WO2018166436A1 - 无人机滑动式机臂装置及无人机 - Google Patents

无人机滑动式机臂装置及无人机 Download PDF

Info

Publication number
WO2018166436A1
WO2018166436A1 PCT/CN2018/078808 CN2018078808W WO2018166436A1 WO 2018166436 A1 WO2018166436 A1 WO 2018166436A1 CN 2018078808 W CN2018078808 W CN 2018078808W WO 2018166436 A1 WO2018166436 A1 WO 2018166436A1
Authority
WO
WIPO (PCT)
Prior art keywords
arm
sliding
seat
limiting
disposed
Prior art date
Application number
PCT/CN2018/078808
Other languages
English (en)
French (fr)
Inventor
黄立
吴晗
王效杰
顾兴
刘华斌
Original Assignee
普宙飞行器科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 普宙飞行器科技(深圳)有限公司 filed Critical 普宙飞行器科技(深圳)有限公司
Publication of WO2018166436A1 publication Critical patent/WO2018166436A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C25/00Alighting gear
    • B64C25/02Undercarriages
    • B64C25/08Undercarriages non-fixed, e.g. jettisonable
    • B64C25/10Undercarriages non-fixed, e.g. jettisonable retractable, foldable, or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports
    • B64U30/29Constructional aspects of rotors or rotor supports; Arrangements thereof
    • B64U30/293Foldable or collapsible rotors or rotor supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • B64U10/14Flying platforms with four distinct rotor axes, e.g. quadcopters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/40Weight reduction

Definitions

  • the invention relates to the technical field of drones, in particular to a UAV sliding arm device and a drone.
  • Unmanned aerial vehicles are unmanned aerial vehicles that are operated by radio remote control equipment and self-contained program control devices. Most of them are currently used in conjunction with shooting equipment for inspection and aerial photography. However, most of the conventional drones are not foldable or irregularly shaped by rotating and folding, and the occupied space is still large, which is not conducive to the miniaturization of the size of the drone, thereby causing inconvenience to the user when carrying and storing.
  • the object of the present invention is to provide a UAV sliding arm device and a UAV, which has a compact structure, small occupied space, stable and reliable limit, convenient operation, and can be greatly reduced in size when not in operation, and is convenient for users to store. , storage, carrying and transportation.
  • the present invention provides a UAV sliding arm device including an arm, an arm base and a motor blade assembly mounted on the arm, wherein the arm seat is An inner cavity matching the shape of the arm is provided, and the arm is slid into and out of the inner cavity of the arm seat through the slide rail mechanism; the limit arm mechanism and/or the stop position are passed between the arm and the arm seat The positioning of the organization when the two are deployed;
  • the limiting mechanism includes a resilient piece fixed to the arm, and a portion of the inner cavity of the arm seat corresponding to the position of the elastic piece is provided with an inclined wall which is gradually thickened toward an opening end through which the arm slides in and out.
  • the stopping mechanism includes a limiting post disposed on a sidewall of the arm and a limiting long hole disposed on a sidewall of the arm seat, and the limiting post is disposed on the limiting long hole;
  • a baffle structure is disposed on a sidewall of the arm seat below one end of the limiting slot, and the arm is passed through the baffle when the arm passes through the limiting post in the limiting slot of the arm seat The structure realizes the positioning of the arm and the arm seat in the unfolded state.
  • a drone comprising the above-described drone sliding arm device.
  • the UAV sliding arm device and the UAV of the present invention have the following beneficial effects:
  • the positioning of the arm relative to the arm seat in the unfolded state can further realize the positioning when the arm and the arm seat are in a folded state by the stop mechanism, and the structure design is compact, simple and ingenious, and the folding operation is convenient.
  • the utility model has the advantages of small occupied space, stable and reliable limit, and the volume can be greatly reduced by folding when in the non-working state, which is convenient for the user to store, store, carry and transport, and the setting of the double limit is stable and reliable, and the drone is used. High life expectancy, no jitter during flight, which is beneficial to the operation of the drone and the user experience;
  • the present invention can be hingedly connected to the tripod structure under the motor blade assembly, and the tripod structure can be expanded and folded by a rotating action.
  • the tripod structure can be deployed. Or it forms a steady state after folding, and does not rotate freely. This arrangement makes the functions of the arm device and the drone more integrated and diversified.
  • FIG. 1 is a perspective exploded view of a first embodiment of a sliding type arm device of a drone according to the present invention
  • FIG. 2 is a schematic structural view of a slide rail mechanism of the first embodiment of the unmanned aerial vehicle sliding arm device of the present invention
  • FIG. 3 is a cross-sectional structural view of the slide rail mechanism and the stop mechanism in the unfolded state of the first embodiment of the unmanned aerial vehicle sliding arm device of the present invention
  • FIG. 4 is a perspective exploded view showing the second embodiment of the sliding type arm device of the unmanned aerial vehicle of the present invention.
  • FIG. 5 is a perspective exploded view showing the third embodiment of the sliding type arm device of the drone of the present invention.
  • FIG. 6 is a schematic perspective structural view showing a third embodiment of the unmanned aerial vehicle sliding arm device according to the present invention.
  • Figure 7 is a cross-sectional structural view showing the unfolded state of the embodiment of the unmanned aerial vehicle sliding arm device of the present invention.
  • Figure 8 is a perspective view showing the three-dimensional structure of the third embodiment of the unmanned aerial vehicle sliding arm device according to the present invention.
  • Figure 9 is a schematic view showing the connection structure of the motor blade assembly and the tripod structure of the third embodiment of the unmanned aerial vehicle sliding arm device of the present invention.
  • FIG. 10 is a perspective structural view showing the unfolded state of the fourth embodiment of the unmanned aerial vehicle sliding arm device of the present invention.
  • Figure 11 is a perspective view showing the three-dimensional structure of the fourth embodiment of the unmanned aerial vehicle sliding arm device according to the present invention.
  • FIG. 12 is a perspective structural view showing the unfolded state of the fifth embodiment of the unmanned aerial vehicle sliding arm device of the present invention.
  • Figure 13 is a perspective view showing the three-dimensional structure of the fifth embodiment of the UAV sliding arm device of the present invention.
  • FIG. 1 is a perspective exploded view of the first embodiment of the unmanned aerial vehicle sliding arm device of the present invention, which includes an arm 1 disposed on the left side, an arm base 2 disposed on the right side, and a mounting arm 1
  • the upper motor blade assembly 3, the arm 1 is slidably mounted on the arm base 2, and the positioning between the arm 1 and the arm base 2 by the limiting mechanism can realize the positioning of the two in the unfolded state, the motor blade assembly 3 Mounted on the side of the arm 1.
  • the arm 1 includes a main cantilever 4 having a hollow cavity extending through its left and right ends, and the lower end of the main cantilever 4 is open.
  • the arm base 2 is tubular, and is provided with a cavity matching the shape of the main cantilever 4, and the arm 1 is slidable into and out of the inner cavity of the arm base 2 through the slide rail mechanism.
  • the limiting mechanism includes at least one elastic piece 5 fixed on the main cantilever 4 near the right end of the main cantilever 4.
  • two elastic pieces 5 are used, and the elastic piece 5 is connected by the inverted U-shaped elastic body 6 and The connecting piece 7 at the lower end of the two sides of the elastic body 6 is connected, and the upper surface of the main cantilever 4 is provided with an opening 8, which is rectangular in this embodiment.
  • the two connecting pieces 7 are fixed to the lower surface of the main cantilever 4 by a fixing screw connection, and the elastic body 6 passes upward through the opening 8.
  • the inner cavity of the arm base 2 is adjacent to the left end and a portion corresponding to the position of the elastic piece is provided with an inclined wall 9 which is gradually thickened toward the left end (ie, the open end for the main cantilever 4 of the arm to slide in and out), when the arm 1 is When the arm base 2 is in the unfolded state, the elastic piece 5 and the inclined wall 9 of the arm base 2 are mutually tightened to achieve the stable limit of the arm 1 and the arm base 2.
  • the slide rail mechanism includes a first slide rail disposed on the inner cavity wall of the arm base 2 and a second slide rail disposed on the lower end surface of the main boom 4, and the first slide rail is fixed in the arm base 2
  • the front surface of the cavity is adjacent to the rail body 10 at the left end of the arm base 2, and the front and rear sides of the rail body 10 are symmetrically disposed with two first sliding engagement portions 11 having a C-shaped cross section, and the two first sliding engagement portions 11 The opposite side is the open end.
  • the second slide rails are two second sliding mating portions 12 disposed on the front and rear sides of the lower end of the main boom 4, the two second sliding mating portions 12 are symmetrically disposed in front and rear, and the cross section of the second sliding mating portion 12 is C-shaped.
  • the opposite sides of the two second sliding engagement portions 12 are open ends, and the second sliding rail and the first sliding rail are mutually slidably slid by the two second sliding engagement portions 12 and the two first sliding engagement portions 11 connected.
  • the lower surface of the motor blade assembly 3 is provided with a tripod structure. As shown in FIG. 1, the tripod structure is hingedly coupled to the motor blade assembly 3, and the tripod structure and the motor blade assembly 3 are passed through the stop member. Steady-state positioning is achieved in the unfolded or collapsed state.
  • the tripod structure of the embodiment includes a plate-shaped tripod body 20, and a first hinge seat 21 composed of two extension rods extends outwardly from the tripod body 20, and the tripod body 20 is located at two A stop member 22 extends outwardly from a portion between the support rods, and the stop member 22 is an inverted L-shaped hook member.
  • the bottom surface of the motor blade assembly 3 is provided with a second hinge seat 23, and the first hinge seat 21 is The second hinge seats 23 are hinged together by the rotating shaft 24.
  • the drone sliding arm device When the drone sliding arm device is mounted on the drone, when the drone is to be normally operated, the arm 1 is pulled outward from the inner cavity of the arm base 2 as shown in FIG. 2 and FIG.
  • the elastic piece 5 and the inclined wall 9 of the arm base 2 are mutually tightened, so that the arm 1 and the arm base 2 are stably restrained, and the arm 1 and the arm are realized.
  • the positioning of the seat 2 in the unfolded state enables the drone to work normally; and when the drone is in the non-working state, the arm 1 is pushed into the inner cavity of the arm base 2, so that the arm 1 and the arm base 2 In a folded state. By folding, the size of the drone can be greatly reduced, which is convenient for users to store, store, carry and transport.
  • FIG. 4 is a schematic exploded perspective view of the second embodiment of the unmanned aerial vehicle sliding arm device of the present invention.
  • the difference between the present embodiment and the first embodiment is only between the arm 1 and the arm base 2 .
  • the positioning of the two in the unfolded state can also be achieved by the stop mechanism.
  • the stopping mechanism includes a limiting post 13 disposed on the front side wall of the main boom 4, and a limit disposed on the front side wall of the arm base 2 along the sliding direction of the arm 1 and the arm base 2.
  • the long hole 14 and the limiting post 13 are placed on the limiting long hole 14.
  • the width of the right end opening of the limiting long hole 14 matches the diameter of the limiting post 13, and the front side wall of the arm base 2 is limited.
  • a baffle structure is disposed below the left end of the bit length hole 14, and the baffle structure includes a baffle 15 which is a sheet body having a circular arc-shaped boss at the upper end.
  • the right end of the blocking piece 15 is hinged to the front side wall of the arm base 2 via the hinge shaft 16, and the first blocking plate 17 and the second blocking plate 18 are respectively disposed on the front side wall of the blocking piece 15 and the arm base 2, and the hinge shaft 16 is mounted with a torsion spring 19, the two suspension ends of the torsion spring 19 respectively abut against the inner side surfaces of the first blocking plate 17 and the second blocking plate 18, when the arm 1 is pulled out relative to the arm base 2, During the sliding of the position post 13 in the limiting slot 14 of the arm base 2, the limiting post 13 passes over the bracket for limiting the position on the blocking piece 15 under the action of the torsion spring 19, and the torsion spring 19 is restored. The boss of the blocking piece 15 is blocked by the limiting post 13, so that the arm 1 is stably restrained, and the positioning of the arm 1 and the arm base 2 in the unfolded state is realized.
  • the UAV sliding arm device When the UAV sliding arm device is installed on the UAV, when the UAV is to work normally, the arm 1 is pulled outward from the inner cavity of the arm base 2, so that the limiting post 13 is along the limit length. The left end of the hole 14 is moved. When the limiting post 13 is moved to the left end of the limiting slot 14, the elastic piece 5 and the inclined wall 9 of the arm base 2 are mutually tightened to achieve the stability of the arm 1 and the arm base 2.
  • the width is matched with the diameter of the limiting post 13, so that the limiting post 13 and the limiting long hole 14 are clamped to each other, so that the positioning of the arm 1 and the arm base 2 in a folded state is achieved.
  • folding the size of the drone can be greatly reduced, which is convenient for users to store, store, carry and transport.
  • FIG. 5 is a schematic exploded perspective view of the third embodiment of the present invention.
  • the difference between the present embodiment and the second embodiment is that the limit between the arm 1 and the arm base 2 is limited.
  • the position mechanism can realize the expansion limit of the two, and the positioning mechanism can be realized by the stop mechanism.
  • FIG. 10 is a perspective view showing the three-dimensional structure of the fourth embodiment of the unmanned aerial vehicle sliding arm device of the present invention.
  • the difference between this embodiment and the third embodiment is that it includes two arms and one machine.
  • the arm base 2 and two motor blade assemblies 3 mounted on the two arms 1, the two arms 1 are disposed on the left and right sides of the arm base 2, and the two arms 1 are slidably mounted on the arm base 2
  • each of the arm 1 and the arm base 2 can realize the unfolding limit of the two by the limiting mechanism
  • each of the arm 1 and the arm base 2 can realize the unfolding and folding state of the two by the stopping mechanism respectively.
  • two motor blade assemblies 3 are mounted on the sides of the two arms 1, respectively.
  • the left and right sides of the arm base 2 are respectively provided with inner cavities matching the shape of the left and right main cantilever arms 4, and the left and right inner cavities are displaced upward and downward to form two independent inner cavities, two machines
  • the arm 1 can be slid into and out of the left and right inner chambers of the arm base 2 through the slide rail mechanism.
  • the arm 1 on the left side is taken as an example for description, and the manner in which the expansion limit of the arm base 2 is achieved by the limiting mechanism is the same as that of the first to third embodiments described above.
  • the structure of the limiting mechanism corresponding to the arm 1 on the right side is basically the same as the structure of the limiting mechanism on the left side, and details are not described herein again. Only the limiting mechanism cooperates with the inner cavity provided on the right side of the arm base 2.
  • the inner cavity of the arm base 2 is adjacent to the right end, and a portion corresponding to the position of the elastic piece 5 is provided with an inclined wall 9 which is gradually thickened toward the right end.
  • the first slide rail structure and the second slide rail structure of the left side rail mechanism are the same as those of the first embodiment to the third embodiment.
  • the first slide rail on the right side is basically the same as the first slide rail structure on the left side, except that the rail body 10 is placed on the right inner cavity and close to the right end;
  • the second slide rail on the right side and the second slide rail structure on the left side are basically The same, except that the two second sliding engagement portions 12 are symmetrically disposed front and rear on the front and rear sides of the upper end surface of the right main cantilever 4.
  • the second sliding rails on the respective sides and the first sliding rails are respectively slidably coupled to each other by the second sliding engagement portion 12 and the first sliding engagement portion 11 .
  • the stopping mechanism includes two limiting posts 13 disposed on the front side walls of the left and right main cantilevers 4 , and two disposed on the front side wall of the arm base 2 .
  • the limiting long holes 14 and the two limiting long holes 14 are vertically spaced apart, and the limiting long holes 14 are respectively extended along the longitudinal direction of the arm base 2.
  • the two limiting posts 13 are respectively placed on the two limiting long holes 14.
  • a first flap structure is disposed below the left end of the limiting slot 14 at the upper portion of the front side wall of the arm base 2, the first flap structure includes a flap 15 having a circular arc-shaped boss at the upper end. Sheet.
  • the right end of the blocking piece 15 is hinged to the front side wall of the arm base 2 via the hinge shaft 16, and the first blocking plate 17 and the second blocking plate 18 are respectively disposed on the front side wall of the blocking piece 15 and the arm base 2, and the hinge shaft
  • a torsion spring 19 is mounted on the upper end of the first blocking plate 17 and the second blocking plate 18;
  • the limiting long hole 14 is located at the lower portion of the front side wall of the arm base 2;
  • a second flap structure is disposed above the right end, the second flap structure is a structure in which the first flap structure is rotated by 180 degrees, and the flap 15 is a sheet body having a circular arc-shaped boss at a lower end, the flap
  • the left end of the 15 is hinged to the front side wall of the arm base 2 via the hinge shaft 16, and other structures will not be described again.
  • the two limiting posts 13 When the two arm 1 are respectively pulled out relative to the arm base 2, the two limiting posts 13 respectively slide in the two limiting long holes 14 of the arm base 2, and the two limiting posts 13 are in two After the torsion springs 19 respectively pass over the bosses for limiting the positions on the two flaps 15, the two torsion springs 19 are restored, so that the bosses of the two flaps 15 block the two limiting posts 13 so that the two The arm 1 is limited to form a stable limit together with the corresponding elastic piece 5, and the positioning of the two arms 1 and the arm base 2 in the unfolded state is realized.
  • the lower surfaces of the two motor blade assemblies 3 are respectively provided with a tripod structure.
  • the structure of the tripod of the present embodiment is the same as that of the first embodiment to the third embodiment, and details are not described herein again.
  • the UAV sliding arm device of the embodiment When the UAV sliding arm device of the embodiment is installed on the UAV, when the UAV is to work normally, as shown in FIG. 10, the two arms 1 are taken from the left and right sides of the arm base 2. The inner chambers are respectively pulled outwards, so that the two limiting posts 13 move along the ends of the first limiting piece and the second blocking piece along the two limiting long holes 14 respectively, when the two limiting columns 13 respectively move.
  • the elastic piece 5 on each arm 1 and the inclined wall 9 of the arm base 2 are mutually tightened to realize two The stability limit of the arm 1 and the arm base 2, while the two limit posts 13 move to the limit end of the two limit slots 14, the two limit posts 13 are under the action of the torsion spring 19 After the bosses on the two flaps 15 are passed, the two torsion springs 19 are restored, so that the bosses of the two flaps 15 block the two limiting posts 13 from the two limiting slots 14 away from the first
  • the drone can work normally; and when the drone is in the non-working state, as shown in FIG. 11, the suspension ends of the two torsion springs 19 on the first flap structure and the second flap structure are respectively pressed.
  • the two limiting posts 13 are respectively passed over the bosses on the two blocking pieces 15 and move along the two limiting long holes 14 away from the one end of the first blocking piece structure and the second blocking piece structure, because the two limiting positions are long.
  • the width of the end opening of the hole 14 away from the first flap structure and the second flap structure is matched with the diameter of the two limiting posts 13, so that the two limiting posts 13 and the two limiting elongated holes 14 respectively
  • the clamping is performed to realize the positioning when the two arm 1 and the arm base 2 are in a folded state. By folding, the size of the drone can be greatly reduced, which is convenient for users to store, store, carry and transport.
  • FIG. 12 and FIG. 13 show a three-dimensional structure of the unfolded state of the fifth embodiment of the UAV sliding arm device of the present invention.
  • the difference between this embodiment and the fourth embodiment is that it includes: four machines.
  • the arm 1, the arm base 2 and the four motor blade assemblies 3 mounted on the four arms 1, the four arms 1 are respectively disposed on the left and right sides of the arm base 2, and the two arms 1 slide It is mounted on the left side of the arm base 2, and the other two arms 1 are slidably mounted on the right side of the arm base 2.
  • the limit of the two can be achieved by the limit mechanism between each arm 1 and the arm base 2 respectively.
  • Positions, the respective arm 1 and the arm base 2 can respectively realize the positioning of the two unfolded and folded states by the stop mechanism, and the four motor blade assemblies 3 are respectively mounted on the sides of the four arms 1.
  • the left and right sides of the arm base 2 are respectively provided with two inner cavities matching the shape of the four corresponding main cantilever arms 4, and the two inner cavities of the left and right front portions are arranged in an upper and lower dislocation position, left and right.
  • the two inner cavities of the rear part of the side are arranged up and down, and the two arms 1 on the same side of the left and right sides are also arranged up and down, forming four independent inner cavities, and the four arms 1 respectively pass
  • the slide rail mechanism can slide out and enter the left and right inner chambers of the arm base 2.
  • the limit mechanism, the slide mechanism and the stop mechanism of the two arms 1 located at the front of the left and right sides are basically the same as those of the fourth embodiment shown in FIG. 10 and FIG. 11 .
  • the structure of the limit mechanism, the slide mechanism and the stop mechanism of the two arms 1 located at the rear of the left and right sides is a structure in which the left and right front portions are rotated by 180 degrees, and the structure is not described here.
  • the lower surfaces of the four motor blade assemblies 3 are respectively provided with a tripod structure.
  • the structure of the tripod of the present embodiment is the same as that of the first embodiment to the fourth embodiment, and details are not described herein again.
  • the UAV sliding arm device of the embodiment When the UAV sliding arm device of the embodiment is installed on the UAV, when the UAV is to work normally, as shown in FIG. 12, the four arms 1 are taken from the left and right sides of the arm base 2. The inner chambers are respectively pulled outwards, so that the four limiting columns 13 are respectively moved along the four limiting long holes 14 in the direction of the end portions of the corresponding blocking members, and the respective limiting columns 13 are respectively moved to the respective limiting long holes.
  • the two suspension ends of the torsion springs 19 on the respective flap structures are respectively pressed, so that the respective limiting posts 13 respectively pass over the bosses on the corresponding blocking pieces 15, and are separated from the limiting long holes 14 respectively.
  • One end of the sheet structure moves, and the width of the end opening of the limiting long hole 14 away from the flap structure matches the diameter of the corresponding limiting post 13 , so that each limiting post 13 and the corresponding limiting long hole 14 respectively
  • the two arms 1 and the arm base 2 are positioned in a folded state. By folding, the size of the drone can be greatly reduced, which is convenient for users to store, store, carry and transport.
  • the number of the arm 1 of the present invention may be one, or at least one pair.
  • the above embodiment only refers to the case where the arm 1 is one, one pair and two pairs, which may also be three pairs, etc. Limitations are all within the scope of the invention.
  • the number of inner cavities on the arm base 2 corresponds to the number of the arm 1, and each arm 1 is slidably disposed in each inner cavity of the arm base 2.
  • the limit mechanism can be used alone without using the stop mechanism, or the stop mechanism can be used alone without using the limit position.
  • the mechanism can also achieve the above effects, which are all within the scope of protection of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Manipulator (AREA)
  • Seats For Vehicles (AREA)
  • Percussion Or Vibration Massage (AREA)

Abstract

一种无人机滑动式机臂装置,包括机臂(1)、机臂座(2)及安装于机臂(1)上的电机桨叶组件(3),机臂(1)滑动安装于机臂座(2)上,机臂(1)与机臂座(2)之间通过限位机构或/和止位机构可实现二者展开状态时的定位。还公开了一种包括该滑动式机臂装置的无人机。该无人机滑动式机臂装置及无人机结构紧凑、占用空间小、限位稳固可靠、操作方便,在非工作状态时可大幅缩小体积,便于用户存储、收纳、携带及运输。

Description

无人机滑动式机臂装置及无人机 技术领域
本发明涉及无人机技术领域,具体涉及一种无人机滑动式机臂装置及无人机。
背景技术
无人机是利用无线电遥控设备和自备程序控制装置操纵的无人驾驶飞行器,目前大多数与拍摄设备结合使用,应用于巡查和航拍。然而,传统无人机大多不可折叠或通过旋转折叠后形状不规则,占用空间依然很大,不利于无人机体积的小型化设计,从而给用户携带及收纳时均造成不便。
因此,如何更好的减小无人机在非工作状态下时的体积,是无人机行业不断优化和发展的方向。
技术问题
本发明的目的在于提供一种无人机滑动式机臂装置及无人机,其结构紧凑、占用空间小、限位稳固可靠、操作方便,在非工作状态时可大幅缩小体积,便于用户存储、收纳、携带及运输。
技术解决方案
为了解决上述技术问题,本发明提供一种无人机滑动式机臂装置,其包括机臂、机臂座及安装于机臂上的电机桨叶组件,其特征在于,所述机臂座上设有与机臂形状匹配的内腔,且所述机臂通过滑轨机构滑动出入所述机臂座的内腔;所述机臂与机臂座之间通过限位机构或/和止位机构实现二者展开状态时的定位;
所述限位机构包括固定于所述机臂上的弹片,所述机臂座的内腔与弹片位置对应的部位设置有朝供所述机臂滑动出入的开口端逐渐增厚的倾斜壁,当所述机臂与机臂座呈展开状态时,所述弹片与机臂座的倾斜壁相互顶紧,实现机臂与机臂座的稳固限位;
和/或,所述止位机构包括设置于所述机臂侧壁的限位柱及设置于机臂座侧壁的限位长孔,所述限位柱穿置于限位长孔上;所述机臂座侧壁上位于限位长孔一端的下方设置有挡片结构,当所述机臂通过限位柱在机臂座的限位长孔内滑动过程时,通过所述挡片结构实现机臂与机臂座展开状态时的定位。
另一方面,还提供一种无人机,其包括上述无人机滑动式机臂装置。
有益效果
采用上述方案后,本发明无人机滑动式机臂装置及无人机具有以下有益效果:
1、通过将机臂与机臂座采用凸凹机构的滑轨配合,结合弹片与机臂座的倾斜壁组成的限位机构或/和挡板、扭簧组成的止位机构,通过收拉动作使机臂相对于机臂座可呈展开状态时的定位,通过止位机构可进一步实现机臂与机臂座之间收折状态时的定位,其结构设计紧凑简单巧妙、展开收折操作方便,占用空间小、限位稳固可靠、在非工作状态时通过收折可大幅缩小体积,便于用户存储、收纳、携带及运输,而双重限位的设置,限位稳定可靠,使无人机使用寿命高,在飞行过程中不产生抖动,有利于无人机的操控和用户的体验感;
2、本发明通过在电机浆叶组件下面铰接连接脚架结构,通过旋转动作可使该脚架结构实现展开和折叠状态,通过在脚架结构上设置止位件,可使脚架结构在展开或折叠后形成稳态,不至于随意转动,该设置使得该机臂装置及无人机的功能更加集成化和多样化。
附图说明
图1为本发明无人机滑动式机臂装置实施例一立体分解结构示意图;
图2为本发明无人机滑动式机臂装置实施例一的滑轨机构结构示意图;
图3为本发明无人机滑动式机臂装置实施例一展开状态时的滑轨机构及止位机构的剖视结构示意图;
图4为本发明无人机滑动式机臂装置实施例二立体分解结构示意图;
图5为本发明无人机滑动式机臂装置实施例三立体分解结构示意图;
图6为本发明无人机滑动式机臂装置实施例三展开状态的立体结构示意图;
图7为本发明无人机滑动式机臂装置实施例三展开状态的剖视结构示意图;
图8为本发明无人机滑动式机臂装置实施例三收折状态的立体结构示意图;
图9为本发明无人机滑动式机臂装置实施例三的电机桨叶组件与脚架结构的连接结构示意图;
图10为本发明无人机滑动式机臂装置实施例四展开状态的立体结构示意图;
图11为本发明无人机滑动式机臂装置实施例四收折状态的立体结构示意图;
图12为本发明无人机滑动式机臂装置实施例五展开状态的立体结构示意图;
图13为本发明无人机滑动式机臂装置实施例五收折状态的立体结构示意图。
本发明的最佳实施方式
下面根据附图所示实施方式阐述本发明。此次公开的实施方式可以认为在所有方面均为例示,不具限制性。本发明的范围不受以下实施方式的说明所限,仅由权利要求书的范围所示,而且包括与权利要求范围具有同样意思及权利要求范围内的所有变形。
如图1所示本发明无人机滑动式机臂装置实施例一立体分解结构示意图,其包括设置于左侧的一个机臂1、设置于右侧的机臂座2及安装于机臂1上的电机桨叶组件3,机臂1滑动安装于机臂座2上,机臂1与机臂座2之间通过限位机构可实现二者的展开状态时的定位,电机桨叶组件3安装于机臂1的侧面。
机臂1包括主悬臂4,该主悬臂4具有贯通其左、右端的中空腔体,主悬臂4的下端为敞口设置。
机臂座2为管状,其上设有与主悬臂4形状匹配的内腔,机臂1通过滑轨机构可滑动出入机臂座2的内腔。
结合图3所示,限位机构包括固定于主悬臂4上靠近主悬臂4右侧端的至少一个弹片5,此实施例采用两个弹片5,弹片5由倒U形的弹片本体6及连接于弹片本体6两侧面下端的连接片7连接构成,主悬臂4的上表面设置有开口8,该实施例开口8为矩形。两个连接片7通过固定螺钉连接固定于主悬臂4的下表面,弹片本体6向上穿过开口8。机臂座2的内腔靠近左端且与弹片位置对应的部位设置有朝左端(即供所述机臂的主悬臂4滑动出入的开口端)逐渐增厚的倾斜壁9,当机臂1与机臂座2呈展开状态时,弹片5与机臂座2的倾斜壁9相互顶紧,实现机臂1与机臂座2的稳固限位。
结合图2所示,滑轨机构包括设置于机臂座2内腔壁的第一滑轨及设置于主悬臂4下端面的第二滑轨,第一滑轨包括固定于机臂座2内腔底面且靠近机臂座2左端的轨道本体10,轨道本体10的前、后侧向上对称设置有两个横截面为C型的第一滑动配合部11,两个第一滑动配合部11的相对面为开口端。第二滑轨为设置于主悬臂4下端面前、后侧的两个第二滑动配合部12,两个第二滑动配合部12呈前后对称设置,第二滑动配合部12的横截面为C型,两个第二滑动配合部12的相背离面为开口端,第二滑轨与第一滑轨之间通过两个第二滑动配合部12与两个第一滑动配合部11相互卡扣滑动连接在一起。
电机桨叶组件3的下表面设置有脚架结构,如图1所示,脚架结构与电机桨叶组件3铰接连接在一起,脚架结构与电机桨叶组件3通过止位件使二者在展开或收折状态时能够实现稳态定位。
参考图9所示,本实施例脚架结构包括板状脚架本体20,脚架本体20上向外延伸有由两个支伸杆组成的第一铰接座21,脚架本体20上位于两个支伸杆之间的部位向外延伸有止位件22,止位件22为倒L形钩状部件,电机桨叶组件3的底面设置有第二铰接座23,第一铰接座21与第二铰接座23之间通过转动轴24铰接在一起,当脚架结构与电机桨叶组件3呈展开状态时,止位件22靠近钩部的一端顶在电机桨叶组件3的底面,实现脚架结构与电机桨叶组件3展开状态时的定位;当脚架结构与电机桨叶组件3呈收折状态时,止位件22旋转90°,其钩部位顶在电机桨叶组件3的底面,实现脚架结构与电机桨叶组件3在收折状态时的定位。
将该无人机滑动式机臂装置安装于无人机上时,当无人机要正常工作时,结合图2和图3所示,将机臂1从机臂座2的内腔往外拉,当机臂1移动至机臂座2内腔左端时,弹片5与机臂座2的倾斜壁9相互顶紧,使机臂1与机臂座2稳固限位,实现机臂1与机臂座2展开状态时的定位,使无人机可以正常工作;而当无人机在非工作状态时,将机臂1推入机臂座2的内腔,使机臂1与机臂座2呈收折状态。通过收折可大幅缩小无人机体积,便于用户存储、收纳、携带及运输。
如图4所示本发明无人机滑动式机臂装置实施例二立体分解结构示意图,本实施例与上述实施例一的不同之处仅在于,所述机臂1与机臂座2之间还可通过止位机构实现二者展开状态时的定位。
结合图4所示,止位机构包括设置于主悬臂4前侧壁上的限位柱13、及设置于机臂座2前侧壁上沿机臂1与机臂座2滑动方向设置的限位长孔14,限位柱13穿置于限位长孔14上,限位长孔14的右端开口宽度与限位柱13的直径大小相匹配,机臂座2的前侧壁上位于限位长孔14的左端下方设置有挡片结构,挡片结构包括挡片15,挡片15为上端带有圆弧形凸台的片体。挡片15的右端通过铰接轴16铰接于机臂座2的前侧壁,挡片15与机臂座2的前侧壁上分别设置有第一阻挡板17和第二阻挡板18,铰接轴16上安装有扭簧19,扭簧19的两个悬置端分别抵在第一阻挡板17、第二阻挡板18的内侧面,当机臂1相对机臂座2拉出到位时,限位柱13在机臂座2的限位长孔14内滑动过程中,限位柱13在扭簧19的作用下越过挡片15上的用于限位的凸台后,扭簧19复原,使挡片15的凸台挡住限位柱13,使机臂1稳固限位,实现机臂1与机臂座2展开状态时的定位。
将该无人机滑动式机臂装置安装于无人机上时,当无人机要正常工作时,将机臂1从机臂座2的内腔往外拉,使限位柱13沿限位长孔14的左端方向移动,当限位柱13移动至限位长孔14的左端时,弹片5与机臂座2的倾斜壁9相互顶紧,实现机臂1与机臂座2的稳固限位,同时限位柱13在快移动至限位长孔14左端时,限位柱13在扭簧19的作用下越过挡片15上的凸台后,扭簧19复原,使挡片15的凸台挡住限位柱13向右移动,使机臂1限位,实现机臂1与机臂座2展开状态时的定位,使无人机可以正常工作;而当无人机在非工作状态时,将扭簧19的两个悬置端压紧,使限位柱13越过挡片15上的凸台,沿限位长孔14向右移动至右端,由于限位长孔14的右端开口宽度与限位柱13的直径大小相匹配,使限位柱13与限位长孔14相互卡紧,实现机臂1与机臂座2呈收折状态时的定位。通过收折可大幅缩小无人机体积,便于用户存储、收纳、携带及运输。
如图5所示本发明无人机滑动式机臂装置实施例三立体分解结构示意图,本实施例与上述实施例二的不同之处仅在于,机臂1与机臂座2之间通过限位机构可实现二者的展开限位,通过止位机构可实现二者展开与收折状态的定位。且上述实现二者展开限位的方式、展开与收折状态的定位的方式参见上述实施例二的内容,在此不再赘述。
如图10所示本发明无人机滑动式机臂装置实施例四展开状态的立体结构示意图,本实施例与上述实施例三的不同之处仅在于,其包括两个机臂1、一个机臂座2及安装于两个机臂1上的两个电机桨叶组件3,两个机臂1设置于机臂座2的左、右侧,两个机臂1滑动安装于机臂座2上,各机臂1与机臂座2之间分别通过限位机构可实现二者的展开限位,各机臂1与机臂座2分别通过止位机构可实现二者展开与收折状态的定位,两个电机桨叶组件3分别安装于两个机臂1的侧面。
机臂座2的左、右侧分别设置有与左、右侧主悬臂4形状匹配的内腔,两左、右侧内腔呈上、下错位,形成两个独立的内腔,两个机臂1分别通过滑轨机构可滑动出入于机臂座2左、右两个内腔。
以位于左侧的机臂1为例进行说明,其通过限位机构实现与机臂座2二者的展开限位的方式与上述实施例一至三相同。位于右侧的机臂1对应的限位机构的结构与左侧的限位机构结构基本相同,此处不再赘述。只是该限位机构与机臂座2右侧设置的内腔配合。机臂座2的内腔靠近右端且与弹片5位置对应的部位设置有朝右端逐渐增厚的倾斜壁9,当机臂1与机臂座2呈展开状态时,弹片5与机臂座2的倾斜壁9相互顶紧,实现该右侧机臂1与机臂座2的稳固限位。
参考图2所示,左侧滑轨机构的第一滑轨结构、第二滑轨结构均与上述实施例一至三相同。右侧第一滑轨与左侧第一滑轨结构基本相同,只是其轨道本体10放置于右侧内腔上面且靠近右端的位置;右侧第二滑轨与左侧第二滑轨结构基本相同,只是其两个第二滑动配合部12呈前后对称设置于右侧主悬臂4上端面前后侧。各侧的第二滑轨与第一滑轨之间分别通过第二滑动配合部12与第一滑动配合部11相互卡扣滑动连接在一起。
结合图10和图11所示,止位机构包括设置于左、右侧两个主悬臂4前侧壁上的两个限位柱13、及设置于机臂座2的前侧壁上的两个限位长孔14,两个限位长孔14呈上下间隔设置,各限位长孔14分别沿机臂座2长度方向延伸设置。两个限位柱13分别穿置于两个限位长孔14上。位于机臂座2前侧壁上部的限位长孔14的左端下方设置有第一挡片结构,该第一挡片结构包括挡片15,挡片15为上端带有圆弧形凸台的片体。挡片15的右端通过铰接轴16铰接于机臂座2的前侧壁,挡片15与机臂座2的前侧壁上分别设置有第一阻挡板17和第二阻挡板18,铰接轴16上安装有扭簧19,扭簧19的两个悬置端分别抵在第一阻挡板17、第二阻挡板18的内侧面;位于机臂座2前侧壁下部的限位长孔14的右端上方设置有第二挡片结构,该第二挡片结构为第一挡片结构旋转180度后的结构,其挡片15为下端带有圆弧形凸台的片体,该挡片15的左端通过铰接轴16铰接于机臂座2的前侧壁,其它结构不再赘述。
当两个机臂1相对机臂座2分别向外拉出时,两个限位柱13分别在机臂座2的两个限位长孔14内滑动,两个限位柱13在两个扭簧19的作用下分别越过两个挡片15上用于限位的凸台后,两个扭簧19复原,使两个挡片15的凸台挡住两个限位柱13,使两个机臂1限位,与对应的弹片5一起形成稳固限位,实现两个机臂1与机臂座2展开状态时的定位。
两个电机桨叶组件3的下表面分别设置有脚架结构,本实施例脚架结构与上述实施例一至三相同,在此不再赘述。
将本实施例无人机滑动式机臂装置安装于无人机上时,当无人机要正常工作时,结合图10所示,将两个机臂1从机臂座2的左、右侧内腔分别往外侧拉,使两个限位柱13分别沿两个限位长孔14靠近第一挡片结构、第二挡片结构的端部方向移动,当两个限位柱13分别移动至两个限位长孔14的靠近第一挡片结构、第二挡片结构的端部时,各机臂1上的弹片5与机臂座2的倾斜壁9相互顶紧,实现两个机臂1与机臂座2的稳固限位,同时两个限位柱13在快移动至两个限位长孔14的该极限端时,两个限位柱13在扭簧19的作用下越过两个挡片15上的凸台后,两个扭簧19复原,使两个挡片15的凸台挡住两个限位柱13向两个限位长孔14远离第一挡片结构、第二挡片 结构的端部方向移动,使两个机臂1得到限位,其与弹片5一起形成稳固限位,实现两个机臂1与机臂座2展开状态时的定位,使无人机可以正常工作;而当无人机在非工作状态时,结合图11所示,分别将第一挡片结构和第二挡片结构上的两个扭簧19的悬置端压紧,使两个限位柱13分别越过两个挡片15上的凸台,沿两个限位长孔14远离第一挡片结构、第二挡片结构的一端移动,由于两个限位长孔14的远离第一挡片结构、第二挡片结构的端部开口宽度与两个限位柱13的直径大小相匹配,使两个限位柱13分别与两个限位长孔14相互卡紧,实现两个机臂1与机臂座2呈收折状态时的定位。通过收折可大幅缩小无人机体积,便于用户存储、收纳、携带及运输。
如图12和图13示出了本发明无人机滑动式机臂装置实施例五的展开状态的立体结构,本实施例与上述实施例四的不同之处仅在于,其包括:四个机臂1、一个机臂座2及安装于四个机臂1上的四个电机桨叶组件3,四个机臂1分别设置于机臂座2的左、右侧,两个机臂1滑动安装于机臂座2的左侧,另两个机臂1滑动安装于机臂座2的右侧,各机臂1与机臂座2之间分别通过限位机构可实现二者的展开限位,各机臂1与机臂座2分别通过止位机构可实现二者展开与收折状态的定位,四个电机桨叶组件3分别安装于四个机臂1的侧面。
机臂座2的左、右侧分别设置有两个与四个对应的主悬臂4形状匹配的内腔,左、右侧前部的两个内腔呈呈上、下错位设置,左、右侧后部的两个内腔呈上、下错位设置,左、右侧同侧的两个机臂1也呈上、下错位设置,形成四个独立的内腔,四个机臂1分别通过滑轨机构可滑动出入于机臂座2左、右四个内腔。
位于左、右侧前部的两个机臂1的限位机构、滑轨机构及止位机构与上述图10、图11所述实施例四的结构基本相同,详细结构可参考上述实施例四的描述,此处不再赘述。位于左、右侧后部的两个机臂1的限位机构、滑轨机构及止位机构为左、右侧前部相应机构旋转180度后的结构此处均不做描述。
当四个机臂1相对机臂座2分别向外拉出时,各限位柱13分别在机臂座2对应的限位长孔14内滑动,各限位柱13在对应扭簧19的作用下分别越过对应挡片15上用于限位的凸台后,各扭簧19复原,使各挡片15的凸台挡住各对应的限位柱13,使四个机臂1限位,并与对应的弹片5一起形成稳固限位,实现四个机臂1与机臂座2展开状态时的定位。
四个电机桨叶组件3的下表面分别设置有脚架结构,本实施例脚架结构与上述实施例一至四相同,在此不再赘述。
将本实施例无人机滑动式机臂装置安装于无人机上时,当无人机要正常工作时,结合图12所示,将四个机臂1从机臂座2的左、右侧内腔分别往外侧拉,使四个限位柱13分别沿四个限位长孔14靠近各对应的挡片结构的端部方向移动,当各限位柱13分别移动至各限位长孔14的靠近相应挡片结构的端部时,各机臂1上的弹片5与机臂座2的倾斜壁9相互顶紧,实现四个机臂1与机臂座2的稳固限位,同时各限位柱13在快移动至对应的限位长孔14的该极限端时,各限位柱13在各扭簧19的作用下越过对应的挡片15上的凸台后,各扭簧19复原,使各挡片15的凸台挡住相应的限位柱13向远离对应的挡片结构的端部方向移动,使各机臂1得到限位,其与对应弹片5一起形成稳固限位,实现四个机臂1与机臂座2展开状态时的定位,使无人机可以正常工作;而当无人机在非工作状态时,结合图13所示,分别将各挡片结构上的扭簧19的两个悬置端压紧,使各限位柱13分别越过对应的挡片15上的凸台,沿限位长孔14远离挡片结构的一端移动,由于限位长孔14的远离挡片结构的端部开口宽度与对应的限位柱13的直径大小相匹配,使各限位柱13分别与对应的限位长孔14相互卡紧,实现四个机臂1与机臂座2呈收折状态时的定位。通过收折可大幅缩小无人机体积,便于用户存储、收纳、携带及运输。
本发明机臂1的数量可以为一个,或至少为一对,上述实施例只举出机臂1为一个、一对和两对的情况,其还可以为三对等等,此处不做限制,均为本发明保护的范围。而机臂座2上的内腔数量与机臂1的数量对应,各机臂1分别滑动设于机臂座2的各内腔中。
上述图10、图11所述的实施例四、图12、图13所述的实施例五中也可以单独使用限位机构而不使用止位机构,或单独使用止位机构而不使用限位机构,也可以实现上述效果,均为本发明保护的范围。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本发明的其它实施方案。本申请旨在涵盖本发明的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本发明的一般性原理并包括未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本发明的真正范围和精神由下面的权利要求指出。
应当理解的是,本发明并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本发明的范围仅由所附的权利要求来限制。

Claims (10)

  1. 一种无人机滑动式机臂装置,其包括机臂、机臂座及安装于机臂上的电机桨叶组件,其特征在于,所述机臂座上设有与机臂形状匹配的内腔,且所述机臂通过滑轨机构滑动出入所述机臂座的内腔;所述机臂与机臂座之间通过限位机构或/和止位机构实现二者展开状态时的定位;
    所述限位机构包括固定于所述机臂上的弹片,所述机臂座的内腔与弹片位置对应的部位设置有朝供所述机臂滑动出入的开口端逐渐增厚的倾斜壁,当所述机臂与机臂座呈展开状态时,所述弹片与机臂座的倾斜壁相互顶紧,实现机臂与机臂座的稳固限位;
    和/或,所述止位机构包括设置于所述机臂侧壁的限位柱及设置于机臂座侧壁的限位长孔,所述限位柱穿置于限位长孔上;所述机臂座侧壁上位于限位长孔一端的下方设置有挡片结构,当所述机臂通过限位柱在机臂座的限位长孔内滑动过程时,通过所述挡片结构实现机臂与机臂座展开状态时的定位。
  2. 根据权利要求1所述的无人机滑动式机臂装置,其特征在于,所述弹片由倒U形的弹片本体及连接于弹片本体两侧面下端的连接片构成,所述主悬臂的上面设置有开口,所述连接片通过连接件固定于主悬臂的内表面,所述弹片本体向上穿过所述开口。
  3. 根据权利要求1所述的无人机滑动式机臂装置,其特征在于,所述挡片结构包括挡片,所述挡片的一端通过铰接件铰接于机臂座侧壁,所述挡片与机臂座侧壁分别设置有阻挡板,所述铰接件上安装有扭簧,所述扭簧的两个悬置端抵在两个阻挡板内侧,当所述机臂相对机臂座拉出时,所述限位柱在扭簧作用下越过挡片并被挡片阻挡,实现机臂与机臂座展开状态时的定位。
  4. 根据权利要求3所述的无人机滑动式机臂装置,其特征在于,所述挡片为上端带有圆弧形凸台的片体。
  5. 根据权利要求3所述的无人机滑动式机臂装置,其特征在于,所述限位长孔位于远离挡片结构的一端的宽度与所述限位柱直径匹配,当所述限位柱滑动至所述限位长孔的该端时与该端相互卡紧,以实现所述机臂与机臂座呈收折状态时的定位。
  6. 根据权利要求1所述的无人机滑动式机臂装置,其特征在于,
    所述滑轨机构包括设置于机臂座内腔壁的第一滑轨及设置于机臂下端面的第二滑轨,且所述第一滑轨与第二滑轨滑动连接。
  7. 根据权利要求6所述的无人机滑动机臂装置,其特征在于,所述第一滑轨包括固定于机臂座内腔底面的轨道本体,所述轨道本体的前、后侧向上对称设置有横截面为C型的第一滑动配合部,且所述第一滑动配合部的相对面为开口端,所述第一滑轨通过两个第一滑动配合部与所述第二滑轨滑动连接。
  8. 根据权利要求7所述的无人机滑动式机臂装置,其特征在于,所述第二滑轨为对称设置于机臂下端面前、后侧的第二滑动配合部,所述第二滑动配合部的横截面为C型,且所述第二滑动配合部的相背离面为开口端,所述第二滑轨与第一滑轨之间通过第二滑动配合部与第一滑动配合部滑动连接。
  9. 根据权利要求1所述的无人机滑动式机臂装置,其特征在于,所述电机桨叶组件的下面设置有与所述电机桨叶组件铰接的脚架结构,且所述脚架结构与电机桨叶组件通过止位件使二者在展开或收折状态时能够实现稳态定位。
  10. 根据权利要求9所述的无人机滑动式机臂装置,其特征在于,所述脚架结构包括脚架本体,所述脚架本体上设有第一铰接座,所述电机桨叶组件的底面设置有通过转动轴与所述第一铰接座连接的第二铰接座。
    11.根据权利要求10所述的无人机滑动式机臂装置,其特征在于,所述止位件为设置于脚架本体上位于第一铰接座一侧的倒L形钩状部件;
    当所述脚架结构与电机桨叶组件呈展开状态时,所述止位件上靠近钩部的一端顶在电机桨叶组件底面,实现所述脚架结构与电机桨叶组件展开状态时的定位;
    当所述脚架结构与电机桨叶组件呈收折状态时,所述止位件旋转90°,其钩部顶在所述电机桨叶组件底面,实现所述脚架结构与电机桨叶组件在收折状态时的定位。
    12.根据权利要求1-11任一项所述的无人机滑动式机臂装置,其特征在于,所述机臂至少有一对,所述机臂座上的内腔数量与机臂数量对应,各所述机臂分别通过所述滑轨机构滑动设于对应的机臂座的内腔中,各所述机臂与机臂座之间通过所述限位机构或/和止位机构可实现二者展开状态时的定位。
    13.一种无人机,其特征在于,包括权利要求12所述的无人机滑动式机臂装置。
PCT/CN2018/078808 2017-03-13 2018-03-13 无人机滑动式机臂装置及无人机 WO2018166436A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710146859.7 2017-03-13
CN201710146859.7A CN107054623B (zh) 2017-03-13 2017-03-13 无人机滑动式机臂装置及无人机

Publications (1)

Publication Number Publication Date
WO2018166436A1 true WO2018166436A1 (zh) 2018-09-20

Family

ID=59622084

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/078808 WO2018166436A1 (zh) 2017-03-13 2018-03-13 无人机滑动式机臂装置及无人机

Country Status (2)

Country Link
CN (1) CN107054623B (zh)
WO (1) WO2018166436A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109573037A (zh) * 2019-01-24 2019-04-05 吉林大学 一种基于vr与多传感器的电力巡线无人机及巡线方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107054623B (zh) * 2017-03-13 2023-09-05 普宙科技有限公司 无人机滑动式机臂装置及无人机
CN110001942A (zh) * 2018-12-13 2019-07-12 泉州齐美电子科技有限公司 一种可拆装的四旋翼无人机
CN110001940A (zh) * 2018-12-13 2019-07-12 泉州齐美电子科技有限公司 一种可拆的四旋翼无人机
CN110901883B (zh) * 2019-12-02 2022-12-23 中电科特种飞机系统工程有限公司 系留无人机及无人机机载端
CN111319751B (zh) * 2020-04-27 2021-01-08 南京安元科技有限公司 一种易伸缩与收纳的便携工业级无人机
CN112357080A (zh) * 2020-12-01 2021-02-12 复旦大学 一种可伸缩机臂及机臂可伸缩无人机
WO2022141572A1 (zh) * 2020-12-31 2022-07-07 深圳市大疆创新科技有限公司 无人机
CN113928535B (zh) * 2021-10-08 2024-05-28 中科信同科技集团有限公司 一种无人机折叠臂及无人机

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015137092A (ja) * 2014-01-20 2015-07-30 憲太 安田 パラレルハイブリット方式によるマルチローター航空機
CN205010472U (zh) * 2015-09-01 2016-02-03 湖南云顶智能科技有限公司 用于无人机的可伸缩机臂
CN205168873U (zh) * 2015-10-30 2016-04-20 深圳市大疆创新科技有限公司 脚架及无人飞行器
CN205418061U (zh) * 2016-03-29 2016-08-03 深圳市易飞行科技有限公司 可折叠无人机
CN205574259U (zh) * 2016-04-08 2016-09-14 北京博瑞空间科技发展有限公司 无人机的机臂折叠装置
CN205854470U (zh) * 2016-06-29 2017-01-04 安徽理工大学 一种便捷式无人机
CN205872439U (zh) * 2016-08-08 2017-01-11 武汉和一领航科技有限公司 可伸缩式无人机
CN107054623A (zh) * 2017-03-13 2017-08-18 普宙飞行器科技(深圳)有限公司 无人机滑动式机臂装置及无人机
CN206634195U (zh) * 2017-03-13 2017-11-14 普宙飞行器科技(深圳)有限公司 无人机滑动式机臂装置及无人机

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102740652B (zh) * 2011-04-08 2016-06-08 鸿富锦精密工业(深圳)有限公司 滑轨
NL1039163C2 (en) * 2011-11-11 2013-05-14 Pal V Europ N V Vehicle.

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015137092A (ja) * 2014-01-20 2015-07-30 憲太 安田 パラレルハイブリット方式によるマルチローター航空機
CN205010472U (zh) * 2015-09-01 2016-02-03 湖南云顶智能科技有限公司 用于无人机的可伸缩机臂
CN205168873U (zh) * 2015-10-30 2016-04-20 深圳市大疆创新科技有限公司 脚架及无人飞行器
CN205418061U (zh) * 2016-03-29 2016-08-03 深圳市易飞行科技有限公司 可折叠无人机
CN205574259U (zh) * 2016-04-08 2016-09-14 北京博瑞空间科技发展有限公司 无人机的机臂折叠装置
CN205854470U (zh) * 2016-06-29 2017-01-04 安徽理工大学 一种便捷式无人机
CN205872439U (zh) * 2016-08-08 2017-01-11 武汉和一领航科技有限公司 可伸缩式无人机
CN107054623A (zh) * 2017-03-13 2017-08-18 普宙飞行器科技(深圳)有限公司 无人机滑动式机臂装置及无人机
CN206634195U (zh) * 2017-03-13 2017-11-14 普宙飞行器科技(深圳)有限公司 无人机滑动式机臂装置及无人机

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109573037A (zh) * 2019-01-24 2019-04-05 吉林大学 一种基于vr与多传感器的电力巡线无人机及巡线方法

Also Published As

Publication number Publication date
CN107054623A (zh) 2017-08-18
CN107054623B (zh) 2023-09-05

Similar Documents

Publication Publication Date Title
WO2018166436A1 (zh) 无人机滑动式机臂装置及无人机
KR102227165B1 (ko) 폴더블 이동 단말
CN208457537U (zh) 一种可折叠手持云台
KR20210113592A (ko) 셀카장치
CN107536338B (zh) 可收合的婴幼儿载具以及其摆动装置
WO2024067063A1 (zh) 帐篷及其顶部结构
JP5438492B2 (ja) スクリーン装置
TWI594638B (zh) 耳機
JP5484034B2 (ja) スクリーン装置
TWI829521B (zh) 可收折兒童載具
CN210852907U (zh) 一种可折叠便携式无人机
CN212360231U (zh) 一种方便折叠收拢的风扇
CN210398181U (zh) 一种支撑装置及自拍杆
CN213411892U (zh) 工作台
CN208978940U (zh) 一种折叠收合式婴儿车
CN209856741U (zh) 一种手持相机减震器
CN203773870U (zh) 一种可收折的支架
CN217208728U (zh) 夹持件可隐藏收叠的自拍杆
CN111648982A (zh) 一种方便折叠收拢的风扇
KR101864071B1 (ko) 접이식 테이블
CN215722401U (zh) 夹持结构及稳定器
CN216866375U (zh) 家具门缓冲组件
CN219345011U (zh) 电风扇
JP2010101510A (ja) 機器類の据付装置
CN113696956B (zh) 可折叠车架

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18766719

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 31-01-2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18766719

Country of ref document: EP

Kind code of ref document: A1