WO2018163724A1 - パワーステアリング装置 - Google Patents

パワーステアリング装置 Download PDF

Info

Publication number
WO2018163724A1
WO2018163724A1 PCT/JP2018/004979 JP2018004979W WO2018163724A1 WO 2018163724 A1 WO2018163724 A1 WO 2018163724A1 JP 2018004979 W JP2018004979 W JP 2018004979W WO 2018163724 A1 WO2018163724 A1 WO 2018163724A1
Authority
WO
WIPO (PCT)
Prior art keywords
steering
vehicle speed
command signal
return torque
signal
Prior art date
Application number
PCT/JP2018/004979
Other languages
English (en)
French (fr)
Inventor
宮島 司
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to US16/482,658 priority Critical patent/US11352049B2/en
Priority to DE112018001240.9T priority patent/DE112018001240B4/de
Priority to JP2019504410A priority patent/JP6716782B2/ja
Priority to CN201880016410.1A priority patent/CN110382332B/zh
Priority to KR1020197025921A priority patent/KR20190116353A/ko
Publication of WO2018163724A1 publication Critical patent/WO2018163724A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • B62D5/0463Controlling the motor calculating assisting torque from the motor based on driver input
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0409Electric motor acting on the steering column
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • B62D15/02Steering position indicators ; Steering position determination; Steering aids
    • B62D15/021Determination of steering angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • B62D5/0466Controlling the motor for returning the steering wheel to neutral position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • B62D6/002Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits computing target steering angles for front or rear wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • B62D6/008Control of feed-back to the steering input member, e.g. simulating road feel in steer-by-wire applications
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • B62D6/04Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits responsive only to forces disturbing the intended course of the vehicle, e.g. forces acting transversely to the direction of vehicle travel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • B62D6/08Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits responsive only to driver input torque
    • B62D6/10Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits responsive only to driver input torque characterised by means for sensing or determining torque

Definitions

  • the present invention relates to a power steering device.
  • a power steering device for example, a power steering device described in Patent Document 1 below is known.
  • the steering angle return torque control amount is calculated from the steering angle gain map that determines the return torque with respect to the steering angle, and the vehicle speed map that increases or decreases the return torque according to the vehicle speed. Return control is performed.
  • the steering angle return torque control amount is set large to compensate for the lack of self-aligning torque.
  • the steering angle return torque control amount is often zero. Then, the steering angle return torque control amount changes abruptly from the low vehicle speed range to the stop, and there is a possibility that an uncomfortable feeling of steering occurs.
  • the present invention has been devised in view of conventional circumstances, and an object of the present invention is to provide a power steering device capable of suppressing the uncomfortable feeling of steering in a low vehicle speed range.
  • the rate of change of the steering angle return torque command signal when the vehicle speed increases from 0 km / h to the first predetermined vehicle speed increases from the first predetermined vehicle speed to the second predetermined vehicle speed. Is smaller than the rate of change of the steering angle return torque command signal.
  • the uncomfortable feeling of steering at a low vehicle speed range can be suppressed.
  • FIG. 1 is a schematic view of a power steering apparatus 1 as viewed from the front side of a vehicle.
  • the power steering apparatus 1 includes a steering mechanism 2 that transmits a steering force from the driver, and a steering assist mechanism 3 that assists the driver's steering operation.
  • the steering mechanism 2 mechanically connects a steering wheel 4 disposed in a driver's cab of the vehicle and two steered wheels 5 and 5 that are front wheels of the vehicle.
  • the steering mechanism 2 includes a steering shaft 8 having an input shaft 6 to which the rotational force from the steering wheel 4 is transmitted, and an output shaft 7 connected to the input shaft 6 via a torsion bar (not shown), and A transmission mechanism 9 for transmitting the rotation of the steering shaft 8 to the steered wheels 5 and 5 is provided.
  • the transmission mechanism 9 includes a rack and pinion mechanism (rack and pinion gear) including a pinion 10 provided on the outer periphery of the output shaft 7 and a rack 12 provided on the outer periphery of the rack bar 11. Both ends of the rack bar 11 are connected to the corresponding steered wheels 5 and 5 via tie rods 13 and 13 and two knuckle arms (not shown), respectively.
  • the steering assist mechanism 3 includes a motor 14 that is an electric motor that applies a steering assist force to the steering mechanism 2, a control device 15 that drives and controls the motor 14, and a speed reducer (transmission mechanism) that decelerates the rotation of the motor 14.
  • a motor 14 that is an electric motor that applies a steering assist force to the steering mechanism 2
  • a control device 15 that drives and controls the motor 14
  • a speed reducer transmission mechanism
  • the motor 14 is a three-phase brushless motor driven by three-phase AC power.
  • the control device 15 is configured to include electronic components such as a microcomputer, and the steering torque (steering torque signal) Tr from the torque sensor 17 and the motor rotation angle (motor) from the motor rotation angle sensor 18 (see FIG. 2).
  • the motor 14 is driven and controlled by the control current Io calculated based on the rotation angle signal ( ⁇ m). Further, the vehicle speed (vehicle speed signal) Vs from the vehicle speed sensor 19 and the steering angle (steering angle signal) ⁇ a from the steering angle sensor 20 are input to the control device 15.
  • the steering angle ⁇ a may be calculated not by detection by the steering angle sensor 20 but by other means such as calculation.
  • the worm gear 16 transmits the steering assist force (rotational force) output from the motor 14 to the output shaft 7 while decelerating.
  • the worm gear 16 has a tooth portion 21 a on the outer periphery, a worm shaft 21 attached to the drive shaft of the motor 14, a tooth portion 22 a meshing with the tooth portion 21 a on the outer periphery, and a worm that rotates integrally with the output shaft 7. And a wheel 22.
  • FIG. 2 is a control block diagram showing details of the control configuration of the control device 15.
  • the control device 15 includes a basic assist command signal calculation unit 23, a stroke end control unit 24, an adder 25, a motor drive signal calculation unit 26, and a steering angle return control unit 27.
  • the basic assist command signal calculation unit 23 is configured to generate a basic assist current (basic assist command signal) for driving the motor 14 based on the steering torque Tr detected by the torque sensor 17 and the vehicle speed (vehicle speed) Vs detected by the vehicle speed sensor 19. ) Calculate TRr.
  • the torque sensor 17 is electrically connected to a steering torque signal receiving unit 28 provided in the control device 15 that receives the steering torque Tr from the torque sensor 17.
  • the vehicle speed sensor 19 is electrically connected to a vehicle speed signal receiving unit 29 provided in the control device 15 that receives the vehicle speed Vs from the vehicle speed sensor 19.
  • the basic assist current TRr is a command signal that applies a steering force to the steering mechanism 2 in a direction that coincides with the rotational direction of the steering wheel 4.
  • the stroke end control unit 24 is provided downstream of the basic assist command signal calculation unit 23.
  • the stroke end control unit 24 reduces a component that generates torque in the stroke end direction of the motor command current (motor command signal) Io in a state where a turning angle (steering angle signal) ⁇ b described later is in a predetermined region. Suppresses the occurrence of shocks and abnormal noise when hitting the rack.
  • the stroke end control unit 24 applies a component that generates torque in the direction opposite to the stroke end direction to reduce the component that generates torque in the stroke end direction of the motor command current Io.
  • the adder 25 is provided downstream of the stroke end control unit 24, and adds a basic assist current TRr from the basic assist command signal calculation unit 23 and a return control amount (steering angle return torque command signal) RetOut described later. And output to the motor drive signal calculator 26.
  • the motor drive signal calculation unit 26 is provided downstream of the adder 25 and calculates a motor command current Io based on the basic assist current TRr and the return control amount RetOut.
  • the motor drive signal calculation unit 26 is fed back with a motor rotation angle (motor rotation angle signal) ⁇ m detected by a motor rotation angle sensor 18 interposed between the motor 14 and the motor drive signal calculation unit 26.
  • the motor command current Io is adjusted based on the rotation angle ⁇ m.
  • the steering angle return control unit 27 includes a steering angle return torque target value setting unit 30 and a steering angle return torque command signal calculation unit 31.
  • the steering angle return torque target value setting unit 30 returns the steering wheel 4 return control amount target value (steering angle return torque target value) MapOut based on the vehicle speed Vs and the turning angle ⁇ b detected by the turning angle sensor 32.
  • the steering angle return torque target value setting unit 30 multiplies a predetermined return control amount reference value by a return control gain K acquired from a map (see FIG. 3) described later, for example, thereby returning the return control amount target value MapOut. Is calculated.
  • the turning angle sensor 32 is electrically connected to a turning angle signal receiving unit 33 provided in the control device 15 that receives the turning angle ⁇ b from the turning angle sensor 32.
  • the return control amount target value MapOut is a target value for applying a steering assist force to the steering mechanism 2 in a direction in which the steered wheels 5 and 5 face the neutral position.
  • the return control amount target value MapOut may be calculated from the steering angular velocity Va and the steering torque Tr.
  • the turning angle ⁇ b may be calculated not by detection by the turning angle sensor 32 but by other means such as calculation.
  • the steering angle return torque target value setting unit 30 is configured such that the steering angle (steering angular velocity signal) Va obtained by converting the steering angle (steering angle signal) ⁇ a from the steering angle sensor 20 through the first differentiator 34, or the first.
  • the return control amount target value MapOut can be changed on the basis of the steering angular acceleration (steering angular acceleration signal) Ar obtained by converting the steering angular velocity Va from the differentiator 34 through the second differentiator 35.
  • the first differentiator 34 and the second differentiator 35 are electrically connected to a first steering state signal receiving unit 40 provided in the control device 15.
  • the steering angle return torque command signal calculation unit 31 includes a rate limiter unit 36 and a total limiter unit 37 provided downstream of the steering angle return torque target value setting unit 30.
  • the total limiter unit 37 is electrically connected to an adder 25 located downstream of the stroke end control unit 24.
  • the steering angle return torque command signal calculation unit 31 calculates a return control amount (steer angle return torque command signal) RetOut based on the return control amount target value MapOut, and the return control amount RetOut associated with the change in the vehicle speed Vs. Change the rate of change. Further, the rudder angle return torque command signal calculation unit 31 may change the rate of change of the return control amount RetOut associated with the change in the vehicle speed Vs according to the magnitude of the vehicle acceleration Av converted through the third differentiator 39. good.
  • the steering angle return torque command signal calculation unit 31 calculates the rate of change of the return control amount RetOut based on the steering angular velocity Va or the steering angular acceleration Ar from the first steering state signal receiving unit 40 provided in the control device 15. It may be changed.
  • a steering direction (steering direction signal) Dr which is a signal of the rotation direction of the steering wheel 4, is input from the steering direction calculation unit 38 to the steering angle return control unit 27.
  • the steering direction Dr is calculated from the relationship between the steering angle ⁇ a or the turning angle ⁇ b and the steering torque Tr, for example.
  • the steering angle return torque command signal calculation unit 31 has the same return control amount RetOut in the steered state in which the steering wheel 4 moves from the neutral position side to the stroke end and the steered state in which the steering wheel 4 moves from the stroke end to the neutral position side.
  • the return control amount RetOut can also be calculated based on the steering direction Dr.
  • the rate limiter unit 36 is provided downstream of the steering angle return torque target value setting unit 30, determines a change in the vehicle speed Vs from the vehicle speed sensor 19, and gradually increases the return control amount target value MapOut at a certain rate (rate). Or, gradually reduce it.
  • the rate limiter unit 36 outputs the return control amount RetOut so that the rate of change of the return control amount RetOut accompanying the change in the vehicle speed Vs is less than or equal to a predetermined ratio. Further, the rate limiter unit 36 can output the return control amount RetOut so that the change amount of the return control amount RetOut accompanying the change in the vehicle speed Vs becomes equal to or less than a predetermined amount per predetermined unit time. Further, the rate limiter unit 36 can output the return control amount RetOut so that the amount of change in the return control amount RetOut associated with the change in the vehicle speed Vs is less than or equal to a predetermined amount per predetermined vehicle speed change amount.
  • the total limiter unit 37 is provided downstream of the rate limiter unit 36 so that the return control amount target value MapOut to be gradually increased does not exceed a predetermined upper limit value, and the return control amount target value to be gradually decreased. MapOut is prevented from falling below a predetermined lower limit value.
  • FIG. 3 is a map showing the correlation between the turning angle ⁇ b, the vehicle speed Vs, and the return control gain K, which is used for calculating the return control amount target value MapOut in the steering angle return torque target value setting unit 30.
  • the return control gain K is small in order to suppress the steering wheel 4 from returning too much.
  • the steering wheel 4 does not need to return, so the return control gain K is zero. If the return control gain K is increased, the steering wheel 4 may move without permission on a low ⁇ road or a lift-up situation where the load applied to the rack is extremely small, or a current always flows without moving. As a result, problems such as heat generation of the control device 15 and power management of the vehicle occur.
  • the return control amount RetOut calculated using such a map is zero or a value close to this when the vehicle speed Vs is 0 km / h, while it is a large value when the vehicle speed Vs is 1 km / h. It becomes.
  • the return control amount RetOut increases rapidly from zero. Then, when the return control is performed based on the sudden change in the return control amount RetOut, the steering wheel 4 is suddenly returned, and there is a possibility that the uncomfortable feeling of steering in which the steering force rapidly increases may occur.
  • the change rate of the return control amount RetOut is reduced with respect to the change of the return control amount target value MapOut, so that sudden changes in the return control amount RetOut at the time of departure and stop are alleviated, and the driver feels uncomfortable with steering.
  • Suppress That is, the rate limiter unit 36 performs rate limiter processing on the return control amount target value MapOut based on the change in the vehicle speed Vs, and gradually increases or decreases the return control amount target value MapOut, thereby mitigating a sudden change in the return control amount RetOut. , Suppresses the driver's uncomfortable feeling of steering.
  • the rate limiter unit 36 gradually increases the return control amount target value MapOut.
  • the steering angle return torque command signal calculation unit 31 is configured so that the change rate of the return control amount RetOut associated with the change in the vehicle speed Vs when the vehicle speed Vs increases from 1 km / h to a vehicle speed higher than 1 km / h is smaller.
  • the return control amount RetOut is calculated.
  • the rate limiter 36 gradually decreases the return control amount target value MapOut.
  • the vehicle speed Vs at which the self-aligning torque in the vicinity of the rack end in the low vehicle speed range is insufficient will be described as “1 km / h”, but this vehicle speed Vs varies depending on the vehicle (specification). , 20 km / h is set as an upper limit and an arbitrary vehicle speed can be set, and this embodiment can be applied.
  • the 20 km / h corresponds to the “first predetermined vehicle speed” recited in the claims, and a predetermined vehicle speed greater than 20 km / h corresponds to the “second predetermined vehicle speed” recited in the claims. Equivalent to.
  • FIG. 4 is a flowchart showing a determination of transition to rate limiter processing in the rate limiter unit 36.
  • step S1 the vehicle speed Vs from the vehicle speed sensor 19 is read.
  • step S2 the steering angle ⁇ a from the steering angle sensor 20 is read.
  • step S3 the vehicle acceleration Av output through the third differentiator 39 is read.
  • step S4 the steering angular velocity Va output through the second differentiator 35 is read.
  • step S5 it is determined whether or not the vehicle speed Vs has increased from 0 km / h to 1 km / h.
  • the process proceeds to step S6, where the rate limiter unit 36 gradually increases the return control amount target value MapOut.
  • step S7 If the vehicle speed Vs has not increased from 0 km / h to 1 km / h in step S5, it is determined in step S7 whether the vehicle speed Vs has decreased from 1 km / h to 0 km / h. When the vehicle speed Vs decreases from 1 km / h to 0 km / h, the process proceeds to step S8, where the rate limiter unit 36 gradually reduces the return control amount target value MapOut.
  • step S9 If it is determined in step S7 that the vehicle speed Vs has not decreased from 1 km / h to 0 km / h, it is determined in step S9 whether the rate limiter process is ongoing. When the rate limiter process is continuing, the process proceeds to step S10, and the rate limiter process is continued.
  • step S9 If the rate limiter process is not ongoing in step S9, the process proceeds to step S11, and the rate limiter process is not performed.
  • FIG. 5 is a flowchart showing a gradual increase process by the rate limiter unit 36.
  • step S20 the incremental rate RampUp is calculated.
  • the gradually increasing rate RampUp is calculated by multiplying the gradually increasing rate constant value RampUp_Const by various weighting factors ⁇ , ⁇ , ⁇ , and ⁇ acquired by weighting factor maps (A) to (D) described later.
  • step S21 the return control amount previous value RetOut_z1 is set to “A”.
  • the gradual increase process is a process when the vehicle speed Vs increases from 0 km / h to 1 km / h.
  • A 0.
  • step S22 the limit value B is calculated by adding the gradual increase rate RampUp to A.
  • step S23 it is determined whether or not the limit value B is smaller than the return control amount target value MapOut.
  • the limit value B is set as the return control amount RetOut in step S24, and the gradual increase process by the rate limiter unit 36 is continued in step S25.
  • step S23 If the limit value B is greater than or equal to the return control amount target value MapOut in step S23, the return control amount target value MapOut is set as the return control amount RetOut in step S26, and the rate limiter process is terminated in step S27.
  • FIG. 6A is a map showing the correlation between the vehicle speed Vs and the weighting coefficient ⁇ multiplied by the gradually increasing rate constant value RampUp_Const.
  • the weighting coefficient ⁇ is set high when the vehicle speed Vs is high.
  • FIG. 6B is a map showing the correlation between the vehicle acceleration Av and the weighting coefficient ⁇ multiplied by the gradually increasing rate constant value RampUp_Const.
  • the weighting coefficient ⁇ is set high when the vehicle acceleration Av is large as shown in FIG.
  • FIG. 6C is a map showing the correlation between the steering angle ⁇ a and the weighting coefficient ⁇ multiplied by the gradually increasing rate constant value RampUp_Const.
  • FIG. 6D is a map showing the correlation between the steering angular velocity Va and the weighting coefficient ⁇ multiplied by the gradually increasing rate constant value RampUp_Const.
  • the weighting coefficient ⁇ is set high when the steering angular velocity Va is large.
  • weighting coefficients ⁇ , ⁇ , ⁇ , and ⁇ acquired from the weighting coefficient maps of FIGS. 6A, 6B, 6C, and 6D are set to a gradually decreasing rate RampDown described later. Also used when calculating.
  • FIG. 7 is an explanatory diagram showing a method for calculating the gradual increase rate RampUp from the gradual increase rate constant value RampUp_Const.
  • the gradually increasing rate constant value RampUp_Const is multiplied by the weighting coefficients ⁇ , ⁇ , ⁇ , and ⁇ acquired from the maps of FIGS. 6 (A) to 6 (D).
  • FIG. 8 is a flowchart showing a gradual reduction process by the rate limiter unit 36.
  • step S30 a gradual decrease rate RampDown is calculated.
  • the gradual decrease rate RampDown is calculated by multiplying the gradual decrease rate constant value RampDown_Const by various weighting coefficients ⁇ , ⁇ , ⁇ , and ⁇ acquired by the weighting coefficient maps of FIGS.
  • step S31 the return control amount previous value RetOut_z1 is set to “C”.
  • step S32 the limit value D is calculated by subtracting the gradual decrease rate RampDown from C.
  • step S33 it is determined whether or not the limit value D is larger than the return control amount target value MapOut.
  • the limit value D is set as the return control amount RetOut in step S34, and the gradual reduction process by the rate limiter unit 36 is continued in step S35.
  • step S33 If the limit value D is equal to or less than the return control amount target value MapOut in step S33, the return control amount target value MapOut is set as the return control amount RetOut in step S36, and the rate limiter process is terminated in step S37.
  • FIG. 9 is an explanatory diagram showing a method of calculating the gradual decrease rate RampDown from the gradual decrease rate constant value RampDown_Const.
  • the decreasing rate constant value RampDown_Const is multiplied by the weighting coefficients ⁇ , ⁇ , ⁇ , and ⁇ acquired from the maps of FIGS. 6 (A) to 6 (D).
  • FIG. 10 is a graph showing changes in the return control amount target value MapOut and the return control amount RetOut when the vehicle starts and stops.
  • the upper solid line indicates the return control amount RetOut
  • the lower solid line indicates the vehicle speed Vs.
  • a broken line indicates the return control amount target value MapOut.
  • FIG. 10 only a part of the return control amount target value MapOut indicated by the broken line is shown, but the other part overlaps with the return control amount RetOut indicated by the solid line.
  • the turning angle ⁇ b is in a predetermined region including the stroke end.
  • the return control amount target value MapOut is zero or a value close thereto. Then, when the vehicle speed Vs increases from 0 km / h to 1 km / h when the vehicle departs, the return control amount target value MapOut is suddenly set to a high value. The return control amount RetOut output based on such a high return control amount target value MapOut greatly increases. On the other hand, in this embodiment, when the vehicle speed Vs is increased from 0 km / h to 1 km / h by performing the gradual increase process, the return control amount RetOut is smaller than the return control amount target value MapOut. Will gradually increase.
  • FIG. 11 is a graph showing a change in the steering torque Tr when the vehicle starts and stops when the return control amount target value MapOut is not subjected to rate limiter processing.
  • the turning angle ⁇ b is in a predetermined region including the stroke end, and the steering wheel 4 is in the steering maintained state.
  • the return control amount target value MapOut is not subjected to rate limiter processing as shown in FIG. 11, the return control amount target value MapOut is output to the adder 25 (see FIG. 2) as the return control amount RetOut.
  • the return control amount RetOut is zero or a value close thereto. Then, when the vehicle speed Vs increases from 0 km / h to 1 km / h when the vehicle departs, the return control amount RetOut increases stepwise. As a result, the steering torque Tr rapidly increases as shown by a solid circle in FIG.
  • FIG. 12 is a graph showing changes in the steering torque Tr when the vehicle starts and stops when the return control amount target value MapOut is subjected to rate limiter processing.
  • the turning angle ⁇ b is in a predetermined region including the stroke end, and the steering wheel 4 is in the steering maintained state.
  • the return control amount target value MapOut When the return control amount target value MapOut is subjected to rate limiter processing as shown in FIG. 12, the return control amount RetOut obtained by rate limiting processing of the return control amount target value MapOut is output to the adder 25 (see FIG. 2). Is done.
  • the return control amount RetOut is zero or close to this value. Then, when the vehicle speed Vs increases from 0 km / h to 1 km / h at the time of departure of the vehicle, the return control amount RetOut gradually increases by the gradual increase process. As a result, the steering torque Tr becomes substantially flat without causing a large fluctuation as shown by a solid circle on the left side of FIG. 12, and the fluctuation of the steering torque Tr is larger than the fluctuation at the time of departure shown in FIG. It is suppressed.
  • the power steering apparatus 1 controls the steering mechanism 2 that transmits the rotation of the steering wheel 4 to the steered wheels 5 and 5, the motor 14 that applies a steering force to the steering mechanism 2, and the drive control of the motor 14.
  • Control device 15 a steering torque signal receiving unit 28 that is provided in the control device 15 and receives a steering torque signal that is a signal of the steering torque Tr generated in the steering mechanism 2, and provided in the control device 15,
  • a basic assist command signal calculation unit 23 for calculating a basic assist current TRr based on the basic assist current TRr, which is a command signal for applying a steering force to the steering mechanism 2 in a direction coinciding with the rotation direction of the steering wheel 4.
  • the turning angle signal receiving unit 33 that receives a turning angle signal that is a signal related to the turning angle ⁇ b of the steered wheels 5 and 5 and the control device 15 are provided to return based on the vehicle speed Vs and the turning angle ⁇ b.
  • the steering angle return torque target value setting unit 30 sets a control amount target value MapOut, and the return control amount target value MapOut is a target that applies a steering force to the steering mechanism 2 in a direction in which the steered wheels 5 and 5 face the neutral position.
  • the predetermined vehicle speed is a vehicle speed higher than 0 km / h and the second predetermined vehicle speed is a vehicle speed higher than the first predetermined vehicle speed
  • the rate of change of the return control amount RetOut accompanying the change in the vehicle speed Vs when s increases from 0 km / h to the first predetermined vehicle speed is the vehicle speed Vs when the vehicle speed Vs increases from the first predetermined vehicle speed to the second predetermined vehicle speed.
  • a steering angle return torque command signal calculation unit 31 that calculates the return control amount RetOut so as to be smaller than the rate of change of the return control amount Ret accompanying the change, and the control device 15 are provided.
  • a motor drive signal calculation unit 26 that calculates a motor command current Io that is a signal for controlling the drive of the motor 14 based on the above.
  • the control device 15 includes a stroke end control unit 24 that reduces a component that generates torque in the stroke end direction of the motor command current Io in a state where the turning angle ⁇ b is in a predetermined region
  • the steering angle return torque command signal calculation unit 31 is provided on the downstream side of the stroke end control unit 24.
  • the stroke end control unit 24 applies a component that generates torque in the direction opposite to the stroke end direction to reduce the component that generates torque in the stroke end direction of the motor command current Io.
  • the stroke end control unit 24 is provided on the downstream side of the steering angle return torque command signal calculation unit 31, the return control amount RetOut that acts as a component that generates torque in the opposite direction is subtracted by the stroke end control. Will be. Therefore, the brake cannot be efficiently applied in the stroke end direction, the steering angular speed toward the stroke end cannot be reduced, and a sense of incongruity in steering such as an impact or noise at the time of abutment occurs.
  • the steering angle return torque command signal calculation unit 31 on the downstream side of the stroke end control unit 24 as in this embodiment, the return control amount RetOut is not reduced, and the steering feels strange. Can be suppressed.
  • the steering angle return torque command signal calculation unit 31 calculates the return control amount RetOut so that the rate of change of the return control amount RetOut associated with the change in the vehicle speed Vs is less than or equal to a predetermined ratio.
  • rate limiter processing so that the rate of change is less than or equal to a predetermined ratio, a change in the return control amount RetOut that is larger than the predetermined ratio is suppressed. Thereby, a sudden change in the steering torque is suppressed, and the uncomfortable feeling of steering can be suppressed.
  • control device 15 includes a steering direction calculation unit 38 that calculates a steering direction Dr that is a signal of the rotation direction of the steering wheel 4, and the steering angle return torque command signal calculation unit 31 includes the steering wheel 4.
  • the return control amount RetOut is calculated so that the control amount RetOut has the same characteristics in the steered state from the neutral position side toward the stroke end direction and the steered state from the stroke end toward the neutral position side.
  • the steering angle return torque command signal calculation unit 31 can change the rate of change of the return control amount RetOut accompanying the change in the vehicle speed Vs in accordance with the magnitude of the vehicle acceleration Av.
  • the response delay of the return control amount RetOut during sudden acceleration can be improved.
  • the control device 15 further includes a first steering state signal receiving unit 40 that receives a steering angular velocity Va that is a signal of the rotational speed of the steering wheel 4 or a steering angular acceleration Ar that is a signal of the rotational angular acceleration of the steering wheel 4. ing.
  • the steering angle return torque target value setting unit 30 can control the steering angular velocity Va or the steering angular acceleration.
  • the return control amount target value MapOut can be changed based on Ar, and the steering angle return torque command signal calculation unit 31 can change the return control amount RetOut based on the steering angular velocity Va or the steering angular acceleration Ar.
  • the return control amount target value MapOut is given based on the information related to the steering, the rate limiter process is performed according to the return control amount target value MapOut, and the return control amount RetOut is calculated. Can be further suppressed.
  • the steering angle return torque command signal calculation unit 31 not only calculates the change amount of the return control amount Retout associated with the change in the vehicle speed Vs to be equal to or less than a predetermined amount, but also the change amount of the return control amount RetOut is The return control amount RetOut can be calculated so as to be equal to or less than a predetermined amount per predetermined unit time.
  • the steering angle return torque command signal calculation unit 31 not only simply calculates the return control amount RetOut so that the change amount of the return control amount RetOut accompanying the change in the vehicle speed Vs becomes equal to or less than a predetermined amount, but also changes the vehicle speed Vs. It is also possible to calculate the control amount RetOut so that the amount of change in the return control amount RetOut associated with is less than or equal to a predetermined amount per predetermined vehicle speed change amount.
  • the following modes can be considered.
  • the power steering device includes a steering mechanism that transmits the rotation of the steering wheel to the steered wheels, an electric motor that applies a steering force to the steering mechanism, a control device that drives and controls the electric motor, A steering torque signal receiving unit that is provided in the control device and receives a steering torque signal that is a signal of a steering torque generated in the steering mechanism, and is provided in the control device and calculates a basic assist command signal based on the steering torque signal.
  • a basic assist command signal calculation unit wherein the basic assist command signal is a command signal for applying a steering force to the steering mechanism in a direction coinciding with a rotation direction of the steering wheel; and the control
  • a vehicle speed signal receiving unit that is provided in the apparatus and receives a vehicle speed signal;
  • a turning angle signal receiving unit that receives a turning angle signal that is a signal related to the turning angle of the turning wheel, and a steering angle return torque target value that is provided in the control device and based on the vehicle speed signal and the turning angle signal
  • a steering angle return torque target value setting unit wherein the steering angle return torque target value is a target value that gives a steering force to the steering mechanism in a direction in which the steered wheels face a neutral position.
  • a target value setting unit, and a steering angle return torque command signal calculation unit that is provided in the control device and calculates a steering angle return torque command signal based on the steering angle return torque target value, wherein the first predetermined vehicle speed is set to 0 km / When the vehicle speed is higher than h and the second predetermined vehicle speed is higher than the first predetermined vehicle speed, the vehicle speed is 0 km / h in a state where the turning angle signal is in a predetermined region including the stroke end. From the above The vehicle speed at which the rate of change of the steering angle return torque command signal accompanying the change in the vehicle speed when the vehicle speed increases to a predetermined vehicle speed increases from the first predetermined vehicle speed to the second predetermined vehicle speed.
  • a rudder angle return torque command signal calculation unit for calculating the rudder angle return torque command signal so as to be smaller than a rate of change of the rudder angle return torque command signal accompanying a change in the steering angle return torque command signal;
  • a motor drive signal calculation unit that calculates a motor command signal, which is a signal for driving and controlling the electric motor based on the command signal and the steering angle return torque command signal.
  • the steering angle return torque command signal calculation unit gradually decreases the steering angle return torque command signal when the vehicle speed is reduced from the first predetermined vehicle speed to 0 km / h.
  • the steering angle return torque command signal calculation unit is configured to change the steering angle return torque command signal according to a change in the vehicle speed according to the magnitude of vehicle acceleration. Change the rate of change.
  • the control apparatus is a steering angular velocity signal that is a signal of a rotational speed of the steering wheel or a steering angular acceleration that is a signal of a rotational angular acceleration of the steering wheel.
  • a steering state signal receiving unit for receiving a signal, wherein the steering angle return torque target value setting unit changes the steering angle return torque target value based on the steering angular velocity or the steering angular acceleration signal, and returns the steering angle return.
  • the torque command signal calculation unit changes the steering angle return torque command signal based on the steering angular velocity signal or the steering angular acceleration signal.
  • the control apparatus in any one of the aspects of the power steering apparatus, the control apparatus generates torque in a stroke end direction of the motor command signal in a state where the turning angle signal is in the predetermined region.
  • a stroke end control unit for reducing the component is provided, and the steering angle return torque command signal calculation unit is provided on the downstream side of the stroke end control unit.
  • the steering angle return torque command signal calculation unit is configured such that a rate of change of the steering angle return torque command signal accompanying a change in the vehicle speed is equal to or less than a predetermined ratio.
  • the steering angle return torque command signal is calculated as follows.
  • the rudder angle return torque command signal calculation unit is configured so that a change amount of the rudder angle return torque command signal according to a change in the vehicle speed is a predetermined unit.
  • the steering angle return torque command signal is calculated so as to be equal to or less than a predetermined amount per time.
  • the rudder angle return torque command signal calculation unit is configured such that a change amount of the rudder angle return torque command signal according to a change in the vehicle speed is a predetermined vehicle.
  • the steering angle return torque command signal is calculated so as to be equal to or less than a predetermined amount per speed change amount.
  • the control device includes a steering direction calculation unit that calculates a rotation direction of the steering wheel
  • the steering angle return torque command signal calculation unit includes The steering angle return torque command so that the steering angle return torque command signal has the same characteristics in the steering state where the steering wheel is directed from the neutral position side toward the stroke end direction and the steering state where the steering wheel is directed from the stroke end toward the neutral position side. Calculate the signal.

Abstract

制御装置(15)は、車速(Vs)および転舵角(θb)に基づいて戻し制御量目標値(MapOut)を演算する舵角戻しトルク目標値設定部(30)と、戻し制御量目標値(MapOut)に基づいて戻し制御量(RetOut)を演算する舵角戻しトルク指令信号演算部(31)と、を備えている。舵角戻しトルク指令信号演算部(31)は、レートリミッタ部(36)を備えており、このレートリミッタ部(36)は、車速センサ(19)から車速(Vs)の変化を判断し、戻し制御量目標値(MapOut)をある割合(レート)で漸増処理または漸減処理することで、戻し制御量(RetOut)を出力する。

Description

パワーステアリング装置
 本発明は、パワーステアリング装置に関する。
 パワーステアリング装置として、例えば以下の特許文献1に記載されたパワーステアリング装置が知られている。
 特許文献1に記載されたパワーステアリング装置では、舵角に対する戻しトルクを決定する舵角ゲインマップと、車速により戻しトルクを増減させる車速マップとから舵角戻しトルク制御量を算出することで、ハンドル戻し制御が行われている。
特開2007-99053号公報
 一般的に、低車速域のラックエンド付近では、セルフアライニングトルクの不足を補うため、舵角戻しトルク制御量が大きく設定される。一方、停車時は、舵角戻しトルク制御量がゼロであることが多い。そうすると、この低車速域から停車までの間に舵角戻しトルク制御量が急変することとなり、操舵の違和感が生じる虞がある。
 しかしながら、特許文献1のパワーステアリング装置は、上記舵角戻しトルク制御量の急変について何ら考慮されていないので、上記のような操舵の違和感が生じる虞がある。
 本発明は、従来の実情に鑑みて案出されたもので、低車速域での操舵の違和感を抑制することができるパワーステアリング装置を提供することを目的としている。
 本発明によれば、その一つの態様において、車両速度が0km/hから第1所定車速まで上昇するときの舵角戻しトルク指令信号の変化率が、第1所定車速から第2所定車速まで上昇するときの舵角戻しトルク指令信号の変化率よりも小さい。
 本発明によれば、低車速域での操舵の違和感を抑制することができる。
車両の前方側から見たパワーステアリング装置の概略図である。 図1の制御装置の制御ブロック図である。 転舵角ならびに車両速度と戻し制御ゲインとの相関関係を示すマップである。 舵角戻しトルク指令信号演算部でのレートリミッタ処理への移行判断を示すフローチャートである。 レートリミッタ部による漸増処理を示すフローチャートである。 (A)は、車速と重み付け係数との相関関係を示すマップであり、(B)は、車両加速度と重み付け係数との相関関係を示すマップであり、(C)は、操舵角と重み付け係数との相関関係を示すマップであり、(D)は、操舵角速度と重み付け係数との相関関係を示すマップである。 漸増レートを算出する方法を示す説明図である。 レートリミッタ部による漸減処理を示すフローチャートである。 漸減レートを算出する方法を示す説明図である。 車両の発車時および停車時における戻し制御量目標値および戻し制御量の変化を示すグラフである。 戻し制御量目標値をレートリミッタ処理しない場合における車両の発車時および停車時の操舵トルクの変化を示すグラフである。 戻し制御量目標値をレートリミッタ処理した場合における車両の発車時および停車時の操舵トルクの変化を示すグラフである。
 以下、本発明のパワーステアリング装置の一実施例を図面に基づき説明する。
(パワーステアリング装置の構成)
 図1は、車両の前方側から見たパワーステアリング装置1の概略図である。
 図1に示すように、パワーステアリング装置1は、運転者からの操舵力を伝達する操舵機構2と、運転者の操舵操作を補助する操舵アシスト機構3と、を備えている。
 操舵機構2は、車両の運転室内に配置されたステアリングホイール4と、車両の前輪である2つの転舵輪5,5と、を機械的に連結している。操舵機構2は、ステアリングホイール4からの回転力が伝達される入力軸6と、図示せぬトーションバーを介して入力軸6に接続された出力軸7と、を有した操舵軸8、およびこの操舵軸8の回転を転舵輪5,5に伝達する伝達機構9を備えている。伝達機構9は、出力軸7の外周に設けられたピニオン10と、ラックバー11の外周に設けられたラック12と、からなるラック&ピニオン機構(ラック&ピニオン・ギヤ)により構成されている。ラックバー11の両端は、タイロッド13,13および図示せぬ2つのナックルアームを介して対応する転舵輪5,5にそれぞれ連結されている。
 操舵アシスト機構3は、操舵機構2に操舵アシスト力を付与する電動モータであるモータ14と、このモータ14を駆動制御する制御装置15と、モータ14の回転を減速する減速機(伝達機構)であるウォームギヤ16と、を備えている。
 モータ14は、3相交流電力によって駆動される3相ブラシレスモータである。
 制御装置15は、マイクロコンピュータ等の電子部品を備えて構成されており、トルクセンサ17からの操舵トルク(操舵トルク信号)Trおよびモータ回転角センサ18(図2参照)からのモータ回転角(モータ回転角信号)θmに基づいて演算された制御電流Ioにより、モータ14を駆動制御する。また、制御装置15には、車速センサ19からの車速(車両速度信号)Vsおよび操舵角センサ20からの操舵角(操舵角信号)θaが入力される。
 なお、操舵角θaは、操舵角センサ20による検出ではなく、他の手段、例えば演算等によって算出されても良い。
 ウォームギヤ16は、モータ14が出力した操舵アシスト力(回転力)を減速しつつ出力軸7に伝達する。ウォームギヤ16は、外周に歯部21aを有し、モータ14の駆動軸に取り付けられたウォームシャフト21と、歯部21aと噛み合う歯部22aを外周に有し、出力軸7と一体に回転するウォームホイール22と、から構成されている。
 かかるパワーステアリング装置1の構成から、運転者がステアリングホイール4を回転操作すると、入力軸6が回転してトーションバーが捩られ、これにより生じるトーションバーの弾性力によって、出力軸7が回転する。そして、出力軸7の回転運動が上記ラック&ピニオン機構によりラックバー11の軸方向に沿う直線運動に変換され、タイロッド13,13を介して図示せぬナックルアームが車幅方向へと押し引きされることによって、対応した転舵輪5,5の向きが変更される。
(制御装置の制御ブロック図)
 図2は、制御装置15の制御構成の詳細を示す制御ブロック図である。
 制御装置15は、基本アシスト指令信号演算部23と、ストロークエンド制御部24と、加算器25と、モータ駆動信号演算部26と、舵角戻し制御部27と、を備えている。
 基本アシスト指令信号演算部23は、トルクセンサ17が検出した操舵トルクTrと、車速センサ19が検出した車速(車両速度)Vsとに基づいて、モータ14を駆動させる基本アシスト電流(基本アシスト指令信号)TRrを演算する。トルクセンサ17は、該トルクセンサ17からの操舵トルクTrを受信する、制御装置15に設けられた操舵トルク信号受信部28に電気的に接続されている。車速センサ19は、該車速センサ19からの車速Vsを受信する、制御装置15に設けられた車両速度信号受信部29に電気的に接続されている。基本アシスト電流TRrは、ステアリングホイール4の回転方向と一致する方向に操舵機構2に操舵力を付与する指令信号である。
 ストロークエンド制御部24は、基本アシスト指令信号演算部23の下流に設けられている。ストロークエンド制御部24は、後述する転舵角(転舵角信号)θbが所定領域にある状態において、モータ指令電流(モータ指令信号)Ioのうちストロークエンド方向にトルクを発生させる成分を減少させ、ラック突き当て時の衝撃や異音の発生を抑制する。例えば、ストロークエンド制御部24は、モータ指令電流Ioのうちストロークエンド方向にトルクを発生させる成分を減少させるのに、ストロークエンド方向と反対方向にトルクを発生させる成分を作用させる。
 加算器25は、ストロークエンド制御部24の下流に設けられており、基本アシスト指令信号演算部23からの基本アシスト電流TRrと、後述する戻し制御量(舵角戻しトルク指令信号)RetOutとを加算してモータ駆動信号演算部26に出力する。
 モータ駆動信号演算部26は、加算器25の下流に設けられており、基本アシスト電流TRrおよび戻し制御量RetOutに基づいてモータ指令電流Ioを演算する。また、モータ駆動信号演算部26には、モータ14とモータ駆動信号演算部26との間に介在したモータ回転角センサ18により検出したモータ回転角(モータ回転角信号)θmがフィードバックされ、このモータ回転角θmに基づいて、モータ指令電流Ioが調整される。
 舵角戻し制御部27は、舵角戻しトルク目標値設定部30と、舵角戻しトルク指令信号演算部31と、を備えている。
 舵角戻しトルク目標値設定部30は、車速Vsと、転舵角センサ32が検出した転舵角θbとに基づいて、ステアリングホイール4の戻し制御量目標値(舵角戻しトルク目標値)MapOutを設定する。舵角戻しトルク目標値設定部30は、例えば、所定の戻し制御量基準値に、後述するマップ(図3参照)から取得される戻し制御ゲインKを乗算することにより、戻し制御量目標値MapOutを算出する。転舵角センサ32は、該転舵角センサ32からの転舵角θbを受信する、制御装置15に設けられた転舵角信号受信部33に電気的に接続されている。戻し制御量目標値MapOutは、転舵輪5,5が中立位置を向く方向に操舵機構2に操舵アシスト力を付与する目標値である。
 なお、戻し制御量目標値MapOutは、操舵角速度Vaや操舵トルクTrによって算出されても良い。
 さらに、転舵角θbは、転舵角センサ32による検出ではなく、他の手段、例えば演算等によって算出されても良い。
 また、舵角戻しトルク目標値設定部30は、操舵角センサ20からの操舵角(操舵角信号)θaが第1の微分器34を通して変換された操舵角速度(操舵角速度信号)Va、または第1の微分器34からの操舵角速度Vaが第2の微分器35を通して変換された操舵角加速度(操舵角加速度信号)Arに基づいて、戻し制御量目標値MapOutを変化させることができる。
 第1の微分器34および第2の微分器35は、制御装置15に設けられた第1の操舵状態信号受信部40に電気的に接続されている。
 舵角戻しトルク指令信号演算部31は、舵角戻しトルク目標値設定部30の下流に設けられたレートリミッタ部36および総リミッタ部37から構成されている。総リミッタ部37は、ストロークエンド制御部24よりも下流に位置した加算器25に電気的に接続されている。舵角戻しトルク指令信号演算部31は、戻し制御量目標値MapOutに基づいて戻し制御量(舵角戻しトルク指令信号)RetOutを演算するものであり、車速Vsの変化に伴う戻し制御量RetOutの変化率を変化させる。また、舵角戻しトルク指令信号演算部31は、第3の微分器39を通して変換された車両加速度Avの大きさに応じて車速Vsの変化に伴う戻し制御量RetOutの変化率を変化させても良い。さらに、舵角戻しトルク指令信号演算部31は、制御装置15に設けられた第1の操舵状態信号受信部40からの操舵角速度Vaまたは操舵角加速度Arに基づいて戻し制御量RetOutの変化率を変化させても良い。
 さらに、舵角戻し制御部27には、操舵方向演算部38から、ステアリングホイール4の回転方向の信号である操舵方向(操舵方向信号)Drが入力される。操舵方向Drは、例えば操舵角θaあるいは転舵角θbと操舵トルクTrとの関係から算出するものである。
 舵角戻しトルク指令信号演算部31は、ステアリングホイール4が中立位置側からストロークエンドへ向かう転舵状態とストロークエンドから中立位置側へ向かう転舵状態とで戻し制御量RetOutが同じ特性となるように、操舵方向Drに基づいて、戻し制御量RetOutを演算することもできる。
 レートリミッタ部36は、舵角戻しトルク目標値設定部30の下流に設けられており、車速センサ19から車速Vsの変化を判断し、ある割合(レート)で戻し制御量目標値MapOutを漸増処理または漸減処理する。レートリミッタ部36は、車速Vsの変化に伴う戻し制御量RetOutの変化率が所定比率以下となるように戻し制御量RetOutを出力する。また、レートリミッタ部36は、車速Vsの変化に伴う戻し制御量RetOutの変化量が所定の単位時間当たりで所定量以下となるように戻し制御量RetOutを出力することができる。さらに、レートリミッタ部36は、車速Vsの変化に伴う戻し制御量RetOutの変化量が所定の車速変化量当たりで所定量以下となるように戻し制御量RetOutを出力することもできる。
 総リミッタ部37は、レートリミッタ部36の下流に設けられており、漸増処理される戻し制御量目標値MapOutが所定の上限値を超えないようにするとともに、漸減処理される戻し制御量目標値MapOutが所定の下限値よりも低下しないようにする。
 図3は、舵角戻しトルク目標値設定部30における戻し制御量目標値MapOutの演算に用いられる、転舵角θbならびに車速Vsと戻し制御ゲインKとの相関関係を示すマップである。
 図3に示すように、セルフアライニングトルクが小さくなる低車速域、例えば車速Vsが1km/hである領域のラックエンド付近では、セルフアライニングトルクの不足を補い、ステアリングホイール4の戻りの悪さを抑制するため、戻し制御ゲインKが大きくなっている。
 一方、セルフアライニングトルクが大きくなる高車速域では、ステアリングホイール4の戻し過ぎを抑制するため、戻し制御ゲインKが小さくなっている。
 また、停車つまり車速Vsが0km/hでは、ステアリングホイール4が戻る必要がないので、戻し制御ゲインKがゼロとなっている。仮に、戻し制御ゲインKを大きくすると、ラックにかかる負荷が極端に小さい低μ路やリフトアップの状況において手放しでステアリングホイール4が勝手に動いてしまう、または動かずとも常に電流が流れてしまうので、制御装置15の発熱の問題や車両の電力管理等の問題が生じてしまう。
 このようなマップを用いて演算された戻し制御量RetOutは、車速Vsが0km/hであるときは、ゼロまたはこれに近い値となり、一方、車速Vsが1km/hであるときは、大きい値となる。
 例えば、ラックエンド付近まで転舵した状態での発車時に車速Vsが0km/hから1km/hに上昇するときに、戻し制御量RetOutがゼロから急激に大きくなる。そして、この急激な戻し制御量RetOutの変化に基づいて戻し制御が行われることにより、ステアリングホイール4が急に戻され、操舵力が急増する操舵の違和感が生じる虞がある。
 また、停車時に車速Vsが1km/hから0km/hまで減少するときに、戻し制御量RetOutが急にゼロとなるので、操舵力が抜け、停車と同時にステアリングホイール4が切れ込む操舵の違和感が生じる虞がある。
 本実施例では、戻し制御量目標値MapOutの変化に対し戻し制御量RetOutの変化率を小さくすることにより、発車時および停車時の戻し制御量RetOutの急変を緩和し、運転者の操舵の違和感を抑制する。つまり、車速Vsの変化に基づいてレートリミッタ部36で戻し制御量目標値MapOutにレートリミッタ処理を行い、戻し制御量目標値MapOutを漸増または漸減させることにより、戻し制御量RetOutの急変を緩和し、運転者の操舵の違和感を抑制する。
 例えば、転舵角θbがストロークエンドを含む所定領域にある状態において、車速Vsが0km/hから1km/hまで上昇するときには、レートリミッタ部36は、戻し制御量目標値MapOutを漸増させる。換言すれば、転舵角θbがストロークエンドを含む所定領域にある状態において、車速Vsが0km/hから1km/hまで上昇するときの車速Vsの変化に伴う戻し制御量RetOutの変化率が、車速Vsが1km/hから該1km/hよりも大きい車速まで上昇するときの車速Vsの変化に伴う戻し制御量RetOutの変化率よりも小さくなるように、舵角戻しトルク指令信号演算部31は、戻し制御量RetOutを演算する。
 一方、車速Vsが1km/hから0km/hまで減速するときには、レートリミッタ部36は、戻し制御量目標値MapOutを漸減させる。
 なお、本実施例では、低車速域におけるラックエンド付近でのセルフアライニングトルクが不足する車速Vsを「1km/h」として説明するが、この車速Vsは、車両(仕様)によって異なるものであり、20km/hを上限として任意の車速に設定し、本実施例を適用することができる。
 なお、上記20km/hは、特許請求の範囲に記載の「第1所定車速」に相当し、20km/hよりも大きい所定の車速が、特許請求の範囲に記載の「第2所定車速」に相当する。
 図4は、レートリミッタ部36でのレートリミッタ処理への移行判断を示すフローチャートである。
 ステップS1において、車速センサ19からの車速Vsを読み込む。
 ステップS2において、操舵角センサ20からの操舵角θaを読み込む。
 ステップS3において、第3の微分器39を通して出力された車両加速度Avを読み込む。
 ステップS4において、第2の微分器35を通して出力された操舵角速度Vaを読み込む。
 そして、ステップS5において、車速Vsが0km/hから1km/hまで増加したか否かを判定する。車速Vsが0km/hから1km/hまで増加した場合には、ステップS6に移行し、レートリミッタ部36によって戻し制御量目標値MapOutを漸増処理する。
 また、ステップS5で車速Vsが0km/hから1km/hまで増加していない場合には、ステップS7において、車速Vsが1km/hから0km/hまで減少したか否かを判定する。車速Vsが1km/hから0km/hまで減少した場合には、ステップS8に移行し、レートリミッタ部36によって戻し制御量目標値MapOutを漸減処理する。
 ステップS7で車速Vsが1km/hから0km/hまで減少していない場合には、ステップS9において、レートリミッタ処理が継続中であるか否か判定する。レートリミッタ処理が継続中である場合には、ステップS10に移行し、レートリミッタ処理を継続する。
 また、ステップS9でレートリミッタ処理が継続中でない場合には、ステップS11に移行し、レートリミッタ処理を実施しない。
 図5は、レートリミッタ部36による漸増処理を示すフローチャートである。
 ステップS20において、漸増レートRampUpを演算する。漸増レートRampUpは、漸増レート定数値RampUp_Constに後述する重み付け係数マップ(A)~(D)によって取得される種々の重み付け係数α,β,γ,σを乗算することにより演算される。
 ステップS21において、戻し制御量前回値RetOut_z1を「A」に設定する。上記漸増処理は、車速Vsが0km/hから1km/hまで増加する場合の処理であり、車速Vsが0km/hのときは戻し制御量が必要ないので、A=0となる。
 そして、ステップS22において、Aに漸増レートRampUpを加算することにより、リミット値Bを算出する。
 ステップS23において、リミット値Bが戻し制御量目標値MapOutよりも小さいか否かを判定する。リミット値Bが戻し制御量目標値MapOutよりも小さい場合には、ステップS24において、リミット値Bを戻し制御量RetOutとし、ステップS25において、レートリミッタ部36による漸増処理を継続する。
 また、ステップS23でリミット値Bが戻し制御量目標値MapOut以上である場合には、ステップS26において、戻し制御量目標値MapOutを戻し制御量RetOutとし、ステップS27において、レートリミッタ処理を終了する。
 図6(A)は、車速Vsと、漸増レート定数値RampUp_Constに乗算される重み付け係数αとの相関関係を示すマップである。
 車速Vsが大きいときには、ステアリングホイール4を早く戻す必要があるから、図6(A)に示すように、重み付け係数αは、車速Vsが大きいときに高く設定されている。
 図6(B)は、車両加速度Avと、漸増レート定数値RampUp_Constに乗算される重み付け係数βとの相関関係を示すマップである。
 車両加速度Avが大きいときには、戻し制御量RetOutの応答遅れを補う必要があるから、図6(B)に示すように、重み付け係数βは、車両加速度Avが大きいときに高く設定されている。
 図6(C)は、操舵角θaと、漸増レート定数値RampUp_Constに乗算される重み付け係数γとの相関関係を示すマップである。
 操舵角θaが大きいときに戻し制御量RetOutを多くすると、ステアリングホイール4が急に大きく戻され、操舵フィーリングが悪化するから、図6(C)に示すように、重み付け係数γは、操舵角θaが大きいときに、小さく設定されている。
 図6(D)は、操舵角速度Vaと、漸増レート定数値RampUp_Constに乗算される重み付け係数σとの相関関係を示すマップである。
 操舵角速度Vaが大きいときには、ステアリングホイール4を早く戻す必要があるから、図6(D)に示すように、重み付け係数σは、操舵角速度Vaが大きいときに高く設定されている。
 なお、図6(A)、図6(B)、図6(C)および図6(D)の重み付け係数マップから取得された重み付け係数α,β,γ,σは、後述する漸減レートRampDownを算出する際にも用いられる。
 図7は、漸増レート定数値RampUp_Constから漸増レートRampUpを算出する方法を示す説明図である。
 図7に示すように、漸増レート定数値RampUp_Constに、図6(A)~図6(D)のマップから取得された重み付け係数α,β,γ,σが乗算される。
 図8は、レートリミッタ部36による漸減処理を示すフローチャートである。
 ステップS30において、漸減レートRampDownを演算する。漸減レートRampDownは、漸減レート定数値RampDown_Constに図6(A)~(D)の重み付け係数マップによって取得される種々の重み付け係数α,β,γ,σを乗算することにより演算される。
 ステップS31において、戻し制御量前回値RetOut_z1を「C」に設定する。
 そして、ステップS32において、Cから漸減レートRampDownを減算することにより、リミット値Dを算出する。
 ステップS33において、リミット値Dが戻し制御量目標値MapOutよりも大きいか否かを判定する。リミット値Dが戻し制御量目標値MapOutよりも大きい場合には、ステップS34において、リミット値Dを戻し制御量RetOutとし、ステップS35において、レートリミッタ部36による漸減処理を継続する。
 また、ステップS33でリミット値Dが戻し制御量目標値MapOut以下である場合には、ステップS36において、戻し制御量目標値MapOutを戻し制御量RetOutとし、ステップS37において、レートリミッタ処理を終了する。
 図9は、漸減レート定数値RampDown_Constから漸減レートRampDownを算出する方法を示す説明図である。
 図9に示すように、漸減レート定数値RampDown_Constに、図6(A)~図6(D)のマップから取得された重み付け係数α,β,γ,σが乗算される。
 図10は、車両の発車時および停車時における戻し制御量目標値MapOutおよび戻し制御量RetOutの変化を示すグラフである。図10では、上段の実線は戻し制御量RetOutを示しており、下段の実線は車速Vsを示している。また、破線は戻し制御量目標値MapOutを示している。なお、図10では、破線で示す戻し制御量目標値MapOutが一部しか示されていないが、他の部分は、実線で示す戻し制御量RetOutと重なっている。また、図10では、転舵角θbがストロークエンドを含む所定の領域にあるものとする。
 図10に示すように、車速Vsが0km/hのときに、戻し制御量目標値MapOutはゼロまたはこれに近い値となっている。そして、車両の発車時に車速Vsが0km/hから1km/hに増加したときに、戻し制御量目標値MapOutは、急に高い値に設定される。このような高い戻し制御量目標値MapOutに基づいて出力される戻し制御量RetOutは大きく増加することになる。これに対し、本実施例では、上記漸増処理を行うことで、車速Vsが0km/hから1km/hに増加したときに、戻し制御量RetOutは、戻し制御量目標値MapOutよりも小さい増加率で徐々に増加することになる。
 また、車両の停車時において車速Vsが1km/hから0km/hに減少したときに、戻し制御量目標値MapOutは、急に低い値に設定される。このような低い戻し制御量目標値MapOutに基づいて出力される戻し制御量RetOutは大きく減少することになる。これに対し、本実施例では、上記漸減処理を行うことで、車速Vsが1km/hから0km/hに減少したときに、戻し制御量RetOutは、戻し制御量目標値MapOutよりも小さい減少率で徐々に減少することになる。
[本実施例の効果]
 図11は、戻し制御量目標値MapOutをレートリミッタ処理しない場合における車両の発車時および停車時の操舵トルクTrの変化を示すグラフである。図11では、転舵角θbがストロークエンドを含む所定の領域にあり、ステアリングホイール4が保舵状態となっている。
 図11のように戻し制御量目標値MapOutをレートリミッタ処理しない場合には、戻し制御量目標値MapOutが戻し制御量RetOutとして加算器25(図2参照)に出力される。
 図11に示すように、車速Vsが0km/hのときには、戻し制御量RetOutはゼロまたはこれに近い値となっている。そして、車両の発車時に車速Vsが0km/hから1km/hまで増加したときに、戻し制御量RetOutは、ステップ状に増加している。これにより、操舵トルクTrは、図11に実線の円で囲んで示すように急激に増加する。
 その結果、上記急増する戻しトルクによって、操舵力が急増する違和感が生じていた。
 一方、車両の停車時に車速Vsが1km/hから0km/hまで減少したときに、戻し制御量RetOutがステップ状に減少している。これにより、操舵トルクTrは、図11に実線の長円で囲んで示すように、0km/hから1km/hへの発車時よりも大きな変化量で急激に減少する。
 その結果、上記急減する戻しトルクによって、操舵力が抜け、停車と同時にステアリングホイール4が切れ込む違和感が生じていた。
 図12は、戻し制御量目標値MapOutをレートリミッタ処理した場合における車両の発車時および停車時の操舵トルクTrの変化を示すグラフである。図12では、転舵角θbがストロークエンドを含む所定の領域にあり、ステアリングホイール4が保舵状態となっている。
 図12のように戻し制御量目標値MapOutをレートリミッタ処理した場合に、戻し制御量目標値MapOutがレートリミッタ処理されて得られた戻し制御量RetOutが、加算器25(図2参照)に出力される。
 図12に示すように、車速Vsが0km/hのときには、戻し制御量RetOutはゼロまたはこれに近い値となっている。そして、車両の発車時に車速Vsが0km/hから1km/hまで増加したときに、上記漸増処理により、戻し制御量RetOutは徐々に増加することになる。これにより、操舵トルクTrは、図12の左側の実線の円で囲んで示すように大きな変動を生じることなくほぼ横ばいとなり、操舵トルクTrの変動が、図11に示した発車時の変動よりも抑えられている。
 このように、図11で急激に増加していた戻し制御量RetOutをレートリミッタ処理により図12に示すように漸増させることで、操舵トルクTrの変動が抑制され、これにより、ステアリングホイール4が急に戻され、操舵力が急増する違和感が抑制される。
 一方、車両の停車時に車速Vsが1km/hから0km/hまで減少したときに、上記漸減処理により、戻し制御量RetOutは徐々に減少することになる。これにより、操舵トルクTrは、図12の右側の実線の円で囲んで示すように多少減少するものの、操舵トルクTrの変動が、図11に示した停車時の変動よりも小さくなっている。
 このように、図11で急激に減少していた戻し制御量RetOutをレートリミッタ処理により図12に示すように漸減させることで、操舵トルクTrの変動が抑制され、これにより、操舵力が抜け、停車と同時にステアリングホイール4が切れ込む違和感が抑制される。
 以上、本実施例では、パワーステアリング装置1は、ステアリングホイール4の回転を転舵輪5,5に伝達する操舵機構2と、操舵機構2に操舵力を付与するモータ14と、モータ14を駆動制御する制御装置15と、制御装置15に設けられ、操舵機構2に生じる操舵トルクTrの信号である操舵トルク信号を受信する操舵トルク信号受信部28と、制御装置15に設けられ、操舵トルクTrに基づき基本アシスト電流TRrを演算する基本アシスト指令信号演算部23であって、基本アシスト電流TRrはステアリングホイール4の回転方向と一致する方向に操舵機構2に操舵力を付与する指令信号である基本アシスト指令信号演算部23と、制御装置15に設けられ、車速Vsを受信する車両速度信号受信部29と、制御装置15に設けられ、転舵輪5,5の転舵角θbに関する信号である転舵角信号を受信する転舵角信号受信部33と、制御装置15に設けられ、車速Vsおよび転舵角θbに基づき戻し制御量目標値MapOutを設定する舵角戻しトルク目標値設定部30であって、戻し制御量目標値MapOutは転舵輪5,5が中立位置を向く方向に操舵機構2に操舵力を付与する目標値である舵角戻しトルク目標値設定部30と、制御装置15に設けられ、戻し制御量目標値MapOutに基づき戻し制御量RetOutを演算する舵角戻しトルク指令信号演算部31であって、第1所定車速を0km/hよりも高い車両速度、第2所定車速を第1所定車速よりも高い車両速度としたとき、転舵角θbがストロークエンドを含む所定領域にある状態において、車速Vsが0km/hから第1所定車速まで上昇するときの車速Vsの変化に伴う戻し制御量RetOutの変化率が、車速Vsが第1所定車速から第2所定車速まで上昇するときの車速Vsの変化に伴う戻し制御量RetOutの変化率よりも小さくなるように戻し制御量RetOutを演算する舵角戻しトルク指令信号演算部31と、制御装置15に設けられ、基本アシスト電流TRrと戻し制御量RetOutに基づきモータ14を駆動制御する信号であるモータ指令電流Ioを演算するモータ駆動信号演算部26と、を有している。
 従って、必要に応じた戻し制御量RetOutを得ながら、操舵の違和感を抑制することができる。
 さらに、本実施例では、制御装置15は、転舵角θbが所定領域にある状態において、モータ指令電流Ioのうちストロークエンド方向にトルクを発生させる成分を減少させるストロークエンド制御部24を備え、舵角戻しトルク指令信号演算部31は、ストロークエンド制御部24よりも下流側に設けられている。例えば、ストロークエンド制御部24は、モータ指令電流Ioのうちストロークエンド方向にトルクを発生させる成分を減少させるのに、ストロークエンド方向と反対方向にトルクを発生させる成分を作用させる。
 仮にストロークエンド制御部24が舵角戻しトルク指令信号演算部31の下流側に設けられる場合には、上記反対方向にトルクを発生させる成分として作用する戻し制御量RetOutが、ストロークエンド制御により減算されることになる。従って、ストロークエンド方向に効率よくブレーキをかけることが出来なくなり、ストロークエンドへの舵角速度を落としきれず、突き当て時の衝撃や異音など操舵の違和感が生じてしまう。
 これに対し、本実施例のように舵角戻しトルク指令信号演算部31をストロークエンド制御部24よりも下流側に設けることにより、戻し制御量RetOutは減少される事がなく、操舵の違和感を抑制することができる。
 また、本実施例では、舵角戻しトルク指令信号演算部31は、車速Vsの変化に伴う戻し制御量RetOutの変化率が所定比率以下となるように戻し制御量RetOutを演算する。
 このように、変化率が所定比率以下となるように、所謂レートリミッタ処理を行うことで、所定比率よりも大きい戻し制御量RetOutの変化が抑制される。これにより、急激な操舵トルクの変化が抑制され、操舵の違和感を抑制することができる。
 さらに、本実施例では、制御装置15は、ステアリングホイール4の回転方向の信号である操舵方向Drを演算する操舵方向演算部38を備え、舵角戻しトルク指令信号演算部31は、ステアリングホイール4が中立位置側からストロークエンド方向へ向かう転舵状態とストロークエンドから中立位置側へ向かう転舵状態とで、制御量RetOutが同じ特性となるように戻し制御量RetOutを演算する。
 従って、切り込み状態と切り戻し状態とで操舵フィーリングが変化することによる操舵の違和感を抑制することができる。
 また、舵角戻しトルク指令信号演算部31は、車両加速度Avの大きさに応じて車速Vsの変化に伴う戻し制御量RetOutの変化率を変化させることができる。
 このように、車両加速度Avに応じて、車速Vsの変化に伴う戻し制御量RetOutの変化率を変化させることにより、例えば、急加速時における戻し制御量RetOutの応答遅れ等を改善することができる。
 さらに、制御装置15は、ステアリングホイール4の回転速度の信号である操舵角速度Vaまたはステアリングホイール4の回転角加速度の信号である操舵角加速度Arを受信する第1の操舵状態信号受信部40を備えている。これにより、車速Vsおよび転舵角θbに基づいて戻し制御量目標値MapOutや戻し制御量RetOutを演算することに加えて、舵角戻しトルク目標値設定部30は、操舵角速度Vaまたは操舵角加速度Arに基づき、戻し制御量目標値MapOutを変化させることができ、舵角戻しトルク指令信号演算部31は、操舵角速度Vaまたは操舵角加速度Arに基づき、戻し制御量RetOutを変化させることができる。
 このように、操舵に関する情報に基づいて戻し制御量目標値MapOutを与え、かつ、この戻し制御量目標値MapOutに応じてレートリミッタ処理を行い、戻し制御量RetOutを演算することにより、操舵の違和感を更に抑制することができる。
 また、舵角戻しトルク指令信号演算部31は、車速Vsの変化に伴う戻し制御量RetOutの変化量を所定量以下となるように単に演算するだけでなく、戻し制御量RetOutの変化量が、所定の単位時間当たりで所定量以下となるように戻し制御量RetOutを演算することができる。
 このように、単位時間当たりの戻し制御量RetOutの変化量を制限することで、急激な戻し制御量RetOutの変化がより効率的に抑制され、これにより、操舵の違和感を抑制することができる。
 さらに、舵角戻しトルク指令信号演算部31は、車速Vsの変化に伴う戻し制御量RetOutの変化量が所定量以下となるように戻し制御量RetOutを単に演算するだけでなく、車速Vsの変化に伴う戻し制御量RetOutの変化量が、所定の車両速度変化量当たりで所定量以下となるように制御量RetOutを演算することもできる。
 従って、車速Vsの変化が少ないときの戻し制御量RetOutの特性の変化を抑制することができる。
 以上説明した実施例に基づくパワーステアリング装置としては、例えば以下に述べる態様のものが考えられる。
 パワーステアリング装置は、その一つの態様において、ステアリングホイールの回転を転舵輪に伝達する操舵機構と、前記操舵機構に操舵力を付与する電動モータと、前記電動モータを駆動制御する制御装置と、前記制御装置に設けられ、前記操舵機構に生じる操舵トルクの信号である操舵トルク信号を受信する操舵トルク信号受信部と、前記制御装置に設けられ、前記操舵トルク信号に基づき基本アシスト指令信号を演算する基本アシスト指令信号演算部であって、前記基本アシスト指令信号は前記ステアリングホイールの回転方向と一致する方向に前記操舵機構に操舵力を付与する指令信号である基本アシスト指令信号演算部と、前記制御装置に設けられ、車両速度信号を受信する車両速度信号受信部と、前記制御装置に設けられ、前記転舵輪の転舵角に関する信号である転舵角信号を受信する転舵角信号受信部と、前記制御装置に設けられ、前記車両速度信号および前記転舵角信号に基づき舵角戻しトルク目標値を設定する舵角戻しトルク目標値設定部であって、前記舵角戻しトルク目標値は前記転舵輪が中立位置を向く方向に前記操舵機構に操舵力を付与する目標値である舵角戻しトルク目標値設定部と、前記制御装置に設けられ、前記舵角戻しトルク目標値に基づき舵角戻しトルク指令信号を演算する舵角戻しトルク指令信号演算部であって、第1所定車速を0km/hよりも高い車両速度、第2所定車速を前記第1所定車速よりも高い車両速度としたとき、前記転舵角信号がストロークエンドを含む所定領域にある状態において、前記車両速度が0km/hから前記第1所定車速まで上昇するときの前記車両速度の変化に伴う前記舵角戻しトルク指令信号の変化率が、前記車両速度が前記第1所定車速から前記第2所定車速まで上昇するときの前記車両速度の変化に伴う前記舵角戻しトルク指令信号の変化率よりも小さくなるように前記舵角戻しトルク指令信号を演算する舵角戻しトルク指令信号演算部と、前記制御装置に設けられ、前記基本アシスト指令信号と前記舵角戻しトルク指令信号に基づき前記電動モータを駆動制御する信号であるモータ指令信号を演算するモータ駆動信号演算部と、を有している。
 前記パワーステアリング装置の好ましい態様において、前記舵角戻しトルク指令信号演算部は、車両速度が前記第1所定車速から0km/hまで減速するとき、前記舵角戻しトルク指令信号を漸減させる。
 別の好ましい態様では、前記パワーステアリング装置の態様のいずれかにおいて、前記舵角戻しトルク指令信号演算部は、車両加速度の大きさに応じて前記車両速度の変化に伴う前記舵角戻しトルク指令信号の変化率を変化させる。
 別の好ましい態様では、前記パワーステアリング装置の態様のいずれかにおいて、前記制御装置は、前記ステアリングホイールの回転速度の信号である操舵角速度信号または前記ステアリングホイールの回転角加速度の信号である操舵角加速度信号を受信する操舵状態信号受信部を備え、前記舵角戻しトルク目標値設定部は、前記操舵角速度または前記操舵角加速度信号に基づき、前記舵角戻しトルク目標値を変化させ、前記舵角戻しトルク指令信号演算部は、前記操舵角速度信号または前記操舵角加速度信号に基づき、前記舵角戻しトルク指令信号を変化させる。
 別の好ましい態様では、前記パワーステアリング装置の態様のいずれかにおいて、前記制御装置は、前記転舵角信号が前記所定領域にある状態において、前記モータ指令信号のうちストロークエンド方向にトルクを発生させる成分を減少させるストロークエンド制御部を備え、前記舵角戻しトルク指令信号演算部は、前記ストロークエンド制御部よりも下流側に設けられている。
 別の好ましい態様では、前記パワーステアリング装置の態様のいずれかにおいて、前記舵角戻しトルク指令信号演算部は、前記車両速度の変化に伴う前記舵角戻しトルク指令信号の変化率が所定比率以下となるように前記舵角戻しトルク指令信号を演算する。
 別の好ましい態様では、前記パワーステアリング装置の態様のいずれかにおいて、前記舵角戻しトルク指令信号演算部は、前記車両速度の変化に伴う前記舵角戻しトルク指令信号の変化量が、所定の単位時間当たりで所定量以下となるように前記舵角戻しトルク指令信号を演算する。
 別の好ましい態様では、前記パワーステアリング装置の態様のいずれかにおいて、前記舵角戻しトルク指令信号演算部は、前記車両速度の変化に伴う前記舵角戻しトルク指令信号の変化量が、所定の車両速度変化量当たりで所定量以下となるように前記舵角戻しトルク指令信号を演算する。
 別の好ましい態様では、前記パワーステアリング装置の態様のいずれかにおいて、前記制御装置は、前記ステアリングホイールの回転方向を演算する操舵方向演算部を備え、前記舵角戻しトルク指令信号演算部は、前記ステアリングホイールが中立位置側からストロークエンド方向へ向かう転舵状態とストロークエンドから中立位置側へ向かう転舵状態とで、前記舵角戻しトルク指令信号が同じ特性となるように前記舵角戻しトルク指令信号を演算する。

Claims (9)

  1.  ステアリングホイールの回転を転舵輪に伝達する操舵機構と、
     前記操舵機構に操舵力を付与する電動モータと、
     前記電動モータを駆動制御する制御装置と、
     前記制御装置に設けられ、前記操舵機構に生じる操舵トルクの信号である操舵トルク信号を受信する操舵トルク信号受信部と、
     前記制御装置に設けられ、前記操舵トルク信号に基づき基本アシスト指令信号を演算する基本アシスト指令信号演算部であって、前記基本アシスト指令信号は前記ステアリングホイールの回転方向と一致する方向に前記操舵機構に操舵力を付与する指令信号である基本アシスト指令信号演算部と、
     前記制御装置に設けられ、車両速度信号を受信する車両速度信号受信部と、
     前記制御装置に設けられ、前記転舵輪の転舵角に関する信号である転舵角信号を受信する転舵角信号受信部と、
     前記制御装置に設けられ、前記車両速度信号および前記転舵角信号に基づき舵角戻しトルク目標値を設定する舵角戻しトルク目標値設定部であって、前記舵角戻しトルク目標値は前記転舵輪が中立位置を向く方向に前記操舵機構に操舵力を付与する目標値である舵角戻しトルク目標値設定部と、
     前記制御装置に設けられ、前記舵角戻しトルク目標値に基づき舵角戻しトルク指令信号を演算する舵角戻しトルク指令信号演算部であって、第1所定車速を0km/hよりも高い車両速度、第2所定車速を前記第1所定車速よりも高い車両速度としたとき、前記転舵角信号がストロークエンドを含む所定領域にある状態において、前記車両速度が0km/hから前記第1所定車速まで上昇するときの前記車両速度の変化に伴う前記舵角戻しトルク指令信号の変化率が、前記車両速度が前記第1所定車速から前記第2所定車速まで上昇するときの前記車両速度の変化に伴う前記舵角戻しトルク指令信号の変化率よりも小さくなるように前記舵角戻しトルク指令信号を演算する舵角戻しトルク指令信号演算部と、
     前記制御装置に設けられ、前記基本アシスト指令信号と前記舵角戻しトルク指令信号に基づき前記電動モータを駆動制御する信号であるモータ指令信号を演算するモータ駆動信号演算部と、
     を有することを特徴とするパワーステアリング装置。
  2.  請求項1に記載のパワーステアリング装置において、前記舵角戻しトルク指令信号演算部は、車両速度が前記第1所定車速から0km/hまで減速するとき、前記舵角戻しトルク指令信号を漸減させることを特徴とするパワーステアリング装置。
  3.  請求項1に記載のパワーステアリング装置において、前記舵角戻しトルク指令信号演算部は、車両加速度の大きさに応じて前記車両速度の変化に伴う前記舵角戻しトルク指令信号の変化率を変化させることを特徴とするパワーステアリング装置。
  4.  請求項1に記載のパワーステアリング装置において、前記制御装置は、前記ステアリングホイールの回転速度の信号である操舵角速度信号または前記ステアリングホイールの回転角加速度の信号である操舵角加速度信号を受信する操舵状態信号受信部を備え、
     前記舵角戻しトルク目標値設定部は、前記操舵角速度または前記操舵角加速度信号に基づき、前記舵角戻しトルク目標値を変化させ、
     前記舵角戻しトルク指令信号演算部は、前記操舵角速度信号または前記操舵角加速度信号に基づき、前記舵角戻しトルク指令信号を変化させることを特徴とするパワーステアリング装置。
  5.  請求項1に記載のパワーステアリング装置において、前記制御装置は、前記転舵角信号が前記所定領域にある状態において、前記モータ指令信号のうちストロークエンド方向にトルクを発生させる成分を減少させるストロークエンド制御部を備え、
     前記舵角戻しトルク指令信号演算部は、前記ストロークエンド制御部よりも下流側に設けられていることを特徴とするパワーステアリング装置。
  6.  請求項1に記載のパワーステアリング装置において、前記舵角戻しトルク指令信号演算部は、前記車両速度の変化に伴う前記舵角戻しトルク指令信号の変化率が所定比率以下となるように前記舵角戻しトルク指令信号を演算することを特徴とするパワーステアリング装置。
  7.  請求項6に記載のパワーステアリング装置において、前記舵角戻しトルク指令信号演算部は、前記車両速度の変化に伴う前記舵角戻しトルク指令信号の変化量が、所定の単位時間当たりで所定量以下となるように前記舵角戻しトルク指令信号を演算することを特徴とするパワーステアリング装置。
  8.  請求項6に記載のパワーステアリング装置において、前記舵角戻しトルク指令信号演算部は、前記車両速度の変化に伴う前記舵角戻しトルク指令信号の変化量が、所定の車両速度変化量当たりで所定量以下となるように前記舵角戻しトルク指令信号を演算することを特徴とするパワーステアリング装置。
  9.  請求項1に記載のパワーステアリング装置において、前記制御装置は、前記ステアリングホイールの回転方向を演算する操舵方向演算部を備え、
     前記舵角戻しトルク指令信号演算部は、前記ステアリングホイールが中立位置側からストロークエンド方向へ向かう転舵状態とストロークエンドから中立位置側へ向かう転舵状態とで、前記舵角戻しトルク指令信号が同じ特性となるように前記舵角戻しトルク指令信号を演算することを特徴とするパワーステアリング装置。
PCT/JP2018/004979 2017-03-09 2018-02-14 パワーステアリング装置 WO2018163724A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/482,658 US11352049B2 (en) 2017-03-09 2018-02-14 Power steering apparatus
DE112018001240.9T DE112018001240B4 (de) 2017-03-09 2018-02-14 Servolenkungsvorrichtung
JP2019504410A JP6716782B2 (ja) 2017-03-09 2018-02-14 パワーステアリング装置
CN201880016410.1A CN110382332B (zh) 2017-03-09 2018-02-14 动力转向装置
KR1020197025921A KR20190116353A (ko) 2017-03-09 2018-02-14 파워 스티어링 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-044458 2017-03-09
JP2017044458 2017-03-09

Publications (1)

Publication Number Publication Date
WO2018163724A1 true WO2018163724A1 (ja) 2018-09-13

Family

ID=63448541

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/004979 WO2018163724A1 (ja) 2017-03-09 2018-02-14 パワーステアリング装置

Country Status (6)

Country Link
US (1) US11352049B2 (ja)
JP (1) JP6716782B2 (ja)
KR (1) KR20190116353A (ja)
CN (1) CN110382332B (ja)
DE (1) DE112018001240B4 (ja)
WO (1) WO2018163724A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11352049B2 (en) * 2017-03-09 2022-06-07 Hitachi Astemo, Ltd. Power steering apparatus

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102389170B1 (ko) * 2017-05-22 2022-04-21 주식회사 만도 조향 보조 모터의 제어 장치 및 제어 방법
CN111661140B (zh) * 2020-01-09 2021-06-11 吉林大学 一种电动助力转向系统助力特性表计算方法
US11472395B2 (en) * 2020-02-28 2022-10-18 Cnh Industrial America Llc System and method for executing multi-mode turns with a work vehicle
DE102020208261B4 (de) 2020-07-01 2022-04-21 Volkswagen Aktiengesellschaft Endanschlags-Rückstellfunktion für eine Fahrzeuglenkung
KR20220014342A (ko) * 2020-07-22 2022-02-07 현대자동차주식회사 차량의 선회 제어 시스템 및 방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62241768A (ja) * 1986-04-10 1987-10-22 Nissan Motor Co Ltd 動力舵取装置
WO2015119149A1 (ja) * 2014-02-04 2015-08-13 カヤバ工業株式会社 電動パワーステアリング装置
WO2015170559A1 (ja) * 2014-05-08 2015-11-12 日本精工株式会社 電動パワーステアリング装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4872298B2 (ja) 2005-10-04 2012-02-08 日本精工株式会社 電動パワーステアリング装置の制御装置
JP5055741B2 (ja) * 2005-11-01 2012-10-24 日本精工株式会社 電動パワーステアリング装置の制御装置
CN105555643B (zh) * 2014-07-31 2018-01-02 日本精工株式会社 电动助力转向装置
DE112018001240B4 (de) * 2017-03-09 2022-12-15 Hitachi Astemo, Ltd. Servolenkungsvorrichtung
JP6817123B2 (ja) * 2017-03-22 2021-01-20 日立オートモティブシステムズ株式会社 パワーステアリング装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62241768A (ja) * 1986-04-10 1987-10-22 Nissan Motor Co Ltd 動力舵取装置
WO2015119149A1 (ja) * 2014-02-04 2015-08-13 カヤバ工業株式会社 電動パワーステアリング装置
WO2015170559A1 (ja) * 2014-05-08 2015-11-12 日本精工株式会社 電動パワーステアリング装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11352049B2 (en) * 2017-03-09 2022-06-07 Hitachi Astemo, Ltd. Power steering apparatus

Also Published As

Publication number Publication date
DE112018001240T5 (de) 2019-12-05
DE112018001240B4 (de) 2022-12-15
US20190344823A1 (en) 2019-11-14
KR20190116353A (ko) 2019-10-14
CN110382332B (zh) 2021-12-24
CN110382332A (zh) 2019-10-25
US11352049B2 (en) 2022-06-07
JPWO2018163724A1 (ja) 2019-12-26
JP6716782B2 (ja) 2020-07-01

Similar Documents

Publication Publication Date Title
WO2018163724A1 (ja) パワーステアリング装置
CN107848573B (zh) 动力转向装置的控制装置以及动力转向装置
JP4349309B2 (ja) 車両用操舵制御装置
EP3569475B1 (en) Steering control unit
JP5126357B2 (ja) 車両の操舵装置
JP5943018B2 (ja) 操舵制御装置
WO2014021369A1 (ja) 電動パワーステアリングシステムを制御する装置及びその方法
WO2018055805A1 (ja) パワーステアリング装置の制御装置
JPWO2009139180A1 (ja) 電動パワーステアリング装置
JP6817123B2 (ja) パワーステアリング装置
EP1533210A2 (en) Electric power steering system
JP5223718B2 (ja) 操舵負荷推定装置及び電動パワーステアリング装置
JP2020029194A (ja) 操舵制御装置
JP4094597B2 (ja) 操舵装置
CN111629955A (zh) 动力转向装置的控制装置
CN111746629A (zh) 转向控制装置
JP4628829B2 (ja) 操舵装置
JP6131208B2 (ja) 電動パワーステアリング装置
JP4729907B2 (ja) 車両用操舵装置およびその操舵トルク制御方法
JP5267059B2 (ja) 電動パワーステアリング装置
JP4223457B2 (ja) 車両の電動ステアリング装置
JP2020163988A (ja) 操舵制御装置
JP4375558B2 (ja) 伝達比可変操舵装置
KR101172098B1 (ko) 능동조향장치의 반력저감을 위한 전동식 파워스티어링시스템
US11414123B2 (en) Steering control device and power steering device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18763899

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019504410

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197025921

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18763899

Country of ref document: EP

Kind code of ref document: A1