WO2018168120A1 - 固体撮像装置、その駆動方法および電子機器 - Google Patents

固体撮像装置、その駆動方法および電子機器 Download PDF

Info

Publication number
WO2018168120A1
WO2018168120A1 PCT/JP2017/044479 JP2017044479W WO2018168120A1 WO 2018168120 A1 WO2018168120 A1 WO 2018168120A1 JP 2017044479 W JP2017044479 W JP 2017044479W WO 2018168120 A1 WO2018168120 A1 WO 2018168120A1
Authority
WO
WIPO (PCT)
Prior art keywords
charge
unit
conversion unit
photoelectric conversion
accumulated
Prior art date
Application number
PCT/JP2017/044479
Other languages
English (en)
French (fr)
Inventor
卓哉 豊福
頼人 坂野
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Priority to KR1020197025199A priority Critical patent/KR102425590B1/ko
Priority to CN202210584878.9A priority patent/CN114979511A/zh
Priority to US16/491,000 priority patent/US10880505B2/en
Priority to KR1020237016571A priority patent/KR20230074617A/ko
Priority to DE112017007227.1T priority patent/DE112017007227T5/de
Priority to KR1020227023972A priority patent/KR102538715B1/ko
Priority to CN201780088009.4A priority patent/CN110383823B/zh
Publication of WO2018168120A1 publication Critical patent/WO2018168120A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/78Readout circuits for addressed sensors, e.g. output amplifiers or A/D converters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/50Control of the SSIS exposure
    • H04N25/57Control of the dynamic range
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/50Control of the SSIS exposure
    • H04N25/57Control of the dynamic range
    • H04N25/571Control of the dynamic range involving a non-linear response
    • H04N25/573Control of the dynamic range involving a non-linear response the logarithmic type
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/50Control of the SSIS exposure
    • H04N25/57Control of the dynamic range
    • H04N25/58Control of the dynamic range involving two or more exposures
    • H04N25/581Control of the dynamic range involving two or more exposures acquired simultaneously
    • H04N25/585Control of the dynamic range involving two or more exposures acquired simultaneously with pixels having different sensitivities within the sensor, e.g. fast or slow pixels or pixels having different sizes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/50Control of the SSIS exposure
    • H04N25/57Control of the dynamic range
    • H04N25/59Control of the dynamic range by controlling the amount of charge storable in the pixel, e.g. modification of the charge conversion ratio of the floating node capacitance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
    • H04N25/778Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components comprising amplifiers shared between a plurality of pixels, i.e. at least one part of the amplifier must be on the sensor array itself
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/7795Circuitry for generating timing or clock signals

Definitions

  • This technology relates to a solid-state imaging device. Specifically, the present invention relates to a solid-state imaging device that suppresses signal variations at high illuminance exceeding a saturation level, a driving method thereof, and an electronic apparatus.
  • the saturation level is limited by the amount of charge that can be accumulated in the photoelectric conversion unit. The That is, the light quantity in a range exceeding the saturation level of the photoelectric conversion unit could not be detected correctly. Therefore, conventionally, the charge accumulated in the photoelectric conversion unit is caused to overflow from the transfer gate to the charge voltage conversion unit, the charge reset unit, and the drain power supply, and the voltage of the charge voltage conversion unit at that time is detected as a signal voltage.
  • An operation hereinafter referred to as logarithmic reading has been used. The voltage detected here becomes a signal corresponding to the logarithm of the incident light quantity, so that it is possible to detect the light quantity exceeding the saturation level.
  • linear readout When such logarithmic readout is performed together with normal accumulation readout (hereinafter referred to as linear readout), there is a problem in that the difference in timing at which switching from linear readout to logarithmic readout varies from pixel to pixel. This occurs because the threshold value of the transfer gate that determines the saturation level of the photoelectric conversion unit and the level at which overflow starts and the threshold value of the transistor of the charge reset unit vary from pixel to pixel. Therefore, conventionally, before acquiring the logarithmic readout signal, charge is injected from the drain power supply to the saturation level to the photoelectric conversion unit and the charge voltage conversion unit, and then the charge reset unit is set at an intermediate level between the high level and the low level. Reset.
  • the variation of the charge reset unit is suppressed, and the variation of the charge voltage conversion unit for each pixel is suppressed.
  • the transfer gate is opened, the signal (saturation level) of the photoelectric conversion unit is transferred to the charge voltage conversion unit, and light reception is started, thereby suppressing variations in the photoelectric conversion unit and the transfer gate for each pixel.
  • the charge gate is opened again while the photoelectric conversion unit and the charge-voltage conversion unit are filled with charges, and the charge reset unit is set to the intermediate level to read out the charge accumulated in the charge-voltage conversion unit.
  • the present technology has been made to solve the above-described problems.
  • the first aspect of the present technology includes a first photoelectric conversion unit that photoelectrically converts incident light into charges in the first region, and stores the charge.
  • a second photoelectric conversion unit that photoelectrically converts incident light into charges in a second region having a smaller area than the first region, and a charge photoelectrically converted by the first and second photoelectric conversion units
  • a charge-voltage conversion unit that accumulates the voltage to convert the voltage into a voltage
  • a first charge transfer unit that transfers the charge accumulated in the first photoelectric conversion unit to the charge-voltage conversion unit, and the second photoelectric conversion
  • a second charge transfer unit that transfers the charge accumulated in the unit to the charge-voltage conversion unit, a charge reset unit that resets the charge accumulated in the charge-voltage conversion unit, and a storage in the first photoelectric conversion unit
  • a first charge discharging unit for discharging the generated charge A solid-state imaging device and a driving method thereof that. This brings about the effect
  • the potential of the drain of the charge reset unit is controlled while discharging the charge accumulated in the first photoelectric conversion unit by the first charge discharge unit, and the second charge discharge unit
  • the photoelectric conversion unit and the charge / voltage conversion unit may further include a driving unit that drives the second photoelectric conversion unit to be exposed after the charge is accumulated to a saturation level.
  • the first aspect further includes a second charge discharging unit that discharges the charge accumulated in the second photoelectric conversion unit, and the driving unit is configured to perform the first charge discharging unit by the first charge discharging unit.
  • the driving unit is configured to perform the first charge discharging unit by the first charge discharging unit.
  • the charge accumulated in the second photoelectric conversion unit is discharged during the reset operation by the intermediate potential at the time of logarithmic reading in the second photoelectric conversion unit, thereby avoiding unnecessary charge from being mixed into the charge voltage conversion unit. The effect of doing.
  • a signal amplifying unit that amplifies the charge accumulated in the charge-voltage conversion unit and outputs a pixel signal of a level corresponding to the charge may be further provided.
  • a conversion efficiency switching unit that switches a charge capacity of the charge voltage conversion unit and switches an amplification degree in the signal amplification unit may be further provided.
  • the second aspect of the present technology includes a first photoelectric conversion unit that photoelectrically converts incident light into charges in the first region, and a second region having a smaller area than the first region.
  • a second photoelectric conversion unit that photoelectrically converts incident light into electric charge and stores the charge;
  • a charge-voltage conversion unit that stores electric charge photoelectrically converted by the first and second photoelectric conversion units into a voltage;
  • a first charge transfer unit that transfers charges accumulated in the first photoelectric conversion unit to the charge voltage conversion unit, and a charge that is accumulated in the second photoelectric conversion unit is transferred to the charge voltage conversion unit.
  • a second charge transfer unit a charge reset unit that resets the charge accumulated in the charge-voltage conversion unit; a first charge discharge unit that discharges the charge accumulated in the first photoelectric conversion unit;
  • the first charge discharging unit stores the first photoelectric conversion unit. Controlling the drain potential of the charge reset unit while discharging the generated charge, and accumulating the charge to the saturation level in the second photoelectric conversion unit and the charge voltage conversion unit, and then the second photoelectric conversion.
  • a driving unit that drives the unit to expose the unit. Thereby, at the time of logarithmic reading by the second photoelectric conversion unit, the charge accumulated in the first photoelectric conversion unit is discharged, so that unnecessary charge is prevented from being mixed into the first photoelectric conversion unit. .
  • the present technology it is possible to suppress the variation in timing when switching from linear reading to logarithmic reading in the solid-state imaging device, and it is possible to achieve an excellent effect that high-precision reading can be performed.
  • the effects described here are not necessarily limited, and may be any of the effects described in the present disclosure.
  • FIG. 1 is a diagram illustrating a configuration example of a solid-state imaging device 10 according to an embodiment of the present technology.
  • the solid-state imaging device 10 is configured by, for example, a MOS type image sensor, and captures an image by photoelectrically converting incident light to generate an image signal.
  • the solid-state imaging device 10 includes a pixel array unit 100, a vertical drive unit 220, a column processing unit 230, a horizontal drive unit 240, a system control unit 250, a signal processing unit 280, and a data storage unit 290.
  • the pixel array unit 100 is a two-dimensional arrangement of pixels having a photoelectric conversion unit that generates and accumulates charges according to the amount of light incident from a subject in the horizontal direction (row direction) and the vertical direction (column direction). is there.
  • a pixel drive line 229 is wired along the row direction for each pixel row composed of pixels arranged in the row direction, and a vertical signal line (for each pixel column composed of pixels arranged in the column direction).
  • VSL vertical signal line
  • the vertical drive unit 220 includes a shift register, an address decoder, and the like, and drives each pixel of the pixel array unit 100 by supplying a signal to each pixel via a plurality of pixel drive lines 229.
  • the vertical drive unit 220 includes a selection control unit 221, a reset control unit 222, a transfer control unit 223, a reset drain control unit 224, and a charge discharge control unit 225.
  • the selection control unit 221 controls a selection signal SEL applied to a pixel selection unit described later.
  • the reset control unit 222 controls a reset signal RST applied to a charge reset unit described later.
  • the transfer control unit 223 controls a transfer signal TRG applied to a charge transfer unit described later.
  • the reset drain control unit 224 controls the potential of the reset drain of the charge reset unit described later.
  • the charge discharge control unit 225 controls a discharge signal OFG applied to the charge discharge unit described later.
  • the vertical drive unit 220 is an example of a drive unit described in the claims.
  • the column processing unit 230 reads a signal from each pixel via the vertical signal line 239 for each pixel column of the pixel array unit 100, and performs noise removal processing, correlated double sampling processing, AD (Analog to Digital) conversion processing, and the like. To generate a pixel signal.
  • the horizontal driving unit 240 includes a shift register, an address decoder, and the like, and sequentially selects unit circuits corresponding to the pixel columns of the column processing unit 230. By the selective scanning by the horizontal driving unit 240, the pixel signals subjected to signal processing for each unit circuit in the column processing unit 230 are sequentially output to the signal processing unit 280.
  • the system control unit 250 includes a timing generator that generates various drive signals, and the drive control of the vertical drive unit 220, the column processing unit 230, and the horizontal drive unit 240 based on the drive signals generated by the timing generator. Is to do.
  • the signal processing unit 280 performs signal processing such as arithmetic processing on the pixel signal supplied from the column processing unit 230, and outputs an image signal including each pixel signal.
  • the data storage unit 290 stores the image signal processed by the signal processing unit 280.
  • FIG. 2 is a diagram illustrating a circuit configuration example for explaining the operation of each pixel of the pixel array unit 100 according to the embodiment of the present technology.
  • each pixel of the pixel array unit 100 includes a photoelectric conversion unit 110, a charge transfer unit 120, a charge voltage conversion unit 130, a charge reset unit 140, a signal amplification unit 150, a pixel selection unit 160, a constant current source 170, and a charge. It is assumed that a discharge unit 180 is provided.
  • the photoelectric conversion unit 110 is a PN junction photodiode (PD: Photo ⁇ Diode), and generates and accumulates charges according to the amount of incident light.
  • PD PN junction photodiode
  • the charge transfer unit 120 transfers the charge accumulated in the photoelectric conversion unit 110 to the charge voltage conversion unit 130 in accordance with the transfer signal TRG.
  • the transfer signal TRG applied to the charge transfer unit 120 becomes H level
  • the charge transfer unit 120 becomes conductive
  • the charge accumulated in the photoelectric conversion unit 110 is transferred to the charge voltage conversion unit 130.
  • the charge transfer unit 120 includes, for example, a depletion transistor, and forms an overflow path for transferring a part of charge even in a non-conductive state. For this reason, when the photoelectric conversion unit 110 is saturated, the charge overflowed from the photoelectric conversion unit 110 is transferred to the charge-voltage conversion unit 130 through the overflow path.
  • the charge-voltage converter 130 is a floating diffusion (FD) capacitance formed between the drain of the charge transfer unit 120 and the source of the charge reset unit 140.
  • the charge / voltage converter 130 accumulates the charges transferred from the charge transfer unit 120.
  • the charge reset unit 140 resets the charge accumulated in the charge voltage conversion unit 130 in accordance with the reset signal RST.
  • the reset signal RST applied to the charge reset unit 140 becomes H level
  • the charge reset unit 140 becomes conductive, and resets the charge accumulated in the charge voltage conversion unit 130.
  • the charge reset unit 140 is composed of a depletion transistor or the like, and constitutes an overflow path for transferring a part of the charge even in a non-conducting state. Therefore, when the charge voltage conversion unit 130 is saturated, the overflow path transfers the charge overflowed from the charge voltage conversion unit 130 to the drain (reset drain) of the charge reset unit 140.
  • the signal amplification unit 150 amplifies the charge accumulated in the charge-voltage conversion unit 130 and outputs a pixel signal having a level corresponding to the charge.
  • the signal amplifying unit 150 has a gate electrode connected to the charge voltage conversion unit 130 and a drain connected to the power supply voltage Vdd.
  • the signal amplification unit 150 reads a charge obtained by photoelectric conversion in the photoelectric conversion unit 110, that is, a so-called source. It becomes the input part of the follower circuit. That is, the signal amplification unit 150 forms a source follower circuit with the constant current source 170 connected to one end of the vertical signal line 239 by connecting the source to the vertical signal line 239 via the pixel selection unit 160. .
  • the pixel selection unit 160 selects any pixel in the pixel array unit 100.
  • the pixel selector 160 is connected between the source of the signal amplifier 150 and the vertical signal line 239, and a selection signal SEL is supplied to the gate electrode.
  • the selection signal SEL becomes H level
  • the pixel selection unit 160 becomes conductive, and so-called pixels are selected.
  • a signal output from the signal amplifying unit 150 is read out to the column processing unit 230 via the vertical signal line 239.
  • the charge discharging unit 180 discharges the charge accumulated in the photoelectric conversion unit 110 in accordance with the overflow gate signal OFG.
  • the photoelectric conversion unit receives light even when reading out noise, and in the case of high illuminance, it overflows from the transfer gate and is reset by an intermediate level. There is a risk of mixing in the charge-voltage converter immediately after. Therefore, in this embodiment, the charge discharging unit 180 is provided and opened during the reset operation at the time of logarithmic reading, so that the charges in the photoelectric conversion unit 110 due to light reception are selectively discharged.
  • FIG. 3 is a diagram illustrating an example of the light response characteristics of each pixel of the pixel array unit 100 according to the embodiment of the present technology.
  • the output signal is a linear signal that is linear with respect to the incident light amount.
  • Such readout at low illuminance is referred to as linear readout as described above.
  • the charge reset unit 140 In order to suppress variation in timing difference when switching from linear reading to logarithmic reading, when reading noise, the charge reset unit 140 is set to an intermediate level while the photoelectric conversion unit 110 and the charge voltage conversion unit 130 are filled with charges. Later, the charge transfer unit 120 is opened. As a result, the charge accumulated in the charge-voltage conversion unit 130 is read as noise. At that time, the photoelectric conversion unit 110 receives light, and in the case of high illuminance, it overflows from the charge transfer unit 120 and depends on the intermediate level. There is a risk of mixing into the charge-voltage converter 130 immediately after reset. Therefore, in this embodiment, the charge discharging unit 180 is provided and opened during the reset operation at the time of logarithmic readout, so that the charge in the photoelectric conversion unit 110 due to light reception is selectively discharged.
  • FIG. 4 is a diagram illustrating an example of readout timing of each pixel of the pixel array unit 100 according to the embodiment of the present technology.
  • FIG. 5 is a diagram illustrating an example of potential at high illuminance corresponding to FIG.
  • FIG. 6 is a diagram illustrating an example of potential at low illuminance corresponding to FIG.
  • an operation example in the case where the charge discharging unit 180 is not provided is shown.
  • the reset drain control unit 224 changes the voltage VRD of the reset drain, which is the drain of the charge reset unit 140, from the reset potential Vrst to the voltage Vmid when the charge is saturated in the photoelectric conversion unit 110.
  • the photoelectric conversion unit 110, the charge transfer unit 120, the charge voltage conversion unit 130, the charge reset unit 140, and the reset drain are filled with charges.
  • the reset drain control unit 224 returns the reset drain voltage VRD to the reset voltage Vrst.
  • the charge transfer unit 120 and the charge reset unit 140 remain in a non-conductive state.
  • the photoelectric conversion unit 110 and the charge-voltage conversion unit 130 are at their saturation levels.
  • the reset control unit 222 applies an intermediate potential to the reset signal RST.
  • the charge resetting unit 140 is turned on at the intermediate potential.
  • the state Sc the charge accumulated by the intermediate potential of the charge reset unit 140 remains in the charge voltage conversion unit 130.
  • the reset control unit 222 sets the reset signal RST to the L level. In response to this, the charge reset unit 140 is turned off. As a result, as shown by the state Sd, the charge-voltage conversion unit 130 is in a state where charges accumulated by the intermediate potential of the charge reset unit 140 are accumulated.
  • the transfer control unit 223 sets the transfer signal TRG to the H level. In response to this, the charge transfer unit 120 becomes conductive.
  • the transfer control unit 223 sets the transfer signal TRG to the L level.
  • the charge-voltage conversion unit 130 has a charge in a state in which the charge at the saturation level of the photoelectric conversion unit 110 and the charge accumulated by the intermediate potential of the charge reset unit 140 are added. Is accumulated. That is, the charge corresponding to the saturation charge amount of the photoelectric conversion unit 110 is accumulated in the charge-voltage conversion unit 130.
  • the exposure state is reached from time tf to tg, and charges corresponding to the exposure time are accumulated in the photoelectric conversion unit 110.
  • the exposure time can freely set the length between time tf thru
  • the photoelectric conversion unit 110 and the charge voltage conversion unit 130 are each at a saturation level as shown by the state Sg in FIG.
  • the charge transfer unit 120 and the charge reset unit 140 are formed with an overflow path for transferring charges even in a non-conductive state, and a current proportional to the amount of incident light flows through the charge-voltage conversion unit 130. It is known that the voltage in the charge voltage conversion unit 130 has a value corresponding to the logarithm of the incident light amount.
  • the selection control unit 221 sets the selection signal SEL to the H level. As a result, the pixel selection unit 160 becomes conductive, and so-called pixels are selected.
  • the column processing unit 230 reads the potential of the charge-voltage conversion unit 130 at this time as a signal S2 at high illuminance.
  • the column processing unit 230 reads the potential of the charge-voltage conversion unit 130 at this time as a signal S2 at high illuminance. That is, in the case of high illuminance, in the state Sf, the charge accumulated in the charge-voltage conversion unit 130 is read as it is as the signal S2.
  • the reset control unit 222 sets the reset signal RST to the H level
  • the charge reset unit 140 becomes conductive.
  • the charges accumulated in the charge-voltage conversion unit 130 are discharged to the reset drain via the charge reset unit 140.
  • the column processing unit 230 reads the potential of the charge-voltage conversion unit 130 as a noise signal N1 at low illuminance.
  • the transfer control unit 223 stops generating the transfer signal TRG. Thereby, the charge transfer unit 120 is turned off, and the charge accumulated in the photoelectric conversion unit 110 is not transferred. As a result, as indicated by the state Sk, the charge read from the photoelectric conversion unit 110 is accumulated in the charge-voltage conversion unit 130.
  • the column processing unit 230 reads the potential of the charge-voltage conversion unit 130 at this time as a signal S1 at low illuminance.
  • the reset drain control unit 224 changes the reset drain voltage VRD again from the reset potential Vrst to the voltage Vmid when the charge is saturated in the photoelectric conversion unit 110.
  • the photoelectric conversion unit 110, the charge-voltage conversion unit 130, and the reset drain are all Vmid and are filled with charges.
  • the reset drain control unit 224 returns the reset drain voltage VRD to the reset voltage Vrst.
  • the charge transfer unit 120 and the charge reset unit 140 remain in a non-conductive state.
  • the photoelectric conversion unit 110 and the charge / voltage conversion unit 130 are at their respective saturation levels.
  • the reset control unit 222 applies an intermediate potential to the reset signal RST. Further, the transfer control unit 223 sets the transfer signal TRG to the H level. As a result, as shown by the state Sn, the charge accumulated by the intermediate potential of the charge reset unit 140 is left in the charge voltage conversion unit 130.
  • the transfer control unit 223 sets the transfer signal TRG to the L level. In response to this, the charge transfer unit 120 is turned off.
  • the reset control unit 222 sets the reset signal RST to the L level. In response to this, the charge reset unit 140 is turned off.
  • the column processing unit 230 reads the potential of the charge-voltage conversion unit 130 as a noise signal N2 at high illuminance. Thereby, the noise signal N2 is subtracted from S2 of the pixel signal, whereby the influence caused by the variation in the threshold value Vth of the charge reset unit 140 can be suppressed for each pixel.
  • the column processing unit 230 outputs an image signal at low illuminance as (S1-N1), and outputs an image signal at high illuminance as (S2-N2).
  • FIG. 7 is a diagram illustrating an operation example of the charge discharging unit 180 in each pixel of the pixel array unit 100 according to the embodiment of the present technology.
  • the operation example in the case where the charge discharging unit 180 is not provided is shown, but here, the operation example in the case where the charge discharging unit 180 is provided will be described.
  • the charge in the photoelectric conversion unit 110 due to light reception is selectively discharged.
  • the state Sq is a state corresponding to the state S1 described above, and the photoelectric conversion unit 110, the charge voltage conversion unit 130, and the reset drain are all Vmid and are filled with charges.
  • the reset drain control unit 224 returns the reset drain voltage VRD to the reset voltage Vrst.
  • the charge transfer unit 120 and the charge reset unit 140 remain in a non-conductive state.
  • the photoelectric conversion unit 110 and the charge voltage conversion unit 130 are at their saturation levels.
  • the charge discharge control unit 225 sets the overflow gate signal OFG to the H level.
  • the charge discharging unit 180 becomes conductive. Thereby, as shown in the state Sr, the electric charge accumulated in the photoelectric conversion unit 110 is discharged through the charge discharging unit 180.
  • the reset control unit 222 applies an intermediate potential to the reset signal RST. Further, the transfer control unit 223 sets the transfer signal TRG to H level after setting it to H level once. As a result, as shown by the state Ss, the charge accumulated by the intermediate potential of the charge reset unit 140 is left in the charge voltage conversion unit 130.
  • the reset control unit 222 sets the reset signal RST to the L level. In response to this, the charge reset unit 140 is turned off. In this state, the noise signal N2 at high illuminance is read by logarithmic reading by the column processing unit 230.
  • the charge discharging unit 180 is opened during the reset operation at the time of logarithmic readout, and the charge in the photoelectric conversion unit 110 is discharged by light reception, so that the charge overflows from the charge transfer unit 120 and the charge voltage conversion unit 130. Can be avoided.
  • FIG. 8 is a diagram illustrating a configuration example of each pixel of the pixel array unit 100 according to the first embodiment of the present technology.
  • the first photoelectric conversion unit 111 that photoelectrically converts incident light into charges in the first region and accumulates in one pixel, and the second that has a smaller area than the first region.
  • a second photoelectric conversion unit 112 that photoelectrically converts incident light into electric charges and stores the charges in the region. That is, photoelectric conversion units 111 and 112 having different sizes are arranged in one pixel region.
  • the photoelectric conversion units 111 and 112 are examples of the first and second photoelectric conversion units described in the claims.
  • charge transfer units 121 and 122 are provided, respectively.
  • a transfer control unit 223 supplies a transfer signal TGL to the charge transfer unit 121 and a transfer signal TGS to the charge transfer unit 122, respectively.
  • the charge-voltage conversion unit 130, the charge reset unit 140, the signal amplification unit 150, and the pixel selection unit 160 are the same as the circuit configuration described above, and are shared by one pixel.
  • the photoelectric conversion units 111 and 112 are examples of the first and second charge transfer units described in the claims.
  • the charge discharging unit 181 is connected only to the photoelectric conversion unit 111 and is not connected to the photoelectric conversion unit 112.
  • the charge discharging unit 181 discharges the charges accumulated in the photoelectric conversion unit 111 in accordance with the overflow gate signal OFGL supplied from the charge discharging control unit 225.
  • the charge discharging unit 181 is an example of a first charge discharging unit described in the claims.
  • the large-area photoelectric conversion unit 111 acquires a relatively low illuminance signal by performing normal linear reading.
  • the small-area photoelectric conversion unit 112 obtains a relatively high illuminance signal logarithmically by using logarithmic readout. Then, a signal obtained by reading suitable for each illuminance in each pixel region is combined by the signal processing unit 280, whereby an image with a high dynamic range can be taken.
  • the photoelectric conversion units 111 and 112 having different sizes are arranged in one pixel, and the charge discharging unit 181 is connected only to the large-area photoelectric conversion unit 111. .
  • the charge discharging unit 181 is opened and the charge is discharged from the photoelectric conversion unit 111, thereby avoiding the mixing of charges into the photoelectric conversion unit 111 at the time of logarithmic reading. Malfunction can be prevented.
  • FIG. 9 is a diagram illustrating a configuration example of each pixel of the pixel array unit 100 according to the modification of the first embodiment of the present technology.
  • the charge discharging unit 181 is connected to the large area photoelectric conversion unit 111, and the charge discharging unit 182 is also connected to the small area photoelectric conversion unit 112 arranged in the pixel.
  • the charge discharging unit 182 is an example of a second charge discharging unit described in the claims.
  • the charge discharging unit 182 is connected to the photoelectric conversion unit 112 with a small area and is opened during the reset operation at the time of logarithmic readout, thereby receiving light. Electric charges in the photoelectric conversion unit 112 are selectively discharged. Thereby, mixing of signals at the time of reset due to the intermediate potential of the charge reset unit 140 can be suppressed.
  • Second Embodiment> In the first embodiment described above, normal readout is performed by the large-area photoelectric conversion unit 111 at low illuminance, and logarithmic readout is performed by the small-area photoelectric conversion unit 112 at high illuminance. At this time, if the illuminance is too low, sufficient resolution cannot be obtained even by the photoelectric conversion unit 111 having a large area, and accurate reading may be difficult. Therefore, in the second embodiment, a conversion efficiency switching unit is provided between the photoelectric conversion units 111 and 112, and when the illuminance is too low, the conversion efficiency is improved and high-precision reading is performed.
  • FIG. 10 is a diagram illustrating a configuration example of each pixel of the pixel array unit 100 according to the second embodiment of the present technology. Note that the overall configuration of the solid-state imaging device 10 is the same as that of the first embodiment described above, and thus detailed description thereof is omitted.
  • charge discharging units 181 and 182 are connected to the photoelectric conversion units 111 and 112 having different sizes, respectively.
  • a conversion efficiency switching unit 190 is provided between the charge transfer units 121 and 122 connected to the photoelectric conversion units 111 and 112, respectively.
  • the conversion efficiency switching unit 190 switches the conversion efficiency from charge accumulated in the charge voltage conversion unit 130 to voltage.
  • the conversion efficiency switching unit 190 is controlled by a conversion efficiency switching signal FDG supplied from the vertical drive unit 220, and performs an on / off operation as a transistor. Thereby, the gain (amplification degree) in the signal amplifier 150 can be switched by switching the charge capacity of the charge-voltage converter 130.
  • FIG. 11 is a diagram illustrating an example of potential in the operation state according to the second embodiment of the present technology.
  • a in the same figure shows the state at the time of logarithmic readout by the photoelectric converter 112 of a small area.
  • logarithmic readout is performed on the high-illuminance signal by the small-area photoelectric conversion unit 112.
  • the conversion efficiency switching unit 190 needs to be opened. That is, the conversion efficiency switching signal FDG is set to the H level, and the capacitance of the charge voltage conversion unit 130 is set to the same state as in the first embodiment.
  • the conversion efficiency switching unit 190 In order to obtain a signal with higher sensitivity with respect to a low illuminance signal, the capacitance of the charge voltage conversion unit 130 is reduced by closing the conversion efficiency switching unit 190. That is, the conversion efficiency switching signal FDG is set to the L level, and the conversion efficiency switching unit 190 is closed. Thereby, sufficient resolution can be obtained for a low-illuminance signal.
  • the conversion efficiency switching unit 190 is opened to perform normal sensitivity reading by the large-area photoelectric conversion unit 111. That is, the conversion efficiency switching signal FDG is set to the H level, and the capacitance of the charge voltage conversion unit 130 is set to the same state as in the first embodiment.
  • FIG. 12 is a diagram illustrating an example of a light response characteristic of each pixel of the pixel array unit 100 according to the second embodiment of the present technology.
  • the amount of light targeted for high-sensitivity readout is low illuminance
  • the amount of light subject to logarithmic readout is high illuminance
  • the range between them is medium illuminance.
  • a in the figure indicates the optical response characteristic of logarithmic readout by the small-area photoelectric conversion unit 112.
  • the conversion efficiency switching unit 190 is in an open state, and a high illuminance signal is acquired logarithmically.
  • the readout by the photoelectric conversion unit 111 with a large area is saturated and the value becomes constant regardless of the amount of light, but according to this logarithmic readout, the signal amount corresponding to the amount of light is changed. Can be acquired.
  • the conversion efficiency switching unit 190 is in a closed state, and a sufficient resolution can be obtained for a low illuminance signal.
  • C in the figure indicates the optical response characteristic of normal sensitivity reading by the photoelectric conversion unit 111 having a large area.
  • the conversion efficiency switching unit 190 is in an open state, and a medium illuminance signal in a connection range between high and low illuminance is widened in a light quantity range that can be received while lowering resolution than in the case of low illuminance. Get.
  • the response in this medium illuminance region varies with driving.
  • the signal processing unit 280 multiplies the conversion efficiency ratio by the signal obtained by logarithmic readout of the photoelectric conversion unit 112 and the signal obtained by normal sensitivity readout of the photoelectric conversion unit 111, thereby obtaining a high sensitivity readout signal. You will make a picture that matches the level.
  • FIG. 13 is a diagram illustrating an example of the readout timing of each pixel of the pixel array unit 100 according to the second embodiment of the present technology.
  • the charge discharging unit 181 connected to the photoelectric conversion unit 111 is in an off state, and the charge discharging unit 182 connected to the photoelectric conversion unit 112 is in an on state. That is, while exposure and reading are performed in the large-area photoelectric conversion unit 111, reading is not performed in the small-area photoelectric conversion unit 112 because charges are discharged.
  • the charge discharging unit 181 connected to the photoelectric conversion unit 111 is turned on, and the charge discharging unit 182 connected to the photoelectric conversion unit 112 is turned off.
  • the photoelectric conversion unit 111 having a large area electric charges are discharged, so that reading is not performed.
  • exposure is performed in the small-area photoelectric conversion unit 112 (806). By this exposure, logarithmic readout of signals and noise at high illuminance is performed (807, 808).
  • the charge discharging unit 182 connected to the photoelectric conversion unit 112 is turned on during logarithmic readout of noise (808) in order to suppress mixing of signals at the reset due to the intermediate potential of the charge resetting unit 140. Become. In this logarithmic reading, the conversion efficiency switching unit 190 is in an open state (on state).
  • the conversion efficiency switching unit 190 is provided between the photoelectric conversion units 111 and 112 to improve the conversion efficiency with respect to the low illuminance signal. High reading can be performed.
  • the processing procedure described in the above embodiment may be regarded as a method having a series of these procedures, and a program for causing a computer to execute these series of procedures or a recording medium storing the program. You may catch it.
  • a recording medium for example, a CD (Compact Disc), an MD (MiniDisc), a DVD (Digital Versatile Disc), a memory card, a Blu-ray disc (Blu-ray (registered trademark) Disc), or the like can be used.
  • this technique can also take the following structures.
  • a first photoelectric conversion unit that photoelectrically converts incident light into charges in the first region and stores the charge
  • a second photoelectric conversion unit that photoelectrically converts incident light into charges in a second region having a smaller area than the first region
  • a charge-to-voltage converter that accumulates the charges photoelectrically converted by the first and second photoelectric converters to convert them into voltages
  • a first charge transfer unit that transfers the charge accumulated in the first photoelectric conversion unit to the charge voltage conversion unit
  • a second charge transfer unit that transfers the charge accumulated in the second photoelectric conversion unit to the charge voltage conversion unit
  • a charge reset unit for resetting the charge accumulated in the charge-voltage conversion unit
  • a solid-state imaging device comprising: a first charge discharging unit that discharges the charge accumulated in the first photoelectric conversion unit.
  • the drain of the charge reset unit is controlled while discharging the charge accumulated in the first photoelectric conversion unit by the first charge discharge unit, and the second photoelectric conversion unit and the charge voltage are controlled.
  • the solid-state imaging device according to (1) further including a driving unit that drives the second photoelectric conversion unit to expose after the charge is accumulated in the conversion unit to a saturation level.
  • the drive unit controls the potential of the drain of the charge reset unit while discharging the charge accumulated in the first photoelectric conversion unit by the first charge discharge unit, and controls the second photoelectric conversion unit and the second photoelectric conversion unit After accumulating the charge to the saturation level in the charge-voltage conversion unit, applying an intermediate potential to the charge reset unit while discharging the charge accumulated in the second photoelectric conversion unit by the second charge discharging unit
  • the charge is stored in the charge-voltage conversion unit, and the charge is stored in the charge-voltage conversion unit after the charge reset unit is turned off, and then transferred to the charge-voltage conversion unit.
  • the solid-state imaging device according to (2) which is driven to expose the conversion unit.
  • the solid-state imaging device according to (3) further including a signal amplification unit that amplifies the charge accumulated in the charge-voltage conversion unit and outputs a pixel signal having a level corresponding to the charge.
  • the solid-state imaging device according to (4) further including a conversion efficiency switching unit that switches a charge capacity of the charge-voltage conversion unit and switches an amplification degree in the signal amplification unit.
  • a first photoelectric conversion unit that photoelectrically converts incident light into charges in the first region and stores the charge
  • a second photoelectric conversion unit that photoelectrically converts incident light into charges in a second region having a smaller area than the first region
  • a charge-to-voltage converter that accumulates the charges photoelectrically converted by the first and second photoelectric converters to convert them into voltages
  • a first charge transfer unit that transfers the charge accumulated in the first photoelectric conversion unit to the charge voltage conversion unit
  • a second charge transfer unit that transfers the charge accumulated in the second photoelectric conversion unit to the charge voltage conversion unit
  • a charge reset unit for resetting the charge accumulated in the charge-voltage conversion unit
  • a solid-state imaging device driving method comprising: a first charge discharging unit that discharges charges accumulated in the first photoelectric conversion unit; The drain of the charge reset unit is controlled while discharging the charge accumulated in the first photoelectric conversion unit by the first charge discharging unit, and the second photoelectric conversion unit and the charge voltage conversion unit are controlled.
  • a method for driving a solid-state imaging device wherein the second photoelectric conversion unit is driven to be exposed after the charge is accumulated to a saturation level.
  • a first photoelectric conversion unit that photoelectrically converts incident light into charges in the first region
  • a second photoelectric conversion unit that photoelectrically converts incident light into charges in a second region having a smaller area than the first region
  • a charge-to-voltage converter that accumulates the charges photoelectrically converted by the first and second photoelectric converters to convert them into voltages
  • a first charge transfer unit that transfers the charge accumulated in the first photoelectric conversion unit to the charge voltage conversion unit
  • a second charge transfer unit that transfers the charge accumulated in the second photoelectric conversion unit to the charge voltage conversion unit
  • a charge reset unit for resetting the charge accumulated in the charge-voltage conversion unit
  • a first charge discharging unit that discharges charges accumulated in the first photoelectric conversion unit; The drain of the charge reset unit is controlled while discharging the charge accumulated in the first photoelectric conversion unit by the first charge discharging unit
  • Solid-state imaging device 100 Pixel array part 110-112 Photoelectric conversion part 120-122 Charge transfer part 130 Charge voltage conversion part 140 Charge reset part 150 Signal amplification part 160 Pixel selection part 170 Constant current source 180-182 Charge discharge part 190 Conversion efficiency Switching unit 220 Vertical drive unit 221 Selection control unit 222 Reset control unit 223 Transfer control unit 224 Reset drain control unit 225 Charge discharge control unit 229 Pixel drive line 230 Column processing unit 239 Vertical signal line 240 Horizontal drive unit 250 System control unit 280 Signal Processing unit 290 Data storage unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Nonlinear Science (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Exposure Control For Cameras (AREA)

Abstract

固体撮像装置において線形読出しから対数読出しに切り替わるタイミングのばらつきを抑制するとともに、精度の高い読出しを行う。 第1の光電変換部は、第1の領域において入射光を電荷に光電変換して蓄積する。第2の光電変換部は、第1の領域よりも面積の小さい第2の領域において入射光を電荷に光電変換して蓄積する。電荷電圧変換部は、第1および第2の光電変換部によって光電変換された電荷を電圧に変換するために蓄積する。第1および第2の電荷転送部は、それぞれ第1および第2の光電変換部に蓄積された電荷を電荷電圧変換部に転送する。電荷リセット部は、電荷電圧変換部に蓄積された電荷をリセットする。第1の電荷排出部は、第1の光電変換部に蓄積された電荷を排出する。

Description

固体撮像装置、その駆動方法および電子機器
 本技術は、固体撮像装置に関する。詳しくは、飽和レベルを超える高照度における信号のばらつきを抑制する固体撮像装置、その駆動方法および電子機器に関する。
 光電変換部において入射光量に応じて蓄積した電荷を、MOS(Metal Oxide Semiconductor)トランジスタを介して読み出す一般的なMOS型イメージセンサでは、その飽和レベルは光電変換部に蓄積可能な電荷量によって制限される。すなわち、光電変換部の飽和レベルを超えるような範囲の光量については正しく検出することができなかった。そこで、従来は、光電変換部で蓄積した電荷を、転送ゲートから電荷電圧変換部、電荷リセット部、ドレイン電源へとオーバーフローさせて、その際の電荷電圧変換部の電圧を信号電圧として検出するという動作(以下、対数読出しと称する。)が用いられてきた。ここで検出された電圧は、入射光量の対数に対応した信号となり、これにより、飽和レベルを超える光量についても検出することが可能となる。
 このような対数読出しを通常の蓄積による読出し(以下、線形読出しと称する。)とともに行う場合、線形読出しから対数読出しに切り替わるタイミングの差が画素ごとにばらつくという問題がある。これは、光電変換部の飽和レベルや、オーバーフローを発生し始めるレベルを決める転送ゲートおよび電荷リセット部のトランジスタの閾値が、画素ごとにばらつくために生じる。そこで、従来は、対数読出しの信号を取得する前に、光電変換部と電荷電圧変換部にドレイン電源から飽和レベルまで電荷を注入し、その後、電荷リセット部をハイレベルとローレベルの中間レベルでリセットする。これにより、電荷リセット部のばらつきを抑制し、画素ごとの電荷電圧変換部のばらつきを抑制する。そして、この状態で転送ゲートを開いて光電変換部の信号(飽和レベル)を電荷電圧変換部に転送して、受光を始めることにより、画素ごとの光電変換部と転送ゲートのばらつきを抑制する。ノイズを読み出す際は、再度、光電変換部と電荷電圧変換部を電荷で満たした状態で転送ゲートを開くとともに電荷リセット部を中間レベルにして、電荷電圧変換部に蓄積された電荷を読み出す。これらの動作を行うことによって、画素ごとのばらつきを抑制し、線形読出しから対数読出しに切り替わるタイミングのばらつきを抑制する(例えば、特許文献1参照。)。
特開2014-060658号公報
 上述の従来技術では、線形読出しおよび対数読出しを1つの画素で行う際、画素ごとのばらつきを抑制し、線形読出しから対数読出しに切り替わるタイミングのばらつきを抑制していた。ここで、高照度の光量を対数読出しにより読み出す場合には、光電変換部からドレイン電源まで電荷をオーバーフローさせる必要があるため、光電変換部は小さい方が有利である。一方、光電変換部を小さくした場合、低照度の光量を線形読出しにより読み出すためには感度が不足してしまう。また、上述の従来技術では、ばらつきを抑制するための動作において、ノイズを読み出す際にも光電変換部では受光をしており、高照度の場合は転送ゲートからオーバーフローして、中間レベルによるリセット直後の電荷電圧変換部に混入するおそれがある。
 本技術はこのような状況に鑑みて生み出されたものであり、固体撮像装置において線形読出しから対数読出しに切り替わるタイミングのばらつきを抑制するとともに、精度の高い読出しを行うことを目的とする。
 本技術は、上述の問題点を解消するためになされたものであり、その第1の側面は、第1の領域において入射光を電荷に光電変換して蓄積する第1の光電変換部と、上記第1の領域よりも面積の小さい第2の領域において入射光を電荷に光電変換して蓄積する第2の光電変換部と、上記第1および第2の光電変換部によって光電変換された電荷を電圧に変換するために蓄積する電荷電圧変換部と、上記第1の光電変換部に蓄積された電荷を上記電荷電圧変換部に転送する第1の電荷転送部と、上記第2の光電変換部に蓄積された電荷を上記電荷電圧変換部に転送する第2の電荷転送部と、上記電荷電圧変換部に蓄積された電荷をリセットする電荷リセット部と、上記第1の光電変換部に蓄積された電荷を排出する第1の電荷排出部とを具備する固体撮像装置およびその駆動方法である。これにより、第1の光電変換部への不要な電荷の混入を回避するという作用をもたらす。
 また、この第1の側面において、上記第1の電荷排出部によって上記第1の光電変換部に蓄積された電荷を排出させながら上記電荷リセット部のドレインの電位を制御して、上記第2の光電変換部および電荷電圧変換部に上記電荷を飽和レベルまで蓄積させた後に、上記第2の光電変換部を露光させるように駆動する駆動部をさらに具備してもよい。これにより、第2の光電変換部による対数読出し時に、第1の光電変換部に蓄積された電荷を排出させて、第1の光電変換部への不要な電荷の混入を回避するという作用をもたらす。
 また、この第1の側面において、上記第2の光電変換部に蓄積された電荷を排出する第2の電荷排出部をさらに具備し、上記駆動部は、上記第1の電荷排出部によって上記第1の光電変換部に蓄積された電荷を排出させながら上記電荷リセット部のドレインの電位を制御して上記第2の光電変換部および上記電荷電圧変換部に電荷を飽和レベルまで蓄積させた後に、上記第2の電荷排出部によって上記第2の光電変換部に蓄積された電荷を排出させながら上記電荷リセット部に中間電位を印加して上記電荷電圧変換部に電荷を蓄積させ、さらに、上記電荷リセット部を非導通状態にしてから上記電荷電圧変換部に蓄積された電荷を上記電荷電圧変換部に転送させた後に上記第2の光電変換部を露光させるように駆動するようにしてもよい。これにより、第2の光電変換部における対数読出し時の中間電位によるリセット動作時に、第2の光電変換部に蓄積された電荷を排出させて、電荷電圧変換部への不要な電荷の混入を回避するという作用をもたらす。
 また、この第1の側面において、上記電荷電圧変換部に蓄積されている電荷を増幅して当該電荷に応じたレベルの画素信号を出力する信号増幅部をさらに具備してもよい。また、上記電荷電圧変換部の電荷容量を切り換えて上記信号増幅部における増幅度を切り換える変換効率切換部をさらに具備してもよい。これにより、低照度の信号に対して、電荷電圧変換部の電荷容量を切り換えて、十分な分解能を得るという作用をもたらす。
 また、本技術の第2の側面は、第1の領域において入射光を電荷に光電変換して蓄積する第1の光電変換部と、上記第1の領域よりも面積の小さい第2の領域において入射光を電荷に光電変換して蓄積する第2の光電変換部と、上記第1および第2の光電変換部によって光電変換された電荷を電圧に変換するために蓄積する電荷電圧変換部と、上記第1の光電変換部に蓄積された電荷を上記電荷電圧変換部に転送する第1の電荷転送部と、上記第2の光電変換部に蓄積された電荷を上記電荷電圧変換部に転送する第2の電荷転送部と、上記電荷電圧変換部に蓄積された電荷をリセットする電荷リセット部と、上記第1の光電変換部に蓄積された電荷を排出する第1の電荷排出部と、上記第1の電荷排出部によって上記第1の光電変換部に蓄積された電荷を排出させながら上記電荷リセット部のドレインの電位を制御して、上記第2の光電変換部および電荷電圧変換部に上記電荷を飽和レベルまで蓄積させた後に、上記第2の光電変換部を露光させるように駆動する駆動部とを具備する電子機器である。これにより、第2の光電変換部による対数読出し時に、第1の光電変換部に蓄積された電荷を排出させて、第1の光電変換部への不要な電荷の混入を回避するという作用をもたらす。
 本技術によれば、固体撮像装置において線形読出しから対数読出しに切り替わるタイミングのばらつきを抑制するとともに、精度の高い読出しを行うことができるという優れた効果を奏し得る。なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。
本技術の実施の形態における固体撮像装置10の一構成例を示す図である。 本技術の実施の形態における画素アレイ部100の各画素の動作を説明するための回路構成例を示す図である。 本技術の実施の形態における画素アレイ部100の各画素の光応答特性の例を示す図である。 本技術の実施の形態における画素アレイ部100の各画素の読出しタイミングの例を示す図である。 図4に対応する高照度時のポテンシャル例を示す図である。 図4に対応する低照度時のポテンシャル例を示す図である。 本技術の実施の形態の画素アレイ部100の各画素における電荷排出部180の動作例を示す図である。 本技術の第1の実施の形態における画素アレイ部100の各画素の構成例を示す図である。 本技術の第1の実施の形態の変形例における画素アレイ部100の各画素の構成例を示す図である。 本技術の第2の実施の形態における画素アレイ部100の各画素の構成例を示す図である。 本技術の第2の実施の形態の動作状態におけるポテンシャル例を示す図である。 本技術の第2の実施の形態における画素アレイ部100の各画素の光応答特性の例を示す図である。 本技術の第2の実施の形態における画素アレイ部100の各画素の読出しタイミングの例を示す図である。
 以下、本技術を実施するための形態(以下、実施の形態と称する)について説明する。説明は以下の順序により行う。
 1.第1の実施の形態(光電変換部に電荷排出部を設けた例)
 2.第2の実施の形態(画素間に電荷電圧制御部を設けた例)
 <1.第1の実施の形態>
 [固体撮像装置の構成]
 図1は、本技術の実施の形態における固体撮像装置10の一構成例を示す図である。この固体撮像装置10は、例えばMOS型イメージセンサにより構成され、入射光を光電変換して、画像信号を生成することにより画像を撮像するものである。この固体撮像装置10は、画素アレイ部100、垂直駆動部220、カラム処理部230、水平駆動部240、システム制御部250、信号処理部280、および、データ格納部290を備える。
 画素アレイ部100は、被写体から入射した光量に応じた電荷を生成して蓄積する光電変換部を有する画素を、横方向(行方向)および縦方向(列方向)に2次元に配置したものである。この画素アレイ部100では、行方向に配列された画素からなる画素行ごとに画素駆動線229が行方向に沿って配線され、列方向に配列された画素からなる画素列ごとに垂直信号線(VSL)239が列方向に沿って配線される。
 垂直駆動部220は、シフトレジスタやアドレスデコーダなどからなり、複数の画素駆動線229を介して各画素に信号等を供給することにより、画素アレイ部100の各画素を駆動するものである。この垂直駆動部220は、選択制御部221、リセット制御部222、転送制御部223、リセットドレイン制御部224、および電荷排出制御部225を備える。選択制御部221は、後述する画素選択部に印可される選択信号SELを制御するものである。リセット制御部222は、後述する電荷リセット部に印可されるリセット信号RSTを制御するものである。転送制御部223は、後述する電荷転送部に印可される転送信号TRGを制御するものである。リセットドレイン制御部224は、後述する電荷リセット部のリセットドレインの電位を制御するものである。電荷排出制御部225は、後述する電荷排出部に印可される排出信号OFGを制御するものである。なお、垂直駆動部220は、特許請求の範囲に記載の駆動部の一例である。
 カラム処理部230は、画素アレイ部100の画素列ごとに垂直信号線239を介して各画素から信号を読み出して、ノイズ除去処理、相関二重サンプリング処理、AD(Analog to Digital)変換処理などを行って画素信号を生成するものである。
 水平駆動部240は、シフトレジスタやアドレスデコーダなどからなり、カラム処理部230の画素列に対応する単位回路を順番に選択するものである。この水平駆動部240による選択走査により、カラム処理部230において単位回路ごとに信号処理された画素信号が順番に信号処理部280に出力される。
 システム制御部250は、各種の駆動信号を生成するタイミングジェネレータなどからなり、タイミングジェネレータで生成された駆動信号に基づいて、垂直駆動部220、カラム処理部230、および、水平駆動部240の駆動制御を行うものである。
 信号処理部280は、カラム処理部230から供給された画素信号に対して演算処理等の信号処理を行い、各画素信号からなる画像信号を出力するものである。
 データ格納部290は、信号処理部280によって処理された画像信号を格納するものである。
 [回路構成]
 図2は、本技術の実施の形態における画素アレイ部100の各画素の動作を説明するための回路構成例を示す図である。ここでは、画素アレイ部100の各画素の構成を説明する前に、前提となる基本構成について説明する。まず、画素アレイ部100の各画素は、光電変換部110、電荷転送部120、電荷電圧変換部130、電荷リセット部140、信号増幅部150、画素選択部160、定電流源170、および、電荷排出部180を備えることを想定する。
 光電変換部110は、PN接合のフォトダイオード(PD:Photo Diode)であり、入射光量に応じた電荷を生成して蓄積するものである。
 電荷転送部120は、転送信号TRGに従って、光電変換部110に蓄積された電荷を電荷電圧変換部130に転送するものである。電荷転送部120に印可される転送信号TRGがHレベルになると、電荷転送部120は導通状態となり、光電変換部110に蓄積されている電荷が、電荷電圧変換部130に転送される。ただし、電荷転送部120は、例えば、デプレッショントランジスタなどから構成されており、非導通状態であっても一部の電荷を転送するオーバーフローパスを構成している。このため、光電変換部110が飽和すると、光電変換部110からオーバーフローした電荷がオーバーフローパスを介して電荷電圧変換部130に転送される。
 電荷電圧変換部130は、電荷転送部120のドレインと電荷リセット部140のソースの間に形成される浮遊拡散(FD:Floating Diffusion)容量である。この電荷電圧変換部130は、電荷転送部120から転送された電荷を蓄積する。
 電荷リセット部140は、リセット信号RSTに従って、電荷電圧変換部130に蓄積される電荷をリセットするものである。電荷リセット部140に印可されるリセット信号RSTがHレベルになると、電荷リセット部140は導通状態となり、電荷電圧変換部130に蓄積された電荷をリセットする。また、電荷リセット部140は、デプレッショントランジスタなどから構成されており、非導通状態であっても一部の電荷を転送するオーバーフローパスを構成している。このため、電荷電圧変換部130が飽和すると、オーバーフローパスが、電荷電圧変換部130からオーバーフローした電荷を電荷リセット部140のドレイン(リセットドレイン)に転送する。
 信号増幅部150は、電荷電圧変換部130に蓄積されている電荷を増幅して、その電荷に応じたレベルの画素信号を出力するものである。この信号増幅部150は、ゲート電極が電荷電圧変換部130に接続され、ドレインが電源電圧Vddに接続されており、光電変換部110における光電変換によって得られる電荷を読み出す読出し回路、すなわち、いわゆるソースフォロワ回路の入力部となる。つまり、この信号増幅部150は、ソースが画素選択部160を介して垂直信号線239に接続されることにより、垂直信号線239の一端に接続される定電流源170とソースフォロワ回路を構成する。
 画素選択部160は、画素アレイ部100におけるいずれかの画素を選択するものである。この画素選択部160は、信号増幅部150のソースと垂直信号線239との間に接続され、そのゲート電極には選択信号SELが供給される。選択信号SELがHレベルになると、画素選択部160は導通状態となって、いわゆる画素が選択状態となる。画素が選択状態とされると、信号増幅部150から出力される信号が垂直信号線239を介してカラム処理部230に読み出される。
 電荷排出部180は、オーバーフローゲート信号OFGに従って、光電変換部110に蓄積された電荷を排出するものである。上述のように、従来技術では、ばらつきを抑制するための動作において、ノイズを読み出す際にも光電変換部では受光をしており、高照度の場合は転送ゲートからオーバーフローして、中間レベルによるリセット直後の電荷電圧変換部に混入するおそれがある。そのため、この実施の形態では、電荷排出部180を設けて、対数読出し時のリセット動作中に開いておくことにより、受光による光電変換部110内の電荷を選択的に排出する。
 [光応答特性]
 図3は、本技術の実施の形態における画素アレイ部100の各画素の光応答特性の例を示す図である。入射光量が比較的低照度である場合には、出力信号は入射光量に線形なリニア(線形)信号となる。このような低照度における読出しを、上述のように線形読出しと称する。
 一方、入射光量が比較的高照度である場合には、光電変換部110で蓄積した電荷が、電荷転送部120から電荷電圧変換部130、電荷リセット部140、リセットドレインへとオーバーフローする。そのため、このとき検出される電圧は、入射光量の対数に対応した対数信号となる。このような高照度における読出しを、上述のように対数読出しと称する。
 線形読出しから対数読出しに切り替わるタイミングの差のばらつきを抑制するために、ノイズを読み出す際は、光電変換部110と電荷電圧変換部130を電荷で満たした状態で電荷リセット部140を中間レベルにした後に、電荷転送部120を開く。これにより電荷電圧変換部130に蓄積された電荷をノイズとして読み出すが、その際にも光電変換部110では受光をしており、高照度の場合は電荷転送部120からオーバーフローして、中間レベルによるリセット直後の電荷電圧変換部130に混入するおそれがある。そこで、この実施の形態では、電荷排出部180を設けて、対数読出し時のリセット動作中に開いておくことにより、受光による光電変換部110内の電荷を選択的に排出する。
 [読出しタイミング]
 図4は、本技術の実施の形態における画素アレイ部100の各画素の読出しタイミングの例を示す図である。図5は、図4に対応する高照度時のポテンシャル例を示す図である。図6は、図4に対応する低照度時のポテンシャル例を示す図である。なお、ここでは、電荷排出部180を設けない場合の動作例を示している。
 時刻taにおいて、リセットドレイン制御部224は、電荷リセット部140のドレインであるリセットドレインの電圧VRDを、リセット電位Vrstから、光電変換部110において電荷が飽和する際の電圧Vmidに、変更する。この結果、状態Saで示されるように、光電変換部110、電荷転送部120、電荷電圧変換部130、電荷リセット部140、および、リセットドレインが電荷で満たされる状態となる。
 時刻tbにおいて、リセットドレイン制御部224は、リセットドレイン電圧VRDをリセット電圧Vrstに戻す。このとき、電荷転送部120および電荷リセット部140は、非導通状態のままである。この結果、状態Sbで示されるように、光電変換部110、および、電荷電圧変換部130は、それぞれの飽和レベルとなる。
 時刻tcにおいて、リセット制御部222は、リセット信号RSTに中間電位を印可する。これに応じて、電荷リセット部140は、中間電位となる状態でオンの状態となる。この結果、状態Scで示されるように、電荷電圧変換部130に電荷リセット部140の中間電位により蓄積される電荷が残される。
 時刻tdにおいて、リセット制御部222は、リセット信号RSTをLレベルにする。これに応じて、電荷リセット部140は非導通状態となる。この結果、状態Sdで示されるように、電荷電圧変換部130には、電荷リセット部140の中間電位により蓄積される電荷が蓄積された状態となる。
 時刻teにおいて、転送制御部223は転送信号TRGをHレベルにする。これに応じて、電荷転送部120は、導通状態となる。
 時刻tfにおいて、転送制御部223は転送信号TRGをLレベルにする。この結果、状態Sfで示されるように、電荷電圧変換部130には、光電変換部110の飽和レベルの電荷と、電荷リセット部140の中間電位により蓄積される電荷とが加算された状態の電荷が、蓄積される。すなわち、光電変換部110の飽和電荷量に対応する電荷が電荷電圧変換部130に蓄積された状態となる。
 そして、時刻tf乃至tgにおいて露光状態となり、光電変換部110において露光時間に応じた電荷が蓄積される。なお、露光時間は、時刻tf乃至tg間の長さを自由に設定することができる。
 露光時間が経過すると、高照度時においては、図5の状態Sgで示されるように、光電変換部110および電荷電圧変換部130は、それぞれ飽和レベルとなる。電荷転送部120および電荷リセット部140は、非導通状態であっても電荷を転送するオーバーフローパスが形成されており、電荷電圧変換部130には入射光量に比例した電流が流れることになる。このような電荷電圧変換部130における電圧は、入射光量の対数に応じた値となることが知られている。時刻tgにおいて、選択制御部221は、選択信号SELをHレベルにする。この結果、画素選択部160は導通状態となって、いわゆる画素が選択状態となる。時刻t(S2)において、カラム処理部230は、このときの電荷電圧変換部130の電位を高照度における信号S2として読み出す。
 一方、低照度時においては、時刻tgにおいて、図6の状態Sgで示されるように、露光時間に応じた電荷が光電変換部110に蓄積されているが、低照度時において光電変換部110に蓄積された電荷が飽和することはない。そこで、時刻t(S2)において、カラム処理部230は、このときの電荷電圧変換部130の電位を高照度における信号S2として読み出す。すなわち、高照度の場合、状態Sfにおいて、電荷電圧変換部130に蓄積された電荷がそのまま信号S2として読み出される。
 時刻thにおいて、リセット制御部222がリセット信号RSTをHレベルにすると、電荷リセット部140は導通状態となる。この結果、状態Shで示されるように、電荷電圧変換部130に蓄積されていた電荷が、電荷リセット部140を経由してリセットドレインに排出される。
 時刻tiにおいて、リセット制御部222がリセット信号RSTをLレベルにすると、電荷リセット部140は非導通状態となる。
 時刻t(N1)において、カラム処理部230は、電荷電圧変換部130の電位を低照度におけるノイズ信号N1として読み出す。
 時刻tjにおいて、転送制御部223が転送信号TRGをHレベルにすると、電荷転送部120は導通状態となる。この結果、状態Sjで示されるように、光電変換部110に蓄積されている電荷が電荷電圧変換部130に転送される。
 時刻tkにおいて、転送制御部223は、転送信号TRGの発生を停止する。これにより、電荷転送部120はオフの状態となり、光電変換部110に蓄積された電荷が転送されない状態となる。この結果、状態Skで示されるように、光電変換部110から読み出された電荷が電荷電圧変換部130に蓄積された状態となる。
 そこで、時刻t(S1)において、カラム処理部230は、このときの電荷電圧変換部130の電位を低照度における信号S1として読み出す。
 時刻tlにおいて、リセットドレイン制御部224は、リセットドレイン電圧VRDを、リセット電位Vrstから、光電変換部110において電荷が飽和する際の電圧Vmidに、再び変更する。この結果、状態Slで示されるように、状態Saにおけるときと同様に、光電変換部110、電荷電圧変換部130、および、リセットドレインがいずれもVmidになり、電荷で満たされる状態となる。
 さらに、時刻tmにおいて、リセットドレイン制御部224は、リセットドレイン電圧VRDをリセット電圧Vrstに戻す。このとき、電荷転送部120および電荷リセット部140は、非導通状態のままである。その結果、状態Smで示されるように、光電変換部110および電荷電圧変換部130は、それぞれの飽和レベルとなる。
 時刻tnにおいて、リセット制御部222は、リセット信号RSTに中間電位を印可する。また、転送制御部223は、転送信号TRGをHレベルにする。この結果、状態Snで示されるように、電荷リセット部140の中間電位により蓄積される電荷が電荷電圧変換部130に残される。
 時刻toにおいて、転送制御部223は転送信号TRGをLレベルにする。これに応じて、電荷転送部120は非導通状態となる。
 時刻tpにおいて、リセット制御部222はリセット信号RSTをLレベルにする。これに応じて、電荷リセット部140は非導通状態となる。
 時刻t(N2)において、カラム処理部230は、電荷電圧変換部130の電位を高照度時のノイズ信号N2として読み出す。これにより、画素信号のS2よりノイズ信号N2が減算されることにより、各画素について、電荷リセット部140の閾値Vthのばらつきにより生じる影響を抑制することができる。
 すなわち、カラム処理部230は、低照度時の画像信号を(S1-N1)として出力し、高照度時の画像信号を(S2-N2)として出力する。
 図7は、本技術の実施の形態の画素アレイ部100の各画素における電荷排出部180の動作例を示す図である。ここまでの説明では電荷排出部180を設けない場合の動作例を示したが、ここでは電荷排出部180を設けた場合の動作例について説明する。この例では、対数読出し時のリセット動作中に電荷排出部180を開いておくことにより、受光による光電変換部110内の電荷を選択的に排出する。
 状態Sqは、上述の状態Slに相当する状態であり、光電変換部110、電荷電圧変換部130、および、リセットドレインがいずれもVmidになり、電荷で満たされる状態である。
 その後、リセットドレイン制御部224は、リセットドレイン電圧VRDをリセット電圧Vrstに戻す。このとき、電荷転送部120および電荷リセット部140は、非導通状態のままである。その結果、光電変換部110および電荷電圧変換部130は、それぞれの飽和レベルとなる。そして、電荷排出制御部225はオーバーフローゲート信号OFGをHレベルにする。これに応じて、電荷排出部180は導通状態となる。これにより、状態Srに示すように、光電変換部110に蓄積された電荷が電荷排出部180を介して排出される。
 そして、リセット制御部222は、リセット信号RSTに中間電位を印可する。また、転送制御部223は、転送信号TRGを一旦Hレベルにした後にLレベルにする。この結果、状態Ssで示されるように、電荷リセット部140の中間電位により蓄積される電荷が電荷電圧変換部130に残される。
 その後、リセット制御部222はリセット信号RSTをLレベルにする。これに応じて、電荷リセット部140は非導通状態となる。この状態において、カラム処理部230によって高照度時のノイズ信号N2が対数読出しにより読み出される。
 このように、対数読出し時のリセット動作中に電荷排出部180を開いて、受光による光電変換部110内の電荷を排出することにより、電荷転送部120から電荷がオーバーフローして電荷電圧変換部130に混入することを回避することができる。
 [画素の構成]
 図8は、本技術の第1の実施の形態における画素アレイ部100の各画素の構成例を示す図である。上述のように、高照度の光量を対数読出しにより読み出す場合には、光電変換部からドレイン電源まで電荷をオーバーフローさせる必要があるため、光電変換部は小さい方が有利である。一方、光電変換部を小さくした場合、低照度の光量を線形読出しにより読み出すためには感度が不足してしまう。そこで、この実施の形態では、1つの画素内に、第1の領域において入射光を電荷に光電変換して蓄積する第1の光電変換部111と、第1の領域よりも面積の小さい第2の領域において入射光を電荷に光電変換して蓄積する第2の光電変換部112とを備える。すなわち、1つの画素領域において、サイズの異なる大小の光電変換部111および112を配置する。なお、光電変換部111および112は、特許請求の範囲に記載の第1および第2の光電変換部の一例である。
 光電変換部111および112に対応して、それぞれ電荷転送部121および122が設けられる。電荷転送部121には転送信号TGLが、電荷転送部122には転送信号TGSが、それぞれ転送制御部223によって供給される。一方、電荷電圧変換部130、電荷リセット部140、信号増幅部150および画素選択部160は、上述の回路構成と同様であり、1つの画素において共有される。なお、光電変換部111および112は、特許請求の範囲に記載の第1および第2の電荷転送部の一例である。
 また、この例では、電荷排出部181は、光電変換部111にのみ接続され、光電変換部112には接続されない。電荷排出部181は、電荷排出制御部225から供給されるオーバーフローゲート信号OFGLに従って、光電変換部111に蓄積された電荷を排出する。なお、電荷排出部181は、特許請求の範囲に記載の第1の電荷排出部の一例である。
 この第1の実施の形態の構成例において、大面積の光電変換部111は、通常の線形読出しを行うことによって、比較的低照度の信号を取得する。一方、小面積の光電変換部112は、対数読出しを用いることによって比較的高照度の信号を対数により取得する。そして、各画素領域においてそれぞれの照度に適した読出しにより取得した信号を、信号処理部280によって合成することにより、高ダイナミックレンジな画像を撮像することが可能となる。
 このような、サイズの異なる大小の光電変換部111および112を配置した場合、対数読出しを行う小面積の光電変換部112の信号が、大面積の光電変換部111に混入してしまうと、そこから予期せぬ個所にオーバーフローしてしまうおそれがある。その点、この実施の形態では、大面積の光電変換部111に電荷排出部181を接続することにより、光電変換部112において対数読出しを行う際には、電荷排出部181を開いて光電変換部111から電荷を排出する。これにより、対数読出し時の光電変換部111への電荷の混入を回避する。
 このように、本技術の第1の実施の形態では、1つの画素内にサイズの異なる光電変換部111および112を配置して、大面積の光電変換部111にのみ電荷排出部181を接続する。そして、光電変換部112において対数読出しを行う際には、電荷排出部181を開いて光電変換部111から電荷を排出することにより、対数読出し時の光電変換部111への電荷の混入を回避して、誤動作を防止することができる。
 [変形例]
 図9は、本技術の第1の実施の形態の変形例における画素アレイ部100の各画素の構成例を示す図である。この変形例では、大面積の光電変換部111に電荷排出部181を接続するとともに、画素内に配置された小面積の光電変換部112にも電荷排出部182を接続する。なお、電荷排出部182は、特許請求の範囲に記載の第2の電荷排出部の一例である。
 上述のように、ばらつきを抑制するための動作において、ノイズを読み出す際にも受光をしており、小面積の光電変換部112が対数読出しを行うときは高照度であるため、オーバーフローした電荷が中間リセット後の電荷電圧変換部130に混入するおそれがある。そこで、小面積の光電変換部112に接続された電荷排出部182を、対数読出し時のリセット動作中に開いておくことにより、受光による光電変換部112内の電荷を選択的に排出する。これにより、電荷リセット部140の中間電位によるリセット時の信号の混入を抑制する。
 このように、本技術の第1の実施の形態の変形例では、小面積の光電変換部112に電荷排出部182を接続し、対数読出し時のリセット動作中に開いておくことにより、受光による光電変換部112内の電荷を選択的に排出する。これにより、電荷リセット部140の中間電位によるリセット時の信号の混入を抑制することができる。
 <2.第2の実施の形態>
 上述の第1の実施の形態では、低照度時には大面積の光電変換部111により通常の読出しを行い、高照度時には小面積の光電変換部112により対数読出しを行っていた。このとき、照度が低すぎる場合には大面積の光電変換部111によっても十分な分解能を得ることができず、正確な読出しが困難なことが生じ得る。そこで、この第2の実施の形態では、光電変換部111および112の間に変換効率切換部を設け、照度が低すぎる場合に変換効率を向上させて、精度の高い読出しを行う。
 [画素の構成]
 図10は、本技術の第2の実施の形態における画素アレイ部100の各画素の構成例を示す図である。なお、固体撮像装置10の全体構成については、上述の第1の実施の形態と同様であるため、詳細な説明は省略する。
 この第2の実施の形態では、上述の第1の実施の形態の変形例と同様に、サイズの異なる大小の光電変換部111および112に対して、それぞれ電荷排出部181および182が接続される。そして、光電変換部111および112のそれぞれに接続される電荷転送部121および122の間に、変換効率切換部190を設ける。この変換効率切換部190は、電荷電圧変換部130に蓄積される電荷から電圧への変換効率を切り換えるものである。この変換効率切換部190は、垂直駆動部220から供給される変換効率切換信号FDGによって制御され、トランジスタとしてオンオフ動作を行う。これにより、電荷電圧変換部130の電荷容量を切り換えて、信号増幅部150におけるゲイン(増幅度)を切り換えることができる。
 図11は、本技術の第2の実施の形態の動作状態におけるポテンシャル例を示す図である。
 同図におけるaは、小面積の光電変換部112による対数読出しの際の状態を示している。上述のように、高照度の信号に対しては、小面積の光電変換部112によって対数読出しが行われる。その際には、変換効率切換部190は開いておく必要がある。すなわち、変換効率切換信号FDGをHレベルとして、電荷電圧変換部130の容量を上述の第1の実施の形態と同様の状態とする。
 同図におけるbは、大面積の光電変換部111による高感度読出しの際の状態を示している。低照度の信号に対して、より高感度に信号を取得するために、変換効率切換部190を閉じておくことにより、電荷電圧変換部130の容量を小さくする。すなわち、変換効率切換信号FDGをLレベルとして、変換効率切換部190を閉じた状態とする。これにより、低照度の信号に対して十分な分解能を得ることができる。
 同図におけるcは、大面積の光電変換部111による通常感度読出しの際の状態を示している。高い分解能を得る必要がない程度の照度の信号に対しては、変換効率切換部190を開いておくことにより、大面積の光電変換部111による通常感度読出しを行う。すなわち、変換効率切換信号FDGをHレベルとして、電荷電圧変換部130の容量を上述の第1の実施の形態と同様の状態とする。
 図12は、本技術の第2の実施の形態における画素アレイ部100の各画素の光応答特性の例を示す図である。ここでは、高感度読出しの対象となる光量を低照度、対数読出しの対象となる光量を高照度とし、両者の間のつなぎの範囲を中照度としている。
 同図におけるaは、小面積の光電変換部112による対数読出しの光応答特性を示している。このとき、変換効率切換部190は開いた状態であり、高照度の信号を対数により取得する。高照度の信号に対しては、大面積の光電変換部111による読出しでは飽和してしまい、光量によらず値が一定となってしまうが、この対数読出しによれば光量に応じた信号量を取得することができる。
 同図におけるbは、大面積の光電変換部111による高感度読出しの光応答特性を示している。このとき、変換効率切換部190は閉じた状態であり、低照度の信号に対して十分な分解能を得ることができる。
 同図におけるcは、大面積の光電変換部111による通常感度読出しの光応答特性を示している。このとき、変換効率切換部190は開いた状態であり、高照度と低照度の間のつなぎの範囲の中照度の信号を、低照度の場合よりも分解能は落としつつ受光可能な光量範囲を広げて取得する。この中照度の領域における応答は、駆動によって変化する。
 信号処理部280は、光電変換部112の対数読出しにより得られた信号および光電変換部111の通常感度読出しにより得られた信号に対して、変換効率の比を掛けることにより、高感度読出しの信号レベルに揃えて画をつくることになる。
 [読出しタイミング]
 図13は、本技術の第2の実施の形態における画素アレイ部100の各画素の読出しタイミングの例を示す図である。
 まず、大面積の光電変換部111についてリセットが行われた後に、露光が行われる(801)。この露光により、低照度および中照度における信号およびノイズの読出しが行われる(802乃至805)。すなわち、変換効率切換部190が開いた状態で中照度のノイズが通常感度により読み出される(802)。その後、変換効率切換部190が閉じた状態で低照度のノイズおよび信号が高感度により読み出される(803、804)。そして、再び変換効率切換部190が開いた状態で中照度の信号が通常感度により読み出される(805)。
 この間、光電変換部111に接続される電荷排出部181はオフ状態であり、光電変換部112に接続される電荷排出部182はオン状態である。すなわち、大面積の光電変換部111において露光および読出しが行われる一方で、小面積の光電変換部112においては電荷が排出されるため、読出しは行われない。
 その後、光電変換部111に接続される電荷排出部181はオン状態になり、光電変換部112に接続される電荷排出部182はオフ状態になる。これにより、大面積の光電変換部111においては、電荷が排出されるため、読出しは行われなくなる。そして、電荷リセット部140の中間電位によるリセットが行われた後に、小面積の光電変換部112において露光が行われる(806)。この露光により、高照度における信号およびノイズの対数読出しが行われる(807、808)。ただし、電荷リセット部140の中間電位によるリセット時の信号の混入を抑制するために、ノイズの対数読出し(808)の際には、光電変換部112に接続される電荷排出部182はオン状態になる。なお、この対数読出しにおいては、変換効率切換部190は開いた状態(オン状態)である。
 このように、本技術の第2の実施の形態によれば、光電変換部111および112の間に変換効率切換部190を設けて、低照度の信号に対して変換効率を向上させて、精度の高い読出しを行うことができる。
 なお、上述の実施の形態は本技術を具現化するための一例を示したものであり、実施の形態における事項と、特許請求の範囲における発明特定事項とはそれぞれ対応関係を有する。同様に、特許請求の範囲における発明特定事項と、これと同一名称を付した本技術の実施の形態における事項とはそれぞれ対応関係を有する。ただし、本技術は実施の形態に限定されるものではなく、その要旨を逸脱しない範囲において実施の形態に種々の変形を施すことにより具現化することができる。
 また、上述の実施の形態において説明した処理手順は、これら一連の手順を有する方法として捉えてもよく、また、これら一連の手順をコンピュータに実行させるためのプログラム乃至そのプログラムを記憶する記録媒体として捉えてもよい。この記録媒体として、例えば、CD(Compact Disc)、MD(MiniDisc)、DVD(Digital Versatile Disc)、メモリカード、ブルーレイディスク(Blu-ray(登録商標)Disc)等を用いることができる。
 なお、本明細書に記載された効果はあくまで例示であって、限定されるものではなく、また、他の効果があってもよい。
 なお、本技術は以下のような構成もとることができる。
(1)第1の領域において入射光を電荷に光電変換して蓄積する第1の光電変換部と、
 前記第1の領域よりも面積の小さい第2の領域において入射光を電荷に光電変換して蓄積する第2の光電変換部と、
 前記第1および第2の光電変換部によって光電変換された電荷を電圧に変換するために蓄積する電荷電圧変換部と、
 前記第1の光電変換部に蓄積された電荷を前記電荷電圧変換部に転送する第1の電荷転送部と、
 前記第2の光電変換部に蓄積された電荷を前記電荷電圧変換部に転送する第2の電荷転送部と、
 前記電荷電圧変換部に蓄積された電荷をリセットする電荷リセット部と、
 前記第1の光電変換部に蓄積された電荷を排出する第1の電荷排出部と
を具備する固体撮像装置。
(2)前記第1の電荷排出部によって前記第1の光電変換部に蓄積された電荷を排出させながら前記電荷リセット部のドレインの電位を制御して、前記第2の光電変換部および電荷電圧変換部に前記電荷を飽和レベルまで蓄積させた後に、前記第2の光電変換部を露光させるように駆動する駆動部をさらに具備する前記(1)に記載の固体撮像装置。
(3)前記第2の光電変換部に蓄積された電荷を排出する第2の電荷排出部をさらに具備し、
 前記駆動部は、前記第1の電荷排出部によって前記第1の光電変換部に蓄積された電荷を排出させながら前記電荷リセット部のドレインの電位を制御して前記第2の光電変換部および前記電荷電圧変換部に電荷を飽和レベルまで蓄積させた後に、前記第2の電荷排出部によって前記第2の光電変換部に蓄積された電荷を排出させながら前記電荷リセット部に中間電位を印加して前記電荷電圧変換部に電荷を蓄積させ、さらに、前記電荷リセット部を非導通状態にしてから前記電荷電圧変換部に蓄積された電荷を前記電荷電圧変換部に転送させた後に前記第2の光電変換部を露光させるように駆動する
前記(2)に記載の固体撮像装置。
(4)前記電荷電圧変換部に蓄積されている電荷を増幅して当該電荷に応じたレベルの画素信号を出力する信号増幅部をさらに具備する
前記(3)に記載の固体撮像装置。
(5)前記電荷電圧変換部の電荷容量を切り換えて前記信号増幅部における増幅度を切り換える変換効率切換部をさらに具備する
前記(4)に記載の固体撮像装置。
(6)第1の領域において入射光を電荷に光電変換して蓄積する第1の光電変換部と、
 前記第1の領域よりも面積の小さい第2の領域において入射光を電荷に光電変換して蓄積する第2の光電変換部と、
 前記第1および第2の光電変換部によって光電変換された電荷を電圧に変換するために蓄積する電荷電圧変換部と、
 前記第1の光電変換部に蓄積された電荷を前記電荷電圧変換部に転送する第1の電荷転送部と、
 前記第2の光電変換部に蓄積された電荷を前記電荷電圧変換部に転送する第2の電荷転送部と、
 前記電荷電圧変換部に蓄積された電荷をリセットする電荷リセット部と、
 前記第1の光電変換部に蓄積された電荷を排出する第1の電荷排出部と
を備える固体撮像装置の駆動方法であって、
 前記第1の電荷排出部によって前記第1の光電変換部に蓄積された電荷を排出させながら前記電荷リセット部のドレインの電位を制御して、前記第2の光電変換部および電荷電圧変換部に前記電荷を飽和レベルまで蓄積させた後に、前記第2の光電変換部を露光させるように駆動する
固体撮像装置の駆動方法。
(7)第1の領域において入射光を電荷に光電変換して蓄積する第1の光電変換部と、
 前記第1の領域よりも面積の小さい第2の領域において入射光を電荷に光電変換して蓄積する第2の光電変換部と、
 前記第1および第2の光電変換部によって光電変換された電荷を電圧に変換するために蓄積する電荷電圧変換部と、
 前記第1の光電変換部に蓄積された電荷を前記電荷電圧変換部に転送する第1の電荷転送部と、
 前記第2の光電変換部に蓄積された電荷を前記電荷電圧変換部に転送する第2の電荷転送部と、
 前記電荷電圧変換部に蓄積された電荷をリセットする電荷リセット部と、
 前記第1の光電変換部に蓄積された電荷を排出する第1の電荷排出部と、
 前記第1の電荷排出部によって前記第1の光電変換部に蓄積された電荷を排出させながら前記電荷リセット部のドレインの電位を制御して、前記第2の光電変換部および電荷電圧変換部に前記電荷を飽和レベルまで蓄積させた後に、前記第2の光電変換部を露光させるように駆動する駆動部と
を具備する電子機器。
 10 固体撮像装置
 100 画素アレイ部
 110~112 光電変換部
 120~122 電荷転送部
 130 電荷電圧変換部
 140 電荷リセット部
 150 信号増幅部
 160 画素選択部
 170 定電流源
 180~182 電荷排出部
 190 変換効率切換部
 220 垂直駆動部
 221 選択制御部
 222 リセット制御部
 223 転送制御部
 224 リセットドレイン制御部
 225 電荷排出制御部
 229 画素駆動線
 230 カラム処理部
 239 垂直信号線
 240 水平駆動部
 250 システム制御部
 280 信号処理部
 290 データ格納部

Claims (7)

  1.  第1の領域において入射光を電荷に光電変換して蓄積する第1の光電変換部と、
     前記第1の領域よりも面積の小さい第2の領域において入射光を電荷に光電変換して蓄積する第2の光電変換部と、
     前記第1および第2の光電変換部によって光電変換された電荷を電圧に変換するために蓄積する電荷電圧変換部と、
     前記第1の光電変換部に蓄積された電荷を前記電荷電圧変換部に転送する第1の電荷転送部と、
     前記第2の光電変換部に蓄積された電荷を前記電荷電圧変換部に転送する第2の電荷転送部と、
     前記電荷電圧変換部に蓄積された電荷をリセットする電荷リセット部と、
     前記第1の光電変換部に蓄積された電荷を排出する第1の電荷排出部と
    を具備する固体撮像装置。
  2.  前記第1の電荷排出部によって前記第1の光電変換部に蓄積された電荷を排出させながら前記電荷リセット部のドレインの電位を制御して、前記第2の光電変換部および電荷電圧変換部に前記電荷を飽和レベルまで蓄積させた後に、前記第2の光電変換部を露光させるように駆動する駆動部をさらに具備する請求項1記載の固体撮像装置。
  3.  前記第2の光電変換部に蓄積された電荷を排出する第2の電荷排出部をさらに具備し、
     前記駆動部は、前記第1の電荷排出部によって前記第1の光電変換部に蓄積された電荷を排出させながら前記電荷リセット部のドレインの電位を制御して前記第2の光電変換部および前記電荷電圧変換部に電荷を飽和レベルまで蓄積させた後に、前記第2の電荷排出部によって前記第2の光電変換部に蓄積された電荷を排出させながら前記電荷リセット部に中間電位を印加して前記電荷電圧変換部に電荷を蓄積させ、さらに、前記電荷リセット部を非導通状態にしてから前記電荷電圧変換部に蓄積された電荷を前記電荷電圧変換部に転送させた後に前記第2の光電変換部を露光させるように駆動する
    請求項2記載の固体撮像装置。
  4.  前記電荷電圧変換部に蓄積されている電荷を増幅して当該電荷に応じたレベルの画素信号を出力する信号増幅部をさらに具備する
    請求項3記載の固体撮像装置。
  5.  前記電荷電圧変換部の電荷容量を切り換えて前記信号増幅部における増幅度を切り換える変換効率切換部をさらに具備する
    請求項4記載の固体撮像装置。
  6.  第1の領域において入射光を電荷に光電変換して蓄積する第1の光電変換部と、
     前記第1の領域よりも面積の小さい第2の領域において入射光を電荷に光電変換して蓄積する第2の光電変換部と、
     前記第1および第2の光電変換部によって光電変換された電荷を電圧に変換するために蓄積する電荷電圧変換部と、
     前記第1の光電変換部に蓄積された電荷を前記電荷電圧変換部に転送する第1の電荷転送部と、
     前記第2の光電変換部に蓄積された電荷を前記電荷電圧変換部に転送する第2の電荷転送部と、
     前記電荷電圧変換部に蓄積された電荷をリセットする電荷リセット部と、
     前記第1の光電変換部に蓄積された電荷を排出する第1の電荷排出部と
    を備える固体撮像装置の駆動方法であって、
     前記第1の電荷排出部によって前記第1の光電変換部に蓄積された電荷を排出させながら前記電荷リセット部のドレインの電位を制御して、前記第2の光電変換部および電荷電圧変換部に前記電荷を飽和レベルまで蓄積させた後に、前記第2の光電変換部を露光させるように駆動する
    固体撮像装置の駆動方法。
  7.  第1の領域において入射光を電荷に光電変換して蓄積する第1の光電変換部と、
     前記第1の領域よりも面積の小さい第2の領域において入射光を電荷に光電変換して蓄積する第2の光電変換部と、
     前記第1および第2の光電変換部によって光電変換された電荷を電圧に変換するために蓄積する電荷電圧変換部と、
     前記第1の光電変換部に蓄積された電荷を前記電荷電圧変換部に転送する第1の電荷転送部と、
     前記第2の光電変換部に蓄積された電荷を前記電荷電圧変換部に転送する第2の電荷転送部と、
     前記電荷電圧変換部に蓄積された電荷をリセットする電荷リセット部と、
     前記第1の光電変換部に蓄積された電荷を排出する第1の電荷排出部と、
     前記第1の電荷排出部によって前記第1の光電変換部に蓄積された電荷を排出させながら前記電荷リセット部のドレインの電位を制御して、前記第2の光電変換部および電荷電圧変換部に前記電荷を飽和レベルまで蓄積させた後に、前記第2の光電変換部を露光させるように駆動する駆動部と
    を具備する電子機器。
PCT/JP2017/044479 2017-03-13 2017-12-12 固体撮像装置、その駆動方法および電子機器 WO2018168120A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020197025199A KR102425590B1 (ko) 2017-03-13 2017-12-12 고체 촬상 장치, 그 구동 방법 및 전자 기기
CN202210584878.9A CN114979511A (zh) 2017-03-13 2017-12-12 摄像装置和包括该摄像装置的电子设备
US16/491,000 US10880505B2 (en) 2017-03-13 2017-12-12 Solid state imaging device, driving method of solid state imaging device, and electronic device
KR1020237016571A KR20230074617A (ko) 2017-03-13 2017-12-12 고체 촬상 장치, 그 구동 방법 및 전자 기기
DE112017007227.1T DE112017007227T5 (de) 2017-03-13 2017-12-12 Halbleiter-bilderzeugungsvorrichtung, ansteuerverfahren für die halbleiter-bilderzeugungsvorrichtung und elektronische vorrichtung
KR1020227023972A KR102538715B1 (ko) 2017-03-13 2017-12-12 고체 촬상 장치, 그 구동 방법 및 전자 기기
CN201780088009.4A CN110383823B (zh) 2017-03-13 2017-12-12 固态摄像装置、固态摄像装置的驱动方法和电子设备

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017047056A JP2018152696A (ja) 2017-03-13 2017-03-13 固体撮像装置、その駆動方法および電子機器
JP2017-047056 2017-03-13

Publications (1)

Publication Number Publication Date
WO2018168120A1 true WO2018168120A1 (ja) 2018-09-20

Family

ID=63522080

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/044479 WO2018168120A1 (ja) 2017-03-13 2017-12-12 固体撮像装置、その駆動方法および電子機器

Country Status (6)

Country Link
US (1) US10880505B2 (ja)
JP (1) JP2018152696A (ja)
KR (3) KR20230074617A (ja)
CN (2) CN110383823B (ja)
DE (1) DE112017007227T5 (ja)
WO (1) WO2018168120A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10714517B2 (en) * 2018-01-23 2020-07-14 Samsung Electronics Co., Ltd. Image sensor
US11658193B2 (en) * 2018-01-23 2023-05-23 Samsung Electronics Co., Ltd. Image sensor
US11363221B2 (en) * 2018-06-08 2022-06-14 Facebook Technologies, Llc Image sensor post processing
JP7150504B2 (ja) * 2018-07-18 2022-10-11 キヤノン株式会社 固体撮像装置及びその駆動方法
WO2021153370A1 (ja) * 2020-01-29 2021-08-05 ソニーセミコンダクタソリューションズ株式会社 固体撮像装置、固体撮像装置の駆動方法及び電子機器
CN113491108A (zh) * 2020-09-25 2021-10-08 深圳市大疆创新科技有限公司 图像传感器及其控制方法、搭载图像传感器的成像装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000059688A (ja) * 1998-08-05 2000-02-25 Canon Inc 光電変換装置
JP2014060658A (ja) * 2012-09-19 2014-04-03 Sony Corp 固体撮像装置、固体撮像装置の駆動方法、及び電子機器
JP2015216369A (ja) * 2014-04-23 2015-12-03 株式会社半導体エネルギー研究所 撮像装置
WO2016199588A1 (ja) * 2015-06-09 2016-12-15 ソニーセミコンダクタソリューションズ株式会社 撮像素子および駆動方法、並びに電子機器

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100674925B1 (ko) * 2004-12-07 2007-01-26 삼성전자주식회사 허니콤 구조의 능동 픽셀 센서
KR100744118B1 (ko) * 2005-12-13 2007-08-01 삼성전자주식회사 이미지 센서의 포화 레벨 검출 회로, 이미지 센서의 포화레벨 검출 방법 및 포화 레벨 검출 회로를 구비하는 이미지센서
KR100761829B1 (ko) * 2005-12-15 2007-09-28 삼성전자주식회사 반도체 소자, 시모스 이미지 센서, 반도체 소자의 제조방법및 시모스 이미지 센서의 제조방법
US7825966B2 (en) * 2007-06-29 2010-11-02 Omnivision Technologies, Inc. High dynamic range sensor with blooming drain
JP2013005396A (ja) * 2011-06-21 2013-01-07 Sony Corp 固体撮像装置、固体撮像装置の駆動方法、及び電子機器
GB201111560D0 (en) * 2011-07-06 2011-08-24 Micromass Ltd Photo-dissociation of proteins and peptides in a mass spectrometer
JP2013211615A (ja) * 2012-03-30 2013-10-10 Sony Corp 固体撮像素子、固体撮像素子の駆動方法、および電子機器
JPWO2013176007A1 (ja) * 2012-05-25 2016-01-12 ソニー株式会社 撮像素子、駆動方法、および電子装置
JP2014086889A (ja) * 2012-10-24 2014-05-12 Toshiba Corp 固体撮像装置
JP2014127519A (ja) * 2012-12-25 2014-07-07 Sony Corp 固体撮像素子、及び、電子機器
US20140246561A1 (en) * 2013-03-04 2014-09-04 Omnivision Technologies, Inc. High dynamic range pixel having a plurality of photodiodes with a single implant
JP6257245B2 (ja) * 2013-09-27 2018-01-10 キヤノン株式会社 撮像装置及びその制御方法
US9305949B2 (en) * 2013-11-01 2016-04-05 Omnivision Technologies, Inc. Big-small pixel scheme for image sensors
US9912886B2 (en) * 2014-12-17 2018-03-06 Canon Kabushiki Kaisha Image capturing apparatus and driving method of image sensor
JP2016139660A (ja) * 2015-01-26 2016-08-04 株式会社東芝 固体撮像装置
JP6579756B2 (ja) * 2015-02-10 2019-09-25 キヤノン株式会社 固体撮像素子およびそれを用いた撮像装置
US10498983B2 (en) * 2015-03-16 2019-12-03 Sony Corporation Solid-state imaging device, method for driving solid-state imaging device, and electronic apparatus
JP2017037938A (ja) 2015-08-07 2017-02-16 キヤノン株式会社 光電変換素子およびそれを用いた光電変換装置、距離検出用センサ並びに情報処理システム
US10044960B2 (en) * 2016-05-25 2018-08-07 Omnivision Technologies, Inc. Systems and methods for detecting light-emitting diode without flickering
US9848148B1 (en) * 2016-06-17 2017-12-19 Semiconductor Components Industries, Llc Methods and apparatus for a multiple storage pixel imaging system
JP6832649B2 (ja) * 2016-08-17 2021-02-24 ブリルニクス インク 固体撮像装置、固体撮像装置の駆動方法、および電子機器
US10313611B2 (en) * 2017-06-03 2019-06-04 United Microelectronics Corp. Image sensor with pixel binning device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000059688A (ja) * 1998-08-05 2000-02-25 Canon Inc 光電変換装置
JP2014060658A (ja) * 2012-09-19 2014-04-03 Sony Corp 固体撮像装置、固体撮像装置の駆動方法、及び電子機器
JP2015216369A (ja) * 2014-04-23 2015-12-03 株式会社半導体エネルギー研究所 撮像装置
WO2016199588A1 (ja) * 2015-06-09 2016-12-15 ソニーセミコンダクタソリューションズ株式会社 撮像素子および駆動方法、並びに電子機器

Also Published As

Publication number Publication date
CN114979511A (zh) 2022-08-30
CN110383823B (zh) 2022-06-14
KR20230074617A (ko) 2023-05-30
CN110383823A (zh) 2019-10-25
DE112017007227T5 (de) 2019-12-12
KR20190122684A (ko) 2019-10-30
KR102425590B1 (ko) 2022-07-28
US10880505B2 (en) 2020-12-29
JP2018152696A (ja) 2018-09-27
KR20220103821A (ko) 2022-07-22
KR102538715B1 (ko) 2023-06-01
US20200021755A1 (en) 2020-01-16

Similar Documents

Publication Publication Date Title
US10257452B2 (en) Solid-state image pickup apparatus, signal processing method for a solid-state image pickup apparatus, and electronic apparatus
WO2018168120A1 (ja) 固体撮像装置、その駆動方法および電子機器
TWI424742B (zh) 用於像素單元之高動態運作之方法及裝置
KR101251744B1 (ko) Wdr 픽셀 어레이, 이를 포함하는 wdr 이미징 장치 및 그 구동방법
JP6299544B2 (ja) 固体撮像装置
US20130050554A1 (en) Imaging device, imaging method, and electronic device
JP4770618B2 (ja) 固体撮像装置
JP2008283593A (ja) 固体撮像装置
US8854521B2 (en) Solid-state image sensing device and control method of solid-state image sensing device
JP6655922B2 (ja) 固体撮像装置
US9143712B2 (en) Solid state imaging device, driving method of solid state imaging device, and electronic device having a driving unit so that a potential of a drain of a charge reset unit is controlled
WO2012053127A1 (ja) 固体撮像装置、その駆動方法及び撮像装置
JP2008252695A (ja) イメージセンサのための画素及びイメージセンサデバイス
JP2011199781A (ja) 固体撮像装置
CN107431772B (zh) 固态成像装置和用于驱动固态成像装置的方法
JP5098502B2 (ja) 固体撮像装置
JP2018088717A (ja) 固体撮像装置
JP2011040482A (ja) 固体撮像装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17901056

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197025199

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17901056

Country of ref document: EP

Kind code of ref document: A1