値を併記した。
図10の例では、波長850nm,ピッチ=3284nm(回折角15°),4レベル,f=-0.02,C=0.2,t=0.8,h=850/4*1.1(n-1.0),n=1.5となっている。この場合、C/f=-10となる。
x’=0.5×f×lv2+C×lv
による式から、ゼロレベルから最上位レベルまでの幅は0.662となり、各レベルの幅は、x値から導出される幅×3284/0.662となる。このときのゼロ次光は、0.2803%と充分に小さくなる。
図10の例では、波長850nm,ピッチ=3284nm(回折角15°),4レベル,f=-0.02,C=0.2,t=0.8,h=850/4*1.1(n-1.0),n=1.5となっている。この場合、C/f=-10となる。
x’=0.5×f×lv2+C×lv
による式から、ゼロレベルから最上位レベルまでの幅は0.662となり、各レベルの幅は、x値から導出される幅×3284/0.662となる。このときのゼロ次光は、0.2803%と充分に小さくなる。
次に、上記実施形態と比較例とを実際に作成し、0次回折光の強度を実測した結果を示す。
図11は、0次回折光の強度測定方法を説明する図である。
0次回折光の強度を測定するには、先ず、図11(a)に示すように、光源LSが発光する特定の波長の光を回折光学素子10させた後に、さらにアパーチャAPにより0次回折光が通過する特定の範囲の光のみをセンサSまで到達させて、パワーメータMにより回折光学素子10がある場合の強度を計測する。
次に、図11(b)に示す様に、回折光学素子10のみを図11(a)の状態から取り除いて、回折光学素子10がない場合の強度を計測する。0次回折光の強度は、(回折光学素子10がある場合の強度)/(回折光学素子10がない場合の強度)により求めることができる。
なお、測定に用いる光源LSは、レーザ光源とハロゲン光源の2種類とし、波長850nmとした。
図11は、0次回折光の強度測定方法を説明する図である。
0次回折光の強度を測定するには、先ず、図11(a)に示すように、光源LSが発光する特定の波長の光を回折光学素子10させた後に、さらにアパーチャAPにより0次回折光が通過する特定の範囲の光のみをセンサSまで到達させて、パワーメータMにより回折光学素子10がある場合の強度を計測する。
次に、図11(b)に示す様に、回折光学素子10のみを図11(a)の状態から取り除いて、回折光学素子10がない場合の強度を計測する。0次回折光の強度は、(回折光学素子10がある場合の強度)/(回折光学素子10がない場合の強度)により求めることができる。
なお、測定に用いる光源LSは、レーザ光源とハロゲン光源の2種類とし、波長850nmとした。
上記方法によって本発明の回折光学素子10について、0次回折光の強度を測定した。なお、本発明の回折光学素子10としては、図3,5に示した4レベルのものと、図7,8に示した8レベルのものをそれぞれ測定した。
本発明の回折光学素子10の4レベル品は、1段当りの高さh=470nmである。この値は、h=ht×1.106に相当している。また、C=0.1825,f=-0.02とした。なお、ピッチは、図1及び図6に示す様に部位により様々なので特定は困難である。
なお、本発明の回折光学素子10では、各段部を繋いだラインは、断面において凹状の曲線となる。
本発明の回折光学素子10の4レベル品は、1段当りの高さh=470nmである。この値は、h=ht×1.106に相当している。また、C=0.1825,f=-0.02とした。なお、ピッチは、図1及び図6に示す様に部位により様々なので特定は困難である。
なお、本発明の回折光学素子10では、各段部を繋いだラインは、断面において凹状の曲線となる。
また、本発明の回折光学素子10との比較のため、比較例も、4レベル品と8レベル品とを用意した。
図12は、比較例の回折光学素子を示す図である。
比較例としては、図12に示す様に、各段部を繋いだラインは、断面において直線である。そして比較例についても、4レベルと8レベルの2種類用意した。1段当りの高さhは、本発明品と同じとした。
図13は、本発明の回折光学素子10と比較例とについて0次回折光の強度を測定した結果を示す図である。図13中で、丸印び四角印で示したデータは、レーザ光源のデータを示し、曲線で示したデータは、ハロゲン光源のデータを示している。
図13に示す様に、レーザ光源であるかハロゲン光源であるかによらず、本発明の方が、比較例と比べて0次回折光の強度が大きく下がっている。よって、鋸歯形状の斜面に相当する部分は、凹状曲面に構成すると、0次回折光の強度を下げることができることが、実測品で証明された。
図12は、比較例の回折光学素子を示す図である。
比較例としては、図12に示す様に、各段部を繋いだラインは、断面において直線である。そして比較例についても、4レベルと8レベルの2種類用意した。1段当りの高さhは、本発明品と同じとした。
図13は、本発明の回折光学素子10と比較例とについて0次回折光の強度を測定した結果を示す図である。図13中で、丸印び四角印で示したデータは、レーザ光源のデータを示し、曲線で示したデータは、ハロゲン光源のデータを示している。
図13に示す様に、レーザ光源であるかハロゲン光源であるかによらず、本発明の方が、比較例と比べて0次回折光の強度が大きく下がっている。よって、鋸歯形状の斜面に相当する部分は、凹状曲面に構成すると、0次回折光の強度を下げることができることが、実測品で証明された。
次に、本発明の効果について、より詳細に調べるために、シミュレーションを行った。
回折効率の解析シミュレーションには、厳密結合波理論(RCWA(rigorous coupled-wave analysis)に基づいた演算を用いた。RCWAは、数学的には、行列の固有値問題と一次方程式を解くことに帰着されるので、原理的な困難さはない。また、このRCWAに基づいた電磁場解析のシミュレーション結果と現実とでは、現物における形状エラー等を除けば、基本的に合致する。
なお、今回のシミュレーションは、図2Aに示したような立体的形状を考慮したものではなく、図2Bに示したような一次元で奥行き方向は無限長さであるとした演算とした。
回折効率の解析シミュレーションには、厳密結合波理論(RCWA(rigorous coupled-wave analysis)に基づいた演算を用いた。RCWAは、数学的には、行列の固有値問題と一次方程式を解くことに帰着されるので、原理的な困難さはない。また、このRCWAに基づいた電磁場解析のシミュレーション結果と現実とでは、現物における形状エラー等を除けば、基本的に合致する。
なお、今回のシミュレーションは、図2Aに示したような立体的形状を考慮したものではなく、図2Bに示したような一次元で奥行き方向は無限長さであるとした演算とした。
シミュレーションは、以下の条件により行った。
波長:850nm
高屈折率部の屈折率n:1.5
低屈折率部の屈折率:1.0
ピッチ:2μm,4μmの2種
レベル数:8レベル
波長:850nm
高屈折率部の屈折率n:1.5
低屈折率部の屈折率:1.0
ピッチ:2μm,4μmの2種
レベル数:8レベル
比較例としては、先ず、一段当りの高さを理論値の高さht=212.5nmのものを比較例1とした。また、一段当りの高さh=ht×1.106=235nmとしたものを比較例2とした。この高さh=ht×1.106=235nmは、先の実測に用いたものと同じである。
また、本発明品である斜面相当部分が凹状曲面となっている実施例として、2種類用意した。先ずは、先の実測品と同様に深い部分の幅を順次幅広に構成したものを実施例1とした。また、幅を変えずに、深い部分を順次高さを低くすることにより、斜面相当部分が凹状曲面となっている形態を実施例2とした。
図14は、1段当りの高さを変化させた実施例2の形状を示す図である。
先に説明したように、図14のように1段当りの高さを変化させることによっても、凹状曲面を模すことができる。
また、本発明品である斜面相当部分が凹状曲面となっている実施例として、2種類用意した。先ずは、先の実測品と同様に深い部分の幅を順次幅広に構成したものを実施例1とした。また、幅を変えずに、深い部分を順次高さを低くすることにより、斜面相当部分が凹状曲面となっている形態を実施例2とした。
図14は、1段当りの高さを変化させた実施例2の形状を示す図である。
先に説明したように、図14のように1段当りの高さを変化させることによっても、凹状曲面を模すことができる。
図15は、シミュレーションの結果をまとめた図である。シミュレーションでは、1次回折光についても参考値として求めている。
シミュレーションの結果からも、斜面相当部分が凹状曲面となっている形態であれば、0次回折光を大きく低減可能であるという結果が得られた。
シミュレーションの結果からも、斜面相当部分が凹状曲面となっている形態であれば、0次回折光を大きく低減可能であるという結果が得られた。
なお、鋸歯形状を多段階形状によって疑似再現するときの段数(レベル数)は、上述した4段、8段に限らない。
図16は、16段で鋸歯形状を模した例を示す図である。なお、段数を増やしていけば、より滑らかな斜面に近づけることができ、略無段階とみなせる程度のもの、すなわち実質的に曲面とみなせるものとすることも可能である。上記の実測及びシミュレーションの結果から、滑らかな斜面の場合であっても、斜面は凹状曲面とすれば、0次回折光の強度を下げることが可能であるといえる。
図16は、16段で鋸歯形状を模した例を示す図である。なお、段数を増やしていけば、より滑らかな斜面に近づけることができ、略無段階とみなせる程度のもの、すなわち実質的に曲面とみなせるものとすることも可能である。上記の実測及びシミュレーションの結果から、滑らかな斜面の場合であっても、斜面は凹状曲面とすれば、0次回折光の強度を下げることが可能であるといえる。
次に、レベルゼロの幅変化率C、レベルごとの幅の減少率f、最上位の幅の比率tの影響について説明するためのシミュレーション結果を示す。
(8-level)
波長850nm、回折光学素子の屈折率1.5として、次の式で表される8-levelの構造をシミュレーションした結果を図17から図19に示す。一段あたりの高さは理論値ではht=212.5nmとなり、h=ht×1.1の223.125nmとした。tは最下位(level-0)に対する最上位面(level-7)の幅の比率である。式は、上述した式と同じ、以下の式を用いている。
ピッチに対するx座標の比率をSとして、
x’=0.5×f×lv2+C×lv
S=P/{tw+Σx’i}
Σは、i=0~L-1
としたときに階段形状の頂部x,y座標が次のように表される。
x=S×(0.5×f×lv2+C×lv)
y=lv×h
図17は、f=-0.02、t=0.8とし、回折格子の回折角15°となる3284nmピッチとしたときのCを変化させたときのゼロ次光強度のグラフである。0.21≦C≦0.40では、ゼロ次光が低く、0.5%以下となっていることがわかる。
図18は、C=0.25,t=0.8とし、回折格子の回折角15°となる3284nmピッチとしたときのfを変化させたときのゼロ次光強度のグラフである。-0.0225≦f≦-0.0125のときに、ゼロ次光が低く、0.5%以下となっていることがわかる。
図19は、f=-0.02、C=0.25とし、回折格子の回折角15°となる3284nmピッチとしたときのtを変化させたときのゼロ次光強度のグラフである。tが0.5~0.9でゼロ次光が小さく、0.5%以下になることがわかる。
(8-level)
波長850nm、回折光学素子の屈折率1.5として、次の式で表される8-levelの構造をシミュレーションした結果を図17から図19に示す。一段あたりの高さは理論値ではht=212.5nmとなり、h=ht×1.1の223.125nmとした。tは最下位(level-0)に対する最上位面(level-7)の幅の比率である。式は、上述した式と同じ、以下の式を用いている。
ピッチに対するx座標の比率をSとして、
x’=0.5×f×lv2+C×lv
S=P/{tw+Σx’i}
Σは、i=0~L-1
としたときに階段形状の頂部x,y座標が次のように表される。
x=S×(0.5×f×lv2+C×lv)
y=lv×h
図17は、f=-0.02、t=0.8とし、回折格子の回折角15°となる3284nmピッチとしたときのCを変化させたときのゼロ次光強度のグラフである。0.21≦C≦0.40では、ゼロ次光が低く、0.5%以下となっていることがわかる。
図18は、C=0.25,t=0.8とし、回折格子の回折角15°となる3284nmピッチとしたときのfを変化させたときのゼロ次光強度のグラフである。-0.0225≦f≦-0.0125のときに、ゼロ次光が低く、0.5%以下となっていることがわかる。
図19は、f=-0.02、C=0.25とし、回折格子の回折角15°となる3284nmピッチとしたときのtを変化させたときのゼロ次光強度のグラフである。tが0.5~0.9でゼロ次光が小さく、0.5%以下になることがわかる。
これらの結果から、8-levelにおけるC/fの好適な範囲を求めることができる。ここで、ゼロ次光強度が1%以下となる範囲をC/fの好適な範囲として設定する。
図17の結果から、0.18<Cでは、ゼロ次光が1%以下となっていることがわかる。この図17の例では、f=-0.02であるから、C/f<-9とすることが望ましい。
また、図18の結果から、-0.0275<f<-0.005では、ゼロ次光が1%以下となっていることがわかる。この図18の例では、C=0.25であるから、-50<C/f<-9とすることが望ましい。
これら2つの範囲で共通する範囲として、8-levelにおけるC/fの好適な範囲は、-50<C/f<-9である。
図17の結果から、0.18<Cでは、ゼロ次光が1%以下となっていることがわかる。この図17の例では、f=-0.02であるから、C/f<-9とすることが望ましい。
また、図18の結果から、-0.0275<f<-0.005では、ゼロ次光が1%以下となっていることがわかる。この図18の例では、C=0.25であるから、-50<C/f<-9とすることが望ましい。
これら2つの範囲で共通する範囲として、8-levelにおけるC/fの好適な範囲は、-50<C/f<-9である。
(4-level)
波長850nm、回折光学素子の屈折率1.5として、次の式で表される4-levelの構造をシミュレーションした結果を図20から図22に示す。一段あたりの高さは理論値ではht=425nmとなり、h=ht×1.1の467.5nmとした。tは最下位(level-0)に対する最上位面(level-3)の幅の比率である。式は、上述した式と同じ、以下の式を用いている。
ピッチに対するx座標の比率をSとして、
x’=0.5×f×lv2+C×lv
S=P/{tw+Σx’i}
Σは、i=0~L-1
としたときに階段形状の頂部x,y座標が次のように表される。
x=S×(0.5×f×lv2+C×lv)
y=lv×h
図20は、f=-0.02、t=0.8とし、回折格子の回折角15°となる3284nmピッチとしたときのCを変化させたときのゼロ次光強度のグラフである。0.13≦C≦0.33では、ゼロ次光が低く、0.5%以下になっていることがわかる。
図21は、C=0.18,t=0.8とし、回折格子の回折角15°となる3284nmピッチとしたときのfを変化させたときのゼロ次光強度のグラフである。-0.0275≦f≦-0.0125のときに、ゼロ次光が低く、0.5%以下になっていることがわかる。
図22は、f=-0.02、C=0.18とし、回折格子の回折角15°となる3284nmピッチとしたときのtを変化させたときのゼロ次光強度のグラフである。tが0.3~0.9でゼロ次光が小さく、0.5%以下になることがわかる。
波長850nm、回折光学素子の屈折率1.5として、次の式で表される4-levelの構造をシミュレーションした結果を図20から図22に示す。一段あたりの高さは理論値ではht=425nmとなり、h=ht×1.1の467.5nmとした。tは最下位(level-0)に対する最上位面(level-3)の幅の比率である。式は、上述した式と同じ、以下の式を用いている。
ピッチに対するx座標の比率をSとして、
x’=0.5×f×lv2+C×lv
S=P/{tw+Σx’i}
Σは、i=0~L-1
としたときに階段形状の頂部x,y座標が次のように表される。
x=S×(0.5×f×lv2+C×lv)
y=lv×h
図20は、f=-0.02、t=0.8とし、回折格子の回折角15°となる3284nmピッチとしたときのCを変化させたときのゼロ次光強度のグラフである。0.13≦C≦0.33では、ゼロ次光が低く、0.5%以下になっていることがわかる。
図21は、C=0.18,t=0.8とし、回折格子の回折角15°となる3284nmピッチとしたときのfを変化させたときのゼロ次光強度のグラフである。-0.0275≦f≦-0.0125のときに、ゼロ次光が低く、0.5%以下になっていることがわかる。
図22は、f=-0.02、C=0.18とし、回折格子の回折角15°となる3284nmピッチとしたときのtを変化させたときのゼロ次光強度のグラフである。tが0.3~0.9でゼロ次光が小さく、0.5%以下になることがわかる。
これらの結果から、4-levelにおけるC/fの好適な範囲を求めることができる。ここで、ゼロ次光強度が1%以下となる範囲をC/fの好適な範囲として設定する。
図20の結果から、0.1<Cでは、ゼロ次光が1%以下となっていることがわかる。この図20の例では、f=-0.02であるから、-5<C/fとすることが望ましい。
また、図21の結果から、f<0では、ゼロ次光が1%以下となっていることがわかる。この図21の例では、C=0.18であるから、f<0の条件からは、C/fの範囲を求めることができず、この条件ではいずれの値であってもよい。
これら2つの範囲で共通する範囲として、4-levelにおけるC/fの好適な範囲は、-5<C/fである。
図20の結果から、0.1<Cでは、ゼロ次光が1%以下となっていることがわかる。この図20の例では、f=-0.02であるから、-5<C/fとすることが望ましい。
また、図21の結果から、f<0では、ゼロ次光が1%以下となっていることがわかる。この図21の例では、C=0.18であるから、f<0の条件からは、C/fの範囲を求めることができず、この条件ではいずれの値であってもよい。
これら2つの範囲で共通する範囲として、4-levelにおけるC/fの好適な範囲は、-5<C/fである。
上述したように、8-levelにおけるC/fの好適な範囲は、-50<C/f<-9であり、4-levelにおけるC/fの好適な範囲は、-5<C/fである。よって、これらに共通する範囲として、-5<C/f<-9がC/fの好適な範囲として設定できる。
ここで、減少率fについて着目すると、減少率fは、C/fの反比例の関係を持っている。よって、減少率fを分子になるように上記範囲を書き換えると、-0.2<f/C<-0.1の範囲であることが望ましい。減少率fは、レベルごとの幅の減少率であり無次元の値であり、また、Cが一定であるとすると、面積の変化率も上記範囲であることが望ましいと考えられる。よって、各段部の面積が減少する減少率は、-5%以上、-20%以下の範囲であることが望ましい。
ここで、減少率fについて着目すると、減少率fは、C/fの反比例の関係を持っている。よって、減少率fを分子になるように上記範囲を書き換えると、-0.2<f/C<-0.1の範囲であることが望ましい。減少率fは、レベルごとの幅の減少率であり無次元の値であり、また、Cが一定であるとすると、面積の変化率も上記範囲であることが望ましいと考えられる。よって、各段部の面積が減少する減少率は、-5%以上、-20%以下の範囲であることが望ましい。
また、図19から8-levelでは、tが0.5~0.9が望ましく、図22から4-levelでは、tが0.3~0.9が望ましいと考えられる。tは最下位(level-0)に対する最上位面(level-3)の幅の比率である。よって、高屈折率部の最上位面の面積が、高屈折率部の最下位面の面積の0.5~0.9倍の面積であることが望ましいと言える。
次に、本発明の頂点を結ぶ軌跡が凹状曲面の構成を有する回折光学素子と、理論的な構造である頂点が直線状に並ぶ構成を有する回折光学素子と、本発明とは逆に頂点を結ぶ軌跡が凸状曲面の構成を有する回折光学素子とを比較するシミュレーションの結果を図23から図25に示す。図23から図25のシミュレーションでは、f=-0.02、C=0.18、t=0.8、3248nmピッチ(回折角15°)とした。
図23は、本発明の頂点を結ぶ軌跡が凹状曲面の構成を有する回折光学素子の断面形状とシミュレーション結果とを示す図である。なお、図23から図25中には、断面形状の違いがわかりやすくなるように、一点鎖線で直線を併記した。
図23に示すように、本発明による構造では、ゼロ次光は0.26%となっている。
図24は、理論的な構造である頂点が直線状に並ぶ構成を有する回折光学素子の断面形状とシミュレーション結果とを示す図である。
図24に示すように、理論的な構造である、全ての段が同じ場合には、ゼロ次光は0.88%となっている。
図25は、本発明とは逆に頂点を結ぶ軌跡が凸状曲面の構成を有する回折光学素子の断面形状とシミュレーション結果とを示す図である。
図25に示すように、本発明と逆ののこぎりの刃型斜面に対し凸型になっている構造では、ゼロ次光は2.90%となっている。
図23から図25の結果から、本発明のように頂点を結ぶ軌跡が凹状曲面の構成を有する回折光学素子では、ゼロ次光を低減できることが確認できる。
図23は、本発明の頂点を結ぶ軌跡が凹状曲面の構成を有する回折光学素子の断面形状とシミュレーション結果とを示す図である。なお、図23から図25中には、断面形状の違いがわかりやすくなるように、一点鎖線で直線を併記した。
図23に示すように、本発明による構造では、ゼロ次光は0.26%となっている。
図24は、理論的な構造である頂点が直線状に並ぶ構成を有する回折光学素子の断面形状とシミュレーション結果とを示す図である。
図24に示すように、理論的な構造である、全ての段が同じ場合には、ゼロ次光は0.88%となっている。
図25は、本発明とは逆に頂点を結ぶ軌跡が凸状曲面の構成を有する回折光学素子の断面形状とシミュレーション結果とを示す図である。
図25に示すように、本発明と逆ののこぎりの刃型斜面に対し凸型になっている構造では、ゼロ次光は2.90%となっている。
図23から図25の結果から、本発明のように頂点を結ぶ軌跡が凹状曲面の構成を有する回折光学素子では、ゼロ次光を低減できることが確認できる。
次に、上述した数式により凹状曲面を確認する手法に代わり、よりわかりやすく本発明の構造と従来の構造とを比較できる手法を説明する。本発明の構成では、頂点を結んだ軌跡が凹状曲面となることから、各段の上面の面積が段によって異なっている。この点に着目した説明を以下に行う。
図26は、従来の構造の回折光学素子と本発明の回折光学素子とを比較のため並べて示す平面図である。図26(a)は、従来、理想的な設計として知られている手法により設計した回折光学素子の4-levelの各面を示し、1面から4面を示すデータである。図26(b)は、本発明の構造を元に、図26(a)の形状を改良したものである。個々の面は、最下位面(レベル0段部11a-0:図3参照)を0面、最上位面(レベル3段部11a-3)を3面として図中に示した。
図27Aは、図26(a)の従来の理想設計による4-level回折光学素子の面積に対する図26中に示した各面の割合を示す図である。
図27Bは、従来の理想設計による8-level回折光学素子の面積に対する各面の割合を示す図である。
図28Aは、図26(b)の本発明の4-level回折光学素子の面積に対する図26中に示した各面の割合を示す図である。
図28Bは、本発明の8-level回折光学素子の面積に対する各面の割合を示す図である。
図27A,27B及び図28A,28Bは、回折光学素子(DOE)の1辺が10μm、50μm、100μmの正方形領域について面積割合を求めた。正方形領域の大きさが大きいほど、サンプルとなる面が多くなるので、一定値に収束する傾向となる。
図27A,27Bを見てわかるように、従来の理想的とされる設計での各面の割合は、4-levelそれぞれの面は、略25%であり、8-levelそれぞれの面は、11~14%で、略等しい割合であることがわかる。
一方、図28A,28Bを見てわかるように、本発明による構造では、最下位面であるlevel-0の面積が一番大きく、最上位面の次の面(level-2、level-6)が一番小さい面積であることがわかる。
図29は、図26(a),(b)のデータをもとに回折光学素子を実際に製造してゼロ次光を測定した実測値の結果である。なお、図29には、4-levelと8-levelとの実測値を併記した。
図29をみてわかるように、4-level,8-levelともに、本発明による構造で、ゼロ次光が従来の形態よりも小さくなっていることがわかる。
図26は、従来の構造の回折光学素子と本発明の回折光学素子とを比較のため並べて示す平面図である。図26(a)は、従来、理想的な設計として知られている手法により設計した回折光学素子の4-levelの各面を示し、1面から4面を示すデータである。図26(b)は、本発明の構造を元に、図26(a)の形状を改良したものである。個々の面は、最下位面(レベル0段部11a-0:図3参照)を0面、最上位面(レベル3段部11a-3)を3面として図中に示した。
図27Aは、図26(a)の従来の理想設計による4-level回折光学素子の面積に対する図26中に示した各面の割合を示す図である。
図27Bは、従来の理想設計による8-level回折光学素子の面積に対する各面の割合を示す図である。
図28Aは、図26(b)の本発明の4-level回折光学素子の面積に対する図26中に示した各面の割合を示す図である。
図28Bは、本発明の8-level回折光学素子の面積に対する各面の割合を示す図である。
図27A,27B及び図28A,28Bは、回折光学素子(DOE)の1辺が10μm、50μm、100μmの正方形領域について面積割合を求めた。正方形領域の大きさが大きいほど、サンプルとなる面が多くなるので、一定値に収束する傾向となる。
図27A,27Bを見てわかるように、従来の理想的とされる設計での各面の割合は、4-levelそれぞれの面は、略25%であり、8-levelそれぞれの面は、11~14%で、略等しい割合であることがわかる。
一方、図28A,28Bを見てわかるように、本発明による構造では、最下位面であるlevel-0の面積が一番大きく、最上位面の次の面(level-2、level-6)が一番小さい面積であることがわかる。
図29は、図26(a),(b)のデータをもとに回折光学素子を実際に製造してゼロ次光を測定した実測値の結果である。なお、図29には、4-levelと8-levelとの実測値を併記した。
図29をみてわかるように、4-level,8-levelともに、本発明による構造で、ゼロ次光が従来の形態よりも小さくなっていることがわかる。
上述した図28Aの例では、面積の大きい順に並べると、level-0、level-1、level-3、level-2の順番であった(以下、type1と呼ぶ)。以下ではさらに、面積の大きい順に、level-0、level-3、level-1、level-2の順番の例(以下、type2とよぶ)を挙げて、さらにこれらの基本となる理想設計の形態を同条件で比較した。なお、この比較では、level-0からlevel-3までの高さの差、すなわち、凹凸の深さ(以下、DOE高さとも呼ぶ)を変化させて、DOE高さの影響についても検討する。なお、DOE高さは、通常、回折対象の光の波長に応じて決められるものである。
図30は、3種の回折光学素子の面積割合を示す図である。
図31は、理想設計の回折光学素子をシート面の法線方向から見た図である。
図32は、type1の回折光学素子をシート面の法線方向から見た図である。
図33は、type2の回折光学素子をシート面の法線方向から見た図である。
図34は、3種の回折光学素子のシミュレーション結果を数値で示す図である。
図35は、3種の回折光学素子のシミュレーション結果をグラフで示す図である。
なお、図34,図35のシミュレーションは、波長850nmで、厳密結合波理論(RCWA(rigorous coupled-wave analysis))を用いて行った。
図34及び図35を見てわかるように、理想設計のゼロ次光強度は、DOE高さを変化させても本発明であるtype1の方が、ゼロ次光強度が小さい。また、type2は、DOE高さによっては、理想設計に対してゼロ次光強度が小さく部分がある。
図31は、理想設計の回折光学素子をシート面の法線方向から見た図である。
図32は、type1の回折光学素子をシート面の法線方向から見た図である。
図33は、type2の回折光学素子をシート面の法線方向から見た図である。
図34は、3種の回折光学素子のシミュレーション結果を数値で示す図である。
図35は、3種の回折光学素子のシミュレーション結果をグラフで示す図である。
なお、図34,図35のシミュレーションは、波長850nmで、厳密結合波理論(RCWA(rigorous coupled-wave analysis))を用いて行った。
図34及び図35を見てわかるように、理想設計のゼロ次光強度は、DOE高さを変化させても本発明であるtype1の方が、ゼロ次光強度が小さい。また、type2は、DOE高さによっては、理想設計に対してゼロ次光強度が小さく部分がある。
上記説明では、主にシミュレーション結果に基づいて説明を行ったが、回折光学素子を実際に作製した場合には、実物の複雑な凹凸形状から、各段の面積比率を求めることが必要となる。面積比率を求めるためには、各段の面積を求めることになるが、作成される回折光学素子は、微小かつ複雑な凹凸形状を備えることが多く、単に面積を求めるといっても、容易ではない。そこで、比較的簡単に面積比率を求める手法の1例を以下に示す。なお、面積比率の求め方は、以下に示す手法以外の手法を用いてもよい。
ここでは、DOEの各レベルの面積をレーザ顕微鏡(キーエンス社製、VK-X250)を用いて測定する方法について説明する。このレーザ顕微鏡では、高さ測定精度、繰返し精度3σ=12nmであるが、数十nmの精度があれば充分である。
図36は、レーザ顕微鏡から取得される白黒(グレースケール)画像の例を示す図である。
このレーザ顕微鏡から取得される画像は、図36に示すように白黒画像のものが得られる。また、この白黒画像に各段の高さ毎に異なる色で着色した画像も得られる(不図示)。この着色された色毎の面積を求めればよいが、通常、各段部の高さが同じレベルであっても微妙に高さが異なって測定されるので、色にムラ(色度変化)があり、そのままでは面積比率を求めることには適していない。そこで、先ず、図36の画像を白黒の2値化する画像処理を行う(図37)。2値化には、例えば、市販の画像処理ソフトウェアを適宜利用することができ、閾値の設定は、処理結果を見ながら顕微鏡画像の特徴を最も表すことができる値を選ぶとよい。
図37は、レーザ顕微鏡から取得される白黒画像を2値化した結果を示す図である。
図36は、レーザ顕微鏡から取得される白黒(グレースケール)画像の例を示す図である。
このレーザ顕微鏡から取得される画像は、図36に示すように白黒画像のものが得られる。また、この白黒画像に各段の高さ毎に異なる色で着色した画像も得られる(不図示)。この着色された色毎の面積を求めればよいが、通常、各段部の高さが同じレベルであっても微妙に高さが異なって測定されるので、色にムラ(色度変化)があり、そのままでは面積比率を求めることには適していない。そこで、先ず、図36の画像を白黒の2値化する画像処理を行う(図37)。2値化には、例えば、市販の画像処理ソフトウェアを適宜利用することができ、閾値の設定は、処理結果を見ながら顕微鏡画像の特徴を最も表すことができる値を選ぶとよい。
図37は、レーザ顕微鏡から取得される白黒画像を2値化した結果を示す図である。
次に、2値化された画像を用いて、別途得られている各段の高さ毎に異なる色で着色した画像を参照しながら、段毎に白色領域を例えば中間階調の色(灰色)で塗りつぶす。この塗りつぶし処理も、例えば、市販の画像処理ソフトウェアを適宜利用することができる。
図38は、level-3を塗りつぶした例を示す図である。
図39は、level-2を塗りつぶした例を示す図である。
図40は、level-1を塗りつぶした例を示す図である。
図41は、level-0を塗りつぶした例を示す図である。
段毎に塗りつぶした画像を用いて、それぞれの塗りつぶされた灰色の画素をカウントする。色毎の画素数をカウントする処理についても、例えば、市販の画像処理ソフトウェアを適宜利用することができる。なお、上述した例では、色は、白、黒、灰色の3種から構成されているため、灰色の画素数をカウントする。
例えば、図示した例では、level-3のカウント数は、15167、level-2のカウント数は、24859、level-1のカウント数は、27541、level-0のカウント数は、29391とカウントされる。この数が面積に相当するので、面積比率を求めることができる。
顕微鏡出力の画像では、各段の境界が太くなっている部分があり、太い部分は斜面となっていることが推測される。上述した画像処理を用いた面積測定方法では、顕微鏡出力の画像の2値化を行うことにより、斜面は黒色となり面積比率の演算に含まれないことから、この斜面を除外でき、面積計算を単純化でき、この点は、この測定方法の利点である。
図38は、level-3を塗りつぶした例を示す図である。
図39は、level-2を塗りつぶした例を示す図である。
図40は、level-1を塗りつぶした例を示す図である。
図41は、level-0を塗りつぶした例を示す図である。
段毎に塗りつぶした画像を用いて、それぞれの塗りつぶされた灰色の画素をカウントする。色毎の画素数をカウントする処理についても、例えば、市販の画像処理ソフトウェアを適宜利用することができる。なお、上述した例では、色は、白、黒、灰色の3種から構成されているため、灰色の画素数をカウントする。
例えば、図示した例では、level-3のカウント数は、15167、level-2のカウント数は、24859、level-1のカウント数は、27541、level-0のカウント数は、29391とカウントされる。この数が面積に相当するので、面積比率を求めることができる。
顕微鏡出力の画像では、各段の境界が太くなっている部分があり、太い部分は斜面となっていることが推測される。上述した画像処理を用いた面積測定方法では、顕微鏡出力の画像の2値化を行うことにより、斜面は黒色となり面積比率の演算に含まれないことから、この斜面を除外でき、面積計算を単純化でき、この点は、この測定方法の利点である。
以上説明したように、本実施形態によれば、回折光学素子10は、鋸歯形状の斜面を凹状曲面とする、又は、凹状曲面を模した多段階形状としたので、0次回折光の強度を大きく低減することができる。また、一次光の回折効率の低減も抑制できる。
(変形形態)
以上説明した実施形態に限定されることなく、種々の変形や変更が可能であって、それらも本発明の範囲内である。
以上説明した実施形態に限定されることなく、種々の変形や変更が可能であって、それらも本発明の範囲内である。
(1)多段階形状によって凹状曲面を模すために、多段階形状の幅、又は、高さの一方のみを変化させる例を挙げて説明した。これに限らず、例えば、これらの両方を徐々に変化させてもよい。
(2)実施形態において、回折光学素子は、高屈折率部のみで構成されている簡単な形態として示した。これに限らず例えば、高屈折率部を形成するための透明基材を設けてもよいし、低屈折率部14を樹脂により構成してもよいし、回折層を被覆する被覆層を設けてもよい。
(3)実施形態において、多段階形状に構成された回折光学素子を主として説明したが、これに限らず、例えば、多段階形状が限界まで微細に形成されて多段階と認識できない形状、又は、連続した斜面(曲面)形状により構成された回折光学素子であってもよい。
なお、実施形態及び変形形態は、適宜組み合わせて用いることもできるが、詳細な説明は省略する。また、本発明は以上説明した各実施形態によって限定されることはない。
10 回折光学素子
11 高屈折率部
11a 凸部
11a-0 レベル0段部
11a-1 レベル1段部
11a-2 レベル2段部
11a-3 レベル3段部
11b 側壁部
12 凹部
13 空間
14 低屈折率部
15 回折層
200 スクリーン
201 光
202 照射領域
204 照射領域
210 光源部
11 高屈折率部
11a 凸部
11a-0 レベル0段部
11a-1 レベル1段部
11a-2 レベル2段部
11a-3 レベル3段部
11b 側壁部
12 凹部
13 空間
14 低屈折率部
15 回折層
200 スクリーン
201 光
202 照射領域
204 照射領域
210 光源部
Claims (10)
- 光を整形する回折光学素子であって、
複数の凸部が並んで配置されている高屈折率部と、
前記高屈折率部よりも屈折率が低く、少なくとも前記凸部の間に形成されている凹部を含む低屈折率部と、
を有する回折層を備え、
前記凸部は、高さの異なる複数の段部により形成された多段階形状を有しており、
前記高屈折率部は、単位面積当り、最も深い面の面積が最も大きく、最上位面の次段の面の面積が最も小さい回折光学素子。 - 請求項1に記載の回折光学素子において、
前記高屈折率部は、最上位面の面積が、前記高屈折率部の最下位面の面積の0.6~0.9倍の面積であること、
を特徴とする回折光学素子。 - 請求項1又は請求項2に記載の回折光学素子において、
前記高屈折率部は、単位面積当り、最も深い面から最上位面の次段の面に向けて、各段部の面積が順次減少していること、
を特徴とする回折光学素子。 - 光を整形する回折光学素子であって、
断面形状において複数の凸部が並んで配置されている高屈折率部と、
前記高屈折率部よりも屈折率が低く、少なくとも前記凸部の間に形成されている凹部を含む低屈折率部と、
を有する回折層を備え、
前記凸部は、鋸歯形状、又は、鋸歯形状を多段階の輪郭形状により模した形状であり、
鋸歯形状又は多段階の輪郭形状により模した鋸歯形状の当該回折光学素子のシート面に対して傾いた斜面は、前記凸部へ向かって凹んだ凹状曲面を有する回折光学素子。 - 請求項4に記載の回折光学素子において、
前記凸部は、その側面形状の少なくとも一方側に、高さの異なる複数の段部により前記鋸歯形状を模した多段階形状を有しており、
前記段部の高さと幅との少なくとも一方が場所に応じて異なることにより前記凹状曲面を模していること、
を特徴とする回折光学素子。 - 請求項4又は請求項5に記載の回折光学素子において、
前記凸部は、その側面形状の少なくとも一方側に、高さの異なる複数の段部により前記鋸歯形状を模した多段階形状を有しており、
単位面積当り、最も深い面の面積が最も大きく、最上位面の次段の面の面積が最も小さいこと、
を特徴とする回折光学素子。 - 請求項5又は請求項6に記載の回折光学素子において、
前記段部の一段当りの高さは一定であり、
前記段部の幅が場所に応じて異なることにより前記凹状曲面を模していること、
を特徴とする回折光学素子。 - 請求項7に記載の回折光学素子において、
前記凸部が並ぶ方向にx軸を設定し、前記斜面が高くなっていく向きをx軸のプラスの向きとし、
当該回折光学素子のシート面に直交するy軸を設定し、前記凸部の突出する向きをy軸のプラスの向きとし、
前記凸部の先端を含んで計数した段部の総段数をLとし、
レベルごとの幅の減少率をfとし、
前記凹部の最も低い位置を0として計数したときの対象の段部の段数をlvとし、
前記段部の一段当りの高さをhで一定値とし、
レベルゼロの幅比率をCとしたときに、
多段階形状により模す前記凹状曲面の断面におけるレベルゼロの凹頂点と各凸部の頂点の軌跡となる曲線は、
ピッチに対するx座標の比率をSとして、
x’=0.5×f×lv2+C×lv
S=P/{tw+Σx’i}
Σは、i=0~L-1
としたときに階段形状の頂部x,y座標が、
x=0.5×f×lv2+C×lv
y=lv×h
で表されること、
を特徴とする回折光学素子。 - 請求項1から請求項8までのいずれかに記載の回折光学素子において、
前記高屈折率部は、凹凸形状が形成された面の法線方向から見て前記凸部と前記凹部との境界が曲線と複数の線分を繋げた折れ線との少なくとも一方を含むパターンを有する回折格子を形成していること、
を特徴とする回折光学素子。 - 請求項1から請求項8までのいずれかに記載の回折光学素子において、
前記高屈折率部は、凹凸形状が形成された面の法線方向から見て同一の凹凸形状が並べて配置された単位セルが複数タイリングされた格子状のパターンに形成されるグレーティングセルアレイ型の回折格子を形成していること、
を特徴とする回折光学素子。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201880018480.0A CN110418986B (zh) | 2017-03-17 | 2018-03-19 | 衍射光学元件 |
US16/493,110 US11366256B2 (en) | 2017-03-17 | 2018-03-19 | Diffractive optical element |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017053473 | 2017-03-17 | ||
JP2017-053473 | 2017-03-17 | ||
JP2017210170 | 2017-10-31 | ||
JP2017-210170 | 2017-10-31 | ||
JP2018047875A JP7196406B2 (ja) | 2017-03-17 | 2018-03-15 | 回折光学素子 |
JP2018-047875 | 2018-03-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018169093A1 true WO2018169093A1 (ja) | 2018-09-20 |
Family
ID=63522198
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/010729 WO2018169093A1 (ja) | 2017-03-17 | 2018-03-19 | 回折光学素子 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP7476933B2 (ja) |
TW (1) | TWI772387B (ja) |
WO (1) | WO2018169093A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109669278A (zh) * | 2018-11-21 | 2019-04-23 | 京东方科技集团股份有限公司 | 镜片和眼镜 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4208744A1 (en) * | 2020-09-03 | 2023-07-12 | Nil Technology ApS | Diffractive optical elements and master tools for producing the diffractive optical elements |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006043516A1 (ja) * | 2004-10-19 | 2006-04-27 | Asahi Glass Company, Limited | 液晶回折レンズ素子および光ヘッド装置 |
JP2006188416A (ja) * | 2004-12-07 | 2006-07-20 | Pentax Corp | ガラス光学素子用成形型の製造方法 |
WO2008126562A1 (ja) * | 2007-03-28 | 2008-10-23 | Konica Minolta Opto, Inc. | 光ピックアップ装置用の対物光学素子ユニット及び光ピックアップ装置 |
WO2009154072A1 (ja) * | 2008-06-20 | 2009-12-23 | コニカミノルタオプト株式会社 | 対物レンズ、光ピックアップ装置及び光ディスクドライブ装置 |
JP2010096999A (ja) * | 2008-10-17 | 2010-04-30 | Nikon Corp | 回折光学素子、回折光学部材及び光学系 |
JP2010102008A (ja) * | 2008-10-22 | 2010-05-06 | Fujinon Corp | フォトマスク及び鋸歯型パターン製造方法 |
WO2012018017A1 (ja) * | 2010-08-06 | 2012-02-09 | 旭硝子株式会社 | 回折光学素子及び計測装置 |
JP2014006950A (ja) * | 2012-06-25 | 2014-01-16 | Asahi Glass Co Ltd | 回折素子および光ヘッド装置 |
WO2015030127A1 (ja) * | 2013-09-02 | 2015-03-05 | 旭硝子株式会社 | 回折光学素子、投影装置及び計測装置 |
WO2017119400A1 (ja) * | 2016-01-08 | 2017-07-13 | 大日本印刷株式会社 | 回折光学素子、及び光照射装置 |
JP2018036633A (ja) * | 2016-08-26 | 2018-03-08 | 大日本印刷株式会社 | 回折光学素子、光照射装置 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3045532A (en) * | 1958-05-19 | 1962-07-24 | Coleman Instr Inc | Diffraction grating having a plurality of blaze angles |
US5995285A (en) * | 1996-07-09 | 1999-11-30 | Canon Kabushiki Kaisha | Multilevel optical diffraction device with antireflection film and exposure apparatus |
JP4341332B2 (ja) * | 2002-07-31 | 2009-10-07 | 旭硝子株式会社 | 光ヘッド装置 |
CN102037512B (zh) * | 2008-05-27 | 2012-08-29 | 柯尼卡美能达精密光学株式会社 | 物镜及光拾取装置 |
KR101772153B1 (ko) * | 2010-03-17 | 2017-08-29 | 삼성디스플레이 주식회사 | 회절 렌즈를 이용한 영상 표시 장치 |
CN105403936B (zh) * | 2015-12-09 | 2017-04-19 | 南京邮电大学 | 一种柱矢量光束聚焦的负折射率光栅平凹镜 |
CN114879358A (zh) * | 2016-10-26 | 2022-08-09 | 奇跃公司 | 用于增强现实系统的耦出光栅 |
-
2018
- 2018-03-16 TW TW107109121A patent/TWI772387B/zh active
- 2018-03-19 WO PCT/JP2018/010729 patent/WO2018169093A1/ja active Application Filing
-
2022
- 2022-09-12 JP JP2022144542A patent/JP7476933B2/ja active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006043516A1 (ja) * | 2004-10-19 | 2006-04-27 | Asahi Glass Company, Limited | 液晶回折レンズ素子および光ヘッド装置 |
JP2006188416A (ja) * | 2004-12-07 | 2006-07-20 | Pentax Corp | ガラス光学素子用成形型の製造方法 |
WO2008126562A1 (ja) * | 2007-03-28 | 2008-10-23 | Konica Minolta Opto, Inc. | 光ピックアップ装置用の対物光学素子ユニット及び光ピックアップ装置 |
WO2009154072A1 (ja) * | 2008-06-20 | 2009-12-23 | コニカミノルタオプト株式会社 | 対物レンズ、光ピックアップ装置及び光ディスクドライブ装置 |
JP2010096999A (ja) * | 2008-10-17 | 2010-04-30 | Nikon Corp | 回折光学素子、回折光学部材及び光学系 |
JP2010102008A (ja) * | 2008-10-22 | 2010-05-06 | Fujinon Corp | フォトマスク及び鋸歯型パターン製造方法 |
WO2012018017A1 (ja) * | 2010-08-06 | 2012-02-09 | 旭硝子株式会社 | 回折光学素子及び計測装置 |
JP2014006950A (ja) * | 2012-06-25 | 2014-01-16 | Asahi Glass Co Ltd | 回折素子および光ヘッド装置 |
WO2015030127A1 (ja) * | 2013-09-02 | 2015-03-05 | 旭硝子株式会社 | 回折光学素子、投影装置及び計測装置 |
WO2017119400A1 (ja) * | 2016-01-08 | 2017-07-13 | 大日本印刷株式会社 | 回折光学素子、及び光照射装置 |
JP2018036633A (ja) * | 2016-08-26 | 2018-03-08 | 大日本印刷株式会社 | 回折光学素子、光照射装置 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109669278A (zh) * | 2018-11-21 | 2019-04-23 | 京东方科技集团股份有限公司 | 镜片和眼镜 |
Also Published As
Publication number | Publication date |
---|---|
JP2022168217A (ja) | 2022-11-04 |
JP7476933B2 (ja) | 2024-05-01 |
TW201839430A (zh) | 2018-11-01 |
TWI772387B (zh) | 2022-08-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7476933B2 (ja) | 回折光学素子 | |
US10359637B2 (en) | Optical pattern projection | |
JP7196406B2 (ja) | 回折光学素子 | |
EP3644110B1 (en) | Optical element and optical system | |
TWI751307B (zh) | 繞射光學元件 | |
JP7488652B2 (ja) | 回折光学素子、光照射装置、照射パターンの読取り方法 | |
JP7238252B2 (ja) | 回折光学素子、光照射装置 | |
JP2024091873A (ja) | 光学素子 | |
JP7230358B2 (ja) | 回折光学素子、光照射装置、光照射システム、投影パターンの補正方法 | |
US10393927B2 (en) | Diffuser and method for manufacturing the same | |
US10768347B2 (en) | Diffractive optical element and light irradiation device | |
JP6946632B2 (ja) | 回折光学素子、回折光学素子及び保持具のセット部材、光照射装置 | |
JP2018081132A (ja) | 回折光学素子、保持具、光照射装置 | |
JP2018013679A (ja) | 回折光学素子、光照射装置、回折光学素子の製造方法 | |
JP7342641B2 (ja) | 回折光学素子、回折光学素子の設計方法 | |
WO2024128049A1 (ja) | マイクロレンズアレイ、及び投影装置 | |
RU2308060C1 (ru) | Светорассеивающая линза для светофора | |
JP6974637B2 (ja) | マイクロレンズアレイ及び投影型画像表示装置 | |
JP6958120B2 (ja) | 回折光学素子、光照射装置 | |
JP2023016588A (ja) | マイクロアレイレンズ、及び投影装置 | |
JP6836117B2 (ja) | 回折光学素子、光照射装置 | |
JP2018013678A (ja) | 回折光学素子、光照射装置、回折光学素子の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18768433 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18768433 Country of ref document: EP Kind code of ref document: A1 |