WO2018163631A1 - 電源装置及び電源装置の制御方法 - Google Patents

電源装置及び電源装置の制御方法 Download PDF

Info

Publication number
WO2018163631A1
WO2018163631A1 PCT/JP2018/002042 JP2018002042W WO2018163631A1 WO 2018163631 A1 WO2018163631 A1 WO 2018163631A1 JP 2018002042 W JP2018002042 W JP 2018002042W WO 2018163631 A1 WO2018163631 A1 WO 2018163631A1
Authority
WO
WIPO (PCT)
Prior art keywords
period
voltage
switching element
input voltage
transformer
Prior art date
Application number
PCT/JP2018/002042
Other languages
English (en)
French (fr)
Inventor
魁元 張
隆章 佐野
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to DE112018001236.0T priority Critical patent/DE112018001236T5/de
Priority to JP2019504368A priority patent/JPWO2018163631A1/ja
Publication of WO2018163631A1 publication Critical patent/WO2018163631A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/40Means for preventing magnetic saturation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/01Resonant DC/DC converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present invention relates to a power supply device and a control method for the power supply device.
  • This application claims priority based on Japanese Patent Application No. 2017-045257 filed on Mar. 9, 2017, and incorporates all the description content described in the above Japanese application.
  • the DC / DC converter includes an active clamp type DC / DC converter.
  • an active clamp type DC / DC converter a series circuit of a primary winding of a transformer and a main switching element is connected to a DC power supply, and an active clamp circuit including a capacitor and an auxiliary switching element is connected to both ends of the primary winding. ing. Then, by alternately turning on and off the main switching element and the auxiliary switching element at a required duty ratio, the magnetizing energy and leakage energy of the transformer are circulated through the capacitor of the active clamp circuit, thereby improving the power conversion efficiency. be able to.
  • the power supply apparatus includes a transformer, a first switching element connected in series to a primary winding of the transformer, a first capacitor connected in parallel to the first switching element, and the primary winding.
  • a power supply device in which an input voltage is applied to a primary winding of the transformer, the voltage acquisition unit acquiring an input voltage during a period in which the first switching element is on, and the first switching Whether the transformer is magnetically saturated based on the input voltage acquired in the first period when the element is on and the input voltage acquired in the second period that is a predetermined period before the first period
  • the and a determining unit or the control unit controls the on / off the first switching element based on a determination result of the determination unit.
  • a control method for a power supply apparatus includes a transformer, a first switching element connected in series to a primary winding of the transformer, a first capacitor connected in parallel to the first switching element, A series circuit of a second switching element and a second capacitor connected in parallel to the primary winding, and on / off of the first switching element and the second switching element are controlled based on a required duty ratio.
  • a power supply device control method in which an input voltage is applied to a primary winding of the transformer, wherein the voltage acquisition unit acquires an input voltage during a period when the first switching element is on. , Based on the input voltage acquired in the first period when the first switching element is on and the input voltage acquired in the second period before the first period. Nsu it is determined the determination unit whether magnetic saturation, the control unit controls the on / off the first switching element based on a determination result of the determination unit.
  • an object of the present invention is to provide a power supply apparatus and a control method for the power supply apparatus that can prevent magnetic saturation of the transformer.
  • the power supply device includes a transformer, a first switching element connected in series to the primary winding of the transformer, a first capacitor connected in parallel to the first switching element, A series circuit of a second switching element and a second capacitor connected in parallel to the primary winding, and on / off of the first switching element and the second switching element are controlled based on a required duty ratio.
  • a power supply device that applies an input voltage to the primary winding of the transformer, the voltage acquisition unit acquiring an input voltage during a period when the first switching element is on, and the first The transformer is magnetically saturated based on the input voltage acquired in the first period when one switching element is on and the input voltage acquired in the second period that is a predetermined period before the first period. Or a whether a determination unit for, the control unit controls the on / off the first switching element based on a determination result of the determination unit.
  • the method of controlling the power supply device includes a transformer, a first switching element connected in series to the primary winding of the transformer, and a first connected in parallel to the first switching element.
  • a control unit for controlling the off-state wherein the input voltage is applied to the primary winding of the transformer, wherein the input voltage during the on-period of the first switching element is a voltage acquisition unit. Is acquired based on the input voltage acquired in the first period when the first switching element is on and the input voltage acquired in the second period before the first period.
  • the transformer determines the determination unit whether magnetic saturation, the control unit controls the on / off the first switching element based on a determination result of the determination unit.
  • the voltage acquisition unit acquires an input voltage during a period in which the first switching element is on.
  • the input voltage acquired by the voltage acquisition unit is a voltage corresponding to (or equivalent to) the actual input voltage applied to the power supply apparatus, and may be a voltage lower than the actual input voltage. it can.
  • the determination unit magnetically saturates the transformer based on the input voltage acquired in the first period when the first switching element is on and the input voltage acquired in the second period before the first period. It is determined whether or not.
  • the predetermined period can be set to the switching period of the first switching element and the second switching element, for example.
  • the second period can be (n ⁇ 1) periods.
  • the rapid fluctuation of the input voltage is determined based on the input voltage acquired in the first period and the second period. For example, when the rate of change (or amount of change) of the voltage acquired in the first period (for example, n period) is larger than the voltage acquired in the second period (for example, (n ⁇ 1) period) It can be determined that the transformer is magnetically saturated before the transformer reaches magnetic saturation.
  • the control unit controls on / off of the first switching element based on the determination result of the determination unit. For example, when the determination unit determines that magnetic saturation occurs, the control unit can control on / off of the first switching element before magnetic saturation occurs. Thereby, magnetic saturation of the transformer can be prevented beforehand.
  • the determination unit is configured such that the ratio of the input voltage acquired in the first period to the input voltage acquired in the second period is greater than or equal to a predetermined upper limit value or When the ratio is equal to or lower than a predetermined lower limit value, it is determined that the transformer is magnetically saturated.
  • the determination unit Determined as magnetic saturation.
  • the second period is (n-1) cycles, the input voltage acquired in the second period is V (n-1), the first period is n cycles, and the input is acquired in the first period
  • the voltage is V (n).
  • the determination unit can determine that the transformer is magnetically saturated when V (n) ⁇ X1 ⁇ V (n ⁇ 1).
  • the upper limit value X1 can be a threshold that can be determined to be magnetic saturation before the transformer reaches magnetic saturation. That is, the transformer does not reach magnetic saturation at the time when V (n) is acquired, but may be a threshold value that can determine that the transformer is magnetically saturated at a time later than that time.
  • the determination unit can determine that the transformer is magnetically saturated when V (n) ⁇ X2 ⁇ V (n ⁇ 1).
  • the lower limit value X2 can be a threshold that can be determined to be magnetic saturation before the transformer reaches magnetic saturation.
  • the control unit when the ratio is equal to or higher than the upper limit value, the control unit has an on period of the first switching element shorter than an on period based on the required duty ratio. The on / off of the first switching element is controlled so that
  • control unit controls on / off of the first switching element so that the on period of the first switching element is shorter than the on period based on the required duty ratio.
  • the ratio is equal to or higher than the upper limit value, that is, when V (n) ⁇ X1 ⁇ V (n ⁇ 1), the voltage applied to the transformer during the ON period of the first switching element (for example, the positive voltage) ) Towards excessive and the excitation current at the positive electrode increases, so that the magnetic energy at the positive electrode and the negative electrode becomes unbalanced (magnetic energy at the positive electrode> magnetic energy at the negative electrode), which may lead to magnetic saturation.
  • the ON / OFF of the first switching element is controlled so that the ON period of the first switching element is shorter than the ON period based on the required duty ratio.
  • the voltage applied to the transformer for example, the voltage of the positive electrode
  • the transformer it is possible to prevent the transformer from being magnetically saturated by bringing the magnetic energy at the positive electrode and the negative electrode close to a balanced state.
  • the control unit when the ratio is equal to or lower than the lower limit value, the control unit is configured such that the ON period of the first switching element is longer than the ON period based on the required duty ratio.
  • the on / off of the first switching element is controlled so that
  • control unit controls on / off of the first switching element so that the on period of the first switching element is longer than the on period based on a required duty ratio.
  • the ratio is equal to or lower than the lower limit value, that is, when V (n) ⁇ X2 ⁇ V (n ⁇ 1), the voltage applied to the transformer during the ON period of the first switching element (for example, the positive voltage) ) Towards excessive and insufficient, and the excitation current at the positive electrode decreases, so that the magnetic energy at the positive electrode and the negative electrode becomes an unbalanced state (magnetic energy of the positive electrode ⁇ magnetic energy of the negative electrode), which may lead to magnetic saturation.
  • the ON / OFF of the first switching element is controlled so that the ON period of the first switching element becomes longer than the ON period based on the required duty ratio.
  • the voltage applied to the transformer for example, the positive voltage
  • the transformer it is possible to prevent the transformer from being magnetically saturated by bringing the magnetic energy at the positive electrode and the negative electrode close to a balanced state.
  • the power supply device has a binary output unit that outputs one of two values depending on whether the ratio is equal to or higher than the upper limit value or whether the ratio is equal to or lower than the lower limit value. And an insulated transmission element that transmits the binary output from the binary output unit, and the determination unit determines whether or not the transformer is magnetically saturated according to the output of the insulated transmission element .
  • the binary output unit outputs one of the binary values depending on whether the ratio is equal to or higher than the upper limit value or whether the ratio is equal to or lower than the lower limit value.
  • the binary output unit can be configured by a circuit including a comparator, for example, and includes one comparator that inputs the ratio and the upper limit value, and another comparator that receives the ratio and the lower limit value, respectively. Can do.
  • the insulated transmission element transmits the binary output from the binary output unit.
  • the insulated transmission element can be constituted by a photocoupler, for example, and can electrically insulate the input side and the output side.
  • the determination unit determines whether or not the transformer is magnetically saturated according to the output of the insulated transmission element.
  • the fluctuation of the input voltage can be transmitted to the determination unit by a digital signal.
  • a digital signal when an input voltage change is transmitted as an analog signal, separate insulation is used to ensure electrical insulation between the primary side of the power supply (such as a circuit to which the input voltage is applied) and the determination unit. A transformer or the like is required, which is expensive.
  • the binary output unit and the insulation type transmission element the fluctuation of the input voltage can be transmitted to the determination unit by an electrically insulated digital signal, which can be realized at low cost.
  • the power supply device is connected between input terminals to which an input voltage is applied, a first voltage dividing circuit in which a plurality of resistors are connected in series, and is connected between the input terminals. And a second voltage dividing circuit connected in series, and the voltage acquisition unit acquires an input voltage in the first period from the first voltage dividing circuit, and from the second voltage dividing circuit, the voltage dividing unit An input voltage in the second period is acquired.
  • the first voltage dividing circuit is connected between input terminals to which an input voltage is applied, and a plurality of resistors are connected in series.
  • the second voltage dividing circuit is connected between input terminals, and a resistor and a capacitor are connected in series.
  • the voltage acquisition unit acquires the input voltage in the first period (for example, n cycles) from the first voltage dividing circuit. Specifically, when the voltage VIN (n) applied to the first voltage dividing circuit is V (n) and the voltage divided by the plurality of resistors of the first voltage dividing circuit is V (n), the voltage acquisition unit V (n) is acquired.
  • the voltage acquisition unit acquires the input voltage in the second period (for example, (n ⁇ 1) period) from the second voltage dividing circuit. Specifically, the voltage acquisition unit can acquire the voltage at the connection point between the resistor and the capacitor. By setting the time constant for charging or discharging the capacitor via the resistor to be equal to a predetermined period (that is, the time from the (n ⁇ 1) period to the n period), the voltage acquisition unit can The voltage V (n ⁇ 1) can be acquired from the second voltage dividing circuit at the timing of acquiring the voltage V (n) from the circuit.
  • the power supply device includes a first voltage dividing circuit connected between one end side of the secondary winding of the transformer and a predetermined ground level, and a plurality of resistors connected in series, and the one end And a second voltage dividing circuit in which a resistor and a capacitor are connected in series, and the voltage acquisition unit is connected to the first voltage dividing circuit from the first voltage dividing circuit in the first period. An input voltage is acquired, and an input voltage in the second period is acquired from the second voltage dividing circuit.
  • the first voltage dividing circuit is connected between one end of the secondary winding of the transformer and a predetermined ground level, and a plurality of resistors are connected in series.
  • the second voltage dividing circuit is connected between one end of the secondary winding of the transformer and a predetermined ground level, and a resistor and a capacitor are connected in series.
  • the voltage acquisition unit acquires the input voltage in the first period (for example, n cycles) from the first voltage dividing circuit.
  • the winding ratio of the primary and secondary windings of the transformer is 1: N
  • the voltage applied to the first voltage dividing circuit is N ⁇ VIN (n)
  • the first voltage dividing circuit When the voltage divided by the plurality of resistors is V (n), the voltage acquisition unit acquires the voltage V (n).
  • the voltage acquisition unit acquires the input voltage in the second period (for example, (n ⁇ 1) period) from the second voltage dividing circuit. Specifically, the voltage acquisition unit can acquire the voltage at the connection point between the resistor and the capacitor. By setting the time constant for charging or discharging the capacitor via the resistor to be equal to a predetermined period (that is, the time from the (n ⁇ 1) period to the n period), the voltage acquisition unit can The voltage V (n ⁇ 1) can be acquired from the second voltage dividing circuit at the timing of acquiring the voltage V (n) from the circuit.
  • FIG. 1 is an explanatory diagram illustrating an example of a circuit configuration of the power supply apparatus 100 according to the present embodiment.
  • the power supply apparatus 100 according to the present embodiment includes terminals A and B on the input side and terminals C and D on the output side.
  • a DC power supply (not shown) is connected to the terminals A and B on the input side, and the output side A load is connected to the terminals C and D.
  • the power supply device 100 is, for example, a step-down converter.
  • the power supply apparatus 100 includes a transformer 30, a MOSFET (Metal / Oxide / Semiconductor / Field / Effect / Transistor, hereinafter referred to as "FET") 11 as a first switching element, a capacitor 21 as a first capacitor, and a second switching element.
  • the FET 11 and FET 12 each have a body diode.
  • a voltage detector 70 is connected between the terminals A and B.
  • the terminal A is connected to one end of the primary winding 31 of the transformer 30.
  • the other end of the primary winding 31 is connected to the drain of the FET 11.
  • the source of the FET 11 is connected to the terminal B.
  • a capacitor 21 (resonance capacitor) is connected between the drain and source of the FET 11.
  • a series circuit of the FET 12 and the capacitor 22 is connected to both ends of the primary winding 31.
  • a series circuit of the FET 12 and the capacitor 22 constitutes an active clamp circuit.
  • one end of the capacitor 22 is connected to one end of the primary winding 31, and the drain of the FET 12 is connected to the other end of the capacitor 22.
  • the source of the FET 12 is connected to the other end of the primary winding 31.
  • the cathode of the diode 41 is connected to one end of the secondary winding 32 of the transformer 30, and the anode of the diode 41 is connected to the terminal D (ground level).
  • the other end of the secondary winding 32 is connected to the cathode of the diode 42 and one end of the inductor 61.
  • the anode of the diode 42 is connected to the anode of the diode 41.
  • the anodes of the diode 41 and the diode 42 are connected to each other.
  • the present invention is not limited to this, and the cathodes of the diode 41 and the diode 42 are connected to each other. It may be configured.
  • the other end of the inductor 61 is connected to the terminal C.
  • a capacitor 23 is connected between the terminals C and D.
  • the control unit 50 outputs a gate voltage to the gates of the FETs 11 and 12.
  • the control unit 50 includes a determination unit 51 and the like.
  • FIG. 2 is an explanatory diagram showing an example of the circuit configuration of the voltage detection unit 70 of the present embodiment.
  • the voltage detection unit 70 includes resistors 711, 712, and 721, a capacitor 722, multiplication circuits 73 and 74, comparators 75 and 76, a NAND circuit 77, a photo coupler 78, and the like.
  • the comparators 75 and 76 and the multiplication circuits 73 and 74 have a function as a voltage acquisition unit.
  • resistors 711 and 712 are connected in series between the terminals A and B.
  • a resistor 721 and a capacitor 722 are connected in series between the connection point of the resistors 711 and 712 and the terminal B.
  • the connection points of the resistors 711 and 712 are connected to the inverting input terminal of the comparator 75 and the non-inverting input terminal of the comparator 76, respectively.
  • a connection point between the resistor 721 and the capacitor 722 is connected to input terminals of the multiplication circuits 73 and 74, respectively.
  • the multiplication circuit 73 multiplies the input voltage by X1 and outputs it from the output terminal.
  • the output terminal of the multiplier circuit 73 is connected to the non-inverting input terminal of the comparator 75.
  • the multiplication circuit 74 multiplies the input voltage by X2 and outputs it from the output terminal.
  • the output terminal of the multiplier circuit 74 is connected to the inverting input terminal of the comparator 76.
  • the output terminals of the comparators 75 and 76 are connected to the input terminal of the NAND circuit 77.
  • the output terminal of the NAND circuit 77 is connected to the input side of the photocoupler 78, and the output side of the photocoupler 78 is connected to the control unit 50.
  • a series circuit of resistors 711 and 712 connected between the terminals A and B constitutes a first voltage dividing circuit 71. That is, the first voltage dividing circuit 71 outputs the voltage V obtained by dividing the input voltage VIN applied between the terminals A and B to the inverting input terminal of the comparator 75 and the non-inverting input terminal of the comparator 76.
  • a series circuit of resistors 711 and 721 and a capacitor 722 connected between the terminals A and B constitutes a second voltage dividing circuit 72. That is, the second voltage dividing circuit 72 outputs a voltage V obtained by dividing the input voltage VIN applied between the terminals A and B to the multiplying circuits 73 and 74.
  • the time constant for charging or discharging the capacitor 722 via the resistor 721 is set to about the switching period (predetermined period) of the power supply device 100, so that the first voltage dividing circuit 71
  • the voltage detected by the second voltage dividing circuit 72 can be delayed by a predetermined period (the switching period of the FETs 11 and 12 of the power supply device 100) with respect to the detected voltage V. That is, as shown in FIG. 2, the voltage V (n ⁇ 1) can be acquired from the second voltage dividing circuit 72 at the timing when the voltage V (n) is acquired from the first voltage dividing circuit 71.
  • the voltage V (n) is an n-cycle voltage
  • the voltage V (n-1) is an (n-1) -cycle voltage.
  • the multiplication circuit 73 outputs a voltage X1 ⁇ V (n ⁇ 1) obtained by multiplying the voltage V (n ⁇ 1) by X1.
  • the coefficient X1 is an upper limit value.
  • the multiplication circuit 74 outputs a voltage X2 ⁇ V (n ⁇ 1) obtained by multiplying the voltage V (n ⁇ 1) by X2.
  • the coefficient X2 is a lower limit value.
  • the comparator 75 functions as a voltage acquisition unit and a binary output unit. When the voltage V (n) ⁇ the voltage X1 ⁇ V (n ⁇ 1), the comparator 75 outputs 0 (low level) and the voltage V ( If n) ⁇ voltage X1 ⁇ V (n ⁇ 1), 1 (high level) is output. That is, the comparator 75 outputs 0 when the ratio of the voltage V (n) detected in the n period to the voltage V (n ⁇ 1) detected in the (n ⁇ 1) period is equal to or higher than the upper limit value X1. .
  • the comparator 76 functions as a voltage acquisition unit and a binary output unit. When the voltage V (n) ⁇ the voltage X2 ⁇ V (n ⁇ 1), the comparator 76 outputs 0 (low level) and the voltage V ( When n)> voltage X2 ⁇ V (n ⁇ 1), 1 (high level) is output. That is, the comparator 76 outputs 0 when the ratio of the voltage V (n) detected in the n period to the voltage V (n ⁇ 1) detected in the (n ⁇ 1) period is equal to or lower than the lower limit value X2. .
  • the NAND circuit 77 When either of the comparators 75 and 76 outputs 0, the NAND circuit 77 outputs 1 (high level) to drive the photocoupler 78, and the photocoupler 78 outputs 1 (high level) to the control unit 50. Output.
  • the control unit 50 determines that the ratio of the voltage V (n) detected in the n period to the voltage V (n ⁇ 1) detected in the (n ⁇ 1) period is equal to or higher than the upper limit value X1, or ( n-1)
  • the voltage detector 70 sets 1 (high level). Can be acquired.
  • the unit 50 determines whether the ratio of the voltage V (n) detected in the n period to the voltage V (n ⁇ 1) detected in the (n ⁇ 1) period is equal to or more than the upper limit value X1, or (n ⁇ 1) It is possible to distinguish and determine whether the ratio of the voltage V (n) detected in the n period to the voltage V (n ⁇ 1) detected in the period is equal to or lower than the lower limit value X2.
  • FIG. 3 is a time chart showing an example of the waveform of each part of the power supply apparatus 100 of the present embodiment.
  • the waveforms of the gate voltage of the FET 11, the gate voltage of the FET 12, the voltage of the transformer 30 (also referred to as transformer voltage), and the exciting current of the transformer 30 are schematically shown from the top. Since the waveform of each part is schematically illustrated for convenience, the actual waveform of each part may be different.
  • the period T is divided into four periods D1, D2, D3, and D4.
  • the period T is a predetermined period and is a switching period of the FETs 11 and 12.
  • the switching period is, for example, about 100 kHz, but is not limited to this.
  • the period D1 is an ON period of the FET 11, and the FET 11 is repeatedly turned on / off at a predetermined duty ratio (D1 / T).
  • the voltage V1 of the positive electrode of the transformer 30 is applied. Further, the excitation current increases linearly.
  • the period D3 is an ON period of the FET 12, and the FET 12 is repeatedly turned on / off at a predetermined duty ratio (D3 / T).
  • the voltage V2 of the negative electrode of the transformer 30 is applied.
  • the excitation current decreases linearly. In the state where the magnetic energy of the transformer 30 is balanced, the equation V1 ⁇ D1 ⁇ V2 ⁇ D3 holds.
  • the periods D2 and D4 are periods in which both the FET 11 and the FET 12 are turned off. Next, the operation state of the power supply apparatus 100 in each period D1 to D4 will be described in order.
  • FIG. 4 is an explanatory diagram illustrating an example of an operation state in the period D1 of the power supply device 100 according to the present embodiment.
  • the FET 11 is turned on and the FET 12 is turned off under the control of the control unit 50.
  • the power supply voltage on the input side is applied to the primary winding of the transformer 30, and the voltage of the primary winding becomes positive.
  • the voltage of the secondary winding also becomes positive, the diode 41 becomes conductive, and a load current flows through the load.
  • the total of the load current and the excitation current flows through the primary winding 31 of the transformer 30. As shown in FIG. 3, the excitation current increases linearly.
  • FIG. 3 the excitation current increases linearly.
  • Lm represents the exciting inductance of the transformer 30, and Ls represents the leakage inductance.
  • Ls represents the leakage inductance.
  • the magnetic flux generated by the load currents flowing on the primary side and the secondary side of the transformer 30 cancel each other, whereas the excitation current creates a magnetic flux, which is one of the factors that determine whether the transformer 30 is magnetically saturated. Is the excitation current.
  • FIG. 5 is an explanatory diagram illustrating an example of an operation state in the period D2 of the power supply device 100 according to the present embodiment.
  • the FET 11 is turned off.
  • the FET 12 remains off.
  • the capacitor Cs (21) is charged and the exciting current is maintained.
  • the capacitor 21 is also referred to as a capacitor Cs.
  • the diode 41 becomes reverse biased and becomes non-conductive. The load current flowing in the diode 41 flows through the diode 42.
  • FIG. 6 is an explanatory diagram illustrating an example of an operation state in the period D3 of the power supply device 100 according to the present embodiment.
  • the FET 12 is turned on.
  • the FET 11 remains off.
  • the voltage of the capacitor 22 is applied to the transformer 30 in the reverse direction (negative voltage direction)
  • the exciting current of the transformer 30 decreases, and the excitation of the transformer 30 is reset. Transition to the state.
  • the excitation current of the transformer 30 reverses (becomes negative, the current direction is reversed), the energy stored in the capacitor 22 is released, and the energy is stored in the leakage inductance Ls of the transformer 30.
  • FIG. 7 is an explanatory diagram illustrating an example of an operation state in the period D4 of the power supply apparatus 100 according to the present embodiment.
  • the FET 12 is turned off, and the FET 11 remains off.
  • resonance occurs due to the transformer 30 (more specifically, the leakage inductance Ls) and the capacitor Cs.
  • the diode 42 includes a load current Il flowing through the load (shown by a solid line in the figure), an excitation current Im (shown by a broken line in the figure), a transformer 30 (a leakage inductance Ls of the transformer 30), and a resonance of the capacitor Cs.
  • Resonance current Ir (indicated by a one-dot chain line in the figure) flows.
  • the load current Il flows through the diode 42, the inductor 61, and the closed loop of the load.
  • the load current Il becomes a constant value by relatively increasing the inductance of the inductor 61.
  • the exciting current Im flows through the closed loop of the transformer 30 and the diodes 42 and 41. In the period D4, since the voltage applied to the excitation inductance Lm is substantially zero, the excitation current Im is maintained.
  • FIG. 8 is a schematic diagram showing the relationship between the input voltage and the output voltage of the power supply apparatus 100 of the present embodiment.
  • the switching cycle is T
  • the period during which the FET 11 is on is D (corresponding to the period D1 in FIG. 3).
  • the horizontal axis indicates time.
  • the power supply apparatus 100 outputs magnetic energy to the transformer 30 during the period D in which the FET 11 is on in the switching period (predetermined period) T, and is output by the power applied to the transformer 30 during the period D. Electric power is supplied to the load. Although not shown in FIG. 8, during the period in which the FET 12 is on (corresponding to the period D3 in FIG. 3), magnetic energy is released and a magnetic reset is performed.
  • FIG. 9 is a time chart showing an example of a method for determining the duty ratio of the FET 11 of the power supply device 100 of the present embodiment.
  • the upper diagram shows the input voltage VIN, and the lower diagram shows the duty ratio of the FET 11.
  • the horizontal axis indicates time.
  • VOUT is a predetermined output voltage and is a constant value.
  • the FET 11 is turned on only for a period corresponding to Dt (n), and the input voltage in the n period is VIN (n).
  • the control unit 50 determines the duty ratio of the FET 11 in a certain cycle based on the input voltage in the previous cycle. Therefore, even if the input voltage VIN varies within the allowable range, a required output voltage can be output by adjusting the duty ratio of the FET 11.
  • Each of the duty ratios Dt (n ⁇ 1), Dt (n), and Dt (n + 1) is an input voltage based on a predetermined duty ratio that is predetermined for outputting a predetermined output voltage (output power). This is a finely adjusted duty ratio due to fluctuations in, and can be called a required duty ratio.
  • the case where the input voltage fluctuates rapidly is, for example, a case where a delay occurs in tracking the duty ratio.
  • FIG. 10 is a time chart showing an example of duty ratio tracking when the input voltage increases rapidly.
  • the upper diagram shows the input voltage VIN
  • the lower diagram shows the duty ratio of the FET 11.
  • the horizontal axis indicates time.
  • FIG. 11 is a time chart showing an example of the duty ratio tracking when the input voltage rapidly decreases.
  • the upper diagram shows the input voltage VIN
  • the lower diagram shows the duty ratio of the FET 11.
  • the horizontal axis indicates time.
  • the determination unit 51 determines whether the transformer 30 is magnetically saturated based on the input voltage acquired in the first period when the FET 11 is on and the input voltage acquired in the second period before the first period. Determine whether.
  • the predetermined period can be, for example, the switching period of the FETs 11 and 12.
  • the second period can be (n ⁇ 1) periods.
  • the input voltage acquired by the comparators 75 and 76 is a voltage corresponding to (corresponding to) the actual input voltage applied to the power supply apparatus 100, and can be a voltage lower than the actual input voltage.
  • the duty ratio may be delayed as shown in FIGS.
  • the magnetic energy of the positive electrode and the negative electrode of the transformer 30 is unbalanced, an excessive excitation current flows, and the transformer 30 may become magnetically saturated.
  • the rapid fluctuation of the input voltage is determined based on the input voltage acquired in the first period and the second period. For example, when the rate of change (or amount of change) of the voltage acquired in the first period (for example, n period) is larger than the voltage acquired in the second period (for example, (n ⁇ 1) period) It can be determined that the transformer 30 is magnetically saturated before the transformer 30 reaches magnetic saturation.
  • the control unit 50 controls on / off of the FET 11 based on the determination result of the determination unit 51. For example, when the determination unit 51 determines that magnetic saturation occurs, the control unit 50 can control on / off of the FET 11 before magnetic saturation occurs. Thereby, magnetic saturation of the transformer 30 can be prevented in advance.
  • the determination unit 51 determines that the ratio of the input voltage acquired in the first period to the input voltage acquired in the second period is greater than or equal to a predetermined upper limit value, or the ratio is a predetermined lower limit value. When it is below, it is determined that the transformer is magnetically saturated.
  • the second period is (n-1) cycles, the input voltage acquired in the second period is V (n-1), the first period is n cycles, and the input is acquired in the first period
  • the voltage is V (n).
  • the determination unit 51 obtains 1 (high level) from the voltage detection unit 70 (via the comparator 75) when V (n) ⁇ X1 ⁇ V (n ⁇ 1). It can be determined that the transformer 30 is magnetically saturated.
  • the upper limit value X1 can be a threshold value that can determine that the transformer 30 reaches magnetic saturation before reaching magnetic saturation. That is, the transformer 30 does not reach magnetic saturation at the time when V (n) is acquired, but may be a threshold value that can determine that the transformer 30 is magnetically saturated at a later time.
  • the upper limit value can be, for example, about 1.5, but is not limited thereto.
  • the determination unit 51 obtains 1 (high level) from the voltage detection unit 70 (via the comparator 76) when V (n) ⁇ X2 ⁇ V (n ⁇ 1). In this case, it can be determined that the transformer 30 is magnetically saturated.
  • the lower limit value X2 can be a threshold that can be determined to be magnetic saturation before the transformer 30 reaches magnetic saturation.
  • the lower limit value can be, for example, about 0.5, but is not limited thereto.
  • FIG. 12 is a time chart showing an example of a control method when the input voltage by the power supply apparatus 100 according to the present embodiment increases rapidly.
  • the upper diagram shows the input voltage VIN
  • the lower diagram shows the duty ratio of the FET 11.
  • the horizontal axis indicates time.
  • the period is represented by T (1), T (2), T (3), and T (4).
  • the control unit 50 determines the duty ratio Dt (2) in the cycle T (2) based on the input voltage VIN (1) in the cycle T (1).
  • the FET 11 is turned on only for a period corresponding to Dt (2), and the input voltage in the cycle T (2) is VIN (2).
  • the control unit 50 sets the duty ratio Dt (3) in the period T (3) to This is determined based on the input voltage VIN (2) at the cycle T (2).
  • the FET 11 is turned on only for a period corresponding to Dt (3), and the input voltage in the cycle T (3) is VIN (3).
  • the control unit 50 sets the duty ratio Dt (4) in the period T (4). , Smaller than a predetermined duty ratio (for example, smaller by ⁇ D).
  • the FET 11 is turned on only for a period corresponding to Dt (4), but since the duty ratio is reduced, the input voltage VIN (4) further increases in the period T (4). Even if the duty ratio is reduced, the magnetic energy input to the transformer 30 can be reduced, and the unbalanced state of the magnetic energy can be suppressed to prevent the transformer 30 from being magnetically saturated. .
  • the control unit 50 determines that the ON period of the FET 11 is required. On / off of the FET 11 is controlled so as to be shorter than the ON period based on the duty ratio.
  • the ratio is equal to or higher than the upper limit value, that is, when V (n) ⁇ X1 ⁇ V (n ⁇ 1), the voltage applied to the transformer 30 during the ON period of the FET 11 (for example, the positive voltage) is excessive.
  • the excitation current at the positive electrode increases, the magnetic energy at the positive electrode and the negative electrode becomes unbalanced (magnetic energy at the positive electrode> magnetic energy at the negative electrode), which may cause magnetic saturation.
  • the on / off of the FET 11 is controlled so that the on period of the FET 11 is shorter than the on period based on the required duty ratio.
  • the voltage applied to the transformer 30 for example, the voltage of the positive electrode
  • the transformer 30 from being magnetically saturated by bringing the magnetic energy at the negative electrode close to a balanced state.
  • FIG. 13 is a time chart showing an example of a control method when the input voltage by the power supply apparatus 100 according to the present embodiment rapidly decreases.
  • the upper diagram shows the input voltage VIN
  • the lower diagram shows the duty ratio of the FET 11.
  • the horizontal axis indicates time.
  • the period is represented by T (11), T (12), T (13), and T (14).
  • the control unit 50 determines the duty ratio Dt (12) in the cycle T (12) based on the input voltage VIN (11) in the cycle T (11).
  • the FET 11 is turned on only for a period corresponding to Dt (12), and the input voltage in the cycle T (12) is VIN (12).
  • the control unit 50 sets the duty ratio Dt (13) in the period T (13) to This is determined based on the input voltage VIN (12) in the cycle T (12).
  • the FET 11 is turned on only for a period corresponding to Dt (13), and the input voltage in the cycle T (13) is VIN (13).
  • the control unit 50 sets the duty ratio Dt (14) in the cycle T (14). , Larger than a predetermined duty ratio (for example, larger by ⁇ D).
  • the FET 11 is turned on only for a period corresponding to Dt (14), but since the duty ratio is increased, the input voltage VIN (14) further decreases in the period T (14). Even if the duty ratio is increased, the magnetic energy input to the transformer 30 can be increased and the unbalanced state of the magnetic energy can be suppressed to prevent the transformer 30 from being magnetically saturated. .
  • the control unit 50 when the ratio of the input voltage acquired in the n period to the input voltage acquired in the (n ⁇ 1) period is equal to or lower than the lower limit value X2, the control unit 50 requires the ON period of the FET 11 to be required.
  • the on / off of the FET 11 is controlled so as to be longer than the on period based on the duty ratio.
  • the voltage (for example, the positive voltage) applied to the transformer 30 during the ON period of the FET 11 is Since the excitation current at the positive electrode decreases due to excess or deficiency, the magnetic energy at the positive electrode and the negative electrode becomes an unbalanced state (magnetic energy of the positive electrode ⁇ magnetic energy of the negative electrode), which may cause magnetic saturation.
  • the ON / OFF of the switching element of the FET 11 is controlled so that the ON period of the FET 11 is longer than the ON period based on the required duty ratio.
  • the voltage applied to the transformer 30 for example, the voltage of the positive electrode
  • the transformer 30 it is possible to prevent the transformer 30 from being magnetically saturated by bringing the magnetic energy at the negative electrode close to a balanced state.
  • the timing at which the FET 11 is turned off is adjusted.
  • the timing is not limited to this, and the timing at which the FET 11 is turned on may be adjusted.
  • the comparator 75 outputs one of the two values depending on whether the ratio of the input voltage acquired in the n period to the input voltage acquired in the (n ⁇ 1) period is equal to or higher than the upper limit value X1. Further, the comparator 76 outputs one of the two values depending on whether the ratio of the input voltage acquired in the n period to the input voltage acquired in the (n ⁇ 1) period is equal to or lower than the lower limit value X2. .
  • the photocoupler 78 transmits the binary values output from the comparators 75 and 76.
  • the input side and the output side can be electrically insulated by the photocoupler 78.
  • the fluctuation of the input voltage can be transmitted to the control unit 50 (determination unit 51) by a digital signal.
  • a digital signal In general, when the fluctuation of the input voltage is transmitted as an analog signal, separate insulation is used to ensure electrical insulation between the primary side of the power supply (such as the circuit to which the input voltage is applied) and the control circuit. A transformer or the like is required, which is expensive.
  • the photocoupler 78, the comparators 75 and 76, etc. fluctuations in the input voltage can be transmitted to the control unit 50 (determination unit 51) by an electrically isolated digital signal, which can be realized at low cost. it can.
  • the first voltage dividing circuit 71 is connected between terminals A and B on the input side to which an input voltage is applied, and a plurality of resistors 711 and 712 are connected in series.
  • the second voltage dividing circuit 72 is connected between terminals A and B, and resistors 711 and 721 and a capacitor 722 are connected in series.
  • the comparator 75 (voltage acquisition unit) acquires the input voltage in the first period (for example, n cycles) from the first voltage dividing circuit 71. Specifically, when the voltage VIN (n) applied to the first voltage dividing circuit 71 and the voltage divided by the plurality of resistors 711 and 712 of the first voltage dividing circuit 71 are V (n), the comparator 75 acquires the voltage V (n). The same applies to the comparator 76.
  • the multiplication circuit 73 (voltage acquisition unit) acquires the input voltage from the second voltage dividing circuit 72 in the second period (for example, (n ⁇ 1) period). Specifically, the multiplier circuit 73 can acquire the voltage at the connection point between the resistor 721 and the capacitor 722. By setting the time constant for charging or discharging the capacitor 722 via the resistor 721 to be equal to a predetermined period (that is, the time from the (n ⁇ 1) period to the n period), the multiplier circuit 73 The voltage V (n ⁇ 1) can be acquired from the second voltage dividing circuit 72 at the timing when the voltage V (n) is acquired from the first voltage dividing circuit 71. The same applies to the multiplication circuit 74.
  • the voltage detection unit 70 is connected between the terminals A and B on the input side, but is not limited to this configuration.
  • the voltage detection unit can be provided on the secondary side of the transformer 30.
  • FIG. 14 is an explanatory diagram showing another example of the circuit configuration of the power supply apparatus 100 of the present embodiment.
  • the voltage detector 170 is connected between one end of the secondary winding 32 of the transformer 30 and a predetermined ground level. More specifically, the voltage detector 170 is connected between the connection point between one end of the secondary winding of the transformer 30 and the cathode of the diode 42 and the ground level on the secondary side of the transformer 30.
  • N When the turns ratio of the primary winding and the secondary winding of the transformer 30 is 1: N, the voltage VIN is applied to the voltage detection unit 70, but the voltage (N ⁇ VIN) is applied to the voltage detection unit 170. Is applied.
  • the voltage divided by the plurality of resistors of the first voltage dividing circuit 71 is represented as V (n).
  • FIG. 15 is an explanatory diagram illustrating an example of a circuit configuration of the voltage detection unit 170 of the present embodiment.
  • the difference from the voltage detection unit 70 shown in FIG. 2 is that the voltage detection unit 170 does not include the photocoupler 78. This is because the voltage detection unit 170 is provided on the secondary side of the transformer 30, so that it is not necessary to insulate the primary side and the secondary side of the transformer 30. Thereby, parts cost can further be reduced.
  • the function and operation of the voltage detection unit 170 are the same as those of the voltage detection unit 70 shown in FIG.
  • the NAND circuit 77 outputs 1 (high level) to the control unit 50 when either of the comparators 75 and 76 outputs 0.
  • FIG. 16 is a flowchart illustrating an example of a processing procedure of the control method of the power supply apparatus 100 according to the present embodiment.
  • the control unit 50 turns on / off the FET 11 and FET 12 at a predetermined cycle T (S11).
  • the control unit 50 determines whether or not the FET 11 is in the on period (S12). If the FET 11 is not in the on period (NO in S12), the process of step S12 is continued.
  • the control unit 50 acquires the input voltage in the n cycle (for example, the current cycle) and the (n-1) cycle (the previous cycle) (S13). ).
  • the acquired input voltage is a voltage divided by the first voltage dividing circuit 71 and the second voltage dividing circuit 72 (voltage corresponding to the input voltage).
  • the control unit 50 determines whether or not the ratio of the input voltage acquired in the n period to the input voltage acquired in the (n ⁇ 1) period is equal to or higher than the upper limit value X1 (S14). When the ratio is equal to or greater than the upper limit value X1 (YES in S14), the control unit 50 makes the duty ratio of the FET 11 in the (n + 1) cycle smaller than the required duty ratio (S15), and performs the process of step S19 described later. Do.
  • the control unit 50 determines whether the ratio of the input voltage acquired in the n period to the input voltage acquired in the (n-1) period is equal to or less than the lower limit value X2. It is determined whether or not (S16). When the ratio is equal to or lower than the lower limit value X2 (YES in S16), the control unit 50 makes the duty ratio of the FET 11 in the (n + 1) period larger than the required duty ratio (S17), and performs the process of step S19 described later. Do.
  • the control unit 50 sets the duty ratio of the FET 11 in the (n + 1) period to a predetermined value (a value finely adjusted based on the required duty ratio) (S18). .
  • the control unit 50 determines whether or not to end the process (S19). If the process is not ended (NO in S19), the process after step S11 is repeated. When the process ends (YES in S19), the control unit 50 stops the switching of the FET 11 and FET 12, and ends the process.
  • control unit 50 is configured by, for example, a CPU (processor), a RAM (memory), and the like, and a computer program that defines the procedure of each process as shown in FIG. Is loaded into a RAM (memory), and a computer program is executed by a CPU (processor), whereby a control method of the power supply device 50 can be realized on the computer.
  • a CPU processor
  • RAM memory
  • CPU processor
  • the voltage acquired at each cycle may be an instantaneous value or an average value.
  • the timing for acquiring the voltage may be the central point in the ON period of the FET 11. Moreover, you may make it acquire the average value of the voltage acquired immediately after ON and immediately before OFF respectively.
  • the switching element is not limited to a MOSFET, but may be a device such as an IGBT (Insulated Gate Bipolar Transistor).
  • IGBT Insulated Gate Bipolar Transistor
  • the switching element is a MOSFET as in the present embodiment, there is an equivalently incorporated body diode between the drain and source.
  • a bipolar transistor is used as the switching element, a diode may be connected in antiparallel between the collector and emitter of the transistor.
  • the configuration of the DC / DC converter as illustrated in FIG. 1 is described as an example of the power supply device.
  • the configuration of the DC / DC converter is limited to the configuration illustrated in FIG. Instead, any configuration may be used as long as the switching element is connected in series to the primary winding of the transformer and the transformer is magnetically reset.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

電源装置は、第1のスイッチング素子がオンの期間での入力電圧を取得する電圧取得部と、第1のスイッチング素子がオンの第1の期間で取得した入力電圧及び第1の期間よりも所定周期前の第2の期間で取得した入力電圧に基づいて、トランスが磁気飽和するか否かを判定する判定部とを備え、制御部は、判定部の判定結果に基づいて第1のスイッチング素子のオン/オフを制御する。

Description

電源装置及び電源装置の制御方法
 本発明は、電源装置及び電源装置の制御方法に関する。
 本出願は、2017年3月9日出願の日本出願第2017-045257号に基づく優先権を主張し、前記日本出願に記載された全ての記載内容を援用するものである。
 直流電圧を変換するDC/DCコンバータが産業用機器及び車載装置に用いられている。DC/DCコンバータには、アクティブクランプ型のDC/DCコンバータがある。アクティブクランプ型のDC/DCコンバータは、トランスの一次巻線と主スイッチング素子との直列回路が直流電源に接続され、一次巻線の両端にキャパシタと補助スイッチング素子とからなるアクティブクランプ回路が接続されている。そして、主スイッチング素子と補助スイッチング素子とを所要のデューティ比で交互にオン/オフすることによって、トランスの磁化エネルギー及び漏れエネルギーをアクティブクランプ回路のキャパシタを介して循環させ、電源変換効率を向上させることができる。
 入力電圧の変動等によりデューティ比の追従に遅延が生ずると、トランスに過大な励磁電流が流れ、トランスが磁気飽和になり、励磁電流が急激に増加するおそれがある。そこで、トランスの一次側電流の瞬時値を検出し、検出した瞬時値と過去の瞬時値の平均値との差分を求め、その差分が所定値以上である場合、トランスの励磁動作を停止させて磁気リセットを行うDC/DCコンバータが開示されている(特許文献1参照)。
特開2008-199878号公報
 本開示の電源装置は、トランスと、該トランスの一次巻線に直列に接続された第1のスイッチング素子と、該第1のスイッチング素子に並列に接続された第1のキャパシタと、前記一次巻線に並列に接続された第2のスイッチング素子及び第2のキャパシタの直列回路と、所要のデューティ比に基づいて前記第1のスイッチング素子及び第2のスイッチング素子のオン/オフを制御する制御部とを備え、前記トランスの一次巻線に入力電圧が印加される電源装置であって、前記第1のスイッチング素子がオンの期間での入力電圧を取得する電圧取得部と、前記第1のスイッチング素子がオンの第1の期間で取得した入力電圧及び前記第1の期間よりも所定周期前の第2の期間で取得した入力電圧に基づいて、前記トランスが磁気飽和するか否かを判定する判定部とを備え、前記制御部は、前記判定部の判定結果に基づいて前記第1のスイッチング素子のオン/オフを制御する。
 本開示の電源装置の制御方法は、トランスと、該トランスの一次巻線に直列に接続された第1のスイッチング素子と、該第1のスイッチング素子に並列に接続された第1のキャパシタと、前記一次巻線に並列に接続された第2のスイッチング素子及び第2のキャパシタの直列回路と、所要のデューティ比に基づいて前記第1のスイッチング素子及び第2のスイッチング素子のオン/オフを制御する制御部とを備え、前記トランスの一次巻線に入力電圧が印加される電源装置の制御方法であって、前記第1のスイッチング素子がオンの期間での入力電圧を電圧取得部が取得し、前記第1のスイッチング素子がオンの第1の期間で取得された入力電圧及び前記第1の期間よりも所定周期前の第2の期間で取得された入力電圧に基づいて、前記トランスが磁気飽和するか否かを判定部が判定し、前記制御部は、前記判定部の判定結果に基づいて前記第1のスイッチング素子のオン/オフを制御する。
本実施の形態の電源装置の回路構成の一例を示す説明図である。 本実施の形態の電圧検出部の回路構成の一例を示す説明図である。 本実施の形態の電源装置の各部の波形の一例を示すタイムチャートである。 本実施の形態の電源装置の期間D1での動作状態の一例を示す説明図である。 本実施の形態の電源装置の期間D2での動作状態の一例を示す説明図である。 本実施の形態の電源装置の期間D3での動作状態の一例を示す説明図である。 本実施の形態の電源装置の期間D4での動作状態の一例を示す説明図である。 本実施の形態の電源装置の入力電圧と出力電圧との関係を示す模式図である。 本実施の形態の電源装置のFETのデューティ比を決定する方法の一例を示すタイムチャートである。 入力電圧が急激に増加する場合のデューティ比の追従の一例を示すタイムチャートである。 入力電圧が急激に減少する場合のデューティ比の追従の一例を示すタイムチャートである。 本実施の形態の電源装置による入力電圧が急激に増加する場合の制御方法の一例を示すタイムチャートである。 本実施の形態の電源装置による入力電圧が急激に減少する場合の制御方法の一例を示すタイムチャートである。 本実施の形態の電源装置の回路構成の他の例を示す説明図である。 本実施の形態の電圧検出部の回路構成の一例を示す説明図である。 本実施の形態の電源装置の制御方法の処理手順の一例を示すフローチャートである。
[本開示が解決しようとする課題]
 しかし、特許文献1のような従来のDC/DCコンバータでは、電流の瞬時値と平均値とを比較しているため、瞬時値に至る前の電流値がトランスの磁気飽和となる電流であっても、電流のピーク値に至るまでトランスの励磁動作は停止されない。このため、結果としてトランスが磁気飽和状態になった後で磁気リセットが行われることになり、トランスの磁気飽和を未然に防止することができない。
 そこで、トランスの磁気飽和を未然に防止することができる電源装置及び電源装置の制御方法を提供することを目的とする。
[本開示の効果]
 本開示によれば、トランスの磁気飽和を未然に防止することができる。
[本願発明の実施形態の説明]
 本実施の形態に係る電源装置は、トランスと、該トランスの一次巻線に直列に接続された第1のスイッチング素子と、該第1のスイッチング素子に並列に接続された第1のキャパシタと、前記一次巻線に並列に接続された第2のスイッチング素子及び第2のキャパシタの直列回路と、所要のデューティ比に基づいて前記第1のスイッチング素子及び第2のスイッチング素子のオン/オフを制御する制御部とを備え、前記トランスの一次巻線に入力電圧が印加される電源装置であって、前記第1のスイッチング素子がオンの期間での入力電圧を取得する電圧取得部と、前記第1のスイッチング素子がオンの第1の期間で取得した入力電圧及び前記第1の期間よりも所定周期前の第2の期間で取得した入力電圧に基づいて、前記トランスが磁気飽和するか否かを判定する判定部とを備え、前記制御部は、前記判定部の判定結果に基づいて前記第1のスイッチング素子のオン/オフを制御する。
 本実施の形態に係る電源装置の制御方法は、トランスと、該トランスの一次巻線に直列に接続された第1のスイッチング素子と、該第1のスイッチング素子に並列に接続された第1のキャパシタと、前記一次巻線に並列に接続された第2のスイッチング素子及び第2のキャパシタの直列回路と、所要のデューティ比に基づいて前記第1のスイッチング素子及び第2のスイッチング素子のオン/オフを制御する制御部とを備え、前記トランスの一次巻線に入力電圧が印加される電源装置の制御方法であって、前記第1のスイッチング素子がオンの期間での入力電圧を電圧取得部が取得し、前記第1のスイッチング素子がオンの第1の期間で取得された入力電圧及び前記第1の期間よりも所定周期前の第2の期間で取得された入力電圧に基づいて、前記トランスが磁気飽和するか否かを判定部が判定し、前記制御部は、前記判定部の判定結果に基づいて前記第1のスイッチング素子のオン/オフを制御する。
 電圧取得部は、第1のスイッチング素子がオンの期間での入力電圧を取得する。なお、具体的には、電圧取得部で取得する入力電圧は、電源装置に印加される実際の入力電圧に対応する(相当する)電圧であり、実際の入力電圧よりも低い電圧とすることができる。
 判定部は、第1のスイッチング素子がオンの第1の期間で取得した入力電圧及び第1の期間よりも所定周期前の第2の期間で取得した入力電圧に基づいて、トランスが磁気飽和するか否かを判定する。所定周期は、例えば、第1のスイッチング素子及び第2のスイッチング素子のスイッチング周期とすることができる。第1の期間をn周期とすると、第2の期間を(n-1)周期とすることができる。
 電源装置に印加される入力電圧が急激に変動(例えば、急激に増加または急激に減少)すると、デューティ比の追従に遅延が生ずる場合がある。デューティ比の追従が遅延する過渡期間では、トランスの正極及び負極の磁気エネルギーにアンバランスが生じ、過大な励磁電流が流れ、トランスが磁気飽和になるおそれがある。そこで、入力電圧の急激な変動を、第1の期間及び第2の期間で取得した入力電圧に基づいて判定する。例えば、第2の期間(例えば、(n-1)周期)で取得した電圧に対して、第1の期間(例えば、n周期)で取得した電圧の変化率(あるいは変化量)が大きいときは、トランスが磁気飽和に至る前に、トランスが磁気飽和すると判定することができる。
 制御部は、判定部の判定結果に基づいて第1のスイッチング素子のオン/オフを制御する。例えば、判定部で磁気飽和となると判定した場合、制御部は、磁気飽和となる前に第1のスイッチング素子のオン/オフを制御することができる。これにより、トランスの磁気飽和を未然に防止することができる。
 本実施の形態に係る電源装置において、前記判定部は、前記第2の期間で取得された入力電圧に対する前記第1の期間で取得された入力電圧の比率が所定の上限値以上である場合又は前記比率が所定の下限値以下である場合、前記トランスが磁気飽和すると判定する。
 判定部は、第2の期間で取得された入力電圧に対する第1の期間で取得された入力電圧の比率が所定の上限値以上である場合又は比率が所定の下限値以下である場合、トランスが磁気飽和すると判定する。
 第2の期間を(n-1)周期とし、第2の期間で取得された入力電圧をV(n-1)とし、第1の期間をn周期とし、第1の期間で取得された入力電圧をV(n)とする。上限値をX1とすると、判定部は、V(n)≧X1・V(n-1)となる場合、トランスが磁気飽和すると判定することができる。なお、上限値X1は、トランスが磁気飽和に至る前に磁気飽和になると判定することができる閾値とすることができる。すなわち、V(n)を取得した時点ではトランスは磁気飽和に至っていないが、当該時点よりも後の時点でトランスが磁気飽和すると判定することができる閾値とすればよい。
 また、下限値をX2とすると、判定部は、V(n)≦X2・V(n-1)となる場合、トランスが磁気飽和すると判定することができる。なお、下限値X2は、トランスが磁気飽和に至る前に磁気飽和になると判定することができる閾値とすることができる。
 上述の構成により、入力電圧が急激に変動(例えば、急激に増加または急激に減少)した場合でも、トランスが磁気飽和に至る前に、トランスが磁気飽和すると判定することができる。
 本実施の形態に係る電源装置において、前記制御部は、前記比率が前記上限値以上である場合、前記第1のスイッチング素子のオンの期間が前記所要のデューティ比に基づくオンの期間よりも短くなるように前記第1のスイッチング素子のオン/オフを制御する。
 制御部は、比率が上限値以上である場合、第1のスイッチング素子のオンの期間が所要のデューティ比に基づくオンの期間よりも短くなるように第1のスイッチング素子のオン/オフを制御する。
 比率が上限値以上である場合、すなわち、V(n)≧X1・V(n-1)となる場合、第1のスイッチング素子のオンの期間においてトランスに印加される電圧(例えば、正極の電圧)が過剰となり、正極での励磁電流が増加するので、正極及び負極での磁気エネルギーがアンバランス状態(正極の磁気エネルギー>負極の磁気エネルギー)となり、磁気飽和となる可能性がある。
 そこで、第1のスイッチング素子のオンの期間が所要のデューティ比に基づくオンの期間よりも短くなるように第1のスイッチング素子のオン/オフを制御する。これにより、第1のスイッチング素子のオンの期間においてトランスに印加される電圧(例えば、正極の電圧)が過剰となることを防止して、正極での励磁電流の増加を抑制することができるので、正極及び負極での磁気エネルギーをバランス状態に近づけてトランスが磁気飽和することを防止することができる。
 本実施の形態に係る電源装置において、前記制御部は、前記比率が前記下限値以下である場合、前記第1のスイッチング素子のオンの期間が前記所要のデューティ比に基づくオンの期間よりも長くなるように前記第1のスイッチング素子のオン/オフを制御する。
 制御部は、比率が下限値以下である場合、第1のスイッチング素子のオンの期間が所要のデューティ比に基づくオンの期間よりも長くなるように第1のスイッチング素子のオン/オフを制御する。
 比率が下限値以下である場合、すなわち、V(n)≦X2・V(n-1)となる場合、第1のスイッチング素子のオンの期間においてトランスに印加される電圧(例えば、正極の電圧)が過不足となり、正極での励磁電流が減少するので、正極及び負極での磁気エネルギーがアンバランス状態(正極の磁気エネルギー<負極の磁気エネルギー)となり、磁気飽和となる可能性がある。
 そこで、第1のスイッチング素子のオンの期間が所要のデューティ比に基づくオンの期間よりも長くなるように第1のスイッチング素子のオン/オフを制御する。これにより、第1のスイッチング素子のオンの期間においてトランスに印加される電圧(例えば、正極の電圧)が過不足となることを防止して、正極での励磁電流の減少を抑制することができるので、正極及び負極での磁気エネルギーをバランス状態に近づけてトランスが磁気飽和することを防止することができる。
 本実施の形態に係る電源装置は、前記比率が前記上限値以上であるか否か又は前記比率が前記下限値以下であるか否かに応じて二値のいずれかを出力する二値出力部と、該二値出力部が出力する二値を伝達する絶縁型伝達素子とを備え、前記判定部は、前記絶縁型伝達素子の出力に応じて前記トランスが磁気飽和するか否かを判定する。
 二値出力部は、比率が上限値以上であるか否か又は比率が下限値以下であるか否かに応じて二値のいずれかを出力する。二値出力部は、例えば、コンパレータを含む回路で構成することができ、比率と上限値とをそれぞれ入力とする一のコンパレータ、及び比率と下限値とをそれぞれ入力とする他のコンパレータを含めることができる。
 絶縁型伝達素子は、二値出力部が出力する二値を伝達する。絶縁型伝達素子は、例えば、フォトカップラで構成することができ、入力側と出力側とを電気的に絶縁することができる。判定部は、絶縁型伝達素子の出力に応じてトランスが磁気飽和するか否かを判定する。
 二値出力部及び絶縁型伝達素子を用いることにより、入力電圧の変動をデジタル信号によって判定部へ伝達することができる。一般的に入力電圧の変動をアナログ信号のままで伝達する場合、電源装置の一次側(入力電圧が印加される回路など)と判定部との間の電気的絶縁を確保するために別個の絶縁トランス等が必要となり、高価となる。二値出力部及び絶縁型伝達素子を用いることにより、入力電圧の変動を電気的に絶縁されたデジタル信号によって判定部へ伝達することができるので、安価に実現することができる。
 本実施の形態に係る電源装置は、入力電圧が印加される入力端子間に接続され、複数の抵抗が直列に接続された第1分圧回路と、前記入力端子間に接続され、抵抗とキャパシタとが直列に接続された第2分圧回路とを備え、前記電圧取得部は、前記第1分圧回路から前記第1の期間での入力電圧を取得し、前記第2分圧回路から前記第2の期間での入力電圧を取得する。
 第1分圧回路は、入力電圧が印加される入力端子間に接続され、複数の抵抗が直列に接続されている。第2分圧回路は、入力端子間に接続され、抵抗とキャパシタとが直列に接続されている。
 電圧取得部は、第1分圧回路から第1の期間(例えば、n周期)での入力電圧を取得する。具体的には、第1分圧回路に印加される電圧VIN(n)とし、第1分圧回路の複数の抵抗で分圧される電圧をV(n)とすると、電圧取得部は、電圧V(n)を取得する。
 電圧取得部は、第2分圧回路から第2の期間(例えば、(n-1)周期)での入力電圧を取得する。具体的には、電圧取得部は、抵抗とキャパシタとの接続点の電圧を取得することができる。抵抗を介してキャパシタに充電又はキャパシタから放電する時定数を所定周期(すなわち、(n-1)周期からn周期までの時間)と同程度にすることにより、電圧取得部は、第1分圧回路から電圧V(n)を取得するタイミングで、第2分圧回路から電圧V(n-1)を取得することができる。
 本実施の形態に係る電源装置は、前記トランスの二次巻線の一端側と所定の接地レベルとの間に接続され、複数の抵抗が直列に接続された第1分圧回路と、前記一端側と接地レベルとの間に接続され、抵抗とキャパシタとが直列に接続された第2分圧回路とを備え、前記電圧取得部は、前記第1分圧回路から前記第1の期間での入力電圧を取得し、前記第2分圧回路から前記第2の期間での入力電圧を取得する。
 第1分圧回路は、トランスの二次巻線の一端側と所定の接地レベルとの間に接続され、複数の抵抗が直列に接続されている。第2分圧回路は、トランスの二次巻線の一端側と所定の接地レベルとの間に接続され、抵抗とキャパシタとが直列に接続されている。
 電圧取得部は、第1分圧回路から第1の期間(例えば、n周期)での入力電圧を取得する。具体的には、トランスの一次巻線と二次巻線の巻線比を1:Nとし、第1分圧回路に印加される電圧をN・VIN(n)とし、第1分圧回路の複数の抵抗で分圧される電圧をV(n)とすると、電圧取得部は、電圧V(n)を取得する。
 電圧取得部は、第2分圧回路から第2の期間(例えば、(n-1)周期)での入力電圧を取得する。具体的には、電圧取得部は、抵抗とキャパシタとの接続点の電圧を取得することができる。抵抗を介してキャパシタに充電又はキャパシタから放電する時定数を所定周期(すなわち、(n-1)周期からn周期までの時間)と同程度にすることにより、電圧取得部は、第1分圧回路から電圧V(n)を取得するタイミングで、第2分圧回路から電圧V(n-1)を取得することができる。
[本願発明の実施形態の詳細]
 以下、本発明の実施の形態を図面に基づいて説明する。図1は本実施の形態の電源装置100の回路構成の一例を示す説明図である。本実施の形態の電源装置100は、入力側の端子A及びB、出力側の端子C及びDを備え、入力側の端子A及びBには、直流電源(不図示)が接続され、出力側の端子C及びDには負荷が接続される。電源装置100は、例えば、降圧変換装置である。
 電源装置100は、トランス30、第1のスイッチング素子としてのMOSFET(Metal Oxide Semiconductor Field Effect Transistor、以下、「FET」と称する)11、第1のキャパシタとしてのキャパシタ21、第2のスイッチング素子としてのFET12、第2のキャパシタとしてのキャパシタ22、整流回路を構成するダイオード41及びダイオード42、キャパシタ23、インダクタ61(出力側のチョークコイル)、及びFET11、FET12のオン/オフを制御する制御部50などを備える。FET11、FET12は、それぞれボディダイオードを有する。端子A、B間には、電圧検出部70が接続されている。
 端子Aには、トランス30の一次巻線31の一端が接続されている。一次巻線31の他端には、FET11のドレインが接続されている。FET11のソースは、端子Bに接続されている。FET11のドレイン・ソース間には、キャパシタ21(共振用のキャパシタ)が接続されている。
 一次巻線31の両端には、FET12とキャパシタ22との直列回路が接続されている。FET12とキャパシタ22との直列回路は、アクティブクランプ回路を構成する。
 図1の例では、一次巻線31の一端にキャパシタ22の一端が接続され、キャパシタ22の他端にはFET12のドレインが接続されている。FET12のソースは、一次巻線31の他端に接続されている。
 トランス30の二次巻線32の一端にはダイオード41のカソードが接続され、ダイオード41のアノードは端子D(接地レベル)に接続されている。二次巻線32の他端には、ダイオード42のカソード及びインダクタ61の一端が接続されている。ダイオード42のアノードは、ダイオード41のアノードに接続されている。なお、図1の例では、ダイオード41、ダイオード42それぞれのアノード同士が接続された構成となっているが、これに限定されるものではなく、ダイオード41、ダイオード42それぞれのカソード同士が接続された構成にしてもよい。
 インダクタ61の他端は端子Cに接続されている。端子C及びD間にはキャパシタ23が接続されている。制御部50は、FET11、FET12のゲートへゲート電圧を出力する。
 制御部50は、判定部51などを備える。
 図2は本実施の形態の電圧検出部70の回路構成の一例を示す説明図である。電圧検出部70は、抵抗711、712、721、キャパシタ722、乗算回路73、74、コンパレータ75、76、NAND回路77、フォトカプッラ78などを備える。コンパレータ75、76、乗算回路73、74は、電圧取得部としての機能を有する。
 より具体的には、端子A、B間には、抵抗711、712が直列に接続されている。抵抗711、712の接続点と端子Bとの間には、抵抗721とキャパシタ722とが直列に接続されている。抵抗711、712の接続点は、コンパレータ75の反転入力端及びコンパレータ76の非反転入力端にそれぞれ接続されている。抵抗721とキャパシタ722の接続点は、乗算回路73、74の入力端にそれぞれ接続されている。乗算回路73は、入力された電圧をX1倍して出力端から出力する。乗算回路73の出力端は、コンパレータ75の非反転入力端に接続されている。また、乗算回路74は、入力された電圧をX2倍して出力端から出力する。乗算回路74の出力端は、コンパレータ76の反転入力端に接続されている。コンパレータ75、76の出力端は、NAND回路77の入力端に接続されている。NAND回路77の出力端は、フォトカップラ78の入力側に接続され、フォトカップラ78の出力側は制御部50に接続されている。
 端子A、B間に接続された抵抗711、712の直列回路は、第1分圧回路71を構成する。すなわち、第1分圧回路71は、端子A、B間に印加された入力電圧VINを分圧した電圧Vをコンパレータ75の反転入力端及びコンパレータ76の非反転入力端へ出力する。
 端子A、B間に接続された抵抗711、721、キャパシタ722の直列回路は、第2分圧回路72を構成する。すなわち、第2分圧回路72は、端子A、B間に印加された入力電圧VINを分圧した電圧Vを乗算回路73、74へ出力する。
 第2分圧回路72において、抵抗721を介してキャパシタ722に充電又はキャパシタ722から放電する時定数を、電源装置100のスイッチング周期(所定周期)程度とすることにより、第1分圧回路71で検出する電圧Vに対して、第2分圧回路72で検出する電圧を所定周期(電源装置100のFET11、12のスイッチング周期)だけ遅らせることができる。すなわち、図2に示すように、第1分圧回路71から電圧V(n)を取得するタイミングで、第2分圧回路72から電圧V(n-1)を取得することができる。ここで、電圧V(n)はn周期の電圧であり、電圧V(n-1)は(n-1)周期の電圧を表す。
 乗算回路73は、電圧V(n-1)をX1倍した電圧X1・V(n-1)を出力する。ここで、係数X1は上限値である。また、乗算回路74は、電圧V(n-1)をX2倍した電圧X2・V(n-1)を出力する。ここで、係数X2は下限値である。
 コンパレータ75は、電圧取得部及び二値出力部としての機能を有し、電圧V(n)≧電圧X1・V(n-1)である場合、0(ローレベル)を出力し、電圧V(n)<電圧X1・V(n-1)である場合、1(ハイレベル)を出力する。すなわち、コンパレータ75は、(n-1)周期で検出された電圧V(n-1)に対するn周期で検出された電圧V(n)の比率が上限値X1以上である場合、0を出力する。
 コンパレータ76は、電圧取得部及び二値出力部としての機能を有し、電圧V(n)≦電圧X2・V(n-1)である場合、0(ローレベル)を出力し、電圧V(n)>電圧X2・V(n-1)である場合、1(ハイレベル)を出力する。すなわち、コンパレータ76は、(n-1)周期で検出された電圧V(n-1)に対するn周期で検出された電圧V(n)の比率が下限値X2以下である場合、0を出力する。
 NAND回路77は、コンパレータ75、76のいずれかが0を出力した場合、1(ハイレベル)を出力してフォトカップラ78を駆動し、フォトカップラ78は、1(ハイレベル)を制御部50へ出力する。
 すなわち、制御部50は、(n-1)周期で検出された電圧V(n-1)に対するn周期で検出された電圧V(n)の比率が上限値X1以上である場合、あるいは、(n-1)周期で検出された電圧V(n-1)に対するn周期で検出された電圧V(n)の比率が下限値X2以下である場合、電圧検出部70から1(ハイレベル)を取得することができる。
 なお、図示していないが、NAND回路77に代えて、コンパレータ75、76それぞれの出力段に別個のNOT回路を接続し、各NOT回路の出力に別個のフォトカップをそれぞれ接続することにより、制御部50は、(n-1)周期で検出された電圧V(n-1)に対するn周期で検出された電圧V(n)の比率が上限値X1以上となったのか、あるいは、(n-1)周期で検出された電圧V(n-1)に対するn周期で検出された電圧V(n)の比率が下限値X2以下となったのかを区別して判定することができる。
 次に、本実施の形態の電源装置100の動作について説明する。
 図3は本実施の形態の電源装置100の各部の波形の一例を示すタイムチャートである。図3では、上から、FET11のゲート電圧、FET12のゲート電圧、トランス30の電圧(トランス電圧とも称する)、トランス30の励磁電流(以下、励磁電流とも称する)の各波形を模式的に示す。便宜上各部の波形を模式的に図示するので、実際の各部の波形は異なる場合がある。
 図3に示すように、周期Tを期間D1、D2、D3及びD4の4つの期間に区分する。周期Tは、所定周期であり、FET11、12のスイッチング周期である。スイッチング周期は、例えば、100kHz程度であるが、これに限定されない。期間D1は、FET11のオン期間であり、FET11は、所定のデューティ比(D1/T)でオン/オフを繰り返す。期間D1では、トランス30の正極の電圧V1が印加されている。また、励磁電流は直線的に増加する。
 また、期間D3は、FET12のオン期間であり、FET12は、所定のデューティ比(D3/T)でオン/オフを繰り返す。期間D3では、トランス30の負極の電圧V2が印加されている。また、励磁電流は直線的に減少する。なお、トランス30の磁気エネルギーがバランスされている状態では、V1×D1≒V2×D3という式が成り立つ。
 期間D2、D4は、FET11及びFET12の両方がオフとなる期間である。次に、各期間D1~D4における電源装置100の動作状態について順に説明する。
 図4は本実施の形態の電源装置100の期間D1での動作状態の一例を示す説明図である。図3に示すように、期間D1においては、制御部50の制御により、FET11がオンとなり、FET12はオフとなる。期間D1では、トランス30の一次巻線には、入力側の電源電圧が印加され、一次巻線の電圧は正となる。二次巻線の電圧も正となり、ダイオード41が導通して負荷に負荷電流が流れる。トランス30の一次巻線31には、負荷電流及び励磁電流の合計が流れる。図3に示すように、励磁電流は直線的に増加する。図4中、符号Lmはトランス30の励磁インダクタンスを表し、Lsは漏れインダクタンスを表す。なお、便宜上、図4において、一次巻線及び二次巻線の下端に対して上端の電位が高い場合を正極の電圧とする。
 なお、トランス30の一次側と二次側それぞれに流れる負荷電流による磁束はお互いに打消し合うのに対し、励磁電流は磁束を作るので、トランス30が磁気飽和するか否かの要因の一つは励磁電流となる。
 図5は本実施の形態の電源装置100の期間D2での動作状態の一例を示す説明図である。期間D2では、FET11がオフとなる。FET12はオフのままである。期間D2では、FET11をオフにすることにより、キャパシタCs(21)が充電され、励磁電流が維持される。なお、キャパシタ21が共振用のキャパシタであることを表すため、キャパシタ21をキャパシタCsとも称する。キャパシタCsの充電に伴ってトランス30(一次巻線及び二次巻線)の電圧は減少して負になると、ダイオード41は逆バイアスとなり、非導通となる。ダイオード41に流れていた負荷電流はダイオード42を介して流れるようになる。
 図6は本実施の形態の電源装置100の期間D3での動作状態の一例を示す説明図である。期間D3では、FET12がオンとなる。FET11はオフのままである。期間D3では、FET12がオンになるので、トランス30には、キャパシタ22の電圧が逆方向(負の電圧の方向)に印加され、トランス30の励磁電流は減少し、トランス30の励磁をリセットする状態に移行する。そして、トランス30の励磁電流が逆転し(負になる、電流方向が逆になる)、キャパシタ22に蓄えられたエネルギーが放出され、トランス30の漏れインダクタンスLsにエネルギーが蓄積される。
 図7は本実施の形態の電源装置100の期間D4での動作状態の一例を示す説明図である。期間D4では、FET12をオフにし、FET11はオフのままである。期間D4では、トランス30(より具体的には、漏れインダクタンスLs)及びキャパシタCsによる共振が発生する。ダイオード42には、負荷に流れる負荷電流Il(図中、実線で示す)、トランス30の励磁電流Im(図中、破線で示す)、トランス30(トランス30の漏れインダクタンスLs)及びキャパシタCsの共振による共振電流Ir(図中、一点鎖線で示す)が流れる。
 負荷電流Ilは、ダイオード42、インダクタ61、負荷の閉ループを流れる。負荷電流Ilは、例えば、インダクタ61のインダクタンスを比較的大きくすることにより、一定の値となる。
 励磁電流Imは、トランス30、ダイオード42、41の閉ループを流れる。期間D4において、励磁インダクタンスLmに印加される電圧がほぼゼロであるため、励磁電流Imは維持される。
 図8は本実施の形態の電源装置100の入力電圧と出力電圧との関係を示す模式図である。図中、スイッチング周期をTとし、FET11がオンの期間をD(図3の期間D1に相当)とする。横軸は時間を示す。トランス30の一次巻線と二次巻線の巻線比を1:Nとする。入力電圧VINを二次側に変換した電圧は、N・VINとなるので、損失等を無視すれば、D・N・VIN=T・VOUTという関係が成立する。すなわち、FET11のデューティ比(「デューティ」とも称する)Dtは、Dt=D/T=(VOUT/VIN)・(1/N)で求めることができる。
 本実施の形態の電源装置100は、スイッチング周期(所定周期)Tのうち、FET11がオンである期間Dにおいて、トランス30に磁気エネルギーが投入され、期間Dにおいてトランス30に印加された電力によって出力電力が負荷へ供給される。図8には図示していないが、FET12がオンの期間(図3の期間D3に相当)において、磁気エネルギーが放出されて磁気リセットが行われる。
 図9は本実施の形態の電源装置100のFET11のデューティ比を決定する方法の一例を示すタイムチャートである。上段の図は入力電圧VINを示し、下段の図はFET11のデューティ比を示す。横軸は時間を示す。
 まず、(n-1)周期でのデューティ比をDt(n-1)とすると、FET11は、Dt(n-1)に相当する期間だけオンとなり、(n-1)周期での入力電圧がVIN(n-1)であるとする。制御部50は、n周期でのデューティ比Dt(n)を、Dt(n)=(VOUT/VIN(n-1))・(1/N)によって求める。ここで、VOUTは所定の出力電圧であり、一定値とする。
 n周期では、FET11は、Dt(n)に相当する期間だけオンとなり、n周期での入力電圧がVIN(n)であるとする。制御部50は、(n+1)周期でのデューティ比Dt(n+1)を、Dt(n+1)=(VOUT/VIN(n))・(1/N)によって求める。このように、制御部50は、ある周期におけるFET11のデューティ比を、1つ前の周期での入力電圧に基づいて決定する。従って、入力電圧VINが許容範囲内で変動しても、FET11のデューティ比を調整することによって所要の出力電圧を出力することができる。
 なお、各デューティ比Dt(n-1)、Dt(n)、Dt(n+1)は、所定の出力電圧(出力電力)を出力するために予め定められた所要のデューティ比を基準として、入力電圧の変動によって、微調整されたデューティ比であり、所要のデューティ比ということができる。
 次に、入力電圧が急激に変動する場合について説明する。入力電圧が急激に変動する場合とは、例えば、デューティ比の追従に遅延が生じる場合である。
 図10は入力電圧が急激に増加する場合のデューティ比の追従の一例を示すタイムチャートである。上段の図は入力電圧VINを示し、下段の図はFET11のデューティ比を示す。横軸は時間を示す。まず、(n-1)周期でのデューティ比をDt(n-1)とすると、FET11は、Dt(n-1)に相当する期間だけオンとなり、(n-1)周期での入力電圧がVIN(n-1)であるとする。
 n周期でのデューティ比Dt(n)は、Dt(n)=(VOUT/VIN(n-1))・(1/N)によって求められ、n周期での入力電圧は、破線で示す程度、すなわち、(n-1)周期での入力電圧VIN(n-1)から比較的小さい変動であると想定したとする。しかし、実際には、入力電圧VIN(n-1)よりも大きく増加した入力電圧VIN(n)が印加されたとする。そうすると、模様を付した領域に相当する電圧が過剰に印加されたことになり、デューティ比の追従に遅延が生じる。なお、この場合には、トランス30に投入される磁気エネルギーが放出される磁気エネルギーよりも大きくなり、磁気エネルギーのアンバランス状態となる。
 図11は入力電圧が急激に減少する場合のデューティ比の追従の一例を示すタイムチャートである。上段の図は入力電圧VINを示し、下段の図はFET11のデューティ比を示す。横軸は時間を示す。まず、(n-1)周期でのデューティ比をDt(n-1)とすると、FET11は、Dt(n-1)に相当する期間だけオンとなり、(n-1)周期での入力電圧がVIN(n-1)であるとする。
 n周期でのデューティ比Dt(n)は、Dt(n)=(VOUT/VIN(n-1))・(1/N)によって求められ、n周期での入力電圧は、破線で示す程度、すなわち、(n-1)周期での入力電圧VIN(n-1)から比較的小さい変動であると想定したとする。しかし、実際には、入力電圧VIN(n-1)よりも急激に減少した入力電圧VIN(n)が印加されたとする。そうすると、模様を付した領域に相当する電圧が過不足となり、デューティ比の追従に遅延が生じる。なお、この場合には、トランス30に投入される磁気エネルギーが放出される磁気エネルギーよりも小さくなり、磁気エネルギーのアンバランス状態となる。
 次に、本実施の形態の電源装置100によるトランス30が磁気飽和するか否かの判定方法について説明する。
 判定部51は、FET11がオンの第1の期間で取得した入力電圧及び第1の期間よりも所定周期前の第2の期間で取得した入力電圧に基づいて、トランス30が磁気飽和するか否かを判定する。所定周期は、例えば、FET11、12のスイッチング周期とすることができる。第1の期間をn周期とすると、第2の期間を(n-1)周期とすることができる。
 コンパレータ75、76で取得する入力電圧は、電源装置100に印加される実際の入力電圧に対応する(相当する)電圧であり、実際の入力電圧よりも低い電圧とすることができる。
 電源装置100に印加される入力電圧が急激に変動(例えば、急激に増加または急激に減少)すると、図10及び図11に示したように、デューティ比の追従に遅延が生ずる場合がある。デューティ比の追従が遅延する過渡期間では、トランス30の正極及び負極の磁気エネルギーにアンバランスが生じ、過大な励磁電流が流れ、トランス30が磁気飽和になるおそれがある。
 そこで、入力電圧の急激な変動を、第1の期間及び第2の期間で取得した入力電圧に基づいて判定する。例えば、第2の期間(例えば、(n-1)周期)で取得した電圧に対して、第1の期間(例えば、n周期)で取得した電圧の変化率(あるいは変化量)が大きいときは、トランス30が磁気飽和に至る前に、トランス30が磁気飽和すると判定することができる。
 制御部50は、判定部51の判定結果に基づいてFET11のオン/オフを制御する。例えば、判定部51で磁気飽和となると判定した場合、制御部50は、磁気飽和となる前にFET11のオン/オフを制御することができる。これにより、トランス30の磁気飽和を未然に防止することができる。
 より具体的には、判定部51は、第2の期間で取得された入力電圧に対する第1の期間で取得された入力電圧の比率が所定の上限値以上である場合又は比率が所定の下限値以下である場合、トランスが磁気飽和すると判定する。
 第2の期間を(n-1)周期とし、第2の期間で取得された入力電圧をV(n-1)とし、第1の期間をn周期とし、第1の期間で取得された入力電圧をV(n)とする。上限値をX1とすると、判定部51は、V(n)≧X1・V(n-1)となる場合、すなわち、電圧検出部70(コンパレータ75経由)から1(ハイレベル)を取得した場合、トランス30が磁気飽和すると判定することができる。なお、上限値X1は、トランス30が磁気飽和に至る前に磁気飽和になると判定することができる閾値とすることができる。すなわち、V(n)を取得した時点ではトランス30は磁気飽和に至っていないが、当該時点よりも後の時点でトランス30が磁気飽和すると判定することができる閾値とすればよい。上限値は、例えば、1.5程度とすることができるが、これに限定されるものではない。
 また、下限値をX2とすると、判定部51は、V(n)≦X2・V(n-1)となる場合、すなわち、電圧検出部70(コンパレータ76経由)から1(ハイレベル)を取得した場合、トランス30が磁気飽和すると判定することができる。なお、下限値X2は、トランス30が磁気飽和に至る前に磁気飽和になると判定することができる閾値とすることができる。下限値は、例えば、0.5程度とすることができるが、これに限定されるものではない。
 上述の構成により、入力電圧が急激に変動(例えば、急激に増加または急激に減少)した場合でも、トランス30が磁気飽和に至る前に、トランス30が磁気飽和すると判定することができる。
 図12は本実施の形態の電源装置100による入力電圧が急激に増加する場合の制御方法の一例を示すタイムチャートである。上段の図は入力電圧VINを示し、下段の図はFET11のデューティ比を示す。横軸は時間を示す。便宜上、周期をT(1)、T(2)、T(3)、T(4)で表す。まず、周期T(1)でのデューティ比をDt(1)とすると、FET11は、Dt(1)に相当する期間だけオンとなり、周期T(1)での入力電圧がVIN(1)であるとする。
 制御部50は、周期T(2)でのデューティ比Dt(2)を、周期T(1)での入力電圧VIN(1)に基づいて決定する。FET11は、Dt(2)に相当する期間だけオンとなり、周期T(2)での入力電圧がVIN(2)であるとする。
 周期T(2)において、入力電圧VIN(1)に対する入力電圧VIN(2)の比率が上限値X1以上でないので、制御部50は、周期T(3)でのデューティ比Dt(3)を、周期T(2)での入力電圧VIN(2)に基づいて決定する。FET11は、Dt(3)に相当する期間だけオンとなり、周期T(3)での入力電圧がVIN(3)であるとする。
 周期T(3)において、入力電圧VIN(2)に対する入力電圧VIN(3)の比率が上限値X1以上となるので、制御部50は、周期T(4)でのデューティ比Dt(4)を、所定のデューティ比よりも小さく(例えば、ΔDだけ小さい)する。
 周期T(4)において、FET11は、Dt(4)に相当する期間だけオンとなるが、デューティ比を小さくしているので、周期T(4)において、入力電圧VIN(4)が、さらに増加したとしても、デューティ比を小さくしている分だけ、トランス30に投入される磁気エネルギーを小さくすることができ、磁気エネルギーのアンバランス状態を抑制して、トランス30が磁気飽和することを防止できる。
 上述のように、制御部50は、(n-1)周期において取得された入力電圧に対するn周期において取得された入力電圧の比率が上限値X1以上である場合、FET11のオンの期間が所要のデューティ比に基づくオンの期間よりも短くなるようにFET11のオン/オフを制御する。
 比率が上限値以上である場合、すなわち、V(n)≧X1・V(n-1)となる場合、FET11のオンの期間においてトランス30に印加される電圧(例えば、正極の電圧)が過剰となり、正極での励磁電流が増加するので、正極及び負極での磁気エネルギーがアンバランス状態(正極の磁気エネルギー>負極の磁気エネルギー)となり、磁気飽和となる可能性がある。
 そこで、図12に示すように、FET11のオンの期間が所要のデューティ比に基づくオンの期間よりも短くなるようにFET11のオン/オフを制御する。これにより、FET11のオンの期間においてトランス30に印加される電圧(例えば、正極の電圧)が過剰となることを防止して、正極での励磁電流の増加を抑制することができるので、正極及び負極での磁気エネルギーをバランス状態に近づけてトランス30が磁気飽和することを防止することができる。
 図13は本実施の形態の電源装置100による入力電圧が急激に減少する場合の制御方法の一例を示すタイムチャートである。上段の図は入力電圧VINを示し、下段の図はFET11のデューティ比を示す。横軸は時間を示す。便宜上、周期をT(11)、T(12)、T(13)、T(14)で表す。まず、周期T(11)でのデューティ比をDt(11)とすると、FET11は、Dt(11)に相当する期間だけオンとなり、周期T(11)での入力電圧がVIN(11)であるとする。
 制御部50は、周期T(12)でのデューティ比Dt(12)を、周期T(11)での入力電圧VIN(11)に基づいて決定する。FET11は、Dt(12)に相当する期間だけオンとなり、周期T(12)での入力電圧がVIN(12)であるとする。
 周期T(12)において、入力電圧VIN(11)に対する入力電圧VIN(12)の比率が下限値X2以下でないので、制御部50は、周期T(13)でのデューティ比Dt(13)を、周期T(12)での入力電圧VIN(12)に基づいて決定する。FET11は、Dt(13)に相当する期間だけオンとなり、周期T(13)での入力電圧がVIN(13)であるとする。
 周期T(13)において、入力電圧VIN(12)に対する入力電圧VIN(13)の比率が下限値X2以下となるので、制御部50は、周期T(14)でのデューティ比Dt(14)を、所定のデューティ比よりも大きく(例えば、ΔDだけ大きい)する。
 周期T(14)において、FET11は、Dt(14)に相当する期間だけオンとなるが、デューティ比を大きくしているので、周期T(14)において、入力電圧VIN(14)が、さらに減少したとしても、デューティ比を大きくしている分だけ、トランス30に投入される磁気エネルギーを大きくすることができ、磁気エネルギーのアンバランス状態を抑制して、トランス30が磁気飽和することを防止できる。
 上述のように、制御部50は、(n-1)周期において取得された入力電圧に対するn周期において取得された入力電圧の比率が下限値X2以下である場合、FET11のオンの期間が所要のデューティ比に基づくオンの期間よりも長くなるようにFET11のオン/オフを制御する。
 比率が下限値X2以下である場合、すなわち、V(n)≦X2・V(n-1)となる場合、FET11のオンの期間においてトランス30に印加される電圧(例えば、正極の電圧)が過不足となり、正極での励磁電流が減少するので、正極及び負極での磁気エネルギーがアンバランス状態(正極の磁気エネルギー<負極の磁気エネルギー)となり、磁気飽和となる可能性がある。
 そこで、図13に示すように、FET11のオンの期間が所要のデューティ比に基づくオンの期間よりも長くなるようにFET11のスイッチング素子のオン/オフを制御する。これにより、FET11のオンの期間においてトランス30に印加される電圧(例えば、正極の電圧)が過不足となることを防止して、正極での励磁電流の減少を抑制することができるので、正極及び負極での磁気エネルギーをバランス状態に近づけてトランス30が磁気飽和することを防止することができる。
 なお、図12、図13の例では、FET11のオンからオフするタイミングを調整しているが、これに限定されるものでなく、FET11のオフからオンするタイミングを調整してもよい。
 コンパレータ75は、(n-1)周期において取得された入力電圧に対するn周期において取得された入力電圧の比率が上限値X1以上であるか否かに応じて二値のいずれかを出力する。また、コンパレータ76は、(n-1)周期において取得された入力電圧に対するn周期において取得された入力電圧の比率が下限値X2以下であるか否かに応じて二値のいずれかを出力する。
 フォトカップラ78は、コンパレータ75、76が出力する二値を伝達する。フォトカップラ78によって、入力側と出力側とを電気的に絶縁することができる。
 フォトカップラ78、コンパレータ75、76などを用いることにより、入力電圧の変動をデジタル信号によって制御部50(判定部51)へ伝達することができる。一般的に入力電圧の変動をアナログ信号のままで伝達する場合、電源装置の一次側(入力電圧が印加される回路など)と制御回路との間の電気的絶縁を確保するために別個の絶縁トランス等が必要となり、高価となる。フォトカップラ78、コンパレータ75、76などを用いることにより、入力電圧の変動を電気的に絶縁されたデジタル信号によって制御部50(判定部51)へ伝達することができるので、安価に実現することができる。
 第1分圧回路71は、入力電圧が印加される入力側の端子A、B間に接続され、複数の抵抗711、712が直列に接続されている。第2分圧回路72は、端子A、B間に接続され、抵抗711、721とキャパシタ722とが直列に接続されている。
 コンパレータ75(電圧取得部)は、第1分圧回路71から第1の期間(例えば、n周期)での入力電圧を取得する。具体的には、第1分圧回路71に印加される電圧VIN(n)とし、第1分圧回路71の複数の抵抗711、712で分圧される電圧をV(n)とすると、コンパレータ75は、電圧V(n)を取得する。コンパレータ76についても同様である。
 乗算回路73(電圧取得部)は、第2分圧回路72から第2の期間(例えば、(n-1)周期)での入力電圧を取得する。具体的には、乗算回路73は、抵抗721とキャパシタ722との接続点の電圧を取得することができる。抵抗721を介してキャパシタ722に充電又はキャパシタ722から放電する時定数を所定周期(すなわち、(n-1)周期からn周期までの時間)と同程度にすることにより、乗算回路73は、第1分圧回路71から電圧V(n)を取得するタイミングで、第2分圧回路72から電圧V(n-1)を取得することができる。乗算回路74についても同様である。
 上述の実施の形態では、電圧検出部70を入力側の端子A、B間に接続する構成であったが、かかる構成に限定されるものではない。例えば、電圧検出部をトランス30の二次側に設けることもできる。
 図14は本実施の形態の電源装置100の回路構成の他の例を示す説明図である。図1に示した例との相違点は、電圧検出部170を、トランス30の二次巻線32の一端側と所定の接地レベルとの間に接続した点である。より具体的には、トランス30の二次巻線の一端側とダイオード42のカソードとの接続点と、トランス30の二次側の接地レベルとの間に電圧検出部170を接続している。トランス30の一次巻線と二次巻線の巻線比を1:Nとすると、電圧検出部70には、電圧VINが印加されるが、電圧検出部170には、電圧(N・VIN)が印加される。この場合にも、第1分圧回路71の複数の抵抗で分圧される電圧をV(n)と表すことにする。
 図15は本実施の形態の電圧検出部170の回路構成の一例を示す説明図である。図2に示す電圧検出部70との相違点は、電圧検出部170は、フォトカップラ78を具備しない点である。電圧検出部170は、トランス30の二次側に設けられているので、トランス30の一次側と二次側とを絶縁する必要がないからである。これにより、部品コストをさらに低減することができる。なお、電圧検出部170の機能、動作は図2に示す電圧検出部70と同様であるので説明は省略する。
 図15において、NAND回路77は、コンパレータ75、76のいずれかが0を出力した場合、1(ハイレベル)を制御部50へ出力する。
 制御部50は、(n-1)周期で検出された電圧V(n-1)に対するn周期で検出された電圧V(n)の比率が上限値X1以上である場合、あるいは、(n-1)周期で検出された電圧V(n-1)に対するn周期で検出された電圧V(n)の比率が下限値X2以下である場合、電圧検出部70から1(ハイレベル)を取得することができる。
 図16は本実施の形態の電源装置100の制御方法の処理手順の一例を示すフローチャートである。制御部50は、所定周期TでFET11、FET12のオン/オフを行う(S11)。制御部50は、FET11がオン期間であるか否かを判定し(S12)、FET11がオン期間でない場合(S12でNO)、ステップS12の処理を続ける。
 FET11がオン期間である場合(S12でYES)、制御部50は、n周期(例えば、現時点の周期)及び(n-1)周期(一つ前の周期)での入力電圧を取得する(S13)。なお、取得する入力電圧は、第1分圧回路71、第2分圧回路72で分圧された電圧(入力電圧に対応する電圧)である。
 制御部50は、(n-1)周期において取得された入力電圧に対するn周期において取得された入力電圧の比率が上限値X1以上であるか否かを判定する(S14)。比率が上限値X1以上である場合(S14でYES)、制御部50は、(n+1)周期でのFET11のデューティ比を所要のデューティ比よりも小さくし(S15)、後述のステップS19の処理を行う。
 比率が上限値X1以上でない場合(S14でNO)、制御部50は、(n-1)周期において取得された入力電圧に対するn周期において取得された入力電圧の比率が下限値X2以下であるか否かを判定する(S16)。比率が下限値X2以下である場合(S16でYES)、制御部50は、(n+1)周期でのFET11のデューティ比を所要のデューティ比よりも大きくし(S17)、後述のステップS19の処理を行う。
 比率が下限値X2以下でない場合(S16でNO)、制御部50は、(n+1)周期でのFET11のデューティ比を所定値(所要のデューティ比を基準に微調整した値)にする(S18)。制御部50は、処理を終了するか否かを判定し(S19)、処理を終了しない場合(S19でNO)、ステップS11以降の処理を繰り返す。処理を終了する場合(S19でYES)、制御部50は、FET11、FET12のスイッチングを停止して処理を終了する。
 本実施の形態の電源装置100の制御方法は、制御部50を、例えば、CPU(プロセッサ)、RAM(メモリ)などで構成し、図16に示すような、各処理の手順を定めたコンピュータプログラムをRAM(メモリ)にロードし、コンピュータプログラムをCPU(プロセッサ)で実行することにより、コンピュータ上で電源装置50の制御方法を実現することができる。
 本実施の形態において、FET11がオン状態において、各周期で取得する電圧は、瞬時値でもよく、あるいは平均値などでもよい。電圧を取得するタイミングは、FET11のオン期間の中央時点でもよい。また、オン直後及びオフ直前それぞれで取得した電圧の平均値を取得するようにしてもよい。
 スイッチング素子はMOSFETに限定されるものではなく、IGBT(Insulated Gate Bipolar Transistor)などのデバイスであってもよい。本実施の形態のように、スイッチング素子が、MOSFETの場合には、ドレイン・ソース間には等価的に内蔵されたボディダイオードが存在する。また、スイッチング素子として、バイポーラトランジスタを用いる場合には、トランジスタのコレクタ・エミッタ間にダイオードを逆並列に接続すればよい。
 本実施の形態では、電源装置として、図1に示したようなDC/DCコンバータの構成を例に挙げて説明したが、DC/DCコンバータの構成は図1に例示した構成に限定されるものではなく、トランスの一次巻線に直列にスイッチング素子が接続され、トランスの磁気リセットが行われるような構成であればよい。
 以上に開示された実施の形態及び実施例は、全ての点で例示であって制限的なものではないと考慮されるべきである。本発明の範囲は、以上の実施の形態及び実施例ではなく、請求の範囲によって示され、請求の範囲と均等の意味及び範囲内での全ての修正や変形を含むものと意図される。
 11、12 FET
 21、22、23 キャパシタ
 30 トランス
 31 一次巻線
 32 二次巻線
 41、42 ダイオード
 50 制御部
 51 判定部
 61 インダクタ
 70、170 電圧検出部
 71 第1分圧回路
 72 第2分圧回路
 73、74 乗算回路
 75、76 コンパレータ
 77 NAND回路
 78 フォトカップラ
 711、712、721 抵抗
 722 キャパシタ

Claims (8)

  1.  トランスと、該トランスの一次巻線に直列に接続された第1のスイッチング素子と、該第1のスイッチング素子に並列に接続された第1のキャパシタと、前記一次巻線に並列に接続された第2のスイッチング素子及び第2のキャパシタの直列回路と、所要のデューティ比に基づいて前記第1のスイッチング素子及び第2のスイッチング素子のオン/オフを制御する制御部とを備え、前記トランスの一次巻線に入力電圧が印加される電源装置であって、
     前記第1のスイッチング素子がオンの期間での入力電圧を取得する電圧取得部と、
     前記第1のスイッチング素子がオンの第1の期間で取得した入力電圧及び前記第1の期間よりも所定周期前の第2の期間で取得した入力電圧に基づいて、前記トランスが磁気飽和するか否かを判定する判定部と
     を備え、
     前記制御部は、
     前記判定部の判定結果に基づいて前記第1のスイッチング素子のオン/オフを制御する電源装置。
  2.  前記判定部は、
     前記第2の期間で取得された入力電圧に対する前記第1の期間で取得された入力電圧の比率が所定の上限値以上である場合又は前記比率が所定の下限値以下である場合、前記トランスが磁気飽和すると判定する請求項1に記載の電源装置。
  3.  前記制御部は、
     前記比率が前記上限値以上である場合、前記第1のスイッチング素子のオンの期間が前記所要のデューティ比に基づくオンの期間よりも短くなるように前記第1のスイッチング素子のオン/オフを制御する請求項2に記載の電源装置。
  4.  前記制御部は、
     前記比率が前記下限値以下である場合、前記第1のスイッチング素子のオンの期間が前記所要のデューティ比に基づくオンの期間よりも長くなるように前記第1のスイッチング素子のオン/オフを制御する請求項2又は請求項3に記載の電源装置。
  5.  前記比率が前記上限値以上であるか否か又は前記比率が前記下限値以下であるか否かに応じて二値のいずれかを出力する二値出力部と、
     該二値出力部が出力する二値を伝達する絶縁型伝達素子と
     を備え、
     前記判定部は、
     前記絶縁型伝達素子の出力に応じて前記トランスが磁気飽和するか否かを判定する請求項2から請求項4のいずれか一項に記載の電源装置。
  6.  入力電圧が印加される入力端子間に接続され、複数の抵抗が直列に接続された第1分圧回路と、
     前記入力端子間に接続され、抵抗とキャパシタとが直列に接続された第2分圧回路と
     を備え、
     前記電圧取得部は、
     前記第1分圧回路から前記第1の期間での入力電圧を取得し、
     前記第2分圧回路から前記第2の期間での入力電圧を取得する請求項1から請求項5のいずれか一項に記載の電源装置。
  7.  前記トランスの二次巻線の一端側と所定の接地レベルとの間に接続され、複数の抵抗が直列に接続された第1分圧回路と、
     前記一端側と接地レベルとの間に接続され、抵抗とキャパシタとが直列に接続された第2分圧回路と
     を備え、
     前記電圧取得部は、
     前記第1分圧回路から前記第1の期間での入力電圧を取得し、
     前記第2分圧回路から前記第2の期間での入力電圧を取得する請求項1から請求項5のいずれか一項に記載の電源装置。
  8.  トランスと、該トランスの一次巻線に直列に接続された第1のスイッチング素子と、該第1のスイッチング素子に並列に接続された第1のキャパシタと、前記一次巻線に並列に接続された第2のスイッチング素子及び第2のキャパシタの直列回路と、所要のデューティ比に基づいて前記第1のスイッチング素子及び第2のスイッチング素子のオン/オフを制御する制御部とを備え、前記トランスの一次巻線に入力電圧が印加される電源装置の制御方法であって、
     前記第1のスイッチング素子がオンの期間での入力電圧を電圧取得部が取得し、
     前記第1のスイッチング素子がオンの第1の期間で取得された入力電圧及び前記第1の期間よりも所定周期前の第2の期間で取得された入力電圧に基づいて、前記トランスが磁気飽和するか否かを判定部が判定し、
     前記制御部は、
     前記判定部の判定結果に基づいて前記第1のスイッチング素子のオン/オフを制御する電源装置の制御方法。
     
PCT/JP2018/002042 2017-03-09 2018-01-24 電源装置及び電源装置の制御方法 WO2018163631A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112018001236.0T DE112018001236T5 (de) 2017-03-09 2018-01-24 Stromquellenvorrichtung und Verfahren zur Steuerung derselben
JP2019504368A JPWO2018163631A1 (ja) 2017-03-09 2018-01-24 電源装置及び電源装置の制御方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-045257 2017-03-09
JP2017045257 2017-03-09

Publications (1)

Publication Number Publication Date
WO2018163631A1 true WO2018163631A1 (ja) 2018-09-13

Family

ID=63448123

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/002042 WO2018163631A1 (ja) 2017-03-09 2018-01-24 電源装置及び電源装置の制御方法

Country Status (3)

Country Link
JP (1) JPWO2018163631A1 (ja)
DE (1) DE112018001236T5 (ja)
WO (1) WO2018163631A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0984338A (ja) * 1995-09-19 1997-03-28 Omron Corp 両極性フォワードコンバータ
JP2003037973A (ja) * 2001-07-24 2003-02-07 Fuji Electric Co Ltd 電力変換装置における偏磁低減方法及び偏磁低減回路
WO2009050943A1 (ja) * 2007-10-19 2009-04-23 Murata Manufacturing Co., Ltd. スイッチング電源装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4985385B2 (ja) 2007-01-19 2012-07-25 株式会社豊田自動織機 Dc−dcコンバータの制御方法、およびdc−dcコンバータ
JP6360016B2 (ja) 2015-08-26 2018-07-18 株式会社日立製作所 診断装置、診断システム、機器、及び、診断方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0984338A (ja) * 1995-09-19 1997-03-28 Omron Corp 両極性フォワードコンバータ
JP2003037973A (ja) * 2001-07-24 2003-02-07 Fuji Electric Co Ltd 電力変換装置における偏磁低減方法及び偏磁低減回路
WO2009050943A1 (ja) * 2007-10-19 2009-04-23 Murata Manufacturing Co., Ltd. スイッチング電源装置

Also Published As

Publication number Publication date
JPWO2018163631A1 (ja) 2020-01-16
DE112018001236T5 (de) 2019-12-05

Similar Documents

Publication Publication Date Title
US11848603B2 (en) Auxiliary power supply apparatus and method for isolated power converters
US9667153B2 (en) Switching power supply apparatus for generating control signal for lowering switching frequency of switching devices
US10491136B2 (en) Bridge-less type electric power conversion device having current detection circuit of current transformer type
JP6607495B2 (ja) 電力変換装置
US20150263631A1 (en) Current resonance dc-dc converter
JP2019075913A (ja) 制御装置
JP5182204B2 (ja) Dc−dcコンバータ
US7848119B2 (en) Direct current to direct current converter
JP2015070750A (ja) 電力変換装置
JP2022124673A (ja) Dc-dcコンバータおよび車両
WO2018163631A1 (ja) 電源装置及び電源装置の制御方法
US11936297B2 (en) DC-DC converter including first and second coils magnetically coupled such that current flows through second coil in forward direction of diode by mutual induction as current flowing through first coil from intermediate terminal to output terminal increases and vehicle
WO2018186344A1 (ja) 電源装置及び電源装置の制御方法
JP2019009848A (ja) Dc−dcコンバータ、これを用いた電源システム及び当該電源システムを用いた自動車
JP5954256B2 (ja) 制御方法
JP2013062916A (ja) 電力変換装置
JP2013090505A (ja) Dcdcコンバータおよびdcdcコンバータの制御方法
TW201717532A (zh) 單級交流至直流轉換器
WO2018146877A1 (ja) 電源装置及び電源装置の制御方法
US9673716B2 (en) Resonant converter with three switches
WO2018185999A1 (ja) 電源装置及び電源装置の制御方法
JP2018153037A (ja) 直流変換装置
WO2019131469A1 (ja) 電源装置及び電源装置の制御方法
JP2014197949A (ja) 電力変換回路
JP2019146384A (ja) 電源装置及び電源装置の制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18763394

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019504368

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18763394

Country of ref document: EP

Kind code of ref document: A1