WO2018168706A1 - Iii族窒化物半導体基板 - Google Patents

Iii族窒化物半導体基板 Download PDF

Info

Publication number
WO2018168706A1
WO2018168706A1 PCT/JP2018/009296 JP2018009296W WO2018168706A1 WO 2018168706 A1 WO2018168706 A1 WO 2018168706A1 JP 2018009296 W JP2018009296 W JP 2018009296W WO 2018168706 A1 WO2018168706 A1 WO 2018168706A1
Authority
WO
WIPO (PCT)
Prior art keywords
nitride semiconductor
group iii
iii nitride
growth
substrate
Prior art date
Application number
PCT/JP2018/009296
Other languages
English (en)
French (fr)
Inventor
裕輝 後藤
裕次郎 石原
Original Assignee
古河機械金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河機械金属株式会社 filed Critical 古河機械金属株式会社
Priority to KR1020197025828A priority Critical patent/KR102464462B1/ko
Priority to PL18768215T priority patent/PL3597797T3/pl
Priority to US16/493,659 priority patent/US11662374B2/en
Priority to CN201880019839.6A priority patent/CN110431258A/zh
Priority to EP18768215.8A priority patent/EP3597797B1/en
Publication of WO2018168706A1 publication Critical patent/WO2018168706A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • C30B29/406Gallium nitride
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/38Nitrides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • G01R31/265Contactless testing
    • G01R31/2656Contactless testing using non-ionising electromagnetic radiation, e.g. optical radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/16Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0075Processes for devices with an active region comprising only III-V compounds comprising nitride compounds

Definitions

  • the present invention relates to a group III nitride semiconductor substrate.
  • a substrate including a group III nitride semiconductor layer having a semipolar plane as a main surface has been developed.
  • a related technique is disclosed in Patent Document 1.
  • Patent Document 1 discloses a layer made of a group III nitride semiconductor and having a normal of the main surface inclined in a range of 5 degrees to 17 degrees in the + c axis direction from the [11-22] axis. A substrate having the same is disclosed.
  • an MOCVD (metal-organic-chemical-vapor-deposition) method, molecular beam epitaxy method, HVPE is performed on a base substrate (sapphire substrate, group III nitride semiconductor substrate, etc.) whose main surface has a predetermined plane orientation.
  • a method of forming a layer as described above by epitaxially growing a group III nitride semiconductor using a (Hydride Vapor Phase Epitaxy) method or the like using a semipolar surface having a Ga polar component as a growth surface is disclosed.
  • Patent Document 2 discloses that a substrate including a group III nitride semiconductor layer having a semipolar surface as a main surface is manufactured by bonding crystals grown from a plurality of small pieces each having a semipolar surface as a main surface. Has been.
  • the exposed first and second main surfaces which are composed of a group III nitride semiconductor crystal and have a front-back relationship, are both semipolar surfaces, and have a wavelength of 325 nm and an output of 10 mW or more and 40 mW or less at room temperature.
  • helium is - cadmium irradiated with (He-Cd) laser, any variation coefficient of the emission wavelength of the first and second main surfaces each in PL (photoluminescence) measurement was mapped by area 1 mm 2 unit 0
  • a group III nitride semiconductor substrate having a thickness of 0.05% or less is provided.
  • the MOCVD method is used to form an N-polar semipolar plane (expressed by Miller index (hkml)) on the sapphire substrate.
  • L is a semipolar plane with l less than 0
  • a group III nitride semiconductor can be grown.
  • the group III nitride semiconductor is thickened on the template substrate or the self-supporting substrate by the HVPE method with the semipolar surface on the N polarity side as the growth surface.
  • a film can be grown.
  • a bulk crystal of a group III nitride semiconductor in which the exposed surface is a semipolar surface on the N polarity side is obtained.
  • a large number of group III nitride semiconductor free-standing substrates can be obtained by slicing the bulk crystal.
  • FIG. 1 shows an example of the processing flow of the method for manufacturing a group III nitride semiconductor substrate of this embodiment. As shown in the figure, it includes a substrate preparation step S10, a heat treatment step S20, a pre-flow step S30, a buffer layer formation step S40, a first growth step S50, and a second growth step S60. Although not shown, a cutting step may be provided after the second growth step S60.
  • a sapphire substrate is prepared.
  • the diameter of the sapphire substrate 10 is, for example, 1 inch or more.
  • the thickness of the sapphire substrate 10 is, for example, 250 ⁇ m or more.
  • the surface orientation of the main surface of the sapphire substrate is one of a plurality of elements that control the surface orientation of the growth surface of the group III nitride semiconductor layer epitaxially grown thereon.
  • the relationship between the element and the plane orientation of the growth surface of the group III nitride semiconductor layer is shown in the following examples.
  • a sapphire substrate whose main surface has a desired plane orientation is prepared.
  • the main surface of the sapphire substrate is, for example, a ⁇ 10-10 ⁇ plane or a plane inclined by a predetermined angle in a predetermined direction from the ⁇ 10-10 ⁇ plane.
  • the ⁇ 10-10 ⁇ plane is inclined at a predetermined angle in a predetermined direction, for example, the ⁇ 10-10 ⁇ plane is inclined at any angle between 0 ° and 0.5 ° in any direction. It may be a surface.
  • a surface in which the ⁇ 10-10 ⁇ plane is inclined by a predetermined angle in a predetermined direction is any of the ⁇ 10-10 ⁇ plane in a direction parallel to the a-plane and greater than 0 ° and less than 10.5 °
  • the surface may be inclined at an angle.
  • a surface in which the ⁇ 10-10 ⁇ plane is inclined at a predetermined angle in a predetermined direction is any of the ⁇ 10-10 ⁇ plane in a direction parallel to the a-plane and greater than 0 ° and less than 10.5 °
  • the surface may be inclined at an angle.
  • a surface obtained by inclining the ⁇ 10-10 ⁇ plane by a predetermined angle in a predetermined direction is 0.5 ° or more and 1.5 ° or less, 1.5 ° in the direction parallel to the a10 Surface inclined at any angle from 2.5 ° to 2.5 °, 4.5 ° to 5.5 °, 6.5 ° to 7.5 °, 9.5 ° to 10.5 ° It may be.
  • the heat treatment step S20 is performed after the substrate preparation step S10.
  • heat treatment is performed on the sapphire substrate under the following conditions.
  • Carrier gas H 2 or H 2 and N 2 (H 2 ratio 0 to 100%)
  • Carrier gas supply amount 3 slm or more and 50 slm or less (however, the supply amount varies depending on the size of the growth apparatus, and is not limited to this).
  • the heat treatment for the sapphire substrate may be performed while performing nitriding treatment or may be performed without performing nitriding treatment.
  • NH 3 of 0.5 slm or more and 20 slm or less is supplied onto the sapphire substrate during the heat treatment (however, the supply amount varies depending on the size of the growth apparatus, and is not limited to this).
  • heat treatment is performed without performing nitriding treatment, NH 3 is not supplied during the heat treatment.
  • the presence or absence of the nitriding treatment during the heat treatment may be one of a plurality of elements that control the plane orientation of the growth surface of the group III nitride semiconductor layer epitaxially grown on the main surface of the sapphire substrate.
  • the relationship between the element and the plane orientation of the growth surface of the group III nitride semiconductor layer is shown in the following examples.
  • the pre-flow process S30 is performed after the heat treatment process S20.
  • a metal-containing gas is supplied on the main surface of the sapphire substrate under the following conditions.
  • the pre-flow process S30 may be performed in, for example, an MOCVD apparatus.
  • the above conditions are for supplying trimethylaluminum and triethylaluminum, which are organic metal raw materials, as a metal-containing gas.
  • a metal-containing gas containing another metal is supplied instead of trimethylaluminum triethylaluminum, and another metal film such as a titanium film, a vanadium film, or a copper film is used instead of the aluminum film as the main surface of the sapphire substrate. It may be formed on top.
  • other metal carbide films such as aluminum carbide, titanium carbide, vanadium carbide and copper carbide, which are reaction films with hydrocarbon compounds such as methane, ethylene, and ethane generated from organometallic raw materials, are formed on the main surface of the sapphire substrate. It may be formed.
  • a metal film or a metal carbide film is formed on the main surface of the sapphire substrate by the pre-flow process S30.
  • the presence of the metal film is a condition for reversing the polarity of the crystal grown on the metal film. That is, the implementation of the pre-flow step S30 is one of a plurality of elements for setting the plane orientation of the growth surface of the group III nitride semiconductor layer epitaxially grown on the main surface of the sapphire substrate to the N-polar side surface.
  • the buffer layer forming step S40 is performed after the pre-streaming step S30.
  • a buffer layer is formed on the main surface of the sapphire substrate.
  • the thickness of the buffer layer is, for example, not less than 20 nm and not more than 300 nm.
  • the buffer layer is, for example, an AlN layer.
  • the buffer layer may be formed by epitaxially growing an AlN crystal under the following conditions.
  • MOCVD growth temperature 800 ° C. or more and 950 ° C. or less Pressure: 30 to 200 torr
  • Trimethylaluminum supply amount 20 ccm or more and 500 ccm or less
  • NH 3 supply amount 0.5 slm or more and 10 slm or less
  • Carrier gas H 2 or H 2 And N 2 (H 2 ratio 0-100%)
  • Carrier gas supply amount 3 slm to 50 slm (However, the gas supply amount varies depending on the size and configuration of the growth apparatus, and is not limited to this.)
  • the growth condition of the buffer layer forming step S40 may be one of a plurality of elements that control the plane orientation of the growth surface of the group III nitride semiconductor layer epitaxially grown on the main surface of the sapphire substrate.
  • the relationship between the element and the plane orientation of the growth surface of the group III nitride semiconductor layer is shown in the following examples.
  • the growth conditions (relatively low predetermined growth temperature, specifically 800 to 950 ° C. and relatively low pressure) in the buffer layer forming step S40 are conditions for growing AlN while maintaining N polarity. It becomes. That is, the growth conditions in the buffer layer forming step S40 are a plurality of elements for setting the plane orientation of the growth surface of the group III nitride semiconductor layer epitaxially grown on the main surface of the sapphire substrate to the N-polar side surface. It is one of.
  • the first growth step S50 is performed after the buffer layer formation step S40.
  • a group III nitride semiconductor crystal eg, GaN crystal
  • the growth surface has a predetermined plane orientation (a semipolar surface on the N polarity side).
  • the group III nitride semiconductor layer (first growth layer) is formed.
  • the thickness of the first growth layer is, for example, not less than 1 ⁇ m and not more than 20 ⁇ m.
  • Growth method MOCVD method Growth temperature: 800 ° C or higher and 1025 ° C or lower Pressure: 30 to 200 torr TMGa supply amount: 25 sccm to 1000 sccm NH3 supply amount: 1 slm to 20 slm
  • Carrier gas H 2 or H 2 and N 2 (H 2 ratio 0 to 100%)
  • Carrier gas supply amount 3 slm to 50 slm (However, the gas supply amount varies depending on the size and configuration of the growth apparatus, and is not limited to this.) Growth rate: 10 ⁇ m / h or more
  • the growth conditions (relatively low growth temperature, relatively low pressure, and relatively fast growth rate) in the first growth step S50 are conditions for growing GaN while maintaining N polarity. That is, the growth conditions in the first growth step S50 include a plurality of elements for making the plane orientation of the growth surface of the group III nitride semiconductor layer epitaxially grown on the main surface of the sapphire substrate the N-polar side surface. One of them.
  • the sapphire substrate 21, the buffer layer 22, and the group III nitride semiconductor layer (first growth layer 23) are stacked in this order as shown in FIG.
  • the template substrate 20 in which the plane orientation of 24 is a semipolar plane on the N polarity side can be manufactured.
  • the plane orientation of the growth surface 24 can be a desired semipolar plane.
  • the buffer layer 22 After obtaining the laminated body which the sapphire substrate 21, the buffer layer 22, and the group III nitride semiconductor layer (1st growth layer) 23 laminated
  • the buffer layer 22 By removing the buffer layer 22, it is possible to manufacture the free-standing substrate 10 including the first growth layer 23 as shown in FIG.
  • the means for removing the sapphire substrate 21 and the buffer layer 22 is not particularly limited. For example, you may isolate
  • a release layer may be formed between the sapphire substrate 21 and the buffer layer 22.
  • the laminate is heated at a temperature higher than the heating temperature for forming the first growth layer 23. It can be separated into a part on the sapphire substrate 21 side and a part on the first growth layer 23 side with the layer part as a boundary.
  • the second growth step S60 is performed after the first growth step S50.
  • a group III nitride semiconductor crystal e.g., GaN crystal
  • the growth surface is in a predetermined plane orientation (semipolar surface on the N polarity side) III
  • a group nitride semiconductor layer (second growth layer) is formed.
  • the thickness of the second growth layer is, for example, 1.0 mm or more.
  • HVPE method Growth temperature: 900 ° C. or more and 1100 ° C. or less Growth time: 1 hour or more V / III ratio: 1 or more and 20 or less Growth film thickness: 1.0 mm or more
  • the second growth step S60 may be performed in a plurality of steps instead of continuously. For example, after growing to a predetermined film thickness by the HVPE method, it may be once cooled and then grown again to the predetermined film thickness by the HVPE method. After forming the group III nitride semiconductor layer in the first step, once it is cooled, cracks occur in the group III nitride semiconductor layer. Thereby, internal stress is relieved. Thereafter, when a group III nitride semiconductor is epitaxially grown on the group III nitride semiconductor layer having cracks, the crystals separated across the cracks are associated with each other as they grow. And since internal stress is relieved by the said cooling, even if it thickens, it is hard to produce a crack in a bulk crystal.
  • the second growth step S60 may be performed while the template substrate 20 or the freestanding substrate 10 is fixed to a susceptor such as a carbon susceptor.
  • a susceptor such as a carbon susceptor.
  • the fixing method include a method using an alumina adhesive, but are not limited thereto. By these characteristic methods, a large-diameter bulk crystal having a maximum diameter of 50 mm or more and 4 inches or less is realized.
  • a laminate having the template substrate 20 and the second growth layer 25 (see FIG. 4) or a laminate having the freestanding substrate 10 and the second growth layer 25 (see FIG. 5) is obtained.
  • the group III nitride semiconductor layer is cut out from the bulk crystal including the first growth layer 23 and the second growth layer 25 by slicing or the like.
  • a free-standing substrate 30 (see FIG. 6) made of a nitride semiconductor layer is obtained.
  • the thickness of the freestanding substrate 30 is, for example, not less than 300 ⁇ m and not more than 1000 ⁇ m.
  • the group III nitride semiconductor layer cut out by slicing or the like may consist of only the second growth layer 25, or may include the first growth layer 23 and the second growth layer 25, It may consist only of the growth layer 23.
  • the group III nitride semiconductor layer cut by slicing or the like has a growth thickness within the bulk crystal including the first growth layer 23 and the second growth layer 25 (at the time of starting the growth of the first growth layer 23). It is preferable that the thickness is 3 mm or more. The reason for this is that the dislocation defect density in the crystal is approximately 1 ⁇ 10 7 cm ⁇ 2 or less, which is suitable for a device substrate.
  • the free-standing substrate 30 is made of a group III nitride semiconductor crystal, and the exposed first and second main surfaces in a front-back relationship are both semipolar surfaces.
  • the first main surface is a semipolar surface on the N polarity side
  • the second main surface is a semipolar surface on the Ga polarity side (semipolar surface represented by Miller index (hkml), where l is greater than 0).
  • the free-standing substrate 30 is composed of a group III nitride semiconductor crystal that is epitaxially grown with a semipolar surface on the N polarity side as a growth surface.
  • the freestanding substrate 30 manufactured by the above characteristic manufacturing method has a wavelength of 325 nm and an output of 10 mW to 40 mW at room temperature (10 ° C. to 30 ° C.).
  • Each of the first and second principal surfaces has a feature that the variation coefficient of the emission wavelength of each of the first and second principal surfaces is 0.05% or less in the PL measurement in which the cadmium (He—Cd) laser is irradiated and the mapping is performed in an area of 1 mm 2. . That is, both the first and second main surfaces have extremely small variations in the emission wavelength.
  • the variation coefficient of the emission wavelength is calculated by dividing the standard deviation of the emission wavelength by the average value of the emission wavelength.
  • the self-standing substrate 30 manufactured by the characteristic manufacturing method described above has a light emission intensity of the second main surface (a semipolar surface on the Ga polarity side) in the PL measurement performed under the above conditions.
  • the coefficient of variation is 15% or less, preferably 10% or less. That is, the second main surface has a small in-plane variation in emission intensity in the PL measurement.
  • the variation coefficient of emission intensity is calculated by dividing the standard deviation of emission intensity by the average value of emission intensity.
  • the self-supporting substrate 30 manufactured by the above characteristic manufacturing method has a variation in the half width of the PL spectrum of each of the first and second main surfaces in the PL measurement performed under the above conditions. All of the coefficients are characterized by 3.0% or less. That is, both the first and second main surfaces have a small in-plane variation of the half width of the PL spectrum in the PL measurement.
  • the variation coefficient of the half width of the PL spectrum is calculated by dividing the standard deviation of the half width of the PL spectrum by the average value of the half width of the PL spectrum.
  • a self-standing substrate 30 (Group III nitride semiconductor substrate) having a semipolar surface as a main surface and suppressing variations in in-plane optical characteristics is realized.
  • a plurality of devices such as an optical device
  • variation in quality among the plurality of devices can be suppressed.
  • the yield can be improved.
  • a device such as an optical device
  • the second main surface a semipolar surface on the Ga polarity side
  • the bulk crystal manufactured by the above characteristic manufacturing method has a large maximum diameter of 50 mm or more and 4 inches or less.
  • the free-standing substrate 30 obtained by cutting out from such a large-diameter bulk crystal also has a large diameter of 50 mm or more and 4 inches or less.
  • a sapphire substrate was prepared in which the surface orientation of the main surface was inclined by 2 ° from the m-plane ((10-10) plane) in a direction parallel to the a-plane.
  • the thickness of the sapphire substrate was 430 ⁇ m and the diameter was 2 inches.
  • the heat treatment step S20 was performed on the prepared sapphire substrate under the following conditions.
  • the pre-streaming step S30 was performed under the following conditions.
  • the buffer layer forming step S40 was performed under the following conditions to form an AlN layer.
  • the first growth step S50 was performed under the following conditions to form a group III nitride semiconductor layer.
  • the growth temperature of the first sample was controlled to 900 ° C. ⁇ 25 ° C.
  • the growth temperature of the second sample was controlled to 1050 ° C. ⁇ 25 ° C. That is, the first sample is a sample that satisfies all of the above-described “plural elements for setting the plane orientation of the growth surface of the group III nitride semiconductor layer to the N-polar surface”.
  • the second sample is a part (the growth in the first growth step S50) of the “plural elements for setting the plane orientation of the growth surface of the group III nitride semiconductor layer to the N-polar side surface” described above. The sample does not satisfy (temperature).
  • the plane orientation of the growth surface of the group III nitride semiconductor layer of the first sample is 8. ° in the direction parallel to the m-plane and inclined by 5.0 ° in the ⁇ a plane direction from the ( ⁇ 1-12-4) plane. The surface was inclined by 5 ° or less.
  • the plane orientation of the growth surface of the Group III nitride semiconductor layer of the second sample is 8.5 ° in the direction inclined by 5.0 ° from the (11-24) plane in the a-plane direction and parallel to the m-plane. The surface was inclined below.
  • FIG. 7 shows the XRD pole measurement result of the (-1-12-4) plane or the (11-24) plane in the first sample. It can be confirmed that the diffraction peak is shifted by several degrees from the center point of the pole.
  • -a plane direction is 5.0 ° and 8.5 ° is parallel to the m plane, or a plane direction is 5.0 ° and 8 ° is parallel to the m plane. It can be confirmed that the position is 5 °.
  • the plane orientation of the growth surface of the group III nitride semiconductor layer is adjusted by adjusting the “plural elements for adjusting the plane orientation of the growth surface of the group III nitride semiconductor layer” described above. Make sure you can.
  • the thickness of the sapphire substrate was 430 ⁇ m and the diameter was 2 inches.
  • each heat treatment process S20 was performed on the following conditions with respect to each prepared sapphire substrate.
  • Samples with different nitriding treatment during heat treatment were prepared. Specifically, both a sample in which 20 slm NH 3 was supplied during heat treatment to perform nitriding treatment and a sample in which NH 3 was not supplied during heat treatment and nitriding treatment was not performed were prepared.
  • the pre-streaming step S30 was performed under the following conditions.
  • a buffer layer (AlN buffer layer) having a thickness of about 150 nm was formed on the main surface (exposed surface) of the sapphire substrate under the following conditions.
  • the growth temperature was varied between 700 ° C. and 1110 ° C. for each sample.
  • Group III nitride semiconductor layer having a thickness of about 15 ⁇ m was formed on the buffer layer under the following conditions.
  • the group III nitride semiconductor substrate 1 in which the sapphire substrate, the buffer layer, and the group III nitride semiconductor layer were stacked in this order was manufactured.
  • Tables 1 to 7 show the relationship between “a plurality of elements for adjusting the plane orientation of the growth surface of the group III nitride semiconductor layer” and the plane orientation of the growth surface of the group III nitride semiconductor layer.
  • the surface orientation of the main surface of the sapphire substrate is shown.
  • the presence / absence of the nitriding treatment at the time of temperature rise in the heat treatment step S20 (“present” or “absent”) is shown.
  • the presence / absence of trimethylaluminum pre-flow process (“Yes” or “No”) is shown.
  • the growth temperature in the buffer layer forming step is shown.
  • the growth temperature in the GaN layer forming step is shown.
  • the plane orientation of the growth surface of group III nitride semiconductor layer is shown.
  • the plane orientation of the growth surface of the group III nitride semiconductor layer is reduced to half. It turns out that it can adjust in polarity and Ga polarity. And based on the result of the first evaluation and the result of the second evaluation, all of the “plural elements for setting the plane orientation of the growth surface of the group III nitride semiconductor layer to the N-polar surface” In addition, by adjusting the “plural elements for adjusting the plane orientation of the growth surface of the group III nitride semiconductor layer”, the plane orientation of the growth surface of the group III nitride semiconductor layer is made semi-polar. It can also be seen that the adjustment can be made in the N polarity.
  • a GaN layer (first growth layer 23) was formed through a buffer layer on a ⁇ 4 inch m-plane sapphire substrate having an off angle of 2 ° in the a-plane direction by MOCVD.
  • the main surface (exposed surface) of the first growth layer 23 was a semipolar surface on the N polarity side. Specifically, the main surface (exposed surface) of the first growth layer 23 has an off angle of about 5 ° in the c-plane direction and about 8 ° in the m-plane direction from the (-1-12-4) plane. It was a surface.
  • a GaN crystal was grown on the first growth layer 23 by the HVPE method to form a GaN layer (second growth layer 25).
  • a crystal having a diameter of about 54 mm is cut out by slicing a portion having a growth thickness of 3 mm or more in the bulk crystal composed of the first growth layer 23 and the second growth layer 25 perpendicularly to the growth direction, and then shaping and polishing. did.
  • a free-standing substrate having a main surface of an approximately (-1-12-4) plane of ⁇ 50 mm was obtained.
  • Comparative example A 10 mm square piece having a substantially (11-24) plane as a principal plane was cut out from the bulk crystal of GaN grown on c-plane. Then, the nine small pieces were placed in 3 rows ⁇ 3 columns on the support base. In addition, each was placed so that the substantially (11-24) plane was exposed. Thereafter, a GaN crystal was grown on the small piece by HVPE to form a GaN layer.
  • GaN crystal having an approximately (11-24) plane of about 30 mm ⁇ 30 mm ⁇ 5 mm as a main surface was obtained.
  • the GaN crystal was sliced into a plurality perpendicular to the growth direction, by shaping polishing, free-standing substrate having a main surface substantially (11-24) plane of about 25 mm 2 square was obtained.
  • Comparative Example 1 a self-supporting substrate cut out from a portion close to nine pieces was referred to as Comparative Example 1, and a substrate cut out from a portion close to the final growth surface (a portion far from nine pieces) was set as Comparative Example 2.
  • Comparative Example 2 a part of the free-standing substrate was chipped.
  • the comparative example 2 had a part crack.
  • a thick film was grown by the HVPE method using the semipolar surface on the N polarity side as the growth surface
  • a thick film was grown by the HVPE method using the semipolar surface on the Ga polarity side as the growth surface.
  • Irradiation laser He-Cd laser (wavelength 325 nm, rated output 35 mW)
  • Mapping device YWaferMapper GS4 manufactured by Y Systems Co., Ltd.
  • Measurement temperature room temperature
  • the mapping unit (measurement unit): 1 mm 2 square measurement wavelength range: 340 ⁇ 700 nm
  • Measurement target region (Example): ⁇ 46 mm in-circle measurement target region positioned at the approximate center of the freestanding substrate (Comparative Examples 1 and 2): ⁇ 25 mm region positioned at the approximate center of the freestanding substrate
  • FIGS. 8 to 10 show the results of PL measurement on the approximate ( ⁇ 1-12-4) plane of the example.
  • FIGS. 11 to 13 show the results of PL measurement for the approximate (11-24) plane of the example.
  • 14 to 16 show the results of PL measurement for the substantially (11-24) plane of Comparative Example 1.
  • FIG. FIGS. 17 to 19 show the results of PL measurement for the substantially (11-24) plane of Comparative Example 2.
  • FIG. 11, FIG. 14 and FIG. 17 show images in which the emission wavelengths of a plurality of measurement units are mapped, and histograms of the emission wavelengths.
  • “Av” is the average value of the emission wavelength
  • “StdDev” is the standard deviation of the emission wavelength. From these results, the variation in the in-plane emission wavelength of the substantially (-1-12-4) surface and the substantially (11-24) surface of the Example is smaller than that of Comparative Example 1 and Comparative Example 2. I understand.
  • FIG. 12, FIG. 15 and FIG. 18 show an image in which the emission intensity of each of a plurality of measurement units is mapped and a histogram of the emission intensity.
  • “Av” is an average value of emission intensity
  • “StdDev” is a standard deviation of emission intensity. Note that the lower peak in the histograms of FIGS. 15 and 18 counts the color of the region other than the measurement target region. From these results, it can be seen that the variation in the in-plane emission intensity is smaller in the substantially (11-24) plane of the Example than in Comparative Example 1 and Comparative Example 2.
  • FIG. 13, FIG. 16 and FIG. 19 show an image in which the half width of the PL spectrum (the spectrum of emission intensity for each wavelength) of each of a plurality of measurement units is mapped, and a histogram of the half width.
  • “Av” is an average value of the half width
  • “StdDev” is a standard deviation of the half width. From these results, the variation in the half-value width in the surface of the substantially (-1-12-4) surface and the substantially (11-24) surface of the example is smaller than that of Comparative Example 1 and Comparative Example 2. I understand.
  • Table 8 shows the measurement results of the approximately (-1-12-4) plane, the approximately (11-24) plane, Comparative Example 1 and Comparative Example 2 of the examples.
  • the table shows the average value of each emission wavelength, the variation coefficient of the emission wavelength, the average value of the emission intensity, the variation coefficient of the emission intensity, the average value of the half width, and the variation coefficient of the half width.
  • the variation coefficient of the emission wavelength is 0.05% or less for both the ( ⁇ 1-12-4) plane and the (11-24) plane in the examples.
  • the variation coefficient of the emission wavelength is larger than 0.05%.
  • the variation coefficient of the emission intensity is 15% or less, preferably 10% or less for the (11-24) plane of the example. In both Comparative Example 1 and Comparative Example 2, the variation coefficient of the emission intensity is greater than 15%.
  • the variation coefficient of the full width at half maximum is 3.0% or less for both the approximately (-1-12-4) plane and the approximately (11-24) plane of the example.
  • the coefficient of variation of the full width at half maximum is greater than 3.0%.
  • a template 20 in which a GaN layer (first growth layer 23) is formed by MOCVD on a sapphire substrate 21 having a diameter of ⁇ 4 inches and a principal plane of m-plane orientation via a buffer layer 22 is formed.
  • the plane orientation of the principal surface of the first growth layer 23 is a plane having an off angle of about 5 ° in the c-plane direction and about 8 ° in the m-plane direction from the (-1-12-4) plane, and the diameter is ⁇ 4 It was inches.
  • the template substrate 20 was fixed to a carbon susceptor. Specifically, the back surface of the sapphire substrate 21 was bonded to the main surface of the carbon susceptor using an alumina adhesive.
  • GaN group III nitride semiconductor
  • the laminate including the carbon susceptor, the template substrate 20 and a part of the second growth layer 25 was taken out from the HVPE apparatus and cooled to room temperature.
  • the laminated body after cooling was observed, cracks were present on the surface.
  • a polycrystalline group III nitride semiconductor adheres along the outer periphery of the laminated body, and these are connected to each other to form an annular shape, and the laminated body is held therein.
  • a group III nitride semiconductor (GaN) is formed by HVPE on the main surface of the GaN layer (a part of the second growth layer 25) where cracks exist. Grew. Thus, a GaN layer (another part of the second growth layer 25) composed of a single crystal group III nitride semiconductor was formed.
  • the growth conditions are as follows.
  • the maximum diameter of the second growth layer 25 was approximately ⁇ 4 inches.
  • the maximum diameter of the surface including the second growth layer 25 and the polycrystalline group III nitride semiconductor along the outer periphery thereof was about 130 mm. Further, no cracks occurred in the second growth layer 25.
  • the second growth layer 25 was sliced to obtain a plurality of freestanding substrates 30.
  • the free-standing substrate 30 was not cracked, and the maximum diameter was approximately ⁇ 4 inches.
  • the exposed first and second main surfaces which are composed of a group III nitride semiconductor crystal and have a front-back relationship, are both semipolar surfaces, and have a wavelength of 325 nm and an output of 10 mW or more and 40 mW or less at room temperature.
  • the variation coefficient of the emission wavelength of each of the first and second principal surfaces in the PL measurement in which helium-cadmium (He—Cd) laser is irradiated and mapping is performed in an area of 1 mm 2 is 0.05%.
  • the following group III nitride semiconductor substrate 2.
  • a group III nitride semiconductor substrate in which the variation coefficient of the emission intensity of the second main surface in PL measurement performed under the above conditions is 15% or less. 3.
  • the group III nitride semiconductor substrate, wherein the second main surface is a semipolar surface on the Ga polarity side. 5).
  • a group III nitride semiconductor substrate in which the coefficient of variation of the half width of the PL spectrum of each of the first and second main surfaces in the PL measurement performed under the above conditions is 3.0% or less. 6).
  • a group III nitride semiconductor substrate according to any one of 1 to 5 A group III nitride semiconductor substrate having a thickness of 300 ⁇ m or more and 1000 ⁇ m or less.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Vapour Deposition (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Led Devices (AREA)

Abstract

本発明によれば、III族窒化物半導体結晶で構成され、表裏の関係にある露出した第1及び第2の主面はいずれも半極性面であり、室温下において、波長が325nmであり、出力が10mW以上40mW以下であるヘリウム-カドミウム(He-Cd)レーザーを照射し、面積1mm2単位でマッピングを行ったPL(photoluminescence)測定における発光波長の標準偏差を発光波長の平均値で割ることで算出される第1及び第2の主面各々の発光波長の変動係数はいずれも0.05%以下であるIII族窒化物半導体基板(自立基板(30))が提供される。当該自立基板(30)上にデバイスを作製すると、デバイス間の品質のばらつきが抑制される。

Description

III族窒化物半導体基板
 本発明は、III族窒化物半導体基板に関する。
 半極性面を主面とするIII族窒化物半導体層を含む基板の開発がなされている。関連する技術が、特許文献1に開示されている。
 特許文献1には、III族窒化物半導体で構成された層であって、主面の法線が[11-22]軸から+c軸方向に5度以上17度以下の範囲で傾斜した層を有する基板が開示されている。
 その製造方法としては、主面が所定の面方位となった下地基板(サファイア基板、III族窒化物半導体基板等)の上に、MOCVD(metal organic chemical vapor deposition)法、分子線エピタキシー法、HVPE(Hydride Vapor Phase Epitaxy)法等で、Ga極性成分を有する半極性面を成長面としてIII族窒化物半導体をエピタキシャル成長させることで、上述のような層を形成する方法が開示されている。
 特許文献2には、半極性面を主面とした複数の小片各々から成長した結晶を接合して、半極性面を主面とするIII族窒化物半導体層を含む基板を製造することが開示されている。
特開2016-12717号公報 特許第5332168号
 特許文献1に開示の技術のように、Ga極性成分を有する半極性面を成長面とした成長では、意図しない酸素原子の取り込み量が大きくなる。このため、厚く成長するほど結晶性が乱れる。また、特許文献2に開示されている技術の場合、複数の小片の境界上の接合部に、窪みや欠陥等が発生する。これらの結果、結晶の光学特性が乱れる(基板面内の光学特性が不均一となる)。このような基板上に複数のデバイス(光学デバイス等)を作製すると、複数のデバイス間で品質がばらつき得る。本発明は、当該問題を解決することを課題とする。
 本発明によれば、
 III族窒化物半導体結晶で構成され、表裏の関係にある露出した第1及び第2の主面はいずれも半極性面であり、室温下において、波長が325nmであり、出力が10mW以上40mW以下であるヘリウム-カドミウム(He-Cd)レーザーを照射し、面積1mm単位でマッピングを行ったPL(photoluminescence)測定における前記第1及び第2の主面各々の発光波長の変動係数はいずれも0.05%以下であるIII族窒化物半導体基板が提供される。
 本発明によれば、III族窒化物半導体基板上に作製された複数のデバイス間の品質のばらつきを抑制できる。
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。
本実施形態のIII族窒化物半導体基板の製造方法の処理の流れの一例を示すフローチャートである。 本実施形態のテンプレート基板20の一例を模式的に示す側面図である。 本実施形態の自立基板10の一例を模式的に示す側面図である。 本実施形態のIII族窒化物半導体基板の製造方法で得られる構造体の一例を模式的に示す側面図である。 本実施形態のIII族窒化物半導体基板の製造方法で得られる構造体の一例を模式的に示す側面図である。 本実施形態の自立基板30の一例を模式的に示す側面図である。 本実施形態の自立基板10及びテンプレート基板20の特性を示す図である。 本実施形態の自立基板30の特性を示す図である。 本実施形態の自立基板30の特性を示す図である。 本実施形態の自立基板30の特性を示す図である。 本実施形態の自立基板30の特性を示す図である。 本実施形態の自立基板30の特性を示す図である。 本実施形態の自立基板30の特性を示す図である。 比較例の基板の特性を示す図である。 比較例の基板の特性を示す図である。 比較例の基板の特性を示す図である。 比較例の基板の特性を示す図である。 比較例の基板の特性を示す図である。 比較例の基板の特性を示す図である。
 以下、本実施形態のIII族窒化物半導体基板の製造方法について図面を用いて説明する。なお、図はあくまで発明の構成を説明するための概略図であり、各部材の大きさ、形状、数、異なる部材の大きさの比率などは図示するものに限定されない。
 まず、III族窒化物半導体基板の製造方法の概要について説明する。特徴的な複数の工程を含む本実施形態のIII族窒化物半導体基板の製造方法によれば、MOCVD法で、サファイア基板上に、N極性側の半極性面(ミラー指数(hkml)で表され、lが0未満の半極性面)を成長面としてIII族窒化物半導体を成長させることができる。結果、露出面がN極性側の半極性面となったIII族窒化物半導体層がサファイア基板上に位置するテンプレート基板や、当該テンプレート基板からサファイア基板を除去して得られるIII族窒化物半導体の自立基板が得られる。
 そして、本実施形態のIII族窒化物半導体基板の製造方法によれば、上記テンプレート基板や自立基板上に、HVPE法で、N極性側の半極性面を成長面としてIII族窒化物半導体を厚膜成長させることができる。結果、露出面がN極性側の半極性面となったIII族窒化物半導体のバルク結晶が得られる。そして、バルク結晶をスライス等することで、III族窒化物半導体の自立基板が多数得られる。
 次に、III族窒化物半導体基板の製造方法を詳細に説明する。図1に、本実施形態のIII族窒化物半導体基板の製造方法の処理の流れの一例を示す。図示するように、基板準備工程S10と、熱処理工程S20と、先流し工程S30と、バッファ層形成工程S40と、第1の成長工程S50と、第2の成長工程S60とを有する。図示しないが、第2の成長工程S60の後に、切出工程を有してもよい。
 基板準備工程S10では、サファイア基板を準備する。サファイア基板10の直径は、例えば、1インチ以上である。また、サファイア基板10の厚さは、例えば、250μm以上である。
 サファイア基板の主面の面方位は、その上にエピタキシャル成長されるIII族窒化物半導体層の成長面の面方位をコントロールする複数の要素の中の1つである。当該要素とIII族窒化物半導体層の成長面の面方位との関係は、以下の実施例で示す。基板準備工程S10では、主面が所望の面方位であるサファイア基板を準備する。
 サファイア基板の主面は、例えば{10-10}面、又は、{10-10}面を所定の方向に所定角度傾斜した面である。
 {10-10}面を所定の方向に所定角度傾斜した面は、例えば、{10-10}面を任意の方向に0°より大0.5°以下の中の何れかの角度で傾斜した面であってもよい。
 また、{10-10}面を所定の方向に所定角度傾斜した面は、{10-10}面をa面と平行になる方向に0°より大10.5°未満の中のいずれかの角度で傾斜した面であってもよい。または、{10-10}面を所定の方向に所定角度傾斜した面は、{10-10}面をa面と平行になる方向に0°より大10.5°以下の中のいずれかの角度で傾斜した面であってもよい。例えば、{10-10}面を所定の方向に所定角度傾斜した面は、{10-10}面をa面と平行になる方向に0.5°以上1.5°以下、1.5°以上2.5°以下、4.5°以上5.5°以下、6.5°以上7.5°以下、9.5°以上10.5°以下の中のいずれかの角度で傾斜した面であってもよい。
 熱処理工程S20は、基板準備工程S10の後に行われる。熱処理工程S10では、サファイア基板に対して、以下の条件で熱処理を行う。
 温度:800℃以上1200℃以下
 圧力:30torr以上760torr以下
 熱処理時間:5分以上20分以下
 キャリアガス:H、又は、HとN(H比率0~100%)
 キャリアガス供給量:3slm以上50slm以下(ただし、成長装置のサイズにより供給量は変動する為、これに限定されない。)
 なお、サファイア基板に対する熱処理は、窒化処理を行いながら行う場合と、窒化処理を行わずに行う場合とがある。窒化処理を行いながら熱処理を行う場合、熱処理時に0.5slm以上20slm以下のNHがサファイア基板上に供給される(ただし成長装置のサイズにより供給量は変動する為、これに限定されない。)。また、窒化処理を行わずに熱処理を行う場合、熱処理時にNHが供給されない。
 熱処理時の窒化処理の有無は、サファイア基板の主面上にエピタキシャル成長されるIII族窒化物半導体層の成長面の面方位をコントロールする複数の要素の中の1つとなる場合がある。当該要素とIII族窒化物半導体層の成長面の面方位との関係は、以下の実施例で示す。
 先流し工程S30は、熱処理工程S20の後に行われる。先流し工程S30では、サファイア基板の主面上に以下の条件で金属含有ガスを供給する。先流し工程S30は、例えばMOCVD装置内で行われてもよい。
 温度:500℃以上1000℃以下
 圧力:30torr以上200torr以下
 トリメチルアルミニウム供給量、供給時間:20ccm以上500ccm以下、1秒以上60秒以下
 キャリアガス:H、又は、HとN(H比率0~100%)
 キャリアガス供給量:3slm以上50slm以下(ただしガスの供給量は成長装置のサイズや構成により変動する為、これに限定されない。)
 上記条件は、金属含有ガスとして有機金属原料であるトリメチルアルミニウム、トリエチルアルミニウムを供給する場合のものである。当該工程では、トリメチルアルミニウムトリエチルアルミニウムに代えて他の金属を含有する金属含有ガスを供給し、アルミニウム膜に代えて、チタン膜、バナジウム膜や銅膜等の他の金属膜をサファイア基板の主面上に形成してもよい。また、有機金属原料から生成するメタン、エチレン、エタン等の炭化水素化合物との反応膜である炭化アルミニウム、炭化チタン、炭化バナジウムや炭化銅等の他の炭化金属膜をサファイア基板の主面上に形成してもよい。
 先流し工程S30により、サファイア基板の主面上に金属膜や炭化金属膜が形成される。当該金属膜の存在が、その上に成長させる結晶の極性を反転させるための条件となる。すなわち、先流し工程S30の実施は、サファイア基板の主面上にエピタキシャル成長されるIII族窒化物半導体層の成長面の面方位を、N極性側の面とするための複数の要素の中の1つである。
 バッファ層形成工程S40は、先流し工程S30の後に行われる。バッファ層形成工程S40では、サファイア基板の主面上にバッファ層を形成する。バッファ層の厚さは、例えば、20nm以上300nm以下である。
 バッファ層は、例えば、AlN層である。例えば、以下の条件でAlN結晶をエピタキシャル成長させ、バッファ層を形成してもよい。
 成長方法:MOCVD法
 成長温度:800℃以上950℃以下
 圧力:30torr以上200torr以下
 トリメチルアルミニウム供給量:20ccm以上500ccm以下
 NH供給量:0.5slm以上10slm以下
 キャリアガス:H、又は、HとN(H比率0~100%)
 キャリアガス供給量:3slm以上50slm以下(ただしガスの供給量は成長装置のサイズや構成により変動する為、これに限定されない。)
 バッファ層形成工程S40の成長条件は、サファイア基板の主面上にエピタキシャル成長されるIII族窒化物半導体層の成長面の面方位をコントロールする複数の要素の中の1つとなる場合がある。当該要素とIII族窒化物半導体層の成長面の面方位との関係は、以下の実施例で示す。
 また、バッファ層形成工程S40における成長条件(比較的低めの所定の成長温度、具体的には800~950℃、および比較的低い圧力)は、N極性を維持しながらAlNを成長させるための条件となる。すなわち、バッファ層形成工程S40における成長条件は、サファイア基板の主面上にエピタキシャル成長されるIII族窒化物半導体層の成長面の面方位を、N極性側の面とするための複数の要素の中の1つである。
 第1の成長工程S50は、バッファ層形成工程S40の後に行われる。第1の成長工程S50では、バッファ層の上に、以下の成長条件でIII族窒化物半導体結晶(例:GaN結晶)をエピタキシャル成長させ、成長面が所定の面方位(N極性側の半極性面)となっているIII族窒化物半導体層(第1の成長層)を形成する。第1の成長層の厚さは、例えば、1μm以上20μm以下である。
 成長方法:MOCVD法
 成長温度:800℃以上1025℃以下 
 圧力:30torr以上200torr以下
 TMGa供給量:25sccm以上1000sccm以下
 NH3供給量:1slm以上20slm以下
 キャリアガス:H、又は、HとN(H比率0~100%)
 キャリアガス供給量:3slm以上50slm以下(ただしガスの供給量は成長装置のサイズや構成により変動する為、これに限定されない。)
 成長速度:10μm/h以上
 第1の成長工程S50における成長条件(比較的低い成長温度、比較的低い圧力、比較的速い成長速度)は、N極性を維持しながらGaNを成長させるための条件となる。すなわち、第1の成長工程S50における成長条件は、サファイア基板の主面上にエピタキシャル成長されるIII族窒化物半導体層の成長面の面方位を、N極性側の面とするための複数の要素の中の1つである。
 以上により、図2に示すような、サファイア基板21と、バッファ層22と、III族窒化物半導体層(第1の成長層23)とがこの順に積層し、第1の成長層23の成長面24の面方位がN極性側の半極性面となっているテンプレート基板20を製造することができる。また、製造条件を上記条件の範囲で調整することで、成長面24の面方位を所望の半極性面とすることができる。
 また、図2に示すような、サファイア基板21と、バッファ層22と、III族窒化物半導体層(第1の成長層)23とがこの順に積層した積層体を得た後、サファイア基板21及びバッファ層22を除去することで、図3に示すような第1の成長層23からなる自立基板10を製造することができる。
 サファイア基板21及びバッファ層22を除去する手段は特段制限されない。例えば、サファイア基板21と第1の成長層23との間の線膨張係数差に起因する応力を利用して、これらを分離してもよい。そして、バッファ層22を研磨やエッチング等で除去してもよい。
 その他の除去例として、サファイア基板21とバッファ層22との間に剥離層を形成してもよい。例えば、炭化物(炭化アルミニウム、炭化チタン、炭化ジルコニウム、炭化ハフニウム、炭化バナジウムまたは炭化タンタル)が分散した炭素層、及び、炭化物(炭化アルミニウム、炭化チタン、炭化ジルコニウム、炭化ハフニウム、炭化バナジウムまたは炭化タンタル)の層の積層体をサファイア基板21上に形成した後に、窒化処理を行った層を剥離層として形成してもよい。
 このような剥離層の上にバッファ層22及び第1の成長層23を形成した後、当該積層体を、第1の成長層23を形成する際の加熱温度よりも高い温度で加熱すると、剥離層の部分を境界にして、サファイア基板21側の部分と、第1の成長層23側の部分とに分離することができる。第1の成長層23側の部分から、バッファ層22等を研磨やエッチング等で除去することで、図3に示すような第1の成長層23からなる自立基板10を得ることができる。
 第2の成長工程S60は、第1の成長工程S50の後に行われる。第2の成長工程S60では、上述したテンプレート基板20(図2参照)の第1の成長層23、又は、自立基板10(図3参照)の第1の成長層23の主面(N極性側の半極性面)上に、以下の成長条件でIII族窒化物半導体結晶(例:GaN結晶)をエピタキシャル成長させ、成長面が所定の面方位(N極性側の半極性面)となっているIII族窒化物半導体層(第2の成長層)を形成する。第2の成長層の厚さは、例えば、1.0mm以上である。
 成長方法:HVPE法
 成長温度:900℃以上1100℃以下
 成長時間:1時間以上
 V/III比:1以上20以下
 成長膜厚:1.0mm以上
 なお、第2の成長工程S60は、連続的に行うのでなく、複数のステップに分けて行ってもよい。例えば、HVPE法で所定膜厚まで成長した後、一旦冷却し、その後再びHVPE法で所定膜厚まで成長させてもよい。第1のステップでIII族窒化物半導体層を形成後、一旦冷却すると、当該III族窒化物半導体層にクラックが発生する。これにより、内部応力が緩和される。その後、クラックを有するIII族窒化物半導体層の上にIII族窒化物半導体をエピタキシャル成長させると、クラックを挟んで分かれた結晶どうしは成長にしたがい互いに会合する。そして、上記冷却により内部応力が緩和されているため、厚膜化してもバルク結晶に割れが生じにくい。
 また、第2の成長工程S60は、テンプレート基板20や自立基板10をカーボンサセプター等のサセプターに固着させた状態のままで行われてもよい。これにより、第2の成長工程S60での加熱によるテンプレート基板20や自立基板10の変形を抑制できる。なお、固着させる方法としては、アルミナ系の接着剤を用いる方法等が例示されるが、これに限定されない。これらの特徴的な方法により、最大径が50mm以上4インチ以下と大きい大口径のバルク結晶が実現される。
 以上により、テンプレート基板20と第2の成長層25とを有する積層体(図4参照)、又は、自立基板10と第2の成長層25とを有する積層体(図5参照)が得られる。
 第2の成長工程S60の後に行われる切出工程では、第1の成長層23及び第2の成長層25を含むバルク結晶から、スライス等でIII族窒化物半導体層を切り取ることで、III族窒化物半導体層からなる自立基板30(図6参照)を得る。自立基板30の厚さは、例えば300μm以上1000μm以下である。スライス等で切り取られるIII族窒化物半導体層は、第2の成長層25のみからなってもよいし、第1の成長層23と第2の成長層25とを含んでもよいし、第1の成長層23のみからなってもよい。
 しかし、スライス等で切り取られるIII族窒化物半導体層は、第1の成長層23と第2の成長層25とを含むバルク結晶の内の成長厚さ(第1の成長層23の成長開始時点を0として数えた厚さ)3mm以上の部分であるのが好ましい。その理由は、結晶内の転位欠陥密度が概ね1×10cm-2かそれ未満となり、デバイス用基板として適切な品質となるからである。
 次に、上記製造方法で得られた自立基板(III族窒化物半導体基板)30の構成及び特徴を説明する。
 自立基板30は、III族窒化物半導体結晶で構成され、表裏の関係にある露出した第1及び第2の主面はいずれも半極性面である。第1の主面をN極性側の半極性面とし、第2の主面をGa極性側の半極性面(ミラー指数(hkml)で表され、lが0より大きい半極性面)とする。自立基板30は、N極性側の半極性面を成長面としてエピタキシャル成長したIII族窒化物半導体結晶で構成される。
 以下の実施例で示すが、上記特徴的な製造方法で製造された自立基板30は、室温(10℃以上30℃以下)において、波長が325nmであり、出力が10mW以上40mW以下であるヘリウム-カドミウム(He-Cd)レーザーを照射し、面積1mm単位でマッピングを行ったPL測定における第1及び第2の主面各々の発光波長の変動係数がいずれも0.05%以下という特徴を有する。すなわち、第1及び第2の主面いずれも、発光波長の面内のばらつきがきわめて小さい。なお、発光波長の変動係数は、発光波長の標準偏差を発光波長の平均値で割ることで算出される。
 また、以下の実施例で示すが、上記特徴的な製造方法で製造された自立基板30は、上記条件で行ったPL測定における第2の主面(Ga極性側の半極性面)の発光強度の変動係数が15%以下、好ましくは10%以下という特徴を有する。すなわち、第2の主面は、PL測定における発光強度の面内のばらつきが小さい。なお、発光強度の変動係数は、発光強度の標準偏差を発光強度の平均値で割ることで算出される。
 また、以下の実施例で示すが、上記特徴的な製造方法で製造された自立基板30は、上記条件で行ったPL測定における第1及び第2の主面各々のPLスペクトルの半値幅の変動係数がいずれも3.0%以下という特徴を有する。すなわち、第1及び第2の主面いずれも、PL測定におけるPLスペクトルの半値幅の面内のばらつきが小さい。なお、PLスペクトルの半値幅の変動係数は、PLスペクトルの半値幅の標準偏差をPLスペクトルの半値幅の平均値で割ることで算出される。
 このように、上記特徴的な製造方法により、半極性面を主面とし、面内の光学特性のばらつきを抑えた自立基板30(III族窒化物半導体基板)が実現される。当該自立基板30の上に複数のデバイス(光学デバイス等)を作製することで、複数のデバイス間の品質のばらつきを抑制できる。また、歩留まりを向上させることができる。特に、自立基板30の第2の主面(Ga極性側の半極性面)上にデバイス(光学デバイス等)を作製することで、より好ましい効果が実現される。
 また、上述の通り、上記特徴的な製造方法で製造されたバルク結晶は、最大径が50mm以上4インチ以下と大きい。このような大口径のバルク結晶から切り出すことで得られる自立基板30も、最大径が50mm以上4インチ以下と大口径となる。
<<実施例>>
<第1の評価>
 第1の評価では、上述した「III族窒化物半導体層の成長面の面方位を、N極性側の面とするための複数の要素」のすべてを満たすことで、III族窒化物半導体層の成長面の面方位をN極性側の面にできることを確認する。また、上述した「III族窒化物半導体層の成長面の面方位を、N極性側の面とするための複数の要素」の中の少なくとも1つを満たさなかった場合、III族窒化物半導体層の成長面の面方位がGa極性側の面になることを確認する。
 まず、主面の面方位がm面((10-10)面)からa面と平行になる方向に2°傾斜した面であるサファイア基板を用意した。サファイア基板の厚さは430μmであり、直径は2インチであった。
 そして、用意したサファイア基板に対して、以下の条件で熱処理工程S20を実施した。
 温度:1000~1050℃
 圧力:100torr
 キャリアガス:H、N
 熱処理時間:10分または15分
 キャリアガス供給量:15slm
 なお、熱処理工程S20の際に、20slmのNHを供給し、窒化処理を行った。
 その後、以下の条件で先流し工程S30を行った。
 温度:800~930℃
 圧力:100torr
 トリメチルアルミニウム供給量、供給時間:90sccm、10秒
 キャリアガス:H、N
 キャリアガス供給量:15slm
 その後、以下の条件でバッファ層形成工程S40を行い、AlN層を形成した。
 成長方法:MOCVD法
 成長温度:800~930℃
 圧力:100torr
 トリメチルアルミニウム供給量:90sccm
 NH供給量:5slm
 キャリアガス:H、N
 キャリアガス供給量:15slm
 その後、以下の条件で第1の成長工程S50を行い、III族窒化物半導体層を形成した。
 成長方法:MOCVD法
 圧力:100torr
 TMGa供給量:50~500sccm(連続変化)
 NH供給量:5~10slm(連続変化)
 キャリアガス:H、N
 キャリアガス供給量:15slm
 成長速度:10μm/h以上
 なお、第1のサンプルの成長温度は900℃±25℃に制御し、第2のサンプルの成長温度は1050℃±25℃に制御した。すなわち、第1のサンプルは、上述した「III族窒化物半導体層の成長面の面方位を、N極性側の面とするための複数の要素」のすべてを満たすサンプルである。第2のサンプルは、上述した「III族窒化物半導体層の成長面の面方位を、N極性側の面とするための複数の要素」の中の一部(第1の成長工程S50における成長温度)を満たさないサンプルである。
 第1のサンプルのIII族窒化物半導体層の成長面の面方位は、(-1-12-4)面から-a面方向5.0°傾斜かつ、m面と平行になる方向に8.5°以下傾斜した面であった。一方、第2のサンプルのIII族窒化物半導体層の成長面の面方位は、(11-24)面からa面方向5.0°傾斜かつ、m面と平行になる方向に8.5°以下傾斜した面であった。すなわち、上述した「III族窒化物半導体層の成長面の面方位を、N極性側の面とするための複数の要素」を満たすか否かにより、成長面の面方位がGa極性となるかN極性となるかを調整できることが分かる。
 図7に第1のサンプルにおける、(-1-12-4)面、又は、(11-24)面のXRD極点測定結果を示す。回折ピークは極点の中心点から数度ずれた位置であることが確認できる。角度のずれを詳細に測定すると-a面方向5.0°かつ、m面と並行になる方向に8.5°又は、a面方向5.0°かつ、m面と並行になる方向に8.5°の位置であることが確認できる。
 なお、本発明者らは、上述した「III族窒化物半導体層の成長面の面方位を、N極性側の面とするための複数の要素」の中のその他の一部を満たさない場合、また、全部を満たさない場合においても、成長面の面方位がGa極性となることを確認している。
<第2の評価>
 第2の評価では、上述した「III族窒化物半導体層の成長面の面方位を調整するための複数の要素」を調整することで、III族窒化物半導体層の成長面の面方位を調整できることを確認する。
 まず、主面の面方位が様々なサファイア基板を複数用意した。サファイア基板の厚さは430μmであり、直径は2インチであった。
 そして、用意したサファイア基板各々に対して、以下の条件で熱処理工程S20を行った。
 温度:1000~1050℃
 圧力:200torr
 熱処理時間:10分
 キャリアガス:H、N
 キャリアガス供給量:15slm
 なお、熱処理時の窒化処理の有無を異ならせたサンプルを作成した。具体的には、熱処理時に20slmのNHを供給し、窒化処理を行うサンプルと、熱処理時にNHを供給せず、窒化処理を行わないサンプルの両方を作成した。
 その後、以下の条件で先流し工程S30を行った。
 温度:880~930℃
 圧力:100torr
 トリメチルアルミニウム供給量、供給時間:90sccm、10秒
 キャリアガス:H、N
 キャリアガス供給量:15slm
 なお、先流し工程S30を行うサンプルと、行わないサンプルの両方を作成した。
 その後、サファイア基板の主面(露出面)上に、以下の条件で、約150nmの厚さのバッファ層(AlNバッファ層)を形成した。
 成長方法:MOCVD法
 圧力:100torr
 V/III比:5184
 TMAl供給量:90ccm
 NH供給量:5slm
 キャリアガス:H、N
 キャリアガス供給量:15slm
 なお、成長温度は、サンプルごとに、700℃以上1110℃以下の範囲で異ならせた。
 その後、バッファ層の上に、以下の条件で、約15μmの厚さのIII族窒化物半導体層(GaN層)を形成した。
 成長方法:MOCVD法
 成長温度:900~1100℃
 圧力:100torr
 V/III比:321
 TMGa供給量:50~500ccm(ランプアップ)
 NH供給量:5~10slm(ランプアップ)
 キャリアガス:H、N
 キャリアガス供給量:15slm
 以上のようにして、サファイア基板と、バッファ層と、III族窒化物半導体層とがこの順に積層したIII族窒化物半導体基板1を製造した。
 表1乃至7に、「III族窒化物半導体層の成長面の面方位を調整するための複数の要素」と、III族窒化物半導体層の成長面の面方位との関係を示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 表中の「サファイア主面」の欄には、サファイア基板の主面の面方位が示されている。「昇温時の窒化処理」の欄には、熱処理工程S20の際の昇温時の窒化処理の有無(「有り」または「無し」)が示されている。「トリメチルアルミニウム先流し工程の有無」の欄には、トリメチルアルミニウム先流し工程の有無(「有り」または「無し」)が示されている。「AlNバッファ成長温度」の欄には、バッファ層形成工程における成長温度が示されている。「GaN成長温度」の欄には、GaN層形成工程における成長温度が示されている。「III族窒化物半導体層の成長面」の欄には、III族窒化物半導体層の成長面の面方位が示されている。
 当該結果によれば、上述した「III族窒化物半導体層の成長面の面方位を調整するための複数の要素」を調整することで、III族窒化物半導体層の成長面の面方位を半極性かつGa極性の中で調整できることが分かる。そして、第1の評価の結果と第2の評価の結果とに基づけば、「III族窒化物半導体層の成長面の面方位を、N極性側の面とするための複数の要素」のすべてを満たしたうえで、「III族窒化物半導体層の成長面の面方位を調整するための複数の要素」を調整することで、III族窒化物半導体層の成長面の面方位を、半極性かつN極性の中で調整できることが分かる。
<第3の評価>
 第3の評価では、PL測定で自立基板30の光学特性を評価する。
「実施例」
 まず、MOCVD法で、a面方向に2°のオフ角を有するφ4インチm面サファイア基板上に、バッファ層を介して、GaN層(第1の成長層23)を形成した。第1の成長層23の主面(露出面)は、N極性側の半極性面であった。具体的には、第1の成長層23の主面(露出面)は、(-1-12-4)面からc面方向に約5°、m面方向に約8°のオフ角を有する面であった。
 その後、第1の成長層23の上に、HVPE法でGaN結晶を成長し、GaN層(第2の成長層25)を形成した。その後、第1の成長層23及び第2の成長層25からなるバルク結晶の内の成長厚さ3mm以上の部分を成長方向に垂直にスライスすることでφ54mm程度の結晶を切り出し、その後、整形研磨した。この結果、φ50mmの略(-1-12-4)面を主面とする自立基板が得られた。
「比較例」
 c面成長したGaNのバルク結晶から、略(11-24)面を主面とする10mm角の小片を切り出した。そして、当該小片9枚を、支持台上に3行×3列で載置した。なお、いずれも略(11-24)面が露出するように載置した。その後、当該小片上に、HVPE法でGaN結晶を成長し、GaN層を形成した。
 結果、30mm×30mm×5mm程度の略(11-24)面を主面とするGaN結晶が得られた。当該GaN結晶を成長方向に垂直に複数枚にスライスし、整形研磨することで、約25mm角の略(11-24)面を主面とする自立基板が得られた。
 この時、9枚の小片に近い部分から切り出した自立基板を比較例1とし、最終成長表面に近い部分(9枚の小片から遠い部分)から切り出した基板を比較例2とした。なお、比較例1は自立基板の一部に欠けが生じていた。また、比較例2は一部に割れが生じていた。
 このように、実施例では、N極性側の半極性面を成長面としてHVPE法で厚膜成長し、比較例では、Ga極性側の半極性面を成長面としてHVPE法で厚膜成長した。
「PL測定」
 以下の測定条件で、実施例の得られた自立基板の表面および裏面である2つの主面(略(-1-12-4)面、略(11-24)面)と、比較例1及び比較例2の(11-24)面に対して、PL測定を行った。
照射レーザー : He-Cd レーザー (波長325nm、定格出力35mW)
マッピング装置 : (株)ワイ・システムズ社製 YWaferMapper GS4
測定温度 : 室温
マッピング単位(測定単位) : 1mm
測定波長範囲 : 340~700nm
測定対象領域(実施例) : 自立基板の略中心に位置するφ46mmの円内
測定対象領域(比較例1及び2) :自立基板の略中心に位置する□25mmの領域
 なお、比較例1及び比較例2の測定結果における統計処理において、サンプル領域外のマッピングを行ったことによるエラー値は除外している。したがって、以下に記述する統計結果はエラー値の影響は含んでおらず、全て比較例サンプルの測定結果である。
 図8乃至10は、実施例の略(-1-12-4)面に対するPL測定の結果を示す。図11乃至13は、実施例の略(11-24)面に対するPL測定の結果を示す。図14乃至16は、比較例1の略(11-24)面に対するPL測定の結果を示す。図17乃至19は、比較例2の略(11-24)面に対するPL測定の結果を示す。上述の通り、実施例と比較例とは、測定対象領域が異なる。このことは、これらの図のマッピングデータからも明らかである。
 図8、図11、図14及び図17では、複数の測定単位各々の発光波長をマッピングした画像と、発光波長のヒストグラムを示している。図中「Av」は発光波長の平均値であり、「StdDev」は発光波長の標準偏差である。これらの結果より、実施例の略(-1-12-4)面及び略(11-24)面は、比較例1及び比較例2に比べて、面内の発光波長のばらつきが小さいことが分かる。
 図9、図12、図15及び図18では、複数の測定単位各々の発光強度をマッピングした画像と、発光強度のヒストグラムを示している。図中「Av」は発光強度の平均値であり、「StdDev」は発光強度の標準偏差である。なお、図15及び18のヒストグラムにおける図中下側の方のピークは、測定対象領域以外の領域の色をカウントしたものである。これらの結果より、実施例の略(11-24)面は、比較例1及び比較例2に比べて、面内の発光強度のばらつきが小さいことが分かる。
 図10、図13、図16及び図19では、複数の測定単位各々のPLスペクトル(波長毎の発光強度のスペクトル)の半値幅をマッピングした画像と、当該半値幅のヒストグラムを示している。図中「Av」は当該半値幅の平均値であり、「StdDev」は当該半値幅の標準偏差である。これらの結果より、実施例の略(-1-12-4)面及び略(11-24)面は、比較例1及び比較例2に比べて、面内の上記半値幅のばらつきが小さいことが分かる。
 ここで、表8に、実施例の略(-1-12-4)面、略(11-24)面、比較例1及び比較例2各々の測定結果を示す。表では、各々の発光波長の平均値、発光波長の変動係数、発光強度の平均値、発光強度の変動係数、上記半値幅の平均値、及び、上記半値幅の変動係数を示している。
Figure JPOXMLDOC01-appb-T000008
 当該表より、実施例の略(-1-12-4)面及び略(11-24)面いずれも、発光波長の変動係数がいずれも0.05%以下であることが分かる。なお、比較例1及び比較例2いずれも、発光波長の変動係数は0.05%より大きい。
 また、当該表より、実施例の略(11-24)面は、発光強度の変動係数が15%以下、好ましくは10%以下であることが分かる。なお、比較例1及び比較例2いずれも、発光強度の変動係数は15%より大きい。
 また、当該表より、実施例の略(-1-12-4)面及び略(11-24)面いずれも、上記半値幅の変動係数がいずれも3.0%以下であることが分かる。なお、比較例1及び比較例2いずれも、上記半値幅の変動係数は3.0%より大きい。
 以上より、実施例の略(-1-12-4)面及び略(11-24)面は、比較例1及び比較例2に比べて、面内の光学特性のばらつきが小さいことを確認できた。比較例1及び比較例2における測定結果に筋状の特異な結果が見られるが、これらは結晶成長前に載置した小片同士の境界の上部に相当する。すなわち、小片接合成長の影響である。実施例はこのような特異点を持たないことも特徴の一つである。
<第4の評価>
 次に、本実施形態の製造方法により、半極性面を主面とし、最大径が50mm以上4インチ以下と大口径の自立基板30を得られることを確認する。
 まず、径がΦ4インチで、主面の面方位がm面のサファイア基板21の上に、バッファ層22を介して、MOCVD法でGaN層(第1の成長層23)を形成したテンプレート20を準備した。第1の成長層23の主面の面方位は(-1-12-4)面からc面方向に約5°、m面方向に約8°のオフ角を有する面であり、径はΦ4インチであった。
 次に、当該テンプレート基板20をカーボンサセプターに固着した。具体的には、アルミナ系の接着剤を用いて、サファイア基板21の裏面をカーボンサセプターの主面に貼りあわせた。
 次に、カーボンサセプターにテンプレート基板20を固着させた状態で、第1の成長層23の主面上にHVPE法でIII族窒化物半導体(GaN)を成長させた。これにより、単結晶のIII族窒化物半導体で構成されたGaN層(第2の成長層25の一部)を形成した。成長条件は以下の通りである。
成長温度:1040℃
成長時間:15時間
V/III比:10
成長膜厚:4.4mm
 次に、カーボンサセプター、テンプレート基板20及び第2の成長層25の一部を含む積層体を、HVPE装置から取り出し、室温まで冷却した。冷却後の積層体を観察すると、表面にクラックが存在した。また、上記積層体の外周沿いに多結晶のIII族窒化物半導体が付着し、これらが互いに繋がって環状になり、その内部に上記積層体をホールドしていた。
 次に、多結晶のIII族窒化物半導体を残した状態で、クラックが存在するGaN層(第2の成長層25の一部)の主面上にHVPE法でIII族窒化物半導体(GaN)を成長させた。これにより、単結晶のIII族窒化物半導体で構成されたGaN層(第2の成長層25の他の一部)を形成した。成長条件は以下の通りである。
成長温度:1040℃
成長時間:14時間
V/III比:10
成長膜厚:3.0mm(第2の成長層25ののべ膜厚は7.4mm)
 第2の成長層25の最大径はおよそΦ4インチであった。また、第2の成長層25と、その外周沿いの多結晶のIII族窒化物半導体とを含む面の最大径はおよそ130mmであった。また、第2の成長層25に割れは生じていなかった。
 次に、第2の成長層25をスライスし、複数の自立基板30を得た。自立基板30には割れが生じておらず、最大径はおよそΦ4インチであった。
 以下、参考形態の例を付記する。
1. III族窒化物半導体結晶で構成され、表裏の関係にある露出した第1及び第2の主面はいずれも半極性面であり、室温下において、波長が325nmであり、出力が10mW以上40mW以下であるヘリウム-カドミウム(He-Cd)レーザーを照射し、面積1mm単位でマッピングを行ったPL測定における前記第1及び第2の主面各々の発光波長の変動係数はいずれも0.05%以下であるIII族窒化物半導体基板。
2. 1に記載のIII族窒化物半導体基板において、
 前記条件で行ったPL測定における前記第2の主面の発光強度の変動係数は15%以下であるIII族窒化物半導体基板。
3. 2に記載のIII族窒化物半導体基板において、
 前記第2の主面の発光強度の変動係数は10%以下であるIII族窒化物半導体基板。
4. 2に記載のIII族窒化物半導体基板において、
 前記第2の主面は、Ga極性側の半極性面であるIII族窒化物半導体基板。
5. 1に記載のIII族窒化物半導体基板において、
 前記条件で行ったPL測定における前記第1及び第2の主面各々のPLスペクトルの半値幅の変動係数はいずれも3.0%以下であるIII族窒化物半導体基板。
6. 1から5のいずれかに記載のIII族窒化物半導体基板において、
 膜厚が300μm以上1000μm以下であるIII族窒化物半導体基板。
 この出願は、2017年3月17日に出願された日本出願特願2017-052384号を基礎とする優先権を主張し、その開示の全てをここに取り込む。

Claims (6)

  1.  III族窒化物半導体結晶で構成され、表裏の関係にある露出した第1及び第2の主面はいずれも半極性面であり、室温下において、波長が325nmであり、出力が10mW以上40mW以下であるヘリウム-カドミウム(He-Cd)レーザーを照射し、面積1mm単位でマッピングを行ったPL(photoluminescence)測定における前記第1及び第2の主面各々の発光波長の変動係数はいずれも0.05%以下であるIII族窒化物半導体基板。
  2.  請求項1に記載のIII族窒化物半導体基板において、
     前記条件で行ったPL測定における前記第2の主面の発光強度の変動係数は15%以下であるIII族窒化物半導体基板。
  3.  請求項2に記載のIII族窒化物半導体基板において、
     前記第2の主面の発光強度の変動係数は10%以下であるIII族窒化物半導体基板。
  4.  請求項2に記載のIII族窒化物半導体基板において、
     前記第2の主面は、Ga極性側の半極性面であるIII族窒化物半導体基板。
  5.  請求項1に記載のIII族窒化物半導体基板において、
     前記条件で行ったPL測定における前記第1及び第2の主面各々のPLスペクトルの半値幅の変動係数はいずれも3.0%以下であるIII族窒化物半導体基板。
  6.  請求項1から5のいずれか1項に記載のIII族窒化物半導体基板において、
     膜厚が300μm以上1000μm以下であるIII族窒化物半導体基板。
PCT/JP2018/009296 2017-03-17 2018-03-09 Iii族窒化物半導体基板 WO2018168706A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020197025828A KR102464462B1 (ko) 2017-03-17 2018-03-09 Ⅲ족 질화물 반도체 기판
PL18768215T PL3597797T3 (pl) 2017-03-17 2018-03-09 Podłoże półprzewodnikowe z azotku grupy iii
US16/493,659 US11662374B2 (en) 2017-03-17 2018-03-09 Group III nitride semiconductor substrate
CN201880019839.6A CN110431258A (zh) 2017-03-17 2018-03-09 Iii族氮化物半导体基板
EP18768215.8A EP3597797B1 (en) 2017-03-17 2018-03-09 Group iii nitride semiconductor substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017052384A JP6831276B2 (ja) 2017-03-17 2017-03-17 Iii族窒化物半導体基板
JP2017-052384 2017-03-17

Publications (1)

Publication Number Publication Date
WO2018168706A1 true WO2018168706A1 (ja) 2018-09-20

Family

ID=63522279

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/009296 WO2018168706A1 (ja) 2017-03-17 2018-03-09 Iii族窒化物半導体基板

Country Status (8)

Country Link
US (1) US11662374B2 (ja)
EP (1) EP3597797B1 (ja)
JP (1) JP6831276B2 (ja)
KR (1) KR102464462B1 (ja)
CN (1) CN110431258A (ja)
PL (1) PL3597797T3 (ja)
TW (1) TWI753134B (ja)
WO (1) WO2018168706A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7046496B2 (ja) 2017-03-28 2022-04-04 古河機械金属株式会社 Iii族窒化物半導体基板の製造方法、iii族窒化物半導体基板、及び、バルク結晶
JP7055595B2 (ja) * 2017-03-29 2022-04-18 古河機械金属株式会社 Iii族窒化物半導体基板、及び、iii族窒化物半導体基板の製造方法
CN113692459A (zh) * 2019-03-29 2021-11-23 三菱化学株式会社 GaN基板晶片和GaN基板晶片的制造方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5332168B2 (ja) 1975-08-04 1978-09-07
JP2005343713A (ja) * 2004-05-31 2005-12-15 Hitachi Cable Ltd Iii−v族窒化物系半導体自立基板及びその製造方法並びにiii−v族窒化物系半導体
JP2008078613A (ja) * 2006-08-24 2008-04-03 Rohm Co Ltd 窒化物半導体の製造方法及び窒化物半導体素子
JP2009238772A (ja) * 2008-03-25 2009-10-15 Sumitomo Electric Ind Ltd エピタキシャル基板及びエピタキシャル基板の製造方法
JP2011042542A (ja) * 2009-08-24 2011-03-03 Furukawa Co Ltd Iii族窒化物基板の製造方法およびiii族窒化物基板
JP2014172797A (ja) * 2013-03-11 2014-09-22 Aetech Corp 窒化ガリウム(GaN)自立基板の製造方法及び製造装置
JP2016012717A (ja) 2014-06-05 2016-01-21 パナソニックIpマネジメント株式会社 窒化物半導体構造、窒化物半導体構造を備えた電子デバイス、窒化物半導体構造を備えた発光デバイス、および窒化物半導体構造を製造する方法
JP2017052384A (ja) 2015-09-09 2017-03-16 小島プレス工業株式会社 車両の衝撃吸収構造
JP6232150B1 (ja) * 2017-01-10 2017-11-15 古河機械金属株式会社 Iii族窒化物半導体基板、及び、iii族窒化物半導体基板の製造方法
JP6266742B1 (ja) * 2016-12-20 2018-01-24 古河機械金属株式会社 Iii族窒化物半導体基板、及び、iii族窒化物半導体基板の製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS577866A (en) 1980-06-16 1982-01-16 Shinagawa Refractories Co Refractory heat insulating plate for tandish
JP5271489B2 (ja) 2006-10-02 2013-08-21 古河機械金属株式会社 Iii族窒化物半導体基板及びその製造方法
JP5332168B2 (ja) 2006-11-17 2013-11-06 住友電気工業株式会社 Iii族窒化物結晶の製造方法
US9064706B2 (en) 2006-11-17 2015-06-23 Sumitomo Electric Industries, Ltd. Composite of III-nitride crystal on laterally stacked substrates
US7727874B2 (en) * 2007-09-14 2010-06-01 Kyma Technologies, Inc. Non-polar and semi-polar GaN substrates, devices, and methods for making them
WO2014097931A1 (ja) 2012-12-17 2014-06-26 三菱化学株式会社 窒化ガリウム基板、および、窒化物半導体結晶の製造方法
EP3031958B1 (en) 2013-08-08 2017-11-01 Mitsubishi Chemical Corporation Self-standing gan substrate and method for producing semiconductor device
CN105917035B (zh) 2014-01-17 2019-06-18 三菱化学株式会社 GaN基板、GaN基板的制造方法、GaN结晶的制造方法和半导体器件的制造方法
WO2015137266A1 (ja) 2014-03-10 2015-09-17 日本碍子株式会社 窒化物結晶の製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5332168B2 (ja) 1975-08-04 1978-09-07
JP2005343713A (ja) * 2004-05-31 2005-12-15 Hitachi Cable Ltd Iii−v族窒化物系半導体自立基板及びその製造方法並びにiii−v族窒化物系半導体
JP2008078613A (ja) * 2006-08-24 2008-04-03 Rohm Co Ltd 窒化物半導体の製造方法及び窒化物半導体素子
JP2009238772A (ja) * 2008-03-25 2009-10-15 Sumitomo Electric Ind Ltd エピタキシャル基板及びエピタキシャル基板の製造方法
JP2011042542A (ja) * 2009-08-24 2011-03-03 Furukawa Co Ltd Iii族窒化物基板の製造方法およびiii族窒化物基板
JP2014172797A (ja) * 2013-03-11 2014-09-22 Aetech Corp 窒化ガリウム(GaN)自立基板の製造方法及び製造装置
JP2016012717A (ja) 2014-06-05 2016-01-21 パナソニックIpマネジメント株式会社 窒化物半導体構造、窒化物半導体構造を備えた電子デバイス、窒化物半導体構造を備えた発光デバイス、および窒化物半導体構造を製造する方法
JP2017052384A (ja) 2015-09-09 2017-03-16 小島プレス工業株式会社 車両の衝撃吸収構造
JP6266742B1 (ja) * 2016-12-20 2018-01-24 古河機械金属株式会社 Iii族窒化物半導体基板、及び、iii族窒化物半導体基板の製造方法
JP6232150B1 (ja) * 2017-01-10 2017-11-15 古河機械金属株式会社 Iii族窒化物半導体基板、及び、iii族窒化物半導体基板の製造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
GOGOVA. D. ET AL.: "Large-area free-standing GaN substrate grown by hydride vapor phase epitaxy on epitaxial lateral overgrown GaN template", PHYSICA B, vol. 371, no. 1, 15 January 2006 (2006-01-15), pages 133 - 139, XP055555980, Retrieved from the Internet <URL:https://doi.org/10.1016/j.physb.2005.10.122> *
See also references of EP3597797A4
VENNEGUES, PHILIPPE ET AL.: "Study of the epitaxial relationships between III-nitrides and M- plane sapphire", JOURNAL OF APPLIED PHYSICS, vol. 108, no. 11, 9 December 2010 (2010-12-09), pages 113521 - 1-113521-6, XP012142049, Retrieved from the Internet <URL:https://doi.org/10.1063/1.3514095> *

Also Published As

Publication number Publication date
US11662374B2 (en) 2023-05-30
JP2018154523A (ja) 2018-10-04
TWI753134B (zh) 2022-01-21
EP3597797B1 (en) 2022-03-30
CN110431258A (zh) 2019-11-08
KR20190122695A (ko) 2019-10-30
JP6831276B2 (ja) 2021-02-17
TW201900951A (zh) 2019-01-01
PL3597797T3 (pl) 2022-05-02
EP3597797A1 (en) 2020-01-22
KR102464462B1 (ko) 2022-11-04
EP3597797A4 (en) 2020-12-30
US20200132750A1 (en) 2020-04-30

Similar Documents

Publication Publication Date Title
WO2018168706A1 (ja) Iii族窒化物半導体基板
WO2018117050A1 (ja) Iii族窒化物半導体基板、及び、iii族窒化物半導体基板の製造方法
JP2017226584A (ja) 自立基板の製造方法
KR102425366B1 (ko) Ⅲ족 질화물 반도체 기판 및 ⅲ족 질화물 반도체 기판의 제조방법
JP6871878B2 (ja) Iii族窒化物半導体基板の製造方法
JP6778579B2 (ja) Iii族窒化物半導体基板、及び、iii族窒化物半導体基板の製造方法
JP7055595B2 (ja) Iii族窒化物半導体基板、及び、iii族窒化物半導体基板の製造方法
JP7084123B2 (ja) Iii族窒化物半導体基板
JP6934802B2 (ja) Iii族窒化物半導体基板、及び、iii族窒化物半導体基板の製造方法
JP6894825B2 (ja) Iii族窒化物半導体基板、及び、iii族窒化物半導体基板の製造方法
JP6865669B2 (ja) Iii族窒化物半導体基板、及び、iii族窒化物半導体基板の製造方法
WO2020162346A1 (ja) Iii族窒化物半導体基板、及び、iii族窒化物半導体基板の製造方法
JP6982469B2 (ja) Iii族窒化物半導体基板及びiii族窒化物半導体基板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18768215

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197025828

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018768215

Country of ref document: EP

Effective date: 20191017