WO2018169063A1 - 構造強化されたS-TuDを用いた新規がん治療法 - Google Patents

構造強化されたS-TuDを用いた新規がん治療法 Download PDF

Info

Publication number
WO2018169063A1
WO2018169063A1 PCT/JP2018/010514 JP2018010514W WO2018169063A1 WO 2018169063 A1 WO2018169063 A1 WO 2018169063A1 JP 2018010514 W JP2018010514 W JP 2018010514W WO 2018169063 A1 WO2018169063 A1 WO 2018169063A1
Authority
WO
WIPO (PCT)
Prior art keywords
mirna
group
sequence
nucleic acid
double
Prior art date
Application number
PCT/JP2018/010514
Other languages
English (en)
French (fr)
Inventor
英夫 伊庭
健 原口
浩一 南海
佐藤 秀昭
Original Assignee
国立大学法人千葉大学
株式会社ジーンデザイン
日油株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人千葉大学, 株式会社ジーンデザイン, 日油株式会社 filed Critical 国立大学法人千葉大学
Priority to EP18767416.3A priority Critical patent/EP3597197A4/en
Priority to CN201880031959.8A priority patent/CN110650742A/zh
Priority to US16/494,743 priority patent/US11479769B2/en
Priority to JP2019506308A priority patent/JP7306653B2/ja
Publication of WO2018169063A1 publication Critical patent/WO2018169063A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/7105Natural ribonucleic acids, i.e. containing only riboses attached to adenine, guanine, cytosine or uracil and having 3'-5' phosphodiester links
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/713Double-stranded nucleic acids or oligonucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/11Antisense
    • C12N2310/113Antisense targeting other non-coding nucleic acids, e.g. antagomirs
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/32Chemical structure of the sugar
    • C12N2310/323Chemical structure of the sugar modified ring structure
    • C12N2310/3231Chemical structure of the sugar modified ring structure having an additional ring, e.g. LNA, ENA
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/50Physical structure
    • C12N2310/53Physical structure partially self-complementary or closed
    • C12N2310/531Stem-loop; Hairpin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2320/00Applications; Uses
    • C12N2320/30Special therapeutic applications
    • C12N2320/32Special delivery means, e.g. tissue-specific

Definitions

  • the present invention relates to a novel cancer treatment method using a structure-toughened synthetic Tough Decoy (S-TuD), a related therapeutic agent, and a drug delivery vehicle.
  • S-TuD structure-toughened synthetic Tough Decoy
  • MicroRNA forms a gene regulatory network by controlling a large number of target genes, plays an important role in many life phenomena including development, and various inhibitors that inhibit miRNA have been developed.
  • WO2010 / 047216 Patent Document 1.
  • inhibitory nucleic acids such as S-TuD are used for experimental miRNA suppression, and some of the present inventors have been developing enhanced inhibitory nucleic acids.
  • the present inventors include at least one cross-linked nucleic acid (BNA) in a miRNA-inhibiting complex containing RNA or an analog thereof (in the present specification, a BNA-modified inhibitory nucleic acid “S” -TuD "), the inhibitory activity was strengthened, the biological activity was enhanced, and a disease (for example, cancer etc.) could be effectively treated, and the present invention was completed.
  • BNA cross-linked nucleic acid
  • the inventors have demonstrated that tumors are effective by using a complex comprising at least one cross-linked nucleic acid (BNA) in the inhibition of miRNAs associated with cancer (eg, the miR-200 family). It was found to be suppressed. In addition, we have found that this effect is also observed in the simultaneous inhibition of multiple different members of miRNAs associated with cancer.
  • the BNA-modified inhibitory nucleic acid “S-TuD” is smaller than the conventional “S-TuD”, has increased serum stability, and enhanced microRNA inhibitory activity. Found to achieve the law.
  • the effect of the BNA-modified inhibitory nucleic acid “S-TuD” of the present invention is expected to be improved compared to the conventional S-TuD.
  • a composition comprising a miRNA inhibition complex comprising RNA or an analog thereof and comprising at least one BNA for the prevention or treatment of tumors, or Methods are provided for the prevention or treatment of tumors using it.
  • the miRNA inhibition complex comprises at least one double stranded structure and a miRNA binding sequence.
  • the two strands of the miRNA binding sequence are bound one by one to at least one strand of the double-stranded structure.
  • a composition comprising a miRNA inhibition complex comprising RNA or an analog thereof for the prevention or treatment of a tumor, wherein the miRNA inhibition complex comprises at least one double-stranded structure and a miRNA binding sequence.
  • BNA cross-linked nucleic acid
  • the BNA is at least one atom selected from the group consisting of carbon, carbon and nitrogen on the 4 ′ position via at least one atom selected from the group consisting of oxygen and carbon on the 2 ′ position.
  • a composition according to the preceding item comprising BNA crosslinked via (Item A3) The BNA is (Wherein R 1 , R 1 ' , R 2 , R 2 ' And R 3 Each independently represents a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkenyl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted aryl group, or a substituted or unsubstituted aralkyl group.
  • An integer Base represents a group selected from the group consisting of an adenylyl group, a thyminyl group, a urasilyl group, an inosinyl group, a cytosynyl group, a guaninyl group, and a methylcytosynyl group, and n is an integer of 1 to 3; q is an integer of 0 or 1.
  • the BNA is (Wherein R 3 Represents a group selected from the group consisting of a hydrogen atom, an alkyl group, an alkenyl group, a cycloalkyl group, an aryl group, an aralkyl group, an acyl group, a sulfonyl group, a silyl group, and a functional molecular unit substituent; , An adenylyl group, a thyminyl group, a urasilyl group, an inosinyl group, a cytosynyl group, a guaninyl group, and a methylcytosynyl group, m is an integer of 0 to 2, and n is 1 to 3 Is an integer.
  • composition according to any one of the preceding items comprising a 2 ′, 4′-substituted cross-linked nucleic acid represented by (Item A5)
  • the BNA is Or the composition in any one of the said items containing 2 ', 4' methano bridge
  • the BNA is BNA.
  • NC The composition according to any of the preceding items, which is (NMe).
  • the miRNA-inhibiting complex includes two or more of the double-stranded structures, and each of the two strands at one end of the first double-stranded structure of the double-stranded structure includes a strand containing a miRNA binding sequence.
  • the other ends of the chains are connected to each other in the second double-stranded structure of the two or more double-stranded structures so that they are bound one by one and sandwiched between the two or more double-stranded structures.
  • the composition according to any of the preceding items, wherein each composition is bound to two chains.
  • the composition according to any of the preceding items, wherein the double-stranded structure is at least 6 bases in length.
  • the composition according to any of the preceding items, wherein the double-stranded structure is at least 8 bases in length.
  • the composition according to any one of the above items, wherein the double-stranded structure has a length of 50 bases or less.
  • composition according to any of the preceding items, wherein the miRNA inhibition complex comprises 2 to 5 miRNA binding sequences.
  • the miRNA-inhibiting complex comprises two miRNA binding sequences.
  • the miRNA-inhibiting complex is: Wherein the structures I and II are double stranded structures, each comprising a miRNA binding sequence in a and b of the structure.
  • the miRNA binding sequence is 5′-CAGUGUU-3 ′ (in the sequence, uracil base is a thymine base if necessary) and / or 5′-CAGUAUU-3 ′ (in the sequence, uracil base is The composition according to any one of the preceding items, comprising a thymine base, as appropriate.
  • the miRNA-inhibiting complex includes two miRNA binding sequences, and one miRNA binding sequence includes 5′-CAGUGUU-3 ′ (wherein the uracil base is a thymine base as necessary), The composition according to any one of the preceding items, wherein the other miRNA-binding sequence contains 5′-CAGUAUU-3 ′ (wherein the uracil base is a thymine base as necessary).
  • nucleic acid molecule comprising at least one cross-linked nucleic acid (BNA).
  • a nucleic acid molecule comprising two miRNA binding sequences one of which is 5′-CAGUGUU-3 ′ (wherein the uracil base is a thymine base as necessary) or 5 '-CAGUAUU-3' (in the sequence, uracil base is thymine base if necessary), and the other miRNA binding sequence is 5'-CAGUGUU-3 '(in the sequence, uracil base is optional)
  • a nucleic acid molecule comprising two miRNA binding sequences, wherein one miRNA binding sequence comprises 5′-CAGUGUU-3 ′ (wherein the uracil base is a thymine base, if necessary), and A nucleic acid molecule wherein the other miRNA binding sequence comprises 5'-CAGUAUU-3 '(wherein the uracil base is optionally a thymine base) and comprises at least one cross-linked nucleic acid (BNA).
  • one miRNA binding sequence comprises 5′-CAGUGUU-3 ′ (wherein the uracil base is a thymine base, if necessary)
  • a nucleic acid molecule wherein the other miRNA binding sequence comprises 5'-CAGUAUU-3 '(wherein the uracil base is optionally a thymine base) and comprises at least one cross-linked nucleic acid (BNA).
  • (Item A18A) A miRNA-binding sequence comprising the sequence of SEQ ID NO: 1 (wherein the uracil base is a thymine base if necessary) and the sequence of SEQ ID NO: 2 (wherein the uracil base is a thymine base as required)
  • (Item AA2) A nucleic acid molecule comprising a miRNA-binding sequence comprising the sequence of SEQ ID NO: 33 (wherein the uracil base is a thymine base if necessary) and comprising at least one cross-linked nucleic acid (BNA).
  • (Item AA3) A nucleic acid molecule comprising a miRNA binding sequence comprising the sequence of SEQ ID NO: 34 (wherein the uracil base is a thymine base if necessary).
  • (Item AA4) A nucleic acid molecule comprising the sequence of SEQ ID NO: 37 and / or SEQ ID NO: 38.
  • (Item A20) A composition comprising the nucleic acid molecule according to any one of the items described above.
  • composition according to any of the preceding items for the prevention or treatment of tumors.
  • the composition according to any of the preceding items, wherein the tumor is a carcinoma.
  • the composition according to any of the preceding items, wherein the tumor is colon cancer, lung cancer, or breast cancer.
  • the miRNA-inhibiting complex or nucleic acid molecule is present in a form contained in a carrier for nucleic acid delivery.
  • the carrier is composed of lipid nanoparticles (LNP), cationic liposomes, non-cationic liposomes, cationic polymers, non-cationic polymers, ⁇ -glucan, atelocollagen, PLGA nanoparticles, surfactant peptides, and superapatite.
  • LNP lipid nanoparticles
  • cationic liposomes non-cationic liposomes
  • cationic polymers non-cationic polymers
  • non-cationic polymers non-cationic polymers
  • ⁇ -glucan atelocollagen
  • PLGA nanoparticles atelocollagen
  • surfactant peptides and superapatite.
  • the cationic lipid contains a tertiary amine and / or a disulfide bond in the molecule.
  • (Item B1) a miRNA-inhibiting complex comprising RNA or an analog thereof; With carriers for nucleic acid delivery The miRNA-inhibiting complex comprises at least one double-stranded structure and a miRNA binding sequence, wherein two strands of the miRNA binding sequence are at least two strands at one end of the double-stranded structure.
  • a composition that is bound one by one and wherein the miRNA inhibition complex comprises at least one cross-linked nucleic acid (BNA).
  • BNA cross-linked nucleic acid
  • a composition according to any of the preceding items comprising BNA crosslinked via (Item B5)
  • the BNA is (Wherein R 1 , R 1 ' , R 2 , R 2 ' And R 3 Each independently represents a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkenyl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted aryl group, or a substituted or unsubstituted aralkyl group.
  • An integer Base represents a group selected from the group consisting of an adenylyl group, a thyminyl group, a urasilyl group, an inosinyl group, a cytosynyl group, a guaninyl group, and a methylcytosynyl group, and n is an integer of 1 to 3; q is an integer of 0 or 1.
  • the BNA is (Wherein R 3 Represents a group selected from the group consisting of a hydrogen atom, an alkyl group, an alkenyl group, a cycloalkyl group, an aryl group, an aralkyl group, an acyl group, a sulfonyl group, a silyl group, and a functional molecular unit substituent; , An adenylyl group, a thyminyl group, a urasilyl group, an inosinyl group, a cytosynyl group, a guaninyl group, and a methylcytosynyl group, m is an integer of 0 to 2, and n is 1 to 3 Is an integer.
  • composition according to any one of the preceding items comprising a 2 ′, 4′-substituted cross-linked nucleic acid represented by (Item B7)
  • the BNA is Or the composition in any one of the said items containing 2 ', 4' methano bridge
  • the BNA is BNA.
  • NC The composition according to any of the preceding items, which is (NMe).
  • the miRNA-inhibiting complex includes two or more of the double-stranded structures, and each of the two strands at one end of the first double-stranded structure of the double-stranded structure includes a strand containing a miRNA binding sequence.
  • the other ends of the chains are connected to each other in the second double-stranded structure of the two or more double-stranded structures so that they are bound one by one and sandwiched between the two or more double-stranded structures.
  • the composition according to any of the preceding items, wherein each composition is bound to two chains. (Item B10) The composition according to any of the preceding items, wherein the double-stranded structure is at least 6 bases in length. (Item B11) The composition according to any of the preceding items, wherein the double-stranded structure is at least 8 bases in length. (Item B12) The composition according to any one of the above items, wherein the double-stranded structure has a length of 50 bases or less.
  • composition according to any of the preceding items, wherein the miRNA inhibition complex comprises 2 to 5 miRNA binding sequences.
  • the miRNA inhibition complex comprises two miRNA binding sequences.
  • the miRNA-inhibiting complex is: Wherein the structures I and II are double stranded structures, each comprising a miRNA binding sequence in a and b of the structure.
  • the miRNA binding sequence is 5′-CAGUGUU-3 ′ (in the sequence, uracil base is a thymine base as necessary) and / or 5′-CAGUAUU-3 ′ (in the sequence, uracil base is The composition according to any one of the preceding items, comprising a thymine base, as appropriate.
  • the miRNA-inhibiting complex includes two miRNA binding sequences, and one miRNA binding sequence includes 5′-CAGUGUU-3 ′ (wherein the uracil base is a thymine base as necessary), The composition according to any one of the preceding items, wherein the other miRNA-binding sequence contains 5′-CAGUAUU-3 ′ (wherein the uracil base is a thymine base as necessary).
  • the miRNA-inhibiting complex comprises a miRNA-binding sequence comprising SEQ ID NO: 1 (wherein the uracil base is a thymine base as necessary) and SEQ ID NO: 2 (wherein the uracil base is as required) And a miRNA binding sequence comprising a thymine base).
  • the miRNA-inhibiting complex comprises a miRNA-binding sequence comprising SEQ ID NO: 3 (wherein the uracil base is a thymine base, if necessary), and SEQ ID NO: 4 (wherein, the uracil base is as required) And a miRNA binding sequence comprising a thymine base).
  • the miRNA-inhibiting complex includes the sequence of SEQ ID NO: 5 (in the sequence, uracil base is thymine base as necessary) and the sequence of SEQ ID NO: 6 (in the sequence, uracil base is optionally The composition according to any one of the preceding items, comprising a thymine base).
  • the miRNA-inhibiting complex comprises the sequence of SEQ ID NO: 9 (in the sequence, uracil base is thymine base as necessary) and the sequence of SEQ ID NO: 10 (in the sequence, uracil base is optionally The composition according to any one of the preceding items, comprising a thymine base).
  • the carrier is composed of lipid nanoparticles (LNP), cationic liposomes, non-cationic liposomes, cationic polymers, non-cationic polymers, ⁇ -glucan, atelocollagen, PLGA nanoparticles, surfactant peptides, and superapatite.
  • LNP lipid nanoparticles
  • cationic liposomes non-cationic liposomes
  • cationic polymers non-cationic polymers
  • non-cationic polymers non-cationic polymers
  • ⁇ -glucan atelocollagen
  • PLGA nanoparticles atelocollagen
  • surfactant peptides and superapatite.
  • the cationic lipid contains a tertiary amine and / or a disulfide bond in the molecule.
  • (Item C1-1) The composition according to item C1, which has the characteristics described in any of items A1 to 29 and items B1 to 23.
  • (Item C2) X a And X b Is independently X 1 , X 2 Or X 3 ;
  • the composition according to any of the preceding items, wherein (Item C3) In formula (1 ′), R 3a And R 3b The composition according to any of the preceding items, wherein is independently a fat-soluble vitamin derivative residue.
  • (Item C4) In formula (1 ′), Y a And Y b The composition according to any of the preceding items, wherein is independently an ester bond.
  • the fat-soluble vitamin is a retinoic acid, retinol, retinal, ergosterol, 7-dehydrocholesterol, calciferol, corcalciferol, dihydroergocalciferol, dihydrotaxosterol, tocopherol, or tocotrienol)
  • a lipid membrane structure comprising as constituent lipids;
  • the nucleic acid complex is a miRNA inhibition complex comprising RNA or an analog thereof, the miRNA inhibition complex comprising at least one double-stranded structure and a miRNA binding sequence, wherein the miRNA binding Any of the preceding items, wherein two strands of a sequence are bound one by one to at least one strand of at least one end of the double-stranded structure, and the miRNA inhibition complex comprises at least one cross-linked nucleic acid (BNA)
  • BNA cross-linked nucleic acid
  • a lipid membrane structure comprising a compound represented by the above as a constituent lipid of the membrane;
  • a nucleic acid complex encapsulated by the lipid membrane structure;
  • the nucleic acid complex is a miRNA inhibition complex comprising RNA or an analog thereof, the miRNA inhibition complex comprising at least one double-stranded structure and a miRNA binding sequence, wherein the miRNA binding Any of the preceding items, wherein two strands of the sequence are bound one by one to at least one strand of at least one end of the double-stranded structure, and the miRNA inhibition complex comprises at least one cross-linked nucleic acid (BNA) The composition as described.
  • R 5a And R 5b The composition according to any one of the preceding items, wherein each independently represents an aliphatic hydrocarbon group having 13 to 23 carbon atoms.
  • the BNA is BNA.
  • NC The composition according to any of the preceding items, which is (NMe).
  • the miRNA-inhibiting complex includes two or more of the double-stranded structures, and each of the two strands at one end of the first double-stranded structure of the double-stranded structure includes a strand containing an miRNA binding sequence.
  • the other ends of the chains are connected to each other in the second double-stranded structure of the two or more double-stranded structures so that they are bound one by one and sandwiched between the two or more double-stranded structures.
  • the miRNA inhibition complex comprises two miRNA binding sequences.
  • the miRNA-inhibiting complex is: Wherein the structures I and II are double stranded structures, each comprising a miRNA binding sequence in a and b of the structure.
  • the miRNA binding sequence is 5′-CAGUGUU-3 ′ (in the sequence, uracil base is a thymine base as necessary) and / or 5′-CAGUAUU-3 ′ (in the sequence, uracil base is The composition according to any one of the preceding items, comprising a thymine base, as appropriate.
  • the miRNA-inhibiting complex includes two miRNA-binding sequences, and one miRNA-binding sequence includes 5′-CAGUGUU-3 ′ (wherein the uracil base is a thymine base as necessary), The composition according to any one of the preceding items, wherein the other miRNA-binding sequence contains 5′-CAGUAUU-3 ′ (wherein the uracil base is a thymine base as necessary).
  • the miRNA-inhibiting complex includes a miRNA binding sequence containing the sequence of SEQ ID NO: 1 (wherein the uracil base is a thymine base as necessary), and the sequence of SEQ ID NO: 2 (wherein the uracil base is And a miRNA binding sequence comprising a thymine base as needed).
  • the miRNA-inhibiting complex includes the sequence of SEQ ID NO: 3 (wherein the uracil base is a thymine base as necessary), and the sequence of SEQ ID NO: 4 (wherein the uracil base is And a miRNA binding sequence comprising a thymine base as needed).
  • the miRNA-inhibiting complex comprises the sequence of SEQ ID NO: 5 (wherein the uracil base is a thymine base as necessary) and the sequence of SEQ ID NO: 6 (wherein, the uracil base is as necessary) The composition according to any one of the preceding items, comprising a thymine base).
  • the miRNA-inhibiting complex comprises the sequence of SEQ ID NO: 9 (in the sequence, uracil base is thymine base as necessary) and the sequence of SEQ ID NO: 10 (in the sequence, uracil base is optionally The composition according to any one of the preceding items, comprising a thymine base).
  • (Item D1) A miRNA-inhibiting complex comprising RNA or an analog thereof for use in treating or preventing a tumor, the miRNA-inhibiting complex comprising at least one double-stranded structure and a miRNA-binding sequence; The miRNA-inhibiting complex, wherein two strands of the miRNA-binding sequence are bound to two strands at least one end of the double-stranded structure one by one, and the miRNA-inhibiting complex includes at least one cross-linked nucleic acid (BNA) .
  • BNA cross-linked nucleic acid
  • (Item E1) A method for preventing or treating a tumor in a subject, comprising administering to the subject an effective amount of the composition, miRNA-inhibiting complex or nucleic acid molecule according to any of the preceding items.
  • (Item E2) The method according to any of the preceding items, further comprising the features described in any one or more of the items.
  • (Item F1) Use of a miRNA-inhibiting complex comprising RNA or an analog thereof for use in treating or preventing a tumor, wherein the miRNA-inhibiting complex comprises at least one double-stranded structure and a miRNA-binding sequence.
  • the miRNA inhibition complex comprises at least one cross-linked nucleic acid (BNA) .
  • BNA cross-linked nucleic acid
  • the improved S-TuD of the present invention has an enhanced miRNA inhibitory activity compared to conventional S-TuD, and the miR-200 family and other miRNAs can be inhibited using such improved S-TuD. Thus, prevention or treatment of tumors can be realized.
  • FIG. 1 shows a schematic diagram of a conventional S-TuD and a partial substitution S-TuD of the present invention.
  • FIG. 2 shows a typical structure of the miRNA-inhibiting complex used here, where two RNA strands containing MBS are sandwiched between two double-stranded structures. The form which is respectively couple
  • FIG. 3 also shows the typical structure of the miRNA inhibition complex used herein, where # 12- # 16 are shown as typical examples.
  • the two RNA strands containing MBS are bound to the respective strands of the double-stranded structure, the directions of the RNA strands are opposite to each other.
  • FIG. 2 shows a typical structure of the miRNA-inhibiting complex used here, where two RNA strands containing MBS are sandwiched between two double-stranded structures. The form which is respectively couple
  • FIG. 3 also shows the typical structure
  • S-TuD-141 / 200c-1_17-pf-S10-BT6-MBSB1 with MBS for miR-141 and miR-200c
  • S-TuD-NCs-S10- A structure with BT6-MBSB1-s (MBS has no complementarity to miR) is shown.
  • the lower case letters in the sequence indicate the place where BNA NC (NMe) is substituted.
  • Figure 5 shows (1) S-TuD-141 / 200c-1_17-pf-S10-BT6-MBSB1 (S-TuD-141 / 200c) or (2) S-TuD-NCs-S10-BT6-MBSB1-s It is a figure which shows a time-dependent transition of the body weight (g) of the tumor transplantation mouse
  • FIG. 6 shows (1) S-TuD-141 / 200c-1_17-pf-S10-BT6-MBSB1 (S-TuD-141 / 200c) or (2) S-TuD-NCs-S10-BT6-MBSB1-s the (S-TuDNCs), in tumor transplanted mice administered into the tail vein or in the tumor, is a diagram showing a temporal change in tumor volume (mm 3). The arrow indicates the time of administration.
  • FIG. 7 is a diagram schematically showing the composition of lipid nanoparticles used in Example 2.
  • FIG. 8 shows tumor-transplanted mice injected with S-TuD-141 / 200c-1_17-pf-S10-BT6-MBSB1 (LNP-S-TuD 141 / 200c) or PBS encapsulated in lipid nanoparticles into the tail vein It is a figure which shows a time-dependent transition of the body weight (g). The arrow indicates the time of administration.
  • FIG. 8 shows tumor-transplanted mice injected with S-TuD-141 / 200c-1_17-pf-S10-BT6-MBSB1 (LNP-S-TuD 141 / 200c) or PBS encapsulated in lipid nanoparticles into the tail vein It is a figure which shows a time-dependent transition of the body weight (g). The arrow indicates the time of administration.
  • FIG. 9 shows tumor-transplanted mice injected with S-TuD-141 / 200c-1_17-pf-S10-BT6-MBSB1 (LNP-S-TuD 141 / 200c) or PBS encapsulated in lipid nanoparticles into the tail vein It is a figure which shows a time-dependent transition of tumor volume (mm ⁇ 3 >). The arrow indicates the time of administration.
  • FIG. 10 shows various miR-200c S-TuD structures.
  • FIG. 11 shows S-TuD-141 / 200c-1_17-pf-S10-BT6-MBSB1 (LNP-S-TuD-141 / 200c) or S-TuD-NCs-S10-BT6-MBSB1 encapsulated in lipid nanoparticles. It is a figure which shows the time-dependent transition of the body weight (g) of the tumor transplantation mouse
  • FIG. 12 shows S-TuD-141 / 200c-1_17-pf-S10-BT6-MBSB1 (LNP-S-TuD-141 / 200c) or S-TuD-NCs-S10-BT6-MBSB1 encapsulated in lipid nanoparticles.
  • FIG. 13 shows the structure of psiCHECK2-UT (top) and psiCHECK2-miRT (bottom).
  • FIG. 14 shows a schematic diagram of the luciferase reporter vector used in the examples.
  • FIG. 15 shows the sequence information of psiCHECK2-T21-5p-s, psiCHECK2-T21-5p-a, psiCHECK2-T200c-3p-s, and psiCHECK2-T200c-3p-a used for the production of the luciferase reporter vector. All of these sequences are unmodified DNA.
  • FIG. 16-1 shows the structure of the oligo used.
  • FIG. 16-2 shows the results of reporter assay for miR-21 of the oligo of FIG. 16-1. The left shows the result of 300 pM. The right shows the result of 1000 pM. Bars indicate the ratio of control reporter activity to miR-21 reporter inhibition activity. The higher the inhibitory effect of miR-21, the higher the bar.
  • FIG. 16-1 shows the structure of the oligo used.
  • FIG. 16-2 shows the results of reporter assay for miR-21 of the oligo of FIG. 16-1. The left shows the result of 300 pM. The right shows the result of 1000
  • FIG. 17-1 shows the structure of the oligo used.
  • FIG. 17-2 shows the results of reporter assay for the oligo miR-200c of FIG. 17-1. The left shows the result of 10 pM and the right shows the result of 100 pM. Bars indicate the ratio of control reporter activity to miR-200c reporter inhibitor activity. The higher the miR-200c inhibitory effect, the higher the bar.
  • FIG. 17-3 shows the results of conducting a reporter assay for miR-200c. The result in the H358 cell which introduce
  • ⁇ MiRNA inhibition complex In the present invention, it has been found that the miRNA-inhibiting complex described in detail below can be used as a medicament for the prevention or treatment of various diseases, and in particular, the treatment or prevention of tumors can be performed. In some embodiments of the invention, compositions comprising miRNA inhibition complexes detailed below are provided for the treatment or prevention of tumors.
  • the present invention also provides a composition comprising the miRNA-inhibiting complex described in detail below and a carrier for nucleic acid delivery. By combining such carriers for nucleic acid delivery, the miRNA inhibition complexes described herein can be more appropriately delivered to the target.
  • a miRNA-inhibiting complex comprises at least one double-stranded structure, and at least one strand comprising a miRNA binding sequence (MBS) is present on at least one strand of the double-stranded structure. It is bound and contains at least one cross-linked nucleic acid (BNA).
  • BNA cross-linked nucleic acid
  • this double-stranded structure is referred to as the “first” double-stranded structure so that it can be distinguished from the additional double-stranded structure that can be included in the complex used in the present specification.
  • a complex may or may not be single-stranded (ie, a single molecule linked by a covalent bond), for example, single-stranded, double-stranded, or more than one strand. It may be configured.
  • a complex composed of double-stranded RNA in which RNA strands containing MBS are bound to two strands at one end of a double-stranded structure, respectively, contains at least one cross-linked nucleic acid (BNA, for example, , BNA NC (NMe)) are included in the scope of the complex used in the present invention.
  • BNA cross-linked nucleic acid
  • one RNA strand containing at least one MBS may be bound to two strands at one end of a double-stranded structure. In this case, the two strands at one end of the double-stranded structure are connected by the RNA strand containing MBS.
  • the RNA connecting two strands of a double-stranded structure contains at least one MBS, but may contain, for example, two, three, or more.
  • Double-stranded structures include stem loops or hairpins. That is, the double-stranded structure may be a double-stranded structure contained in a stem loop or hairpin. Since the improved miRNA inhibition complex has high inhibition efficiency and high serum stability, it can be expected that the in vivo tumor suppression effect is improved.
  • the “non-seed” region is a base other than the second to eighth bases from the 5 ′ end of the miRNA necessary for the miRNA activity, specifically, from the 5 ′ end of the miRNA. Refers to the 9th to 21st bases.
  • “non-seed binding region” refers to a sequence that has high complementarity and binds to the non-seed region of miRNA in MBS
  • “stem region” refers to a double-stranded structure. .
  • the included BNA may or may not be included in the non-seed binding region, and may or may not be included in the stem region (see FIG. 1).
  • the miRNA-inhibiting complex used in the present invention may be a structure having at least one RNA or an analog thereof having a double-stranded structure.
  • the complex preferably comprises one or two molecules comprising RNA or an analog thereof.
  • MBS miRNA binding sequence
  • the MBS contains at least a portion complementary to the miRNA so that it can bind to the miRNA.
  • MBS may or may not be a completely complementary sequence to miRNA.
  • MBS may be a sequence of natural RNA targeted by miRNA.
  • MBS is, for example, at least 10 bases for miRNA, such as 11 bases or more, 12 bases or more, 13 bases or more, 14 bases or more, 15 bases or more, 16 bases or more, 17 bases or more, 18 bases or more, 19 bases or more, Complementary bases of 20 bases or more, 21 bases or more, 22 bases or more, 23 bases or more, or 24 bases or more are included consecutively or discontinuously.
  • the complementary bases may be continuous or have a gap of 3 or less, 2 or less, preferably 1 site.
  • the gap may be MBS-side and / or miRNA-side unpairing (bulge), or one gap may have bulge bases on only one strand, and both strands are unpaired. It may have a paired base.
  • MBS may be designed to include an unpaired base at least on the MBS side.
  • the number of bulge and mismatch bases is, for example, 6 bases or less, preferably 5 bases or less, 4 bases or less, 3 bases or less, 2 bases or less, or 1 base per strand, per bulge or mismatch, respectively.
  • MBS capable of forming bulges may exhibit a higher miRNA inhibitory effect than MBS consisting of completely complementary sequences. Therefore, in order to obtain a higher miRNA inhibitory effect, MBS may be designed to form a bulge.
  • the 10th and / or 11th base from the 3 'end of MBS is not complementary to miRNA, or contains an extra base between 10th and 11th (or in miRNA
  • the 10th and / or 11th base from the 5 'end of the target sequence is not a complementary base to MBS, or is unpaired between the 10th and 11th nucleotides MBS containing a combined base is less susceptible to degradation and can be expected to have high activity.
  • bulges need not be included if a modified base with high degradation resistance is used.
  • the MBS may be designed so that bases including the 10th and 11th positions from the 5 ′ end of miRNA are unpaired, for example, 9th to 11th, 10th to 12th, or 9th to 12th
  • the MBS may be designed so that is unpaired. There is no unpaired base on the miRNA side, but on the MBS side, between the 10th and 11th positions from the 3 ′ end (or 5 ′ of the target sequence in miRNA (sequence that hybridizes with MBS)). An unpaired base may be present between the 10th and 11th sites from the end).
  • the unpaired base may be present on the miRNA side and / or MBS side, but is preferably present at least on the MBS side.
  • the number of unpaired nucleotides in each strand can be adjusted as appropriate, and is, for example, 1 to 6 nucleotides, preferably 1 to 5 nucleotides, more preferably 3 to 5, for example 3, 4 or 5 It is a nucleotide.
  • it is known that it is important for miRNA target recognition to match the 2-8th base (seed region) from the 5 'end of miRNA Jackson AL et al., RNA 12 ( 7): 1179-1187, 2006; Lewis BP et al., Cell 120: 15-20, 2005; Brennecke et al. PLoS BIOLOGY 3, 0404-0418, 2005; Lewis et al.
  • the MBS in the present invention is preferably one in which the miRNA seed region (2-8th base from the 5 'end of miRNA) is completely complementary.
  • G: U pairs (U: G pairs) may also be considered complementary, but preferably only G: C (C: G) and A: U (U: A) are considered complementary.
  • the miRNA seed region (2-8th base from the 5 ′ end of miRNA) is completely complementary, and at least 8 bases, more preferably 9 bases, More preferably, those containing 10 bases of complementary bases in succession are preferred.
  • the MBS in the present invention preferably contains a total of 11 bases or more, more preferably 12 bases or more, and more preferably 13 bases or more complementary bases for miRNA.
  • MBS is preferably a sequence that hybridizes with a miRNA sequence under physiological conditions.
  • the physiological conditions are 150 mM NaCl, 15 mM sodium citrate, pH 7.0, 37 ° C., for example. More preferably, the MBS is a sequence that hybridizes with the miRNA sequence under stringent conditions.
  • the stringent conditions are, for example, 1 ⁇ SSC (1 ⁇ SSC is 150 mM NaCl, 15 mM sodium citrate, pH 7.0) or 0.5 ⁇ SSC, 42 ° C., more preferably 1 ⁇ SSC or 0.5 ⁇ SSC, The conditions are 45 ° C., more preferably 1 ⁇ SSC or 0.5 ⁇ SSC, 50 ° C.
  • Hybridization for example, either RNA containing miRNA sequence or RNA containing MBS is labeled, the other is immobilized on a membrane, and both are hybridized.
  • Hybridization conditions include, for example, 5 ⁇ SSC, 7% (W / V) SDS, 100 ⁇ g / ml denatured salmon sperm DNA, 5 ⁇ Denhardt's solution (1 ⁇ Denhardt solution is 0.2% polyvinylpyrrolidone, 0.2% bovine serum albumin, and 0.2% Ficoll) For example, at 37 ° C., 45 ° C., or 50 ° C.
  • the nucleic acid After incubating for a sufficient period of time (eg, 3, 4, 5 or 6 hours or more), washing is performed under the above conditions, and by detecting whether the labeled nucleic acid is hybridized, the nucleic acid is hybridized under the condition. Or not.
  • a sufficient period of time eg, 3, 4, 5 or 6 hours or more
  • MBS preferably exhibits high homology with the complementary sequence of the miRNA sequence.
  • High homology means, for example, 70% or more, 75% or more, 76% or more, 77% or more, 78% or more, 79% or more, 80% or more, 81% or more, 82% or more, 83% or more, 84% or more, 85% or higher, 86% or higher, 87% or higher, 88% or higher, 89% or higher, 90% or higher, 93% or higher, 95% or higher, 96% or higher, 97% or higher, 98% or higher, or 99% or higher It is a base sequence having sex. The identity of the base sequence can be determined using, for example, the BLAST program (Altschul, S.F. et al., J.
  • MBS may consist of a sequence in which one or several bases are inserted, substituted, and / or deleted from the complementary sequence of the miRNA sequence.
  • MBS is within 8 bases, 7 bases, 6 bases, 5 bases, 4 bases, 3 bases, 2 bases, or 1 base insertion, substitution, and / or relative to the complementary sequence of miRNA sequence It can consist of a sequence with a deletion.
  • MBS is from a sequence having an insertion of 8 bases, 7 bases, 6 bases, 5 bases, 4 bases, 3 bases, 2 bases, or 1 base insertion relative to the complementary sequence of the miRNA sequence. Can be.
  • MBS has a higher miRNA inhibitory activity in a sequence having a mismatch than in a sequence that is completely complementary to the miRNA sequence.
  • MBS is completely complementary and is cleaved by RISC containing miRNA, thereby reducing the expression level of miRNA-inhibiting RNA.
  • bulges need not be included if a modified base with high degradation resistance is used.
  • MBS hybridizes with miRNA the 10th and / or 11th bases from the 3 ′ end of MBS are unpaired (or the 5 ′ end of the target sequence on the miRNA side that hybridizes with MBS) MBS designed to contain unpaired bases between the 10th and 11th nucleotides. Can be expected to have high activity.
  • Such unpairing may be, for example, the bulge on the MBS side, and the base that forms the bulge is 1 to 6 bases, preferably 1 to 5 bases, more preferably 3 to 5 bases (eg 3, 4 or 5).
  • Base may consist of RNA, or may contain or consist of a nucleic acid analog.
  • an increase in miRNA inhibitory effect can be expected by forming a nucleic acid salt at a site where MBS is cleaved (such as the 10th and / or 11th base from the 3 'end of MBS) so that cleavage does not occur.
  • a nucleic acid having a backbone or sugar such as phosphothioate or 2 "-O-methyl (Krutzfeldt, J. et al., Nucleic Acids Res. 35: 2885-2892; Davis, S. et al. ., 2006, Nucleic Acids Res. 34: 2294-2304).
  • the miRNA targeted by the miRNA inhibition complex used in this specification is not particularly limited. As long as it has an miRNA structure, it can be applied to any species such as plants, nematodes, vertebrates and the like.
  • the number of miRNA sequences is very well known in many organisms, including humans, mice, chickens, zebrafish, and Arabidopsis (see the miRBase :: Sequences web page: microrna.sanger.ac.uk / sequences /).
  • mammals such as mice, rats, goats, primates including monkeys, and human miRNAs can be targeted.
  • miR-200 family miRNA for example, miR-200a, miR-200b, miR-200c, miR-141 and miR-429) can be mentioned, and preferably, miR-200c and miR-141 are mentioned. It is done.
  • miRNAs that can be targeted include miR-21 and miR-17-92 cluster miRNAs (for example, miR-17, miR-18a, miR-19a, miR-20a, miR-19b-1, miR- 92a-1), miR-155, miR-133a, miR-196b, miR-197, miR-205, miR-125b, miR-135b, miR-106a, miR-10a / 10b, miR-146a, miR-182 And miR-96.
  • miR-21 and miR-17-92 cluster miRNAs for example, miR-17, miR-18a, miR-19a, miR-20a, miR-19b-1, miR- 92a-1
  • miR-155 miR-133a, miR-196b, miR-197, miR-205, miR-125b, miR-135b
  • miR-106a miR-10a / 10b
  • miR-146a miR-182
  • miR-182 miR-182
  • the miRNA inhibition complex used herein further comprises a second double stranded structure in addition to the first double stranded structure, at one end of the first double stranded structure.
  • Each RNA strand containing MBS binds to each of the two strands, and the RNA strand is sandwiched between the first double-stranded structure and the second double-stranded structure.
  • Each of the other ends is bonded to two strands at one end of the second double-stranded structure.
  • the miRNA inhibition complex comprises a plurality of miRNA binding sequences, for example 2 to 5 miRNA binding sequences.
  • the inclusion of a plurality of miRNA binding sequences in the miRNA inhibition complex is advantageous in simultaneously suppressing a plurality of miRNAs, and is useful in the treatment or prevention of tumors that are effectively treated or prevented by the suppression of a plurality of miRNAs. It will be a thing.
  • the miRNA inhibition complex comprises two miRNA binding sequences.
  • the double stranded structure may be double stranded, or may be four stranded like G-quadruplex.
  • the first double-stranded structure in addition to the first double-stranded structure, further includes a second double-stranded structure.
  • Each strand has a structure in which one RNA strand containing MBS is bonded to each other, and each RNA strand is sandwiched between the first double-stranded structure and the second double-stranded structure. The other ends are respectively bonded to the two strands of the second double-stranded structure.
  • the RNA complex has, for example, at least two double-stranded structures, and each of the four RNA strands constituting the two double-stranded structures contains MBS without interposing any remaining three strands. It has a structure that binds to RNA.
  • the miRNA-inhibiting complex can be explained more simply by binding to each strand of the two double-stranded structures so that the two RNA strands containing MBS are sandwiched between the two double-stranded structures.
  • MiRNA inhibition complex (FIG. 2). That is, in the RNA complex having the structure of FIG. 2, RNA strands a and b are sandwiched between double-stranded structures I and II, and RNA containing one or more MBSs in each of a and b Included in the invention. Since the two RNA strands containing MBS are bound to each pair of double-stranded structures, the RNA strands are in opposite directions (Fig. 3, # 12 to # 16). . Thus, by adding MBS to each double-stranded chain, it is possible to exhibit higher miRNA inhibitory activity.
  • Two RNA strands including MBS present so as to be sandwiched between two double-stranded structures each contain one or more MBS. These MBSs may be the same sequence or different. Moreover, the same miRNA may be targeted and the sequence couple
  • a miRNA inhibition complex as used herein may contain a total of two MBS, which may be the same sequence or a sequence that binds to the same miRNA. , Different sequences, or sequences that bind to different miRNAs.
  • each pair of duplexes included in the miRNA inhibition complex is usually a separate RNA molecule as described above, but one or both ends of the duplex are joined. It may be linear or cyclic.
  • linear is a term for a ring and only means that it has a terminal, and naturally does not mean that a secondary structure is not formed.
  • the miRNA inhibition complex composed of linear single-stranded RNA can be prepared, for example, by a single RNA synthesis. For example, when two double-stranded structures are included, two chains at one end of the second double-stranded structure (the side to which MBS is not bonded) can be connected by a loop to form a single strand as a whole. .
  • One or more MBS may be included in the sequence connecting the double strands (eg, FIG. 3, # 13, # 14, # 16).
  • the duplexes can be joined by short loops.
  • the double strand can be combined with a sequence of 1 to 10 bases, preferably 1 to 8 bases, 2 to 6 bases, 3 to 5 bases, for example 4 bases.
  • the arrangement is not particularly limited.
  • An example is 5'-GUCA-3 '.
  • the present invention relates to RNA having the structure of FIG. 3 # 13, in which RNA strands a and b are sandwiched between double-stranded structures I and II, and double-stranded structure II is a hairpin (or stem loop). And a and b each contain an RNA containing one or more MBS.
  • the double-stranded structure contained in the miRNA inhibition complex used in the present specification is not particularly limited in sequence, and may be of any base length. The preferred embodiment will be described separately in detail below.
  • the base pair sequence forming the double-stranded structure can be appropriately designed so that the duplex can be specifically and stably formed in the miRNA inhibition complex.
  • sequences in which several base sequences are repeated in tandem such as double base repeat sequences and 3-4 base repeat sequences.
  • the GC content of the double-stranded portion may be adjusted as appropriate, for example, 12% to 85%, preferably 15% to 80%, 20% to 75%, 25% to 73%, 32% to 72%, 35% ⁇ 70%, 37% -68%, or 40% -65%.
  • the arrangement of stem I and stem II shown in Japanese Patent No. 4933634 can be exemplified, but is not limited thereto.
  • the four strands include G-quadruplex, and specifically, a sequence of GGG-loop-GGG-loop-GGG-loop-GGG can be used.
  • the sequence of the loop can be appropriately selected.
  • all three loops can be 1 base (for example, M (A or C)), or both can be 3 bases.
  • the MBS and the double-stranded structure may be linked directly or via other sequences.
  • MBS can be attached to the end of a double stranded structure via a suitable linker or spacer sequence. Even if MBS is directly linked to the double-stranded part, significant inhibitory activity can be obtained. However, the addition of a linker (or spacer) also increases the inhibitory effect on miRNA.
  • a linker or spacer sequence between the MBS sequence and the double stranded structure may increase the accessibility to miRNA present in the MBS RISC. The length of the linker or spacer may be appropriately adjusted.
  • 1 to 10 bases preferably 1 to 9 bases, 1 to 8 bases, 1 to 7 bases, 1 to 6 bases, 1 to 5 bases, 1 to 4 Base, or 1-3 bases.
  • the sequence of the linker or spacer is not particularly limited, and can be, for example, a sequence consisting of A and / or C, or a sequence containing A and / or C more than other bases.
  • it is preferable to consider that the linker or spacer sequence does not form a stable base pair with the opposing linker or spacer sequence or MBS.
  • AGA, AAC, CAA, ACC, CCA, or a sequence including any of them can be exemplified.
  • a pair of linker or spacer sequences added to both sides of MBS may be an inverted sequence (mirror image sequence).
  • AAC can be added to the 5 'side of the MBS and CAA can be added to the 3' side.
  • the nucleic acid constituting the miRNA inhibition complex used in the present specification is characterized by being modified with the specific modified nucleic acid of the present invention, but may contain modified nucleic acid other than the specific modified nucleic acid.
  • the nucleotide constituting the nucleic acid may contain a natural nucleotide, a modified nucleotide, an artificial nucleotide, or a combination thereof, in addition to the specific modified nucleic acid of the present invention.
  • the nucleic acid contained in the miRNA-inhibiting complex used in the present specification may be composed of RNA other than the specific modified nucleic acid, as long as it includes the specific modified nucleic acid referred to in the present specification, or It may be an RNA / DNA chimera or may contain other nucleic acid analogs, or any combination thereof.
  • the specific modified nucleic acid of the present invention is included, the nucleic acid includes not only those bound by a phosphodiester bond but also those having an amide bond or other backbone (such as peptide nucleic acid (PNA)).
  • PNA peptide nucleic acid
  • Nucleic acid analogs include, for example, natural and artificial nucleic acids, and may be nucleic acid derivatives, nucleic acid analogs, nucleic acid derivatives, and the like. Such nucleic acid analogs are well known in the art and include, but are not limited to, phosphorothioates, phosphoramidates, methylphosphonates, chiral methylphosphonates, 2 "-O-methylribonucleotides, peptide nucleic acids (PNA), and the like.
  • the PNA skeleton may include a skeleton composed of aminoethylglycine, polyamide, polyethyl, polythioamide, polysulfinamide, polysulfonamide, or a combination thereof (Krutzfeldt, J. et al., Nucleic Acids Res. 35: 2885-2892; Davis, S. et al., 2006, Nucleic Acids Res. 34: 2294-2304; Butla, A. et al., 2003), Nucleic Acids Res. 31: 4973-4980; Hutvagner, G. et al., 2004, PLoS Biol. 2: E98; Chan, JA et al., 2005, Cancer Res. 65: 6029-6033; Esau, C. et al., 2004, J. Biol. Chem. 279: 52361-52365; Esau, C. et al., 2006, Cell Metab. 3: 87-98).
  • the miRNA-inhibiting complex used in the present invention is characterized in that it contains a stabilized nucleic acid as a specific modified nucleic acid, that is, a modified nucleic acid that promotes double-stranded formation. ) Is included.
  • bridged nucleic acid (BNA) means both Bicyclic Nucleic Acid and Bridged Nucleic Acid. Also called “bridged nucleic acid”, “bicyclic nucleic acid” or “bridged / bicyclic nucleic acid”. .)) refers to any modified nucleic acid in which the 2′-position and 4′-position of the nucleic acid are linked (bridged) to form two (bicyclic) ring structures.
  • a crosslinked nucleic acid can be used as the stabilized nucleic acid (that is, a modified nucleic acid that promotes double-stranded formation) used in the present invention.
  • LNA locked nucleic acids
  • ethylene nucleic acids such as 2 "-O, 4" -C-ethylene bridged nucleic acids (2 "-O, 4" -C-ethylene bridged nucleic acid (ENA)
  • BNA bridged nucleic acid
  • HNA hexitol nucleic acid
  • tcDNA tricyclo-DNA
  • polyether nucleic acid see, for example, US Pat. No. 5,908,845), cyclohexene nucleic acid (CeNA), and combinations thereof Is mentioned.
  • substitution refers to replacement of a specific hydrogen atom in an organic compound such as a crosslinked nucleic acid (BNA) with another atom or atomic group.
  • BNA crosslinked nucleic acid
  • substituted refers to an atom or a functional group substituted for another in a chemical structure such as a crosslinked nucleic acid (BNA).
  • BNA crosslinked nucleic acid
  • Substituents that can be used in the miRNA inhibition complexes used herein include alkyl, cycloalkyl, alkenyl, cycloalkenyl, alkynyl, cycloalkynyl, alkoxy, carbocyclic group, heterocyclic group, halogen, hydroxy, thiol , Cyano, nitro, amino, carboxy, carbamoyl, acyl, acylamino, thiocarboxy, amide, substituted carbonyl, substituted thiocarbonyl, substituted sulfonyl or substituted sulfinyl. All the substituents may have a substituent other than hydrogen.
  • substitution is the substitution of one or more hydrogen atoms in a certain organic compound or substituent with another atom or atomic group, or a double bond or triple bond. That means. It is possible to remove one hydrogen atom and replace it with a monovalent substituent, or combine with a single bond to form a double bond, and remove two hydrogen atoms to form a divalent substituent. It can be substituted or combined with a single bond to form a triple bond.
  • alkyl refers to a monovalent group formed by loss of one hydrogen atom from an aliphatic hydrocarbon (alkane) such as methane, ethane, or propane, and is generally represented by C n H 2n + 1 —. Where n is a positive integer.
  • Alkyl can be linear or branched. Specific examples thereof include C1-C2 alkyl, C1-C3 alkyl, C1-C4 alkyl, C1-C5 alkyl, C1-C6 alkyl, C1-C7 alkyl, C1-C8 alkyl, C1-C9 alkyl, C1-C10 alkyl.
  • C1-C11 alkyl or C1-C20 alkyl C1-C2 substituted alkyl, C1-C3 substituted alkyl, C1-C4 substituted alkyl, C1-C5 substituted alkyl, C1-C6 substituted alkyl C1-C7 substituted alkyl, C1-C8 substituted alkyl, C1-C9 substituted alkyl, C1-C10 substituted alkyl, C1-C11 substituted alkyl or C1-C20 substituted alkyl obtain.
  • C1-C10 alkyl means linear or branched alkyl having 1 to 10 carbon atoms.
  • substituted alkyl refers to an alkyl in which H of alkyl is substituted by a substituent as defined herein. Specifically, but not limited to these, CH 3 OCH 2 —, CH 3 OCH 2 CH 2 —, CH 3 OCH 2 CH 2 CH 2 —, HOCH 2 —, HOCH 2 CH 2 —, HOCH 2 CH 2 CH 2 —, NCCH 2 —, NCCH 2 CH 2 —, NCCH 2 CH 2 CH 2 —, FCH 2 —, FCH 2 CH 2 —, FCH 2 CH 2 CH 2 —, H 2 NCH 2 —, H 2 NCH 2 CH 2 —, H 2 NCH 2 CH 2 CH 2 —, HOOCCH 2 —, HOOCCH 2 CH 2 —, HOOCCH 2 CH 2 CH 2 —.
  • alkylene refers to a divalent group formed by losing two hydrogen atoms from an aliphatic hydrocarbon (alkane) such as methane, ethane, or propane, and is generally represented by —C n H 2n —. Where n is a positive integer.
  • alkane aliphatic hydrocarbon
  • propane propane
  • n is a positive integer.
  • the alkylene can be straight or branched.
  • substituted alkylene refers to alkylene in which H of alkylene is substituted by the above-described substituent.
  • C1-C10 alkylene means linear or branched alkylene having 1 to 10 carbon atoms.
  • C1-C10 substituted alkylene refers to C1-C10 alkylene in which one or more hydrogen atoms are substituted with a substituent.
  • alkylene may contain one or more atoms selected from an oxygen atom and a sulfur atom.
  • cycloalkyl refers to alkyl having a cyclic structure.
  • substituted cycloalkyl refers to a cycloalkyl in which the H of the cycloalkyl is substituted by the substituent described above. Specific examples include C3-C4 cycloalkyl, C3-C5 cycloalkyl, C3-C6 cycloalkyl, C3-C7 cycloalkyl, C3-C8 cycloalkyl, C3-C9 cycloalkyl, C3-C10 cycloalkyl, C3-C11.
  • alkenyl refers to a monovalent group formed by losing one hydrogen atom from an aliphatic hydrocarbon having one double bond in the molecule, and is generally represented by C n H 2n-1 —. (Where n is a positive integer greater than or equal to 2). “Substituted alkenyl” refers to alkenyl substituted with alkenyl by the above-described substituents.
  • C2-C10 alkyl means a straight-chain or branched alkenyl containing 2 to 10 carbon atoms.
  • C2-C10 substituted alkenyl refers to C2-C10 alkenyl, in which one or more hydrogen atoms are substituted with substituents.
  • aryl refers to a group formed by leaving one hydrogen atom bonded to an aromatic hydrocarbon ring, and is included in the present specification as a carbocyclic group. Phenyl group (C 6 H 5 —) from benzene, tolyl group (CH 3 C 6 H 4 —) from toluene, xylyl group ((CH 3 ) 2 C 6 H 3 —) from xylene, naphthyl from naphthalene The group (C 10 H 8 —) is derived.
  • aralkyl means an alkyl group in which one of the hydrogen atoms of the alkyl group is substituted with an aryl group.
  • Specific examples of the aralkyl group may be benzyl group, phenethyl group (phenylethyl group), 1-naphthylethyl and the like.
  • acyl refers to a monovalent group formed by removing OH from a carboxylic acid.
  • Representative examples of the acyl group include acetyl (CH 3 CO—), benzoyl (C 6 H 5 CO—), and the like.
  • “Substituted acyl” refers to acyl hydrogen substituted with the above-described substituents.
  • sulfonyl refers to a generic term for a substance including —SO 2 — which is a characteristic group. “Substituted sulfonyl” means substituted sulfonyl with the above-described substituents.
  • sil is a group generally represented by SiR 1 R 2 R 3 — (wherein R 1 , R 2 and R 3 are each independently hydrogen, alkyl, cycloalkyl, Selected from the group consisting of alkenyl, cycloalkenyl, alkynyl, cycloalkynyl, alkoxy, carbocyclic, heterocyclic. Specific examples thereof may be a trimethylsilyl group, a triethylsilyl group, a triethylsilyl group, a tert-butyldimethylsilyl group, a triisopropylsilyl group, or a tert-butyldiphenylsilyl group.
  • “functional molecular unit substituent” means a labeled molecule (for example, a fluorescent molecule, a chemiluminescent molecule, a molecular species containing a radioisotope, etc.), a DNA or RNA cleaving active molecule, intracellular or nuclear translocation. A group containing a signal peptide or the like.
  • the BNA is at least 1 selected from the group consisting of carbon, carbon and nitrogen on the 4 ′ position through at least one atom selected from the group consisting of oxygen and carbon on the 2 ′ position. It can be BNA bridged through one atom.
  • the BNA used in the present invention is the following BNA-1: (Wherein R 1 , R 1 ′ , R 2 , R 2 ′ , and R 3 each independently represents a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkenyl group, substituted or non-substituted, Substituted cycloalkyl group, substituted or unsubstituted aryl group, substituted or unsubstituted aralkyl group, substituted or unsubstituted acyl group, substituted or unsubstituted sulfonyl group, substituted or unsubstituted silyl group, and functional molecule A group selected from the group consisting of unit substituents such as, but not limited to, substituted or unsubstituted phenoxyacetyl groups, alkyl groups of 1 to 5 carbon atoms, alkenyl groups of 1 to 5 carbon
  • Examples thereof include an aliphatic acyl group having 1 to 5 carbon atoms such as a phonyl group or an acetyl group, and an aromatic acyl group such as a benzoyl group, n is an integer of 1 to 3, and q is an integer of 0 or 1. 2), 4′-substituted cross-linked nucleic acid.
  • Base is a purin-9-yl group, a 2-oxo-pyrimidin-1-yl group, or a derivative thereof, for example, but is not limited thereto, and is exemplified in Japanese Patent No. 4731324.
  • 6-aminopurin-9-yl ie, adeninyl
  • 2-amino-6-chloropurin-9-yl 2-amino-6-fluoropurin-9-yl
  • 2-amino-6-bromopurine- 9-yl 2-amino-6-hydroxypurin-9-yl (ie, guaninyl)
  • adeninyl thyminyl, guaninyl, uracilyl, Inoshiniru, a cytosinyl and 5 Mechirushitoshiniru and derivatives.
  • the BNA used in the present invention is the following BNA-2:
  • R 3 is a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkenyl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted aralkyl A group selected from the group consisting of a group, a substituted or unsubstituted acyl group, a substituted or unsubstituted sulfonyl group, a substituted or unsubstituted silyl group, and a functional molecular unit substituent, for example, but not limited thereto Is a phenoxyacetyl group, an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 1 to 5 carbon atoms, an aryl group having 6 to 14 carbon atoms
  • Base is similar to that described for BNA-1, and may preferably be adenylyl, guaninyl, thyminyl, uracinyl, inosinyl, cytosynyl and 5-methylcytosynyl, and derivatives thereof.
  • the BNA used in the present invention is the following BNA-3: (Wherein R 2 and R 2 ′ are each independently a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkenyl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted group, A group selected from the group consisting of aryl groups, substituted or unsubstituted aralkyl groups, substituted or unsubstituted acyl groups, substituted or unsubstituted sulfonyl groups, substituted or unsubstituted silyl groups, and functional molecular unit substituents Examples thereof include, but are not limited to, a methyl group and an O-methoxyethyl group, and Base is the same as described for BNA-3, and is preferably adenyl, guanylyl, thyminyl, ura
  • BNA having a branch in the cross-linked chain is not limited to this.
  • BNA (cEt) CEt: 2 ′, 4′-constrained ethyl.
  • BNA (cEt) has the same thermal stability and mismatch discrimination as conventional LNA, it is known to have improved stability against nucleases.
  • the BNA used in the present invention is (“BNA NC (NMe)” is displayed unless otherwise specified in the present specification, but “(2 ′, 4 ′-) BNA NC ” may also be displayed).
  • Base has the same definition as above, and is preferably selected from the group consisting of adenylyl, thyminyl, guanylyl, urasilyl, inosinyl, cytosynyl and 5-methylcytosynyl.
  • protecting group refers to a group used to protect a functional group from a specific chemical reaction.
  • the protecting group may be represented as “PG”.
  • BNA NC NMe
  • LNA LNA
  • BNA NC NMe
  • n is 1.
  • the bonding form between each nucleoside in the oligonucleotide is phosphorothioate bond [—OP (O) () in addition to the same phosphodiester bond [—OP (O 2 —) O—] as the natural nucleic acid. 1 or 2 or more of S-) O-] may be contained, and in the case of containing 2 or more of one or more of the above structures, Base may be the same or different between the structures.
  • R1 and R 2 are hydrogen, R 3 is hydrogen or a methyl radical, which is one type of the present invention an artificial nucleic acid BNA NC (NMe) DNA or RNA oligonucleotide analogues containing (II) is It has the following excellent characteristics. This is because the ability to form double strands for complementary RNA strands is very high.
  • BNA NC (NMe) modified DNA oligonucleotides also excel in triplex forming ability for double-stranded DNA strands.
  • the Tm value rises by 7 to 12 ° C. in triplex formation for a double-stranded DNA strand.
  • the triplex forming exactly identify the nucleotide sequence, but is required sequence selectivity of binding only to target sequences, BNA NC (NMe) modified DNA oligonucleotide match sequence and Tm for the mismatched sequences
  • the difference in value is 25 ° C. or more, and the sequence selectivity is superior to that of the natural DNA oligonucleotide.
  • nuclease resistance is outstanding.
  • BNA NC (NMe) modified oligonucleotides are more nuclease resistant than natural DNA oligonucleotides, but much lower than S-oligos (phosphorothioate type oligonucleotides).
  • the BNA NC (NMe) -modified oligonucleotide of the present invention is superior in nuclease resistance to SNA-oligo, which is highly evaluated for its excellent nuclease resistance, as well as BNA-modified oligonucleotides, and it can be degraded in vivo. It has a strong resistance characteristic.
  • the N—O bond contained in the artificial nucleic acid BNA NC (NMe) molecule of the present invention can be selectively cleaved under a mild condition by a reducing reagent, and NH group and OH group are released. It is easy to obtain various complexes (conjugates) before and after the preparation of oligonucleotide analogues by binding other functional molecules based on these NH groups and OH groups.
  • Other functional molecules include fluorescent molecules, chemiluminescent molecules, labeling molecules such as molecular species containing radioisotopes, various DNA (RNA) cleavage active molecules, intracellular and nuclear signal peptide, etc. It is.
  • the DNA and RNA oligonucleotide analogues modified from BNA NC (NMe) in various forms are used for gene drug discovery by antisense method, antigene method, decoy method, gene homologous recombination method, RNA interference method, etc. It is extremely useful not only as a functional material, but also as a base material for genetic diagnosis methods such as molecular beacons and DNA chips, and as a development material for research reagents for elucidating and analyzing gene functions.
  • R 3 is a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 1 to 5 carbon atoms, carbon An aryl group of 6 to 14; a methyl group substituted with 1 to 3 aryl groups; a lower aliphatic or aromatic sulfonyl group such as a methanesulfonyl group or p-toluenesulfonyl group; or an acetyl group such as an acetyl group.
  • Base is as described above, preferably an adenylyl group, thymine.
  • nucleoside analogs and oligonucleotide analogs of the present invention can be synthesized based on the methods described in Examples and conventional techniques in this field.
  • JP-A-10-304889 discloses The raw material of the compound of the present invention with reference to the method described.
  • reaction is quenched (for example, by adding water to the reaction solution), extracted with an appropriate organic solvent (for example, ethyl acetate), the organic layer is washed (for example, with saturated aqueous sodium bicarbonate and saturated brine), and then an appropriate drying agent (for example, it is dried with anhydrous sodium sulfate).
  • an appropriate organic solvent for example, ethyl acetate
  • the organic layer is washed (for example, with saturated aqueous sodium bicarbonate and saturated brine), and then an appropriate drying agent (for example, it is dried with anhydrous sodium sulfate).
  • an appropriate drying agent for example, it is dried with anhydrous sodium sulfate.
  • the solvent is distilled off under reduced pressure to obtain compound A-3.
  • Compound A-3 can also be used in the next reaction without purification.
  • the organic layer is washed (eg, with water, saturated saline) and then dried with a suitable desiccant (eg, anhydrous sodium sulfate).
  • a suitable desiccant eg, anhydrous sodium sulfate.
  • reaction solution is extracted with a suitable organic solvent (for example, ether), and the organic layer is washed (for example, with water and saturated brine) and then dried with a suitable desiccant (for example, magnesium sulfate).
  • a suitable organic solvent for example, ether
  • desiccant for example, magnesium sulfate
  • the resulting crude product is purified (for example, by silica gel column chromatography (chloroform)) to obtain compound A-7 ′.
  • an appropriate reagent eg, hydrazine-hydrate (0.12 ml, 2.38 mmol) is added.
  • the mixture is stirred for an appropriate time (for example, 10 minutes) at an appropriate temperature (for example, room temperature), and then the solvent of the reaction solution is distilled off, followed by filtration and extraction of the filtrate with an appropriate organic solvent (for example, ethyl acetate) After washing (for example, with water and saturated saline), drying with an appropriate desiccant (for example, anhydrous sodium sulfate), the solvent is distilled off under reduced pressure, and the resulting A-8 is not purified and used for the next reaction. Can do.
  • an appropriate temperature for example, room temperature
  • an appropriate organic solvent for example, ethyl acetate
  • an appropriate desiccant for example, anhydrous sodium sulfate
  • reaction is quenched (eg, with saturated aqueous sodium bicarbonate) and extracted with a suitable organic solvent (eg, ethyl acetate).
  • a suitable organic solvent eg, ethyl acetate
  • the organic layer is washed (eg with water, saturated saline) and dried over a suitable desiccant (eg magnesium sulfate).
  • the step of removing OPG 4 and the step of crosslinking the 2′-position and the 4′-position may be the same step or different steps.
  • a suitable organic solvent eg ethyl acetate
  • the organic layer is washed (eg, with water, saturated saline) and then dried with a suitable desiccant (eg, anhydrous sodium sulfate).
  • the amino group is substituted. Stir for an appropriate time (eg 1 hour).
  • the reaction solution is extracted with a suitable organic solvent (for example, ethyl acetate), washed with (for example, water, saturated aqueous sodium hydrogen carbonate, saturated brine), and the organic layer is dried with a suitable desiccant (for example, anhydrous sodium sulfate).
  • a suitable organic solvent for example, ethyl acetate
  • washed with for example, water, saturated aqueous sodium hydrogen carbonate, saturated brine
  • a suitable desiccant for example, anhydrous sodium sulfate
  • BNA-3 The compound represented by the general formula BNA-3 can be synthesized based on the methods described in the Examples and the prior art in this field.
  • the reaction conditions, the protecting group introduction reagent, and the reaction reagent can be specifically referred to the methods described in the examples, but are not limited thereto, reaction conditions that can be used based on the common general technical knowledge in the field, Reagents can be employed as appropriate.
  • the method described in J. Org. Chem. 2010, 75, 1569-1581 can be referred to.
  • J. Org. Chem. 2010, The raw material of the compound of the present invention can be synthesized with reference to the method described in 75,1569-1581.
  • Oligonucleotide analogs including nucleoside analogs used in the present invention can be variously synthesized using a known DNA synthesizer. Subsequently, the resulting oligonucleotide analog is purified using a reverse phase column, and the purity of the product is analyzed by reverse phase HPLC or MALDI-TOF-MS, thereby confirming the formation of a purified oligonucleotide analog.
  • One or more nucleoside analogs of the present invention can be present in an oligonucleotide analog.
  • oligonucleotide analog in which the nucleoside analog of the present invention is introduced in a required number (length) at a required position.
  • the total length of the oligonucleotide analog is 2 to 50 nucleotide units, preferably 8 to 30 nucleotide units.
  • Oligonucleotide analogs used in the present invention are not easily degraded by nucleases and can exist in the living body for a long time after administration to the living body. And, for example, it forms a duplex with sense RNA to inhibit transcription of in vivo components (proteins) that cause disease into mRNA. It is also thought to inhibit the growth of infected viruses.
  • the oligonucleotide analogue of the present invention is expected to be useful as a medicine for treating diseases by inhibiting the action of genes such as antitumor agents and antiviral agents. That is, according to the present invention, there are oligonucleotide analogues and production intermediates thereof that have stable and excellent antisense or antigene activity, or excellent activity as a detection agent for a specific gene or a primer for initiation of amplification. Nucleoside analogs are provided.
  • DNA and RNA oligonucleotide analogues modified with various forms of 2 ′, 4′-BNANC monomer, which is one of the nucleoside analogues used in the present invention, are various physiologically and biologically active substances.
  • Materials for pharmaceuticals functional materials for double-stranded oligonucleotides for RNA interference and decoy methods, functional materials such as DNA chips targeting single-stranded nucleic acids such as cDNA, molecular beacons, etc.
  • RNA molecules for antigene methods and gene homologous recombination methods
  • materials for sensitive analysis of biological trace components in combination with fluorescent and luminescent materials and gene functions It is useful as a development material for research reagents for analysis and elucidation.
  • nucleoside analogs and oligonucleotide analogs of the present invention can be formulated into parenteral preparations by incorporating conventional auxiliaries such as buffers and / or stabilizers. Further, as a topical preparation, a conventional pharmaceutical carrier can be blended to prepare an ointment, cream, solution, salve or the like.
  • Oligonucleotides constituting S-TuD used in the present invention are synthesized by a synthesizer (eg, nS-8II synthesizer or AKTA oligopilot synthesizer).
  • a synthesizer eg, nS-8II synthesizer or AKTA oligopilot synthesizer.
  • a porous glassy solid support eg 2′-O-methyl-RNA CPG Link Technologies
  • a 2′-O-methyl-RNA phosphoramidite with standard protecting groups eg Although not, 5′-O-dimethoxytrityl N6-benzoyladenosine-2′-O-methyl-3′-ON, N′-diisopropyl phosphoramidite, 5′-O-dimethoxytrityl-N4- Acetylcytidine-2'-O-methyl-3'-ON, N'-diisopropyl phosphoramidite, 5'-O-dimethoxytrityl-N2-isobutyrylguanosine-2'-O-methyl-3'- ON, N'-diisopropyl phosphoramidite, and 5'-O-dimethoxytrityluridine-2'-O-methyl-3'-ON, N'-diisopro Le phosphoramidite (all manufactured by Sigma-Aldrich
  • All phosphoramidites in a suitable solvent (e.g. acetonitrile (CH 3 CN)), used at an appropriate concentration (e.g. 0.1 M). Appropriate ligation / reuse times (eg 15 minutes) are used for 2′-O-methyl RNA, BNA and LNA.
  • the activator is, for example, but not limited to, 5-benzylmercapto-tetrazole (0.25M, manufactured by Wako Pure Chemical Industries), and the PO-oxidation is, for example, limited to this Although not iodine / water / pyridine is used.
  • the synthetic carrier is transferred to a suitable container (eg, a glass bottle).
  • Oligonucleotide is used in a suitable onto (eg 45 ° C.) for a suitable time (eg 13 hours) using an equal mixture of 15 mL of 40% aqueous methylamine and 33% methylamine ethanol solution per gram of carrier,
  • the base and phosphate group are deprotected and cleaved from the support.
  • the step of deprotecting the base and the step of deprotecting the phosphate group may be the same or different.
  • the ethanol ammonia mixture is then filtered and placed in a suitable container (eg, a new 250 mL bottle).
  • the carrier is washed (eg with 2 ⁇ 40 mL of ethanol / water (1: 1 v / v)). Thereafter, the solvent is removed by evaporation (for example using a rotary evaporator).
  • Oligonucleotides are purified by HPLC (eg, reverse phase ion pair HPLC on a Source 15 RPC gel column).
  • the buffer include, but are not limited to, 5% CH 3 CN, 0.1M triethylamine acetate buffer (pH 7.0) (buffer A) and 90% CH 3 CN, 0.1M triethylamine. This is an acetate buffer (pH 7.0) (buffer B).
  • the oligonucleotide pool is then purified by HPLC (eg, Source 30Q anion pair HPLC).
  • solutions and buffers include, but are not limited to, 0.6% trifluoroacetic acid (solution A), 20 mM sodium phosphate buffer (pH 7.5) (buffer C), and 20 mM phosphate. 2M sodium chloride (buffer D) in sodium buffer.
  • solution A trifluoroacetic acid
  • buffer C 20 mM sodium phosphate buffer
  • 2M sodium chloride buffer D
  • fractions containing the full-length oligonucleotide are pooled, desalted and lyophilized.
  • Compounds are finally analyzed, for example, by MALDI-TOF / MS and reverse phase HPLC (eg, X-Bridge ion pair reverse phase HPLC).
  • the concentration of the oligonucleotide is determined (for example, by measuring the absorbance using an ultraviolet spectrophotometer). Using the determined concentration, the complementary strands are mixed at an equimolar concentration, heated at an appropriate temperature (eg, 95 ° C.) for an appropriate time (eg, 10 minutes), and then gradually cooled to form a double strand. Double strand formation is confirmed, for example, by non-denaturing gel electrophoresis.
  • the nucleic acid may contain a conjugate at the end.
  • the conjugate include lipophilic substances, terpenes, protein binding substances, vitamins, carbohydrates, retinoids, peptides, and the like.
  • the miRNA inhibition complex used herein can be designed to be composed of linear single-stranded nucleic acids (FIG. 3).
  • the present invention is particularly concentrated on one side (right side in FIG. 3) of the double stranded structure (stem I in FIG. 2) where all MBS is present, and each strand of the double stranded structure is closed on that side.
  • a complex having both ends of a single-stranded RNA on the opposite side of the double-stranded structure (FIG. 3).
  • Additional double-stranded structures (such as stems II and III in FIG. 3) may be included in sequences containing MBS.
  • the length of the single-stranded RNA may be determined as appropriate, for example, within 500 bases, preferably within 450 bases, within 420 bases, within 400 bases, within 380 bases, within 360 bases, within 340 bases, within 320 bases, within 300 bases, 300 bases Within base, within 280 base, within 260 base, within 240 base, within 220 base, within 200 base, within 180 base, within 160 base, within 140 base, within 120 base, within 100 base, or within 80 base.
  • the length of a single-stranded RNA forming a complex having two double-stranded structures and two MBS is, for example, 60 to 300 bases, preferably 70 to 250 bases, 80 to 200 bases, 90 to 180 bases, Or 100 to 150 bases.
  • the first double-stranded structure (double-stranded structure close to both ends of the single-stranded RNA) is, for example, 15-30 bp, preferably 16-28 bp, preferably 17-25 bp, preferably 17-24 bp, such as 17 bp, 18 bp.
  • the second double stranded structure (an additional double stranded structure included in sequences containing MBS) to make the whole compact
  • the length may be shorter than the length of the first double-stranded structure, for example, 4 bp to 20 bp, such as 5 bp to 15 bp, 5 bp to 12 bp, 5 bp to 10 bp, 6 bp to 9 bp, or 7 bp to 8 bp.
  • the present invention also relates to RNA that constitutes the miRNA-inhibiting complex used herein (herein, RNA includes natural RNA and nucleic acid analogs), and includes RNA containing BNA.
  • RNA includes natural RNA and nucleic acid analogs
  • RNA containing BNA RNA containing BNA.
  • the miRNA-inhibiting RNA complex is composed of one molecule of RNA, by annealing the RNA within the molecule, or when composed of two or more RNA molecules, annealing those RNAs.
  • the complex of the present invention can be constructed.
  • These RNAs can be appropriately synthesized.
  • desired RNA can be produced by chemical synthesis of RNA.
  • a nucleic acid encoding at least one MBS may contain more than one MBS, and may contain a set of one or more complementary sequences that can form a double-stranded structure in a stretch of sequences.
  • examples of the nucleic acid include a pair of complementary sequences forming at least one double-stranded structure and a nucleic acid containing at least one MBS at both ends of the pair of complementary sequences.
  • such a nucleic acid is a nucleic acid containing a pair of complementary sequences capable of forming a stem between two MBS. This stem corresponds to the second double-stranded structure.
  • a sequence that forms a G-quadruplex may be included instead of the second double-stranded structure.
  • the nucleic acid may contain two or more structural units including a pair of complementary sequences that can form a double-stranded structure between two MBS.
  • the structural unit can be included in multiple nesting structures, and between a pair of complementary sequences that can form a double-stranded structure between a pair of MBS, and another pair of MBS and a double-stranded structure between them.
  • a sequence including a pair of complementary sequences that can form (# 15, # 16, etc. in FIG. 3) can be included.
  • Multiple MBS sequences may be the same or different.
  • MBS a sequence forming a second double-stranded structure—is between a pair of complementary sequences forming a first double-stranded structure—
  • a nucleic acid having a structure in which a sequence having an MBS structure is inserted is obtained.
  • MBS a pair of complementary sequences forming a second double-stranded structure—a nucleic acid having a structure in which a sequence having the MBS structure is inserted.
  • a nucleic acid consisting of two double-stranded structures and a pair of opposing single strands (each containing MBS) is compact and exhibits sufficient miRNA inhibitory activity.
  • a pair of complementary sequences capable of forming a double-stranded structure and MBS can be appropriately linked via a linker or spacer.
  • the length of the linker or spacer is as described in the specification.
  • complementary sequences may be linked via a linker or spacer.
  • the linker or spacer becomes a loop, and the double strand is combined to form a stem loop.
  • the length of the loop may be appropriately adjusted, and details are as described in the specification.
  • a sequence forming a G-quadruplex can be appropriately used instead of the double strand.
  • nucleic acid molecule comprising 5′-CAGUGUU-3 ′ and 5′-CAGUAUU-3 ′ sequences and comprising at least one cross-linked nucleic acid (BNA).
  • a nucleic acid molecule comprising two miRNA binding sequences, wherein one miRNA binding sequence comprises 5′-CAGUGUU-3 ′ or 5′-CAGUAUU-3 ′ and the other miRNA Nucleic acid molecules are provided wherein the binding sequence comprises 5′-CAGUGUU-3 ′ or 5′-CAGUAUU-3 ′ and comprises at least one cross-linked nucleic acid (BNA).
  • a nucleic acid molecule comprising two miRNA binding sequences, one miRNA binding sequence comprising 5'-CAGUGUU-3 'and the other miRNA binding sequence comprising 5'-CAGUAUU Nucleic acid molecules comprising -3 ′ and comprising at least one cross-linked nucleic acid (BNA) are provided.
  • nucleic acid molecule comprising a miRNA binding sequence comprising the sequence of SEQ ID NO: 1 and a miRNA binding sequence comprising the sequence of SEQ ID NO: 2.
  • a further embodiment of the invention is a nucleic acid molecule comprising the sequence of SEQ ID NO: 9 and the sequence of SEQ ID NO: 10.
  • the BNA used in the present invention can be included in any number in any position in the nucleic acid molecule or miRNA inhibition complex of the present invention.
  • 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 Or 20 or more BNAs may be included in one nucleic acid molecule or miRNA inhibition complex.
  • BNA can be contained in MBS and / or double-stranded structure, and improvement in serum stability and miRNA inhibitory ability can be expected only by being contained in either MBS or double-stranded structure.
  • BNA is included in both MBS and double-stranded structures.
  • miR-200C can be successfully suppressed by a nucleic acid molecule that has been BNA-modified at the position shown in FIG. 10 (lower-case portion in the figure), which is miR-200C such as miR21.
  • Other miRNAs have similar inhibitory effects.
  • compositions comprising the nucleic acid molecules described herein, including those described above, or methods of using the same are provided.
  • the composition is for the prevention or treatment of tumors, and methods for the prevention or treatment of tumors using such compositions are also provided.
  • the tumor targeted by the present invention is a carcinoma. In another embodiment, the tumor targeted by the present invention is colon cancer, lung cancer, or breast cancer.
  • the compositions of the invention can also be used to promote tumor epithelial-mesenchymal transition, and compositions for such applications and methods of such use are also provided in the present disclosure.
  • One aspect of the present invention relates to a composition comprising a miRNA inhibition complex, wherein the miRNA inhibition complex is present in a form contained in a carrier for nucleic acid delivery. Use of an appropriate carrier facilitates the serum stability of the miRNA inhibition complex and delivery to the target tissue, making it particularly useful for treatment or prevention use.
  • the present inventors have combined a tetracycline-inducible expression system for TuD (Tough Decoy) RNA, which is a specific and potent inhibitor for target miRNA, and applied this system to miR-200c and miR- in human colon cancer cell lines.
  • TuD TuD
  • EMT epithelial-mesenchymal transition
  • some aspects of the present invention demonstrate that tumor growth of primary tumors can be effectively suppressed through the inhibition of miR-200 family members, and that tumors that have already formed can also be reduced.
  • the present invention can also target and inhibit miRNAs such as those described below. By inhibiting such miRNA, it is considered that a desired treatment including suppression of tumor growth, tumor degeneration, prevention of generation of cancer stem cells from non-cancer stem cells, etc. can be realized depending on the target miRNA.
  • the inhibitory complexes of the invention can be designed to bind to any miRNA exemplified herein.
  • MiR-205 suppresses EMT by suppressing Zeb1 and Zeb2 like the miR-200 family (Nature Cell Biology volume 10, pages 593-601 (2008)). It has also been reported that miR-205 has increased expression in lung cancer and can serve as a diagnostic marker (Biomed Pharmacother. 2017 Jul; 91: 823-830.). Therefore, it is considered that miR-205 can be targeted in the same manner as miR-200 family members.
  • miR-21 is expressed in various cancer types such as colorectal cancer, lung cancer, breast cancer, pancreatic cancer, liver cancer, glioblastoma, skin cancer, thyroid cancer, cervical cancer, and blood cell cancer. Abnormally increased (DOI: 10.1111 / j.1582-4934.2008.00556.x). Inhibiting miR-21 in hepatoma cells suppresses cell proliferation, migration and invasion. Inhibition of miR-21 in glioblastoma cells induces apoptosis. MiR-21 contributes to chemotherapy resistance in breast cancer, colon cancer, lung cancer, pancreatic cancer, prostate cancer, liver cancer, uterine cancer, glioma, head and neck cancer, stomach cancer, and bladder cancer (Biomed Rep. 2016 Oct; 5 (4): 395-402.).
  • miR-17-92 cluster miRNAs include miR-17, miR-18a, miR-19a, miR-20a, miR-19b-1, and miR-92a-1, which are clustered on chromosome 13 Existing. miR-17-92 cluster miRNAs are upregulated in lung cancer, breast cancer, colon cancer, pancreatic cancer, prostate cancer, thyroid cancer, and leukemia (Front Med (Lausanne). 2015; 2: 64) .
  • MiR-155 contributes to cancer malignant traits in glioma, lung cancer, colon cancer, liver cancer, breast cancer, osteosarcoma, oral squamous cell carcinoma, and lymphoma. MiR-155 also contributes to resistance to anti-cancer chemotherapy and radiation therapy in lung cancer, colon cancer, prostate cancer, breast cancer, etc. (Bayraktar, R. & Van Roosbroeck, K. Cancer Metastasis Rev. (2016) 37:33.).
  • miR-155 has abnormally increased expression in colorectal cancer, lung cancer, and breast cancer (Proc Natl Acad Sci US A 2006; 103: 2257-61.), Breast cancer cell line MDA-MB-231 Tumor formation is suppressed when anti-miR-155 is administered and transplanted into mice (DOI: 10.1158 / 0008-5472.CAN-09-4250), lung cancer cells suppressed with miR-155 inhibitor are transplanted Then, it has been reported that tumor growth is inhibited, and further, when combined with miR-21 inhibition, the inhibitory effect is enhanced (Oncotarget. 2016 Dec 20; 7 (51): 84508-84519.).
  • miR-133a is highly expressed in osteosarcoma and the prognosis is poor.
  • miR-133a inhibition and chemotherapy are combined in mice bearing osteosarcoma, lung metastasis is suppressed and overall survival is prolonged.
  • miR-196b miR-196b high expression group in pancreatic cancer has been reported to have a poor prognosis (Carcinogenesis. 2017 Apr 1:38 (4): 425-431.).
  • miR-125b has been reported to contribute to molecular target drug resistance in gastric cancer and to have a poor prognosis in the high expression group (Exp Ther Med. 2017 Jul; 14 (1): 657-663.) .
  • miR-135b is highly expressed in colorectal cancer and the prognosis of the high expression group is poor (Cancer Cell. 2014 Apr 14; 25 (4): 469-483.), and miR-135b is highly expressed in lung cancer The prognosis of the group is poor, and it has been reported that when an inhibitor is administered to mice transplanted with lung cancer cell lines, tumor growth is suppressed (Nat Commun. 2013; 4: 1877. Doi: 10.1038 / ncomms2876.).
  • miR-106a is highly expressed in lung cancer, has a poor prognosis in the high expression group, and inhibition of miR-106a in lung cancer cells suppresses cell proliferation (Int J Clin Exp Pathol. 2015 Apr 1: 8 ( 4): 3827-34.) In addition, miR-106a high expression group in colorectal cancer has been reported to have a poor prognosis (Med Mol Morphol. 2017 Jun; 50 (2): 76-85.).
  • miR-146a is up-regulated in bone and meat species, and the prognosis of the high expression group is poor, and the bone and meat type that inhibits miR-146a suppresses tumor growth in mice (Oncotarget. 2017; 8: 74276- 74286.) has been reported.
  • tumor suppression may be any of suppression of tumor cell tumorigenic activity (tumorigenicity), suppression of tumor formation or growth, or tumor degeneration. These can be measured using, for example, tumor mass formation in vivo (for example, its frequency), its size, growth rate, etc. when tumor cells are injected into an individual.
  • the miRNA binding sequence comprises 5′-CAGUGUU-3 ′ and / or 5′-CAGUAUU-3 ′.
  • the miRNA inhibition complex comprises two miRNA binding sequences, one miRNA binding sequence contains 5'-CAGUGUU-3 'and the other miRNA binding sequence contains 5'-CAGUAUU-3'. This is advantageous in inhibiting both at least one miRNA containing 5′-AACACUG-3 ′ as a seed sequence and at least one miRNA containing 5′-AAUACUG-3 ′ as a seed sequence.
  • the tumor suppression according to the present invention is characterized not only by targeting cancer stem cells but also by being able to collectively prevent cancer stem cells from being generated from non-cancer stem cells. That is, suppression of a tumor in the present invention includes achieving (i) both suppression of tumor formation of cancer stem cells and (ii) suppression of cancer stem cells from non-cancer stem cells. Specifically, the tumor suppression according to the present invention not only suppresses tumor formation by a subpopulation (subpopulation) in which tumorigenic activity is relatively increased among tumor cell populations, but also has a relative tumorigenic activity.
  • the tumor suppression of the present invention not only suppresses the tumorigenic activity of cancer cells (for example, cancer stem cells) that have already been produced but also has a higher tumorigenic activity. Conversion to low cancer cells (non-cancer stem cells), and conversion from cancer cells having low tumorigenic activity to cancer cells having high tumorigenic activity can also be suppressed.
  • tumor suppression means that the tumor suppression is the suppression of tumor formation of a tumor cell subpopulation whose tumorigenic activity is increased in the tumor cell population, and the tumorigenic activity is Suppression is achieved in which both suppression of the generation of elevated tumor cell subpopulations is achieved.
  • the fractionation of the tumor cell population into subpopulations can be performed using a desired marker or the like.
  • subpopulation can be performed using epithelial markers as indices.
  • the epithelial marker may be arbitrarily selected from, for example, ESA (epithelial specific antigen), CDH1 (Cadherin-1), CDH3 (Cadherin-3), ESRP1 (epithelial splicing regulatory protein 1), and more preferably ESA. Although it is mentioned, it is not limited to these. Moreover, you may use combining these markers.
  • a subpopulation with a positive epithelial marker has a relatively higher tumorigenic activity than a subpopulation with a negative epithelial marker
  • the positive subpopulation has a subpopulation with a relatively increased tumorigenic activity (tumorogenic activity is less
  • the negative subpopulation is a subpopulation with relatively low tumorigenic activity (cell group with low tumorigenic activity).
  • the seed sequence refers to the sequence of the second to eighth bases counted from the 5 ′ end of miRNA.
  • miRNA containing 5′-AACACUG-3 ′ as a seed sequence miR-200a (5′-UAACACUGUCUGGUAACGAUGU-3 ′, SEQ ID NO: 13) and miR-141 (5′-UAACACUGUCUGGUAAAGAUGG-3 ′, SEQ ID NO: 14) are included. included.
  • MiR-200b (5'-UAAUACUGCCUGGUAAUGAUGA-3 ', SEQ ID NO: 15)
  • miR-200c (5'-UAAUACUGCCGGGUAAUGAUGGA-3', SEQ ID NO: 16) include 5'-AAUACUG-3 'as a seed sequence.
  • miR-429 (5′-UAAUACUGUCUGGUAAAACCGU-3 ′, SEQ ID NO: 17).
  • a further embodiment of the present invention is characterized by inhibiting at least one miRNA containing 5′-AGCUUAU-3 ′ as a seed sequence, thereby suppressing tumors.
  • miRNA includes miR-21 (5′-UAGCUUAUCAGACUGAUGUUGA-3 ′, SEQ ID NO: 41).
  • the above-described method of the present invention preferably inhibits at least miR-200c and miR-141.
  • the activity of each miRNA in the inhibited cell is, for example, 1/3 or less, preferably, for example, 1/4 or less, 1/5 or less, 1/6 or less, 1 / 7 or less, 1/8 or less, or 1/9 or less. More preferably, it is 10% or less, 8% or less, 5% or less, or 3% or less, for example. More preferably, the methods of the invention inhibit all of miR-200a, miR-200b, miR-200c, miR-141 and miR-429.
  • each miRNA is, for example, 1/3 or less, preferably, for example, 1/4 or less, 1/5 or less, 1/6 or less, 1/7 or less, compared to the activity of each miRNA at the time of non-inhibition, 1 / 8 or less, or 1/9 or less. More preferably, it is 10% or less, 8% or less, 5% or less, or 3% or less, for example.
  • the method of the invention inhibits all members of the miR-200 family.
  • the activity can be measured by an assay known to those skilled in the art, such as a reporter assay using luciferase (for example, an assay using Dual-Luciferase (registered trademark) Reporter Assay System (Promega)).
  • S-TuD can be particularly preferably used as an miRNA inhibitor.
  • S-TuD has a pair of strands each containing at least one miRNA binding sequence, and the miRNA binding sequence is sandwiched between a pair of multiple strands (for example, a double strand and / or a four strand).
  • a miRNA inhibitor having a structure in which both ends of a pair of strands are bonded to one end of each of a pair of multiple strands.
  • the miRNA inhibitor may be composed of RNA, or may be composed of other nucleic acids, nucleic acid analogs, or combinations thereof.
  • inhibition of at least one miRNA containing 5′-AACACUG-3 ′ as a seed sequence and inhibition of at least one miRNA containing 5′-AAUACUG-3 ′ as a seed sequence are different inhibitors or one Even when inhibiting both with an inhibitor, at least one miRNA containing 5′-AACACUG-3 ′ as a seed sequence and at least one site containing 5′-AAUACUG-3 ′ as a seed sequence It is preferred to have separate sites for miRNA inhibition and to be inhibited by these two different inhibition sites.
  • such miRNA inhibitors include at least one miRNA (first miRNA) containing 5′-AACACUG-3 ′ as a seed sequence and 5′-AAUACUG-3 ′ as a seed sequence.
  • the inhibitory part of the miRNA inhibitor that inhibits the first miRNA is different from the inhibitory part of the miRNA inhibitor that inhibits the second miRNA.
  • the inhibition part of the miRNA inhibitor that inhibits the first miRNA contains a sequence complementary to the seed sequence of the first miRNA
  • the inhibition of the miRNA inhibitor that inhibits the second miRNA contains a sequence complementary to the seed sequence of the second miRNA.
  • Examples of such inhibition include, for example, an miRNA inhibitor molecule comprising a sequence complementary to the seed sequence of the first miRNA, and an miRNA inhibitor molecule comprising a sequence complementary to the seed sequence of the second miRNA.
  • miRNA inhibition can be mentioned.
  • an miRNA-inhibiting moiety comprising a sequence complementary to the seed sequence of the first miRNA and an miRNA-inhibiting moiety comprising a sequence complementary to the seed sequence of the second miRNA are contained in the same molecule. Inhibiting miRNA using an miRNA inhibitor can be mentioned.
  • miRNA inhibitors having two or more miRNA inhibitory sites, each site designed to target a different part of the miRNA (eg target different miRNAs) miRNA inhibitors are referred to as hybrid miRNA inhibitors in the present invention.
  • the miRNA inhibitor of the present invention preferably comprises an inhibition site for at least one miRNA containing 5′-AACACUG-3 ′ as a seed sequence, and an inhibition site for at least one miRNA containing 5′-AAUACUG-3 ′ as a seed sequence Is a hybrid miRNA inhibitor.
  • cancer which has an epithelium origin or epithelial character at least partially, such as a carcinoma is preferable.
  • the cancer to be suppressed in the present invention is preferably a cancer containing at least a population of cells expressing an epithelial marker, more preferably a population of cells expressing an epithelial marker as a main cell population. Cancers that contain (ie, cancers that have less than half the population of cells that do not express any epithelial marker).
  • the epithelial marker may be arbitrarily selected from, for example, ESA (epithelial specific antigen), CDH1 (Cadherin-1), CDH3 (Cadherin-3), ESRP1 (epithelial splicing regulatory protein 1), and more preferably ESA Although it is mentioned, it is not limited to these. Moreover, you may use combining these markers.
  • ESA epithelial specific antigen
  • CDH1 CDH1
  • CDH3 CDH3
  • ESRP1 epithelial splicing regulatory protein 1
  • Such cancer has a cell (eg, ESA + cell) expressing any epithelial marker (eg, ESA) of 0.3% or more, preferably 0.5% or more, 1% or more, 2% or more, 3% or more, 5% %, 7%, 10%, 15%, 20%, 25%, 30%, 40%, 50%, 60%, 70%, 80%, or 90% Including above.
  • the present invention provides a method for examining cancer, comprising the step of confirming that an epithelial marker positive cell is contained in a tumor cell.
  • the cancer to be suppressed in the present invention is preferably at least one miRNA containing 5′-AACACUG-3 ′ as a seed sequence and at least one miRNA containing 5′-AAUACUG-3 ′ as a seed sequence. By inhibiting both, epithelial-mesenchymal transition is promoted and / or mesenchymal epithelial transition is suppressed.
  • the cancer to be suppressed in the present invention is preferably at least one miRNA containing 5′-AACACUG-3 ′ as a seed sequence and at least one miRNA containing 5′-AAUACUG-3 ′ as a seed sequence.
  • mesenchymal epithelial transition is promoted and / or epithelial-mesenchymal transition is suppressed.
  • epithelial-mesenchymal transition is promoted and / or mesenchymal epithelial transition is suppressed by inhibition of miR-200c and miR-141.
  • the cancer to be suppressed in the present invention preferably promotes mesenchymal epithelial transition and / or suppresses epithelial-mesenchymal transition by expressing both miR-200c and miR-141.
  • the method of the present invention includes, in one aspect thereof, a method comprising a step of confirming that at least a population of cells expressing an epithelial marker in tumor cells is contained prior to tumor suppression.
  • the method of the present invention comprises a step of confirming at least a population of cells expressing an epithelial marker in tumor cells prior to tumor suppression, and the tumor confirmed to be promoted A method of suppressing the above is included.
  • the epithelial-mesenchymal transition is promoted by inhibition of the miRNA in tumor cells.
  • the method of the present invention includes, in one embodiment thereof, a method including a step of confirming that epithelial-mesenchymal transition is promoted by inhibition of the miRNA in tumor cells prior to tumor suppression.
  • a step of confirming that epithelial-mesenchymal transition is promoted by inhibition of the miRNA in a tumor cell was confirmed to be promoted.
  • Methods for inhibiting tumors are included.
  • the present invention also provides a method for examining cancer, comprising the step of confirming that epithelial-mesenchymal transition is promoted by inhibition of the miRNA in tumor cells.
  • the cancer to be suppressed in the present invention may be, for example, a cancer including a subpopulation having an epithelial trait (sp E ) and a subpopulation having a mesenchymal trait (sp M ).
  • Such cancers include, for example, a subpopulation of cells that are positive for epithelial markers and a subpopulation of cells that are negative for epithelial markers (or low expression) or positive for mesenchymal markers.
  • the cancer to be suppressed in the present invention has both a subpopulation of cells that express epithelial markers and a subpopulation of cells that are epithelial marker negative or low expression (or mesenchymal marker positive) cells, respectively.
  • the proportion of the subpopulation may be determined by directly collecting the collected cancer cells or culturing the cancer cells in a desired medium.
  • a DMEM medium, Ham's F-12 medium, or the like can be used.
  • the assay can be performed by adding 5-10% fetal bovine serum (FBS) or the like as appropriate.
  • the ratio between the subpopulation of cells that express epithelial markers in tumor cells and the subpopulation of epithelial marker negative or low expression (or mesenchymal marker positive) cells may be confirmed.
  • the present invention is not limited to such an invention.
  • the cancer to be suppressed in the present invention preferably contains cancer stem cells in a subpopulation (sp E ) having epithelial traits.
  • the cancer stem cell refers to a cell having a tumor-like mass forming ability in a tumor-like mass formation assay, or a cell having an ability to form a tumor in a tumor formation experiment using an animal.
  • Cancer stem cells belonging to a sub-population (sp E ) having epithelial traits are referred to as epithelial plasma stem cells or epithelial cancer stem cells.
  • Inclusion of cancer stem cells may be confirmed by confirming that the cell population has tumorigenicity. For example, the formation of a tumor-like mass can be assayed according to procedures known to those skilled in the art, or the cells can be transplanted into mice or the like. It can be confirmed by testing tumor formation.
  • the method of the present invention includes, in one aspect thereof, a method including a step of confirming that the target cancer contains epithelial plasma cancer stem cells prior to tumor suppression.
  • the step of confirming that the target cancer contains epithelial plasma cancer stem cells prior to tumor suppression and the confirmed cancer according to the above-described method of the present invention.
  • a method of suppression is included.
  • the cancer to be suppressed is a tumor having a subpopulation having an epithelial trait (sp E ), a remaining population (for example, a sub-population having a mesenchymal trait; sp M ) or a cancer cell.
  • sp E epithelial transformed subpopulation tumorigenicity tumors
  • sp M epithelial transformed tumorigenic tumors
  • the tumorigenicity can be measured by, for example, assaying the formation of a tumor-like mass according to a procedure known to those skilled in the art, or transplanting cells into a mouse or the like and measuring the presence or absence of tumor formation or the tumor size. it can.
  • a subpopulation (sp E ) having an epithelial character is isolated from tumor cells.
  • the remaining population (for example, subpopulation with mesenchymal trait; sp M ) and whole cancer cells are used as a control group, and a tumorigenic assay is performed with the same number of cells.
  • the cancer has an epithelial trait that has a subpopulation of epithelial trait (sp E ) that is higher than the rest of the population or the whole tumor cell. Determined to be a neoplastic tumor.
  • Subpopulations having epithelial traits can be separated and identified as appropriate using epithelial markers, and the epithelial markers can be arbitrarily selected from, for example, ESA, CDH1, CDH3, and ESRP1 as described above. .
  • the present invention also relates to a cancer test comprising a step of confirming that tumorigenesis in a subpopulation having an epithelial trait (sp E ) is higher in a tumor than a subpopulation having no epithelial trait or an entire cancer cell. Also relates to methods and classification methods.
  • the tumorigenicity of the subpopulation having an epithelial trait (sp E ) in the target tumor is the remaining population (for example, the subpopulation having a mesenchymal trait; It is also possible to confirm that it is higher than the tumorigenicity of sp M ) or whole cancer cells. That is, in one aspect of the method of the present invention, prior to tumor suppression, the tumorigenicity of a subpopulation having an epithelial trait (sp E ) in the tumor of interest is the remaining population (eg, mesenchymal trait) Or sub-populations with sp M ), or a method comprising the step of confirming that it is higher than the tumorigenicity of the whole cancer cell.
  • the method of the present invention is such that, prior to tumor suppression, the tumor of interest is a subpopulation having an epithelial trait (sp E ) and the remaining population (eg, mesenchymal trait) A sub-population having a high molecular weight; sp M ), a step of confirming that it is higher than the tumorigenicity of the whole cancer cell, and a method of suppressing the tumor confirmed to be high according to the method of the present invention.
  • sp E epithelial trait
  • sp M a sub-population having a high molecular weight
  • the cancer to be suppressed in the present invention preferably has expression of at least one miRNA containing 5′-AACACUG-3 ′ as a seed sequence or at least one miRNA containing 5′-AAUACUG-3 ′ as a seed sequence.
  • Positive cancer is a cancer in which the expression of both at least one miRNA containing 5′-AACACUG-3 ′ as a seed sequence and at least one miRNA containing 5′-AAUACUG-3 ′ as a seed sequence is positive.
  • Possible (miR-200 second subpopulation positive tumor) may be a cancer in which at least one of miR-200a, miR-141, miR-200b, miR-200c and miR-429 is at least positive.
  • the cancer is at least one of miR-200a and miR-141 (more preferably miR-141), and at least one of miR-200b, miR-200c and miR-429 (more preferably miR-200c) may be at least a positive cancer.
  • the target tumor prior to tumor suppression, the target tumor may be confirmed to be a miR-200 subpopulation positive tumor, more preferably a miR-200 subpopulation positive tumor.
  • the target tumor comprises at least one miRNA containing 5′-AACACUG-3 ′ as a seed sequence and / or 5′-AAUACUG-
  • a method comprising the step of confirming positive expression of at least one miRNA comprising 3 ′ as a seed sequence is included.
  • the tumor of interest comprises at least one miRNA containing 5′-AACACUG-3 ′ as a seed sequence and / or 5′-AAUACUG-
  • a step of confirming that the expression of at least one miRNA containing 3 ′ as a seed sequence is positive, and a method of suppressing the confirmed tumor according to the method of the present invention are included.
  • the cancer to be suppressed in the present invention may be a cancer in which expression of at least one miRNA containing 5′-AGCUUAU-3 ′ as a seed sequence is positive.
  • a cancer can be a cancer that is at least positive for miR-21.
  • the target tumor prior to tumor suppression, the target tumor may be confirmed to be a miR-21 subpopulation positive tumor. That is, in one aspect of the method of the present invention, prior to tumor suppression, the target tumor confirms that the expression of at least one miRNA containing 5′-AGCUUAU-3 ′ as a seed sequence is positive. A method comprising the steps is included.
  • the target tumor prior to tumor suppression, confirms that the expression of at least one miRNA containing 5′-AGCUUAU-3 ′ as a seed sequence is positive. And a method of inhibiting the identified tumor according to the above method of the present invention.
  • At least one miR-200 family member is expressed from two chromosomal loci of the miR-200 family, preferably from each of the two chromosomal loci of the miR-200 family.
  • Cancer miR-200 gene locus positive tumor, more preferably miR-200 gene locus positive tumor
  • a cancer is a cancer that is positive in the expression of at least one of miR-200a, miR-200b, miR-429, miR-200c, and miR-141.
  • the cancer may be positive for the expression of at least one of miR-200a, miR-200b, and miR-429 and the expression of at least one of miR-200c and miR-141.
  • the target tumor prior to tumor suppression, may be confirmed to be a subpopulation positive tumor of miR-200, more preferably a bilocus positive tumor of miR-200. That is, in one aspect of the method of the present invention, prior to tumor suppression, the target tumor is at least one of miR-200a, miR-200b and miR-429, and / or miR-200c and A method comprising the step of confirming that at least one of miR-141 is positive is included.
  • the method of the present invention in one embodiment, prior to tumor suppression, the tumor of interest is expressed by at least one of miR-200a, miR-200b and miR-429, and / or miR-200c and The step of confirming that at least any one expression of miR-141 is positive, and the method of suppressing the confirmed tumor according to the above-described method of the present invention are included.
  • cancers to be suppressed in the present invention include colon cancer, lung cancer, and breast cancer.
  • cancers to be suppressed in the present invention include tumors in which any of progesterone receptor (PR), estrogen receptor (ER), and HER2 is negative (for example, breast cancer, etc.), more preferably at least progesterone.
  • Tumors with negative receptor (PR) eg breast cancer
  • the cancers to be suppressed in the present invention include, but are not limited to, prostate cancer, non-small cell lung cancer (NSCLC), and kidney cancer.
  • the cancer to be suppressed in the present invention is preferably a human cancer.
  • the tumor suppression of the present invention is particularly useful for suppressing, for example, the generation and growth of tumors, and among others, exhibits a high effect for suppressing primary tumors.
  • the primary tumor means that the organ or tissue from which the tumor is derived matches the organ or tissue in which the tumor is present.
  • breast cancer breast cancer growth in the breast
  • colon cancer colon cancer growth in the large intestine
  • kidney cancer each cancer in prostate, lung, and kidney, respectively
  • the present invention is useful for the suppression of the growth of cells.
  • Metastasis includes processes such as detachment of cancer cells from the primary lesion and invasion into blood vessels (blood vessels and lymph vessels), migration within the blood vessels, adhesion of metastatic organs to vascular endothelium, and invasion into metastatic organs. is necessary.
  • blood vessels blood vessels and lymph vessels
  • adhesion of metastatic organs to vascular endothelium adhesion of metastatic organs to vascular endothelium
  • invasion into metastatic organs is necessary.
  • cancer cells can escape from the immune exclusion mechanism and survive in all these processes. Therefore, suppression of metastasis can be achieved if any of these processes is inhibited, while in order to suppress primary tumors, the growth and viability of primary tumors, anti-apoptotic activity, etc. are inhibited. Without it you can't achieve it.
  • the present invention also relates to the use of the miRNA inhibitor of the present invention for suppressing tumors and the use in the production of an agent for suppressing tumors. That is, the present invention provides at least one miRNA containing 5′-AACACUG-3 ′ as a seed sequence and one or a combination that inhibits at least one miRNA containing 5′-AAUACUG-3 ′ as a seed sequence, alone or in combination. It relates to the use of a plurality of inhibitors for the suppression of tumors and the use in the manufacture of agents for suppressing tumors. The present invention also relates to the miRNA inhibitor used for suppressing tumors.
  • the present invention relates to at least one miRNA containing 5′-AACACUG-3 ′ as a seed sequence and at least one miRNA containing 5′-AAUACUG-3 ′ as a seed sequence, alone or in combination.
  • the present invention also provides at least one miRNA containing 5′-AACACUG-3 ′ as a seed sequence and one that inhibits at least one miRNA containing 5′-AAUACUG-3 ′ as a seed sequence, alone or in combination.
  • the present invention relates to the use of the miRNA inhibitor in the manufacture of an agent for administering a plurality of miRNA inhibitors to promote epithelial-mesenchymal transition of tumor cells and / or suppress mesenchymal epithelial transition.
  • miR-200c and miR-141 are preferably inhibited at least, more preferably miR-200a, miR-200b, miR-200c, miR-141 and miR-429 All 200 family members are inhibited.
  • miRNA inhibition preferably means that inhibition is directly caused by binding (interaction) of an inhibitor to a target miRNA.
  • miRNA inhibitors are preferably directly inhibited by binding (interaction) to miR-200c and miR-141, and miR-200a, miR-200b, miR-200c, miR-141 and miR More preferably, all miR-200 family members consisting of -429 are directly inhibited by the interaction of miRNA inhibitors.
  • the present invention provides a medicament comprising the complex of the present invention.
  • the miRNA-inhibiting complex used herein, or the RNA comprising the complex is used to inhibit miRNA. It can be a composition. Since the composition of the present invention can specifically and efficiently inhibit a target miRNA, it is useful for controlling the function of a gene through miRNA inhibition.
  • the composition of the present invention can be combined with a desired pharmacologically acceptable carrier or vehicle as required. Examples thereof include a desired solution usually used for suspending nucleic acids, and examples thereof include distilled water, phosphate buffered saline (PBS), sodium chloride solution, Ringer's solution, and culture solution. Moreover, vegetable oil, suspension agent, surfactant, stabilizer, biocide, etc. may be contained.
  • composition of the present invention may be combined with organic substances such as biopolymers, inorganic substances such as hydroxyapatite, specifically collagen matrices, polylactic acid polymers or copolymers, polyethylene glycol polymers or copolymers and chemical derivatives thereof as carriers. it can.
  • the composition of the present invention can be used as a desired reagent or as a pharmaceutical composition.
  • the present invention also provides use of the composition of the present invention, the miRNA-inhibiting complex used herein, or the RNA constituting the complex or an analog thereof for inhibiting miRNA.
  • the present invention also provides miRNA inhibitors comprising any of them.
  • the present invention provides a method for treating a disease or disorder comprising the step of administering an effective amount of a complex of the present invention or a medicament comprising the same to a subject in need thereof.
  • the present invention is not limited, but can be applied to, for example, use as an HCV therapeutic agent or a renal fibrosis therapeutic agent that has already been clinically developed.
  • the medicament of the present invention may be administered per se, or may be administered as an appropriate pharmaceutical composition.
  • the pharmaceutical composition used for administration may contain the medicament of the present invention and a pharmacologically acceptable carrier, diluent or excipient.
  • Such pharmaceutical compositions are provided as dosage forms suitable for oral or parenteral administration.
  • injections are dosage forms such as intravenous injections, subcutaneous injections, intradermal injections, intramuscular injections, infusions, and the like. May be included.
  • Such an injection can be prepared according to a known method.
  • a method for preparing an injection it can be prepared, for example, by dissolving, suspending or emulsifying the nucleic acid of the present invention in a sterile aqueous liquid or oily liquid usually used for injection.
  • an aqueous solution for injection for example, an isotonic solution containing physiological saline, glucose and other adjuvants, and the like are used, and suitable solubilizers such as alcohol (eg, ethanol), polyalcohol (eg, Propylene glycol, polyethylene glycol), nonionic surfactants (eg, polysorbate 80, HCO-50 (polyoxyethylene (50 mol) adduct of hydrogenated castoroil)) and the like may be used in combination.
  • alcohol eg, ethanol
  • polyalcohol eg, Propylene glycol, polyethylene glycol
  • nonionic surfactants eg, polysorbate 80, HCO-50 (polyoxyethylene (50 mol) adduct of hydrogenated castoroil)
  • oily liquid for example, sesame oil, soybean oil and the like are used, and benzyl benzoate, benzyl alcohol and the like may be used in combination as a solubilizing agent.
  • the prepared injection solution
  • compositions for oral administration include solid or liquid dosage forms, specifically tablets (including dragees and film-coated tablets), pills, granules, powders, capsules (including soft capsules), syrups Agents, emulsions, suspensions and the like.
  • Such a composition is produced by a known method and may contain a carrier, a diluent or an excipient usually used in the pharmaceutical field.
  • a carrier and excipient for tablets for example, lactose, starch, sucrose, and magnesium stearate are used.
  • the above parenteral or oral pharmaceutical composition is conveniently prepared in a dosage unit form suitable for the dose of the active ingredient.
  • dosage form of such a dosage unit include tablets, pills, capsules, injections (ampoules), and suppositories.
  • the medicament of the present invention has low toxicity and can be used as it is as a liquid or as a pharmaceutical composition of an appropriate dosage form for humans or mammals (eg, rats, rabbits, sheep, pigs, cattle, cats, dogs, monkeys, etc.). It can be administered orally or parenterally (eg, intravascular administration, subcutaneous administration, etc.).
  • humans or mammals eg, rats, rabbits, sheep, pigs, cattle, cats, dogs, monkeys, etc.
  • parenterally eg, intravascular administration, subcutaneous administration, etc.
  • Introduction into cells can be performed in vitro, ex vivo or in vivo.
  • the cells When administered via cells, the cells are introduced into appropriate cultured cells or cells collected from the inoculated animal.
  • Examples of the introduction of nucleic acid include calcium phosphate coprecipitation method, lipofection, DEAE dextran method, a method of directly injecting a DNA solution into a tissue by an injection needle or the like, and introduction by a gene gun.
  • the dose varies depending on the disease, patient weight, age, sex, symptoms, administration purpose, administration composition form, administration method, transgene, etc., but it is adjusted appropriately according to the animal to be administered, administration site, administration frequency, etc. It can be determined appropriately by those skilled in the art.
  • the administration route can be appropriately selected.
  • the administration subject is preferably a mammal (including human and non-human mammals). Specifically, non-human primates such as humans and monkeys, rodents such as mice and rats, rabbits, goats, sheep, pigs, cows, dogs, cats, and other mammals are included.
  • DDS drug delivery systems
  • a composition comprising a miRNA inhibition complex comprising RNA or an analog thereof and a carrier for nucleic acid delivery is provided.
  • a composition may be a pharmaceutical composition.
  • Such compositions are also suitable for delivering miRNA-inhibiting complexes to a desired site and may be for such applications.
  • lipid nanoparticles examples include lipid nanoparticles (LNP), cationic liposomes, non-cationic liposomes, cationic polymers, non-cationic polymers, ⁇ -glucan, atelocollagen, PLGA nanoparticles, surfactant peptides and superapatite, etc. Is mentioned.
  • Lipid nanoparticles are generally composed of ionized amino lipids, helper lipids, and PEG lipids, and can be formed by mixing an ethanol solution containing lipids and an acidic buffer containing nucleic acid molecules.
  • the lipid core inside the lipid nanoparticle can be filled with a nucleic acid molecule such as siRNA.
  • Liposomes have a lipid bilayer and retain an aqueous phase inside.
  • the internal aqueous phase can be filled with nucleic acid molecules such as siRNA.
  • Cationic liposomes are preferred in stabilizing nucleic acid molecules because they interact electrostatically with the negative charge of the phosphate group of the nucleic acid molecule.
  • non-cationic liposomes can be advantageous in that non-specific adsorption can be prevented in the kinetics in vivo.
  • Cationic polymers include, for example, polymers or copolymers of acrylates, methacrylates, acrylamides, etc. with quaternary ammonium bases, polymers or copolymers of diallyldimethylammonium chloride, poly (vinylbenzyltrimethylammonium chloride), polyamide polyamine / epichlorohydrin condensates, amines There are condensates of acetylene and epichlorohydrin, polyallylamine hydrochloride, polyethyleneimine, polyamidine, starch and cellulose cationized products, etc., which are biocompatible to form nanoparticles or vesicles and used for delivery of nucleic acid molecules be able to.
  • the triple helix structure of ⁇ -glucan can be used as a carrier for delivery of nucleic acid molecules.
  • a triple helix of ⁇ -1,3-glucan is dissolved in a polar organic solvent such as DMSO, the helix is unwound and becomes a random coiled single chain. When this solvent is returned to water, the triple helical structure is regenerated.
  • nucleic acid is present in this “Renature” process, one polymer chain of the triple helix is replaced by the nucleic acid.
  • the complexed nucleic acid is protected from enzymatic hydrolysis and non-specific adsorption with serum proteins (M. Mizu, K. Koumoto, T. Kimura, K. Sakurai, and S. Shinkai, Biomaterials, 25, 3109 (2004)).
  • Atelocollagen is made by removing the telopeptide, which is the main antigenic site of collagen, to lower the antigenicity of collagen, and can form a complex with nucleic acid molecules such as siRNA and stabilize it (Drug Delivery System 25 -6, 2010 607-614).
  • PLGA polylactic acid
  • matrix-type fine particles nanospheres
  • a water-soluble drug such as a nucleic acid
  • the surfactant peptide is a self-assembled peptide composed of about 6-10 amino acids, and forms nano micelles and nanotubes having a particle size of about 50-100 nm in an aqueous solution.
  • Surfactant-like peptides are capable of controlling the surface charge and particle size of substances in a sequence-dependent manner, and are therefore being developed as gene delivery carriers such as siRNA.
  • Super Apatite (Wu X, Yamamoto H, Nakakanishi H, Yamamoto Y, Inoue A, Tei M, et al. (2015) Innovative Delivery of siRNA to Solid Tumors by Super Carbonate Apatite. 10.1371 / journal.pone.0116022) has also been investigated as a preferred carrier for delivery of nucleic acids such as siRNA.
  • Ultrafine particles obtained by finely pulverizing the compound “Carbonate apatite” to a diameter of about 10 nm with an ultrasonic wave are called “superapatite”, and superapatite combined with a drug is injected into a vein of a mouse with cancer.
  • dendritic polymers for example, dendritic polylysine (KG6) which is a dendrimer having lysine as a structural unit
  • PEG-P [Asp (DET)] which is a cationic polyamino acid derivative.
  • the carrier is LNP, preferably the LNP comprises a cationic lipid.
  • LNPs can include cationic lipids, helper lipids and / or PEG-modified lipids.
  • Particularly preferred carriers in the nucleic acid delivery of the present invention include those using a lipid membrane complex containing a cationic lipid as described below.
  • the cationic lipid used in the carrier contains a tertiary amine and / or disulfide bond in the molecule.
  • the generated residue is not divided into an amine site that is a polar group and a lipid site that is a nonpolar group, so that the residue retains the surface activity. Thereby, destabilization of the endosome membrane and the accompanying endosome escape promoting effect can be expected.
  • Preferred cationic lipids are those of formula (1 ′):
  • X a and X b are independently a substituent containing a tertiary amine, s is 1 or 2
  • R 4 represents an alkyl group having 1 to 6 carbon atoms
  • n a and nb are independently 0 or 1
  • R 1a and R 1b independently represent an alkylene group having 1 to 6 carbon atoms
  • R 2a and R 2b independently represent an alkylene group having 1 to 6 carbon atoms
  • Y a and Y b independently represent an ester bond, an amide bond, a carbamate bond, an ether bond or a urea bond
  • R 3a and R 3b independently represent a sterol residue, a fat-soluble vitamin derivative residue or an aliphatic hydrocarbon group having 12 to 22 carbon atoms
  • the sterol residue is a cholesteryl group, a cholesteryl group, a stigmasteryl group, a ⁇ -
  • X a and X b are independently X 1 , X 2 or X 3 ;
  • R 3a and R 3b are independently fat-soluble vitamin derivative residues.
  • Y a and Y b are independently an ester bond.
  • n a and nb are 1.
  • R 3a and R 3b , Y a and Y b , and X a and X b are the same.
  • a preferable cationic lipid includes a compound represented by the formula (1).
  • X a and X b are independently X 1 , X 2 or X 3 shown below.
  • the X a and X b are independently X 1 or X 2 are shown below.
  • R 4 in X 1 represents an alkyl group having 1 to 6 carbon atoms and may be linear, branched or cyclic.
  • the alkyl group preferably has 1 to 3 carbon atoms.
  • Specific examples of the alkyl group having 1 to 6 carbon atoms include methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, sec-butyl group, isobutyl group, tert-butyl group, pentyl group, and isopentyl group.
  • R 4 is preferably a methyl group, an ethyl group, a propyl group or an isopropyl group, and most preferably a methyl group.
  • S in X 2 is 1 or 2.
  • X 2 is preferably a pyrrolidinium group, and when s is 2, X 2 is preferably a piperidinium group.
  • X a may be different be identical to X b, but preferably, X a is X b the same group.
  • n a and nb are each independently an integer of 0 to 2.
  • n a is 1, R 3a is bonded to X a via Y a and R 2a , and when n a is 0, R 3a —X a —R 1a —S— is exhibited.
  • n b is 1, R 3b is bonded to X b via Y b and R 2b , and when n b is 0, R 3b —X b —R 1b —S— is exhibited. .
  • n a may be different even be identical to the n b, but preferably, n a is the same as n b.
  • R 1a and R 1b independently represent an alkylene group having 1 to 6 carbon atoms and may be linear or branched, but is preferably linear. Specific examples of the alkylene group having 1 to 6 carbon atoms include a methylene group, an ethylene group, a trimethylene group, an isopropylene group, a tetramethylene group, an isobutylene group, a pentamethylene group, and a neopentylene group.
  • R 1a and R 1b are preferably a methylene group, an ethylene group, a trimethylene group, an isopropylene group or a tetramethylene group, and most preferably an ethylene group.
  • R 1a may be different be the same as R 1b, but preferably, R 1a is the same group as R 1b.
  • R 2a and R 2b independently represent an alkylene group having 1 to 6 carbon atoms, and may be linear or branched, but is preferably linear. Examples of the alkylene group having 1 to 6 carbon atoms include those listed as examples of the alkylene group having 1 to 6 carbon atoms of R 1a and R 1b .
  • R 2a and R 2b are preferably a methylene group, an ethylene group, a trimethylene group, an isopropylene group or a tetramethylene group, and most preferably a trimethylene group.
  • R 2a may be the be the same or different and R 2b, but preferably, R 2a is the same group as R 2b.
  • Y a and Y b are independently an ester bond, an amide bond, a carbamate bond, an ether bond or a urea bond, preferably an ester bond, an amide bond or a carbamate bond, and most preferably an ester bond.
  • the direction of the bond of Y a and Y b is not limited. However, when Y a is an ester bond, it preferably has a structure of R 3a —CO—O—R 2a —, and when Y b is an ester bond, preferably , R 3b —CO—O—R 2b —.
  • Y a may be different even identical to Y b, but preferably, Y a is Y b and same group.
  • R 3a and R 3b independently represent a sterol residue, a fat-soluble vitamin derivative residue or an aliphatic hydrocarbon group having 12 to 22 carbon atoms, preferably a fat-soluble vitamin derivative residue or a carbon atom having 12 to 22 carbon atoms.
  • sterol residue examples include cholesteryl group (cholesterol residue), cholesteryl group (cholestanol residue), stigmasteryl group (stigmasterol residue), ⁇ -sitosteryl group ( ⁇ -sitosterol residue), lanosteryl group (lanosterol group) Residue), an ergosteryl group (ergosterol residue), and the like.
  • the sterol residue is preferably a cholesteryl group or a cholesteryl group.
  • Fat-soluble vitamin derivative residues include, in addition to residues derived from fat-soluble vitamins, hydroxyl groups, aldehyde groups, and carboxyl groups that are functional groups in fat-soluble vitamins, and carboxyl groups, amino groups, or hydroxyl groups of other bifunctional compounds. It is a residue derived from a derivative that is appropriately converted into another reactive functional group by reacting with.
  • a fat-soluble vitamin having a hydroxyl group can be converted to a carboxylic acid by reacting a dicarboxylic acid such as succinic anhydride or glutaric anhydride.
  • fat-soluble vitamins examples include retinoic acid, retinol, retinal, ergosterol, 7-dehydrocholesterol, calciferol, corcalciferol, dihydroergocalciferol, dihydrotaxosterol, tocopherol, tocotrienol and the like.
  • the fat-soluble vitamin is preferably retinoic acid or tocopherol.
  • the bifunctional compound include, but are not limited to, polyvalent carboxylic acid, dicarboxylic acid, amino acid, hydroxy acid, amino alcohol, polyhydric alcohol, and dihydric alcohol.
  • the aliphatic hydrocarbon group having 12 to 22 carbon atoms may be linear or branched, but is preferably linear.
  • the aliphatic hydrocarbon group may be saturated or unsaturated.
  • the number of unsaturated bonds contained in the aliphatic hydrocarbon group is usually 1 to 6, preferably 1 to 3, and more preferably 1 to 2.
  • Unsaturated bonds include carbon-carbon double bonds and carbon-carbon triple bonds, with carbon-carbon double bonds being preferred.
  • the number of carbon atoms contained in the aliphatic hydrocarbon group is preferably 12-18, and most preferably 13-17.
  • the aliphatic hydrocarbon group includes an alkyl group, an alkenyl group, an alkynyl group and the like, and is preferably an alkyl group or an alkenyl group.
  • Specific examples of the aliphatic hydrocarbon group having 12 to 22 carbon atoms include dodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, octadecyl, nonadecyl, icosyl, heicosyl, docosyl , Dodecenyl group, tridecenyl group, tetradecenyl group, pentadecenyl group, hexadecenyl group, heptadecenyl group, octadecenyl group, nonadecenyl group, icocenyl group, henicocenyl group, dococenyl group
  • the aliphatic hydrocarbon group having 12 to 22 carbon atoms is preferably a tridecyl group, a tetradecyl group, a heptadecyl group, an octadecyl group, a heptadecadienyl group or an octadecadienyl group, particularly preferably a tridecyl group, a heptadecyl group, It is a heptadecadienyl group.
  • an aliphatic hydrocarbon group having 12 to 22 carbon atoms derived from a fatty acid, an aliphatic alcohol, or an aliphatic amine is used.
  • R 3a (or R 3b ) is derived from a fatty acid
  • Y a (or Y b ) is an ester bond or an amide bond
  • a carbonyl carbon derived from a fatty acid is contained in Y a (or Y b ).
  • R 3a (or R 3b ) is a heptadecadienyl group.
  • R 3a may be different be the same as R 3b, but preferably, R 3a is the same group as R 3b.
  • X a is identical to X b
  • n a is the same as n b
  • R 1a is the same as R 1b
  • R 2a is the same as R 2b
  • R 3a is a R 3b
  • Y a is the same as Y b .
  • X a and X b are independently X 1
  • R 4 represents an alkyl group having 1 to 3 carbon atoms
  • n a and n b are 1
  • R 1a and R 1b independently represent an alkylene group having 1 to 6 carbon atoms
  • R 2a and R 2b independently represent an alkylene group having 1 to 6 carbon atoms
  • Y a and Y b represent an ester bond
  • R 3a and R 3b independently represent an aliphatic hydrocarbon group having 12 to 22 carbon atoms.
  • X a and X b are X 1
  • R 4 represents an alkyl group having 1 to 3 carbon atoms
  • n a and nb are 1
  • R 1a and R 1b represent an alkylene group having 1 to 6 carbon atoms
  • R 2a and R 2b represent an alkylene group having 1 to 6 carbon atoms
  • Y a and Y b represent an ester bond
  • R 3a and R 3b represent an aliphatic hydrocarbon group having 12 to 22 carbon atoms
  • X a is the same as X b
  • R 1a is the same as R 1b
  • R 2a is the same as R 2b
  • R 3a is the same as R 3b .
  • X a and X b are X 1 , R 4 represents a methyl group, n a and n b is 1, R 1a and R 1b represent an ethylene group, R 2a and R 2b represent a trimethylene group, Y a and Y b represent —CO—O—, R 3a and R 3b independently represent an alkyl group or an alkenyl group having 13 to 17 carbon atoms.
  • X a and X b are X 1 , R 4 represents a methyl group, n a and n b is 1, R 1a and R 1b represent an ethylene group, R 2a and R 2b represent a trimethylene group, Y a and Y b represent —CO—O—, R 3a and R 3b represent an alkyl group or an alkenyl group having 13 to 17 carbon atoms, R 3a is the same as R 3b .
  • X a and X b are independently X 1
  • R 4 represents an alkyl group having 1 to 3 carbon atoms
  • n a and n b is 1
  • R 1a and R 1b independently represent an alkylene group having 1 to 6 carbon atoms
  • R 2a and R 2b independently represent an alkylene group having 1 to 6 carbon atoms
  • Y a and Y b represent an ester bond
  • R 3a and R 3b independently represent a fat-soluble vitamin derivative residue (eg, retinoic acid residue, tocopherol residue).
  • X a and X b are X 1 and R 4 represents an alkyl group having 1 to 3 carbon atoms
  • n a and n b is 1
  • R 1a and R 1b represent an alkylene group having 1 to 6 carbon atoms
  • R 2a and R 2b represent an alkylene group having 1 to 6 carbon atoms
  • Y a and Y b represent an ester bond
  • R 3a and R 3b represent a fat-soluble vitamin derivative residue (eg, retinoic acid residue, tocopherol residue)
  • X a is the same as X b
  • R 1a is the same as R 1b
  • R 2a is the same as R 2b
  • R 3a is the same as R 3b .
  • X a and X b are X 1 , R 4 represents a methyl group, n a and n b is 1, R 1a and R 1b represent an ethylene group, R 2a and R 2b represent a trimethylene group, Y a and Y b represent —CO—O—, R 3a and R 3b independently represent a fat-soluble vitamin derivative residue (eg, retinoic acid residue, tocopherol residue).
  • a fat-soluble vitamin derivative residue eg, retinoic acid residue, tocopherol residue.
  • X a and X b are X1
  • R 4 represents a methyl group
  • n a and n b is 1
  • R 1a and R 1b represent an ethylene group
  • R 2a and R 2b represent a trimethylene group
  • Y a and Y b represent —CO—O—
  • R 3a and R 3b represent a fat-soluble vitamin derivative residue (eg, retinoic acid residue, tocopherol residue)
  • R 3a is the same as R 3b .
  • X a and X b are X 2
  • S is 2
  • n a and nb are 1
  • R 1a and R 1b represent an ethylene group
  • R 2a and R 2b represent an ethylene group
  • Y a and Y b represent —CO—O—
  • R 3a and R 3b represent fat-soluble vitamin derivative residues resulting from the reaction of tocopherol and succinic acid
  • R 3a is the same as R 3b .
  • cationic lipid of the present invention include the following compounds B-2, B-2-2, B-2-3, B-2-4 and B-2-5.
  • cationic lipids examples include Is mentioned.
  • Such a cationic lipid is commercially available, for example, as COATSOME SS-33 / 4PE-15 (registered trademark) (NOF Corporation).
  • Preferred cationic lipids are those of formula (4): The compound represented by these is mentioned.
  • R 4a and R 4b independently represent an alkylene group or oxydialkylene group having 8 or less carbon atoms, preferably an alkylene group having 8 or less carbon atoms.
  • the alkylene group having 8 or less carbon atoms may be linear or branched, but is preferably linear.
  • the number of carbon atoms contained in the alkylene group is preferably 6 or less, and most preferably 4 or less.
  • Specific examples of the alkylene group having 8 or less carbon atoms include methylene group, ethylene group, propylene group, isopropylene group, tetramethylene group, isobutylene group, pentamethylene group, hexamethylene group, heptamethylene group, octamethylene group, and the like.
  • Preferred are a methylene group, an ethylene group, a propylene group, and a tetramethylene group, and most preferred is an ethylene group.
  • the oxydialkylene group having 8 or less carbon atoms refers to an alkylene group (alkylene-O-alkylene) via an ether bond, and the total number of carbon atoms of two alkylene groups is 8 or less.
  • the two alkylenes may be the same or different, but are preferably the same.
  • Specific examples of the oxydialkylene group having 8 or less carbon atoms include an oxydimethylene group, an oxydiethylene group, an oxydipropylene group, and an oxydibutylene group. Preferred are an oxydimethylene group, an oxydiethylene group, and an oxydipropylene group, and most preferred is an oxydiethylene group.
  • R 4a may be different from be the same as R 4b, but preferably, R 4a is the same group as R 4b.
  • X 1a and X 1b are independently an ester bond, an amide bond, a carbamate bond, or an ether bond, preferably an ester bond or an amide bond, and most preferably an ester bond.
  • binding orientation of the X 1a and X 1b are not limited, if X 1a and which X 1b ester bond, preferably, R 5a -CO-O-R 4a - , and R 5b -CO-O-R 4b - Structure Presents.
  • X 1a may be different even identical to the X 1b, but preferably, X 1a are the same group and X 1b.
  • R 5a and R 5b independently represent a sterol residue, a fat-soluble vitamin residue or an aliphatic hydrocarbon group having 13 to 23 carbon atoms, preferably a fat-soluble vitamin residue or an aliphatic group having 13 to 23 carbon atoms It is a hydrocarbon group. Most preferred is an aliphatic hydrocarbon group. From the viewpoint of organ (particularly liver) specificity, it is also preferable that R 5a and R 5b are fat-soluble vitamin residues.
  • sterol residue reactive functional groups (e.g., hydroxyl groups) responsible for the binding of the X a or X b sterols excluding, or residues may be mentioned from the sterol derivatives, preferably sterol derivatives Is a residue derived from Examples of the sterol derivative include sterol hemiesters obtained by reacting the hydroxyl group of sterol with one carboxylic acid of dicarboxylic acid (in this case, the other carboxylic acid becomes a reactive functional group).
  • sterols include cholesterol, cholestanol, stigmasterol, ⁇ -sitosterol, lanosterol, ergosterol, and the like, preferably cholesterol or cholestanol.
  • dicarboxylic acid examples include malonic acid, succinic acid, glutaric acid, or adipic acid, and succinic acid or glutaric acid is preferable.
  • succinic acid or glutaric acid is preferable.
  • Specific examples of the sterol derivative include cholesterol hemisuccinate, cholesterol hemiglutarate and the like.
  • fat-soluble vitamin residue examples include a residue derived from a fat-soluble vitamin or a fat-soluble vitamin derivative excluding a reactive functional group (eg, hydroxyl group) involved in binding to X 1a or X 1b. Is preferably a residue derived from a fat-soluble vitamin derivative.
  • a fat-soluble vitamin derivative is a fat-soluble vitamin hemiester obtained by reacting the hydroxyl group of a fat-soluble vitamin whose reactive functional group is a hydroxyl group with one carboxylic acid of a dicarboxylic acid (in this case, the other carboxylic acid is a reactive functional group). Base).
  • the fat-soluble vitamin examples include retinoic acid, retinol, retinal, ergosterol, 7-dehydrocholesterol, calciferol, corcalciferol, dihydroergocalciferol, dihydrotaxosterol, tocopherol, and tocotrienol.
  • Preferred is retinoic acid or tocopherol, and most preferred is tocopherol.
  • the dicarboxylic acid include malonic acid, succinic acid, glutaric acid, and adipic acid, and succinic acid and glutaric acid are preferable.
  • Specific examples of the fat-soluble vitamin derivative include tocopherol hemisuccinate, tocopherol hemiglutarate and the like.
  • the aliphatic hydrocarbon group having 13 to 23 carbon atoms may be linear or branched, but is preferably linear.
  • the aliphatic hydrocarbon group may be saturated or unsaturated.
  • the number of unsaturated bonds contained in the aliphatic hydrocarbon group is 1 to 6, preferably 1 to 3, and most preferably 1 to 2.
  • Unsaturated bonds include carbon-carbon double bonds and triple bonds, with double bonds being preferred.
  • the number of carbon atoms contained in the aliphatic hydrocarbon group is preferably 13 to 21, and most preferably 13 to 17.
  • Examples of the aliphatic hydrocarbon group having 13 to 23 carbon atoms include a tridecyl group, a tetradecyl group, a pentadecyl group, a hexadecyl group, a heptadecyl group, an octadecyl group, a nonadecyl group, an icosyl group, a heicosyl group, a docosyl group, a tricosyl group, and a tridecenyl group.
  • the straight chain is preferably a tridecyl group, a pentadecyl group, a heptadecyl group, a nonadecyl group, a heneicosyl group, a heptadecenyl group, or a heptadecenyl group, and particularly preferably a tridecyl group, a heptadecyl group, a heptadecenyl group, or a heptadecyl group. Dienyl group.
  • the branched one is preferably a methylpentadecyl group, a hexylnonyl group, a heptyldecyl group, an octylundecyl group, or a hexamethylundecyl group, and particularly preferably a methylpentadecyl group, a hexylnonyl group, or a heptyldecyl group.
  • an aliphatic hydrocarbon group having 13 to 23 carbon atoms derived from a fatty acid, an aliphatic alcohol, or an aliphatic amine is used.
  • R 5a is derived from a fatty acid
  • X 1a is an ester bond or an amide bond
  • an carbonyl carbon derived from an aliphatic group is included in X 1a .
  • R 5b is derived from a fatty acid
  • X 1b is an ester bond or an amide bond
  • an aliphatic carbonyl carbon is included in X 1b .
  • aliphatic hydrocarbon group examples include a heptadecenyl group when linoleic acid is used as the fatty acid, and a heptadecenyl group when oleic acid is used as the fatty acid.
  • R 5a may be different from be the same as R 5b, but preferably, R 5a are the same groups and R 5b.
  • R 4a is the same as R 4b
  • X 1a is the same as X 1b
  • R 5a is the same as R 5b .
  • R 4a and R 4b independently represent an alkylene group having 8 or less carbon atoms (1 to 8 carbon atoms), X 1a and X 1b represent an ester bond, R 5a and R 5b independently represent a fat-soluble vitamin residue (eg, a group derived from a tocopherol hemisuccinate).
  • R 4a and R 4b independently represent an alkylene group having 8 or less carbon atoms (1 to 8 carbon atoms), X 1a and X 1b represent an ester bond, R 5a and R 5b independently represent an aliphatic hydrocarbon group having 13 to 23 carbon atoms (eg, heptadecenyl group or heptadecenyl group).
  • R 4a and R 4b represent an alkylene group having 8 or less carbon atoms (1 to 8 carbon atoms), X 1a and X 1b represent an ester bond, R 5a and R 5b represent a fat-soluble vitamin residue (eg, a group derived from a tocopherol hemisuccinate) R 4a is the same as R 4b ; R 5a is the same as R 5b .
  • R 4a and R 4b represent an alkylene group having 8 or less carbon atoms (1 to 8 carbon atoms), X 1a and X 1b represent an ester bond, R 5a and R 5b represent an aliphatic hydrocarbon group having 13 to 23 carbon atoms (eg, heptadecadienyl group, heptadecenyl group), R 4a is the same as R 4b ; R 5a is the same as R 5b .
  • R 4a and R 4b represent an ethylene group
  • X 1a and X 1b represent —CO—O—
  • R 5a and R 5b independently represent a fat-soluble vitamin residue (eg, a group derived from a tocopherol hemisuccinate).
  • R 4a and R 4b represent an ethylene group
  • X 1a and X 1b represent —CO—O—
  • R 5a and R 5b independently represent an aliphatic hydrocarbon group having 13 to 23 carbon atoms (eg, heptadecenyl group or heptadecenyl group).
  • R 4a and R 4b represent an ethylene group
  • X 1a and X 1b represent —CO—O—
  • R 5a and R 5b represent a fat-soluble vitamin residue (eg, a group derived from a tocopherol hemisuccinate)
  • R 5a is the same as R 5b .
  • R 4a and R 4b represent an ethylene group
  • X 1a and X 1b represent —CO—O—
  • R 5a and R 5b represent an aliphatic hydrocarbon group having 13 to 23 carbon atoms (eg, heptadecadienyl group, heptadecenyl group)
  • R 5a is the same as R 5b .
  • cationic lipid of the present invention include the following TS-PZ4C2, L-PZ4C2, and O-PZ4C2.
  • cationic lipids examples include Is mentioned.
  • Such a cationic lipid is commercially available, for example, as COATSOME SS-33 / 1PZ-21 (registered trademark) (NOF Corporation).
  • a lipid membrane structure containing such a compound as a constituent lipid of the membrane can be used as the carrier.
  • a composition comprising a lipid membrane structure and a nucleic acid complex encapsulated by the lipid membrane structure is provided.
  • the lipid nanoparticles are modified with PEG. This is because retention in blood can be increased. Further, such lipid nanoparticles can be accumulated in tumor tissue by the EPR effect (Enhanced permeation and retention effect).
  • the diameter of the lipid nanoparticles can be, for example, about 110 nm to about 130 nm, for example, about 120 nm. In one embodiment, the lipid nanoparticles have a diameter of about 125 nm. Appropriate nanoparticle diameters can facilitate proper delivery of the miRNA-inhibiting complexes used herein.
  • the present invention is a miRNA inhibition complex comprising RNA or an analog thereof, wherein the miRNA inhibition complex comprises at least one double-stranded structure and a miRNA binding sequence, wherein the miRNA binding sequence Provided is a miRNA-inhibiting complex, wherein two strands are bound one by one to at least one strand of the double-stranded structure, and the miRNA-inhibiting complex comprises at least one cross-linked nucleic acid (BNA) .
  • BNA cross-linked nucleic acid
  • Such improved S-TuD or modified S-TuD (miRNA inhibition complex) contains at least one cross-linked nucleic acid (BNA), so that the miRNA inhibition complex used herein has improved stability.
  • BNA cross-linked nucleic acid
  • the BNA is at least selected from the group consisting of carbon, carbon and nitrogen on the 4 ′ position via at least one atom selected from the group consisting of oxygen and carbon on the 2 ′ position.
  • the BNA used in the present invention may be any BNA described in the section (Bridged nucleic acid (BNA) used in the present invention).
  • BNA-1 is a representative example.
  • the BNA used in the present invention may be BNA-2. More preferably, it may be BNA-3.
  • Further embodiments that can be used include, for example, cEt, BNA NC (NMe), or 2 ′, 4 ′ methano-bridged nucleic acid (LNA).
  • BNA NC (NMe) is particularly preferable.
  • cEt can be used.
  • BNA cEt
  • BNA has the same thermal stability and mismatch discrimination as conventional LNA, but improves stability against nucleases.
  • the BNA used in the present invention is contained in at least one strand of the double-stranded structure part and at least one strand of the miRNA binding sequence.
  • the BNA used in the present invention is contained in at least one chain of the double-stranded structure moiety. In another embodiment, the BNA used in the present invention is included in both strands of the double stranded structural moiety.
  • the complex of the present invention may contain one or more “double-stranded structures” or a plurality of “double-stranded structures”, and may have an S-TuD structure similar to that of Japanese Patent No. 4933634 or Examples. Good.
  • a double-stranded structure is in series, three or four can be included in succession, and it is understood that such embodiments are also included in the present invention.
  • the complex of the present invention comprises two or more of the double-stranded structures, and a strand comprising a miRNA binding sequence in two strands at one end of the first double-stranded structure of the double-stranded structure.
  • a strand comprising a miRNA binding sequence in two strands at one end of the first double-stranded structure of the double-stranded structure are connected to each other, and the other end of each of the strands is a second duplex of the two or more double-stranded structures, so that each of the strands is sandwiched between the two or more double-stranded structures.
  • Each is bound to two strands of the structure.
  • the ends of two strands containing a miRNA binding sequence are linked via a linker.
  • the linker has a length of 1 to 10 bases, more preferably 1 to 9 bases, further preferably 1 to 8 bases, and more preferably The length is 1 to 7 bases, more preferably 1 to 5 bases, and may be 4 bases, 3 bases, 2 bases, 1 bases.
  • the length of the double-stranded structure in the miRNA inhibition complex used in the present specification may be any length as described above, but preferably has a length of 4 base pairs or more.
  • at least one of the double-stranded structures included in the RNA complex of the present invention (that is, the first double-stranded structure) has an important function for nuclear export of the RNA complex.
  • the length of this double strand may be, for example, 10 to 50, 15 to 50 base pairs, and preferably 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, or 45 bases, Or any one or more thereof, 50, 49, 48, 47, 46, 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 33, 32, 31, 30 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, or 18 bases, or any of them.
  • the length of the base pair of the double-stranded structure is, for example, 10-30, 15-30, preferably 16-28, preferably 17-25, preferably 17-24, such as 17, 18, 19 , 20, 21, 22, 23, or 24.
  • dsRNA exceeding 20 bp can be a potential target for cleavage by Dicer in the cytoplasm, so it is included in the complex of the present invention to avoid it.
  • the double-stranded structure can be 20 bp or less, such as 19 bp or less, or 18 bp or less.
  • the double-stranded structure contained in the miRNA inhibition complex is further described in the following preferred embodiments.
  • 5 bp to 15 bp, 5 bp to 12 bp, 5 bp to 10 bp, 6 bp to 9 bp, 7 bp to 8 bp, 10 bp to 12 bp may be used.
  • the lower limit length of the double-stranded structure in the complex used in the present invention is not particularly limited as long as the activity is maintained, but at least 4 base length, at least 5 base length, at least 6 base length, It is at least 7 bases long, at least 8 bases long, preferably at least 9 bases long, more preferably at least 10 bases long.
  • their base lengths may be the same or different.
  • it has been confirmed that sufficient formation of a double strand is confirmed with a length of 10 bases and has a sufficient effect, but in some cases, for example, at least 11 bases, at least 12 bases, at least 13 bases , At least 14 bases long, at least 15 bases long, at least 16 bases long, at least 17 bases long, at least 18 bases long.
  • the upper limit length of the double-stranded structure in the complex of the present invention is not particularly limited as long as the activity is maintained.
  • the length is 100 bases or less, 90 bases or less, 80 bases or less, 70
  • the length may be not more than the base length, not more than 60 base length, not more than 50 base length, and the like.
  • the miRNA-inhibiting complex used in the present specification includes a second or more double-stranded structure
  • these double-stranded structures may be shorter than the length of the first double-stranded structure, for example, in order to make the entire miRNA inhibition complex compact.
  • the chain length of each double strand may be adjusted as appropriate, and is 4 bp to 20 bp, for example, and may be 5 bp to 15 bp, 5 bp to 12 bp, 5 bp to 10 bp, 6 bp to 9 bp, or 7 bp to 8 bp, for example.
  • the effect is expected, but preferably 2 or more, 3 or more, 4 or more, 5 or more, 6 or more. 7 or more, 8 or more, 9 or more, 10 or more.
  • the effect does not increase even if it is included more than that, it may be sufficient to include about 6 pieces (for example, 4-8 pieces, 4-6 pieces, etc.). .
  • the complex used in the present invention has a stronger activity (acts at a low concentration) than the conventional complex.
  • the complex of the present invention is about 2 times or more, about 3 times or more, about 4 times or more, about 5 times or more, about 6 times or more, about 7 times that of the conventional complex.
  • the complex of the present invention acts at 10 nM or less, acts at 5 nM or less, acts at 3 nM or less, acts at 1 nM or less, acts at 500 pM or less, acts at 300 pM or less, and at 100 pM or less.
  • the complex of the invention comprises 2 to 5 miRNA binding sequences, preferably 2 miRNA binding sequences.
  • the complex used in the present invention is Wherein I and II of the structure are double stranded structures, and can take a structure containing one miRNA binding sequence in each of a and b of the structure.
  • the present invention provides each RNA or analog thereof (ie, each single strand) constituting a complex containing BNA, and each of these RNAs or analogs thereof is also of the present invention. Is in range. Preferred embodiments in the case of single strands are substantially the same as in the double stranded structure, and similar preferred embodiments can be employed.
  • the present invention relates to a method for producing a complex used in the present invention or a pharmaceutical comprising the same, and A) a target RNA or its RNA by chemical synthesis using ribonucleic acid and BNA.
  • a method includes the steps of placing each of the strands in duplex-forming conditions to form a duplex, and optionally preparing a medicament with the resulting complex.
  • the present invention is a method for producing the RNA of the present invention or an analog thereof, comprising A) a single strand of the RNA of interest or an analog thereof using ribonucleic acid and BNA by chemical synthesis. A step of synthesizing the protector of the above and its complement; B) a step of deprotecting the produced single-stranded protector and its complement, respectively, and, if necessary, the obtained complex with a pharmaceutical agent A method comprising the step of preparing
  • nucleic acid molecule comprising a 5′-CAGUGUU-3 ′ and / or 5′-CAGUAUU-3 ′ sequence and comprising at least one cross-linked nucleic acid (BNA).
  • BNA cross-linked nucleic acid
  • Such a nucleic acid molecule is used as a nucleic acid capable of forming a miRNA inhibition complex, and can contribute to the efficient realization of miRNA inhibition.
  • the uracil base may be a thymine base if desired.
  • the invention is a nucleic acid molecule comprising two miRNA binding sequences, one miRNA binding sequence comprising 5'-CAGUGUU-3 'and the other miRNA binding sequence comprising 5'-CAGUAUU- Nucleic acid molecules comprising 3 ′ and comprising at least one cross-linked nucleic acid (BNA) are provided.
  • BNA cross-linked nucleic acid
  • Such a nucleic acid molecule is used as a miRNA inhibition complex, can contribute to efficient realization of miRNA inhibition, and can be used to provide an anticancer agent or the like or a raw material thereof.
  • the uracil base may be a thymine base if desired.
  • the present invention provides a nucleic acid molecule comprising a miRNA binding sequence comprising the sequence of SEQ ID NO: 1 and a miRNA binding sequence comprising the sequence of SEQ ID NO: 2.
  • the uracil base may be a thymine base if desired.
  • This nucleic acid molecule contains BNA.
  • it comprises a miRNA binding sequence comprising the sequence of SEQ ID NO: 3 and a sequence of SEQ ID NO: 4.
  • the uracil base may be a thymine base if desired.
  • the present invention provides a nucleic acid molecule comprising the sequence of SEQ ID NO: 5 and the sequence of SEQ ID NO: 6 and comprising at least one cross-linked nucleic acid (BNA).
  • BNA cross-linked nucleic acid
  • the present invention provides a nucleic acid molecule comprising the sequence of SEQ ID NO: 9 and the sequence of SEQ ID NO: 10.
  • uracil bases and thymine bases both bind complementary to adenine bases, so that those skilled in the art are shown as uracil bases in the sequences. Understand that the existing base may be changed to a thymine base. Accordingly, in the sequences described herein, the uracil base may be a thymine base as required.
  • the present invention provides a composition comprising the nucleic acid molecule of the present invention.
  • the composition can be for the prevention or treatment of a tumor, for example, where the tumor can be a carcinoma.
  • the target tumor can be colon cancer, lung cancer, or breast cancer. Alternatively, it may be for promoting tumor epithelial-mesenchymal transition.
  • the miRNA-inhibiting complex or nucleic acid molecule is present in the composition of the invention in a form contained in a carrier for nucleic acid delivery.
  • Such carriers include the group consisting of lipid nanoparticles (LNP), cationic liposomes, non-cationic liposomes, cationic polymers, non-cationic polymers, ⁇ -glucan, atelocollagen, PLGA nanoparticles, surfactant peptides and superapatite. Selected from.
  • LNP lipid nanoparticles
  • cationic liposomes non-cationic liposomes
  • cationic polymers cationic polymers
  • non-cationic polymers non-cationic polymers
  • ⁇ -glucan atelocollagen
  • PLGA nanoparticles a surfactant peptides and superapatite.
  • inclusion in such a carrier can reduce the degradation of the nucleic acid molecule, which is advantageously targeted to the target of interest and has utility as a nucleic acid pharmaceutical. Can be increased.
  • the carrier used is LNP, which includes a cationic lipid.
  • Such an LNP may contain a cationic lipid, a helper lipid, and a PEG-modified lipid, and preferably the cationic lipid contains a tertiary amine and / or a disulfide bond in the molecule.
  • the present invention provides a composition comprising a miRNA inhibition complex comprising RNA or an analog thereof and a carrier for nucleic acid delivery.
  • the included miRNA inhibition complex includes at least one double-stranded structure and a miRNA binding sequence, and two strands of the miRNA binding sequence bind one by one to at least one strand of the double-stranded structure.
  • the miRNA inhibition complex comprises at least one cross-linked nucleic acid (BNA).
  • BNA cross-linked nucleic acid
  • the miRNA-inhibiting complex included may be any of the implementations described in the (miRNA-inhibiting complex), (miRNA-inhibiting), (nucleic acid molecule), (medicine), (DDS) sections.
  • the form and any form described elsewhere in this specification can be utilized.
  • the present invention provides a pharmaceutical composition
  • a pharmaceutical composition comprising a composition comprising a miRNA-inhibiting complex comprising RNA or an analog thereof and a carrier for nucleic acid delivery.
  • BNA crosslinked nucleic acid
  • the miRNA-inhibiting complex included may be any of the implementations described in the (miRNA-inhibiting complex), (miRNA-inhibiting), (nucleic acid molecule), (medicine), (DDS) sections. The form and any form described elsewhere in this specification can be utilized.
  • the present invention provides a composition for delivering an miRNA inhibition complex to a desired site, comprising an miRNA inhibition complex comprising RNA or an analog thereof and a carrier for nucleic acid delivery.
  • BNA crosslinked nucleic acid
  • the miRNA-inhibiting complex included may be any of the implementations described in the (miRNA-inhibiting complex), (miRNA-inhibiting), (nucleic acid molecule), (medicine), (DDS) sections. The form and any form described elsewhere in this specification can be utilized.
  • BNA is via the at least one atom selected from the group consisting of oxygen and carbon at the 2 ′ position. It includes BNA bridged on the 4 ′ side through at least one atom selected from the group consisting of carbon and carbon and nitrogen.
  • the BNA used in the present invention may be any BNA described in the section (Bridged nucleic acid (BNA) used in the present invention).
  • BNA-1 is a representative example.
  • the BNA used in the present invention may be BNA-2. More preferably, it may be BNA-3.
  • Further embodiments that can be used include, for example, cEt, BNA NC (NMe), or 2 ′, 4 ′ methano-bridged nucleic acid (LNA).
  • BNA NC (NMe) is particularly preferable.
  • using this particular nucleic acid increased stability, promoted duplex formation, and further improved biological activity was observed.
  • cEt can be used.
  • BNA (cEt) has the same thermal stability and mismatch discrimination as conventional LNA, but improves stability against nucleases.
  • the complex of the present invention comprises two or more of the double-stranded structures, and a strand comprising a miRNA binding sequence in two strands at one end of the first double-stranded structure of the double-stranded structure.
  • a strand comprising a miRNA binding sequence in two strands at one end of the first double-stranded structure of the double-stranded structure are connected to each other, and the other end of each of the strands is a second duplex of the two or more double-stranded structures, so that each of the strands is sandwiched between the two or more double-stranded structures.
  • Each is bound to two strands of the structure.
  • the lower limit length of the double-stranded structure in the complex used in the present invention is not particularly limited as long as the activity is maintained, but at least 4 base length, at least 5 base length, at least 6 base length, It is at least 7 bases long, at least 8 bases long, preferably at least 9 bases long, more preferably at least 10 bases long.
  • their base lengths may be the same or different.
  • it has been confirmed that sufficient formation of a double strand is confirmed with a length of 10 bases and has a sufficient effect, but in some cases, for example, at least 11 bases, at least 12 bases, at least 13 bases , At least 14 bases long, at least 15 bases long, at least 16 bases long, at least 17 bases long, at least 18 bases long.
  • the upper limit length of the double-stranded structure in the complex of the present invention is not particularly limited as long as the activity is maintained.
  • the length is 100 bases or less, 90 bases or less, 80 bases or less, 70
  • the length may be not more than the base length, not more than 60 base length, not more than 50 base length, and the like.
  • the complex of the invention comprises 2 to 5 miRNA binding sequences, preferably 2 miRNA binding sequences.
  • the complex used in the present invention is Wherein I and II of the structure are double stranded structures, and can take a structure containing one miRNA binding sequence in each of a and b of the structure.
  • the miRNA binding sequence comprises 5′-CAGUGUU-3 ′ and / or 5′-CAGUAUU-3 ′, preferably the miRNA inhibition complex comprises two miRNA binding sequences,
  • the miRNA binding sequence contains 5'-CAGUGUU-3 'and the other miRNA binding sequence contains 5'-CAGUAUU-3'.
  • the uracil base may be a thymine base if desired.
  • a composition comprising a miRNA inhibition complex of the invention and a carrier for nucleic acid delivery comprises a miRNA binding sequence comprising the sequence of SEQ ID NO: 1 and a miRNA comprising the sequence of SEQ ID NO: 2.
  • Binding sequence and BNA Preferably, it comprises a miRNA binding sequence comprising the sequence of SEQ ID NO: 3 and a sequence of SEQ ID NO: 4.
  • the uracil base may be a thymine base if desired.
  • the complex in a composition comprising a miRNA inhibition complex of the invention and a carrier for nucleic acid delivery, the complex comprises the sequence of SEQ ID NO: 5 and the sequence of SEQ ID NO: 6, and at least one Nucleic acid molecules comprising cross-linked nucleic acids (BNA) are provided.
  • BNA cross-linked nucleic acids
  • the complex in a composition comprising a miRNA inhibition complex of the invention and a carrier for nucleic acid delivery, the complex comprises the sequence of SEQ ID NO: 9 and the sequence of SEQ ID NO: 10.
  • the uracil base may be a thymine base if desired.
  • the carrier included in the composition comprising the miRNA-inhibiting complex of the present invention and a carrier for nucleic acid delivery is a lipid nanoparticle (LNP), a cationic liposome, a non-cationic liposome, a cationic polymer. , Selected from the group consisting of non-cationic polymers, ⁇ -glucan, atelocollagen, PLGA nanoparticles, surfactant peptides and superapatite.
  • LNP lipid nanoparticle
  • DDS lipid nanoparticle
  • the carrier used in the present invention is LNP, wherein the LNP comprises a cationic lipid, more preferably, the LNP comprises a cationic lipid, a helper lipid and a PEG modified lipid, specifically
  • the cationic lipid may contain a tertiary amine and / or a disulfide bond in the molecule.
  • X a and X b are independently X 1 or X 2 ; s is 1 or 2, R 4 represents an alkyl group having 1 to 6 carbon atoms, n a and nb are independently 1, R 1a and R 1b independently represent an alkylene group having 1 to 6 carbon atoms, R 2a and R 2b independently represent an alkylene group having 1 to 6 carbon atoms, Y a and Y b independently represent an ester bond, an amide bond, a carbamate bond, an ether bond or a urea bond; R 3a and R 3b independently represent a sterol residue, a fat-soluble vitamin derivative residue or an aliphatic hydrocarbon group having 12 to 22 carbon atoms, The sterol residue is a cholesteryl group, a cholesteryl group, a stigmasteryl group, a ⁇ -
  • the BNA used here any of those described herein as (crosslinked nucleic acid (BNA) used in the present invention) can be used.
  • the miRNA-inhibiting complex included may be any of the implementations described in the (miRNA-inhibiting complex), (miRNA-inhibiting), (nucleic acid molecule), (medicine), (DDS) sections. The form and any form described elsewhere in this specification can be utilized.
  • X a and X b are independently X 2 .
  • R 3a and R 3b are independently a fat-soluble vitamin derivative residue or an aliphatic hydrocarbon group having 12 to 22 carbon atoms.
  • R 3a and R 3b are independently fat-soluble vitamin derivative residues.
  • the fat-soluble vitamin derivative residue is a residue derived from a reaction product of a fat-soluble vitamin having a hydroxyl group and succinic anhydride or glutaric anhydride.
  • R 3a and R 3b are independently an aliphatic hydrocarbon group having 12 to 22 carbon atoms.
  • R 4a and R 4b are each independently an alkylene group having 8 or less carbon atoms.
  • X 1a and X 1b are ester bonds.
  • R 5a and R 5b are independently a fat-soluble vitamin residue or an aliphatic hydrocarbon group having 13 to 23 carbon atoms.
  • R 5a and R 5b are independently fat-soluble vitamin residues.
  • R 5a and R 5b are independently an aliphatic hydrocarbon group having 13 to 23 carbon atoms.
  • Examples of particularly preferred cationic lipids used in the present invention include: Or And are commercially available as COATSOME SS-33 / 4PE-15 (registered trademark) (NOF Corporation) and COATSOME SS-33 / 1PZ-21 (registered trademark) (NOF Corporation), respectively.
  • the BNA is BNA NC (NMe).
  • the miRNA-inhibiting complex used in the present invention comprises two or more of the double-stranded structures, and the two strands at one end of the first double-stranded structure of the double-stranded structure.
  • Each strand containing the miRNA binding sequence is bound to each other, and each other end of the strand is sandwiched between the two or more double-stranded structures. It is bound to each of the two strands of the second double-stranded structure.
  • the miRNA inhibition complex comprises two miRNA binding sequences.
  • the miRNA-inhibiting complex includes the structure shown in FIG. 2, wherein I and II of the structure are double-stranded structures, and one miRNA binding sequence is present in each of a and b of the structure. including.
  • the miRNA binding sequence used in the present invention comprises 5'-CAGUGUU-3 'and / or 5'-CAGUAUU-3', preferably the miRNA inhibition complex has two miRNA bindings.
  • One miRNA binding sequence contains 5'-CAGUGUU-3 'and the other miRNA binding sequence contains 5'-CAGUAUU-3'.
  • the miRNA-inhibiting complex used in the present invention comprises a miRNA binding sequence comprising the sequence of SEQ ID NO: 1 and a miRNA binding sequence comprising the sequence of SEQ ID NO: 2 and comprises BNA.
  • it comprises a miRNA binding sequence comprising the sequence of SEQ ID NO: 3 and a sequence of SEQ ID NO: 4.
  • the uracil base may be a thymine base if desired.
  • the present invention provides a nucleic acid molecule comprising a sequence of SEQ ID NO: 5 and a sequence of SEQ ID NO: 6, and comprising at least one cross-linked nucleic acid (BNA).
  • the complex comprises the sequence of SEQ ID NO: 9 and the sequence of SEQ ID NO: 10.
  • the uracil base may be a thymine base if desired.
  • nucleoside analog and oligonucleotide analog of the present invention were synthesized according to the following synthesis scheme.
  • Oligonucleotides were synthesized with an nS-8II synthesizer or an AKTA oligopilot synthesizer.
  • Commercially available pore glassy solid phase support (2′-O-methyl-RNA manufactured by CPGLink Technologies) and 2′-O-methyl-RNA phosphoramidite having a standard protecting group, ie, 5′-O -Dimethoxytrityl N6-benzoyladenosine-2'-O-methyl-3'-ON, N'-diisopropyl phosphoramidite, 5'-O-dimethoxytrityl-N4-acetylcytidine-2'-O-methyl- 3'-O-N, N'-diisopropyl phosphoramidite, 5'-O-dimethoxytrityl-N2-isobutyrylguanosine-2'-O-methyl-3'-O-N, N'-d
  • phosphoramidites were used in acetonitrile (CH 3 CN) at a concentration of 0.1M.
  • CH 3 CN acetonitrile
  • BNA and LNA a 15 minute ligation / reuse time was used.
  • the activator was 5-benzylmercapto-tetrazole (0.25M, manufactured by Wako Pure Chemical Industries, Ltd.), and iodine / water / pyridine was used for PO-oxidation.
  • PS-phosphorothioation commercially available sulfurizing reagents for automated oligonucleotide synthesizers (ie, EIDTH, DDTT, PADS, Beucage reagents, etc.) were used with pyridine.
  • Oligonucleotides were purified by reverse phase ion pair HPLC on a Source 15 RPC gel column.
  • the buffers were 5% CH3CN, 0.1 M triethylamine acetate buffer (pH 7.0) (buffer A) and 90% CH3CN, 0.1 M triethylamine acetate buffer (pH 7.0) (buffer B).
  • Fractions containing the full length oligonucleotide with the dimethoxytrityl group retained at the 5 ′ end were pooled and subjected to the next purification.
  • the oligonucleotide pool was then purified by Source30Q anion pair HPLC.
  • the solution and buffer consisted of 0.6% trifluoroacetic acid (solution A), 20 mM sodium phosphate buffer (pH 7.5) (buffer C) and 2 M sodium chloride (buffer) in 20 mM sodium phosphate buffer. D). After removing the dimethoxytrityl group using solution A, fractions containing the full-length oligonucleotide were pooled, desalted and lyophilized. The compound was finally analyzed by MALDI-TOF / MS and reverse phase HPLC.
  • the purified single-stranded oligonucleotide was dissolved in distilled water, and then the absorbance was measured using an ultraviolet spectrophotometer to determine the oligonucleotide concentration. Using the determined concentrations, the complementary strands were mixed so as to have an equimolar concentration, heated at 95 ° C. for 10 minutes, and then gradually cooled to form double strands. Double strand formation was confirmed by non-denaturing gel electrophoresis.
  • Example 1 Tumor suppression in vivo by improved S-TuD
  • SUM149PT also referred to as SUM149
  • FBS foetal bovine serum
  • 10 mM HEPES 5 ⁇ g / ml Insulin
  • 1 ⁇ g / ml Hydrocortisone 5 ⁇ g / ml Gentamicin.
  • the cells were cultured at 37 ° C. in 12 medium (SUM149PT medium).
  • mice Female BALB / c nude mice were purchased from Japan SLC, and 6-week-old mice were used in all experiments. Cells were suspended in SUM149PT medium, mixed with an equal volume of Matrigel (BD) and injected into the mammary fat pad. Tumor volume was measured with a digital caliper.
  • SUM149PT medium SUM149PT medium
  • Matrigel Matrigel
  • miRNA inhibition complex The miRNA inhibition complex was prepared according to the protocol described above. (1) S-TuD-141 / 200c-1_17-pf-S10-BT6-MBSB1 (with MBS for miR-141 and miR-200c) used in this example, and (2) S-TuD-NCs- The structure with S10-BT6-MBSB1-s (MBS has no complementary sequence to miR) is as shown in FIG. The lower case letters in the sequence indicate the place where BNA NC (NMe) is substituted.
  • SUM149PT cells were injected into mouse mammary fat pad, on days 69, 76, 83, 90, 97, 104 and 111, (1) S-TuD-141 / 200c-1_17 -pf-S10-BT6-MBSB1 and (2) S-TuD-NCs-S10-BT6-MBSB1-s (Naked, 3 mg / kg) were administered into the tail vein and intratumorally.
  • mice body weight and tumor volume were measured over time.
  • S-TuD-141 / 200c-1_17-pf-S10-BT6-MBSB1 is S-TuD-NCs-S10-BT6-MBSB1 (S- Tumor growth was reduced compared to TuDNCs). This indicates that the hybrid miRNA inhibition complex of the present invention was able to successfully inhibit two miRNAs (miR-141 and miR-200c), thereby suppressing tumor growth.
  • TuD is a system that expresses from a vector
  • miRNA could not be successfully inhibited unless ex vivo was introduced into the cell in advance.
  • the improved S-TuD of the present invention has a higher miRNA inhibitory ability and superior serum stability, and thus miRNA inhibition is greatly improved in vivo. Therefore, when the improved S-TuD of the present invention is used, it is shown that miRNA inhibition can be achieved by intratumoral administration or intravenous administration, that is, in vivo.
  • Example 2 Tumor suppression in vivo by improved S-TuD using DDS
  • DDS drug delivery system
  • Lipid nanoparticles Lipid nanoparticles as shown in FIG. 7 were used as DDS. Lipid nanoparticles have the following components: COATSOME SS-33 / 4PE-15 cholesterol DSG-PEG5k (Wherein R 1 and R 2 are C18: 0 acyl) Was included.
  • the ratio of the components in the composition lipid nanoparticles of LNP was as follows.
  • Formulation 1 Lipid 6000nmol S-TuD 6.72nmol Lipid / S-TuD ratio 1000 Recovery rate (%) 81 Inclusion rate (%) 35 Diameter (d. Nm) 125
  • Formulation 2 Lipid 3000nmol S-TuD 6.72nmol Lipid / S-TuD ratio 250 Recovery rate (%) 56 Inclusion rate (%) 33 Diameter (d. Nm) 122.2
  • Formulation 4 Lipid 6000nmol S-TuD 13.4nmol Lipid / S-TuD ratio 500 Recovery rate (%) 94 Inclusion rate (%) 28 Diameter (d. Nm) 116.8
  • LNP having the composition of Formulation 1 was used for further study in vivo.
  • the ratio of each component to the mouse is S-TuD 1mg / kg COATSOME SS-33 / 4PE-15 430 nmol / mouse cholesterol 185 nmol / mouse DSG-PEG5k 18 nmol / mouse.
  • lipid nanoparticles as used in this example advantageously delivers the miRNA-inhibiting complex used herein to the target site of the tumor, thereby enabling treatment or prevention of the tumor. It is suggested that there is.
  • Example 3 Tumor suppression by improved S-TuD for non-small cell lung cancer
  • H596 cells are cultured at 37 ° C. in DMEM containing 10% fetal bovine serum (FBS).
  • A-427 cells are cultured at 37 ° C in EMEM containing 10% fetal bovine serum (FBS).
  • HCC827 cells are cultured at 37 ° C. in RPMI 1640 containing 10% fetal bovine serum (FBS).
  • mice Female BALB / c nude mice are purchased from Japan SLC, and 6-week-old mice are used in all experiments.
  • Virus-introduced H596 cells are suspended in DMEM medium, mixed with an equal amount of Matrigel (BD), and injected into the right ventral region. Tumor volume is measured with a digital caliper.
  • BD Matrigel
  • the miRNA inhibition complex (S-TuD-141 / 200c-1_17-pf-S10-BT6-MBSB1) is prepared in the same manner as in Example 1.
  • the prepared miRNA-inhibiting complex is administered to the mouse transplanted with the tail vein or the tumor, and the decrease of the tumor is confirmed.
  • Example 4 Tumor suppression in vivo by improved S-TuD using DDS
  • DDS drug delivery system
  • lipid nanoparticles having the following components were used. COATSOME SS-33 / 1PZ-21 cholesterol DSG-PEG5k (Wherein R 1 and R 2 are C18: 0 acyl) was included.
  • composition of LNP The following ratios of components in the lipid nanoparticles were prepared and used for in vivo studies.
  • the ratio of each component to the mouse is S-TuD 3mg / kg COATSOMESS-33 / 1PZ-21 2585 nmol / mouse cholesterol 1108 nmol / mouse DSG-PEG5k 295 nmol / mouse.
  • mice injected with 5 ⁇ 10 5 SUM149PT cells into the mammary fat pad tumor cells were transplanted on the 0th day on days 57, 64, 71, 76, 85, 92, 99 and 104.
  • S-TuD-141 / 200c-1_17-pf-S10-BT6-MBSB1 (LNP-S-TuD-141 / 200c) (3 mg / kg) encapsulated in the LNP or S-TuD encapsulated in the LNP -NCs-S10-BT6-MBSB1 (LNP-S-TuD negative control) (3 mg / kg) was injected through the tail vein.
  • lipid nanoparticles as used in this example advantageously delivers the miRNA-inhibiting complex used herein to the target site of the tumor, thereby enabling treatment or prevention of the tumor. It is suggested that there is.
  • H358 cells were plated in 24-well plates the day before introduction at 1.0x105 cells per well in RPMI1640 containing 10% foetal bovine serum (FBS), and Lipofectamine 2000 (LifeTechnologies) and 100 ng reporter plasmid (psiCHECK2-UT or psiCHECK2-T21 -5p) (see FIGS. 13, 14 and 15) and various S-TuDs were transfected in triplicate. All assays were performed in GLOMAX TM (Promega) by dual luciferase assay (Promega) 48 hours after transfection.
  • GLOMAX TM Promega
  • the protocol for miR-21 inhibition assay with improved S-TuD is as follows.
  • the activity of the target miRNA was measured by taking the ratio of Renilla luciferase (RL) and firefly luciferase (FL).
  • Lung cancer cell line H358 cells that endogenously express miR-21 were cultured at 37 ° C. in RPMI1640 containing 10% foetal bovine serum (FBS).
  • FBS foetal bovine serum
  • Example 2 psiCHECK2-T21-5p (produced by inserting a sequence complementary to a target miRNA such as miR-21 into Promega, XhoI-NotI site; the overall structure is shown in FIG. 13), FIG. 16-1. H358 cells were transfected with the indicated synthetic S-TuD modifications.
  • FIG. 16-2 The results are shown in FIG. 16-2.
  • the result of FIG. 16-2 shows that improved S-TuD-21 completely inhibits miR-21 activity of H358 cells at a low concentration of 1000 pM, and has a higher inhibitory activity than conventional S-TuD. It was done.
  • H358 cells were plated in 24-well plates the day before transfection in RPMI1640 containing 10% foetal bovine serum (FBS) at 1.0x105 cells per well, and Lipofectamine 2000 (LifeTechnologies) and 100 ng reporter plasmid (psiCHECK2-UT or psiCHECK2-T200c). -3p) (see FIGS. 13, 14 and 15) and various S-TuDs were transfected in triplicate. All assays were performed in GLOMAX TM (Promega) by dual luciferase assay (Promega) 48 hours after transfection.
  • FBS foetal bovine serum
  • the protocol for the miR-200c inhibition assay with improved S-TuD is as follows.
  • the activity of the target miRNA was measured by taking the ratio of Renilla luciferase (RL) and firefly luciferase (FL).
  • Lung cancer cell line H358 cells that endogenously express miR-200c were cultured at 37 ° C. in RPMI1640 containing 10% foetal bovine serum (FBS).
  • FBS foetal bovine serum
  • H358 cells were transfected with psiCHECK2-T200c-3p, a synthetic S-TuD modification shown in Figure 17-1. Thereafter, chemiluminescence signals generated by the reaction of Renilla luciferase (RL) and firefly luciferase (FL) expressed from the transfected cells with their respective specific substrates were measured with a luminometer. The ratio of shiita luciferase (RL) and firefly luciferase (FL) was taken. The results are shown in FIG. From the result of FIG. 17-2, it was shown that improved S-TuD-141 / 200c completely inhibited miR-200c activity of H358 cells at a low concentration of 100 pM.
  • Protocol of miR-200c inhibition assay with TuD expression lentiviral vector is as follows.
  • the activity of the target miRNA was measured by taking the ratio of Renilla luciferase (RL) and firefly luciferase (FL).
  • Lung cancer cell line H358 cells that endogenously express miR-200c were cultured at 37 ° C. in RPMI1640 containing 10% foetal bovine serum (FBS). H358 cells were seeded at 1x10 5 cells per well in a 6-well plate, and 24 hours later, pLSP-TuD-141 / 200c virus vector (3x10 5 TU) was introduced in the presence of 8 ⁇ g / ml polybrene for 24 hours of transduction. Later, Puromycin (1 ug / ml) was selected. After selection for one week, Puromycin was removed from the medium to obtain H358-TuD-141 / 200c cells carrying the TuD-141 / 200c expression cassette.
  • H358-TuD-141 / 200c cells were transfected using psiCHECK2-T200c-3. Thereafter, chemiluminescence signals generated by the reaction of Renilla luciferase (RL) and firefly luciferase (FL) expressed from the transfected cells with their respective specific substrates were measured with a luminometer. The ratio of shiita luciferase (RL) and firefly luciferase (FL) was taken. The results are shown in Fig. 17-3. From the result of FIG. 17-3, it was shown that TuD-141 / 200c that was introduced and expressed from the lentiviral vector completely inhibited miR-200c activity of H358 cells.
  • the present invention is useful in the pharmaceutical industry and the reagent industry using nucleic acid drugs and the like.
  • SEQ ID NO: 1 Binding of S-TuD-141 / 200c-1_17-pf-S10-BT6-MBSB1 to miR-141
  • SEQ ID NO: 2 S-TuD-141 / 200c-1_17-pf-S10-BT6-MBSB1 Binding sequence to miR-200c
  • SEQ ID NO: 3 Binding sequence to miR-141 of S-TuD-141 / 200c-1_17-pf-S10-BT6-MBSB1 (including BNA at a specific position)
  • SEQ ID NO: 6 S-TuD-141 / 200c-1_17-pf-
  • SEQ ID NO: 19 antisense sequence of FIG. 10 (41)
  • SEQ ID NO: 20 sense sequence of FIG. 10 (42)
  • SEQ ID NO: 21 antisense sequence of FIG. 10 (42)
  • SEQ ID NO: 22 sense sequence of FIG. 10 (43)
  • SEQ ID NO: 23 antisense sequence of FIG. 10 (43)
  • SEQ ID NO: 24 sense sequence of FIG. 10 (44)
  • SEQ ID NO: 25 antisense sequence of FIG. 10 (44)
  • SEQ ID NO: 26 sense sequence of FIG. 10 (45)
  • SEQ ID NO: 27 antisense sequence of FIG. 10 (45)
  • SEQ ID NO: 28 psiCHECK2-T21-5p-s of FIG.
  • SEQ ID NO: 29 psiCHECK2-T21-5p-a in FIG.
  • SEQ ID NO: 30 psiCHECK2-T200c-3p-s in FIG.
  • Sequence number 31 psiCHECK2-T200c-3p-a of FIG.
  • SEQ ID NO: 32 Conventional S-TuD-21 binding to miR-21
  • SEQ ID NO: 33 Improved S-TuD-21 binding to miR-21
  • SEQ ID NO: 34 Improved S-TuD-21 miR- Binding sequence for 21 (including BNA at specific position)
  • SEQ ID NO: 35 conventional S-TuD-21 sense sequence
  • SEQ ID NO: 36 conventional S-TuD-21 antisense sequence
  • SEQ ID NO: 37 improved S-TuD-21 sense sequence
  • SEQ ID NO: 38 improved S-TuD- 21
  • SEQ ID NO: 39 Improved S-TuD-21 sense sequence (including BNA at specific position)
  • SEQ ID NO: 40 Improved S-TuD-21 antisense sequence (including BNA at a specific position)
  • SEQ ID NO: 41 miR-21

Abstract

構造強化されたS-TuDを用いた新規がん治療法を提供する。腫瘍の予防または処置のための、RNAまたはその類縁体を含むmiRNA阻害複合体を含む組成物、またはそれを用いる腫瘍の予防または処置のための方法が提供される。miRNA阻害複合体は、好ましくは、少なくとも1つの二本鎖構造およびmiRNA結合配列を含む。好ましくは、miRNA結合配列の2つの鎖は、二本鎖構造の少なくとも片端の2つの鎖に一本ずつ結合している。本発明の一部の局面では、そのようなmiRNA阻害複合体の送達のための送達システムも提供される。

Description

構造強化されたS-TuDを用いた新規がん治療法
 本発明は、構造強化された合成Tough Decoy(S-TuD)を用いた新規がん治療法、関連する治療剤、薬物送達媒体に関する。
 マイクロRNA(miRNA)は、多数の標的遺伝子を制御することにより遺伝子調節ネットワークを形成し、発生を含む多くの生命現象において重要な役割を果たしており、miRNAを阻害する種々の阻害剤が開発されている(WO2010/047216=特許文献1)。
 また、実験的なmiRNAの抑制においてはS-TuDなどの阻害核酸が用いられ、本発明者らの一部は、増強型の阻害核酸の開発を行ってきている。
国際公開第2010/047216号
 本発明者らは、RNAまたはその類縁体を含むmiRNA阻害複合体中に、少なくとも1つの架橋核酸(BNA)を含むこと(本明細書において、BNAを含んだものをBNA修飾型阻害核酸「S-TuD」ともいう)によって、阻害活性が強固にされ、生物活性が強化され、疾患(例えば、癌など)を有効に処置し得ることを見出し、本発明を完成させた。具体的な実施形態では、本発明者らは、癌に関連するmiRNA(例えば、miR-200ファミリー)の阻害において、少なくとも1つの架橋核酸(BNA)を含む複合体を用いることによって、腫瘍が効果的に抑制されることを見出した。加えて、この効果は、癌に関連するmiRNAの複数の異なるメンバーの同時阻害においても観察されることを見出した。
 本発明において、BNA修飾型阻害核酸「S-TuD」は従来型の「S-TuD」と比べて小型化、血清中安定性の増加、microRNA阻害能の増強がなされ、miRNA阻害による腫瘍の治療法を達成することを見出した。本発明のBNA修飾型阻害核酸「S-TuD」は、従来型のS-TuDに比べて、効果が改善されると期待される。
 従って種々の実施形態では、本発明の1つの実施形態においては、腫瘍の予防または処置のための、RNAまたはその類縁体を含み、少なくとも1つのBNAを含むmiRNA阻害複合体を含む組成物、またはそれを用いる腫瘍の予防または処置のための方法が提供される。miRNA阻害複合体は、少なくとも1つの二本鎖構造およびmiRNA結合配列を含む。miRNA結合配列の2つの鎖は、二本鎖構造の少なくとも片端の2つの鎖に一本ずつ結合している。このような構造をとることにより、本発明で用いられるmiRNA阻害複合体の血清中安定性の増加、miRNA阻害能の増強がなされ、腫瘍の予防または処置において有利である。
 例えば、本発明の好ましい実施形態において、以下の項目が提供される。
(項目A1) 腫瘍の予防または処置のための、RNAまたはその類縁体を含むmiRNA阻害複合体を含む組成物であって、該miRNA阻害複合体は少なくとも1つの二本鎖構造およびmiRNA結合配列を含み、該miRNA結合配列の2つの鎖が該二本鎖構造の少なくとも片端の2つの鎖に一本ずつ結合しており、該miRNA阻害複合体は少なくとも1つの架橋核酸(BNA)を含む、組成物。
(項目A2) 前記BNAは2’位側で酸素および炭素からなる群より選択される少なくとも1つの原子を介し、4’位側で炭素と炭素および窒素からなる群より選択される少なくとも1つの原子を介して架橋されたBNAを含む、前記項目に記載の組成物。
(項目A3) 前記BNAは
Figure JPOXMLDOC01-appb-C000006

 
(式中、R、R1’、R、R2’、およびRは、それぞれ独立して、水素原子、置換または非置換のアルキル基、置換または非置換のアルケニル基、置換または非置換のシクロアルキル基、置換または非置換のアリール基、置換または非置換のアラルキル基、置換または非置換のアシル基、置換または非置換のスルホニル基、置換または非置換のシリル基、および機能性分子ユニット置換基からなる群より選択される基を示し、mは、0~2の整数であり、Baseは、アデニニル基、チミニル基、ウラシリル基、イノシニル基、シトシニル基、グアニニル基、およびメチルシトシニル基からなる群より選択される基を示し、nは、1~3の整数であり、qは0または1の整数である。)で示される2’,4’置換架橋核酸を含む、前記項目のいずれかに記載の組成物。
(項目A4) 前記BNAは、
Figure JPOXMLDOC01-appb-C000007

(式中、Rは、水素原子、アルキル基、アルケニル基、シクロアルキル基、アリール基、アラルキル基、アシル基、スルホニル基、シリル基、および機能性分子ユニット置換基からなる群より選択される基を示し、Baseは、アデニニル基、チミニル基、ウラシリル基、イノシニル基、シトシニル基、グアニニル基、およびメチルシトシニル基からなる群より選択される基を示し、mは、0~2の整数であり、nは、1~3の整数である。)で示される2’,4’置換架橋核酸を含む、前記項目のいずれかに記載の組成物。
(項目A5) 前記BNAは、
Figure JPOXMLDOC01-appb-C000008

または2’,4’メタノ架橋核酸(LNA)を含む、前記項目のいずれかに記載の組成物。
(項目A6) 前記BNAはBNANC(NMe)である、前記項目のいずれかに記載の組成物。
(項目A7) 前記miRNA阻害複合体は、前記二本鎖構造を2つ以上含み、該二本鎖構造の第1の二本鎖構造の片端の2つの鎖にmiRNA結合配列を含む鎖がそれぞれ1本ずつ結合しており、該2つ以上の二本鎖構造に挟まれるように、該鎖のそれぞれの他端が、該2つ以上の二本鎖構造の第2の二本鎖構造の2つの鎖にそれぞれ結合している、前記項目のいずれかに記載の組成物。
(項目A8) 前記二本鎖の構造は、少なくとも6塩基長である、前記項目のいずれかに記載の組成物。
(項目A9) 前記二本鎖の構造は、少なくとも8塩基長である、前記項目のいずれかに記載の組成物。
(項目A10) 前記二本鎖の構造は、50塩基長以下である、前記項目のいずれかに記載の組成物。
(項目A11) 前記miRNA阻害複合体は、2から5つのmiRNA結合配列を含む、前記項目のいずれかに記載の組成物。
(項目A12) 前記miRNA阻害複合体は、2つのmiRNA結合配列を含む、前記項目のいずれかに記載の組成物。
(項目A13) 前記項目のいずれかに記載の組成物であって、前記miRNA阻害複合体は、以下
Figure JPOXMLDOC01-appb-C000009

 
に示された構造を含み、該構造のIおよびIIは二本鎖構造であって、該構造のaおよびbにそれぞれ1つのmiRNA結合配列を含む、組成物。
(項目A14) 前記miRNA結合配列が、5'-CAGUGUU-3'(配列中、ウラシル塩基は必要に応じてチミン塩基である)および/または5'-CAGUAUU-3'(配列中、ウラシル塩基は必要に応じてチミン塩基である)を含む、前記項目のいずれかに記載の組成物。
(項目A15) 前記miRNA阻害複合体が2つのmiRNA結合配列を含み、一方のmiRNA結合配列が5'-CAGUGUU-3'(配列中、ウラシル塩基は必要に応じてチミン塩基である)を含み、かつ、他方のmiRNA結合配列が5'-CAGUAUU-3'(配列中、ウラシル塩基は必要に応じてチミン塩基である)を含む、前記項目のいずれかに記載の組成物。
(項目A16) 5'-CAGUGUU-3'(配列中、ウラシル塩基は必要に応じてチミン塩基である)および5'-CAGUAUU-3'(配列中、ウラシル塩基は必要に応じてチミン塩基である)の配列を含み、少なくとも1つの架橋核酸(BNA)を含む核酸分子。
(項目A16-2) 2つのmiRNA結合配列を含む核酸分子であって、一方のmiRNA結合配列が5'-CAGUGUU-3'(配列中、ウラシル塩基は必要に応じてチミン塩基である)または5'-CAGUAUU-3'(配列中、ウラシル塩基は必要に応じてチミン塩基である)を含み、かつ、他方のmiRNA結合配列が5'-CAGUGUU-3'(配列中、ウラシル塩基は必要に応じてチミン塩基である)または5'-CAGUAUU-3'(配列中、ウラシル塩基は必要に応じてチミン塩基である)を含み、少なくとも1つの架橋核酸(BNA)を含む核酸分子。
(項目A17) 2つのmiRNA結合配列を含む核酸分子であって、一方のmiRNA結合配列が5'-CAGUGUU-3'(配列中、ウラシル塩基は必要に応じてチミン塩基である)を含み、かつ、他方のmiRNA結合配列が5'-CAGUAUU-3'(配列中、ウラシル塩基は必要に応じてチミン塩基である)を含み、少なくとも1つの架橋核酸(BNA)を含む核酸分子。
(項目A18A) 配列番号1の配列(配列中、ウラシル塩基は必要に応じてチミン塩基である)を含むmiRNA結合配列と、配列番号2の配列(配列中、ウラシル塩基は必要に応じてチミン塩基である)を含むmiRNA結合配列とを含む、核酸分子。
(項目A18B) 配列番号3の配列(配列中、ウラシル塩基は必要に応じてチミン塩基である)を含むmiRNA結合配列と、配列番号4の配列(配列中、ウラシル塩基は必要に応じてチミン塩基である)を含むmiRNA結合配列とを含む、核酸分子。
(項目A19A) 配列番号9の配列(配列中、ウラシル塩基は必要に応じてチミン塩基である)と、配列番号10の配列(配列中、ウラシル塩基は必要に応じてチミン塩基である)とを含み、少なくとも1つの架橋核酸(BNA)を含む、核酸分子。
(項目A19B) 配列番号5の配列(配列中、ウラシル塩基は必要に応じてチミン塩基である)と、配列番号6の配列(配列中、ウラシル塩基は必要に応じてチミン塩基である)とを含む、核酸分子。
(項目AA1) 5'-AUAAGCU-3'(配列中、ウラシル塩基は必要に応じてチミン塩基である)の配列を含み、少なくとも1つの架橋核酸(BNA)を含む核酸分子。
(項目AA2) 配列番号33の配列(配列中、ウラシル塩基は必要に応じてチミン塩基である)を含むmiRNA結合配列を含み、少なくとも1つの架橋核酸(BNA)を含む核酸分子。
(項目AA3) 配列番号34の配列(配列中、ウラシル塩基は必要に応じてチミン塩基である)を含むmiRNA結合配列を含む、核酸分子。
(項目AA4) 配列番号37および/または配列番号38の配列を含む、核酸分子。
(項目A20) 前記項目のいずれかに記載の核酸分子を含む、組成物。
(項目A21) 腫瘍の予防または処置のための、前記項目のいずれかに記載の組成物。
(項目A22) 前記腫瘍がカルシノーマである、前記項目のいずれかに記載の組成物。
(項目A23) 前記腫瘍が大腸癌、肺癌、または乳癌である、前記項目のいずれかに記載の組成物。
(項目A24) 前記腫瘍の上皮間葉転換を促進するための、前記項目のいずれかに記載の組成物。
(項目A25) 前記miRNA阻害複合体または核酸分子が、核酸送達のためのキャリアに含まれる形態で存在する、前記項目のいずれかに記載の組成物。
(項目A26) 前記キャリアが、脂質ナノ粒子(LNP)、カチオン性リポソーム、非カチオン性リポソーム、カチオン性ポリマー、非カチオン性ポリマー、βグルカン、アテロコラーゲン、PLGAナノ粒子、界面活性剤ペプチドおよびスーパーアパタイトからなる群から選択される、前記項目のいずれかに記載の組成物。
(項目A27) 前記キャリアがLNPであり、該LNPは、カチオン性脂質を含む、前記項目のいずれかに記載の組成物。
(項目A28) 前記LNPは、カチオン性脂質、ヘルパー脂質およびPEG修飾脂質を含む、前記項目のいずれかに記載の組成物。
(項目A29) 前記カチオン性脂質は、分子内に三級アミンおよび/またはジスルフィド結合を含む、前記項目のいずれかに記載の組成物。
(項目B1) RNAまたはその類縁体を含むmiRNA阻害複合体と、
 核酸送達のためのキャリアと
を含む組成物であって、該miRNA阻害複合体は少なくとも1つの二本鎖構造およびmiRNA結合配列を含み、該miRNA結合配列の2つの鎖が該二本鎖構造の少なくとも片端の2つの鎖に一本ずつ結合しており、該miRNA阻害複合体は少なくとも1つの架橋核酸(BNA)を含む、組成物。
(項目B1-1) 項目A1~A29のいずれかに記載される特徴を有する、項目B1に記載の組成物。
(項目B2) 医薬組成物である、前記項目のいずれかに記載の組成物。
(項目B3) 前記miRNA阻害複合体を所望の部位に送達するためのものである、前記項目のいずれかに記載の組成物。
(項目B4) 前記BNAは2’位側で酸素および炭素からなる群より選択される少なくとも1つの原子を介し、4’位側で炭素と炭素および窒素からなる群より選択される少なくとも1つの原子を介して架橋されたBNAを含む、前記項目のいずれかに記載の組成物。
(項目B5) 前記BNAは
Figure JPOXMLDOC01-appb-C000010

(式中、R、R1’、R、R2’、およびRは、それぞれ独立して、水素原子、置換または非置換のアルキル基、置換または非置換のアルケニル基、置換または非置換のシクロアルキル基、置換または非置換のアリール基、置換または非置換のアラルキル基、置換または非置換のアシル基、置換または非置換のスルホニル基、置換または非置換のシリル基、および機能性分子ユニット置換基からなる群より選択される基を示し、mは、0~2の整数であり、Baseは、アデニニル基、チミニル基、ウラシリル基、イノシニル基、シトシニル基、グアニニル基、およびメチルシトシニル基からなる群より選択される基を示し、nは、1~3の整数であり、qは0または1の整数である。)で示される2’,4’置換架橋核酸を含む、前記項目のいずれかに記載の組成物。
(項目B6) 前記BNAは、
Figure JPOXMLDOC01-appb-C000011

(式中、Rは、水素原子、アルキル基、アルケニル基、シクロアルキル基、アリール基、アラルキル基、アシル基、スルホニル基、シリル基、および機能性分子ユニット置換基からなる群より選択される基を示し、Baseは、アデニニル基、チミニル基、ウラシリル基、イノシニル基、シトシニル基、グアニニル基、およびメチルシトシニル基からなる群より選択される基を示し、mは、0~2の整数であり、nは、1~3の整数である。)で示される2’,4’置換架橋核酸を含む、前記項目のいずれかに記載の組成物。
(項目B7) 前記BNAは、
Figure JPOXMLDOC01-appb-C000012

 
または2’,4’メタノ架橋核酸(LNA)を含む、前記項目のいずれかに記載の組成物。
(項目B8) 前記BNAはBNANC(NMe)である、前記項目のいずれかに記載の組成物。
(項目B9) 前記miRNA阻害複合体は、前記二本鎖構造を2つ以上含み、該二本鎖構造の第1の二本鎖構造の片端の2つの鎖にmiRNA結合配列を含む鎖がそれぞれ1本ずつ結合しており、該2つ以上の二本鎖構造に挟まれるように、該鎖のそれぞれの他端が、該2つ以上の二本鎖構造の第2の二本鎖構造の2つの鎖にそれぞれ結合している、前記項目のいずれかに記載の組成物。
(項目B10) 前記二本鎖の構造は、少なくとも6塩基長である、前記項目のいずれかに記載の組成物。
(項目B11) 前記二本鎖の構造は、少なくとも8塩基長である、前記項目のいずれかに記載の組成物。
(項目B12) 前記二本鎖の構造は、50塩基長以下である、前記項目のいずれかに記載の組成物。
(項目B13) 前記miRNA阻害複合体は、2から5つのmiRNA結合配列を含む、前記項目のいずれかに記載の組成物。
(項目B14) 前記miRNA阻害複合体は、2つのmiRNA結合配列を含む、前記項目のいずれかに記載の組成物。
(項目B15) 前記項目のいずれかに記載の組成物であって、前記miRNA阻害複合体は、以下
Figure JPOXMLDOC01-appb-C000013

 
に示された構造を含み、該構造のIおよびIIは二本鎖構造であって、該構造のaおよびbにそれぞれ1つのmiRNA結合配列を含む、組成物。
(項目B16) 前記miRNA結合配列が、5'-CAGUGUU-3'(配列中、ウラシル塩基は必要に応じてチミン塩基である)および/または5'-CAGUAUU-3'(配列中、ウラシル塩基は必要に応じてチミン塩基である)を含む、前記項目のいずれかに記載の組成物。
(項目B17) 前記miRNA阻害複合体が2つのmiRNA結合配列を含み、一方のmiRNA結合配列が5'-CAGUGUU-3'(配列中、ウラシル塩基は必要に応じてチミン塩基である)を含み、かつ、他方のmiRNA結合配列が5'-CAGUAUU-3'(配列中、ウラシル塩基は必要に応じてチミン塩基である)を含む、前記項目のいずれかに記載の組成物。
(項目B18A) 前記miRNA阻害複合体が、配列番号1(配列中、ウラシル塩基は必要に応じてチミン塩基である)を含むmiRNA結合配列と、配列番号2(配列中、ウラシル塩基は必要に応じてチミン塩基である)を含むmiRNA結合配列とを含む、前記項目のいずれかに記載の組成物。
(項目B18B) 前記miRNA阻害複合体が、配列番号3(配列中、ウラシル塩基は必要に応じてチミン塩基である)を含むmiRNA結合配列と、配列番号4(配列中、ウラシル塩基は必要に応じてチミン塩基である)を含むmiRNA結合配列とを含む、前記項目のいずれかに記載の組成物。
(項目B19A) 前記miRNA阻害複合体が、配列番号5の配列(配列中、ウラシル塩基は必要に応じてチミン塩基である)と、配列番号6の配列(配列中、ウラシル塩基は必要に応じてチミン塩基である)とを含む、前記項目のいずれかに記載の組成物。
(項目B19B) 前記miRNA阻害複合体が、配列番号9の配列(配列中、ウラシル塩基は必要に応じてチミン塩基である)と、配列番号10の配列(配列中、ウラシル塩基は必要に応じてチミン塩基である)とを含む、前記項目のいずれかに記載の組成物。
(項目B20) 前記キャリアが、脂質ナノ粒子(LNP)、カチオン性リポソーム、非カチオン性リポソーム、カチオン性ポリマー、非カチオン性ポリマー、βグルカン、アテロコラーゲン、PLGAナノ粒子、界面活性剤ペプチドおよびスーパーアパタイトからなる群から選択される、前記項目のいずれかに記載の組成物。
(項目B21) 前記キャリアがLNPであり、該LNPは、カチオン性脂質を含む、前記項目のいずれかに記載の組成物。
(項目B22) 前記LNPは、カチオン性脂質、ヘルパー脂質およびPEG修飾脂質を含む、前記項目のいずれかに記載の組成物。
(項目B23) 前記カチオン性脂質は、分子内に三級アミンおよび/またはジスルフィド結合を含む、前記項目のいずれかに記載の組成物。
(項目C1) 式(1’):
Figure JPOXMLDOC01-appb-C000014

(式(1’)中、
及びXは独立して、三級アミンを含む置換基であり、
sは1又は2であり、
は炭素数1~6のアルキル基を表し、
及びnは独立して、0または1であり、
1a及びR1bは独立して、炭素数1~6のアルキレン基を表し、
2a及びR2bは独立して、炭素数1~6のアルキレン基を表し、
及びYは独立して、エステル結合、アミド結合、カーバメート結合、エーテル結合又は尿素結合を表し、
3a及びR3bは独立して、ステロール残基、脂溶性ビタミン誘導体残基又は炭素数12~22の脂肪族炭化水素基を表し、
ステロール残基が、コレステリル基、コレスタリル基、スチグマステリル基、β-シトステリル基、ラノステリル基又はエルゴステリル基であり、
脂溶性ビタミンが、レチノイン酸、レチノール、レチナール、エルゴステロール、7-デヒドロコレステロール、カルシフェロール、コルカルシフェロール、ジヒドロエルゴカルシフェロール、ジヒドロタキステロール、トコフェロール、又はトコトリエノールである)で示される化合物を膜の構成脂質として含む脂質膜構造体と、
 該脂質膜構造体によって封入される核酸複合体と
を含む組成物であって、該核酸複合体はRNAまたはその類縁体を含むmiRNA阻害複合体であり、該miRNA阻害複合体は少なくとも1つの二本鎖構造およびmiRNA結合配列を含み、該miRNA結合配列の2つの鎖が該二本鎖構造の少なくとも片端の2つの鎖に一本ずつ結合しており、該miRNA阻害複合体は少なくとも1つの架橋核酸(BNA)を含む、組成物。
(項目C1-1) 項目A1~29、又は項目B1~23のいずれかに記載される特徴を有する、項目C1に記載の組成物。
(項目C2) X及びXは、独立して、X、X又はX
Figure JPOXMLDOC01-appb-C000015

である、前記項目のいずれかに記載の組成物。
(項目C3) 式(1’)中、R3a及びR3bが独立して、脂溶性ビタミン誘導体残基である、前記項目のいずれかに記載の組成物。
(項目C4) 式(1’)中、Y及びYは独立して、エステル結合である、前記項目のいずれかに記載の組成物。
(項目C5) 式(1’)中、n及びnは1である、前記項目のいずれかに記載の組成物。
(項目C6) 式(1’)中、R3a及びR3b、Y及びY、並びに/あるいはX及びXが同一である、前記項目のいずれかに記載の組成物。
(項目C7-1) 式(1)
Figure JPOXMLDOC01-appb-C000016

(式中、X及びXは独立して、X、X又はXであり;
Figure JPOXMLDOC01-appb-C000017

sは1又は2であり、
は炭素数1~6のアルキル基を表し、
及びnは独立して、0または1であり、
1a及びR1bは独立して、炭素数1~6のアルキレン基を表し、
2a及びR2bは独立して、炭素数1~6のアルキレン基を表し、
及びYは独立して、エステル結合、アミド結合、カーバメート結合、エーテル結合又は尿素結合を表し、
3a及びR3bは独立して、ステロール残基、脂溶性ビタミン誘導体残基又は炭素数12~22の脂肪族炭化水素基を表し、
ステロール残基が、コレステリル基、コレスタリル基、スチグマステリル基、β-シトステリル基、ラノステリル基又はエルゴステリル基であり、
脂溶性ビタミンが、レチノイン酸、レチノール、レチナール、エルゴステロール、7-デヒドロコレステロール、カルシフェロール、コルカルシフェロール、ジヒドロエルゴカルシフェロール、ジヒドロタキステロール、トコフェロール、又はトコトリエノールである)で示される化合物を膜の構成脂質として含む脂質膜構造体と、
 該脂質膜構造体によって封入される核酸複合体と
を含む組成物であって、該核酸複合体はRNAまたはその類縁体を含むmiRNA阻害複合体であり、該miRNA阻害複合体は少なくとも1つの二本鎖構造およびmiRNA結合配列を含み、該miRNA結合配列の2つの鎖が該二本鎖構造の少なくとも片端の2つの鎖に一本ずつ結合しており、該miRNA阻害複合体は少なくとも1つの架橋核酸(BNA)を含む、組成物。
(項目C7-2) 式(1)
Figure JPOXMLDOC01-appb-C000018

(式中、X及びXは独立して、X又はXであり;
Figure JPOXMLDOC01-appb-C000019

sは1又は2であり、
は炭素数1~6のアルキル基を表し、
及びnは独立して、1であり、
1a及びR1bは独立して、炭素数1~6のアルキレン基を表し、
2a及びR2bは独立して、炭素数1~6のアルキレン基を表し、
及びYは独立して、エステル結合、アミド結合、カーバメート結合、エーテル結合又は尿素結合を表し、
3a及びR3bは独立して、ステロール残基、脂溶性ビタミン誘導体残基又は炭素数12~22の脂肪族炭化水素基を表し、ステロール残基が、コレステリル基、コレスタリル基、スチグマステリル基、β-シトステリル基、ラノステリル基又はエルゴステリル基であり、
脂溶性ビタミンが、レチノイン酸、レチノール、レチナール、エルゴステロール、7-デヒドロコレステロール、カルシフェロール、コルカルシフェロール、ジヒドロエルゴカルシフェロール、ジヒドロタキステロール、トコフェロール、又はトコトリエノールである)で示される化合物を膜の構成脂質として含む脂質膜構造体と、
 該脂質膜構造体によって封入される核酸複合体と
を含む組成物であって、該核酸複合体はRNAまたはその類縁体を含むmiRNA阻害複合体であり、該miRNA阻害複合体は少なくとも1つの二本鎖構造およびmiRNA結合配列を含み、該miRNA結合配列の2つの鎖が該二本鎖構造の少なくとも片端の2つの鎖に一本ずつ結合しており、該miRNA阻害複合体は少なくとも1つの架橋核酸(BNA)を含む、前記項目のいずれかに記載の組成物。
(項目C8) 式中、X及びXが独立して、Xである、前記項目のいずれかに記載の組成物。
(項目C9) 式中、R3a及びR3bが独立して、脂溶性ビタミン誘導体残基又は炭素数12~22の脂肪族炭化水素基である、前記項目のいずれかに記載の組成物。
(項目C10) 式中、R3a及びR3bが独立して、脂溶性ビタミン誘導体残基である、前記項目のいずれかに記載の組成物。
(項目C11) 前記脂溶性ビタミン誘導体残基が、水酸基を有する脂溶性ビタミンとコハク酸無水物又はグルタル酸無水物との反応物由来の残基である、前記項目のいずれかに記載の組成物。
(項目C12) R3a及びR3bが独立して、炭素数12~22の脂肪族炭化水素基である、前記項目のいずれかに記載の組成物。
(項目C13) 式(4)
Figure JPOXMLDOC01-appb-C000020

(式中、R4a及びR4bは独立して、炭素数8以下のアルキレン基又はオキシジアルキレン基であり、
1a及びX1bは独立して、エステル結合、アミド結合、カーバメート結合、又はエーテル結合を表し、
5a及びR5bは独立して、ステロール残基、脂溶性ビタミン残基、又は炭素数13~23の脂肪族炭化水素基を表し、ステロール残基が、コレステリル基、コレスタリル基、スチグマステリル基、β-シトステリル基、ラノステリル基又はエルゴステリル基であり、脂溶性ビタミンが、レチノイン酸、レチノール、レチナール、エルゴステロール、7-デヒドロコレステロール、カルシフェロール、コルカルシフェロール、ジヒドロエルゴカルシフェロール、ジヒドロタキステロール、トコフェロール、又はトコトリエノールである)
で示される化合物を膜の構成脂質として含む脂質膜構造体と、
 該脂質膜構造体によって封入される核酸複合体と
を含む組成物であって、該核酸複合体はRNAまたはその類縁体を含むmiRNA阻害複合体であり、該miRNA阻害複合体は少なくとも1つの二本鎖構造およびmiRNA結合配列を含み、該miRNA結合配列の2つの鎖が該二本鎖構造の少なくとも片端の2つの鎖に一本ずつ結合しており、該miRNA阻害複合体は少なくとも1つの架橋核酸(BNA)を含む、前記項目のいずれかに記載の組成物。
(項目C15) 式(4)中、R4a及びR4bが独立して、炭素数8以下のアルキレン基である前記項目のいずれかに記載の組成物。
(項目C16) 式(4)中、X1a及びX1bがエステル結合である、前記項目のいずれかに記載の組成物。
(項目C17) 式(4)中、R5a及びR5bが独立して、脂溶性ビタミン残基、又は炭素数13~23の脂肪族炭化水素基である、前記項目のいずれかに記載の組成物。
(項目C18) 式(4)中、R5a及びR5bが独立して、脂溶性ビタミン残基である、前記項目のいずれかに記載の組成物。
(項目C19) 式(4)中、R5a及びR5bが独立して、炭素数13~23の脂肪族炭化水素基である、前記項目のいずれかに記載の組成物。
(項目C20) 前記BNAはBNANC(NMe)である、前記項目のいずれかに記載の組成物。
(項目C21) 前記miRNA阻害複合体は、前記二本鎖構造を2つ以上含み、該二本鎖構造の第1の二本鎖構造の片端の2つの鎖にmiRNA結合配列を含む鎖がそれぞれ1本ずつ結合しており、該2つ以上の二本鎖構造に挟まれるように、該鎖のそれぞれの他端が、該2つ以上の二本鎖構造の第2の二本鎖構造の2つの鎖にそれぞれ結合している、前記項目のいずれかに記載の組成物。
(項目C22) 前記miRNA阻害複合体は、2つのmiRNA結合配列を含む、前記項目のいずれかに記載の組成物。
(項目C23) 前記項目のいずれかに記載の組成物であって、前記miRNA阻害複合体は、以下
Figure JPOXMLDOC01-appb-C000021

に示された構造を含み、該構造のIおよびIIは二本鎖構造であって、該構造のaおよびbにそれぞれ1つのmiRNA結合配列を含む、組成物。
(項目C24) 前記miRNA結合配列が、5'-CAGUGUU-3'(配列中、ウラシル塩基は必要に応じてチミン塩基である)および/または5'-CAGUAUU-3'(配列中、ウラシル塩基は必要に応じてチミン塩基である)を含む、前記項目のいずれかに記載の組成物。
(項目C25) 前記miRNA阻害複合体が2つのmiRNA結合配列を含み、一方のmiRNA結合配列が5'-CAGUGUU-3'(配列中、ウラシル塩基は必要に応じてチミン塩基である)を含み、かつ、他方のmiRNA結合配列が5'-CAGUAUU-3'(配列中、ウラシル塩基は必要に応じてチミン塩基である)を含む、前記項目のいずれかに記載の組成物。
(項目C26A) 前記miRNA阻害複合体が配列番号1の配列(配列中、ウラシル塩基は必要に応じてチミン塩基である)を含むmiRNA結合配列と、配列番号2の配列(配列中、ウラシル塩基は必要に応じてチミン塩基である)を含むmiRNA結合配列とを含む、前記項目のいずれかに記載の組成物。
(項目C26B) 前記miRNA阻害複合体が配列番号3の配列(配列中、ウラシル塩基は必要に応じてチミン塩基である)を含むmiRNA結合配列と、配列番号4の配列(配列中、ウラシル塩基は必要に応じてチミン塩基である)を含むmiRNA結合配列とを含む、前記項目のいずれかに記載の組成物。
(項目C27A) 前記miRNA阻害複合体が、配列番号5の配列(配列中、ウラシル塩基は必要に応じてチミン塩基である)と、配列番号6の配列(配列中、ウラシル塩基は必要に応じてチミン塩基である)とを含む、前記項目のいずれかに記載の組成物。
(項目C27B) 前記miRNA阻害複合体が、配列番号9の配列(配列中、ウラシル塩基は必要に応じてチミン塩基である)と、配列番号10の配列(配列中、ウラシル塩基は必要に応じてチミン塩基である)とを含む、前記項目のいずれかに記載の組成物。
(項目D1) 腫瘍の処置または予防における使用のための、RNAまたはその類縁体を含むmiRNA阻害複合体であって、該miRNA阻害複合体は少なくとも1つの二本鎖構造およびmiRNA結合配列を含み、該miRNA結合配列の2つの鎖が該二本鎖構造の少なくとも片端の2つの鎖に一本ずつ結合しており、該miRNA阻害複合体は少なくとも1つの架橋核酸(BNA)を含むmiRNA阻害複合体。
(項目D2)
 前記項目のいずれか1つまたは複数に記載の特徴をさらに有する、前記項目に記載の使用のためのmiRNA阻害複合体。
(項目E1) 有効量の前記項目のいずれかに記載の組成物、miRNA阻害複合体または核酸分子を被験体に投与する工程を含む、該被験体において腫瘍を予防または処置するための方法。
(項目E2) 前記項目のいずれか1つまたは複数に記載の特徴をさらに有する、前記項目に記載の方法。
(項目F1) 腫瘍の処置または予防における使用のための、RNAまたはその類縁体を含むmiRNA阻害複合体の使用であって、該miRNA阻害複合体は少なくとも1つの二本鎖構造およびmiRNA結合配列を含み、該miRNA結合配列の2つの鎖が該二本鎖構造の少なくとも片端の2つの鎖に一本ずつ結合しており、該miRNA阻害複合体は少なくとも1つの架橋核酸(BNA)を含む、使用。
(項目F2)
 前記項目のいずれか1つまたは複数に記載の特徴をさらに有する、前記項目に記載の使用。
 なお上記の各項において、同一の項を引用する各項に記載の発明の2つまたはそれ以上を任意に組み合わせた発明は、それらに引用される上位の項に記載の発明において、既に意図されている。また、本明細書に記載した任意の発明要素およびその任意の組み合わせは、本明細書において意図されている。また、それらの発明において、本明細書に記載の任意の要素またはその任意の組み合わせを除外した発明も、本明細書に意図されている。また本明細書は、明細書中に例えば好ましいとしてある特定の態様を記載した場合、それを開示するのみならず、その態様を含むより上位の本明細書に開示された発明から、その態様を除外した発明も開示するものである。
 本発明の改良型S-TuDは、そのmiRNA阻害活性が従来型のS-TuDに比べて強化されており、かかる改良型S-TuDを用いて、miR-200ファミリー等のmiRNAを阻害することにより、腫瘍の予防または処置を実現することが可能である。
図1は従来型S-TuDおよび本発明の部分置換型S-TuDの模式図を示す。 図2は、本明細書で使用されるmiRNA阻害複合体の典型的構造を示し、ここでは、MBSを含む2本のRNA鎖が、2つの二本鎖構造に挟まれるように、2つの二本鎖構造の各鎖にそれぞれ結合している形態が示される。 図3もまた、本明細書で使用されるmiRNA阻害複合体の典型的構造を示し、ここでは、典型例として、#12~#16が示される。ここでは、MBSを含む2本のRNA鎖は、二本鎖構造の対合しているそれぞれの鎖に結合しているので、RNA鎖の方向は互いに反対方向となっている。 図4は、(1)S-TuD-141/200c-1_17-pf-S10-BT6-MBSB1(miR-141およびmiR-200cに対するMBSを有する)と、(2)S-TuD-NCs-S10-BT6-MBSB1-s(MBSはmiRに対して相補性を有しない)との構造を示す。配列中の小文字は、BNANC(NMe)に置換されている箇所を示す。 図5は、(1)S-TuD-141/200c-1_17-pf-S10-BT6-MBSB1(S-TuD-141/200c)または(2)S-TuD-NCs-S10-BT6-MBSB1-s(S-TuDNCs)を、尾部静脈内または腫瘍内に投与された腫瘍移植マウスの体重(g)の経時的な推移を示す図である。矢印は、投与を行った時点を示す。 図6は、(1)S-TuD-141/200c-1_17-pf-S10-BT6-MBSB1(S-TuD-141/200c)または(2)S-TuD-NCs-S10-BT6-MBSB1-s(S-TuDNCs)を、尾部静脈内または腫瘍内に投与された腫瘍移植マウスにおける、腫瘍体積(mm)の経時的な推移を示す図である。矢印は、投与を行った時点を示す。 図7は、実施例2で用いた脂質ナノ粒子の組成を模式的に示す図である。 図8は、脂質ナノ粒子に封入したS-TuD-141/200c-1_17-pf-S10-BT6-MBSB1(LNP-S-TuD 141/200c)またはPBSを尾部静脈内に注入された腫瘍移植マウスの体重(g)の経時的な推移を示す図である。矢印は、投与を行った時点を示す。 図9は、脂質ナノ粒子に封入したS-TuD-141/200c-1_17-pf-S10-BT6-MBSB1(LNP-S-TuD 141/200c)またはPBSを尾部静脈内に注入された腫瘍移植マウスの腫瘍体積(mm)の経時的な推移を示す図である。矢印は、投与を行った時点を示す。 図10は、種々のmiR-200cのS-TuD構造を示す。上からそれぞれ、(41)S-TuD-200c-1_22-pf、(42)S-TuD-200c-1_22-pf-L18B6、(43)S-TuD-200c-1_22-pf-L18B6-MBSB1(シード領域の相補配列をBNANC(NMe)化)、(44)S-TuD-200c-1_22-pf-L18B6-MBSB2(非シード領域の相補配列をBNANC(NMe)化)、(45)S-TuD-200c-1_22-pf-S10-BT6-MBSB2(非シード領域の相補配列をBNANC(NMe)化)を示す。 図11は、脂質ナノ粒子に封入したS-TuD-141/200c-1_17-pf-S10-BT6-MBSB1(LNP-S-TuD-141/200c)またはS-TuD-NCs-S10-BT6-MBSB1(LNP-S-TuDネガティブコントロール)を尾部静脈内に注入された腫瘍移植マウスの体重(g)の経時的な推移を示す図である。矢印は、投与を行った時点を示す。 図12は、脂質ナノ粒子に封入したS-TuD-141/200c-1_17-pf-S10-BT6-MBSB1(LNP-S-TuD-141/200c)またはS-TuD-NCs-S10-BT6-MBSB1(LNP-S-TuDネガティブコントロール)を尾部静脈内に注入された腫瘍移植マウスの腫瘍体積(mm)の経時的な推移を示す図である。矢印は、投与を行った時点を示す。 図13は、psiCHECK2-UT(上)およびpsiCHECK2-miRT(下)の構造を示す。 図14は、実施例で使用したルシフェラーゼレポーターベクターの模式図を示す。 図15は、ルシフェラーゼレポーターベクターの作製に使用されたpsiCHECK2-T21-5p-s、psiCHECK2-T21-5p-a、psiCHECK2-T200c-3p-s、psiCHECK2-T200c-3p-aの配列情報を示す。これらの配列はいずれも修飾のないDNAである。 図16-1は、使用したオリゴの構造を示す。 図16-2は、図16-1のオリゴのmiR-21についてのレポーターアッセイを行った結果を示す。左は300pMの結果右は1000pMの結果を示す。バーはコントロールレポーター活性とmiR-21レポーター阻害活性の比を示す。miR-21の阻害効果が高いほどバーは高くなる。 図17-1は、使用したオリゴの構造を示す。 図17-2は、図17-1のオリゴのmiR-200cについてのレポーターアッセイを行った結果を示す。左は10pMの結果、右は100pMの結果を示す。バーはコントロールレポーター活性とmiR-200cレポーター阻害活性の比を示す。miR-200cの阻害効果が高いほどバーは高くなる。 図17-3は、miR-200cについてのレポーターアッセイを行った結果を示す。TuD-141/200c発現レンチウイルスベクターを導入したH358細胞での結果を示す。バーはコントロールレポーター活性とmiR-200cレポーター阻害活性の比を示す。miR-200cの阻害効果が高いほどバーは高くなる。
 以下、本発明を説明する。本明細書の全体にわたり、単数形の表現は、特に言及しない限り、その複数形の概念をも含むことが理解されるべきである。従って、単数形の冠詞(例えば、英語の場合は「a」、「an」、「the」など)は、特に言及しない限り、その複数形の概念をも含むことが理解されるべきである。また、本明細書において使用される用語は、特に言及しない限り、当該分野で通常用いられる意味で用いられることが理解されるべきである。したがって、他に定義されない限り、本明細書中で使用されるすべての専門用語および科学技術用語は、本発明の属する分野の当業者によって一般的に理解されるのと同じ意味を有する。矛盾する場合、本明細書(定義を含めて)が優先する。
 <miRNA阻害複合体>
 本発明において、以下に詳述されるmiRNA阻害複合体を、医薬として、種々の疾患の予防または治療に使用することができ、特に腫瘍の処置または予防を行うことができることを見出した。本発明の一部の実施形態では、腫瘍の処置または予防のための、以下に詳述されるmiRNA阻害複合体を含む組成物が提供される。
 本発明はまた、以下に詳述するmiRNA阻害複合体と、核酸送達のためのキャリアとを含む組成物を提供する。このような核酸送達のためのキャリアを組み合わせることによって、本明細書に記載されるmiRNA阻害複合体は、より適切に標的に送達されることができる。
 本明細書で使用されるmiRNA阻害複合体の改良型は、miRNAを効率的かつ特異的に阻害することができるものであり、その詳細は、PCT/JP2016/004252を参照することができ、この内容は本明細書において参考として援用される。本明細書で使用されるmiRNA阻害複合体は、少なくとも1つの二本鎖構造を含み、miRNA結合配列(MBS)を含む少なくとも1つの鎖が、該二本鎖構造の少なくとも片端の2つの鎖に結合し、少なくとも1つの架橋核酸(BNA)を含むことを特徴とするものである。本発明で使用される阻害複合体は「S-TuD」と称することもある。なお本発明においては、この二本鎖構造を「第一の」二本鎖構造と呼ぶことで、本明細書で使用される複合体に含まれ得るさらなる二本鎖構造と区別できるようにすることがある。本明細書で使用される複合体は、一本鎖(すなわち共有結合で結合した1分子)であってもなくてもよく、例えば一本鎖、二本鎖、またはそれ以上の複数の鎖で構成されていてよい。例えば二本鎖構造の片端の2つの鎖に、MBSを含むRNA鎖が、それぞれ一本ずつ結合した、二本鎖RNAからなる複合体は、複合体中に少なくとも1つの架橋核酸(BNA、例えば、BNANC(NMe))を含む限り、本発明で使用される複合体の範囲に包含される。また、例えば二本鎖構造の片端の2つの鎖に、少なくとも1つのMBSを含む一本のRNA鎖が結合していてもよい。この場合、MBSを含むRNA鎖により、二本鎖構造の片端の2つの鎖はつながれることになる。二本鎖構造の2つの鎖をつなぐRNAには、MBSが少なくとも1つ含まれているが、例えば2つ、3つ、またはそれ以上含まれていてもよい。二本鎖構造は、ステムループまたはヘアピンを含む。すなわち、二本鎖構造は、ステムループまたはヘアピンに含まれる二本鎖構造であってもよい。改良型のmiRNA阻害複合体は、阻害効率が高く血清中安定性が高いので、in vivoの腫瘍抑制効果が向上していることを期待できる。
 また、本発明において「非シード」領域とはmiRNAの配列のうち、miRNAの活性に必要なmiRNAの5’端から2~8番目の塩基以外の塩基、具体的にはmiRNAの5’端から9~21番目の塩基を指す。本発明で使用される複合体において「非シード結合領域」とはMBS内のmiRNAの非シード領域に高い相補性を有し結合する配列を指し、「ステム領域」とは二本鎖構造を指す。含まれるBNAは、非シード結合領域に含まれていても含まれていなくてもよく、ステム領域に含まれていても含まれていなくてもよい(図1参照)。本発明で見いだされた生物活性増強効果等は、BNAが非シード結合領域およびステム領域に含まれたものにおいて確認されており、この活性は、BNAが非シード結合領域のみまたはBNAがステム領域のみに含まれる場合でも含まれるBNAに応じて同様に増強されることが理解される。
 本発明において使用されるmiRNA阻害複合体は、二本鎖構造を持つ、少なくとも1本のRNAまたはその類縁体を含む構造体であってよい。該複合体は、好ましくはRNAまたはその類縁体を含む分子を1分子または2分子含む。
 本明細書において「miRNA結合配列(MBS)」とは、miRNAに結合する配列を言う。MBSは、miRNAに結合できるように、miRNAに相補的な部分を少なくとも含んでいる。特許第4936343号公報に示す通り、MBSは、miRNAに完全に相補的な配列であってもなくてもよい。例えばMBSは、miRNAが標的とする天然のRNAの配列であってもよい。MBSは、例えばmiRNAに対して、少なくとも10塩基、例えば11塩基以上、12塩基以上、13塩基以上、14塩基以上、15塩基以上、16塩基以上、17塩基以上、18塩基以上、19塩基以上、20塩基以上、21塩基以上、22塩基以上、23塩基以上、または24塩基以上の相補的な塩基を連続または非連続に含む。該相補的な塩基は連続しているか、あるいは3箇所以下、2箇所以下、好ましくは1箇所のギャップを有し得る。ギャップは、MBS側および/またはmiRNA側の不対合(バルジ)であってよく、1箇所のギャップについても、片方の鎖のみにバルジ塩基があるものであってもよく、両方の鎖に不対合の塩基を有していてもよい。例えば、少なくともMBS側に不対合塩基を含むように設計してもよい。バルジおよびミスマッチの塩基数は、それぞれ1箇所のバルジおよびミスマッチあたり、片鎖あたり例えば6塩基以下、好ましくは5塩基以下、4塩基以下、3塩基以下、2塩基以下、または1塩基である。バルジを形成し得るMBSは、完全に相補的な配列からなるMBSよりも高いmiRNA阻害効果を示す場合がある。従って、より高いmiRNA阻害効果を得るためには、バルジを形成するようにMBSを設計してもよい。例えば、MBSの3’末端から10番目および/または11番目の塩基が、miRNAと相補的になっていないか、あるいは10番目と11番目の間に余計な塩基を含むMBS(あるいは、miRNA中の標的配列(MBSとハイブリダイズする配列)の5’末端から10番目および/または11番目の塩基がMBSと相補的な塩基となっていないか、あるいは10番目と11番目のヌクレオチドの間に不対合の塩基を含むMBS)は、分解を受けにくく、高い活性が期待できる。しかしながら、分解耐性が高い修飾塩基を用いている場合には、バルジを含む必要はない。この場合、例えばmiRNAの5’末端から10番目および11番目を含む塩基が不対合となるようにMBSを設計してもよく、例えば9~11番目、10~12番目、または9~12番目が不対合となるようにMBSを設計してもよい。また、miRNA側には不対合となる塩基はないが、MBS側に、3’末端から10番目と11番目の間(あるいは、miRNA中の標的配列(MBSとハイブリダイズする配列)の5’末端から10番目および11番目に相当する部位の間)に不対合となる塩基を有していてもよい。不対合となる塩基は、miRNA側および/またはMBS側に存在してよいが、好ましくは少なくともMBS側に存在する。各鎖で不対合になるヌクレオチドの数は適宜調整することができるが、例えば1~6ヌクレオチドであり、好ましくは1~5ヌクレオチドであり、より好ましくは3~5、例えば3、4または5ヌクレオチドである。また、miRNAのターゲットの認識には、miRNAの5’端から2~8番目の塩基(シード領域)がマッチすることが重要であることが知られている(Jackson AL et al., RNA 12(7):1179-1187, 2006; Lewis BP et al., Cell 120: 15-20, 2005; Brennecke et al. PLoS BIOLOGY 3, 0404-0418, 2005; Lewis et al. Cell 115, 787-798,2003; Kiriakidou et al. Genes & Development 18, 1165-1178, 2004)。実際、本明細書で使用されるmiRNA阻害RNAは、シード領域しかマッチしておらず、他の領域とは低い相補性しか有さないMBSを持つものであっても、miRNAを効果的に阻害できる。本発明におけるMBSとしては、miRNAのシード領域(miRNAの5’端から2~8番目の塩基)が完全に相補的であるものが好ましい。この場合、G:U対(U:G対)も相補的とみなしてよいが、好ましくはG:C(C:G)およびA:U(U:A)のみを相補的とみなす。また本発明におけるMBSとしては、miRNAのシード領域(miRNAの5’端から2~8番目の塩基)が完全に相補的であって、miRNAに対して、少なくとも8塩基、より好ましくは9塩基、より好ましくは10塩基の相補的な塩基を連続して含むものが好ましい。さらに本発明におけるMBSは、miRNAに対して、合計11塩基以上、より好ましくは12塩基以上、より好ましくは13塩基以上の相補的な塩基を含むことが好ましい。
 MBSは、好ましくは、miRNA配列と生理的条件下でハイブリダイズする配列である。生理的条件下とは、例えば150mM NaCl、15mM sodium citrate、pH7.0、37℃である。より好ましくは、MBSは、miRNA配列とストリンジェントな条件下でハイブリダイズする配列である。ストリンジェントな条件とは、例えば1×SSC(1×SSCは150mM NaCl、15mM sodium citrate、pH7.0)または0.5×SSC、42℃の条件であり、より好ましくは1×SSCまたは0.5×SSC、45℃の条件であり、より好ましくは1×SSCまたは0.5×SSC、50℃の条件である。ハイブリダイゼーションにおいては、例えばmiRNA配列を含むRNAまたはMBSを含むRNAのどちらかを標識し、他方を膜に固定して、両者をハイブリダイズさせる。ハイブリダイゼーションの条件は、例えば5xSSC、7%(W/V)SDS、100μg/ml変性サケ精子DNA、5xデンハルト液(1xデンハルト溶液は0.2%ポリビニールピロリドン、0.2%牛血清アルブミン、及び0.2%フィコールを含む)を含む溶液中、例えば37℃、または45℃、または50℃で行えばよい。十分な時間(例えば3、4、5または6時間以上)インキュベートした後、上記の条件で洗浄を行い、標識した核酸がハイブリダイズしているかを検出することにより、当該条件で核酸がハイブリダイズするか否かを決定することができる。
 あるいはMBSは、好ましくは、miRNA配列の相補配列と高いホモロジーを示す。高いホモロジーとは、例えば70%以上、75%以上、76%以上、77%以上、78%以上、79%以上、80%以上、81%以上、82%以上、83%以上、84%以上、85%以上、86%以上、87%以上、88%以上、89%以上、90%以上、93%以上、95%以上、96%以上、97%以上、98%以上、または99%以上の同一性を有する塩基配列である。塩基配列の同一性は、例えばBLASTプログラム(Altschul, S.F. et al., J. Mol. Biol. 215: 403-410, 1990)を用いて決定することができる。例えばNCBI(National Center for Biotechnology Information)のBLASTのウェブページにおいて、デフォルトのパラメータを用いて検索を行うことができる(Altschul S.F. et al., Nature Genet. 3:266-272, 1993; Madden, T.L. et al., Meth. Enzymol. 266:131-141, 1996; Altschul S.F. et al., Nucleic Acids Res. 25:3389-3402, 1997; Zhang J. &Madden T.L., Genome Res. 7:649-656, 1997)。例えば2つの配列の比較を行うblast2sequencesプログラム(Tatiana A et al., FEMS Microbiol Lett. 174:247-250, 1999)により、2配列のアライメントを作成し、配列の同一性を決定することができる。miRNA配列の塩基配列の外側のギャップは無視し、内側のギャップは例えばミスマッチと同様に扱い、アライメントにおけるmiRNA配列の塩基配列全体(配列の内側に入れたギャップを加算したトータルの塩基の長さ)に対する同一性の値を計算する。但し、特許第4936343号公報に示した通り、MBSとmiRNAとのミスマッチはmiRNAの阻害活性を上昇させ得る。従って、例えばアライメントの内側においてmiRNA配列に挿入したギャップは無視して同一性を算出することが好ましい。
 あるいはMBSは、miRNA配列の相補配列に対して、1または数個の塩基を挿入、置換、および/または欠失させた配列からなってもよい。MBSは、miRNA配列の相補配列に対して8塩基以内、7塩基以内、6塩基以内、5塩基以内、4塩基以内、3塩基以内、2塩基以内、または1塩基の挿入、置換、および/または欠失を有する配列からなり得る。あるいは、MBSは、miRNA配列の相補配列に対して8塩基以内、7塩基以内、6塩基以内、5塩基以内、4塩基以内、3塩基以内、2塩基以内、または1塩基の挿入を有する配列からなり得る。MBSは、miRNA配列と完全に相補的な配列よりも、ミスマッチを有する配列の方がmiRNAの阻害活性が高い場合がある。これはMBSが完全に相補的であると、miRNAを含むRISCにより切断を受け、それによりmiRNA阻害RNAの発現レベルが低下することに起因すると考えられる。しかしながら、分解耐性が高い修飾塩基を用いている場合には、バルジを含む必要はない。特に、MBSがmiRNAとハイブリダイズしたときに、MBSの3’末端から10番目および/または11番目の塩基が不対合となる(あるいは、MBSとハイブリダイズするmiRNA側の標的配列の5’末端から10番目および/または11番目の塩基がMBSとハイブリダイズさせたときに不対合となる)か、あるいは10番目と11番目のヌクレオチドの間に不対合の塩基を含むように設計したMBSは高い活性が期待できる。このような不対合は、例えばMBS側のバルジであってよく、バルジを形成する塩基は1~6塩基、好ましくは1~5塩基、より好ましくは3~5塩基(例えば3、4または5塩基)である。MBSは、RNAからなっていてもよく、あるいは核酸類縁体を含んだり、または核酸類縁体からなっていてもよい。特にMBSの切断される部位(MBSの3’末端から10番目および/または11番目の塩基等)を、切断が起こらないように核酸類塩体することで、miRNA阻害効果の上昇が期待できる。また、ホスホチオエートや2"-O-メチルなどのバックボーンや糖を有する核酸を用いることも好適である(Krutzfeldt, J. et al., Nucleic Acids Res. 35: 2885-2892; Davis, S. et al., 2006, Nucleic Acids Res. 34: 2294-2304)。
 本明細書で使用されるmiRNA阻害複合体が標的とするmiRNAに特に制限はない。miRNA構造をとるものであれば、植物、線虫、脊椎動物等のいかなる種由来のものにも適用可能である。miRNAの配列は、ヒト、マウス、ニワトリ、ゼブラフィシュ、シロイヌナズナをはじめとする数多くの生物において、非常に多数が知られている(miRBase::Sequencesのウェブページを参照:microrna.sanger.ac.uk/sequences/)。例えば、マウス、ラット、ヤギ等の含む哺乳動物、サルを含む霊長類、およびヒトのmiRNAを標的とすることができる。例えば、miR-200ファミリーのmiRNA(例えば、miR-200a、miR-200b、miR-200c、miR-141およびmiR-429)を挙げることができ、好ましくは、miR-200cおよびmiR-141などが挙げられる。さらに、標的とできるmiRNAとしては、例えば、miR-21、miR-17-92クラスターのmiRNA(例えば、miR-17、miR-18a、miR-19a、miR-20a、miR-19b-1、miR-92a-1)、miR-155、miR-133a、miR-196b、miR-197、miR-205、miR-125b、miR-135b、miR-106a、miR-10a/10b、miR-146a、miR-182、miR-96などが挙げられる。
 1つの実施形態では、本明細書で使用されるmiRNA阻害複合体は、第1の二本鎖構造に加え第2の二本鎖構造をさらに含み、第1の二本鎖構造の一端にある2つの鎖に、MBSを含むRNA鎖がそれぞれ1本ずつ結合する構造となっており、第1の二本鎖構造と第2の二本鎖構造の間に挟まれるように、該RNA鎖のそれぞれの他端が、該第2の二本鎖構造の一端にある2つの鎖にそれぞれ結合している。例えば、miRNA阻害複合体は複数のmiRNA結合配列を含み、例えば、2から5つのmiRNA結合配列を含む。miRNA阻害複合体が複数のmiRNA結合配列を含むことは、複数のmiRNAを同時に抑制することにおいて有利であり、複数のmiRNAの抑制によって効果的に処置または予防される腫瘍の処置または予防において有用なものとなる。1つの実施形態では、miRNA阻害複合体は、2つのmiRNA結合配列を含む。二本鎖構造は2本鎖であってもよく、あるいはG-quadruplex(G-クアドルプレックス)のような4本鎖であってもよい。例えば本発明の一つの実施形態では、第1の二本鎖構造に加え第2の二本鎖構造をさらに含み、第1の二本鎖構造においてMBSが結合している方の末端の2つの鎖は、MBSを含むRNA鎖がそれぞれ1本ずつ結合する構造となっており、第1の二本鎖構造と第2の二本鎖構造の間に挟まれるように、該RNA鎖のそれぞれの他端が、該第2の二本鎖構造の2つの鎖にそれぞれ結合している。当該RNA複合体は、例えば少なくとも2つの二本鎖構造を有し、該2つの二本鎖構造を構成する4つのRNA鎖のそれぞれが、残る3つのいずれの鎖も介することなく、MBSを含むRNAに結合している構造を有している。このようなmiRNA阻害複合体をより分かりやすく言えば、MBSを含む2本のRNA鎖が、2つの二本鎖構造に挟まれるように、2つの二本鎖構造の各鎖にそれぞれ結合しているmiRNA阻害複合体である(図2)。すなわち図2の構造を持つRNA複合体であって、二本鎖構造IおよびIIにRNA鎖aおよびbが挟まれており、該aおよびbにそれぞれ1つ以上のMBSを含むRNAは、本発明に含まれる。MBSを含む2本のRNA鎖は、二本鎖構造の対合しているそれぞれの鎖に結合しているので、RNA鎖の方向は互いに反対方向となる(図3、#12~#16)。このように二本鎖の各鎖にそれぞれMBSを付加することにより、より高いmiRNA阻害活性を発揮させることが可能となる。
 2つの二本鎖構造に挟まれるように存在するMBSを含む2本のRNA鎖には、それぞれ1つ以上のMBSが含まれている。それらのMBSは同じ配列であってもよく、違っていてもよい。また同じmiRNAを標的とするものであってもよく、異なる標的miRNAに結合する配列であってもよい。例えば、1つの鎖に2つ以上、例えば2、3、4、または5個のMBSが含まれていてよい(図3、#12~#16)。例えば、2つの二本鎖構造に挟まれた各鎖に1つまたは2つのMBSを含んでよい。例えば、本明細書で使用されるmiRNA阻害複合体は、トータルで2つのMBSを含むものであってよく、それら2つのMBSは、同一の配列、または同一のmiRNAに結合する配列であってよく、異なる配列、または異なるmiRNAに結合する配列であってもよい。
 本明細書で使用されるmiRNA阻害複合体に含まれる二本鎖の対合するそれぞれの鎖は、通常、上述の通り別々のRNA分子であるが、二本鎖の一方または両方の末端がつながっており、直鎖状または環状となっていてもよい。なお直鎖状とは環状に対する言葉であって、末端を有していることを意味するに過ぎず、当然のことながら、二次構造を形成していないことを意味するものではない。直鎖状一本鎖RNAにより構成されるmiRNA阻害複合体は、例えば一回のRNA合成により作製し得る。例えば、2つの二本鎖構造を含む場合、第2の二本鎖構造の一端(MBSが結合していない側)の2つの鎖をループにより連結して全体を一本鎖とすることができる。二本鎖をつなぐ配列中には、1つまたはそれ以上のMBSが含まれていてよい(例えば、図3、#13、#14、#16)。配列をなるべくコンパクトにするには、二本鎖を短いループにより連結させることができる。例えば1~10塩基、好ましくは1~8塩基、2~6塩基、3~5塩基、例えば4塩基の配列で二本鎖を結合させることができる。配列は特に制限はない。例えば、5’-GUCA-3’が挙げられる。例えば本発明は、図3#13の構造を持つRNAであって、二本鎖構造IおよびIIにRNA鎖aおよびbが挟まれており、二本鎖構造IIはヘアピン(またはステム・ループ)を形成しており、該aおよびbにそれぞれ1つ以上のMBSを含むRNAが含まれる。
 本明細書で使用されるmiRNA阻害複合体に含まれる二本鎖構造は、配列に特に制限はなく任意の塩基長のものであり得る。好ましい実施形態については、以下に別途詳述する。
 二本鎖構造を形成する塩基対の配列は、miRNA阻害複合体の中で特異的かつ安定に二本鎖を形成できるように適宜設計することができる。例えば、同じ塩基が長く(例えば8塩基以上、好ましくは7塩基以上、より好ましくは5塩基以上、より好ましくは4塩基以上、より好ましくは3塩基以上)連続するホモポリメリックな配列は避けることが好ましい。また、二塩基繰り返し配列や3~4塩基繰り返し配列などの、数塩基の配列がタンデムに繰り返す配列も避けることが好ましい。二本鎖部分のGC含量は適宜調整してよいが、例えば12%~85%、好ましくは15%~80%、20%~75%、25%~73%、32%~72%、35%~70%、37%~68%、または40%~65%である。一例を挙げれば、特許第4936343号公報に示されているステムIおよびステムIIの配列を例示することができるが、それらに限定されるものではない。4本鎖としてはG-quadruplexが挙げられ、具体的にはGGG-loop-GGG-loop-GGG-loop-GGGという配列とすることができる。ここでloopの配列は適宜選択することができ、例えば3つのループを共に1塩基(例えばM(AまたはC))としたり、共に3塩基としたりすることができる。
 MBSと二本鎖構造は、直接連結させてもよいし、他の配列を介して連結させてもよい。例えば、適当なリンカーまたはスペーサー配列を介して、MBSを二本鎖構造の端に結合させることができる。MBSを二本鎖部分に直接繋げても有意な阻害活性を得ることができるが、リンカー(またはスペーサーとも言う)を付加することにより、miRNAに対する阻害効果がより上昇する。MBS配列と二本鎖構造との間のリンカーまたはスペーサー配列は、MBSのRISCに存在するmiRNAへのアクセシビリティーを増加させる可能性がある。リンカーまたはスペーサーの長さは適宜調整してよいが、例えば1~10塩基、好ましくは1~9塩基、1~8塩基、1~7塩基、1~6塩基、1~5塩基、1~4塩基、または1~3塩基である。例えば、2つ以上のMBSをつなげる場合であっても、リンカーまたはスペーサーを介して連結させるとよい。リンカーまたはスペーサーの配列は特に制限はないが、例えばAおよび/またはCからなる配列、あるいはAおよび/またはCをその他の塩基よりも多く含む配列とすることができる。またリンカーまたはスペーサー配列は、向かい合ったリンカーまたはスペーサー配列や、MBSとの間で安定な塩基対を形成しないよう配慮することが好ましい。一例を挙げれば、AGA、AAC、CAA、ACC、CCA、またはそれらのいずれかを含む配列等を例示できる。MBSに両側に付加する一対のリンカーまたはスペーサー配列は、インバートした配列(鏡像配列)にしてもよい。例えばMBSの5’側にAAC、3’側にCAAを付加することができる。
 本明細書で使用されるmiRNA阻害複合体を構成する核酸は本発明の特定の修飾核酸で修飾されていることが特徴であるが、特定の修飾核酸以外の修飾核酸を含んでいてもよい。例えば核酸を構成するヌクレオチドは、本発明の特定の修飾核酸のほか、天然のヌクレオチド、修飾されたヌクレオチド、人工のヌクレオチド、またはそれらの組み合わせを含んでいてもよい。また本明細書で使用されるmiRNA阻害複合体に含まれる核酸は、本明細書で言及される特定の修飾核酸を含む限り、その特定の修飾核酸以外は、RNAからなっていてもよく、またはRNA・DNAキメラであってよく、あるいはその他の核酸類縁体を含んでもよく、それらの任意のものを組み合わせて含んでよい。核酸には、本発明の特定の修飾核酸を含む限り、リン酸ジエステル結合により結合しているもののみならず、アミド結合やその他のバックボーンを有するもの(ペプチド核酸(PNA)等)が含まれる。核酸類縁体には、例えば天然および人工の核酸が含まれ、核酸誘導体、核酸アナログ、核酸派生体等であってよい。そのような核酸類縁体は当該分野において周知であり、例えばホスホロチオエート、ホスホアミデート、メチルホスホネート、キラルメチルホスホネート、2"-O-メチルリボヌクレオチド、ペプチド核酸(PNA)が含まれるが、これらに限定されない。PNAの骨格には、アミノエチルグリシン、ポリアミド、ポリエチル、ポリチオアミド、ポリスルフィナミド、ポリスルホンアミド、またはそれらの組み合わせからなる骨格を含んでよい(Krutzfeldt, J. et al., Nucleic Acids Res. 35: 2885-2892; Davis, S. et al., 2006, NucleicAcids Res. 34: 2294-2304; Boutla, A. et al., 2003), Nucleic Acids Res. 31: 4973-4980; Hutvagner, G. et al., 2004, PLoS Biol. 2: E98; Chan, J.A. et al., 2005, Cancer Res. 65: 6029-6033; Esau, C. et al., 2004, J. Biol. Chem. 279: 52361-52365; Esau, C. et al., 2006, Cell Metab. 3: 87-98)。
 (本発明で使用される架橋核酸(BNA))
 本発明で使用されるmiRNA阻害複合体は、特定の修飾核酸として安定化型核酸、すなわち、二本鎖形成が促進される修飾核酸が含まれることが特徴であり、例えば広義の架橋核酸(BNA)を含めている点が特徴である。
 本明細書において「架橋核酸(BNA)」(BNAはBicyclic Nucleic AcidおよびBridged Nucleic Acidの両方を意味する。「架橋型核酸」、「二環式核酸」あるいは「架橋/二環式核酸」ともいう。)とは、核酸の2’位と4’位との間が連結され(架橋)され、環構造が2つ(二環式)となっている任意の修飾された核酸をいう。
 1つの例示的な実施形態では、本発明で用いられる安定化型核酸(すなわち、二本鎖形成が促進される修飾核酸)としては、架橋核酸を使用することができる。例えば、特許4731324号、Pradeep S. Pallan et al., Chem Commun (Camb). 2012 August 25; 48(66): 8195-8197. doi:10.1039/c2cc32286bに記載される架橋核酸を用いることができ、これらには、Locked核酸(LNA)、2"-O,4"-C-エチレン架橋核酸(2"-O,4"-C-ethylene bridged nucleic acid(ENA))などのエチレン核酸、その他のbridged nucleic acid(BNA)、ヘキシトール核酸(hexitol nucleic acid; HNA)、モルホリノ核酸、トリシクロ-DNA(tcDNA)、ポリエーテル核酸(例えば、米国特許第5,908,845号参照)、シクロヘキセン核酸(CeNA)、およびそれらの組み合わせが挙げられる。
 本明細書において「置換」とは、架橋核酸(BNA)等の有機化合物のある特定の水素原子をほかの原子あるいは原子団で置き換えることをいう。
 本明細書において「置換基」とは、架橋核酸(BNA)等の化学構造中で,他のものを置換した原子または官能基をいう。
 本明細書で使用されるmiRNA阻害複合体において使用され得る置換基としては、アルキル、シクロアルキル、アルケニル、シクロアルケニル、アルキニル、シクロアルキニル、アルコキシ、炭素環基、ヘテロ環基、ハロゲン、ヒドロキシ、チオール、シアノ、ニトロ、アミノ、カルボキシ、カルバモイル、アシル、アシルアミノ、チオカルボキシ、アミド、置換されたカルボニル、置換されたチオカルボニル、置換されたスルホニルまたは置換されたスルフィニルが挙げられるがそれらに限定されない。置換基は、すべてが水素以外の置換基を有していても良い。
 本明細書においては、特に言及がない限り、置換は、ある有機化合物または置換基中の1または2以上の水素原子を他の原子または原子団で置き換えるか、または二重結合もしくは三重結合とすることをいう。水素原子を1つ除去して1価の置換基に置換するかまたは単結合と一緒にして二重結合とすることも可能であり、そして水素原子を2つ除去して2価の置換基に置換するか、または単結合と一緒にして三重結合とすることも可能である。
 本明細書において「アルキル」とは、メタン、エタン、プロパンのような脂肪族炭化水素(アルカン)から水素原子が一つ失われて生ずる1価の基をいい、一般にC2n+1-で表される(ここで、nは正の整数である)。アルキルは、直鎖または分枝鎖であり得る。これらの具体例は、C1~C2アルキル、C1~C3アルキル、C1~C4アルキル、C1~C5アルキル、C1~C6アルキル、C1~C7アルキル、C1~C8アルキル、C1~C9アルキル、C1~C10アルキル、C1~C11アルキルまたはC1~C20アルキル、C1~C2置換されたアルキル、C1~C3置換されたアルキル、C1~C4置換されたアルキル、C1~C5置換されたアルキル、C1~C6置換されたアルキル、C1~C7置換されたアルキル、C1~C8置換されたアルキル、C1~C9置換されたアルキル、C1~C10置換されたアルキル、C1~C11置換されたアルキルまたはC1~C20置換されたアルキルであり得る。ここで、たとえばC1~C10アルキルとは、炭素原子を1~10個有する直鎖または分枝状のアルキルを意味する。本明細書において「置換アルキル」とは、本明細書に規定する置換基によってアルキルのHが置換されたアルキルをいう。具体的には、これらに限定されるものではないが、CHOCH-、CHOCHCH-、CHOCHCHCH-、HOCH-、HOCHCH-、HOCHCHCH-、NCCH-、NCCHCH-、NCCHCHCH-、FCH-、FCHCH-、FCHCHCH-、HNCH-、HNCHCH-、HNCHCHCH-、HOOCCH-、HOOCCHCH-、HOOCCHCHCH-が挙げられる。
 本明細書において「アルキレン」とは、メタン、エタン、プロパンのような脂肪族炭化水素(アルカン)から水素原子が二つ失われて生ずる2価の基をいい、一般に-C2n-で表される(ここで、nは正の整数である)。アルキレンは、直鎖または分枝鎖であり得る。本明細書において「置換アルキレン」とは、上述の置換基によってアルキレンのHが置換アルキレンをいう。これらの具体例は、C1アルキレン、C1~C2アルキレン、C1~C3アルキレン、C1~C4アルキレン、C1~C5アルキレン、C1~C6アルキレン、C1~C7アルキレン、C1~C8アルキレン、C1~C9アルキレン、C1~C10アルキレン、C1~C11アルキレンまたはC1~C20アルキレン、C1~C2置換アルキレン、C1~C3置換アルキレン、C1~C4置換アルキレン、C1~C5置換アルキレン、C1~C6置換アルキレン、C1~C7置換アルキレン、C1~C8置換アルキレン、C1~C9置換アルキレン、C1~C10置換アルキレン、C1~C11置換アルキレンまたはC1~C20置換アルキレンであり得る。ここで、たとえばC1~C10アルキレンとは、炭素原子を1~10個有する直鎖または分枝状のアルキレンを意味する。また、たとえば、C1~C10置換アルキレンとは、C1~C10アルキレンであって、そのうち1または複数の水素原子が置換基により置換されているものをいう。本明細書において「アルキレン」は、酸素原子および硫黄原子から選択される原子を1またはそれ以上含んでいてもよい。
 本明細書において「シクロアルキル」とは、環式構造を有するアルキルをいう。「置換シクロアルキル」とは、上述の置換基によってシクロアルキルのHが置換シクロアルキルをいう。具体例としては、C3~C4シクロアルキル、C3~C5シクロアルキル、C3~C6シクロアルキル、C3~C7シクロアルキル、C3~C8シクロアルキル、C3~C9シクロアルキル、C3~C10シクロアルキル、C3~C11シクロアルキル、C3~C20シクロアルキル、C3~C4置換シクロアルキル、C3~C5置換シクロアルキル、C3~C6置換シクロアルキル、C3~C7置換シクロアルキル、C3~C8置換シクロアルキル、C3~C9置換シクロアルキル、C3~C10置換シクロアルキル、C3~C11置換シクロアルキルまたはC3~C20置換シクロアルキルであり得る。
 本明細書において「アルケニル」とは、分子内に二重結合を一つ有する脂肪族炭化水素から水素原子が一つ失われて生ずる1価の基をいい、一般にC2n-1-で表される(ここで、nは2以上の正の整数である)。「置換アルケニル」とは、上述の置換基によってアルケニルのHが置換アルケニルをいう。具体例としては、C2~C3アルケニル、C2~C4アルケニル、C2~C5アルケニル、C2~C6アルケニル、C2~C7アルケニル、C2~C8アルケニル、C2~C9アルケニル、C2~C10アルケニル、C2~C11アルケニルまたはC2~C20アルケニル、C2~C3置換アルケニル、C2~C4置換アルケニル、C2~C5置換アルケニル、C2~C6置換アルケニル、C2~C7置換アルケニル、C2~C8置換アルケニル、C2~C9置換アルケニル、C2~C10置換アルケニル、C2~C11置換アルケニルまたはC2~C20置換アルケニルであり得る。ここで、たとえばC2~C10アルキルとは、炭素原子を2~10個含む直鎖または分枝状のアルケニルを意味する。また、たとえば、C2~C10置換アルケニルとは、C2~C10アルケニルであって、そのうち1または複数の水素原子が置換基により置換されているものをいう。
 本明細書において「アリール」とは、芳香族炭化水素の環に結合する水素原子が1個離脱して生ずる基をいい、本明細書において、炭素環基に包含される。ベンゼンからはフェニル基(C-)、トルエンからはトリル基(CH-)、キシレンからはキシリル基((CH-)、ナフタレンからはナフチル基(C10-)が誘導される。
 本明細書において「アラルキル」とは、アルキル基の水素原子の1個がアリール基で置換されているアルキル基を意味する。アラルキル基の具体例は、ベンジル基、フェネチル基(フェニルエチル基)、1-ナフチルエチルなどであり得る。
 本明細書において「アシル」とは、カルボン酸からOHを除いてできる1価の基をいう。アシル基の代表例としては、アセチル(CHCO-)、ベンゾイル(CCO-)などが挙げられる。「置換アシル」とは、アシルの水素を上述の置換基で置換したものをいう。
 本明細書において「スルホニル」とは、特性基である-SO-を含むものを総称したものをいう。「置換スルホニル」とは、上述の置換基で置換スルホニルを意味する。
 本明細書において「シリル」とは、一般にSiR-で表される基である(ここで、R、R、Rは、それぞれ独立に、水素、アルキル、シクロアルキル、アルケニル、シクロアルケニル、アルキニル、シクロアルキニル、アルコキシ、炭素環基、ヘテロ環基からなる群から選択される)。これらの具体例は、トリメチルシリル基、トリエチルシリル基、トリエチルシリル基、tert-ブチルジメチルシリル基、トリイソプロピルシリル基、tert-ブチルジフェニルシリル基であり得る。
 本明細書において「機能性分子ユニット置換基」とは、標識分子(例えば、蛍光分子、化学発光分子、放射性同位原子を含む分子種等)、DNAやRNA切断活性分子、細胞内や核内移行シグナルペプチド等を含む基を指す。
 1つの実施形態では、前記BNAは2’位側で酸素および炭素からなる群より選択される少なくとも1つの原子を介し、4’位側で炭素と炭素および窒素からなる群より選択される少なくとも1つ原子を介して架橋されたBNAであり得る。
 代表的な実施形態では、本発明で使用されるBNAは、以下のBNA-1:
Figure JPOXMLDOC01-appb-C000022

(式中、R、R1’、R、R2’、およびRは、それぞれ独立して、水素原子、置換または非置換のアルキル基、置換または非置換のアルケニル基、置換または非置換のシクロアルキル基、置換または非置換のアリール基、置換または非置換のアラルキル基、置換または非置換のアシル基、置換または非置換のスルホニル基、置換または非置換のシリル基、および機能性分子ユニット置換基からなる群より選択される基を示し,たとえば、これに限定されないが、置換または非置換のフェノキシアセチル基、炭素数1~5のアルキル基、炭素数1~5のアルケニル基、炭素数6~14のアリール基、1~3個のアリール基で置換されたメチル基、メタンスルホニル基やp-トルエンスルホニル基などの低級脂肪族あるいは芳香族スルホニル基又はアセチル基などの炭素数1~5の脂肪族アシル基やベンゾイル基などの芳香族アシル基が挙げられ、nは、1~3の整数であり、qは0または1の整数である。)で示される2’,4’置換架橋核酸である。
 Baseは、プリン-9-イル基、2-オキソ-ピリミジン-1-イル基、またはその誘導体であり、たとえば、これに限定されないが、特許4731324号に例示されており、本発明では代表的に、6-アミノプリン-9-イル(即ち、アデニニル)、2-アミノ-6-クロロプリン-9-イル、2-アミノ-6-フルオロプリン-9-イル、2-アミノ-6-ブロモプリン-9-イル、2-アミノ-6-ヒドロキシプリン-9-イル(即ち、グアニニル)、6-アミノ-2-クロロプリン-9-イル、6-アミノ-2-フルオロプリン-9-イル、2,6-ジメトキシプリン-9-イル、2,6-ジクロロプリン-9-イル、6-メルカプトプリン-9-イル、2-オキソ-4-アミノ-1,2-ジヒドロピリミジン-1-イル(即ち、シトシニル)、2-オキソ-4-アミノ-5-フルオロ-1,2-ジヒドロピリミジン-1-イル、4-アミノ-2-オキソ-5-クロロ-1,2-ジヒドロピリミジン-1-イル、2-オキソ-4-メトキシ-1,2-ジヒドロピリミジン-1-イル、2-オキソ-4-メルカプト-1,2-ジヒドロピリミジン-1-イル、2-オキソ-4-ヒドロキシ-1,2-ジヒドロピリミジン-1-イル(即ち、ウラシリル)、2-オキソ-4-ヒドロキシ-5-メチル-1,2-ジヒドロピリミジン-1-イル(即ち、チミニル)、4-アミノ-5-メチル-2-オキソ-1,2-ジヒドロピリミジン-1-イル(即ち、5-メチルシトシニル)、9-β-D-リボフラノシルヒポキサンチニル(即ち、イノシニル)およびそれらの誘導体を挙げることができ、好ましくは、アデニニル、チミニル、グアニニル、ウラシリル、イノシニル、シトシニルおよび5-メチルシトシニルならびにこれらの誘導体を挙げることができる。
 別の代表的な実施形態では、本発明で使用されるBNAは、以下のBNA-2:
Figure JPOXMLDOC01-appb-C000023

(式中、Rは、水素原子、置換または非置換のアルキル基、置換または非置換のアルケニル基、置換または非置換のシクロアルキル基、置換または非置換のアリール基、置換または非置換のアラルキル基、置換または非置換のアシル基、置換または非置換のスルホニル基、置換または非置換のシリル基、および機能性分子ユニット置換基からなる群より選択される基を示し、たとえば、これに限定されないが、フェノキシアセチル基、炭素数1~5のアルキル基、炭素数1~5のアルケニル基、炭素数6~14のアリール基、1~3個のアリール基で置換されたメチル基、メタンスルホニル基やp-トルエンスルホニル基などの低級脂肪族あるいは芳香族スルホニル基又はアセチル基などの炭素数1~5の脂肪族アシル基やベンゾイル基などの芳香族アシル基が挙げられ、mは、0~2の整数であり、nは、1~3の整数である。)で示される2’,4’置換架橋核酸を含む。Baseは、BNA-1で説明したものと同様であり、好ましくは、アデニニル、グアニニル、チミニル、ウラシニル、イノシニル、シトシニルおよび5-メチルシトシニル、ならびにそれらの誘導体であり得る。
 別の代表的な実施形態では、本発明で使用されるBNAは、以下のBNA-3:
Figure JPOXMLDOC01-appb-C000024

(式中、RおよびR2’は、それぞれ独立して、水素原子、置換または非置換のアルキル基、置換または非置換のアルケニル基、置換または非置換のシクロアルキル基、置換または非置換のアリール基、置換または非置換のアラルキル基、置換または非置換のアシル基、置換または非置換のスルホニル基、置換または非置換のシリル基、および機能性分子ユニット置換基からなる群より選択される基を示し、たとえば、これに限定されないが、メチル基、O-メトキシエチル基が挙げられ、Baseは、BNA-3で説明したものと同様であり、好ましくは、アデニニル、グアニニル、チミニル、ウラシニル、イノシニル、シトシニル、5-メチルシトシニルおよびそれらの誘導体であり得る。ここで、nは、1~3の整数であるが、RまたはR2’のどちらかは水素ではない。)
 架橋鎖に分岐を持つBNAは、これに限定されるものではないが、たとえばBNA(cEt)
Figure JPOXMLDOC01-appb-C000025

(cEt:2’,4’-constrained ethyl)が挙げられる。BNA(cEt)は従来のLNAと同様の熱的安定性およびミスマッチ識別を有するものの、ヌクレアーゼに対する安定性が向上していることが知られている。
 代表的な実施形態では、本発明で使用されるBNAは、
Figure JPOXMLDOC01-appb-C000026

であってもよく(本明細書において特に断らない限り「BNANC(NMe)」と表示するが、「(2’,4’-)BNANC」と表示されることもある。)、ここでは、Baseは上述と同じ定義であり、好ましくはアデニニル、チミニル、グアニニル、ウラシリル、イノシニル、シトシニルおよび5-メチルシトシニルからなる群より選択される。
 本明細書において「保護基」とは、特定の化学反応から官能基を保護するために使用される基をさす。本明細書において、保護基は、「PG」と表されることもある。
 好ましくは、BNAとしては、BNANC(NMe)またはLNAが使用され、より好ましくはBNANC(NMe)が使用される。
 好ましい実施形態では、mは0であり、nは1である。
 したがって、miRNAに使用される場合は、下記一般式(II)で表されるヌクレオシドの単位構造の1種以上を1または2個以上含有するDNAオリゴヌクレオチド又はRNAオリゴヌクレオチドとしてのオリゴヌクレオチドまたはその薬理学上許容される塩であり得る。ここで、但し、オリゴヌクレオチド中の各ヌクレオシド間の結合形態は、天然核酸と同じリン酸ジエステル結合[-OP(O-)O-]以外にホスホロチオアート結合[-OP(O)(S-)O-]を1又は2個以上含有していてもよく、また、前記の構造の1種以上を2個以上含有する場合は、当該構造間でBaseは同一または異なることができる。
 本発明の一種である人工核酸BNANC(NMe)[一般式(I)で、R1とRが水素、Rが水素あるいはメチル基]を含有するDNA若しくはRNAオリゴヌクレオチド類縁体(II)は下記のような優れた特性を有する。相補なRNA鎖に対する二重鎖形成能が非常に高いからである。
 DNAオリゴヌクレオチド中にBNANC(NMe)ユニットを1個導入する毎に(1修飾当たり)Tm値が3~6℃上昇する。しかも、相補なDNA鎖に対する二重鎖形成能の上昇(向上)はほとんどない。この特性は、相補なRNA鎖に対する結合親和性においてはBNA修飾DNAオリゴヌクレオチド同様、飛躍的なTm値の上昇(二重鎖形成能の格段の向上)がある一方で、相補なDNA鎖に対する二重鎖形成能においてはBNA修飾DNAオリゴヌクレオチドでは未修飾DNAオリゴヌクレオチドと比べて向上が観察される(1修飾当たりTm値が2~4℃上昇)のとは対照的に、BNANC(NMe)修飾DNAオリゴヌクレオチドでは殆ど結合親和性の向上は認められない。従って、BNANC(NMe)修飾DNAオリゴヌクレオチドはRNA鎖への選択的結合親和性に極めて優れている。
(2)また、BNANC(NMe)修飾DNAオリゴヌクレオチドは二本鎖DNA鎖に対する三重鎖形成能にも卓越している。
 DNAオリゴヌクレオチド中にBNANC(NMe)ユニットを1個導入すると二本鎖DNA鎖に対する三重鎖形成においてTm値が7~12℃上昇する。また、三重鎖形成には塩基配列を厳密に識別し、ターゲット配列にのみ結合するという配列選択性が必要とされるが、BNANC(NMe)修飾DNAオリゴヌクレオチドのマッチ配列とミスマッチ配列とに対するTm値の差は25℃以上あり、天然型DNAオリゴヌクレオチドを上回る優れた配列選択性を有している。BNANC(NMe)の場合ヌクレアーゼ耐性が抜群である。
 BNANC(NMe)修飾オリゴヌクレオチドは天然DNAオリゴヌクレオチドよりもヌクレアーゼ耐性が高いが、S-オリゴ(ホスホロチオアート型オリゴヌクレオチド)よりはるかに低い。本発明のBNANC(NMe)修飾オリゴヌクレオチドはBNA修飾オリゴヌクレオチドはもとより、ヌクレアーゼ耐性の優れていることで高く評価されているS-オリゴよりもヌクレアーゼ耐性に優れており、生体内での分解が強く抵抗する特性を有している。
 (3)本発明の人工核酸BNANC(NMe)分子中に含まれるN-O結合は還元試薬により緩和な条件下で選択的に開裂することができ、NH基とOH基が遊離する。このNH基やOH基を足掛かりに別機能性分子を結合させることで、オリゴヌクレオチド類縁体調製の前後を問わず、様々な複合体(コンジュゲート体)を得ることが容易である。別機能性分子としては、蛍光分子や化学発光分子や放射性同位原子を含む分子種などの標識用分子、様々なDNA(RNA)切断活性分子、細胞内や核内移行シグナルペプチド類等々、が可能である。
 使用されるBNANC(NMe)を様々な形態で修飾したDNAやRNAオリゴヌクレオチド類縁体は、アンチセンス法、アンチジーン法、デコイ法、遺伝子相同組み換え法、RNA干渉法などによる遺伝子医薬品創製の高機能性素材としてのみならず、モレキュラービーコンやDNAチップなどの遺伝子診断法の基材として、また、遺伝子機能解析解明等の研究用試薬の開発素材として、極めて有用性が高い。
 本発明の化合物(BNA-1)及びその塩のうち、好適な化合物としては、(5)Rが、水素原子、炭素数1~5のアルキル基、炭素数1~5のアルケニル基、炭素数6~14のアリール基、1~3個のアリール基で置換されたメチル基、メタンスルホニル基やp-トルエンスルホニル基などの低級脂肪族あるいは芳香族スルホニル基又はアセチル基などの炭素数1~5の脂肪族アシル基やフェノキシアセチル基およびベンゾイル基などの芳香族アシル基である化合物およびその塩、また、Rの機能性分子ユニット置換基が、蛍光あるいは化学発光標識分子、核酸切断活性官能基、又は細胞内若しくは核内移行シグナルペプチドであるものを挙げることができ、(6)Baseが、前述のとおりであり、好ましくはアデニニル基、チミニル基、ウラシリル基、イノシニル基、シトシニル基、グアニニル基、メチルシトシニル基あるいはそれらの誘導体である。
 本発明のヌクレオシド類縁体及びオリゴヌクレオチド類縁体は、実施例に記載の方法および本分野の従来技術に基づいて合成できる。
(1)ヌクレオシド類縁体の合成
 ((BNA-1)及び(BNA-2))
 一般式(BNA-1)及び(BNA-2)で表される化合物は、実施例に記載の方法および本分野の従来技術に基づいて合成できる。反応条件、保護基導入試薬、反応試薬は、具体的には実施例に記載の方法を参考にすることができるが、これに限定されず、本分野の技術常識に基づき使用可能な反応条件、試薬を適宜採用することができる。例えば、特開2000-297097号公報、特開平10-304889号公報に記載の方法を参考にすることができる。また、一般式(I)または(II)におけるBaseとして種々の天然、非天然の核酸塩基およびその他の芳香族複素環や芳香族炭化水素環を有する場合についても、特開平10-304889号公報に記載の方法を参考にして、本発明化合物の原料を合成することができる。
 (ヌクレオシド類縁体の一般合成例)
Figure JPOXMLDOC01-appb-C000027

 (1)化合物A-2の合成
 化合物A-1
Figure JPOXMLDOC01-appb-C000028

(式中、PG~PGは、独立して本明細書に記載の保護基であり、Baseは、本明細書に記載の核酸塩基であり、たとえばアデニン、グアニン、シトシン、チミン、ウラシルである)の溶液(たとえばTHF溶液3.5ml)に適切な温度(たとえば氷冷下)で、適切な試薬(たとえば40%メチルアミン水溶液(0.11ml,1.50mmol))を加え、適切な温度(たとえば室温)で適切な時間(たとえば3時間)撹拌する。反応溶液の溶媒を留去後、適切な有機溶媒(たとえば酢酸エチル)で抽出し、有機層を(たとえば水、飽和食塩水で)洗浄する。有機層を適切な乾燥剤(たとえば無水硫酸ナトリウム)で乾燥し、溶媒留去後、(たとえばシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=1:1)により)精製し、化合物A-2を得る(たとえば45mg,99%,白色固体)。
 (2)化合物A-3の合成
 (たとえば窒素気流下、)化合物A-2(たとえば146mg,0.23mmol)の溶液(たとえばピリジン溶液(1.5ml))に適切な温度(たとえば氷冷下)、PGX(式中、PGは、本明細書に記載の保護基であり、Xは、Cl、Br、Iであり、たとえば塩化メチルスルホニル(45.1ml,0.59mmol)である)を加え、適切な温度(たとえば室温)で適切な時間(たとえば1時間)撹拌する。(たとえば反応溶液に水を加えて)反応をクエンチし、適切な有機溶媒(たとえば酢酸エチル)で抽出し、有機層を(たとえば飽和重曹水、飽和食塩水で)洗浄後、適切な乾燥剤(たとえば無水硫酸ナトリウム)にて乾燥する。溶媒を減圧留去し、化合物A-3を得る。化合物A-3は精製せずに次の反応に用いることもできる。
 (3)化合物A-4の合成
 化合物A-3(たとえば170mg)の溶液(たとえば水-エタノール溶液(1:2,6ml))に、適切な温度(たとえば室温)で適切な試薬(たとえば1M水酸化ナトリウム水溶液(0.70ml,0.70mmol))を加え、適切な時間(たとえば1時間)撹拌することにより、2’位に(CR’)mOHを導入する(RおよびR’は、本明細書に記載の置換基である)。(たとえば10%塩酸水溶液で)中和後、適切な有機溶媒(たとえば酢酸エチル)で抽出する。有機層を(たとえば水、飽和食塩水で)洗浄後、適切な乾燥剤(たとえば無水硫酸ナトリウム)で乾燥する。溶媒を減圧留去し、得られた粗生成物を(たとえばシリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=15:1)により)精製し、化合物A-4を得る(たとえば139mg,95%(2段階),白色固体)。
 (4)化合物A-5の合成
 (たとえば窒素気流下、)化合物A-4(たとえば0.80g,1.28mmol)の溶液(たとえばエタノール溶液(10ml))に、適切な試薬(たとえば20%水酸化パラジウム-炭素粉末(0.60g)、シクロヘキセン(5.2ml,51mmol))を加え、適切な時間(たとえば5時間)、適切な温度条件(たとえば加熱還流)で撹拌することにより、PGおよびPGを除去する。PGを除去する工程とPGを除去する工程は、同一の工程であっても、別々の工程であってもよい。反応溶液を濾過後、溶媒を減圧留去する。得られた粗生成物A-5は、精製せずに次の反応に用いることができる。
(5)化合物A-6の合成
 (たとえば窒素気流下、)化合物A-5(たとえば0.46g)の溶液(たとえばN,N-ジメチルホルムアミド溶液(10ml))に、PGX(式中、PGは、本明細書に記載の保護基であり、Xは、Cl、Br、Iであり、たとえば1,3-ジクロロ-1,1,3,3-テトライソプロピルジシロキサン(0.45ml,1.41mmol)である)、塩基(たとえばイミダゾール(0.38g,5.63mmol))を加え、適切な温度(たとえば室温)で適切な時間(たとえば5時間)撹拌することによりPGを導入する。反応液を適切な有機溶媒(たとえばエーテル)で抽出し、有機層を(たとえば水、飽和食塩水で)洗浄した後、適切な乾燥剤(たとえば硫酸マグネシウム)で乾燥する。溶媒を減圧留去し、得られた粗生成物を(たとえばシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=2:1→1:1)により)精製し、化合物A-6を得る(たとえば0.60g,68%(2段階),白色固体)。
 (6)化合物A-7の合成
 (たとえば窒素気流下、)化合物A-6(たとえば200mg,0.29mmol)の溶液(たとえばピリジン溶液(3ml))に適切な温度(たとえば氷冷下)、PGX(式中、PGは、本明細書に記載の保護基であり、Xは、Cl、Br、Iであり、たとえば無水トリフルオロメタンスルホン酸(0.15ml,0.88mmol))、塩基(たとえば4-(ジメチルアミノ)ピリジン(7mg,0.06mmol))を加え、適切な温度(たとえば室温)で適切な時間(たとえば7.5時間)撹拌する。(たとえば反応溶液に水を加えて)反応をクエンチし、適切な有機溶媒(たとえばジクロロメタン)で抽出する。有機層を(たとえば飽和重曹水、飽和食塩水で)洗浄後、適切な乾燥剤(たとえば無水硫酸ナトリウム)で乾燥する。溶媒を減圧留去し、化合物A-7を得る。得られるA-7は精製せず、次の反応に用いることができる。
 (7)化合物A-8の合成
 化合物A-7の2’位のヒドロキシ基にアミノ基を導入した化合物A-8を合成する。その合成法は、これに限定されるものではないが、たとえば以下のようなものである。(たとえば窒素気流下、)化合物A-7(たとえば0.29g)の溶液(たとえばアセトニトリル溶液(3ml))に、適切な温度(たとえば室温)で適切な試薬(たとえばN-ヒドロキシフタルイミド(67mg,0.41mmol)、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン(61(1,0.41mmol))を加え、適切な温度(たとえば室温)で適切な時間(たとえば12時間)撹拌する。反応溶液を適切な有機溶媒(たとえばジクロロメタン)で抽出し、有機層を(たとえば水、飽和食塩水で)洗浄後、適切な乾燥剤(たとえば無水硫酸ナトリウム)で乾燥する。溶媒を減圧留去し、得られた粗生成物を(たとえばシリカゲルカラムクロマトグラフィー(クロロホルム)により)精製し、化合物A-7’を得る。得られた化合物A-7’(1.16g,1.40mmol)の溶液(たとえばエタノール溶液(35ml))に、適切な試薬(たとえばヒドラジン-水和物(0.12ml,2.38mmol))を加え、適切な温度(たとえば室温)で適切な時間(たとえば10分間)撹拌する。反応溶液の溶媒を留去後、濾過し、濾液を適切な有機溶媒(たとえば酢酸エチル)で抽出する。有機層を(たとえば水、飽和食塩水で)洗浄後、適切な乾燥剤(たとえば無水硫酸ナトリウム)で乾燥し、溶媒を減圧留去し、得られたA-8は精製せず、次の反応に用いることができる。
 (8)化合物A-9の合成
 (たとえば窒素気流下)化合物A-8(0.93g)の溶液(たとえば塩化メチレン溶液(15ml))に適切な温度(たとえば氷冷下)、適切な試薬(たとえば飽和重曹水(4.0ml,4.2mmol))、PGX(式中、PGは、本明細書に記載の保護基であり、Xは、Cl、Br、Iであり、たとえばクロロギ酸ベンジル(0.30ml,2.1mmol)である)を加え、適切な時間(たとえば1時間)撹拌する。反応を(たとえば飽和重曹水を加えて)クエンチし、適切な有機溶媒(たとえば酢酸エチル)で抽出する。有機層を(たとえば水、飽和食塩水で)洗浄し、適切な乾燥剤(たとえば硫酸マグネシウム)で乾燥する。溶媒を減圧留去し、得られた粗生成物を(たとえばシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=4:1)により)精製し、化合物A-9を得る(たとえば0.92g,94%(2段階),白色固体)。
 (9)化合物A-10の合成
 (たとえば窒素気流下、)塩基(たとえば水素化ナトリウム(60% in oil,0.55g,13.7mmol)のテトラヒドロフラン懸濁液(25ml))に適切な温度(たとえば氷冷下)、化合物A-9(たとえば3.81g,4.57mmol)の溶液(たとえばテトラヒドロフラン溶液(15ml))を滴下し、適切な時間(たとえば1時間)撹拌後、適切な温度(たとえば室温)で適切な時間(たとえば5時間)撹拌することによりOPGを除去するとともに2’位と4’位を架橋する。OPGを除去する工程と2’位と4’位を架橋する工程は同一の工程であっても、異なる工程であってもよい。(たとえば飽和シュウ酸水溶液で)中和後、適切な有機溶媒(たとえば酢酸エチル)で抽出する。有機層を(たとえば水、飽和食塩水で)洗浄後、適切な乾燥剤(たとえば無水硫酸ナトリウム)で乾燥する。溶媒を減圧留去し、得られた粗生成物を(たとえばシリカゲルカラムクロマトグラフィー(クロロホルム→クロロホルム:メタノール=100:1)により)精製し、化合物A-10を得る(たとえば2.87g,95%,白色固体)。
(10)化合物A-11の合成
 (たとえば窒素気流下、)化合物A-10(たとえば0.35mg,0.53mmol)の溶液(たとえば塩化メチレン溶液(10ml))に適切な温度(たとえば氷冷下)、適切な試薬(たとえば1M三塩化ホウ素ヘキサン溶液(5.29ml,5.29mmol))を加え、適切な時間(たとえば1時間)撹拌する。(たとえば反応溶液に飽和重曹水を加えることにより)反応をクエンチし、適切な有機溶媒(たとえば酢酸エチル)で抽出し、有機層を(たとえば水、飽和食塩水で)洗浄した後、適切な乾燥剤(たとえば無水硫酸ナトリウム)で乾燥する。溶媒を減圧留去し、得られた粗生成物を(たとえばシリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=50:1)により)精製し、化合物A-11を得る(たとえば0.27g,96%,白色固体)。
 (11)化合物A-12の合成
 化合物A-11(0.19g,0.36mmol)の溶液(たとえば1M p-トルエンスルホン酸ピリジニウム-メタノール溶液(3.6ml))に、適切な温度(たとえば室温)にて適切な試薬(たとえば20%ホルムアルデヒド水溶液(0.06ml,0.40mmol))を加え、適切な時間(たとえば10分間)撹拌する。さらに、適切な温度(たとえば氷冷下)において適切な試薬(たとえばシアン化水素化ホウ素ナトリウム(45mg,0.72mmol))を加えて置換基R(Rは、本明細書に記載の置換基である)によりアミノ基を置換する。適切な時間(たとえば1時間)撹拌する。反応溶液を適切な有機溶媒(たとえば酢酸エチル)で抽出し、(たとえば水、飽和重曹水、飽和食塩水)で洗浄し、有機層を適切な乾燥剤(たとえば無水硫酸ナトリウム)で乾燥する。溶媒を減圧留去し、得られた粗生成物を(たとえばシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=2:1)にて)精製し、化合物A-12を得る(たとえば0.19g,100%,白色固体)。
 (12)化合物A-13の合成
 化合物A-12(46mg,0.085mmol)の溶液(たとえばテトラヒドロフラン溶液(2ml))に適切な試薬(たとえばフッ化テトラ-n-ブチルアンモニウム(1M テトラヒドロフラン中,0.17ml,0.17mmol))を加え、適切な温度(たとえば室温)で適切な時間(たとえば5分間)撹拌する。溶媒を減圧留去し、得られた粗生成物を(たとえばシリカゲルカラムクロマトグラフィー(酢酸エチル:メタノール=15:1により)精製し、化合物A-13を得る(たとえば25mg,100%,白色固体)。
 (13)化合物A-14の合成
 化合物A-13(たとえば0.16g,0.54mmol)の溶液(たとえばピリジン溶液(10ml))に適切な試薬(たとえば塩化4,4’-ジメトキシトリチル(たとえば0.22g,0.64mmol))を加え、適切な温度(たとえば室温)で適切な時間(たとえば12時間)撹拌する。反応液に(たとえば飽和重曹水を加え、適切な有機溶媒(たとえば酢酸エチル)で抽出し、有機層を(たとえば水、飽和食塩水で)洗浄後、適切な乾燥剤(たとえば無水硫酸ナトリウム)で乾燥する。溶媒を減圧留去し、得られた粗生成物を(たとえばシリカゲルカラムクロマトグラフィー(1%トリエチルアミン含有n-ヘキサン:酢酸エチル=1:2→酢酸エチル:メタノール=30:1)にて)精製し、化合物A-14を得る(たとえば0.30g,93%,白色固体)。
 (14)化合物A-15の合成
 化合物A-14(たとえば0.17g,0.28mmol)及び適切な試薬(たとえば4,5-ジシアノイミダゾール(40mg,0.34mmol))の溶液(たとえばアセトニトリル溶液(6ml))に、適切な試薬(たとえば2-シアノエチル-N,N,N’,N’-テトライソプロピルホスホロアミダイト(0.13ml,0.42mmol))を加え、適切な温度(たとえば室温)で適切な時間(たとえば4時間)撹拌することにより3’位のヒドロキシ基をP(O)(OPG)(OPG10)(PGおよびPG10は、それぞれ独立して本明細書に記載の保護基である)により修飾する。(たとえば反応液に飽和重曹水を加えて)クエンチし、適切な有機溶媒(たとえば酢酸エチル)で抽出する。有機層を(たとえば飽和重曹水、水、飽和食塩水で)洗浄後、適切な乾燥剤(たとえば無水硫酸ナトリウム)で乾燥し、溶媒を減圧留去する。得られた粗生成物を(たとえばシリカゲルカラムクロマトグラフィー(1%トリエチルアミン含有n-ヘキサン:酢酸エチル=1:1)、ついで再沈澱(酢酸エチル-ヘキサン)により)精製し、化合物A-15を得る(たとえば0.20g,88%,白色固体)。
 (BNA-3)
 一般式BNA-3で表される化合物は、実施例に記載の方法および本分野の従来技術に基づいて合成できる。反応条件、保護基導入試薬、反応試薬は、具体的には実施例に記載の方法を参考にすることができるが、これに限定されず、本分野の技術常識に基づき使用可能な反応条件、試薬を適宜採用することができる。例えば、J.Org.Chem.2010,75,1569-1581に記載の方法を参考にすることができる。また、一般式(I)または(II)におけるBaseとして種々の天然、非天然の核酸塩基およびその他の芳香族複素環や芳香族炭化水素環を有する場合についても、J.Org.Chem.2010,75,1569-1581に記載の方法を参考にして、本発明化合物の原料を合成することができる。
BNA-3の一般合成例
Figure JPOXMLDOC01-appb-C000029
 (1)化合物B-2の合成
 化合物B-1
Figure JPOXMLDOC01-appb-C000030

(式中、PG~PGは、独立して本明細書に記載の保護基であり、RおよびR’は、本明細書に記載の置換基であり、Baseは、本明細書に記載の核酸塩基であり、たとえばアデニニル基、チミニル基、グアニニル基、またはメチルシトシニル基である)の溶液に(たとえば窒素気流下、)適切な温度で、適切な試薬(たとえば炭酸カリウム)を加え、適切な温度で適切な時間撹拌する。(たとえば反応溶液に水を加えて)反応をクエンチし、適切な有機溶媒(たとえば酢酸エチル)で抽出し、有機層を(たとえば飽和食塩水で)洗浄する。有機層を適切な乾燥剤(たとえば硫酸ナトリウム)で乾燥し、溶媒留去後、(たとえばシリカゲルカラムクロマトグラフィーにより)精製し、化合物B-2を得る。
 (2)化合物B-3の合成
 (たとえば窒素気流下、)化合物B-2の溶液に適切な温度(たとえば室温)、適切な試薬(たとえば2,3-ジクロロ-5,6-ジシアノ-p-ベンゾキノン(DDQ)である)を加え、適切な温度(たとえば室温)で適切な時間(たとえば12時間)撹拌する。(たとえば反応溶液に水を加えて)反応をクエンチし、適切な有機溶媒(たとえば酢酸エチル)で抽出し、有機層を(たとえば飽和食塩水で)洗浄後、適切な乾燥剤(たとえば無水硫酸ナトリウム)にて乾燥する。溶媒を減圧留去し、化合物B-3を得る。
 (3)化合物B-4の合成
 (たとえば窒素気流下、)化合物B-3の溶液に適切な温度(たとえば氷冷下)、適切な試薬(たとえばトリエチルアミン三フッ化水素酸塩)を加え、適切な温度(たとえば室温)で適切な時間(たとえば12時間)撹拌する。(たとえば反応溶液に水を加えて)反応をクエンチし、適切な有機溶媒(たとえば酢酸エチル)で抽出し、有機層を(たとえば飽和食塩水で)洗浄後、適切な乾燥剤(たとえば無水硫酸ナトリウム)にて乾燥する。溶媒を減圧留去し、化合物B-4を得る。
 (3)化合物B-5の合成
 (たとえば窒素気流下、)化合物B-4の溶液に適切な温度(たとえば室温)、PGX(式中、PGは、本明細書に記載の保護基であり、Xは、Cl、Br、Iであり、たとえば塩化ジメトキシトリチルである)を加え、適切な温度(たとえば室温)で適切な時間(たとえば12時間)撹拌する。(たとえば反応溶液に水を加えて)反応をクエンチし、適切な有機溶媒(たとえば酢酸エチル)で抽出し、有機層を(たとえば飽和食塩水で)洗浄後、適切な乾燥剤(たとえば無水硫酸ナトリウム)にて乾燥する。溶媒を減圧留去し、化合物B-5を得る。
 (3)化合物B-6の合成
 (たとえば窒素気流下、)化合物B-5の溶液に適切な温度(たとえば室温)、適切な試薬(たとえば2-シアノエチル-N,N,N’,N’-テトライソプロピルホスホロアミダイト)を加え、適切な温度(たとえば室温)で適切な時間(たとえば4時間)撹拌することにより3’位のヒドロキシ基をP(O)(OPG)(OPG)(PGおよびPGは、それぞれ独立して本明細書に記載の保護基である)により修飾する。。(たとえば反応溶液に水を加えて)反応をクエンチし、適切な有機溶媒(たとえば酢酸エチル)で抽出し、有機層を(たとえば飽和食塩水で)洗浄後、適切な乾燥剤(たとえば無水硫酸ナトリウム)にて乾燥する。溶媒を減圧留去し、化合物B-6を得る。
 (2)オリゴヌクレオチド類縁体の合成
 本発明において用いられるヌクレオシド類縁体を含むオリゴヌクレオチド類縁体は、公知のDNAシンセサイザーを用いて種々合成することができる。次いで、得られるオリゴヌクレオチド類縁体を、逆相カラムを用いて精製し、生成物の純度を逆相HPLCやMALDI-TOF-MSで分析することにより、精製オリゴヌクレオチド類縁体の生成を確認できる。本発明のヌクレオシド類縁体は、オリゴヌクレオチド類縁体の中に1個以上存在させることができる。また、オリゴヌクレオチド類縁体の2カ所以上の位置に、1又は2以上の天然ヌクレオチドを介して隔離された状態で存在させてもよい。本発明によれば、本発明のヌクレオシド類縁体を必要な位置に必要な数(長さ)で導入したオリゴヌクレオチド類縁体を合成することができる。オリゴヌクレオチド類縁体全体の長さとしてヌクレオチド単位が2~50、好ましくは8~30個である。
 本発明において用いられるオリゴヌクレオチド類縁体は、ヌクレアーゼに対して分解されにくく、生体への投与後、長く生体内に存在することができる。そして、例えば、センスRNAと二重鎖を形成して病因となる生体内成分(タンパク質)のmRNAへの転写を阻害する。また、感染したウイルスの増殖を阻害すると考えられる。
 これらのことから、本発明のオリゴヌクレオチド類縁体は、抗腫瘍剤、抗ウイルス剤とはじめとした遺伝子の働きを阻害して疾病を治療する医薬品としての有用性が期待される。即ち、本発明によれば、安定で優れたアンチセンスもしくはアンチジーン活性、又は特定遺伝子の検出薬若しくは増幅開始の為のプライマーとして優れた活性を有する、オリゴヌクレオチド類縁体及びその製造中間体であるヌクレオシド類縁体が提供される。
 本発明において用いられるヌクレオシド類縁体の一つである2’,4’-BNANCモノマーを様々な形態で修飾したDNAやRNAオリゴヌクレオチド類縁体(オリゴヌクレオチド類縁体)は、各種の生理・生物活性物質類、医薬品類の材料、RNA干渉法やデコイ法用などの二重鎖オリゴヌクレオチドの機能性材料、cDNAなど一本鎖核酸を標的とするDNAチップ、モレキュラービーコン(molecular beacon)などの機能性素材、様々なアンチセンス法(リボザイム、DNAザイムを含む)、アンチジーン法や遺伝子相同組み換え法用途への機能性素材、蛍光や発光物質との組合せによる生体微量成分の高感度分析用材料や遺伝子機能解析解明等の研究用試薬の開発素材として有用である。
 本発明のヌクレオシド類縁体やオリゴヌクレオチド類縁体は、例えば緩衝剤および/または安定剤等の慣用の助剤を配合して非経口投与用製剤とすることができる。また、局所用の製剤としては、慣用の医薬用担体を配合して軟膏、クリーム、液剤、または膏薬等に調剤できる。
 (S-TuDを構成するオリゴヌクレオチドの一般合成例)
 本発明で使用されるS-TuDを構成するオリゴヌクレオチドは、合成機(たとえばnS-8II 合成機もしくは、AKTA oligopilot合成機)で合成する。細孔ガラス質固相担体(たとえば2’-O-メチル-RNA CPG Link Technologies社製)と、標準的な保護基を有する2’-O-メチル-RNAホスホロアミダイト、(たとえば、これに限定するものではないが、5’-O-ジメトキシトリチルN6-ベンゾイルアデノシン-2’-O-メチル-3’-O-N,N’-ジイソプロピルホスホロアミダイト、5’-O-ジメトキシトリチル-N4-アセチルシチジン-2’-O-メチル-3’-O-N,N’-ジイソプロピルホスホロアミダイト、5’-O-ジメトキシトリチル-N2-イソブチリルグアノシン-2’-O-メチル-3’-O-N,N’-ジイソプロピルホスホロアミダイト、および5’-O-ジメトキシトリチルウリジン-2’-O-メチル-3’-O-N,N’-ジイソプロピルホスホロアミダイト(以上シグマアルドリッチ社製)、並びに、2’,4’-BNANC(2’-O,4’-C-aminomethylene bridged nucleic acid)チミジンホスホロアミダイト、すなわち 2’-O,4’-C-アミノメチレン-5’-O-ジメトキシトリチル-チミジン- N,N’-ジイソプロピルホスホロアミダイト、2’,4’-BNANCアデノシンホスホロアミダイト、すなわち 2’-O,4’-C-アミノメチレン-5’-O-ジメトキシトリチル-N6-ベンゾイルアデノシン- N,N’-ジイソプロピルホスホロアミダイト(以上BNA社製)、並びに、LNA(Locked nucleic acid)(2’-O,4’-C-methylene ribonucleic acid)チミジンホスホロアミダイト、すなわち2’-O,4’-C-メチレン-5’-O-ジメトキシトリチルチミジン-N,N’-ジイソプロピルホスホロアミダイト(エキシコン社製)が挙げられる)をオリゴヌクレオチド合成に使用する。ホスホロアミダイトは全て、適切な溶媒(たとえばアセトニトリル(CHCN))中、適切な濃度(たとえば0.1M)で使用する。2’-O-メチルRNA、BNA及びLNAについては適切な連結/再利用時間(たとえば15分)を使用する。活性剤は、たとえば、これに限定されるものではないが、5-ベンジルメルカプト-テトラゾール(0.25M、和光純薬社製)であり、PO-酸化については、たとえば、これに限定されるものではないが、ヨウ素/水/ピリジンを使用する。
 (脱保護の一般例(ヌクレオ塩基脱保護の一般例))
 合成が完了した後、合成担体を適切な容器(たとえばガラスボトル)に移す。オリゴヌクレオチドを、担体1gに対して15mLの、40%メチルアミン水溶液と33%メチルアミンエタノール溶液の等量混合物を用いて、適切なonto(たとえば45℃)で適切な時間(たとえば13時間)、塩基とリン酸基を脱保護して担体から切断する。塩基を脱保護する工程とリン酸基を脱保護する工程は、同一であっても、異なっていてもよい。その後、エタノールアンモニア混合物を濾過して、適切な容器(たとえば新しい250mLのボトル)に入れる。担体を(たとえば2×40mLのエタノール/水(1:1 v/v)で)洗浄する。その後、(たとえばロータリーエバポレーター(roto-vap)を用いて)溶媒を留去し乾固する。
 (HPLC精製の一般例)
 オリゴヌクレオチドを、HPLC(たとえばSource 15 RPCゲルカラムでの逆相イオンペアHPLC)で精製する。緩衝液は、たとえば、これに限定されるものではないが、5% CHCN、0.1M トリエチルアミン酢酸緩衝液(pH7.0)(緩衝液A)と90% CHCN、0.1M トリエチルアミン酢酸緩衝液(pH7.0)(緩衝液B)である。5’末端に保護基(たとえばジメトキシトリチル基)が保持された状態で全長のオリゴヌクレオチドを含む画分をプールし次の精製に供する。その後オリゴヌクレオチドプールを、HPLC(たとえばSource 30Qの陰イオンペアHPLC)で精製する。溶液及び緩衝液は、たとえばこれに限定されるものではないが、0.6%のトリフルオロ酢酸(溶液A)、20mMリン酸ナトリウム緩衝液(pH7.5)(緩衝液C)と20mMリン酸ナトリウム緩衝液中の2M塩化ナトリウム(緩衝液D)である。5’末端の保護基を脱離させた後、完全長のオリゴヌクレオチドを含む画分をプールし、脱塩後凍結乾燥する。化合物を、最終的に、たとえばMALDI-TOF/MSと逆相HPLC(例えばX-Bridgeのイオンペア逆相HPLC)で分析する。
 (2本鎖化の一般例)
 精製の完了した1本鎖オリゴヌクレオチドを適切な溶媒(たとえば蒸留水)にて溶解後、(たとえば紫外分光光度計を用い吸光度測定することにより)オリゴヌクレオチド濃度を決定する。決定された濃度を用い相補鎖をそれぞれ等モル濃度になるように混合し適切な温度(たとえば95℃)で適切な時間(たとえば10分)加熱後徐冷し2本鎖形成させる。2本鎖形成はたとえば非変性ゲル電気泳動にて確認する。
 また、核酸は末端に結合体を含んでよい。結合体としては、例えば親油性物質、テルペン、タンパク質結合物質、ビタミン、炭水化物、レチノイド、およびペプチド等が挙げられる。
 (RNAの一本鎖他特殊形態)
 本明細書で使用されるmiRNA阻害複合体は直鎖状の一本鎖核酸により構成されるように設計することができる(図3)。本発明は特に、MBSの全てがある二本鎖構造(図2のステムI)の片側(図3においては右側)に集中しており、該二本鎖構造の各鎖は、その側で閉じた構造となっており(すなわちMBSを含む配列によりつながっており)、該二本鎖構造の反対側に一本鎖RNAの両端があるような複合体に関する(図3)。MBSを含む配列中には、さらなる二本鎖構造(図3のステムIIやIIIなど)を含んでもよい。一本鎖RNAの長さは適宜決めてよいが、例えば500塩基内、好ましくは450塩基以内、420塩基以内、400塩基以内、380塩基以内、360塩基以内、340塩基以内、320塩基以内、300塩基以内、280塩基以内、260塩基以内、240塩基以内、220塩基以内、200塩基以内、180塩基以内、160塩基以内、140塩基以内、120塩基以内、100塩基以内、または80塩基以内である。例えば2つの二本鎖構造と2つのMBSを持つ複合体を形成する一本鎖RNAの長さは、例えば60~300塩基、好ましくは70~250塩基、80~200塩基、90~180塩基、または100~150塩基である。第一の二本鎖構造(一本鎖RNAの両端に近い二本鎖構造)は、例えば15~30bp、好ましくは16~28bp、好ましくは17~25bp、好ましくは17~24bp、例えば17bp、18bp、19bp、20bp、21bp、22bp、23bp、または24bpとすることができ、第二の二本鎖構造(MBSを含む配列中に含まれるさらなる二本鎖構造)は、全体をコンパクトにするために、第一の二本鎖構造の長さよりも短くしてもよく、例えば4bp~20bpであり、例えば5bp~15bp、5bp~12bp、5bp~10bp、6bp~9bp、または7bp~8bpとしてよい。
 また本発明は、本明細書で使用されるmiRNA阻害複合体を構成するRNA(ここでRNAとしては、天然のRNAおよび核酸類縁体を含む)であって、BNAを含むRNAに関する。miRNA阻害RNA複合体が1分子のRNAにより構成されている場合は、そのRNAの分子内アニーリングにより、また2本以上のRNA分子により構成されている場合は、それらのRNAをアニールさせることにより、本発明の複合体を構築することができる。これらのRNAは適宜合成することができる。例えば、RNAの化学合成により所望のRNAを製造することができる。
 少なくとも1つのMBSをコードする核酸は、2つ以上のMBSを含んでもよく、また二本鎖構造を形成し得る1対またはそれ以上の相補配列のセットを一続きの配列中に含んでいてもよい。例えば、当該核酸としては少なくとも1つの二本鎖構造を形成する1対の相補配列と、該一対の相補配列の両端にそれぞれ少なくとも1つのMBSを含む核酸が例示できる。このような核酸は、具体的には、2つのMBSの間に、ステムを形成し得る一対の相補配列を含んでいる核酸である。このステムは、上記第二の二本鎖構造に相当する。あるいは第二の二本鎖構造に代えてG-quadruplexを形成する配列を含んでもよい。
 また当該核酸は、2つのMBSの間に二本鎖構造を形成し得る1対の相補配列を含む構造単位を、2個以上含んでいてもよい。その構造単位は複数入れ子状に含むことができ、1対のMBSの間にある二本鎖構造を形成し得る1対の相補配列の間に、さらに1対のMBSとその間に二本鎖構造を形成し得る1対の相補配列を含む配列を含むことができる(図3の#15や#16等)。複数含まれているMBSの配列は同一であっても異なっていてもよい。
 このような核酸を上記の1対の相補配列の間に挿入すると、第一の二本鎖構造を形成する一対の相補配列の間に、MBS-第二の二本鎖構造を形成する配列-MBSの構造を持つ配列が挿入された構造を持つ核酸が得られる。具体的には、例えばMBS-第二の二本鎖構造を形成する一対の相補配列-MBSの構造を持つ配列が挿入された構造を持つ核酸である。2つの二本鎖構造とその間の一対の対向する一本鎖(それぞれにMBSを含む)からなる核酸は、コンパクトでかつ十分なmiRNA阻害活性を示す。
 二本鎖構造を形成し得る1対の相補配列とMBSは、適宜リンカーやスペーサーを介して連結させることができる。リンカーやスペーサーの長さは明細書に記載した通りである。また、相補配列はリンカーやスペーサーを介して連結してよく、二本鎖を形成したときに、当該リンカーやスペーサーはループとなり、二本鎖を合わせてステムループを形成する。ループの長さも適宜調整してよく、詳細は明細書に記載した通りである。あるいは二本鎖に代えてG-quadruplexを形成する配列を適宜用いることができる。
 本発明の1つの局面では、5'-CAGUGUU-3'および5'-CAGUAUU-3'の配列を含み、少なくとも1つの架橋核酸(BNA)を含む核酸分子が提供される。本発明の1つの局面では、2つのmiRNA結合配列を含む核酸分子であって、一方のmiRNA結合配列が5'-CAGUGUU-3'または5'-CAGUAUU-3'を含み、かつ、他方のmiRNA結合配列が5'-CAGUGUU-3'または5'-CAGUAUU-3'を含み、少なくとも1つの架橋核酸(BNA)を含む核酸分子が提供される。本発明の1つの実施形態では、2つのmiRNA結合配列を含む核酸分子であって、一方のmiRNA結合配列が5'-CAGUGUU-3'を含み、かつ、他方のmiRNA結合配列が5'-CAGUAUU-3'を含み、少なくとも1つの架橋核酸(BNA)を含む核酸分子が提供される。
 本発明の1つの実施形態では、配列番号1の配列を含むmiRNA結合配列と、配列番号2の配列を含むmiRNA結合配列とを含む、核酸分子が提供される。本発明のさらなる実施形態は、配列番号9の配列と、配列番号10の配列とを含む、核酸分子である。
 本発明で使用されるBNAは、本発明の核酸分子またはmiRNA阻害複合体において、任意の位置に任意の数含まれ得る。例えば、1つの核酸分子またはmiRNA阻害複合体において、1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19または20個あるいはそれより多くのBNAが含まれ得る。上述のように、1つのBNAを含むだけであっても効果が発揮され得る。BNAは、MBSおよび/または二本鎖構造に含まれ得、MBSまたは二本鎖構造のいずれかに含まれるだけでも血清中安定性およびmiRNA阻害能の向上を期待することができる。特に好ましい実施形態では、BNAは、MBSおよび二本鎖構造の両方に含まれる。例えば、図10に示されるような位置(図中の小文字の部分)にBNA化を施した核酸分子により、成功裡にmiR-200Cを抑制することができ、これは、miR21などのmiR-200C以外のmiRNAでも同様の抑制効果がみられている。
 (miRNAの阻害)
 本発明においては、上述のものを含めた本明細書に記載される核酸分子を含む組成物またはそれを用いる方法が提供される。好ましい実施形態では、組成物は、腫瘍の予防または処置のためのものであり、かかる組成物を用いる腫瘍の予防または処置のための方法もまた提供される。
 1つの実施形態において、本発明が対象とする腫瘍はカルシノーマである。別の実施形態において、本発明が対象とする腫瘍は大腸癌、肺癌、または乳癌である。本発明の組成物は、腫瘍の上皮間葉転換を促進するためにも使用することができ、そのような用途のための組成物およびそのような使用の方法も本開示において提供される。本発明の1つの局面は、miRNA阻害複合体を含む組成物であって、miRNA阻害複合体が、核酸送達のためのキャリアに含まれる形態で存在する、組成物に関する。適切なキャリアの使用は、miRNA阻害複合体の血清中安定性や、標的組織への送達を促進し、処置または予防への使用について特に有用なものとする。
 本発明者らにより、標的miRNAに対する特異的で強力なインヒビターであるTuD(Tough Decoy)RNAに関してテトラサイクリン誘導性発現システムを組み合わせ、このシステムを適用してヒト大腸癌細胞株におけるmiR-200cおよびmiR-141の発現をTuDの発現により同時に抑制したところ、上皮間葉転換(EMT)の誘導を含む癌細胞のサブポピュレーションの顕著な変化が誘導されることが見いだされた。
 miR-200ファミリーの阻害が腫瘍細胞に及ぼす影響について、トリプルネガティブ乳癌細胞の細胞集団に含まれる特定のサブポピュレーションを細胞表面マーカーを基に同定すると共に、それらの細胞がサブポピュレーション間を相互変換する様式を観察したところ、意外なことに、上皮形質を持ったサブポピュレーションが、有意に高い造腫瘍活性を示すことが見出されている。
 さらにこれらの腫瘍細胞においてmiR-200ファミリーの複数のメンバーを同時に阻害すると、造腫瘍活性は有意に低下することが判明している。また、ESA(-)の腫瘍細胞のサブポピュレーションにおいてmiR-200ファミリーメンバーの複数を同時阻害すると、もともと低かった造腫瘍活性は全く観察されなくなる。
 これらの結果は、miR-200ファミリーメンバーは造腫瘍活性、特に原発巣における原発腫瘍の増殖に深く関与しており、miR-200ファミリーメンバーを有効に阻害することによって、極めて効率的に造腫瘍活性を低下させることが可能であることを示している。従来、腫瘍細胞の中でも、より未分化な状態に近い間葉系(mesenchymal)の表現型を持つ細胞の方が造腫瘍活性は高いと考えられてきた。しかし本発明者らにより、上皮系(epithelial)の表現型を持つ細胞が造腫瘍活性に強く貢献することが明らかにされており、また、腫瘍におけるEMTを促進するmiR-200ファミリーメンバーを阻害して腫瘍細胞のポピュレーションの平衡を上皮系から間葉系に傾けることによって腫瘍増殖を抑制できることが実証されている。すなわち本発明の一部の局面は、miR-200ファミリーメンバーの阻害を通して原発性腫瘍の腫瘍増殖を効果的に抑制し、また既に形成された腫瘍の縮退をも実現できることを実証する。特に本発明により、癌幹細胞を標的として腫瘍を抑制するだけではなく、非癌幹細胞から癌幹細胞が生じるのを防ぐことを一括して行うことが可能となる。
 また、本発明は、miR-200ファミリーメンバー以外にも、以下に記載されるもののようなmiRNAを標的とし、阻害することが可能である。かかるmiRNAの阻害により、標的とするmiRNAに応じて、腫瘍増殖の抑制、腫瘍の縮退、非癌幹細胞からの癌幹細胞の発生の防止等を含めた所望の処置を実現できると考えられる。本発明の阻害複合体は、本明細書に例示される任意のmiRNAに対して結合するように設計され得る。
 miR-205はmiR-200ファミリーと同様にZeb1及びZeb2を抑制することにより、EMTを抑制している(Nature Cell Biology volume 10, pages 593-601 (2008))。また、miR-205は肺がんで発現上昇しており、診断マーカーとなりうることが報告されている(Biomed Pharmacother. 2017 Jul;91:823-830.)。そのため、miR-205についてはmiR-200ファミリーメンバーと同様に標的とすることができると考えられる。
 miR-21は、大腸がん、肺がん、乳がん、膵がん、肝がん、グリオブラストーマ、皮膚がん、甲状腺がん、子宮頸がん、血球系がんといった様々な癌種で発現が異常亢進している(DOI: 10.1111/j.1582-4934.2008.00556.x)。肝がん細胞においてmiR-21を阻害すると、細胞増殖・移動能・浸潤能が抑制される。グリオブラストーマ細胞においてmiR-21を阻害すると、アポトーシスが誘導される。乳がん、大腸がん、肺がん、膵がん、前立腺がん、肝がん、子宮がん、グリオーマ、頭頸部がん、胃がん、膀胱がんにおいてmiR-21は化学療法抵抗性に寄与している(Biomed Rep. 2016 Oct; 5(4): 395-402.)。
 miR-17-92クラスターのmiRNAとしては、miR-17,miR-18a,miR-19a,miR-20a,miR-19b-1,miR-92a-1が挙げられ、これらは13番染色体にクラスターとして存在している。miR-17-92クラスターのmiRNAは、肺がん、乳がん、大腸がん、膵がん、前立腺がん、甲状腺がん、白血病で発現亢進が見られる(Front Med (Lausanne). 2015; 2: 64)。
 miR-155は、グリオーマ、肺がん、大腸がん、肝がん、乳がん、骨肉種、口腔扁平上皮癌、リンパ腫でがんの悪性形質に寄与している。また、miR-155は肺がん、大腸がん、前立腺がん、乳がん等における抗がん化学療法や放射線治療への抵抗性に寄与している(Bayraktar, R. & Van Roosbroeck, K. Cancer Metastasis Rev (2018) 37: 33.)。その他、miR-155について、大腸がん、肺がん、乳がんで発現が異常亢進していること(Proc Natl Acad Sci U S A 2006;103:2257-61.)、乳がん細胞株MDA-MB-231にanti-miR-155を投与し、マウスに移植すると腫瘍形成の抑制が見られること(DOI: 10.1158/0008-5472.CAN-09-4250)、miR-155を阻害剤で抑制した肺がん細胞を移植すると腫瘍成長が阻害され、さらにmiR-21の阻害と併用すると阻害効果が増強されること(Oncotarget. 2016 Dec 20; 7(51): 84508-84519.)が報告されている。
 miR-133aについて、骨肉種においてmiR-133aが高発現していると予後が悪く、また骨肉種担癌マウスにおいてmiR-133a阻害と化学療法を併用すると、肺転移が抑制されoverall survivalが延長されることが報告されている(Stem Cells. 2014 Apr;32(4):959-73.)。
 miR-196bについて、膵がんにおいてmiR-196b高発現群は予後が悪いことが報告されている(Carcinogenesis. 2017 Apr 1;38(4):425-431.)。
 miR-197について、miR-197を阻害した肺がん細胞株は、マウスに移植後の腫瘍成長が抑制されることが報告されている(Cell Death and Differentiation (2014) 21, 774-782)。
 miR-125bは、胃がんにおいて分子標的治療薬抵抗性に寄与しており、高発現群で予後が悪いことが報告されている(Exp Ther Med. 2017 Jul; 14(1): 657-663.)。
 miR-135bは大腸がんで高発現しており、高発現群の予後が悪いこと(Cancer Cell. 2014 Apr 14; 25(4): 469-483.)、さらに、miR-135bは肺がんにおいて高発現群の予後が悪く、肺がん細胞株移植マウスに阻害剤を投与すると腫瘍成長が抑制されること(Nat Commun. 2013;4:1877. doi: 10.1038/ncomms2876.)が報告されている。
 miR-106aは肺がんで発現が高く、高発現群の予後が悪いこと、また、肺がん細胞においてmiR-106aを阻害すると細胞増殖が抑制されること(Int J Clin Exp Pathol. 2015 Apr 1;8(4):3827-34.)、さらに、大腸がんにおいてmiR-106a高発現群は予後が悪いこと(Med Mol Morphol. 2017 Jun;50(2):76-85.)が報告されている。
 miR-10a/10bについて、肺がん細胞株のmiR-10aを阻害すると細胞増殖が抑制されること(Oncotarget. 2015 Oct 6;6(30):30239-50.)、および肺がんにおいてmiR-10b高発現群は予後が悪いこと(Clin Transl Oncol (2015) 17:209-214)が報告されている。
 miR-146aは骨肉種において発現上昇しており、高発現群の予後が悪いこと、miR-146aを阻害した骨肉種はマウスでの腫瘍成長が抑制されること(Oncotarget. 2017; 8:74276-74286.)が報告されている。
 miR-182について、大腸がん細胞においてmiR-182を阻害すると細胞増殖、コロニー形成能が抑制されること(Oncol Rep. 2015 May;33(5):2592-8.)が報告されている。
 miR-96について、前立腺がん細胞においてmiR-96を阻害すると細胞増殖が抑制されること(Oncogene. 2015 Sep 3;34(36):4767-76.)が報告されている。
 本発明の好ましい実施形態では、5'-AACACUG-3'をシード配列として含む少なくとも1つのmiRNA、および、5'-AAUACUG-3'をシード配列として含む少なくとも1つのmiRNAの両者を阻害することを特徴とし、これにより、腫瘍が抑制される。ここで腫瘍の抑制とは、腫瘍細胞の造腫瘍活性(tumorigenicity)の抑制、腫瘍の形成もしくは増殖の抑制、または腫瘍の縮退のいずれであってよい。これらは、例えば腫瘍細胞を個体に注入した場合のインビボにおける腫瘍塊形成(例えばその頻度)や、その大きさ、または成長速度などを指標として測定することができる。miRNA結合配列が、5'-CAGUGUU-3'および/または5'-CAGUAUU-3'を含む。これにより、5'-AACACUG-3'をシード配列として含む少なくとも1つのmiRNA、または5'-AAUACUG-3'をシード配列として含む少なくとも1つのmiRNAを阻害できる。miRNA阻害複合体が2つのmiRNA結合配列を含み、一方のmiRNA結合配列が5'-CAGUGUU-3'を含み、かつ、他方のmiRNA結合配列が5'-CAGUAUU-3'を含む。これにより、5'-AACACUG-3'をシード配列として含む少なくとも1つのmiRNA、および、5'-AAUACUG-3'をシード配列として含む少なくとも1つのmiRNAの両者を阻害することに有利となる。
 また本発明による腫瘍抑制は、癌幹細胞を標的とするだけではなく、非癌幹細胞から癌幹細胞が生じるのを防ぐことを一括して行えることにも特徴がある。すなわち本発明における腫瘍の抑制には、(i) 癌幹細胞の腫瘍形成を抑制すること、(ii) 非癌幹細胞から癌幹細胞が生じることを抑制すること、の両方を達成することが含まれる。具体的には、本発明による腫瘍抑制は、腫瘍の細胞集団の中でも、造腫瘍活性が相対的に上昇したサブポピュレーション(亜集団)による腫瘍形成を抑制するだけでなく、造腫瘍活性が相対的に上昇したサブポピュレーションに属する細胞を、造腫瘍活性が相対的に低いサブポピュレーションの細胞に変換する作用も発揮し、また、造腫瘍活性が相対的に低いサブポピュレーションに属する細胞が、造腫瘍活性が相対的に上昇した細胞に変換することを抑制する。これにより、本発明の腫瘍抑制は、既に生じた造腫瘍活性が高い癌細胞(例えば癌幹細胞)に対して、その造腫瘍活性を抑制するのみならず、それらの癌細胞を、より造腫瘍活性の低い癌細胞(非癌幹細胞)に変換し、また造腫瘍活性の低い癌細胞から造腫瘍活性が高い癌細胞へと変換することも抑制できる。このように、癌幹細胞を標的とするだけではなく、非癌幹細胞から癌幹細胞が生じるのを防ぐことを一括して行うことが可能な本発明の腫瘍抑制は、臨床適用において極めて高い有用性を持っている。また癌の発症前後の初期ステージにおいては、本発明の腫瘍抑制により予防的に腫瘍形成を抑制することも期待できる。すなわち本発明において「腫瘍の抑制」は、その好ましい態様において、該腫瘍の抑制が、腫瘍の細胞集団において造腫瘍活性が上昇した腫瘍細胞サブポピュレーションの腫瘍形成の抑制、および該造腫瘍活性が上昇した腫瘍細胞サブポピュレーションの生成の抑制の両方が達成される抑制である。
 腫瘍の細胞集団のサブポピュレーションへの分画は、所望のマーカー等を用いて行うことができる。例えば、上皮マーカーを指標にサブポピュレーションに分画することができる。上皮マーカーとしては、例えばESA(epithelial specific antigen)、CDH1(Cadherin-1)、CDH3(Cadherin-3)、およびESRP1(epithelial splicing regulatory protein 1)等から任意に選択してよく、より好ましくはESAが挙げられるが、これらに限定されるものではない。また、これらのマーカーを組み合わせて用いてもよい。上皮マーカー陽性のサブポピュレーションが陰性のサブポピュレーションよりも造腫瘍活性が相対的に高い場合は、当該陽性のサブポピュレーションは造腫瘍活性が相対的に上昇したサブポピュレーション(造腫瘍活性が高い細胞群)であり、当該陰性のサブポピュレーションは、造腫瘍活性が相対的に低いサブポピュレーション(造腫瘍活性が低い細胞群)である。
 またシード配列とは、miRNAの5'末端から数えて2番目から8番目の塩基の配列を言う。5'-AACACUG-3' をシード配列として含むmiRNAとしては、miR-200a(5'-UAACACUGUCUGGUAACGAUGU-3'、配列番号13)およびmiR-141(5'-UAACACUGUCUGGUAAAGAUGG-3'、配列番号14)が含まれる。また5'-AAUACUG-3'をシード配列として含むmiRNAとしては、miR-200b(5'-UAAUACUGCCUGGUAAUGAUGA-3'、配列番号15)、miR-200c(5'-UAAUACUGCCGGGUAAUGAUGGA-3'、配列番号16)、およびmiR-429(5'-UAAUACUGUCUGGUAAAACCGU-3'、配列番号17)が含まれる。
 5'-AAUACUG-3'をシード配列として含むmiR-200cに対する阻害剤のみでの阻害では、5'-AACACUG-3'をシード配列として含むmiR-141の活性はほとんど抑えることはできない。これは、両者のシード配列に存在する1塩基の違いにより、一方のmiRNAに対する阻害剤は他方のmiRNAを有効に阻害することはできないことを示している。それぞれのmiRNAを阻害する2種のmiRNAを組み合わせることによって、本発明において示された顕著な抗腫瘍活性を発揮させることが可能となる。
 本発明のさらなる実施形態では、5'-AGCUUAU-3'をシード配列として含む少なくとも1つのmiRNAを阻害することを特徴とし、これにより、腫瘍が抑制される。かかるmiRNAとしては、miR-21(5'-UAGCUUAUCAGACUGAUGUUGA-3'、配列番号41)が挙げられる。
 上記の本発明の方法は、好ましくは、少なくともmiR-200cおよびmiR-141を阻害する。阻害した細胞における各miRNAの活性は、非阻害時の各miRNAの活性と比較して、例えば1/3以下、好ましくは、例えば1/4以下、1/5以下、1/6以下、1/7以下、1/8以下、または1/9以下である。より好ましくは、例えば10%以下、8%以下、5%以下、または3%以下である。より好ましくは、本発明の方法は、miR-200a、miR-200b、miR-200c、miR-141およびmiR-429のすべてを阻害する。各miRNAの活性は、非阻害時の各miRNAの活性と比較して、例えば1/3以下、好ましくは、例えば1/4以下、1/5以下、1/6以下、1/7以下、1/8以下、または1/9以下である。より好ましくは、例えば10%以下、8%以下、5%以下、または3%以下である。好ましくは、本発明の方法は、miR-200ファミリーのすべてのメンバーを阻害する。活性の測定は、例えば、ルシフェラーゼを用いたレポーターアッセイ(例えば、Dual-Luciferase(登録商標) Reporter Assay System(Promega)を用いるアッセイ)などの、当業者に公知のアッセイにより実施することができる。
 miRNAの阻害について特に有用なmiRNA阻害複合体が本明細書の他の箇所に開示される。本発明においては、miRNA阻害剤として特にS-TuDを好適に用いることができる。本発明においてS-TuDとは、それぞれ少なくとも1つのmiRNA結合配列を含む一対の鎖を持ち、一対の多重鎖(例えば二本鎖および/または四本鎖)に挟まれるように、該miRNA結合配列を含む一対の鎖の両端が、一対の多重鎖のそれぞれの片端に結合している構造からなるmiRNA阻害剤を言う。当該miRNA阻害剤は、RNAで構成されていてもよく、また、その他の核酸や核酸類縁体、またはそれらの組み合わせで構成されていてもよい。
 また、5'-AACACUG-3'をシード配列として含む少なくとも1つのmiRNAの阻害と、5'-AAUACUG-3'をシード配列として含む少なくとも1つのmiRNAの阻害は、それぞれ異なる阻害剤、あるいは1つの阻害剤で両者を阻害する場合であっても、5'-AACACUG-3'をシード配列として含む少なくとも1つのmiRNAを阻害する部位、および5'-AAUACUG-3'をシード配列として含む少なくとも1つのmiRNAを阻害する部位を別々に持ち、これらの2つの異なる阻害部位により阻害されることが好ましい。このようなmiRNA阻害剤を、本発明においては、5'-AACACUG-3'をシード配列として含む少なくとも1つのmiRNA(第1のmiRNA)、および、5'-AAUACUG-3'をシード配列として含む少なくとも1つのmiRNA(第2のmiRNA)の両者を異なる阻害部位を用いて阻害すると呼ぶ。この場合、第1のmiRNAを阻害するmiRNA阻害剤の阻害部分は、第2のmiRNAを阻害するmiRNA阻害剤の阻害部分とは異なっている。具体的には、例えば第1のmiRNAを阻害するmiRNA阻害剤の阻害部分は、第1のmiRNAのシード配列と相補的な配列を含んでおり、第2のmiRNAを阻害するmiRNA阻害剤の阻害部分は、第2のmiRNAのシード配列と相補的な配列を含んでいる。そのような阻害の例としては、例えば、第1のmiRNAのシード配列と相補的な配列を含むmiRNA阻害剤分子と、第2のmiRNAのシード配列と相補的な配列を含むmiRNA阻害剤分子とを用いてmiRNA阻害を行うことが挙げられる。また別の例としては、第1のmiRNAのシード配列と相補的な配列を含むmiRNA阻害部分と、第2のmiRNAのシード配列と相補的な配列を含むmiRNA阻害部分とを同一分子内に含むmiRNA阻害剤を用いてmiRNA阻害を行うことが挙げられる。
 このように、2種以上のmiRNA阻害部位を有するmiRNA阻害剤であって、それぞれの部位が、miRNAの異なる部分を標的とするように(例えば異なるmiRNAを標的とするように)設計されているmiRNA阻害剤を、本発明においてハイブリッドmiRNA阻害剤と呼ぶ。本発明のmiRNA阻害剤は、好ましくは5'-AACACUG-3'をシード配列として含む少なくとも1つのmiRNAに対する阻害部位と、5'-AAUACUG-3'をシード配列として含む少なくとも1つのmiRNAに対する阻害部位とを有するハイブリッドmiRNA阻害剤である。
 本発明において抑制の対象となる癌に特に制限はないが、例えばカルシノーマなど、上皮由来または上皮形質を少なくとも部分的に有する癌が好ましい。本発明において抑制の対象となる癌は、好ましくは上皮マーカーを発現する細胞のポピュレーションを少なくとも含む癌であり、より好ましくは、上皮マーカーを発現する細胞のポピュレーションを主要な細胞のポピュレーションとして含む癌(すなわちいずれの上皮マーカーも発現しない細胞のポピュレーションが半分未満である癌)である。上皮マーカーとしては、例えばESA(epithelial specific antigen)、CDH1(Cadherin-1)、CDH3(Cadherin-3)、およびESRP1(epithelial splicing regulatory protein 1)等から任意に選択してよく、より好ましくはESAが挙げられるが、これらに限定されるものではない。また、これらのマーカーを組み合わせて用いてもよい。このような癌は、いずれかの上皮マーカー(例えばESA)を発現する細胞(例えばESA+細胞)を、0.3%以上、好ましくは0.5%以上、1%以上、2%以上、3%以上、5%以上、7%以上、10%以上、15%以上、20%以上、25%以上、30%以上、40%以上、50%以上、60%以上、70%以上、80%以上、または90%以上含む。本発明は、腫瘍細胞において上皮マーカー陽性細胞が含まれることを確認する工程を含む、癌の検査方法を提供する。また本発明において抑制の対象となる癌は、好ましくは5'-AACACUG-3'をシード配列として含む少なくとも1つのmiRNA、および、5'-AAUACUG-3'をシード配列として含む少なくとも1つのmiRNAの両者を阻害することにより上皮間葉転換が促進および/または間葉上皮転換が抑制される。また本発明において抑制の対象となる癌は、好ましくは5'-AACACUG-3'をシード配列として含む少なくとも1つのmiRNA、および、5'-AAUACUG-3'をシード配列として含む少なくとも1つのmiRNAの両者を発現させることにより間葉上皮転換が促進および/または上皮間葉転換が抑制される。また好ましくは、本発明において抑制の対象となる癌は、miR-200cおよびmiR-141の阻害により上皮間葉転換が促進および/または間葉上皮転換が抑制される。また本発明において抑制の対象となる癌は、好ましくはmiR-200cおよびmiR-141の両者を発現させることにより間葉上皮転換が促進および/または上皮間葉転換が抑制される。
 また必須ではないが、腫瘍抑制に先立って、腫瘍細胞において上皮マーカーを発現する細胞のポピュレーションを少なくとも含むことを確認してもよい。すなわち本発明の方法は、その一態様において、腫瘍抑制に先立って、腫瘍細胞において上皮マーカーを発現する細胞のポピュレーションを少なくとも含むことを確認する工程を含む方法が含まれる。例えば本発明の方法は、その一態様において、腫瘍抑制に先立って、腫瘍細胞において上皮マーカーを発現する細胞のポピュレーションを少なくとも含むことを確認する工程、および該促進されることが確認された腫瘍を抑制する方法が含まれる。また必須ではないが、腫瘍抑制に先立って、腫瘍細胞において当該miRNAの阻害により上皮間葉転換が促進されることを確認してもよい。すなわち本発明の方法は、その一態様において、腫瘍抑制に先立って、腫瘍細胞において当該miRNAの阻害により上皮間葉転換が促進されることを確認する工程を含む方法が含まれる。例えば本発明の方法は、その一態様において、腫瘍抑制に先立って、腫瘍細胞において当該miRNAの阻害により上皮間葉転換が促進されることを確認する工程、および該促進されることが確認された腫瘍を抑制する方法が含まれる。しかし本発明はそのような方法に限定されないことは言うまでもない。また本発明は、腫瘍細胞において当該miRNAの阻害により上皮間葉転換が促進されることを確認する工程を含む癌の検査方法を提供する。
 また本発明において抑制の対象となる癌は、例えば上皮形質を有するサブポピュレーション(spE)と間葉形質を有するサブポピュレーション(spM)とを含む癌であってよい。このような癌は、例えば上皮マーカー陽性の細胞のサブポピュレーションと、上皮マーカー陰性(もしくは低発現)または間葉マーカー陽性の細胞のサブポピュレーションとを含む。好ましくは、本発明において抑制の対象となる癌は、上皮マーカーを発現する細胞のサブポピュレーションと上皮マーカー陰性もしくは低発現(または間葉マーカー陽性)細胞のサブポピュレーションとの両方を、それぞれ0.3%以上、好ましくは0.5%以上、1%以上、2%以上、3%以上、5%以上、7%以上、10%以上、15%以上、20%以上、25%以上、または30%以上含む。サブポピュレーションの割合は、採取した癌細胞を直接、あるいは所望の培地中で癌細胞を培養して決定してよく、例えばDMEM培地やHam's F-12培地等を使用できる。適宜、5-10% ウシ胎児血清(FBS)等を加えてアッセイを行うことができる。また、腫瘍抑制に先立って、腫瘍細胞において上皮マーカーを発現する細胞のサブポピュレーションと上皮マーカー陰性もしくは低発現(または間葉マーカー陽性)細胞のサブポピュレーションとの割合を確認してもよいが、本発明はそのような発明に限定されない。
 また、本発明において抑制の対象となる癌は、好ましくは上皮形質を有するサブポピュレーション(spE)に癌幹細胞を含む。癌幹細胞とは、腫瘍様塊形成アッセイにおいて腫瘍様塊形成能を有する細胞、あるいは動物を用いた腫瘍形成実験において、腫瘍を形成する能力を有する細胞を言う。上皮形質を有するサブポピュレーション(spE)に属する癌幹細胞を、上皮形質性癌幹細胞または上皮性癌幹細胞と呼ぶ。癌幹細胞を含むことは、その細胞集団に造腫瘍性があることを確認すればよく、例えば腫瘍様塊の形成を当業者に公知の手順にしたがってアッセイしたり、細胞をマウス等へ移植して腫瘍形成を試験したりすることで確認することができる。
 腫瘍抑制に先立って、対象とする腫瘍が上皮形質性癌幹細胞を含むかを確認してもよい。すなわち本発明の方法は、その一態様において、腫瘍抑制に先立って、対象とする癌に上皮形質性癌幹細胞を含むことを確認する工程を含む方法が含まれる。例えば本発明の方法は、その一態様において、腫瘍抑制に先立って、対象とする癌に上皮形質性癌幹細胞を含むことを確認する工程、および該確認された癌を、本発明の上記方法に従って抑制する方法が含まれる。
 また本発明において抑制の対象となる癌は、上皮形質を有するサブポピュレーション(spE)の造腫瘍性が、残りのポピュレーション(例えば間葉形質を有するサブポピュレーション;spM)や癌細胞全体の造腫瘍性よりも高い癌が好ましい。本明細書ではこのような癌を、上皮形質サブポピュレーション造腫瘍性腫瘍(spE造腫瘍性腫瘍)、または、上皮形質造腫瘍性腫瘍と称す。腫瘍形成性は、例えば腫瘍様塊の形成を当業者に公知の手順にしたがってアッセイしたり、細胞をマウス等へ移植し、腫瘍形成の有無または腫瘍サイズを計測したりすることにより測定することができる。例えば腫瘍細胞から上皮形質を有するサブポピュレーション(spE)を分離する。残りのポピュレーション(例えば間葉形質を有するサブポピュレーション;spM)や癌細胞全体を対照群とし、同数の細胞で造腫瘍性のアッセイを実施する。spEの造腫瘍性の方が高い場合、その癌は上皮形質を有するサブポピュレーション(spE)の造腫瘍性が、残りのポピュレーションや癌細胞全体の造腫瘍性よりも高い上皮形質造腫瘍性腫瘍であると判断される。上皮形質を有するサブポピュレーションは、適宜上皮マーカーを用いて分離・同定することができ、上皮マーカーとしては、上述の通り、例えばESA、CDH1、CDH3、およびESRP1等から任意に選択することができる。また本発明は、腫瘍において、上皮形質を有するサブポピュレーション(spE)における造腫瘍性が上皮形質を有しないサブポピュレーションまたは癌細胞全体よりも高いことを確認する工程を含む、癌の検査方法および分類方法にも関する。
 また本発明においては、腫瘍抑制に先立って、対象とする腫瘍において、上皮形質を有するサブポピュレーション(spE)の造腫瘍性が、残りのポピュレーション(例えば間葉形質を有するサブポピュレーション;spM)や癌細胞全体における造腫瘍性よりも高いことを確認してもよい。すなわち本発明の方法は、その一態様において、腫瘍抑制に先立って、対象とする腫瘍において、上皮形質を有するサブポピュレーション(spE)の造腫瘍性が、残りのポピュレーション(例えば間葉形質を有するサブポピュレーション;spM)や癌細胞全体の造腫瘍性よりも高いことを確認する工程を含む方法が含まれる。例えば本発明の方法は、その一態様において、腫瘍抑制に先立って、対象とする腫瘍が、上皮形質を有するサブポピュレーション(spE)の造腫瘍性が、残りのポピュレーション(例えば間葉形質を有するサブポピュレーション;spM)や癌細胞全体の造腫瘍性よりも高いことを確認する工程、および該高いことが確認された腫瘍を本発明の上記方法に従って抑制する方法が含まれる。
 また本発明において抑制の対象となる癌は、好ましくは5'-AACACUG-3' をシード配列として含む少なくとも1つのmiRNAまたは5'-AAUACUG-3'をシード配列として含む少なくとも1つのmiRNAの発現が陽性の癌である。対象となる癌は、5'-AACACUG-3'をシード配列として含む少なくとも1つのmiRNA、および、5'-AAUACUG-3'をシード配列として含む少なくとも1つのmiRNAの両者の発現が陽性の癌であり得る(miR-200の二亜集団陽性腫瘍)。具体的には、このような癌は、miR-200a、miR-141、miR-200b、miR-200cおよびmiR-429の少なくともいずれか1つが少なくとも陽性の癌であり得る。さらに、癌は、miR-200aおよびmiR-141の少なくともいずれか1つ(より好ましくはmiR-141)、ならびに、miR-200b、miR-200cおよびmiR-429の少なくともいずれか1つ(より好ましくはmiR-200c)が少なくとも陽性の癌であり得る。また本発明においては、腫瘍抑制に先立って、対象とする腫瘍が、miR-200の亜集団陽性腫瘍、より好ましくはmiR-200の二亜集団陽性腫瘍であることを確認してもよい。すなわち本発明の方法は、その一態様において、腫瘍抑制に先立って、対象とする腫瘍が、5'-AACACUG-3'をシード配列として含む少なくとも1つのmiRNA、および/または、5'-AAUACUG-3'をシード配列として含む少なくとも1つのmiRNAの発現が陽性であることを確認する工程を含む方法が含まれる。例えば本発明の方法は、その一態様において、腫瘍抑制に先立って、対象とする腫瘍が、5'-AACACUG-3'をシード配列として含む少なくとも1つのmiRNA、および/または、5'-AAUACUG-3'をシード配列として含む少なくとも1つのmiRNAの発現が陽性であることを確認する工程、および該確認された腫瘍を本発明の上記方法に従って抑制する方法が含まれる。
 また本発明において抑制の対象となる癌は、好ましくは5'-AGCUUAU-3'をシード配列として含む少なくとも1つのmiRNAの発現が陽性の癌であってよい。具体的には、このような癌は、miR-21が少なくとも陽性の癌であり得る。また本発明においては、腫瘍抑制に先立って、対象とする腫瘍が、miR-21の亜集団陽性腫瘍であることを確認してもよい。すなわち本発明の方法は、その一態様において、腫瘍抑制に先立って、対象とする腫瘍が、5'-AGCUUAU-3'をシード配列として含む少なくとも1つのmiRNAの発現が陽性であることを確認する工程を含む方法が含まれる。例えば本発明の方法は、その一態様において、腫瘍抑制に先立って、対象とする腫瘍が、5'-AGCUUAU-3'をシード配列として含む少なくとも1つのmiRNAの発現が陽性であることを確認する工程、および該確認さた腫瘍を本発明の上記方法に従って抑制する方法が含まれる。
 また本発明において抑制の対象となる癌は、miR-200ファミリーの2つの染色体座から、好ましくは、miR-200ファミリーの2つの染色体座のそれぞれから、少なくとも1つのmiR-200ファミリーメンバーが発現している癌(miR-200の遺伝子座陽性腫瘍、より好ましくはmiR-200の二遺伝子座陽性腫瘍)が好ましい。具体的には、このような癌は、miR-200a、miR-200b、miR-429、miR-200cおよびmiR-141の少なくともいずれか1つの発現が陽性の癌であり、このような癌は、miR-200a、miR-200bおよびmiR-429の少なくともいずれか1つの発現と、miR-200c およびmiR-141の少なくともいずれか1つの発現とが陽性の癌であり得る。また本発明においては、腫瘍抑制に先立って、対象とする腫瘍が、miR-200の亜集団陽性腫瘍、より好ましくはmiR-200の二遺伝子座陽性腫瘍であることを確認してもよい。すなわち本発明の方法は、その一態様において、腫瘍抑制に先立って、対象とする腫瘍が、miR-200a、miR-200bおよびmiR-429の少なくともいずれか1つ、ならびに/あるいは、miR-200cおよびmiR-141の少なくともいずれか1つが陽性であることを確認する工程を含む方法が含まれる。例えば本発明の方法は、その一態様において、腫瘍抑制に先立って、対象とする腫瘍が、miR-200a、miR-200bおよびmiR-429の少なくともいずれか1つの発現、ならびに/あるいはmiR-200cおよびmiR-141の少なくともいずれか1つの発現が陽性であることを確認する工程、および該確認された腫瘍を本発明の上記方法に従って抑制する方法が含まれる。
 本発明において抑制の対象となる癌は、具体的には、大腸癌、肺癌、および乳癌が含まれる。本発明において抑制の対象となる癌は、特にプロゲステロン受容体(PR)、エストロゲン受容体(ER)、およびHER2のいずれかがネガティブの腫瘍(例えば乳癌など)が挙げられ、より好ましくは、少なくともプロゲステロン受容体(PR)がネガティブの腫瘍(例えば乳癌)、最も好ましくは、エストロゲン受容体、プロゲステロン受容体、およびHER2がすべてネガティブであるトリプルネガティブ乳癌が挙げられる。また本発明において抑制の対象となる癌には、前立腺癌、非小細胞肺癌(NSCLC)、および腎臓癌が含まれるが、これらに限定されるものではない。また本発明において抑制の対象となる癌は、好ましくはヒトの癌である。
 本発明の腫瘍抑制は、例えば腫瘍の発生および増大等の抑制に特に有用であり、中でも、原発性腫瘍に対する抑制に高い効果を発揮する。ここで原発性腫瘍とは、腫瘍が由来する器官または組織と当該腫瘍が存在する器官または組織とが一致することを言う。例えば乳癌であれば、乳房における乳癌の増殖、大腸癌であれば、大腸における大腸癌の増殖、前立腺癌、非小細胞肺癌、および腎臓癌であれば、それぞれ前立腺、肺、および腎臓における各癌の増殖の抑制に、特に本発明は有用である。
 また、例えば原発性腫瘍の増殖・進展は、腫瘍の転移とはメカニズムが異なることが知られている。転移には、原発巣からの癌細胞の離脱と脈管(血管やリンパ管)への浸潤、脈管内での移動、転移臓器の血管内皮への接着、および転移臓器への浸潤などの過程が必要である。また、転移が成立するためには、それらの全ての過程において癌細胞は免疫排除機構から逃れて生存できることが求められる。したがって、転移の抑制はそれらのいずれかのプロセスが阻害されれば達成できるのに対し、原発性腫瘍を抑制するためには、原発性腫瘍の増殖性や生存性、抗アポトーシス活性等が阻害されなければ達成することはできない。
 また本発明は、本発明のmiRNA阻害剤の、腫瘍を抑制するための使用、および、腫瘍を抑制するための剤の製造における使用に関する。すなわち本発明は、5'-AACACUG-3'をシード配列として含む少なくとも1つのmiRNA、および、5'-AAUACUG-3'をシード配列として含む少なくとも1つのmiRNAを単独または組み合わせにおいて阻害する1つまたは複数の阻害剤の、腫瘍の抑制のための使用、および腫瘍を抑制するための剤の製造における使用に関する。また本発明は、腫瘍を抑制するために用いられる、当該miRNA阻害剤に関する。
 より具体的には、本発明は、5'-AACACUG-3' をシード配列として含む少なくとも1つのmiRNA、および、5'-AAUACUG-3' をシード配列として含む少なくとも1つのmiRNAを、単独または組み合わせにおいて阻害する1つまたは複数のmiRNA阻害剤を投与して腫瘍を抑制するための剤の製造における、該miRNA阻害剤の使用に関する。また本発明は、5'-AACACUG-3'をシード配列として含む少なくとも1つのmiRNA、および、5'-AAUACUG-3'をシード配列として含む少なくとも1つのmiRNAを、単独または組み合わせにおいて阻害する1つまたは複数のmiRNA阻害剤を投与して腫瘍細胞の上皮間葉転換を促進、および/または、間葉上皮転換を抑制するための剤の製造における、該miRNA阻害剤の使用に関する。当該単独または組み合わせにおいては、miR-200cおよびmiR-141が少なくとも阻害されることが好ましく、より好ましくは、miR-200a、miR-200b、miR-200c、miR-141およびmiR-429からなるmiR-200ファミリーメンバーのすべてが阻害される。ここでmiRNAの阻害とは、好ましくは標的となるmiRNAに阻害剤が結合(相互作用)することにより直接阻害されることを言う。すなわち本発明においては、miRNA阻害剤はmiR-200cおよびmiR-141に結合(相互作用)することにより直接阻害することが好ましく、miR-200a、miR-200b、miR-200c、miR-141およびmiR-429からなるmiR-200ファミリーメンバーのすべてにmiRNA阻害剤が相互作用することにより直接阻害することがより好ましい。
 (医薬)
 別の局面において、本発明は、本発明の複合体を含む医薬を提供する。
 1つの実施形態では、本明細書で使用されるmiRNA阻害複合体、または該複合体を構成するRNA(ここでRNAとしては、天然のRNAおよび類縁体を含む)は、miRNAを阻害するための組成物とすることができる。本発明の組成物は、標的miRNAを特異的かつ効率的に阻害できるので、miRNAの阻害を介した遺伝子の機能制御に有用である。本発明の組成物は、必要に応じて薬理学的に許容される所望の担体または媒体と組み合わせることができる。それらには、通常核酸の懸濁に用いられる所望の溶液が挙げられ、例えば蒸留水、リン酸緩衝生理食塩水(PBS)、塩化ナトリウム溶液、リンゲル溶液、培養液等が例示できる。また植物油、懸濁剤、界面活性剤、安定剤、殺生物剤等が含有されていてもよい。また保存剤またはその他の添加剤を添加することができる。また本発明の組成物は、バイオポリマーなどの有機物、ハイドロキシアパタイトなどの無機物、具体的にはコラーゲンマトリックス、ポリ乳酸ポリマーまたはコポリマー、ポリエチレングリコールポリマーまたはコポリマーおよびその化学的誘導体などを担体として組み合わせることもできる。本発明の組成物は、所望の試薬として、または医薬組成物として使用できる。また本発明は、本発明の組成物、本明細書で使用されるmiRNA阻害複合体、または該複合体を構成するRNAまたはその類縁体の、miRNAを阻害するための使用を提供する。また本発明は、それらのいずれかを含むmiRNA阻害剤を提供する。
 さらなる局面において、本発明は、有効量の本発明の複合体またはそれを含む医薬をそれを必要とする被験体に投与する工程を包含する、疾患または障害を処置する方法を提供する。本発明は、限定されないが、例えば、すでに臨床開発が進んでいるHCV治療薬や腎臓の線維化治療剤としての利用等に応用することができる。
 本発明の医薬は、それ自体を投与してもよいし、または適当な医薬組成物として投与してもよい。投与に用いられる医薬組成物としては、本発明の医薬と薬理学的に許容され得る担体、希釈剤もしくは賦形剤とを含むものであってよい。このような医薬組成物は、経口または非経口投与に適する剤形として提供される。
 非経口投与のための組成物としては、例えば、注射剤、坐剤等が用いられ、注射剤は静脈注射剤、皮下注射剤、皮内注射剤、筋肉注射剤、点滴注射剤等の剤形を包含しても良い。このような注射剤は、公知の方法に従って調製できる。注射剤の調製方法としては、例えば、上記本発明の核酸を通常注射剤に用いられる無菌の水性液、または油性液に溶解、懸濁または乳化することによって調製できる。注射用の水性液としては、例えば、生理食塩水、ブドウ糖やその他の補助薬を含む等張液等が用いられ、適当な溶解補助剤、例えば、アルコール(例、エタノール)、ポリアルコール(例、プロピレングリコール、ポリエチレングリコール)、非イオン界面活性剤〔例、ポリソルベート80、HCO-50(polyoxyethylene(50mol)adduct of hydrogenated castoroil)〕等と併用してもよい。油性液としては、例えば、ゴマ油、大豆油等が用いられ、溶解補助剤として安息香酸ベンジル、ベンジルアルコール等を併用してもよい。調製された注射液は、適当なアンプルに充填されることが好ましい。直腸投与に用いられる坐剤は、上記核酸を通常の坐薬用基剤に混合することによって調製されてもよい。
 経口投与のための組成物としては、固体または液体の剤形、具体的には錠剤(糖衣錠、フィルムコーティング錠を含む)、丸剤、顆粒剤、散剤、カプセル剤(ソフトカプセル剤を含む)、シロップ剤、乳剤、懸濁剤等が挙げられる。このような組成物は公知の方法によって製造され、製剤分野において通常用いられる担体、希釈剤もしくは賦形剤を含有していても良い。錠剤用の担体、賦形剤としては、例えば、乳糖、でんぷん、蔗糖、ステアリン酸マグネシウムが用いられる。
 上記の非経口用または経口用医薬組成物は、活性成分の投与量に適合するような投薬単位の剤形に調製されることが好都合である。このような投薬単位の剤形としては、例えば、錠剤、丸剤、カプセル剤、注射剤(アンプル)、坐剤が挙げられる。
 本発明の医薬は低毒性であり、そのまま液剤として、または適当な剤型の医薬組成物として、ヒトまたは哺乳動物(例、ラット、ウサギ、ヒツジ、ブタ、ウシ、ネコ、イヌ、サルなど)に対して経口的または非経口的(例、血管内投与、皮下投与など)に投与することができる。
 細胞への導入はin vitro、ex vivoまたはin vivoで行うことができる。細胞を介して投与する場合は、適当な培養細胞または接種対象動物から採取した細胞などに導入する。核酸の導入としては、リン酸カルシウム共沈殿法、リポフェクション、DEAEデキストラン法、注射針等により直接DNA溶液を組織に注入する方法、ジーンガンによる導入などが挙げられる。投与量は、疾患、患者の体重、年齢、性別、症状、投与目的、投与組成物の形態、投与方法、導入遺伝子等により異なるが、投与対象動物、投与部位、投与回数などに応じて適宜調整してよく、当業者であれば適宜決定することが可能である。投与経路は適宜選択することができる。投与対象は、好ましくは哺乳動物(ヒトおよび非ヒト哺乳類を含む)である。具体的には、ヒト、サル等の非ヒト霊長類、マウス、ラットなどのげっ歯類、ウサギ、ヤギ、ヒツジ、ブタ、ウシ、イヌ、ネコ、およびその他の哺乳動物が含まれる。
 (DDS)
 本発明の1つの局面では、本明細書で使用されるmiRNA阻害複合体、または該複合体を構成するRNAを、核酸送達のためのキャリアと組み合わせて含む組成物が提供される。核酸送達のためのキャリアは、核酸送達のための薬物送達システム(DDS)とも称する。適切なキャリアの使用は、miRNA阻害複合体の血清中安定性や、標的組織への送達を促進し、処置または予防への使用について特に有用なものとする。
 1つの実施形態では、RNAまたはその類縁体を含むmiRNA阻害複合体と、核酸送達のためのキャリアとを含む組成物が提供される。かかる組成物は、医薬組成物であってよい。また、そのような組成物は、miRNA阻害複合体を所望の部位に送達するために適切であり、かかる用途のためのものであり得る。
 適切なキャリアの例としては、脂質ナノ粒子(LNP)、カチオン性リポソーム、非カチオン性リポソーム、カチオン性ポリマー、非カチオン性ポリマー、βグルカン、アテロコラーゲン、PLGAナノ粒子、界面活性剤ペプチドおよびスーパーアパタイトなどが挙げられる。
 脂質ナノ粒子(LNP)は、一般的に、イオン化アミノ脂質、ヘルパー脂質、PEG脂質から構成され、脂質を含むエタノール溶液と核酸分子を含む酸性バッファーとを混合することで形成することができる。脂質ナノ粒子の内部の脂質コアに、siRNAなどの核酸分子を充填することができる。
 リポソームは、脂質二重膜を持ち、内部に水相を保持している。内部の水相にsiRNAなどの核酸分子を充填することができる。カチオン性リポソームは、核酸分子のリン酸基の負電荷と静電的に相互作用するため、核酸分子の安定化において好ましい。一方、非カチオン性リポソームは、生体内での動態において、非特異的な吸着を防ぐことができる点で有利であり得る。
 カチオン性ポリマーは、例えば、4級アンモニウム塩基を有するアクリレート、メタクリレート、アクリルアミド等のポリマーまたはコポリマー、ジアリルジメチルアンモニウムクロライドのポリマーまたはコポリマー、ポリ(ビニルベンジルトリメチルアンモニウムクロライド)、ポリアミドポリアミン・エピクロルヒドリン縮合物、アミン類とエピクロルヒドリンの縮合物、ポリアリルアミン塩酸塩、ポリエチレンイミン、ポリアミジン、澱粉やセルロースのカチオン化物等があり、生体適合性のものを用いてナノ粒子または小胞を形成させ、核酸分子の送達に用いることができる。
 βグルカンの3重らせん構造を、核酸分子の送達のためのキャリアとして用いることができる。β-1,3-グルカンの3重螺旋をDMSO等の極性有機溶媒に溶解すると螺旋が解けてランダムコイル状の単一鎖となる。この溶媒を水に戻すと3 重螺旋の構造が再生される。この“Renature”の過程に核酸が存在すると,3重螺旋の一本の高分子鎖が核酸によって置き換わる。複合化された核酸は酵素による加水分解や血清中のタンパク質との非特異的な吸着から保護される(M.Mizu,K. Koumoto, T. Kimura, K. Sakurai, and S. Shinkai, Biomaterials, 25, 3109(2004))。
 アテロコラーゲンは、コラーゲンの主たる抗原部位であるテロペプチドを除去してコラーゲンの抗原性を低くしたものであり、siRNAなどの核酸分子と複合体を形成し、安定化させることができる(Drug Delivery System 25-6, 2010 607-614)。
 PLGA(ポリ乳酸)は、様々な方法により、マトリックスタイプの微粒子(ナノスフェア)を調製することができ、核酸のような水溶性薬物を封入して用いることが可能である。
 界面活性剤ペプチドは、6-10残基程度のアミノ酸から構成される自己組織化ペプチドで、水溶液中で粒子径が約50-100nmのナノミセルやナノチューブを形成する。界面活性剤様ペプチドは配列依存的に物質の表面電荷や粒子径をコントロールすることが可能であるため、siRNAなどの遺伝子デリバリーキャリアとして開発が進められている。
 スーパーアパタイト(Wu X, Yamamoto H, Nakanishi H, Yamamoto Y, Inoue A, Tei M, et al. (2015) Innovative Delivery of siRNA to Solid Tumors by Super Carbonate Apatite. PLoS ONE 10(3): e0116022. doi:10.1371/journal.pone.0116022)も、siRNA等の核酸送達のための好ましいキャリアとして研究されている。遺伝子導入用の化合物「炭酸アパタイト」を、超音波で直径10nm程度まで細かく砕いた超微粒子は「スーパーアパタイト」と称され、薬剤を結合させたスーパーアパタイトを、がんのあるマウスの静脈に注射したところ、従来の微粒子と比べて高い抗がん効果を示したことが報告されている。がん組織の血管はもろいため、微粒子はその血管壁のすき間を通ってがん細胞のみに取り込まれると考えられている。スーパーアパタイトなどの微粒子は、がん細胞内で分解されるため、副作用は少ないと考えられる。
 その他のキャリアとして、樹状高分子(デンドリマー)(例えば、リジンを構成単位とするデンドリマーであるデンドリティックポリリジン(KG6))や、カチオン性のポリアミノ酸誘導体であるPEG-P[Asp(DET)]が挙げられる。
 本発明の1つの好ましい実施形態では、キャリアがLNPであり、好ましくは、該LNPは、カチオン性脂質を含む。例えば、LNPは、カチオン性脂質、ヘルパー脂質および/またはPEG修飾脂質を含み得る。
 本発明の核酸送達において特に好ましいキャリアとしては、以下で説明するようなカチオン性脂質を含む脂質膜複合体を用いたものが挙げられる。
 1つの好ましい実施形態では、キャリアにおいて用いられるカチオン性脂質は、分子内に三級アミンおよび/またはジスルフィド結合を含む。かかる構造を採ることにより、ジスルフィド結合が切断された後に、脂質部位を2つ有する構造が破壊され、細胞内において脂質膜構造体が崩壊され、内封された核酸などの化合物が細胞質中に効率的に放出される。また、核酸導入に用いた場合、核酸がアミン部位と相互作用しない状態で細胞内に放出させるため、転写因子の核酸へのアクセス及び結合が妨げられない。細胞内においてジスルフィド結合が切断された際に、生成される残基が極性基であるアミン部位と非極性基である脂質部位とに別れないため、残基が界面活性能を保持する。それにより、エンドソーム膜の不安定化、及びそれに伴うエンドソーム脱出促進効果を期待することができる。
 好ましいカチオン性脂質としては、式(1’): 
Figure JPOXMLDOC01-appb-C000031

(式(1’)中、
及びXは独立して、三級アミンを含む置換基であり、
sは1又は2であり、
は炭素数1~6のアルキル基を表し、
及びnは独立して、0または1であり、
1a及びR1bは独立して、炭素数1~6のアルキレン基を表し、
2a及びR2bは独立して、炭素数1~6のアルキレン基を表し、
及びYは独立して、エステル結合、アミド結合、カーバメート結合、エーテル結合又は尿素結合を表し、
3a及びR3bは独立して、ステロール残基、脂溶性ビタミン誘導体残基又は炭素数12~22の脂肪族炭化水素基を表し、
ステロール残基が、コレステリル基、コレスタリル基、スチグマステリル基、β-シトステリル基、ラノステリル基又はエルゴステリル基であり、
脂溶性ビタミンが、レチノイン酸、レチノール、レチナール、エルゴステロール、7-デヒドロコレステロール、カルシフェロール、コルカルシフェロール、ジヒドロエルゴカルシフェロール、ジヒドロタキステロール、トコフェロール、又はトコトリエノールである)で示される化合物が挙げられる。
 式(1’)中、好ましくは、X及びXは、独立して、X、X又はXである;
Figure JPOXMLDOC01-appb-C000032
 好ましくは、式(1’)中、R3a及びR3bが独立して、脂溶性ビタミン誘導体残基である。好ましくは、式(1’)中、Y及びYは独立して、エステル結合である。好ましくは、式(1’)中、n及びnは1である。
 好ましくは、式(1’)中、R3a及びR3b、Y及びY、ならびにX及びXは同一である。
 好ましいカチオン性脂質としては、式(1)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000033
 式(1)中、X及びXは独立して、以下に示すX、X又はXである。
Figure JPOXMLDOC01-appb-C000034
 式(1)中、X及びXは独立して、以下に示すX又はXである。
Figure JPOXMLDOC01-appb-C000035
 X中のRは炭素数1~6のアルキル基を表し、直鎖状であっても分岐状であっても環状であっても良い。該アルキル基の炭素数は、好ましくは1~3である。炭素数1~6のアルキル基としては、具体的にはメチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、イソブチル基、tert-ブチル基、ペンチル基、イソペンチル基、ネオペンチル基、t-ペンチル基、1,2-ジメチルプロピル基、2-メチルブチル基、2-メチルペンチル基、3-メチルペンチル基、2,2-ジメチルブチル基、2,3-ジメチルブチル基、シクロヘキシル基等を挙げることができる。Rは好ましくはメチル基、エチル基、プロピル基又はイソプロピル基であり、最も好ましくはメチル基である。
 X中のsは1又は2である。sが1のときXは好ましくはピロリジニウム基であり、sが2のときXは好ましくはピペリジニウム基である。
 XはXと同一であっても異なっていてもよいが、好ましくは、XはXと同一の基である。
 n及びnは独立して、0~2の整数である。nが1の場合、R3aはY及びR2aを介してXと結合し、nが0の場合にはR3a-Xa―R1a―S-の構造を呈
する。同様に、nが1の場合、R3bはY及びR2bを介してXと結合し、nが0の場合にはR3b-X―R1b―S-の構造を呈する。
 nはnと同一であっても異なっていてもよいが、好ましくは、nはnと同一である。
 R1a及びR1bは独立して、炭素数1~6のアルキレン基を表し、直鎖状であっても良く、分岐を有していても良いが、好ましくは直鎖状である。炭素数1~6のアルキレン基としては、具体的にはメチレン基、エチレン基、トリメチレン基、イソプロピレン基、テトラメチレン基、イソブチレン基、ペンタメチレン基、ネオペンチレン基等を挙げることができる。R1a及びR1bは、好ましくはメチレン基、エチレン基、トリメチレン基、イソプロピレン基又はテトラメチレン基であり、最も好ましくはエチレン基である。
 R1aはR1bと同一であっても異なっていてもよいが、好ましくは、R1aはR1bと同一の基である。
 R2a及びR2bは独立して、炭素数1~6のアルキレン基を表し、直鎖状であっても良く、分岐を有していても良いが、好ましくは直鎖状である。炭素数1~6のアルキレン基としては、R1a及びR1bの炭素数1~6のアルキレン基の例として列挙したものを挙げることができる。R2a及びR2bは、好ましくはメチレン基、エチレン基、トリメチレン基、イソプロピレン基又はテトラメチレン基であり、最も好ましくはトリメチレン基である。
 R2aはR2bと同一であっても異なっていてもよいが、好ましくは、R2aはR2bと同一の基である。
 Y及びYは独立して、エステル結合、アミド結合、カーバメート結合、エーテル結合、尿素結合であり、好ましくはエステル結合、アミド結合、カーバメート結合であり、最も好ましくはエステル結合である。Y及びYの結合の向きは制限されないが、Yがエステル結合の場合、好ましくは、R3a-CO-O-R2a-の構造を呈し、Yがエステル結合の場合、好ましくは、R3b-CO-O-R2b-の構造を呈する。
 YはYと同一であっても異なっていてもよいが、好ましくは、YはYと同一の基である。
 R3a及びR3bは独立して、ステロール残基、脂溶性ビタミン誘導体残基又は炭素数12~22の脂肪族炭化水素基を表し、好ましくは脂溶性ビタミン誘導体残基又は炭素数12~22の脂肪族炭化水素基であり、最も好ましくは脂溶性ビタミン誘導体残基である。
 ステロール残基としては、例えばコレステリル基(コレステロール残基)、コレスタリル基(コレスタノール残基)、スチグマステリル基(スチグマステロール残基)、β-シトステリル基(β-シトステロール残基)、ラノステリル基(ラノステロール残基)、及びエルゴステリル基(エルゴステロール残基)などが挙げられる。ステロール残基は、好ましくはコレステリル基又はコレスタリル基である。
 脂溶性ビタミン誘導体残基は、脂溶性ビタミン由来の残基の他、脂溶性ビタミン中の官能基である水酸基、アルデヒド基、カルボキシル基を、他の二官能性化合物のカルボキシル基、アミノ基または水酸基と反応させることによって、他の反応性官能基に適宜変換した誘導体由来の残基である。例えば水酸基を有する脂溶性ビタミンについてはコハク酸無水物やグルタル酸無水物などのジカルボン酸を反応させることにより、水酸基をカルボン酸に変換できる。脂溶性ビタミンとしては、レチノイン酸、レチノール、レチナール、エルゴステロール、7-デヒドロコレステロール、カルシフェロール、コルカルシフェロール、ジヒドロエルゴカルシフェロール、ジヒドロタキステロール、トコフェロール、トコトリエノール等を挙げることができる。脂溶性ビタミンは好ましくはレチノイン酸又はトコフェロールである。二官能性の化合物としては限定されるものではないが、多価カルボン酸、ジカルボン酸、アミノ酸、ヒドロキシ酸、アミノアルコール、多価アルコール、二価アルコールなどが挙げられる。
 炭素数12~22の脂肪族炭化水素基は、直鎖状であっても、分岐を有していても良いが、好ましくは直鎖状である。当該脂肪族炭化水素基は、飽和であっても不飽和であっても良い。不飽和脂肪族炭化水素基の場合、当該脂肪族炭化水素基に含まれる不飽和結合の数は通常1~6個、好ましくは1~3個、より好ましくは1~2個である。不飽和結合には炭素-炭素二重結合及び炭素-炭素三重結合が含まれるが、好ましくは炭素-炭素二重結合である。当該脂肪族炭化水素基に含まれる炭素数は、好ましくは12~18であり、最も好ましくは13~17である。脂肪族炭化水素基には、アルキル基、アルケニル基、アルキニル基等が含まれるが、好ましくはアルキル基又はアルケニル基である。炭素数12~22の脂肪族炭化水素基としては、具体的にはドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、イコシル基、ヘンイコシル基、ドコシル基、ドデセニル基、トリデセニル基、テトラデセニル基、ペンタデセニル基、ヘキサデセニル基、ヘプタデセニル基、オクタデセニル基、ノナデセニル基、イコセニル基、ヘンイコセニル基、ドコセニル基、デカジエニル基、トリデカジエニル基、テトラデカジエニル基、ペンタデカジエニル基、ヘキサデカジエニル基、ヘプタデカジエニル基、オクタデカジエニル基、ノナデカジエニル基、イコサジエニル基、ヘンイコサジエニル基、ドコサジエニル基、オクタデカトリエニル基、イコサトリエニル基、イコサテトラエニル基、イコサペンタエニル基、ドコサヘキサエニル基、イソステアリル基等を挙げることができる。炭素数12~22の脂肪族炭化水素基は、好ましくはトリデシル基、テトラデシル基、ヘプタデシル基、オクタデシル基、ヘプタデカジエニル基又はオクタデカジエニル基であり、特に好ましくはトリデシル基、ヘプタデシル基、ヘプタデカジエニル基である。
 一態様において、炭素数12~22の脂肪族炭化水素基は脂肪酸、脂肪族アルコール、又は脂肪族アミンに由来するものが用いられる。R3a(又はR3b)が脂肪酸由来の場合、Y(又はY)はエステル結合、又はアミド結合であり、脂肪酸由来のカルボニル炭素はY(又はY)に含まれる。例えば、リノール酸を用いた場合、R3a(又はR3b)はヘプタデカジエニル基である。
 R3aはR3bと同一であっても異なっていてもよいが、好ましくは、R3aはR3bと同一の基である。
 一態様において、XはXと同一であり、nはnと同一であり、R1aはR1bと同一であり、R2aはR2bと同一であり、R3aはR3bと同一であり、YはYと同一である。
 一態様において、
及びXbは独立して、Xであり、
は炭素数1~3のアルキル基を表し、n及びnbは1であり、
1a及びR1bは独立して、炭素数1~6のアルキレン基を表し、
2a及びR2bは独立して、炭素数1~6のアルキレン基を表し、
及びYbはエステル結合を表し、
3a及びR3bは独立して、炭素数12~22の脂肪族炭化水素基を表す。
 一態様において、
及びXbは、Xであり、
は炭素数1~3のアルキル基を表し、n及びnは1であり、
1a及びR1bは、炭素数1~6のアルキレン基を表し、
2a及びR2bは、炭素数1~6のアルキレン基を表し、
及びYはエステル結合を表し、
3a及びR3bは、炭素数12~22の脂肪族炭化水素基を表し、
aはXと同一であり、
1aはR1bと同一であり、
2aはR2bと同一であり、
3aはR3bと同一である。
 一態様において、
a及びXは、Xであり、
はメチル基を表し、na及びnは1であり、
1a及びR1bはエチレン基を表し、
2a及びR2bはトリメチレン基を表し、
a及びYは-CO-O-を表し、
3a及びR3bは独立して、炭素数13~17のアルキル基又はアルケニル基を表す。
 一態様において、
a及びXは、Xであり、
はメチル基を表し、na及びnは1であり、
1a及びR1bはエチレン基を表し、
2a及びR2bはトリメチレン基を表し、
a及びYは-CO-O-を表し、
3a及びR3bは、炭素数13~17のアルキル基又はアルケニル基を表し、
3aはR3bと同一である。
 一態様において、
a及びXは独立して、Xであり、
は炭素数1~3のアルキル基を表し、na及びnは1であり、
1a及びR1bは独立して、炭素数1~6のアルキレン基を表し、
2a及びR2bは独立して、炭素数1~6のアルキレン基を表し、
a及びYはエステル結合を表し、
3a及びR3bは独立して、脂溶性ビタミン誘導体残基(例、レチノイン酸残基、トコフェロール残基)を表す。
 一態様において、Xa及びXは、Xであり、
は炭素数1~3のアルキル基を表し、na及びnは1であり、
1a及びR1bは、炭素数1~6のアルキレン基を表し、
2a及びR2bは、炭素数1~6のアルキレン基を表し、
a及びYはエステル結合を表し、
3a及びR3bは、脂溶性ビタミン誘導体残基(例、レチノイン酸残基、トコフェロール残基)を表し、
aはXと同一であり、
1aはR1bと同一であり、
2aはR2bと同一であり、
3aはR3bと同一である。
 一態様において、
a及びXは、Xであり、
はメチル基を表し、na及びnは1であり、
1a及びR1bはエチレン基を表し、
2a及びR2bはトリメチレン基を表し、
a及びYは-CO-O-を表し、
3a及びR3bは独立して、脂溶性ビタミン誘導体残基(例、レチノイン酸残基、トコフェロール残基)を表す。
 一態様において、
a及びXは、X1であり、
はメチル基を表し、n及びnは1であり、
1a及びR1bはエチレン基を表し、
2a及びR2bはトリメチレン基を表し、
及びYは-CO-O-を表し、
3a及びR3bは、脂溶性ビタミン誘導体残基(例、レチノイン酸残基、トコフェロール残基)を表し、
3aはR3bと同一である。
 一態様において、
a及びXは、Xであり、
Sは2であり、
及びnは1であり、
1a及びR1bはエチレン基を表し、
2a及びR2bはエチレン基を表し、
及びYは-CO-O-を表し、
3a及びR3bは、トコフェロールとコハク酸との反応による、脂溶性ビタミン誘導体残基を表し、
3aはR3bと同一である。
 本発明のカチオン性脂質の具体例として、以下のB-2、B-2-2、B-2-3、B-2-4及びB-2-5の化合物を挙げることができる。
Figure JPOXMLDOC01-appb-T000036
 特に好ましいカチオン脂質の例としては、
Figure JPOXMLDOC01-appb-C000037

 
が挙げられる。かかるカチオン脂質は、例えば、COATSOME SS-33/4PE-15(登録商標)(日油株式会社)として市販されている。
 好ましいカチオン性脂質としては、式(4):
Figure JPOXMLDOC01-appb-C000038

で表される化合物が挙げられる。
 R4a及びR4bは独立して、炭素数8以下のアルキレン基又はオキシジアルキレン基を表し、好ましくは炭素数8以下のアルキレン基である。
 炭素数8以下のアルキレン基は、直鎖状であっても、分岐を有していても良いが、好ましくは直鎖状である。当該アルキレン基に含まれる炭素数は、好ましくは6以下であり、最も好ましくは4以下である。炭素数8以下のアルキレン基としては、具体的にはメチレン基、エチレン基、プロピレン基、イソプロピレン基、テトラメチレン基、イソブチレン基、ペンタメチレン基、ヘキサメチレン基、ヘプタメチレン基、オクタメチレン基等を挙げることができ、好ましくはメチレン基、エチレン基、プロピレン基、テトラメチレン基であり、最も好ましくはエチレン基である。
 炭素数8以下のオキシジアルキレン基とは、エーテル結合を介したアルキレン基(アルキレン-O-アルキレン)を示し、2つ存在するアルキレン基の炭素数の合計が8以下のものである。ここで、2つ存在するアルキレンは同一でも異なっていてもよいが、好ましくは同一である。炭素数8以下のオキシジアルキレン基としては、具体的にはオキシジメチレン基、オキシジエチレン基、オキシジプロピレン基、オキシジブチレン基等を挙げることができる。好ましくは、オキシジメチレン基、オキシジエチレン基、オキシジプロピレン基であり、最も好ましくはオキシジエチレン基である。
 R4aはR4bと同一であっても異なっていても良いが、好ましくは、R4aはR4bと同一の基である。
 X1a及びX1bは独立して、エステル結合、アミド結合、カーバメート結合、エーテル結合であり、好ましくはエステル結合、アミド結合であり、最も好ましくはエステル結合である。X1a及びX1bの結合の向きは制限されないが、X1aおよびX1bがエステル結合の場合、好ましくは、R5a-CO-O-R4a-およびR5b-CO-O-R4b-構造を呈する。
 X1aはX1bと同一であっても異なっていても良いが、好ましくは、X1aはX1bと同一の基である。
 R5a及びR5bは独立して、ステロール残基、脂溶性ビタミン残基又は炭素数13~23の脂肪族炭化水素基を表し、好ましくは脂溶性ビタミン残基又は炭素数13~23の脂肪族炭化水素基である。最も好ましくは脂肪族炭化水素基である。また、臓器(特に肝臓)特異性という観点からはR5a及びR5bが脂溶性ビタミン残基であることもまた好ましい。
 「ステロール残基」としては、X又はXとの結合に関与する反応性官能基(例、水酸基)を除いたステロール、又はステロール誘導体に由来する残基が挙げられるが、好ましくはステロール誘導体に由来する残基である。ステロール誘導体とは、例えば、ステロールの水酸基をジカルボン酸の一方のカルボン酸と反応させたステロールヘミエステル(この場合、もう一方のカルボン酸が反応性官能基となる)が挙げられる。ステロールには、例えばコレステロール、コレスタノール、スチグマステロール、β-シトステロール、ラノステロール、及びエルゴステロール等が挙げられるが、好ましくはコレステロール、又はコレスタノールである。ジカルボン酸としては、例えば、マロン酸、コハク酸、グルタル酸、又はアジピン酸等が挙げられるが、好ましくはコハク酸、又はグルタル酸である。ステロール誘導体の具体例としては、コレステロールヘミコハク酸エステル、コレステロールヘミグルタル酸エステル等が挙げられる。
 「脂溶性ビタミン残基」としては、X1a又はX1bとの結合に関与する反応性官能基(例、水酸基)を除いた脂溶性ビタミン、又は脂溶性ビタミン誘導体に由来する残基が挙げられるが、好ましくは脂溶性ビタミン誘導体に由来する残基である。脂溶性ビタミン誘導体とは、反応性官能基が水酸基である脂溶性ビタミンの水酸基をジカルボン酸の一方のカルボン酸と反応させた脂溶性ビタミンヘミエステル(この場合、もう一方のカルボン酸が反応性官能基となる)が挙げられる。脂溶性ビタミンとしては、例えばレチノイン酸、レチノール、レチナール、エルゴステロール、7-デヒドロコレステロール、カルシフェロール、コルカルシフェロール、ジヒドロエルゴカルシフェロール、ジヒドロタキステロール、トコフェロール、又はトコトリエノール等を挙げることができるが、好ましくは、レチノイン酸、又はトコフェロールであり、最も好ましくは、トコフェロールである。ジカルボン酸としては、マロン酸、コハク酸、グルタル酸、及びアジピン酸等が挙げられるが、好ましくはコハク酸、及びグルタル酸である。脂溶性ビタミン誘導体の具体例としては、トコフェロールヘミコハク酸エステル、トコフェロールヘミグルタル酸エステル等が挙げられる。
 炭素数13~23の脂肪族炭化水素基は、直鎖であっても、分岐を有していても良いが、好ましくは直鎖である。当該脂肪族炭化水素基は、飽和であっても不飽和であっても良い。不飽和炭化水素基の場合、当該脂肪族炭化水素基に含まれる不飽和結合の数は1~6個、好ましくは1~3個、最も好ましくは1~2個である。不飽和結合には炭素-炭素二重結合及び三重結合が含まれるが、好ましくは二重結合である。当該脂肪族炭化水素基に含まれる炭素数は、直鎖の場合、好ましくは13~21であり、最も好ましくは13~17である。炭素数13~23の脂肪族炭化水素基としては、例えば、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、イコシル基、ヘンイコシル基、ドコシル基、トリコシル基、トリデセニル基、テトラデセニル基、ペンタデセニル基、ヘキサデセニル基、ヘプタデセニル基、オクタデセニル基、ノナデセニル基、イコセニル基、ヘンイコセニル基、ドコセニル基、トリコセニル基、トリデカジエニル基、テトラデカジエニル基、ペンタデカジエニル基、ヘキサデカジエニル基、ヘプタデカジエニル基、オクタデカジエニル基、ノナデカジエニル基、イコサジエニル基、ヘンイコサジエニル基、ドコサジエニル基、オクタデカトリエニル基、イコサトリエニル基、イコサテトラエニル基、イコサペンタエニル基、ドコサヘキサエニル基、メチルドデシル基、メチルトリデシル基、メチルテトラデシル基、メチルペンタデシル基、メチルヘプタデシル基、メチルオクタデシル基、メチルノナデシル基、メチルイコシル基、メチルヘンイコシル基、メチルドコシル基、エチルウンデシル基、エチルドデシル基、エチルトリデシル基、エチルテトラデシル基、エチルペンタデシル基、エチルヘプタデシル基、エチルオクタデシル基、エチルノナデシル基、エチルイコシル基、エチルヘンイコシル基、ヘキシルヘプチル基、ヘキシルノニル基、ヘプチルオクチル基、ヘプチルデシル基、オクチルノニル基、オクチルウンデシル基、ノニルデシル基、デシルウンデシル基、ウンデシルドデシル基、ヘキサメチルウンデシル基等を挙げることができる。直鎖のものとしては好ましくは、トリデシル基、ペンタデシル基、ヘプタデシル基、ノナデシル基、ヘンイコシル基、ヘプタデセニル基、ヘプタデカジエニル基であり、特に好ましくは、トリデシル基、ヘプタデシル基、ヘプタデセニル基、ヘプタデカジエニル基である。分岐のものとしては好ましくは、メチルペンタデシル基、ヘキシルノニル基、ヘプチルデシル基、オクチルウンデシル基、ヘキサメチルウンデシル基であり、特に好ましくは、メチルペンタデシル基、ヘキシルノニル基、ヘプチルデシル基である。
 一態様において、炭素数13~23の脂肪族炭化水素基は脂肪酸、脂肪族アルコール、又は脂肪族アミンに由来するものが用いられる。R5aが脂肪酸由来の場合、X1aはエステル結合、又はアミド結合であり、脂肪族由来のカルボニル炭素は、X1aに含まれる。R5bが脂肪酸由来の場合、X1bはエステル結合、又はアミド結合であり、脂肪族由来のカルボニル炭素は、X1bに含まれる。脂肪族炭化水素基の具体例としては、脂肪酸としてリノール酸を用いた場合ではヘプタデカジエニル基となり、脂肪酸としてオレイン酸を用いた場合ではヘプタデセニル基となる。
 R5aはR5bと同一であっても異なっていても良いが、好ましくは、R5aはR5bと同一の基である。
 一態様において、R4aはR4bと同一であり、X1aはX1bと同一であり、R5aはR5bと同一である。
 一態様において、
4aおよびR4bは独立して、炭素数8以下(炭素数1~8)のアルキレン基を表し、
1aおよびX1bはエステル結合を表し、
5aおよびR5bは独立して、脂溶性ビタミン残基(例、トコフェロールヘミコハク酸エステル由来の基)を表す。
 一態様において、
4aおよびR4bは独立して、炭素数8以下(炭素数1~8)のアルキレン基を表し、
1aおよびX1bはエステル結合を表し、
5aおよびR5bは独立して、炭素数13~23の脂肪族炭化水素基(例、ヘプタデカジエニル基、ヘプタデセニル基)を表す。
 一態様において、
4aおよびR4bは、炭素数8以下(炭素数1~8)のアルキレン基を表し、
1aおよびX1bは、エステル結合を表し、
5aおよびR5bは、脂溶性ビタミン残基(例、トコフェロールヘミコハク酸エステル由来の基)を表し、
4aはR4bと同一であり、
5aはR5bと同一である。
 一態様において、
4aおよびR4bは、炭素数8以下(炭素数1~8)のアルキレン基を表し、
1aおよびX1bは、エステル結合を表し、
5aおよびR5bは、炭素数13~23の脂肪族炭化水素基(例、ヘプタデカジエニル基、ヘプタデセニル基)を表し、
4aはR4bと同一であり、
5aはR5bと同一である。
 一態様において、
4aおよびR4bは、エチレン基を表し、
1aおよびX1bは、-CO-O-を表し、
5aおよびR5bは独立して、脂溶性ビタミン残基(例、トコフェロールヘミコハク酸エステル由来の基)を表す。
 一態様において、
4aおよびR4bは、エチレン基を表し、
1aおよびX1bは、-CO-O-を表し、
5aおよびR5bは独立して、炭素数13~23の脂肪族炭化水素基(例、ヘプタデカジエニル基、ヘプタデセニル基)を表す。
 一態様において、
4aおよびR4bは、エチレン基を表し、
1aおよびX1bは、-CO-O-を表し、
5aおよびR5bは、脂溶性ビタミン残基(例、トコフェロールヘミコハク酸エステル由来の基)を表し、
5aはR5bと同一である。
 一態様において、
4aおよびR4bは、エチレン基を表し、
1aおよびX1bは、-CO-O-を表し、
5aおよびR5bは、炭素数13~23の脂肪族炭化水素基(例、ヘプタデカジエニル基、ヘプタデセニル基)を表し、
5aはR5bと同一である。
 本発明のカチオン性脂質の具体例としては、以下のTS-PZ4C2、L-PZ4C2、O-PZ4C2を挙げることができる。
Figure JPOXMLDOC01-appb-T000039
 特に好ましいカチオン脂質の例としては、
Figure JPOXMLDOC01-appb-C000040

が挙げられる。かかるカチオン脂質は、例えば、COATSOME SS-33/1PZ-21(登録商標)(日油株式会社)として市販されている。
 キャリアとして、かかる化合物を膜の構成脂質として含む脂質膜構造体を用いることができる。本発明の1つの実施形態では、脂質膜構造体と、脂質膜構造体によって封入される核酸複合体とを含む組成物が提供される。
 脂質ナノ粒子は、PEGによって修飾されるのが好ましい場合がある。それにより、血中での保持を増加させることができるからである。また、かかる脂質ナノ粒子は、EPR効果(Enhanced permeation and retention effect)により、腫瘍組織に集積され得る。
 脂質ナノ粒子の直径としては、例えば、約110nm~約130nmであり得、例えば、約120nmである。1つの実施形態では、脂質ナノ粒子の直径は、約125nmである。適切なナノ粒子の直径は、本明細書で使用されるmiRNA阻害複合体の適切な送達を促
進し得る。
 (好ましい実施形態)
 以下に本発明の好ましい実施形態を説明する。以下に提供される実施形態は、本発明のよりよい理解のために提供されるものであり、本発明の範囲は以下の記載に限定されるべきでないことが理解される。従って、当業者は、本明細書中の記載を参酌して、本発明の範囲内で適宜改変を行うことができることは明らかである。また、本発明の以下の実施形態は単独でも使用されあるいはそれらを組み合わせて使用することができることが理解される。
 (miRNA阻害複合体)
 1つの局面において、本発明は、RNAまたはその類縁体を含むmiRNA阻害複合体であって、該miRNA阻害複合体は、少なくとも1つの二本鎖構造およびmiRNA結合配列を含み、該miRNA結合配列の2つの鎖が、該二本鎖構造の少なくとも片端の2つの鎖に一本ずつ結合しており、該miRNA阻害複合体は少なくとも1つの架橋核酸(BNA)を含む、miRNA阻害複合体を提供する。このような改良型S-TuDまたは修飾S-TuD(miRNA阻害複合体)は少なくとも1つの架橋核酸(BNA)を含むことによって、本明細書で使用されるmiRNA阻害複合体は、安定性を向上させ、精製過程の不純物の発生も抑えられ、さらには驚くべきことに生物学的活性も上昇していたことから、理想的な核酸医薬の原料または医薬そのものとして使用されることが理解される。
 1つの好ましい実施形態では、前記BNAは2’位側で酸素および炭素からなる群より選択される少なくとも1つの原子を介し、4’位側で炭素と炭素および窒素からなる群より選択される少なくとも1つ原子を介して架橋されたBNAを含む。理論に束縛されることを望まないが、オリゴヌクレオチドの合成も容易に行うことができ、しかもRNA二本鎖の形成促進が促進されることから、好ましいBNAとして使用される。
 1つの好ましい実施形態では、本発明で使用されるBNAは、(本発明で使用される架橋核酸(BNA))の節で説明される任意のBNAを用いることができる。例えば、BNA-1が代表例である。好ましい実施形態では、本発明で使用されるBNAは、BNA-2であり得る。さらに好ましくは、BNA-3であり得る。さらに使用され得る実施形態としては、例えば、cEt、BNANC(NMe)または2’,4’メタノ架橋核酸(LNA)等であり得る。特に、BNANC(NMe)が好ましい。理論に束縛されることを望まないが、この特定の核酸を用いることで、安定性が増し、二本鎖の形成が促進され、さらには、生物学的活性の向上も観察されたからである。
 別の実施形態では、cEtを用いることができる。理論に束縛されることを望まないが、BNA(cEt)は従来のLNAと同様の熱的安定性およびミスマッチ識別を有するものの、ヌクレアーゼに対する安定性が向上するからである。
 1つの実施形態では、本発明で使用されるBNAは、前記二本鎖構造部分の少なくとも一方の鎖および前記miRNA結合配列の少なくとも一つの鎖に含まれる。
 別の実施形態では、本発明で使用されるBNAは、前記二本鎖構造部分の少なくとも一方の鎖に含まれる。別の実施形態では、本発明で使用されるBNAは、前記二本鎖構造部分の両方の鎖に含まれる。
 1つの実施形態では、本発明の複合体では「二本鎖構造」が1つ以上、あるいは複数含みうるものであり、特許第4936343号公報または実施例と同様のS-TuD構造であってもよい。例えば、二本鎖構造は、直列であれば3つや4つでも連続して含まれることが可能であり、このような実施形態も本発明に包含されることが理解される。
 1つの実施形態では、本発明の複合体は、前記二本鎖構造を2つ以上含み、該二本鎖構造の第1の二本鎖構造の片端の2つの鎖にmiRNA結合配列を含む鎖がそれぞれ1本ずつ結合しており、該2つ以上の二本鎖構造に挟まれるように、該鎖のそれぞれの他端が、該2つ以上の二本鎖構造の第2の二本鎖構造の2つの鎖にそれぞれ結合している。
 別の実施形態では、本発明では、miRNA結合配列を含む2つの鎖の末端が、リンカーを介して結合している。好ましい実施形態では、本発明は、前記リンカーの長さは1~10塩基長であり、より好ましくは、1~9塩基長であり、さらに好ましくは、1~8塩基長であり、さらに好ましくは、1~7塩基長であり、さらに好ましくは1~5塩基長であり、4塩基長、3塩基長、2塩基長、1塩基長であってもよい。
 本明細書で使用されるmiRNA阻害複合体における二本鎖構造の長さは、上述のように任意の長さでよいが、好ましくは4塩基対以上の長さを有する。特に、本発明のRNA複合体に含まれる二本鎖構造の少なくとも1つ(すなわち第一の二本鎖構造)は、RNA複合体の核外輸送に重要な機能を持つ。この二本鎖の鎖長は、例えば10~50、15~50塩基対であってよく、好ましくは10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、または45塩基、あるいはそれらのいずれか以上であり、50、49、48、47、46、45、44、43、42、41、40、39、38、37、36、35、34、33、32、31、30、29、28、27、26、25、24、23、22、21、20、19、または18塩基、あるいはそれらのいずれか以下である。より好ましい態様では、二本鎖構造の塩基対の長さは、例えば10~30、15~30、好ましくは16~28、好ましくは17~25、好ましくは17~24、例えば17、18、19、20、21、22、23、または24である。20bpを超えても高い活性を発揮することはできるが、20bpを超えるdsRNAは、細胞質においてDicerによる切断の潜在的な標的となり得ることから、それを避けるために、本発明の複合体に含まれる二本鎖構造は20bp以下、例えば19bp以下、または18bp以下とすることができる。miRNA阻害複合体に含まれる二本鎖構造については、以下の好ましい実施形態においてさらに述べる。ば5bp~15bp、5bp~12bp、5bp~10bp、6bp~9bp、7bp~8bp、10bp~12bpとしてよい。
 本発明で使用される複合体中二本鎖の構造は、その下限の長さは、特に、活性が保持される限り限定されないが、少なくとも4塩基長、少なくとも5塩基長、少なくとも6塩基長、少なくとも7塩基長、少なくとも8塩基長であり、好ましくは、少なくとも9塩基長であり、さらに好ましくは少なくとも10塩基長である。二本鎖は2つ以上ある場合は、それらの塩基長は同じであっても異なっていてもよい。また、10塩基長で二本鎖の十分な形成が確認され、十分な効果があることが示されているが、場合によっては、例えば、少なくとも11塩基長、少なくとも12塩基長、少なくとも13塩基長、少なくとも14塩基長、少なくとも15塩基長、少なくとも16塩基長、少なくとも17塩基長、少なくとも18塩基長であってもよい。
 本発明の複合体中二本鎖の構造は、その上限の長さは、特に、活性が保持される限り限定されないが、例えば、100塩基長以下、90塩基長以下、80塩基長以下、70塩基長以下、60塩基長以下、50塩基長以下等であり得る。
 本明細書で使用されるmiRNA阻害複合体に第二またはそれ以上の二本鎖構造が含まれる場合においては、これらの二本鎖構造の配列やその長さに特に制限はない。これらの二本鎖構造は、例えばmiRNA阻害複合体全体をコンパクトにするために、第一の二本鎖構造の長さよりも短くしてもよい。各二本鎖の鎖長は適宜調整してよいが、例えば4bp~20bpであり、例えば5bp~15bp、5bp~12bp、5bp~10bp、6bp~9bp、または7bp~8bpとしてよい。
 本発明で使用される複合体において、BNAは1個あれば、その効果を奏することが期待されるが、好ましくは、2個以上、3個以上、4個以上、5個以上、6個以上、7個以上、8個以上、9個以上、10個以上含んでいてもよい。ただし、6個程度で十分な効果を奏し、それ以上含めても効果が増加しない場合もあるため、6個前後(例えば、4~8個、4~6個等)含めることで十分であり得る。
 また、本発明で使用される複合体は、従来の複合体よりも強い活性を有する(低濃度で作用する)。限定するものではないが、例えば、本発明の複合体は、従来の複合体よりも約2倍以上、約3倍以上、約4倍以上、約5倍以上、約6倍以上、約7倍以上、約8倍以上、9倍以上、約10倍以上、約15倍以上、約20倍以上、約25倍以上、約30倍以上、約40倍以上、約50倍以上、約75倍以上、約100倍以上の効果を奏し得る。したがって、例えば、本発明の複合体は、10nM以下で作用し、5nM以下で作用し、3nM以下で作用し、1nM以下で作用し、500pM以下で作用し、300pM以下で作用し、100pM以下で作用し、50pM以下で作用し、30pM以下で作用し、10pM以下で作用し、5pM以下で作用し、3pM以下で作用し、1pM以下で作用するという顕著な効果を奏する。
 別の実施形態では、本発明の複合体は、2から5つのmiRNA結合配列を含み、好ましくは2つのmiRNA結合配列を含む。
 1つの実施形態では、本発明で使用される複合体は、
Figure JPOXMLDOC01-appb-C000041

に示された構造を含み、該構造のIおよびIIは二本鎖構造であって、該構造のaおよびbにそれぞれ1つのmiRNA結合配列を含む構造をとり得る。
 別の局面において、本発明は、BNAを含む複合体を構成する各々のRNAまたはその類縁体(すなわち、各々の一本鎖)を提供し、これらの各々のRNAまたはその類縁体も本発明の範囲内にある。一本鎖の場合の好ましい実施形態は、二本鎖構造におけるものと実質的に同様であり、同様の好ましい実施形態を採用することができる。
 別の局面において、本発明は、本発明で使用される複合体またはこれを含む医薬を製造する方法であって、A)化学合成により、リボ核酸およびBNAを用いて、目的とするRNAまたはその類縁体の一本鎖の保護体およびその相補体の保護体を合成する工程;B)生成した該一本鎖の保護体およびその相補体をそれぞれ脱保護する工程;C)脱保護した該一本鎖のそれぞれを二本鎖形成条件に配置して二本鎖を形成する工程、ならびに必要に応じて、得られた複合体で医薬を調製する工程を包含する方法を提供する。
 さらなる局面において、本発明は、本発明のRNAまたはその類縁体を製造する方法であって、A)化学合成により、リボ核酸およびBNAを用いて、目的とするRNAまたはその類縁体の一本鎖の保護体およびその相補体の保護体を合成する工程;B)生成した該一本鎖の保護体およびその相補体をそれぞれ脱保護する工程、および必要に応じて、得られた複合体で医薬を調製する工程を包含する方法を提供する。
 このような方法については、本明細書において別の節において詳述しており、実施例においても実証例を記載しており、これらを参考にして当業者は種々の複合体、RNAまたはその類縁体を製造することができることが理解される。
 (核酸分子)
 別の局面において、本発明は、5'-CAGUGUU-3'および/または5'-CAGUAUU-3'の配列を含み、少なくとも1つの架橋核酸(BNA)を含む核酸分子を提供する。このような核酸分子は、miRNA阻害複合体を形成することができる核酸として利用され、miRNA阻害の効率的な実現に寄与することができ、これを利用して、抗がん剤などまたはその原料を提供することができる。示される配列中で、ウラシル塩基は必要に応じてチミン塩基であってよい。
 別の局面では、本発明は2つのmiRNA結合配列を含む核酸分子であって、一方のmiRNA結合配列が5'-CAGUGUU-3'を含み、かつ、他方のmiRNA結合配列が5'-CAGUAUU-3'を含み、少なくとも1つの架橋核酸(BNA)を含む核酸分子を提供する。このような核酸分子は、miRNA阻害複合体として利用され、miRNA阻害の効率的な実現に寄与することができ、これを利用して、抗がん剤などまたはその原料を提供することができる。示される配列中で、ウラシル塩基は必要に応じてチミン塩基であってよい。
 別の局面において、本発明は、配列番号1の配列を含むmiRNA結合配列と、配列番号2の配列を含むmiRNA結合配列とを含む、核酸分子を提供する。示される配列中で、ウラシル塩基は必要に応じてチミン塩基であってよい。
 この核酸分子は、BNAを含む。好ましくは、配列番号3の配列を含むmiRNA結合配列と、配列番号4の配列を含む。示される配列中で、ウラシル塩基は必要に応じてチミン塩基であってよい。
 1つの実施形態では、本発明は、配列番号5の配列と、配列番号6の配列とを含み、少なくとも1つの架橋核酸(BNA)を含む、核酸分子を提供する。好ましくは、本発明は、配列番号9の配列と、配列番号10の配列とを含む、核酸分子を提供する。
 配列は、例えばRNA分子の配列として記載されるが、ウラシル塩基とチミン塩基とはいずれもアデニン塩基に対して相補的な結合をすることから、当業者は、配列中でウラシル塩基として示されている塩基をチミン塩基に変更してもよいことを理解する。したがって、本明細書に記載される配列中、ウラシル塩基は必要に応じてチミン塩基であってよい。
 1つの局面において、本発明は、本発明の核酸分子を含む組成物を提供する。この組成物は、腫瘍の予防または処置のためのものであり得、例えば、ここで、腫瘍がカルシノーマであり得る。
 具体的な実施形態では、対象となる腫瘍が大腸癌、肺癌、または乳癌であり得る。あるいは、腫瘍の上皮間葉転換を促進するためのものであり得る。
 1つの実施形態では、本発明の組成物において、miRNA阻害複合体または核酸分子が、核酸送達のためのキャリアに含まれる形態で存在する。
 このようなキャリアは、脂質ナノ粒子(LNP)、カチオン性リポソーム、非カチオン性リポソーム、カチオン性ポリマー、非カチオン性ポリマー、βグルカン、アテロコラーゲン、PLGAナノ粒子、界面活性剤ペプチドおよびスーパーアパタイトからなる群から選択される。理論に束縛されることを望まないが、このようなキャリアに含まれることにより、核酸分子の分解を減少させることができ、有利には対象となる標的にターゲティングされ、核酸医薬としての有用性を高めることができる。
 1つの実施形態では、使用されるキャリアがLNPであり、該LNPは、カチオン性脂質を含む。
 このような、LNPは、カチオン性脂質、ヘルパー脂質およびPEG修飾脂質を含み得、好ましくは、カチオン性脂質は、分子内に三級アミンおよび/またはジスルフィド結合を含むものである。
 (miRNA阻害複合体と核酸送達のためのキャリアとを含む組成物)
 1つの局面において、本発明は、RNAまたはその類縁体を含むmiRNA阻害複合体と、核酸送達のためのキャリアとを含む組成物を提供する。ここで、含まれるmiRNA阻害複合体は少なくとも1つの二本鎖構造およびmiRNA結合配列を含み、該miRNA結合配列の2つの鎖が該二本鎖構造の少なくとも片端の2つの鎖に一本ずつ結合しており、該miRNA阻害複合体は少なくとも1つの架橋核酸(BNA)を含む。ここで使用されるBNAは、本明細書において(本発明で使用される架橋核酸(BNA))として説明される任意のものを利用することができる。本発明の組成物は、含まれるmiRNA阻害複合体としては、(miRNA阻害複合体)、(miRNAの阻害)、(核酸分子)、(医薬)、(DDS)の節で説明される任意の実施形態および本明細書の他の箇所で説明される任意の形態を利用することができる。
 1つの局面では、本発明は、RNAまたはその類縁体を含むmiRNA阻害複合体と、核酸送達のためのキャリアとを含む組成物を含む医薬組成物を提供する。ここで使用されるBNAは、本明細書において(本発明で使用される架橋核酸(BNA))として説明される任意のものを利用することができる。本発明の組成物は、含まれるmiRNA阻害複合体としては、(miRNA阻害複合体)、(miRNAの阻害)、(核酸分子)、(医薬)、(DDS)の節で説明される任意の実施形態および本明細書の他の箇所で説明される任意の形態を利用することができる。
 別の局面では、本発明は、RNAまたはその類縁体を含むmiRNA阻害複合体と、核酸送達のためのキャリアとを含む、miRNA阻害複合体を所望の部位に送達するため組成物を提供する。ここで使用されるBNAは、本明細書において(本発明で使用される架橋核酸(BNA))として説明される任意のものを利用することができる。本発明の組成物は、含まれるmiRNA阻害複合体としては、(miRNA阻害複合体)、(miRNAの阻害)、(核酸分子)、(医薬)、(DDS)の節で説明される任意の実施形態および本明細書の他の箇所で説明される任意の形態を利用することができる。
 1つの実施形態では、本発明のmiRNA阻害複合体と核酸送達のためのキャリアとを含む組成物において、BNAは2’位側で酸素および炭素からなる群より選択される少なくとも1つの原子を介し、4’位側で炭素と炭素および窒素からなる群より選択される少なくとも1つの原子を介して架橋されたBNAを含む。
 1つの好ましい実施形態では、本発明で使用されるBNAは、(本発明で使用される架橋核酸(BNA))の節で説明される任意のBNAを用いることができる。例えば、BNA-1が代表例である。好ましい実施形態では、本発明で使用されるBNAは、BNA-2であり得る。さらに好ましくは、BNA-3であり得る。さらに使用され得る実施形態としては、例えば、cEt、BNANC(NMe)または2’,4’メタノ架橋核酸(LNA)等であり得る。特に、BNANC(NMe)が好ましい。理論に束縛されることを望まないが、この特定の核酸を用いることで、安定性が増し、二本鎖の形成が促進され、さらには、生物学的活性の向上も観察されたからである。別の実施形態では、cEtを用いることができる。理論に束縛されることを望まないが、BNA(cEt)は従来のLNAと同様の熱的安定性およびミスマッチ識別を有するものの、ヌクレアーゼに対する安定性が向上するからである。
 1つの実施形態では、本発明の複合体は、前記二本鎖構造を2つ以上含み、該二本鎖構造の第1の二本鎖構造の片端の2つの鎖にmiRNA結合配列を含む鎖がそれぞれ1本ずつ結合しており、該2つ以上の二本鎖構造に挟まれるように、該鎖のそれぞれの他端が、該2つ以上の二本鎖構造の第2の二本鎖構造の2つの鎖にそれぞれ結合している。
 本発明で使用される複合体中二本鎖の構造は、その下限の長さは、特に、活性が保持される限り限定されないが、少なくとも4塩基長、少なくとも5塩基長、少なくとも6塩基長、少なくとも7塩基長、少なくとも8塩基長であり、好ましくは、少なくとも9塩基長であり、さらに好ましくは少なくとも10塩基長である。二本鎖は2つ以上ある場合は、それらの塩基長は同じであっても異なっていてもよい。また、10塩基長で二本鎖の十分な形成が確認され、十分な効果があることが示されているが、場合によっては、例えば、少なくとも11塩基長、少なくとも12塩基長、少なくとも13塩基長、少なくとも14塩基長、少なくとも15塩基長、少なくとも16塩基長、少なくとも17塩基長、少なくとも18塩基長であってもよい。
 本発明の複合体中二本鎖の構造は、その上限の長さは、特に、活性が保持される限り限定されないが、例えば、100塩基長以下、90塩基長以下、80塩基長以下、70塩基長以下、60塩基長以下、50塩基長以下等であり得る。
 別の実施形態では、本発明の複合体は、2から5つのmiRNA結合配列を含み、好ましくは2つのmiRNA結合配列を含む。
 1つの実施形態では、本発明で使用される複合体は、
Figure JPOXMLDOC01-appb-C000042

に示された構造を含み、該構造のIおよびIIは二本鎖構造であって、該構造のaおよびbにそれぞれ1つのmiRNA結合配列を含む構造をとり得る。
 1つの好ましい実施形態では、miRNA結合配列が、5'-CAGUGUU-3'および/または5'-CAGUAUU-3'を含み、好ましくは、miRNA阻害複合体は2つのmiRNA結合配列を含み、一方のmiRNA結合配列が5'-CAGUGUU-3'を含み、かつ、他方のmiRNA結合配列が5'-CAGUAUU-3'を含む。示される配列中で、ウラシル塩基は必要に応じてチミン塩基であってよい。
 1つの具体的な実施形態では、本発明のmiRNA阻害複合体と核酸送達のためのキャリアとを含む組成物は、配列番号1の配列を含むmiRNA結合配列と、配列番号2の配列を含むmiRNA結合配列とを含み、BNAを含む。好ましくは、配列番号3の配列を含むmiRNA結合配列と、配列番号4の配列を含む。示される配列中で、ウラシル塩基は必要に応じてチミン塩基であってよい。
 1つの実施形態では、本発明のmiRNA阻害複合体と核酸送達のためのキャリアとを含む組成物では、複合体は、配列番号5の配列と、配列番号6の配列とを含み、少なくとも1つの架橋核酸(BNA)を含む、核酸分子を提供する。好ましくは、本発明のmiRNA阻害複合体と核酸送達のためのキャリアとを含む組成物では、複合体は、配列番号9の配列と、配列番号10の配列とを含む。示される配列中で、ウラシル塩基は必要に応じてチミン塩基であってよい。
 1つの実施形態では、本発明のmiRNA阻害複合体と核酸送達のためのキャリアとを含む組成物に含まれるキャリアは、脂質ナノ粒子(LNP)、カチオン性リポソーム、非カチオン性リポソーム、カチオン性ポリマー、非カチオン性ポリマー、βグルカン、アテロコラーゲン、PLGAナノ粒子、界面活性剤ペプチドおよびスーパーアパタイトからなる群から選択される。この他、(DDS)の節で説明される任意の実施形態および本明細書の他の箇所で説明される任意の形態を利用することができる。
 好ましい実施形態では、本発明で使用されるキャリアがLNPであり、該LNPは、カチオン性脂質を含み、さらに好ましくは、LNPは、カチオン性脂質、ヘルパー脂質およびPEG修飾脂質を含み、具体的には、カチオン性脂質は、分子内に三級アミンおよび/またはジスルフィド結合を含みうる。
 (コンポジットカチオン脂質)
 1つの実施形態では、本発明において使用されるキャリアに注目し、本発明は、式(1)
Figure JPOXMLDOC01-appb-C000043

(式中、X及びXは独立して、X又はXであり;
Figure JPOXMLDOC01-appb-C000044

sは1又は2であり、
は炭素数1~6のアルキル基を表し、
及びnは独立して、1であり、
1a及びR1bは独立して、炭素数1~6のアルキレン基を表し、
2a及びR2bは独立して、炭素数1~6のアルキレン基を表し、
及びYは独立して、エステル結合、アミド結合、カーバメート結合、エーテル結合又は尿素結合を表し、
3a及びR3bは独立して、ステロール残基、脂溶性ビタミン誘導体残基又は炭素数12~22の脂肪族炭化水素基を表し、
ステロール残基が、コレステリル基、コレスタリル基、スチグマステリル基、β-シトステリル基、ラノステリル基又はエルゴステリル基であり、
脂溶性ビタミンが、レチノイン酸、レチノール、レチナール、エルゴステロール、7-デヒドロコレステロール、カルシフェロール、コルカルシフェロール、ジヒドロエルゴカルシフェロール、ジヒドロタキステロール、トコフェロール、又はトコトリエノールである)あるいは
 式(4)
Figure JPOXMLDOC01-appb-C000045

(式中、R4a及びR4bは独立して、炭素数8以下のアルキレン基又はオキシジアルキレン基であり、
1a及びX1bは独立して、エステル結合、アミド結合、カーバメート結合、又はエーテル結合を表し、
5a及びR5bは独立して、ステロール残基、脂溶性ビタミン残基、又は炭素数13~23の脂肪族炭化水素基を表す)
で示される化合物を膜の構成脂質として含む脂質膜構造体と、
 該脂質膜構造体によって封入される核酸複合体と
を含む組成物であって、該核酸複合体はRNAまたはその類縁体を含むmiRNA阻害複合体であり、該miRNA阻害複合体は少なくとも1つの二本鎖構造およびmiRNA結合配列を含み、該miRNA結合配列の2つの鎖が該二本鎖構造の少なくとも片端の2つの鎖に一本ずつ結合しており、該miRNA阻害複合体は少なくとも1つの架橋核酸(BNA)を含む、組成物を提供する。ここで使用されるBNAは、本明細書において(本発明で使用される架橋核酸(BNA))として説明される任意のものを利用することができる。本発明の組成物は、含まれるmiRNA阻害複合体としては、(miRNA阻害複合体)、(miRNAの阻害)、(核酸分子)、(医薬)、(DDS)の節で説明される任意の実施形態および本明細書の他の箇所で説明される任意の形態を利用することができる。
 ここで、好ましい実施形態では、式中、X及びXが独立して、Xである。
 1つの好ましい実施形態では、式中、R3a及びR3bが独立して、脂溶性ビタミン誘導体残基又は炭素数12~22の脂肪族炭化水素基である。
 1つの好ましい実施形態では、R3a及びR3bが独立して、脂溶性ビタミン誘導体残基である。
 さらに好ましい実施形態では、前記脂溶性ビタミン誘導体残基が、水酸基を有する脂溶性ビタミンとコハク酸無水物又はグルタル酸無水物との反応物由来の残基である。
 1つの好ましい実施形態では、R3a及びR3bが独立して、炭素数12~22の脂肪族炭化水素基である。
 ここで、好ましい実施形態では、式(4)中、R4a及びR4bが独立して、炭素数8以下のアルキレン基である。
 1つの好ましい実施形態では、式(4)中、X1a及びX1bがエステル結合である。
 1つの好ましい実施形態では、式(4)中、R5a及びR5bが独立して、脂溶性ビタミン残基、又は炭素数13~23の脂肪族炭化水素基である。
 さらに好ましい実施形態では、式(4)中、R5a及びR5bが独立して、脂溶性ビタミン残基である。
 1つの好ましい実施形態では、式(4)中、R5a及びR5bが独立して、炭素数13~23の脂肪族炭化水素基である。
 本発明で使用される特に好ましいカチオン脂質の例としては、
Figure JPOXMLDOC01-appb-C000046

あるいは
Figure JPOXMLDOC01-appb-C000047

が挙げられ、それぞれCOATSOME SS-33/4PE-15(登録商標)(日油株式会社)およびCOATSOME SS-33/1PZ-21(登録商標)(日油株式会社)として市販されている。
 1つの好ましい実施形態では、前記BNAはBNANC(NMe)である。
 別の好ましい実施形態では、本発明で使用されるmiRNA阻害複合体は、前記二本鎖構造を2つ以上含み、該二本鎖構造の第1の二本鎖構造の片端の2つの鎖にmiRNA結合配列を含む鎖がそれぞれ1本ずつ結合しており、該2つ以上の二本鎖構造に挟まれるように、該鎖のそれぞれの他端が、該2つ以上の二本鎖構造の第2の二本鎖構造の2つの鎖にそれぞれ結合している。
 1つの実施形態では、miRNA阻害複合体は、2つのmiRNA結合配列を含む。ここで、好ましくは、前記miRNA阻害複合体は、図2に示される構造を含み、該構造のIおよびIIは二本鎖構造であって、該構造のaおよびbにそれぞれ1つのmiRNA結合配列を含む。
 1つの好ましい実施形態では、本発明で使用されるmiRNA結合配列が、5'-CAGUGUU-3'および/または5'-CAGUAUU-3'を含み、好ましくは、miRNA阻害複合体が2つのmiRNA結合配列を含み、一方のmiRNA結合配列が5'-CAGUGUU-3'を含み、かつ、他方のmiRNA結合配列が5'-CAGUAUU-3'を含む。
 1つの好ましい実施形態では、本発明で使用されるmiRNA阻害複合体は、配列番号1の配列を含むmiRNA結合配列と、配列番号2の配列を含むmiRNA結合配列とを含み、BNAを含む。好ましくは、配列番号3の配列を含むmiRNA結合配列と、配列番号4の配列を含む。示される配列中で、ウラシル塩基は必要に応じてチミン塩基であってよい。
 1つの実施形態では、本発明では、複合体は、配列番号5の配列と、配列番号6の配列とを含み、少なくとも1つの架橋核酸(BNA)を含む、核酸分子を提供する。好ましくは、本発明では、複合体は、配列番号9の配列と、配列番号10の配列とを含む。示される配列中で、ウラシル塩基は必要に応じてチミン塩基であってよい。
 本明細書において「または」は、文章中に列挙されている事項の「少なくとも1つ以上」を採用できるときに使用される。「もしくは」も同様である。本明細書において「2つの値の範囲内」と明記した場合、その範囲には2つの値自体も含む。
 本明細書において引用された、科学文献、特許、特許出願などの参考文献は、その全体が、各々具体的に記載されたのと同じ程度に本明細書において参考として援用される。
 以上、本発明を、理解の容易のために好ましい実施形態を示して説明してきた。以下に、実施例に基づいて本発明を説明するが、上述の説明および以下の実施例は、例示の目的のみに提供され、本発明を限定する目的で提供したのではない。従って、本発明の範囲は、本明細書に具体的に記載された実施形態にも実施例にも限定されず、特許請求の範囲によってのみ限定される。なお、本明細書中に引用された文献は、すべて本明細書の一部として組み込まれる。
 以下、本発明の実施例を記載する。まず、合成例を示し、その後、その生物活性を示す動物モデル実験等の実施例を示す。動物実験等は、千葉大学で規定される倫理規定および動物愛護法および関連規則、ならびに実験動物に関して規定される政府規制等を遵守して行った。
 本発明のヌクレオシド類縁体及びオリゴヌクレオチド類縁体は、下記の合成スキームに従って、合成した。
 (製造例)
 (オリゴヌクレオチドの合成)
 オリゴヌクレオチドは、nS-8II 合成機もしくはAKTAoligopilot合成機で合成した。市販の細孔ガラス質固相担体(2’-O-メチル-RNA CPGLink Technologies社製)と、標準的な保護基を有する2’-O-メチル-RNAホスホロアミダイト、すなわち、5’-O-ジメトキシトリチルN6-ベンゾイルアデノシン-2'-O-メチル-3’-O-N,N’-ジイソプロピルホスホロアミダイト、5’-O-ジメトキシトリチル-N4-アセチルシチジン-2'-O-メチル-3’-O-N,N’-ジイソプロピルホスホロアミダイト、5’-O-ジメトキシトリチル-N2-イソブチリルグアノシン-2'-O-メチル-3’-O-N,N’-ジイソプロピルホスホロアミダイト、および5’-O-ジメトキシトリチルウリジン-2'-O-メチル-3’-O-N,N’-ジイソプロピルホスホロアミダイト(以上シグマアルドリッチ社製)、並びに、2’,4’-BNANC(2’-O,4’-C-アミノメチレン架橋核酸)チミジンホスホロアミダイト、すなわち2’-O,4’-C-アミノメチレン-5’-O-ジメトキシトリチル-チミジン-N,N'-ジイソプロピルホスホロアミダイト、2’,4’-BNANCアデノシンホスホロアミダイト、すなわち2’-O,4’-C-アミノメチレン-5’-O-ジメトキシトリチル-N6-ベンゾイルアデノシン-N,N'-ジイソプロピルホスホロアミダイト(以上BNA社製)、並びに、LNA(Locked nucleic acid)(2’-O,4’-C-メチレンリボ核酸)チミジンホスホロアミダイト、すなわち2’-O,4’-C-メチレン-5’-O-ジメトキシトリチルチミジン-N,N'-ジイソプロピルホスホロアミダイト(エキシコン社製)をオリゴヌクレオチド合成に使用した。ホスホロアミダイトは全て、アセトニトリル(CHCN)中、0.1Mの濃度で使用した。2’-O-メチルRNA、BNA及びLNAについては15分の連結/再利用時間を使用した。活性剤は、5-ベンジルメルカプト-テトラゾール(0.25M、和光純薬社製)であり、PO-酸化については、ヨウ素/水/ピリジンを使用した。PS-ホスホロチオエート化については、市販のオリゴヌクレオチド自動合成機用硫化試薬(すなわちEIDTH、DDTT、PADS、Beucage試薬など)をピリジンとともに使用した。
 脱保護I(ヌクレオ塩基脱保護)
 合成が完了した後、合成担体をガラスボトルに移した。オリゴヌクレオチドを、担体1gに対して15mLの、40%メチルアミン水溶液と33%メチルアミンエタノール溶液の等量混合物を用いて、45℃で13時間、塩基とリン酸基を同時に脱保護しながら担体から切断した。その後、エタノールアンモニア混合物を濾過して、新しい250mLのボトルに入れた。担体を2×40mLのエタノール/水(1:1v/v)で洗浄した。その後、ロータリーエバポレーター(roto-vap)で溶媒留去し乾固した。
 (HPLC精製)
 オリゴヌクレオチドを、Source 15 RPCゲルカラムでの逆相イオンペアHPLCで精製した。緩衝液は、5% CH3CN、0.1M トリエチルアミン酢酸緩衝液(pH7.0)(緩衝液A)と90% CH3CN、0.1Mトリエチルアミン酢酸緩衝液(pH7.0)(緩衝液B)であった。5’末端にジメトキシトリチル基が保持された状態で全長のオリゴヌクレオチドを含む画分をプールし次の精製に供した。その後オリゴヌクレオチドプールを、Source30Qの陰イオンペアHPLCで精製した。溶液及び緩衝液は、0.6%のトリフルオロ酢酸(溶液A)、20mMリン酸ナトリウム緩衝液(pH7.5)(緩衝液C)と20mMリン酸ナトリウム緩衝液中の2M塩化ナトリウム(緩衝液D)であった。溶液Aを用い、ジメトキシトリチル基を脱離させた後、完全長のオリゴヌクレオチドを含む画分をプールし、脱塩後凍結乾燥した。化合物は、最終的に、MALDI-TOF/MSと逆相HPLCで分析した。
 (2本鎖化)
 精製の完了した1本鎖オリゴヌクレオチドを蒸留水にて溶解後、紫外吸光光度分析計を用い吸光度測定しオリゴヌクレオチド濃度を決定した。決定された濃度を用い相補鎖をそれぞれ等モル濃度になるように混合し、95℃で10分加熱後徐冷し2本鎖形成させた。2本鎖形成は非変性ゲル電気泳動にて確認した。
 (実施例1:改良型S-TuDによるin vivoでの腫瘍抑制)
<材料および方法>
細胞培養
 トリプルネガティブ乳癌細胞株SUM149PT(SUM149とも言う)はAsterandから入手し、5% foetal bovine serum(FBS)、10mM HEPES、5μg/ml Insulin、1μg/ml Hydrocortisoneおよび5μg/ml Gentamicinを含むHam's F-12培地(SUM149PT培地)中、37℃で培養した。
動物実験
 雌BALB/cヌードマウスを日本SLCより購入し、すべての実験で6週齢のマウスを使用した。細胞をSUM149PT培地に懸濁し、等量のMatrigel(BD)を混合し、乳腺脂肪体に注入した。腫瘍体積はデジタルノギスで計測した。
miRNA阻害複合体
 上述のプロトコルに従って、miRNA阻害複合体を調製した。本実施例において用いた(1)S-TuD-141/200c-1_17-pf-S10-BT6-MBSB1(miR-141およびmiR-200cに対するMBSを有する)と、(2)S-TuD-NCs-S10-BT6-MBSB1-s(MBSはmiRに対して相補配列を有しない)との構造は、図4に示されるとおりである。配列中の小文字は、BNANC(NMe)に置換されている箇所を示す。
 5×105 SUM149PT細胞をマウス乳腺脂肪体に注入した時点を0日目として、69、76、83、90、97、104および111日目に、(1)S-TuD-141/200c-1_17-pf-S10-BT6-MBSB1および(2)S-TuD-NCs-S10-BT6-MBSB1-s(Naked、3mg/kg)を、尾静脈内および腫瘍内投与した。
 投与後、経時的にマウス体重および腫瘍体積を測定した。
<結果>
 結果は、図5および図6に示される。
 図5に示されるように、それぞれのS-TuDをそれぞれの経路で投与されたマウスの体重に変化はなく、S-TuDによる副作用は認められず、安全に使用可能であることが示唆される。
 図6に示されるように、S-TuD-141/200c-1_17-pf-S10-BT6-MBSB1(S-TuD-141/200c)は、S-TuD-NCs-S10-BT6-MBSB1(S-TuDNCs)と比較して、腫瘍の成長を減少させた。これは、本発明のハイブリッドmiRNA阻害複合体が、成功裡に2つのmiRNA(miR-141およびmiR-200c)を阻害し、それによって、腫瘍の成長を抑制できたことを示している。
 静脈投与であっても腫瘍の成長を低減させたが、特に腫瘍内に投与した場合に腫瘍成長を顕著に阻害したことから、S-TuD-141/200cを、適切な送達システムを用いて腫瘍に送達することは、腫瘍の処置または予防に非常に効果的であることが示唆される。
 TuDはベクターから発現する系であるため、ウイルスベクターをあらかじめ細胞に導入するex vivoでなければmiRNAの阻害を成功裡に行うことができなかった。本発明の改良型S-TuDは従来型S-TuDと比較して、miRNA阻害能が高く、また血清中安定性に優れているため、in vivoでmiRNAの阻害が大きく改善されている。そのため本発明の改良型S-TuDを用いた場合には腫瘍内投与または静脈投与でつまりin vivoでmiRNAの阻害を達成できたことが示される。
(実施例2:DDSを用いた改良型S-TuDによるin vivoでの腫瘍抑制)
 本実施例においては、本発明の改良型S-TuDの送達に好適となる薬物送達システム(DDS)について検討した。
<材料および方法>
 薬物送達システムを用いる点を除いて、動物の腫瘍モデルおよびmiRNA阻害複合体の調製などは実施例1と同様に行った。
脂質ナノ粒子(LNP)
 DDSとして、図7に示されるような脂質ナノ粒子を用いた。脂質ナノ粒子は、以下の成分:
COATSOME SS-33/4PE-15
Figure JPOXMLDOC01-appb-C000048

コレステロール
Figure JPOXMLDOC01-appb-C000049

DSG-PEG5k
Figure JPOXMLDOC01-appb-C000050

(式中、RおよびRは、C18:0アシルである)
を含むものであった。
LNPの組成
 脂質ナノ粒子における成分の比は以下のようなものを作製した。
製剤1:
 脂質      6000nmol
 S-TuD      6.72nmol
 脂質/S-TuD比  1000 
 回収率(%)  81
 封入率(%)  35
 直径(d. nm)  125
製剤2:
 脂質      3000nmol
 S-TuD      6.72nmol
 脂質/S-TuD比  250 
 回収率(%)  56
 封入率(%)  33
 直径(d. nm)  122.2
製剤3:
 脂質      3000nmol
 S-TuD      3.36nmol
 脂質/S-TuD比  1000
 回収率(%)  55
 封入率(%)  40
 直径(d. nm)  114.6
製剤4: 
 脂質      6000nmol
 S-TuD      13.4nmol
 脂質/S-TuD比  500 
 回収率(%)  94
 封入率(%)  28
 直径(d. nm)  116.8
 この中で、製剤1の組成のLNPを、in vivoでのさらなる検討に用いた。マウスに対する各成分の比率は、
S-TuD           1mg/kg
COATSOME SS-33/4PE-15   430nmol/マウス
コレステロール       185nmol/マウス
DSG-PEG5k         18nmol/マウス
であった。
 実施例1と同様に5×105 SUM149PT細胞を乳腺脂肪体に注入したマウスに対し、腫瘍細胞の移植時点を0日目として、29、36、43、50および57日目において、上記LNPに封入したS-TuD-141/200c-1_17-pf-S10-BT6-MBSB1(LNP-S-TuD-141/200c)(1mg/kg)またはPBSを、尾部静脈から注入した。29日目にLNP-S-TuD-141/200c(3mg/kg)の投与も行ったが、1例の死亡があったため、この用量ではそれ以降の投与を行わなかった。
 <結果>
 結果は図8および図9に示した。図8に示されるとおり、LNP-S-TuD-141/200c(1mg/kg)およびPBSのそれぞれを投与されたマウスの体重に有意な変化はなく、副作用は認められず、安全に使用可能であることが示唆される。
 図9に示されるように、LNP-S-TuD-141/200c(1mg/kg)の尾部静脈からの投与は、腫瘍の成長を低減させた。したがって、本実施例で用いたような脂質ナノ粒子の使用は、本明細書で使用されるmiRNA阻害複合体を有利に腫瘍の標的部位へと送達し、それによって腫瘍の処置または予防が可能であることが示唆される。
(実施例3:非小細胞肺癌に対する改良型S-TuDによる腫瘍抑制)
 乳癌細胞株で見られたmiR-200ファミリー阻害によるin vivoでの腫瘍の抑制が、他の臓器に由来する癌細胞においても誘導されることを確認するため、肺がん細胞を移植して解析を行う。
<材料および方法>
細胞培養
 非小細胞肺がん細胞株H596、A-427、HCC827はATCCから入手する。H596細胞は10% ウシ胎児血清(FBS)を含むDMEM中で37℃で培養する。A-427細胞は10% ウシ胎児血清(FBS)を含むEMEM中で37℃で培養する。HCC827細胞は10% ウシ胎児血清(FBS)を含むRPMI1640中で37℃で培養する。
動物実験
 雌BALB/cヌードマウスを日本SLCより購入し、すべての実験で6週齢のマウスを使用する。ウイルス導入したH596細胞をDMEM培地に懸濁し、等量のMatrigel(BD)を混合し、右腹側部に注入する。腫瘍体積はデジタルノギスで計測する。
miRNA阻害複合体
 miRNA阻害複合体(S-TuD-141/200c-1_17-pf-S10-BT6-MBSB1)は、実施例1と同様に調製する。
 調製したmiRNA阻害複合体を、腫瘍を移植したマウスに尾部静脈内または腫瘍内に投与し、腫瘍の減少を確認する。
(実施例4:DDSを用いた改良型S-TuDによるin vivoでの腫瘍抑制)
 本実施例においては、本発明の改良型S-TuDの送達に好適となる薬物送達システム(DDS)について検討した。
<材料および方法>
 薬物送達システムを用いる点を除いて、動物の腫瘍モデルおよびmiRNA阻害複合体の調製などは実施例1と同様に行った。
 DDSとして、以下の成分の脂質ナノ粒子を用いた。
COATSOME SS-33/1PZ-21
Figure JPOXMLDOC01-appb-C000051

コレステロール
Figure JPOXMLDOC01-appb-C000052

DSG-PEG5k
Figure JPOXMLDOC01-appb-C000053

(式中、RおよびRは、C18:0アシルである)
を含むものであった。
LNPの組成
脂質ナノ粒子における成分の比は以下のようなものを作製し、in vivoでの検討に用いた。
製剤: 
 脂質      3240nmol
 S-TuD      1.67 nmol
 脂質/S-TuD比  1940 
 回収率(%)  91
 封入率(%)  81
 直径(d. nm)  108
マウスに対する各成分の比率は、
S-TuD           3mg/kg
COATSOMESS-33/1PZ-21   2585nmol/マウス
コレステロール      1108nmol/マウス
DSG-PEG5k         295nmol/マウス
であった。
 実施例1と同様に5×105 SUM149PT細胞を乳腺脂肪体に注入したマウスに対し、腫瘍細胞の移植時点を0日目として、57、64、71、76、85、92、99および104日目において、上記LNPに封入したS-TuD-141/200c-1_17-pf-S10-BT6-MBSB1(LNP-S-TuD-141/200c)(3mg/kg)または上記LNPに封入したS-TuD-NCs-S10-BT6-MBSB1(LNP-S-TuDネガティブコントロール)(3mg/kg)を、尾部静脈から注入した。
<結果>
 結果は図11および図12に示した。図11に示されるとおり、LNP-S-TuD-141/200c(3mg/kg)およびLNP-S-TuDネガティブコントロール(3mg/kg)(3mg/kg)のそれぞれを投与されたマウスの体重に有意な変化はなく、副作用は認められず、安全に使用可能であることが示唆される。
 図12に示されるように、LNP-S-TuD-141/200c(3mg/kg)の尾部静脈からの投与は、LNP-S-TuDネガティブコントロール(3mg/kg)の尾部静脈からの投与と比較して腫瘍の成長を低減させた。したがって、本実施例で用いたような脂質ナノ粒子の使用は、本明細書で使用されるmiRNA阻害複合体を有利に腫瘍の標的部位へと送達し、それによって腫瘍の処置または予防が可能であることが示唆される。
(実施例5:改良型S-TuDによる肺がん細胞株H358でのmiR-21抑制)
(ルシフェラーゼアッセイ)
 H358細胞を、10% foetal bovine serum (FBS)を含むRPMI1640中、1.0x105 cells per wellで導入の前日に24wellプレートにまき、Lipofectamine 2000 (LifeTechnologies)および100ngのレポータープラスミド(psiCHECK2-UTまたはpsiCHECK2-T21-5p)(図13、14および図15を参照)および各種S-TuDをトリプリケートでトランスフェクトした。全てのアッセイはトランスフェクションの48時間後にdual luciferase assay(Promega)により、GLOMAXTM(Promega)で実施した。
 改良型S-TuDによるmiR-21阻害アッセイのプロトコールは以下のとおりである。
 以下の実験1と実験2でウミシイタケルシフェラーゼ(RL)とホタルルシフェラーゼ(FL)の比を取ることにより標的miRNAの活性を測定した。
 (実験1)
 miR-21を内在性に発現する肺がん細胞株H358細胞を10% foetal bovine serum (FBS)を含むRPMI1640中、37℃で培養した。
 (実験2)
 psiCHECK2-T21-5p(プロメガ社、XhoI-NotIサイトに、例えば、miR-21のような標的miRNAと相補な配列を挿入して作成;全体構造は図13に示す。)、図16-1に示された、合成S-TuD修飾体を用いてH358細胞にトランスフェクションした。
 その後、トランスフェクションした細胞から発現するウミシイタケルシフェラーゼ(RL)とホタルルシフェラーゼ(FL)がそれぞれの特異的な基質と反応することで生じる化学発光シグナルをルミノメーターで測定し、測定されたシグナルについてウミシイタケルシフェラーゼ(RL)とホタルルシフェラーゼ(FL)の比をとった。結果を図16-2に示す。図16-2の結果から、改良型S-TuD-21は1000pMという低濃度でH358細胞のmiR-21活性を完全に阻害しており、従来型S-TuDと比べ阻害活性が高いことが示された。
(実施例6:改良型S-TuDによる肺がん細胞株H358でのmiR-200c抑制)
(ルシフェラーゼアッセイ)
 H358細胞を、10% foetal bovine serum (FBS)を含むRPMI1640中、1.0x105 cells per wellで導入の前日に24wellプレートにまき、Lipofectamine 2000 (LifeTechnologies)および100ngのレポータープラスミド(psiCHECK2-UTまたはpsiCHECK2-T200c-3p)(図13、14および図15を参照)および各種S-TuDをトリプリケートでトランスフェクトした。全てのアッセイはトランスフェクションの48時間後にdual luciferase assay(Promega)により、GLOMAXTM(Promega)で実施した。
改良型S-TuD(センス配列:配列番号26およびアンチセンス配列:配列番号27)によるmiR-200c阻害アッセイのプロトコールは以下のとおりである。
 以下の実験5と実験6でウミシイタケルシフェラーゼ(RL)とホタルルシフェラーゼ(FL)の比を取ることにより標的miRNAの活性を測定した。
 (実験5)
 miR-200cを内在性に発現する肺がん細胞株H358細胞を10% foetal bovine serum (FBS)を含むRPMI1640中、37℃で培養した。
 (実験6)
 psiCHECK2-T200c-3p、図17-1に示された、合成S-TuD修飾体を用いてH358細胞にトランスフェクションした。その後、トランスフェクションした細胞から発現するウミシイタケルシフェラーゼ(RL)とホタルルシフェラーゼ(FL)がそれぞれの特異的な基質と反応することで生じる化学発光シグナルをルミノメーターで測定し、測定されたシグナルについてウミシイタケルシフェラーゼ(RL)とホタルルシフェラーゼ(FL)の比をとった。結果を図17-2に示す。図17-2の結果から、改良型S-TuD-141/200cは100pMという低濃度でH358細胞のmiR-200c活性を完全に阻害していることが示された。
 TuD発現レンチウイルスベクターによるmiR-200c阻害アッセイのプロトコールは以下のとおりである。
 以下の実験7と実験8でウミシイタケルシフェラーゼ(RL)とホタルルシフェラーゼ(FL)の比を取ることにより標的miRNAの活性を測定した。
 (実験7)
 miR-200cを内在性に発現する肺がん細胞株H358細胞を10% foetal bovine serum (FBS)を含むRPMI1640中、37℃で培養した。H358細胞を6wellプレートに1x105 cells per wellでまき、24時間後にpLSP-TuD-141/200cウイルスベクター(3x105 TU)を、8μg/mlのポリブレンの存在下で導入し、トランスダクションの24時間後からPuromycin(1ug/ml)で選択した。1週間の選択の後、培地からPuromycinを除去し、TuD-141/200cの発現カセットを保持するH358-TuD-141/200c細胞を得た。
 (実験8)
 psiCHECK2-T200c-3を用いてH358-TuD-141/200c細胞にトランスフェクションした。その後、トランスフェクションした細胞から発現するウミシイタケルシフェラーゼ(RL)とホタルルシフェラーゼ(FL)がそれぞれの特異的な基質と反応することで生じる化学発光シグナルをルミノメーターで測定し、測定されたシグナルについてウミシイタケルシフェラーゼ(RL)とホタルルシフェラーゼ(FL)の比をとった。結果を図17-3に示す。図17-3の結果から、導入されレンチウイルスベクターから発現されるTuD-141/200cはH358細胞のmiR-200c活性を完全に阻害していることが示された。
 以上、本発明を実施例に基づいて説明した。この実施例はあくまで例示であり、種々の変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。
 以上のように、本発明の好ましい実施形態を用いて本発明を例示してきたが、本発明は、特許請求の範囲によってのみその範囲が解釈されるべきであることが理解される。本明細書において引用した特許、特許出願および文献は、その内容自体が具体的に本明細書に記載されているのと同様にその内容が本明細書に対する参考として援用されるべきであることが理解される。本明細書では、特に、PCT/JP2016/078345、PCT/JP2016/004252および特願2013-544251を参照することができ、この内容はその全体が本明細書において参考として援用される。さらに、本出願は、特願2017-53124の優先権の利益を主張し、この内容はその全体が本明細書において参考として援用される。
 本発明は核酸医薬等を用いる製薬産業および試薬産業において有用である。
配列番号1:S-TuD-141/200c-1_17-pf-S10-BT6-MBSB1のmiR-141に対する結合配列
配列番号2:S-TuD-141/200c-1_17-pf-S10-BT6-MBSB1のmiR-200cに対する結合配列
配列番号3:S-TuD-141/200c-1_17-pf-S10-BT6-MBSB1のmiR-141に対する結合配列(特定位置にBNAを含む)
配列番号4:S-TuD-141/200c-1_17-pf-S10-BT6-MBSB1のmiR-200cに対する結合配列(特定位置にBNAを含む)
配列番号5:S-TuD-141/200c-1_17-pf-S10 センス配列
配列番号6:S-TuD-141/200c-1_17-pf-S10 アンチセンス配列
配列番号7:S-TuD-NCs-S10 センス配列
配列番号8:S-TuD-NCs-S10 アンチセンス配列
配列番号9:S-TuD-141/200c-1_17-pf-S10-BT6-MBSB1 センス配列(特定位置にBNAを含む)
配列番号10:S-TuD-141/200c-1_17-pf-S10-BT6-MBSB1 アンチセンス配列(特定位置にBNAを含む)
配列番号11:S-TuD-NCs-S10-BT6-MBSB1 センス配列(特定位置にBNAを含む)
配列番号12:S-TuD-NCs-S10-BT6-MBSB1 アンチセンス配列(特定位置にBNAを含む)
配列番号13:miR-200a
配列番号14:miR-141
配列番号15:miR-200b
配列番号16:miR-200c
配列番号17:miR-429
配列番号18:図10(41)のセンス配列
配列番号19:図10(41)のアンチセンス配列
配列番号20:図10(42)のセンス配列
配列番号21:図10(42)のアンチセンス配列
配列番号22:図10(43)のセンス配列
配列番号23:図10(43)のアンチセンス配列
配列番号24:図10(44)のセンス配列
配列番号25:図10(44)のアンチセンス配列
配列番号26:図10(45)のセンス配列
配列番号27:図10(45)のアンチセンス配列
配列番号28:図15のpsiCHECK2-T21-5p-s
配列番号29:図15のpsiCHECK2-T21-5p-a
配列番号30:図15のpsiCHECK2-T200c-3p-s
配列番号31:図15のpsiCHECK2-T200c-3p-a
配列番号32:従来型S-TuD-21のmiR-21に対する結合配列
配列番号33:改良型S-TuD-21のmiR-21に対する結合配列
配列番号34:改良型S-TuD-21のmiR-21に対する結合配列(特定位置にBNAを含む)
配列番号35:従来型S-TuD-21 センス配列
配列番号36:従来型S-TuD-21 アンチセンス配列
配列番号37:改良型S-TuD-21 センス配列
配列番号38:改良型S-TuD-21 アンチセンス配列
配列番号39:改良型S-TuD-21 センス配列(特定位置にBNAを含む)
配列番号40:改良型S-TuD-21 アンチセンス配列(特定位置にBNAを含む)
配列番号41:miR-21

Claims (32)

  1.  腫瘍の予防または処置のための、RNAまたはその類縁体を含むmiRNA阻害複合体を含む組成物であって、該miRNA阻害複合体は少なくとも1つの二本鎖構造およびmiRNA結合配列を含み、該miRNA結合配列の2つの鎖が該二本鎖構造の少なくとも片端の2つの鎖に一本ずつ結合しており、該miRNA阻害複合体は少なくとも1つの架橋核酸(BNA)を含む、組成物。
  2.  前記BNAは、
    Figure JPOXMLDOC01-appb-C000001

    または2’,4’メタノ架橋核酸(LNA)を含む、請求項1に記載の組成物。
  3.  前記BNAはBNANC(NMe)である、請求項1に記載の組成物。
  4.  前記miRNA阻害複合体は、前記二本鎖構造を2つ以上含み、該二本鎖構造の第1の二本鎖構造の片端の2つの鎖にmiRNA結合配列を含む鎖がそれぞれ1本ずつ結合しており、該2つ以上の二本鎖構造に挟まれるように、該鎖のそれぞれの他端が、該2つ以上の二本鎖構造の第2の二本鎖構造の2つの鎖にそれぞれ結合している、請求項1~3のいずれか一項に記載の組成物。
  5.  前記miRNA阻害複合体は、2つのmiRNA結合配列を含む、請求項4に記載の組成物。
  6.  請求項4に記載の組成物であって、前記miRNA阻害複合体は、以下
    Figure JPOXMLDOC01-appb-C000002

    に示された構造を含み、該構造のIおよびIIは二本鎖構造であって、該構造のaおよびbにそれぞれ1つのmiRNA結合配列を含む、組成物。
  7.  前記miRNA阻害複合体が2つのmiRNA結合配列を含み、一方のmiRNA結合配列が5'-CAGUGUU-3'を含み、かつ、他方のmiRNA結合配列が5'-CAGUAUU-3'を含む、請求項1~6のいずれかに記載の組成物。
  8.  2つのmiRNA結合配列を含む核酸分子であって、一方のmiRNA結合配列が5'-CAGUGUU-3'(配列中、ウラシル塩基は必要に応じてチミン塩基である)を含み、かつ、他方のmiRNA結合配列が5'-CAGUAUU-3'(配列中、ウラシル塩基は必要に応じてチミン塩基である)を含み、少なくとも1つの架橋核酸(BNA)を含む核酸分子。
  9.  配列番号1の配列(配列中、ウラシル塩基は必要に応じてチミン塩基である)を含むmiRNA結合配列と、配列番号2の配列を含むmiRNA結合配列とを含み、少なくとも1つの架橋核酸(BNA)を含む核酸分子。
  10.  配列番号9の配列(配列中、ウラシル塩基は必要に応じてチミン塩基である)と、配列番号10の配列(配列中、ウラシル塩基は必要に応じてチミン塩基である)とを含む、核酸分子。
  11.  5'-AUAAGCU-3'(配列中、ウラシル塩基は必要に応じてチミン塩基である)の配列を含み、少なくとも1つの架橋核酸(BNA)を含む核酸分子。
  12.  請求項8~11のいずれかに記載の核酸分子を含む、組成物。
  13.  腫瘍の予防または処置のための、請求項12に記載の組成物。
  14.  前記腫瘍がカルシノーマである、請求項1~7または13のいずれかに記載の組成物。
  15.  前記腫瘍が大腸癌、肺癌、または乳癌である、請求項1~7または13のいずれかに記載の組成物。
  16.  前記腫瘍の上皮間葉転換を促進するための、請求項1~7または13~15のいずれかに記載の組成物。
  17.  前記miRNA阻害複合体または核酸分子が、核酸送達のためのキャリアに含まれる形態で存在する、請求項1~7または12~16のいずれかに記載の組成物。
  18.  RNAまたはその類縁体を含むmiRNA阻害複合体と、
     核酸送達のためのキャリアと
    を含む組成物であって、該miRNA阻害複合体は少なくとも1つの二本鎖構造およびmiRNA結合配列を含み、該miRNA結合配列の2つの鎖が該二本鎖構造の少なくとも片端の2つの鎖に一本ずつ結合しており、該miRNA阻害複合体は少なくとも1つの架橋核酸(BNA)を含む、組成物。
  19.  式(1)
    Figure JPOXMLDOC01-appb-C000003

    (式中、X及びXは独立して、X、X又はXであり;
    Figure JPOXMLDOC01-appb-C000004

    sは1又は2であり、
    は炭素数1~6のアルキル基を表し、
    及びnは独立して、0または1であり、
    1a及びR1bは独立して、炭素数1~6のアルキレン基を表し、
    2a及びR2bは独立して、炭素数1~6のアルキレン基を表し、
    及びYは独立して、エステル結合、アミド結合、カーバメート結合、エーテル結合又は尿素結合を表し、
    3a及びR3bは独立して、ステロール残基、脂溶性ビタミン誘導体残基又は炭素数12~22の脂肪族炭化水素基を表し、
    ステロール残基が、コレステリル基、コレスタリル基、スチグマステリル基、β-シトステリル基、ラノステリル基又はエルゴステリル基であり、
    脂溶性ビタミンが、レチノイン酸、レチノール、レチナール、エルゴステロール、7-デヒドロコレステロール、カルシフェロール、コルカルシフェロール、ジヒドロエルゴカルシフェロール、ジヒドロタキステロール、トコフェロール、又はトコトリエノールである)で示される化合物を膜の構成脂質として含む脂質膜構造体と、
     該脂質膜構造体によって封入される核酸複合体と
    を含む組成物であって、該核酸複合体はRNAまたはその類縁体を含むmiRNA阻害複合体であり、該miRNA阻害複合体は少なくとも1つの二本鎖構造およびmiRNA結合配列を含み、該miRNA結合配列の2つの鎖が該二本鎖構造の少なくとも片端の2つの鎖に一本ずつ結合しており、該miRNA阻害複合体は少なくとも1つの架橋核酸(BNA)を含む、組成物。
  20.  式(1)中、X及びXが独立して、Xである、請求項19に記載の組成物。
  21.  式(1)中、X及びXが独立して、Xである、請求項19に記載の組成物。
  22.  式(1)中、R3a及びR3bが独立して、脂溶性ビタミン誘導体残基又は炭素数12~22の脂肪族炭化水素基である、請求項19~21のいずれかに記載の組成物。
  23.  式中、R3a及びR3bが独立して、脂溶性ビタミン誘導体残基である、請求項19~22のいずれかに記載の組成物。
  24.  前記脂溶性ビタミン誘導体残基が、水酸基を有する脂溶性ビタミンとコハク酸無水物又はグルタル酸無水物との反応物由来の残基である、請求項23に記載の組成物。
  25.  R3a及びR3bが独立して、炭素数12~22の脂肪族炭化水素基である請求項19~24のいずれか1項に記載の組成物。
  26.  前記BNAはBNANC(NMe)である、請求項19~25のいずれかに記載の組成物。
  27.  前記miRNA阻害複合体は、前記二本鎖構造を2つ以上含み、該二本鎖構造の第1の二本鎖構造の片端の2つの鎖にmiRNA結合配列を含む鎖がそれぞれ1本ずつ結合しており、該2つ以上の二本鎖構造に挟まれるように、該鎖のそれぞれの他端が、該2つ以上の二本鎖構造の第2の二本鎖構造の2つの鎖にそれぞれ結合している、請求項19~26のいずれか一項に記載の組成物。
  28.  前記miRNA阻害複合体は、2つのmiRNA結合配列を含む、請求項26に記載の組成物。
  29.  請求項27に記載の組成物であって、前記miRNA阻害複合体は、以下
    Figure JPOXMLDOC01-appb-C000005

    に示された構造を含み、該構造のIおよびIIは二本鎖構造であって、該構造のaおよびbにそれぞれ1つのmiRNA結合配列を含む、組成物。
  30.  前記miRNA阻害複合体が2つのmiRNA結合配列を含み、一方のmiRNA結合配列が5'-CAGUGUU-3'(配列中、ウラシル塩基は必要に応じてチミン塩基である)を含み、かつ、他方のmiRNA結合配列が5'-CAGUAUU-3'(配列中、ウラシル塩基は必要に応じてチミン塩基である)を含む、請求項19~29のいずれかに記載の組成物。
  31.  前記miRNA阻害複合体が配列番号1の配列(配列中、ウラシル塩基は必要に応じてチミン塩基である)を含むmiRNA結合配列と、配列番号2の配列(配列中、ウラシル塩基は必要に応じてチミン塩基である)を含むmiRNA結合配列とを含む、請求項19~30のいずれかに記載の組成物。
  32.  前記miRNA阻害複合体が、配列番号9の配列(配列中、ウラシル塩基は必要に応じてチミン塩基である)と、配列番号10の配列(配列中、ウラシル塩基は必要に応じてチミン塩基である)とを含む、請求項19~31のいずれかに記載の組成物。
PCT/JP2018/010514 2017-03-17 2018-03-16 構造強化されたS-TuDを用いた新規がん治療法 WO2018169063A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18767416.3A EP3597197A4 (en) 2017-03-17 2018-03-16 NEW TECHNOLOGY FOR TREATMENT OF CANCER USING STRUCTURALLY REINFORCED S-TUD
CN201880031959.8A CN110650742A (zh) 2017-03-17 2018-03-16 使用经结构强化的S-TuD的新的癌症治疗方法
US16/494,743 US11479769B2 (en) 2017-03-17 2018-03-16 Technique for treating cancer using structurally-reinforced S-TuD
JP2019506308A JP7306653B2 (ja) 2017-03-17 2018-03-16 構造強化されたS-TuDを用いた新規がん治療法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017053124 2017-03-17
JP2017-053124 2017-03-17

Publications (1)

Publication Number Publication Date
WO2018169063A1 true WO2018169063A1 (ja) 2018-09-20

Family

ID=63522356

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/010514 WO2018169063A1 (ja) 2017-03-17 2018-03-16 構造強化されたS-TuDを用いた新規がん治療法

Country Status (5)

Country Link
US (1) US11479769B2 (ja)
EP (1) EP3597197A4 (ja)
JP (1) JP7306653B2 (ja)
CN (1) CN110650742A (ja)
WO (1) WO2018169063A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114295594B (zh) * 2021-12-06 2023-09-19 贵州理工学院 一种基于分子信标筛选三螺旋DNA嵌入剂的“turn on”型荧光传感器

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4936343B1 (ja) 1970-01-30 1974-09-30
JPH10304889A (ja) 1997-03-07 1998-11-17 Takeshi Imanishi 新規ビシクロヌクレオシド及びオリゴヌクレオチド類縁体
US5908845A (en) 1996-10-30 1999-06-01 Segev; David Polyether nucleic acids
JP2000297097A (ja) 1999-02-12 2000-10-24 Sankyo Co Ltd 新規ヌクレオシド及びオリゴヌクレオチド類縁体
WO2005021570A1 (ja) * 2003-08-28 2005-03-10 Gene Design, Inc. N−0結合性架橋構造型新規人工核酸
WO2010047216A1 (ja) 2008-10-23 2010-04-29 国立大学法人 東京大学 microRNAの機能阻害法
WO2013073480A1 (ja) * 2011-11-18 2013-05-23 日油株式会社 細胞内動態を改善したカチオン性脂質
JP2013544251A (ja) 2010-11-15 2013-12-12 ラモット・アット・テル・アビブ・ユニバーシテイ・リミテッド アミロイド線維形成関連状態を処置するためのジペプチドアナログ
WO2016121942A1 (ja) * 2015-01-30 2016-08-04 日油株式会社 カチオン性脂質
WO2016126844A1 (en) * 2015-02-03 2016-08-11 The Trustees Of The University Of Pennsylvania Novel methods for early identification of bone healing ability in injured patients
JP2017053124A (ja) 2015-09-08 2017-03-16 株式会社ホンダロック シリンダ錠
WO2017047097A1 (ja) * 2015-09-18 2017-03-23 国立大学法人 東京大学 構造強化されたmiRNA阻害剤S-TuD

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011068260A1 (ko) * 2009-12-02 2011-06-09 서울대학교산학협력단 인슐린신호경로를 조절하는 마이크로알엔에이 및 그 표적의 작용을 제어하는 물질의 스크리닝 방법
WO2011126842A2 (en) * 2010-03-30 2011-10-13 Regulus Therapeutics Inc. Targeting micrornas for the treatment of cardiac disorders
EP2961386B1 (en) * 2013-02-28 2019-07-10 The General Hospital Corporation Mirna profiling compositions and methods of use
WO2017057312A1 (ja) * 2015-09-28 2017-04-06 国立大学法人 千葉大学 miR-200ファミリー阻害により腫瘍を抑制する方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4936343B1 (ja) 1970-01-30 1974-09-30
US5908845A (en) 1996-10-30 1999-06-01 Segev; David Polyether nucleic acids
JPH10304889A (ja) 1997-03-07 1998-11-17 Takeshi Imanishi 新規ビシクロヌクレオシド及びオリゴヌクレオチド類縁体
JP2000297097A (ja) 1999-02-12 2000-10-24 Sankyo Co Ltd 新規ヌクレオシド及びオリゴヌクレオチド類縁体
JP4731324B2 (ja) 2003-08-28 2011-07-20 武 今西 N−o結合性架橋構造型新規人工核酸
WO2005021570A1 (ja) * 2003-08-28 2005-03-10 Gene Design, Inc. N−0結合性架橋構造型新規人工核酸
WO2010047216A1 (ja) 2008-10-23 2010-04-29 国立大学法人 東京大学 microRNAの機能阻害法
JP2013544251A (ja) 2010-11-15 2013-12-12 ラモット・アット・テル・アビブ・ユニバーシテイ・リミテッド アミロイド線維形成関連状態を処置するためのジペプチドアナログ
WO2013073480A1 (ja) * 2011-11-18 2013-05-23 日油株式会社 細胞内動態を改善したカチオン性脂質
WO2016121942A1 (ja) * 2015-01-30 2016-08-04 日油株式会社 カチオン性脂質
WO2016126844A1 (en) * 2015-02-03 2016-08-11 The Trustees Of The University Of Pennsylvania Novel methods for early identification of bone healing ability in injured patients
JP2017053124A (ja) 2015-09-08 2017-03-16 株式会社ホンダロック シリンダ錠
WO2017047097A1 (ja) * 2015-09-18 2017-03-23 国立大学法人 東京大学 構造強化されたmiRNA阻害剤S-TuD

Non-Patent Citations (44)

* Cited by examiner, † Cited by third party
Title
ABDUR RAHMAN, S. M. ET AL.: "Design, synthesis, and properties of 2' , 4' -BNANC: a bridged nucleic acid analogue", J. AM. CHEM. SOC., vol. 130, 2008, pages 4886 - 4896, XP055031784, DOI: doi:10.1021/ja710342q *
ALTSCHUL S.F. ET AL., NATURE GENET., vol. 3, 1993, pages 266 - 272
ALTSCHUL S.F. ET AL., NUCLEIC ACIDS RES, vol. 25, 1997, pages 3389 - 3402
ALTSCHUL, S. F. ET AL., J. MOL. BIOL., vol. 215, 1990, pages 403 - 410
BAYRAKTAR, R.VAN ROOSBROECK, K., CANCER METASTASIS REV, vol. 37, 2018, pages 33
BIOMED PHARMACOTHER, vol. 91, July 2017 (2017-07-01), pages 823 - 830
BIOMED REP., vol. 5, no. 4, October 2016 (2016-10-01), pages 395 - 402
BOUTLA, A. ET AL., NUCLEIC ACIDS RES., vol. 31, 2003, pages 4973 - 4980
BRENNECKE ET AL., PLOS BIOLOGY, vol. 3, 2005, pages 0404 - 0418
CANCER CELL., vol. 25, no. 4, 14 April 2014 (2014-04-14), pages 469 - 483
CARCINOGENESIS, vol. 38, no. 4, 1 April 2017 (2017-04-01), pages 425 - 431
CELL DEATH AND DIFFERENTIATION, vol. 21, 2014, pages 774 - 782
CHAN, J.A. ET AL., CANCER RES., vol. 65, 2005, pages 6029 - 6033
CLIN TRANSL ONCOL, vol. 17, 2015, pages 209 - 214
DRUG DELIVERY SYSTEM, vol. 25-6, 2010, pages 607 - 614
ESAU, C. ET AL., CELL METAB., vol. 3, 2006, pages 87 - 98
ESAU, C. ET AL., J. BIOL. CHEM., vol. 279, 2004, pages 52361 - 52365
EXP THER MED., vol. 14, no. 1, July 2017 (2017-07-01), pages 657 - 663
FRONT MED (LAUSANNE, vol. 2, 2015, pages 64
HUTVAGNER, G. ET AL., PLOS BIOL., vol. 2, 2004, pages E98
INT J CLIN EXP PATHOL., vol. 8, no. 4, 1 April 2015 (2015-04-01), pages 3827 - 34
J.ORG.CHEM., vol. 75, 2010, pages 1569 - 1581
JACKSON AL ET AL., RNA, vol. 12, no. 7, 2006, pages 1179 - 1187
KIRIAKIDOU ET AL., GENES & DEVELOPMENT, vol. 18, 2004, pages 1165 - 1178
KRUTZFELDT, J. ET AL., NUCLEIC ACIDS RES., vol. 34, 2006, pages 2294 - 2304
LEWIS BP ET AL., CELL, vol. 120, 2005, pages 15 - 20
LEWIS ET AL., CELL, vol. 115, 2003, pages 787 - 798
M. MIZUK. KOUMOTOT. KIMURAK. SAKURAIS. SHINKAI, BIOMATERIALS, vol. 25, 2004, pages 3109
MADDEN, T.L. ET AL., METH. ENZYMOL., vol. 266, 1996, pages 131 - 141
MED MOL MORPHOL., vol. 50, no. 2, June 2017 (2017-06-01), pages 76 - 85
NAT COMMUN., vol. 4, 2013, pages 1877
NATURE CELL BIOLOGY, vol. 10, 2008, pages 593 - 601
ONCOGENE, vol. 34, no. 36, 3 September 2015 (2015-09-03), pages 4767 - 76
ONCOL REP., vol. 33, no. 5, May 2015 (2015-05-01), pages 2592 - 8
ONCOTARGET, vol. 6, no. 30, 6 October 2015 (2015-10-06), pages 30239 - 50
ONCOTARGET, vol. 7, no. 51, 20 December 2016 (2016-12-20), pages 84508 - 84519
ONCOTARGET, vol. 8, 2017, pages 74276 - 74286
PRADEEP S. PALLAN ET AL., CHEM COMMUN (CAMB)., vol. 48, no. 66, 25 August 2012 (2012-08-25), pages 8195 - 8197
PROC NATL ACAD SCI U S A, vol. 103, 2006, pages 2257 - 61
See also references of EP3597197A4
STEM CELLS., vol. 32, no. 4, April 2014 (2014-04-01), pages 959 - 73
TATIANA A ET AL., FEMS MICROBIOL. LETT., vol. 174, 1999, pages 247 - 250
WU XYAMAMOTO HNAKANISHI HYAMAMOTO YINOUE ATEI M ET AL.: "Innovative Delivery of siRNA to Solid Tumors by Super Carbonate Apatite", PLOS ONE, vol. 10, no. 3, 2015, pages e0116022, XP055531405, doi:10.1371/journal.pone.0116022
ZHANG J.MADDEN T.L., GENOME RES., vol. 7, 1997, pages 649 - 656

Also Published As

Publication number Publication date
US20200032262A1 (en) 2020-01-30
US11479769B2 (en) 2022-10-25
JP7306653B2 (ja) 2023-07-11
EP3597197A1 (en) 2020-01-22
JPWO2018169063A1 (ja) 2020-01-23
EP3597197A4 (en) 2021-01-06
CN110650742A (zh) 2020-01-03

Similar Documents

Publication Publication Date Title
US10526602B2 (en) Segmented micro RNA mimetics
US10190117B2 (en) Double-stranded antisense nucleic acid with exon-skipping effect
EP2427472B1 (en) Lipophilic polynucleotide conjugates
AU2022206704A1 (en) Nanoparticle formulations for delivery of nucleic acid complexes
EP3004347B1 (en) Double-stranded agents for delivering therapeutic oligonucleotides
US20150216892A1 (en) Cell-specific delivery of mirna modulators for the treatment of obesity and related disorders
CA2921556A1 (en) Compositions and methods for modulating rna
JP2015078196A (ja) 治療剤のためのunaオリゴマーおよびアミダイト
JPWO2015099122A1 (ja) 遺伝子発現制御のための人工ミミックmiRNAおよびその用途
JP6882735B2 (ja) 構造強化されたmiRNA阻害剤S−TuD
JPWO2019022196A1 (ja) 一本鎖オリゴヌクレオチド
JP6492014B2 (ja) 遺伝子発現制御のための人工マッチ型miRNAおよびその用途
JP7306653B2 (ja) 構造強化されたS-TuDを用いた新規がん治療法
JP6826984B2 (ja) アシル−アミノ−lnaオリゴヌクレオチドおよび/またはヒドロカルビル−アミノ−lnaオリゴヌクレオチド
WO2022250155A1 (ja) アンチセンス核酸
WO2024081970A2 (en) Novel antisense oligonucleotides containing hybrid morpholino and dna/rna(modified) with phosphorothioate (ps) linker for the treatment of cancer and autoimmune disorders
WO2022219404A1 (en) Gene therapy for inflammatory conditions
JP2017012028A (ja) 人工マッチ型miRNAおよびその用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18767416

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019506308

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018767416

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018767416

Country of ref document: EP

Effective date: 20191017